xref: /dragonfly/sys/dev/netif/ig_hal/e1000_api.c (revision e10ffbc2)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2014, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD:$*/
34 
35 #include "e1000_api.h"
36 
37 /**
38  *  e1000_init_mac_params - Initialize MAC function pointers
39  *  @hw: pointer to the HW structure
40  *
41  *  This function initializes the function pointers for the MAC
42  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
43  **/
44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46 	s32 ret_val = E1000_SUCCESS;
47 
48 	if (hw->mac.ops.init_params) {
49 		ret_val = hw->mac.ops.init_params(hw);
50 		if (ret_val) {
51 			DEBUGOUT("MAC Initialization Error\n");
52 			goto out;
53 		}
54 	} else {
55 		DEBUGOUT("mac.init_mac_params was NULL\n");
56 		ret_val = -E1000_ERR_CONFIG;
57 	}
58 
59 out:
60 	return ret_val;
61 }
62 
63 /**
64  *  e1000_init_nvm_params - Initialize NVM function pointers
65  *  @hw: pointer to the HW structure
66  *
67  *  This function initializes the function pointers for the NVM
68  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
69  **/
70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 	s32 ret_val = E1000_SUCCESS;
73 
74 	if (hw->nvm.ops.init_params) {
75 		ret_val = hw->nvm.ops.init_params(hw);
76 		if (ret_val) {
77 			DEBUGOUT("NVM Initialization Error\n");
78 			goto out;
79 		}
80 	} else {
81 		DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 		ret_val = -E1000_ERR_CONFIG;
83 	}
84 
85 out:
86 	return ret_val;
87 }
88 
89 /**
90  *  e1000_init_phy_params - Initialize PHY function pointers
91  *  @hw: pointer to the HW structure
92  *
93  *  This function initializes the function pointers for the PHY
94  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
95  **/
96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98 	s32 ret_val = E1000_SUCCESS;
99 
100 	if (hw->phy.ops.init_params) {
101 		ret_val = hw->phy.ops.init_params(hw);
102 		if (ret_val) {
103 			DEBUGOUT("PHY Initialization Error\n");
104 			goto out;
105 		}
106 	} else {
107 		DEBUGOUT("phy.init_phy_params was NULL\n");
108 		ret_val =  -E1000_ERR_CONFIG;
109 	}
110 
111 out:
112 	return ret_val;
113 }
114 
115 /**
116  *  e1000_init_mbx_params - Initialize mailbox function pointers
117  *  @hw: pointer to the HW structure
118  *
119  *  This function initializes the function pointers for the PHY
120  *  set of functions.  Called by drivers or by e1000_setup_init_funcs.
121  **/
122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
123 {
124 	s32 ret_val = E1000_SUCCESS;
125 
126 	if (hw->mbx.ops.init_params) {
127 		ret_val = hw->mbx.ops.init_params(hw);
128 		if (ret_val) {
129 			DEBUGOUT("Mailbox Initialization Error\n");
130 			goto out;
131 		}
132 	} else {
133 		DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 		ret_val =  -E1000_ERR_CONFIG;
135 	}
136 
137 out:
138 	return ret_val;
139 }
140 
141 /**
142  *  e1000_set_mac_type - Sets MAC type
143  *  @hw: pointer to the HW structure
144  *
145  *  This function sets the mac type of the adapter based on the
146  *  device ID stored in the hw structure.
147  *  MUST BE FIRST FUNCTION CALLED (explicitly or through
148  *  e1000_setup_init_funcs()).
149  **/
150 s32 e1000_set_mac_type(struct e1000_hw *hw)
151 {
152 	struct e1000_mac_info *mac = &hw->mac;
153 	s32 ret_val = E1000_SUCCESS;
154 
155 	DEBUGFUNC("e1000_set_mac_type");
156 
157 	switch (hw->device_id) {
158 #ifndef NO_82542_SUPPORT
159 	case E1000_DEV_ID_82542:
160 		mac->type = e1000_82542;
161 		break;
162 #endif
163 	case E1000_DEV_ID_82543GC_FIBER:
164 	case E1000_DEV_ID_82543GC_COPPER:
165 		mac->type = e1000_82543;
166 		break;
167 	case E1000_DEV_ID_82544EI_COPPER:
168 	case E1000_DEV_ID_82544EI_FIBER:
169 	case E1000_DEV_ID_82544GC_COPPER:
170 	case E1000_DEV_ID_82544GC_LOM:
171 		mac->type = e1000_82544;
172 		break;
173 	case E1000_DEV_ID_82540EM:
174 	case E1000_DEV_ID_82540EM_LOM:
175 	case E1000_DEV_ID_82540EP:
176 	case E1000_DEV_ID_82540EP_LOM:
177 	case E1000_DEV_ID_82540EP_LP:
178 		mac->type = e1000_82540;
179 		break;
180 	case E1000_DEV_ID_82545EM_COPPER:
181 	case E1000_DEV_ID_82545EM_FIBER:
182 		mac->type = e1000_82545;
183 		break;
184 	case E1000_DEV_ID_82545GM_COPPER:
185 	case E1000_DEV_ID_82545GM_FIBER:
186 	case E1000_DEV_ID_82545GM_SERDES:
187 		mac->type = e1000_82545_rev_3;
188 		break;
189 	case E1000_DEV_ID_82546EB_COPPER:
190 	case E1000_DEV_ID_82546EB_FIBER:
191 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
192 		mac->type = e1000_82546;
193 		break;
194 	case E1000_DEV_ID_82546GB_COPPER:
195 	case E1000_DEV_ID_82546GB_FIBER:
196 	case E1000_DEV_ID_82546GB_SERDES:
197 	case E1000_DEV_ID_82546GB_PCIE:
198 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
199 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
200 		mac->type = e1000_82546_rev_3;
201 		break;
202 	case E1000_DEV_ID_82541EI:
203 	case E1000_DEV_ID_82541EI_MOBILE:
204 	case E1000_DEV_ID_82541ER_LOM:
205 		mac->type = e1000_82541;
206 		break;
207 	case E1000_DEV_ID_82541ER:
208 	case E1000_DEV_ID_82541GI:
209 	case E1000_DEV_ID_82541GI_LF:
210 	case E1000_DEV_ID_82541GI_MOBILE:
211 		mac->type = e1000_82541_rev_2;
212 		break;
213 	case E1000_DEV_ID_82547EI:
214 	case E1000_DEV_ID_82547EI_MOBILE:
215 		mac->type = e1000_82547;
216 		break;
217 	case E1000_DEV_ID_82547GI:
218 		mac->type = e1000_82547_rev_2;
219 		break;
220 	case E1000_DEV_ID_82571EB_COPPER:
221 	case E1000_DEV_ID_82571EB_FIBER:
222 	case E1000_DEV_ID_82571EB_SERDES:
223 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
224 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
225 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
226 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
227 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
228 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
229 	case E1000_DEV_ID_82571EB_QUAD_COPPER_BP:
230 		mac->type = e1000_82571;
231 		break;
232 	case E1000_DEV_ID_82572EI:
233 	case E1000_DEV_ID_82572EI_COPPER:
234 	case E1000_DEV_ID_82572EI_FIBER:
235 	case E1000_DEV_ID_82572EI_SERDES:
236 		mac->type = e1000_82572;
237 		break;
238 	case E1000_DEV_ID_82573E:
239 	case E1000_DEV_ID_82573E_IAMT:
240 	case E1000_DEV_ID_82573L:
241 		mac->type = e1000_82573;
242 		break;
243 	case E1000_DEV_ID_82574L:
244 	case E1000_DEV_ID_82574LA:
245 		mac->type = e1000_82574;
246 		break;
247 	case E1000_DEV_ID_82583V:
248 		mac->type = e1000_82583;
249 		break;
250 	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
251 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
252 	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
253 	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
254 		mac->type = e1000_80003es2lan;
255 		break;
256 	case E1000_DEV_ID_ICH8_IFE:
257 	case E1000_DEV_ID_ICH8_IFE_GT:
258 	case E1000_DEV_ID_ICH8_IFE_G:
259 	case E1000_DEV_ID_ICH8_IGP_M:
260 	case E1000_DEV_ID_ICH8_IGP_M_AMT:
261 	case E1000_DEV_ID_ICH8_IGP_AMT:
262 	case E1000_DEV_ID_ICH8_IGP_C:
263 	case E1000_DEV_ID_ICH8_82567V_3:
264 		mac->type = e1000_ich8lan;
265 		break;
266 	case E1000_DEV_ID_ICH9_IFE:
267 	case E1000_DEV_ID_ICH9_IFE_GT:
268 	case E1000_DEV_ID_ICH9_IFE_G:
269 	case E1000_DEV_ID_ICH9_IGP_M:
270 	case E1000_DEV_ID_ICH9_IGP_M_AMT:
271 	case E1000_DEV_ID_ICH9_IGP_M_V:
272 	case E1000_DEV_ID_ICH9_IGP_AMT:
273 	case E1000_DEV_ID_ICH9_BM:
274 	case E1000_DEV_ID_ICH9_IGP_C:
275 	case E1000_DEV_ID_ICH10_R_BM_LM:
276 	case E1000_DEV_ID_ICH10_R_BM_LF:
277 	case E1000_DEV_ID_ICH10_R_BM_V:
278 		mac->type = e1000_ich9lan;
279 		break;
280 	case E1000_DEV_ID_ICH10_D_BM_LM:
281 	case E1000_DEV_ID_ICH10_D_BM_LF:
282 	case E1000_DEV_ID_ICH10_D_BM_V:
283 		mac->type = e1000_ich10lan;
284 		break;
285 	case E1000_DEV_ID_PCH_D_HV_DM:
286 	case E1000_DEV_ID_PCH_D_HV_DC:
287 	case E1000_DEV_ID_PCH_M_HV_LM:
288 	case E1000_DEV_ID_PCH_M_HV_LC:
289 		mac->type = e1000_pchlan;
290 		break;
291 	case E1000_DEV_ID_PCH2_LV_LM:
292 	case E1000_DEV_ID_PCH2_LV_V:
293 		mac->type = e1000_pch2lan;
294 		break;
295 	case E1000_DEV_ID_PCH_LPT_I217_LM:
296 	case E1000_DEV_ID_PCH_LPT_I217_V:
297 	case E1000_DEV_ID_PCH_LPTLP_I218_LM:
298 	case E1000_DEV_ID_PCH_LPTLP_I218_V:
299 	case E1000_DEV_ID_PCH_I218_LM2:
300 	case E1000_DEV_ID_PCH_I218_V2:
301 	case E1000_DEV_ID_PCH_I218_LM3:
302 	case E1000_DEV_ID_PCH_I218_V3:
303 		mac->type = e1000_pch_lpt;
304  		break;
305 	case E1000_DEV_ID_PCH_SPT_I219_LM:
306 	case E1000_DEV_ID_PCH_SPT_I219_V:
307 	case E1000_DEV_ID_PCH_SPT_I219_LM2:
308 	case E1000_DEV_ID_PCH_SPT_I219_V2:
309 	case E1000_DEV_ID_PCH_SPT_I219_LM3:
310 	case E1000_DEV_ID_PCH_SPT_I219_LM4:
311 	case E1000_DEV_ID_PCH_SPT_I219_V4:
312 	case E1000_DEV_ID_PCH_SPT_I219_LM5:
313 	case E1000_DEV_ID_PCH_SPT_I219_V5:
314 		mac->type = e1000_pch_spt;
315  		break;
316 	case E1000_DEV_ID_82575EB_COPPER:
317 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
318 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
319 		mac->type = e1000_82575;
320 		break;
321 	case E1000_DEV_ID_82576:
322 	case E1000_DEV_ID_82576_FIBER:
323 	case E1000_DEV_ID_82576_SERDES:
324 	case E1000_DEV_ID_82576_QUAD_COPPER:
325 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
326 	case E1000_DEV_ID_82576_NS:
327 	case E1000_DEV_ID_82576_NS_SERDES:
328 	case E1000_DEV_ID_82576_SERDES_QUAD:
329 		mac->type = e1000_82576;
330 		break;
331 	case E1000_DEV_ID_82580_COPPER:
332 	case E1000_DEV_ID_82580_FIBER:
333 	case E1000_DEV_ID_82580_SERDES:
334 	case E1000_DEV_ID_82580_SGMII:
335 	case E1000_DEV_ID_82580_COPPER_DUAL:
336 	case E1000_DEV_ID_82580_QUAD_FIBER:
337 	case E1000_DEV_ID_DH89XXCC_SGMII:
338 	case E1000_DEV_ID_DH89XXCC_SERDES:
339 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
340 	case E1000_DEV_ID_DH89XXCC_SFP:
341 		mac->type = e1000_82580;
342 		break;
343 	case E1000_DEV_ID_I350_COPPER:
344 	case E1000_DEV_ID_I350_FIBER:
345 	case E1000_DEV_ID_I350_SERDES:
346 	case E1000_DEV_ID_I350_SGMII:
347 	case E1000_DEV_ID_I350_DA4:
348 		mac->type = e1000_i350;
349 		break;
350 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
351 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
352 	case E1000_DEV_ID_I210_COPPER:
353 	case E1000_DEV_ID_I210_COPPER_OEM1:
354 	case E1000_DEV_ID_I210_COPPER_IT:
355 	case E1000_DEV_ID_I210_FIBER:
356 	case E1000_DEV_ID_I210_SERDES:
357 	case E1000_DEV_ID_I210_SGMII:
358 		mac->type = e1000_i210;
359 		break;
360 	case E1000_DEV_ID_I211_COPPER:
361 		mac->type = e1000_i211;
362 		break;
363 	case E1000_DEV_ID_82576_VF:
364 	case E1000_DEV_ID_82576_VF_HV:
365 		mac->type = e1000_vfadapt;
366 		break;
367 	case E1000_DEV_ID_I350_VF:
368 	case E1000_DEV_ID_I350_VF_HV:
369 		mac->type = e1000_vfadapt_i350;
370 		break;
371 
372 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
373 	case E1000_DEV_ID_I354_SGMII:
374 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
375 		mac->type = e1000_i354;
376 		break;
377 	default:
378 		/* Should never have loaded on this device */
379 		ret_val = -E1000_ERR_MAC_INIT;
380 		break;
381 	}
382 
383 	return ret_val;
384 }
385 
386 /**
387  *  e1000_setup_init_funcs - Initializes function pointers
388  *  @hw: pointer to the HW structure
389  *  @init_device: TRUE will initialize the rest of the function pointers
390  *		  getting the device ready for use.  FALSE will only set
391  *		  MAC type and the function pointers for the other init
392  *		  functions.  Passing FALSE will not generate any hardware
393  *		  reads or writes.
394  *
395  *  This function must be called by a driver in order to use the rest
396  *  of the 'shared' code files. Called by drivers only.
397  **/
398 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
399 {
400 	s32 ret_val;
401 
402 	/* Can't do much good without knowing the MAC type. */
403 	ret_val = e1000_set_mac_type(hw);
404 	if (ret_val) {
405 		DEBUGOUT("ERROR: MAC type could not be set properly.\n");
406 		goto out;
407 	}
408 
409 	if (!hw->hw_addr) {
410 		DEBUGOUT("ERROR: Registers not mapped\n");
411 		ret_val = -E1000_ERR_CONFIG;
412 		goto out;
413 	}
414 
415 	/*
416 	 * Init function pointers to generic implementations. We do this first
417 	 * allowing a driver module to override it afterward.
418 	 */
419 	e1000_init_mac_ops_generic(hw);
420 	e1000_init_phy_ops_generic(hw);
421 	e1000_init_nvm_ops_generic(hw);
422 	e1000_init_mbx_ops_generic(hw);
423 
424 	/*
425 	 * Set up the init function pointers. These are functions within the
426 	 * adapter family file that sets up function pointers for the rest of
427 	 * the functions in that family.
428 	 */
429 	switch (hw->mac.type) {
430 #ifndef NO_82542_SUPPORT
431 	case e1000_82542:
432 		e1000_init_function_pointers_82542(hw);
433 		break;
434 #endif
435 	case e1000_82543:
436 	case e1000_82544:
437 		e1000_init_function_pointers_82543(hw);
438 		break;
439 	case e1000_82540:
440 	case e1000_82545:
441 	case e1000_82545_rev_3:
442 	case e1000_82546:
443 	case e1000_82546_rev_3:
444 		e1000_init_function_pointers_82540(hw);
445 		break;
446 	case e1000_82541:
447 	case e1000_82541_rev_2:
448 	case e1000_82547:
449 	case e1000_82547_rev_2:
450 		e1000_init_function_pointers_82541(hw);
451 		break;
452 	case e1000_82571:
453 	case e1000_82572:
454 	case e1000_82573:
455 	case e1000_82574:
456 	case e1000_82583:
457 		e1000_init_function_pointers_82571(hw);
458 		break;
459 	case e1000_80003es2lan:
460 		e1000_init_function_pointers_80003es2lan(hw);
461 		break;
462 	case e1000_ich8lan:
463 	case e1000_ich9lan:
464 	case e1000_ich10lan:
465 	case e1000_pchlan:
466 	case e1000_pch2lan:
467 	case e1000_pch_lpt:
468 	case e1000_pch_spt:
469 		e1000_init_function_pointers_ich8lan(hw);
470 		break;
471 	case e1000_82575:
472 	case e1000_82576:
473 	case e1000_82580:
474 	case e1000_i350:
475 	case e1000_i354:
476 		e1000_init_function_pointers_82575(hw);
477 		break;
478 	case e1000_i210:
479 	case e1000_i211:
480 		e1000_init_function_pointers_i210(hw);
481 		break;
482 	case e1000_vfadapt:
483 		e1000_init_function_pointers_vf(hw);
484 		break;
485 	case e1000_vfadapt_i350:
486 		e1000_init_function_pointers_vf(hw);
487 		break;
488 	default:
489 		DEBUGOUT("Hardware not supported\n");
490 		ret_val = -E1000_ERR_CONFIG;
491 		break;
492 	}
493 
494 	/*
495 	 * Initialize the rest of the function pointers. These require some
496 	 * register reads/writes in some cases.
497 	 */
498 	if (!(ret_val) && init_device) {
499 		ret_val = e1000_init_mac_params(hw);
500 		if (ret_val)
501 			goto out;
502 
503 		ret_val = e1000_init_nvm_params(hw);
504 		if (ret_val)
505 			goto out;
506 
507 		ret_val = e1000_init_phy_params(hw);
508 		if (ret_val)
509 			goto out;
510 
511 		ret_val = e1000_init_mbx_params(hw);
512 		if (ret_val)
513 			goto out;
514 	}
515 
516 out:
517 	return ret_val;
518 }
519 
520 /**
521  *  e1000_get_bus_info - Obtain bus information for adapter
522  *  @hw: pointer to the HW structure
523  *
524  *  This will obtain information about the HW bus for which the
525  *  adapter is attached and stores it in the hw structure. This is a
526  *  function pointer entry point called by drivers.
527  **/
528 s32 e1000_get_bus_info(struct e1000_hw *hw)
529 {
530 	if (hw->mac.ops.get_bus_info)
531 		return hw->mac.ops.get_bus_info(hw);
532 
533 	return E1000_SUCCESS;
534 }
535 
536 /**
537  *  e1000_clear_vfta - Clear VLAN filter table
538  *  @hw: pointer to the HW structure
539  *
540  *  This clears the VLAN filter table on the adapter. This is a function
541  *  pointer entry point called by drivers.
542  **/
543 void e1000_clear_vfta(struct e1000_hw *hw)
544 {
545 	if (hw->mac.ops.clear_vfta)
546 		hw->mac.ops.clear_vfta(hw);
547 }
548 
549 /**
550  *  e1000_write_vfta - Write value to VLAN filter table
551  *  @hw: pointer to the HW structure
552  *  @offset: the 32-bit offset in which to write the value to.
553  *  @value: the 32-bit value to write at location offset.
554  *
555  *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
556  *  table. This is a function pointer entry point called by drivers.
557  **/
558 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
559 {
560 	if (hw->mac.ops.write_vfta)
561 		hw->mac.ops.write_vfta(hw, offset, value);
562 }
563 
564 /**
565  *  e1000_update_mc_addr_list - Update Multicast addresses
566  *  @hw: pointer to the HW structure
567  *  @mc_addr_list: array of multicast addresses to program
568  *  @mc_addr_count: number of multicast addresses to program
569  *
570  *  Updates the Multicast Table Array.
571  *  The caller must have a packed mc_addr_list of multicast addresses.
572  **/
573 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
574 			       u32 mc_addr_count)
575 {
576 	if (hw->mac.ops.update_mc_addr_list)
577 		hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
578 						mc_addr_count);
579 }
580 
581 /**
582  *  e1000_force_mac_fc - Force MAC flow control
583  *  @hw: pointer to the HW structure
584  *
585  *  Force the MAC's flow control settings. Currently no func pointer exists
586  *  and all implementations are handled in the generic version of this
587  *  function.
588  **/
589 s32 e1000_force_mac_fc(struct e1000_hw *hw)
590 {
591 	return e1000_force_mac_fc_generic(hw);
592 }
593 
594 /**
595  *  e1000_check_for_link - Check/Store link connection
596  *  @hw: pointer to the HW structure
597  *
598  *  This checks the link condition of the adapter and stores the
599  *  results in the hw->mac structure. This is a function pointer entry
600  *  point called by drivers.
601  **/
602 s32 e1000_check_for_link(struct e1000_hw *hw)
603 {
604 	if (hw->mac.ops.check_for_link)
605 		return hw->mac.ops.check_for_link(hw);
606 
607 	return -E1000_ERR_CONFIG;
608 }
609 
610 /**
611  *  e1000_check_mng_mode - Check management mode
612  *  @hw: pointer to the HW structure
613  *
614  *  This checks if the adapter has manageability enabled.
615  *  This is a function pointer entry point called by drivers.
616  **/
617 bool e1000_check_mng_mode(struct e1000_hw *hw)
618 {
619 	if (hw->mac.ops.check_mng_mode)
620 		return hw->mac.ops.check_mng_mode(hw);
621 
622 	return FALSE;
623 }
624 
625 /**
626  *  e1000_mng_write_dhcp_info - Writes DHCP info to host interface
627  *  @hw: pointer to the HW structure
628  *  @buffer: pointer to the host interface
629  *  @length: size of the buffer
630  *
631  *  Writes the DHCP information to the host interface.
632  **/
633 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
634 {
635 	return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
636 }
637 
638 /**
639  *  e1000_reset_hw - Reset hardware
640  *  @hw: pointer to the HW structure
641  *
642  *  This resets the hardware into a known state. This is a function pointer
643  *  entry point called by drivers.
644  **/
645 s32 e1000_reset_hw(struct e1000_hw *hw)
646 {
647 	if (hw->mac.ops.reset_hw)
648 		return hw->mac.ops.reset_hw(hw);
649 
650 	return -E1000_ERR_CONFIG;
651 }
652 
653 /**
654  *  e1000_init_hw - Initialize hardware
655  *  @hw: pointer to the HW structure
656  *
657  *  This inits the hardware readying it for operation. This is a function
658  *  pointer entry point called by drivers.
659  **/
660 s32 e1000_init_hw(struct e1000_hw *hw)
661 {
662 	if (hw->mac.ops.init_hw)
663 		return hw->mac.ops.init_hw(hw);
664 
665 	return -E1000_ERR_CONFIG;
666 }
667 
668 /**
669  *  e1000_setup_link - Configures link and flow control
670  *  @hw: pointer to the HW structure
671  *
672  *  This configures link and flow control settings for the adapter. This
673  *  is a function pointer entry point called by drivers. While modules can
674  *  also call this, they probably call their own version of this function.
675  **/
676 s32 e1000_setup_link(struct e1000_hw *hw)
677 {
678 	if (hw->mac.ops.setup_link)
679 		return hw->mac.ops.setup_link(hw);
680 
681 	return -E1000_ERR_CONFIG;
682 }
683 
684 /**
685  *  e1000_get_speed_and_duplex - Returns current speed and duplex
686  *  @hw: pointer to the HW structure
687  *  @speed: pointer to a 16-bit value to store the speed
688  *  @duplex: pointer to a 16-bit value to store the duplex.
689  *
690  *  This returns the speed and duplex of the adapter in the two 'out'
691  *  variables passed in. This is a function pointer entry point called
692  *  by drivers.
693  **/
694 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
695 {
696 	if (hw->mac.ops.get_link_up_info)
697 		return hw->mac.ops.get_link_up_info(hw, speed, duplex);
698 
699 	return -E1000_ERR_CONFIG;
700 }
701 
702 /**
703  *  e1000_setup_led - Configures SW controllable LED
704  *  @hw: pointer to the HW structure
705  *
706  *  This prepares the SW controllable LED for use and saves the current state
707  *  of the LED so it can be later restored. This is a function pointer entry
708  *  point called by drivers.
709  **/
710 s32 e1000_setup_led(struct e1000_hw *hw)
711 {
712 	if (hw->mac.ops.setup_led)
713 		return hw->mac.ops.setup_led(hw);
714 
715 	return E1000_SUCCESS;
716 }
717 
718 /**
719  *  e1000_cleanup_led - Restores SW controllable LED
720  *  @hw: pointer to the HW structure
721  *
722  *  This restores the SW controllable LED to the value saved off by
723  *  e1000_setup_led. This is a function pointer entry point called by drivers.
724  **/
725 s32 e1000_cleanup_led(struct e1000_hw *hw)
726 {
727 	if (hw->mac.ops.cleanup_led)
728 		return hw->mac.ops.cleanup_led(hw);
729 
730 	return E1000_SUCCESS;
731 }
732 
733 /**
734  *  e1000_blink_led - Blink SW controllable LED
735  *  @hw: pointer to the HW structure
736  *
737  *  This starts the adapter LED blinking. Request the LED to be setup first
738  *  and cleaned up after. This is a function pointer entry point called by
739  *  drivers.
740  **/
741 s32 e1000_blink_led(struct e1000_hw *hw)
742 {
743 	if (hw->mac.ops.blink_led)
744 		return hw->mac.ops.blink_led(hw);
745 
746 	return E1000_SUCCESS;
747 }
748 
749 /**
750  *  e1000_id_led_init - store LED configurations in SW
751  *  @hw: pointer to the HW structure
752  *
753  *  Initializes the LED config in SW. This is a function pointer entry point
754  *  called by drivers.
755  **/
756 s32 e1000_id_led_init(struct e1000_hw *hw)
757 {
758 	if (hw->mac.ops.id_led_init)
759 		return hw->mac.ops.id_led_init(hw);
760 
761 	return E1000_SUCCESS;
762 }
763 
764 /**
765  *  e1000_led_on - Turn on SW controllable LED
766  *  @hw: pointer to the HW structure
767  *
768  *  Turns the SW defined LED on. This is a function pointer entry point
769  *  called by drivers.
770  **/
771 s32 e1000_led_on(struct e1000_hw *hw)
772 {
773 	if (hw->mac.ops.led_on)
774 		return hw->mac.ops.led_on(hw);
775 
776 	return E1000_SUCCESS;
777 }
778 
779 /**
780  *  e1000_led_off - Turn off SW controllable LED
781  *  @hw: pointer to the HW structure
782  *
783  *  Turns the SW defined LED off. This is a function pointer entry point
784  *  called by drivers.
785  **/
786 s32 e1000_led_off(struct e1000_hw *hw)
787 {
788 	if (hw->mac.ops.led_off)
789 		return hw->mac.ops.led_off(hw);
790 
791 	return E1000_SUCCESS;
792 }
793 
794 /**
795  *  e1000_reset_adaptive - Reset adaptive IFS
796  *  @hw: pointer to the HW structure
797  *
798  *  Resets the adaptive IFS. Currently no func pointer exists and all
799  *  implementations are handled in the generic version of this function.
800  **/
801 void e1000_reset_adaptive(struct e1000_hw *hw)
802 {
803 	e1000_reset_adaptive_generic(hw);
804 }
805 
806 /**
807  *  e1000_update_adaptive - Update adaptive IFS
808  *  @hw: pointer to the HW structure
809  *
810  *  Updates adapter IFS. Currently no func pointer exists and all
811  *  implementations are handled in the generic version of this function.
812  **/
813 void e1000_update_adaptive(struct e1000_hw *hw)
814 {
815 	e1000_update_adaptive_generic(hw);
816 }
817 
818 /**
819  *  e1000_disable_pcie_master - Disable PCI-Express master access
820  *  @hw: pointer to the HW structure
821  *
822  *  Disables PCI-Express master access and verifies there are no pending
823  *  requests. Currently no func pointer exists and all implementations are
824  *  handled in the generic version of this function.
825  **/
826 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
827 {
828 	return e1000_disable_pcie_master_generic(hw);
829 }
830 
831 /**
832  *  e1000_config_collision_dist - Configure collision distance
833  *  @hw: pointer to the HW structure
834  *
835  *  Configures the collision distance to the default value and is used
836  *  during link setup.
837  **/
838 void e1000_config_collision_dist(struct e1000_hw *hw)
839 {
840 	if (hw->mac.ops.config_collision_dist)
841 		hw->mac.ops.config_collision_dist(hw);
842 }
843 
844 /**
845  *  e1000_rar_set - Sets a receive address register
846  *  @hw: pointer to the HW structure
847  *  @addr: address to set the RAR to
848  *  @index: the RAR to set
849  *
850  *  Sets a Receive Address Register (RAR) to the specified address.
851  **/
852 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
853 {
854 	if (hw->mac.ops.rar_set)
855 		return hw->mac.ops.rar_set(hw, addr, index);
856 
857 	return E1000_SUCCESS;
858 }
859 
860 /**
861  *  e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
862  *  @hw: pointer to the HW structure
863  *
864  *  Ensures that the MDI/MDIX SW state is valid.
865  **/
866 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
867 {
868 	if (hw->mac.ops.validate_mdi_setting)
869 		return hw->mac.ops.validate_mdi_setting(hw);
870 
871 	return E1000_SUCCESS;
872 }
873 
874 /**
875  *  e1000_hash_mc_addr - Determines address location in multicast table
876  *  @hw: pointer to the HW structure
877  *  @mc_addr: Multicast address to hash.
878  *
879  *  This hashes an address to determine its location in the multicast
880  *  table. Currently no func pointer exists and all implementations
881  *  are handled in the generic version of this function.
882  **/
883 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
884 {
885 	return e1000_hash_mc_addr_generic(hw, mc_addr);
886 }
887 
888 /**
889  *  e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
890  *  @hw: pointer to the HW structure
891  *
892  *  Enables packet filtering on transmit packets if manageability is enabled
893  *  and host interface is enabled.
894  *  Currently no func pointer exists and all implementations are handled in the
895  *  generic version of this function.
896  **/
897 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
898 {
899 	return e1000_enable_tx_pkt_filtering_generic(hw);
900 }
901 
902 /**
903  *  e1000_mng_host_if_write - Writes to the manageability host interface
904  *  @hw: pointer to the HW structure
905  *  @buffer: pointer to the host interface buffer
906  *  @length: size of the buffer
907  *  @offset: location in the buffer to write to
908  *  @sum: sum of the data (not checksum)
909  *
910  *  This function writes the buffer content at the offset given on the host if.
911  *  It also does alignment considerations to do the writes in most efficient
912  *  way.  Also fills up the sum of the buffer in *buffer parameter.
913  **/
914 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
915 			    u16 offset, u8 *sum)
916 {
917 	return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
918 }
919 
920 /**
921  *  e1000_mng_write_cmd_header - Writes manageability command header
922  *  @hw: pointer to the HW structure
923  *  @hdr: pointer to the host interface command header
924  *
925  *  Writes the command header after does the checksum calculation.
926  **/
927 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
928 			       struct e1000_host_mng_command_header *hdr)
929 {
930 	return e1000_mng_write_cmd_header_generic(hw, hdr);
931 }
932 
933 /**
934  *  e1000_mng_enable_host_if - Checks host interface is enabled
935  *  @hw: pointer to the HW structure
936  *
937  *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
938  *
939  *  This function checks whether the HOST IF is enabled for command operation
940  *  and also checks whether the previous command is completed.  It busy waits
941  *  in case of previous command is not completed.
942  **/
943 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
944 {
945 	return e1000_mng_enable_host_if_generic(hw);
946 }
947 
948 /**
949  *  e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
950  *  @hw: pointer to the HW structure
951  *  @itr: u32 indicating itr value
952  *
953  *  Set the OBFF timer based on the given interrupt rate.
954  **/
955 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
956 {
957 	if (hw->mac.ops.set_obff_timer)
958 		return hw->mac.ops.set_obff_timer(hw, itr);
959 
960 	return E1000_SUCCESS;
961 }
962 
963 /**
964  *  e1000_check_reset_block - Verifies PHY can be reset
965  *  @hw: pointer to the HW structure
966  *
967  *  Checks if the PHY is in a state that can be reset or if manageability
968  *  has it tied up. This is a function pointer entry point called by drivers.
969  **/
970 s32 e1000_check_reset_block(struct e1000_hw *hw)
971 {
972 	if (hw->phy.ops.check_reset_block)
973 		return hw->phy.ops.check_reset_block(hw);
974 
975 	return E1000_SUCCESS;
976 }
977 
978 /**
979  *  e1000_read_phy_reg - Reads PHY register
980  *  @hw: pointer to the HW structure
981  *  @offset: the register to read
982  *  @data: the buffer to store the 16-bit read.
983  *
984  *  Reads the PHY register and returns the value in data.
985  *  This is a function pointer entry point called by drivers.
986  **/
987 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
988 {
989 	if (hw->phy.ops.read_reg)
990 		return hw->phy.ops.read_reg(hw, offset, data);
991 
992 	return E1000_SUCCESS;
993 }
994 
995 /**
996  *  e1000_write_phy_reg - Writes PHY register
997  *  @hw: pointer to the HW structure
998  *  @offset: the register to write
999  *  @data: the value to write.
1000  *
1001  *  Writes the PHY register at offset with the value in data.
1002  *  This is a function pointer entry point called by drivers.
1003  **/
1004 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
1005 {
1006 	if (hw->phy.ops.write_reg)
1007 		return hw->phy.ops.write_reg(hw, offset, data);
1008 
1009 	return E1000_SUCCESS;
1010 }
1011 
1012 /**
1013  *  e1000_release_phy - Generic release PHY
1014  *  @hw: pointer to the HW structure
1015  *
1016  *  Return if silicon family does not require a semaphore when accessing the
1017  *  PHY.
1018  **/
1019 void e1000_release_phy(struct e1000_hw *hw)
1020 {
1021 	if (hw->phy.ops.release)
1022 		hw->phy.ops.release(hw);
1023 }
1024 
1025 /**
1026  *  e1000_acquire_phy - Generic acquire PHY
1027  *  @hw: pointer to the HW structure
1028  *
1029  *  Return success if silicon family does not require a semaphore when
1030  *  accessing the PHY.
1031  **/
1032 s32 e1000_acquire_phy(struct e1000_hw *hw)
1033 {
1034 	if (hw->phy.ops.acquire)
1035 		return hw->phy.ops.acquire(hw);
1036 
1037 	return E1000_SUCCESS;
1038 }
1039 
1040 /**
1041  *  e1000_cfg_on_link_up - Configure PHY upon link up
1042  *  @hw: pointer to the HW structure
1043  **/
1044 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1045 {
1046 	if (hw->phy.ops.cfg_on_link_up)
1047 		return hw->phy.ops.cfg_on_link_up(hw);
1048 
1049 	return E1000_SUCCESS;
1050 }
1051 
1052 /**
1053  *  e1000_read_kmrn_reg - Reads register using Kumeran interface
1054  *  @hw: pointer to the HW structure
1055  *  @offset: the register to read
1056  *  @data: the location to store the 16-bit value read.
1057  *
1058  *  Reads a register out of the Kumeran interface. Currently no func pointer
1059  *  exists and all implementations are handled in the generic version of
1060  *  this function.
1061  **/
1062 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1063 {
1064 	return e1000_read_kmrn_reg_generic(hw, offset, data);
1065 }
1066 
1067 /**
1068  *  e1000_write_kmrn_reg - Writes register using Kumeran interface
1069  *  @hw: pointer to the HW structure
1070  *  @offset: the register to write
1071  *  @data: the value to write.
1072  *
1073  *  Writes a register to the Kumeran interface. Currently no func pointer
1074  *  exists and all implementations are handled in the generic version of
1075  *  this function.
1076  **/
1077 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1078 {
1079 	return e1000_write_kmrn_reg_generic(hw, offset, data);
1080 }
1081 
1082 /**
1083  *  e1000_get_cable_length - Retrieves cable length estimation
1084  *  @hw: pointer to the HW structure
1085  *
1086  *  This function estimates the cable length and stores them in
1087  *  hw->phy.min_length and hw->phy.max_length. This is a function pointer
1088  *  entry point called by drivers.
1089  **/
1090 s32 e1000_get_cable_length(struct e1000_hw *hw)
1091 {
1092 	if (hw->phy.ops.get_cable_length)
1093 		return hw->phy.ops.get_cable_length(hw);
1094 
1095 	return E1000_SUCCESS;
1096 }
1097 
1098 /**
1099  *  e1000_get_phy_info - Retrieves PHY information from registers
1100  *  @hw: pointer to the HW structure
1101  *
1102  *  This function gets some information from various PHY registers and
1103  *  populates hw->phy values with it. This is a function pointer entry
1104  *  point called by drivers.
1105  **/
1106 s32 e1000_get_phy_info(struct e1000_hw *hw)
1107 {
1108 	if (hw->phy.ops.get_info)
1109 		return hw->phy.ops.get_info(hw);
1110 
1111 	return E1000_SUCCESS;
1112 }
1113 
1114 /**
1115  *  e1000_phy_hw_reset - Hard PHY reset
1116  *  @hw: pointer to the HW structure
1117  *
1118  *  Performs a hard PHY reset. This is a function pointer entry point called
1119  *  by drivers.
1120  **/
1121 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1122 {
1123 	if (hw->phy.ops.reset)
1124 		return hw->phy.ops.reset(hw);
1125 
1126 	return E1000_SUCCESS;
1127 }
1128 
1129 /**
1130  *  e1000_phy_commit - Soft PHY reset
1131  *  @hw: pointer to the HW structure
1132  *
1133  *  Performs a soft PHY reset on those that apply. This is a function pointer
1134  *  entry point called by drivers.
1135  **/
1136 s32 e1000_phy_commit(struct e1000_hw *hw)
1137 {
1138 	if (hw->phy.ops.commit)
1139 		return hw->phy.ops.commit(hw);
1140 
1141 	return E1000_SUCCESS;
1142 }
1143 
1144 /**
1145  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
1146  *  @hw: pointer to the HW structure
1147  *  @active: boolean used to enable/disable lplu
1148  *
1149  *  Success returns 0, Failure returns 1
1150  *
1151  *  The low power link up (lplu) state is set to the power management level D0
1152  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1153  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1154  *  is used during Dx states where the power conservation is most important.
1155  *  During driver activity, SmartSpeed should be enabled so performance is
1156  *  maintained.  This is a function pointer entry point called by drivers.
1157  **/
1158 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1159 {
1160 	if (hw->phy.ops.set_d0_lplu_state)
1161 		return hw->phy.ops.set_d0_lplu_state(hw, active);
1162 
1163 	return E1000_SUCCESS;
1164 }
1165 
1166 /**
1167  *  e1000_set_d3_lplu_state - Sets low power link up state for D3
1168  *  @hw: pointer to the HW structure
1169  *  @active: boolean used to enable/disable lplu
1170  *
1171  *  Success returns 0, Failure returns 1
1172  *
1173  *  The low power link up (lplu) state is set to the power management level D3
1174  *  and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1175  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1176  *  is used during Dx states where the power conservation is most important.
1177  *  During driver activity, SmartSpeed should be enabled so performance is
1178  *  maintained.  This is a function pointer entry point called by drivers.
1179  **/
1180 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1181 {
1182 	if (hw->phy.ops.set_d3_lplu_state)
1183 		return hw->phy.ops.set_d3_lplu_state(hw, active);
1184 
1185 	return E1000_SUCCESS;
1186 }
1187 
1188 /**
1189  *  e1000_read_mac_addr - Reads MAC address
1190  *  @hw: pointer to the HW structure
1191  *
1192  *  Reads the MAC address out of the adapter and stores it in the HW structure.
1193  *  Currently no func pointer exists and all implementations are handled in the
1194  *  generic version of this function.
1195  **/
1196 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1197 {
1198 	if (hw->mac.ops.read_mac_addr)
1199 		return hw->mac.ops.read_mac_addr(hw);
1200 
1201 	return e1000_read_mac_addr_generic(hw);
1202 }
1203 
1204 /**
1205  *  e1000_read_pba_string - Read device part number string
1206  *  @hw: pointer to the HW structure
1207  *  @pba_num: pointer to device part number
1208  *  @pba_num_size: size of part number buffer
1209  *
1210  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1211  *  the value in pba_num.
1212  *  Currently no func pointer exists and all implementations are handled in the
1213  *  generic version of this function.
1214  **/
1215 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1216 {
1217 	return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1218 }
1219 
1220 /**
1221  *  e1000_read_pba_length - Read device part number string length
1222  *  @hw: pointer to the HW structure
1223  *  @pba_num_size: size of part number buffer
1224  *
1225  *  Reads the product board assembly (PBA) number length from the EEPROM and
1226  *  stores the value in pba_num.
1227  *  Currently no func pointer exists and all implementations are handled in the
1228  *  generic version of this function.
1229  **/
1230 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1231 {
1232 	return e1000_read_pba_length_generic(hw, pba_num_size);
1233 }
1234 
1235 /**
1236  *  e1000_read_pba_num - Read device part number
1237  *  @hw: pointer to the HW structure
1238  *  @pba_num: pointer to device part number
1239  *
1240  *  Reads the product board assembly (PBA) number from the EEPROM and stores
1241  *  the value in pba_num.
1242  *  Currently no func pointer exists and all implementations are handled in the
1243  *  generic version of this function.
1244  **/
1245 s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
1246 {
1247 	return e1000_read_pba_num_generic(hw, pba_num);
1248 }
1249 
1250 /**
1251  *  e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1252  *  @hw: pointer to the HW structure
1253  *
1254  *  Validates the NVM checksum is correct. This is a function pointer entry
1255  *  point called by drivers.
1256  **/
1257 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1258 {
1259 	if (hw->nvm.ops.validate)
1260 		return hw->nvm.ops.validate(hw);
1261 
1262 	return -E1000_ERR_CONFIG;
1263 }
1264 
1265 /**
1266  *  e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1267  *  @hw: pointer to the HW structure
1268  *
1269  *  Updates the NVM checksum. Currently no func pointer exists and all
1270  *  implementations are handled in the generic version of this function.
1271  **/
1272 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1273 {
1274 	if (hw->nvm.ops.update)
1275 		return hw->nvm.ops.update(hw);
1276 
1277 	return -E1000_ERR_CONFIG;
1278 }
1279 
1280 /**
1281  *  e1000_reload_nvm - Reloads EEPROM
1282  *  @hw: pointer to the HW structure
1283  *
1284  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1285  *  extended control register.
1286  **/
1287 void e1000_reload_nvm(struct e1000_hw *hw)
1288 {
1289 	if (hw->nvm.ops.reload)
1290 		hw->nvm.ops.reload(hw);
1291 }
1292 
1293 /**
1294  *  e1000_read_nvm - Reads NVM (EEPROM)
1295  *  @hw: pointer to the HW structure
1296  *  @offset: the word offset to read
1297  *  @words: number of 16-bit words to read
1298  *  @data: pointer to the properly sized buffer for the data.
1299  *
1300  *  Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1301  *  pointer entry point called by drivers.
1302  **/
1303 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1304 {
1305 	if (hw->nvm.ops.read)
1306 		return hw->nvm.ops.read(hw, offset, words, data);
1307 
1308 	return -E1000_ERR_CONFIG;
1309 }
1310 
1311 /**
1312  *  e1000_write_nvm - Writes to NVM (EEPROM)
1313  *  @hw: pointer to the HW structure
1314  *  @offset: the word offset to read
1315  *  @words: number of 16-bit words to write
1316  *  @data: pointer to the properly sized buffer for the data.
1317  *
1318  *  Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1319  *  pointer entry point called by drivers.
1320  **/
1321 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1322 {
1323 	if (hw->nvm.ops.write)
1324 		return hw->nvm.ops.write(hw, offset, words, data);
1325 
1326 	return E1000_SUCCESS;
1327 }
1328 
1329 /**
1330  *  e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1331  *  @hw: pointer to the HW structure
1332  *  @reg: 32bit register offset
1333  *  @offset: the register to write
1334  *  @data: the value to write.
1335  *
1336  *  Writes the PHY register at offset with the value in data.
1337  *  This is a function pointer entry point called by drivers.
1338  **/
1339 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1340 			      u8 data)
1341 {
1342 	return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1343 }
1344 
1345 /**
1346  * e1000_power_up_phy - Restores link in case of PHY power down
1347  * @hw: pointer to the HW structure
1348  *
1349  * The phy may be powered down to save power, to turn off link when the
1350  * driver is unloaded, or wake on lan is not enabled (among others).
1351  **/
1352 void e1000_power_up_phy(struct e1000_hw *hw)
1353 {
1354 	if (hw->phy.ops.power_up)
1355 		hw->phy.ops.power_up(hw);
1356 
1357 	e1000_setup_link(hw);
1358 }
1359 
1360 /**
1361  * e1000_power_down_phy - Power down PHY
1362  * @hw: pointer to the HW structure
1363  *
1364  * The phy may be powered down to save power, to turn off link when the
1365  * driver is unloaded, or wake on lan is not enabled (among others).
1366  **/
1367 void e1000_power_down_phy(struct e1000_hw *hw)
1368 {
1369 	if (hw->phy.ops.power_down)
1370 		hw->phy.ops.power_down(hw);
1371 }
1372 
1373 /**
1374  *  e1000_power_up_fiber_serdes_link - Power up serdes link
1375  *  @hw: pointer to the HW structure
1376  *
1377  *  Power on the optics and PCS.
1378  **/
1379 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1380 {
1381 	if (hw->mac.ops.power_up_serdes)
1382 		hw->mac.ops.power_up_serdes(hw);
1383 }
1384 
1385 /**
1386  *  e1000_shutdown_fiber_serdes_link - Remove link during power down
1387  *  @hw: pointer to the HW structure
1388  *
1389  *  Shutdown the optics and PCS on driver unload.
1390  **/
1391 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1392 {
1393 	if (hw->mac.ops.shutdown_serdes)
1394 		hw->mac.ops.shutdown_serdes(hw);
1395 }
1396