xref: /dragonfly/sys/dev/netif/ig_hal/e1000_mac.c (revision 0db87cb7)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2014, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD:$*/
34 
35 #include "e1000_api.h"
36 
37 static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw);
38 static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw);
39 static void e1000_config_collision_dist_generic(struct e1000_hw *hw);
40 static int e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index);
41 
42 /**
43  *  e1000_init_mac_ops_generic - Initialize MAC function pointers
44  *  @hw: pointer to the HW structure
45  *
46  *  Setups up the function pointers to no-op functions
47  **/
48 void e1000_init_mac_ops_generic(struct e1000_hw *hw)
49 {
50 	struct e1000_mac_info *mac = &hw->mac;
51 	DEBUGFUNC("e1000_init_mac_ops_generic");
52 
53 	/* General Setup */
54 	mac->ops.init_params = e1000_null_ops_generic;
55 	mac->ops.init_hw = e1000_null_ops_generic;
56 	mac->ops.reset_hw = e1000_null_ops_generic;
57 	mac->ops.setup_physical_interface = e1000_null_ops_generic;
58 	mac->ops.get_bus_info = e1000_null_ops_generic;
59 	mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pcie;
60 	mac->ops.read_mac_addr = e1000_read_mac_addr_generic;
61 	mac->ops.config_collision_dist = e1000_config_collision_dist_generic;
62 	mac->ops.clear_hw_cntrs = e1000_null_mac_generic;
63 	/* LED */
64 	mac->ops.cleanup_led = e1000_null_ops_generic;
65 	mac->ops.setup_led = e1000_null_ops_generic;
66 	mac->ops.blink_led = e1000_null_ops_generic;
67 	mac->ops.led_on = e1000_null_ops_generic;
68 	mac->ops.led_off = e1000_null_ops_generic;
69 	/* LINK */
70 	mac->ops.setup_link = e1000_null_ops_generic;
71 	mac->ops.get_link_up_info = e1000_null_link_info;
72 	mac->ops.check_for_link = e1000_null_ops_generic;
73 	mac->ops.set_obff_timer = e1000_null_set_obff_timer;
74 	/* Management */
75 	mac->ops.check_mng_mode = e1000_null_mng_mode;
76 	/* VLAN, MC, etc. */
77 	mac->ops.update_mc_addr_list = e1000_null_update_mc;
78 	mac->ops.clear_vfta = e1000_null_mac_generic;
79 	mac->ops.write_vfta = e1000_null_write_vfta;
80 	mac->ops.rar_set = e1000_rar_set_generic;
81 	mac->ops.validate_mdi_setting = e1000_validate_mdi_setting_generic;
82 }
83 
84 /**
85  *  e1000_null_ops_generic - No-op function, returns 0
86  *  @hw: pointer to the HW structure
87  **/
88 s32 e1000_null_ops_generic(struct e1000_hw E1000_UNUSEDARG *hw)
89 {
90 	DEBUGFUNC("e1000_null_ops_generic");
91 	return E1000_SUCCESS;
92 }
93 
94 /**
95  *  e1000_null_mac_generic - No-op function, return void
96  *  @hw: pointer to the HW structure
97  **/
98 void e1000_null_mac_generic(struct e1000_hw E1000_UNUSEDARG *hw)
99 {
100 	DEBUGFUNC("e1000_null_mac_generic");
101 	return;
102 }
103 
104 /**
105  *  e1000_null_link_info - No-op function, return 0
106  *  @hw: pointer to the HW structure
107  **/
108 s32 e1000_null_link_info(struct e1000_hw E1000_UNUSEDARG *hw,
109 			 u16 E1000_UNUSEDARG *s, u16 E1000_UNUSEDARG *d)
110 {
111 	DEBUGFUNC("e1000_null_link_info");
112 	return E1000_SUCCESS;
113 }
114 
115 /**
116  *  e1000_null_mng_mode - No-op function, return FALSE
117  *  @hw: pointer to the HW structure
118  **/
119 bool e1000_null_mng_mode(struct e1000_hw E1000_UNUSEDARG *hw)
120 {
121 	DEBUGFUNC("e1000_null_mng_mode");
122 	return FALSE;
123 }
124 
125 /**
126  *  e1000_null_update_mc - No-op function, return void
127  *  @hw: pointer to the HW structure
128  **/
129 void e1000_null_update_mc(struct e1000_hw E1000_UNUSEDARG *hw,
130 			  u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a)
131 {
132 	DEBUGFUNC("e1000_null_update_mc");
133 	return;
134 }
135 
136 /**
137  *  e1000_null_write_vfta - No-op function, return void
138  *  @hw: pointer to the HW structure
139  **/
140 void e1000_null_write_vfta(struct e1000_hw E1000_UNUSEDARG *hw,
141 			   u32 E1000_UNUSEDARG a, u32 E1000_UNUSEDARG b)
142 {
143 	DEBUGFUNC("e1000_null_write_vfta");
144 	return;
145 }
146 
147 /**
148  *  e1000_null_rar_set - No-op function, return 0
149  *  @hw: pointer to the HW structure
150  **/
151 int e1000_null_rar_set(struct e1000_hw E1000_UNUSEDARG *hw,
152 			u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a)
153 {
154 	DEBUGFUNC("e1000_null_rar_set");
155 	return E1000_SUCCESS;
156 }
157 
158 /**
159  *  e1000_null_set_obff_timer - No-op function, return 0
160  *  @hw: pointer to the HW structure
161  **/
162 s32 e1000_null_set_obff_timer(struct e1000_hw E1000_UNUSEDARG *hw,
163 			      u32 E1000_UNUSEDARG a)
164 {
165 	DEBUGFUNC("e1000_null_set_obff_timer");
166 	return E1000_SUCCESS;
167 }
168 
169 /**
170  *  e1000_get_bus_info_pci_generic - Get PCI(x) bus information
171  *  @hw: pointer to the HW structure
172  *
173  *  Determines and stores the system bus information for a particular
174  *  network interface.  The following bus information is determined and stored:
175  *  bus speed, bus width, type (PCI/PCIx), and PCI(-x) function.
176  **/
177 s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw)
178 {
179 	struct e1000_mac_info *mac = &hw->mac;
180 	struct e1000_bus_info *bus = &hw->bus;
181 	u32 status = E1000_READ_REG(hw, E1000_STATUS);
182 	s32 ret_val = E1000_SUCCESS;
183 
184 	DEBUGFUNC("e1000_get_bus_info_pci_generic");
185 
186 	/* PCI or PCI-X? */
187 	bus->type = (status & E1000_STATUS_PCIX_MODE)
188 			? e1000_bus_type_pcix
189 			: e1000_bus_type_pci;
190 
191 	/* Bus speed */
192 	if (bus->type == e1000_bus_type_pci) {
193 		bus->speed = (status & E1000_STATUS_PCI66)
194 			     ? e1000_bus_speed_66
195 			     : e1000_bus_speed_33;
196 	} else {
197 		switch (status & E1000_STATUS_PCIX_SPEED) {
198 		case E1000_STATUS_PCIX_SPEED_66:
199 			bus->speed = e1000_bus_speed_66;
200 			break;
201 		case E1000_STATUS_PCIX_SPEED_100:
202 			bus->speed = e1000_bus_speed_100;
203 			break;
204 		case E1000_STATUS_PCIX_SPEED_133:
205 			bus->speed = e1000_bus_speed_133;
206 			break;
207 		default:
208 			bus->speed = e1000_bus_speed_reserved;
209 			break;
210 		}
211 	}
212 
213 	/* Bus width */
214 	bus->width = (status & E1000_STATUS_BUS64)
215 		     ? e1000_bus_width_64
216 		     : e1000_bus_width_32;
217 
218 	/* Which PCI(-X) function? */
219 	mac->ops.set_lan_id(hw);
220 
221 	return ret_val;
222 }
223 
224 /**
225  *  e1000_get_bus_info_pcie_generic - Get PCIe bus information
226  *  @hw: pointer to the HW structure
227  *
228  *  Determines and stores the system bus information for a particular
229  *  network interface.  The following bus information is determined and stored:
230  *  bus speed, bus width, type (PCIe), and PCIe function.
231  **/
232 s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw)
233 {
234 	struct e1000_mac_info *mac = &hw->mac;
235 	struct e1000_bus_info *bus = &hw->bus;
236 	s32 ret_val;
237 	u16 pcie_link_status;
238 
239 	DEBUGFUNC("e1000_get_bus_info_pcie_generic");
240 
241 	bus->type = e1000_bus_type_pci_express;
242 
243 	ret_val = e1000_read_pcie_cap_reg(hw, PCIE_LINK_STATUS,
244 					  &pcie_link_status);
245 	if (ret_val) {
246 		bus->width = e1000_bus_width_unknown;
247 		bus->speed = e1000_bus_speed_unknown;
248 	} else {
249 		switch (pcie_link_status & PCIE_LINK_SPEED_MASK) {
250 		case PCIE_LINK_SPEED_2500:
251 			bus->speed = e1000_bus_speed_2500;
252 			break;
253 		case PCIE_LINK_SPEED_5000:
254 			bus->speed = e1000_bus_speed_5000;
255 			break;
256 		default:
257 			bus->speed = e1000_bus_speed_unknown;
258 			break;
259 		}
260 
261 		bus->width = (enum e1000_bus_width)((pcie_link_status &
262 			      PCIE_LINK_WIDTH_MASK) >> PCIE_LINK_WIDTH_SHIFT);
263 	}
264 
265 	mac->ops.set_lan_id(hw);
266 
267 	return E1000_SUCCESS;
268 }
269 
270 /**
271  *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
272  *
273  *  @hw: pointer to the HW structure
274  *
275  *  Determines the LAN function id by reading memory-mapped registers
276  *  and swaps the port value if requested.
277  **/
278 static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
279 {
280 	struct e1000_bus_info *bus = &hw->bus;
281 	u32 reg;
282 
283 	/* The status register reports the correct function number
284 	 * for the device regardless of function swap state.
285 	 */
286 	reg = E1000_READ_REG(hw, E1000_STATUS);
287 	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
288 }
289 
290 /**
291  *  e1000_set_lan_id_multi_port_pci - Set LAN id for PCI multiple port devices
292  *  @hw: pointer to the HW structure
293  *
294  *  Determines the LAN function id by reading PCI config space.
295  **/
296 void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw)
297 {
298 	struct e1000_bus_info *bus = &hw->bus;
299 	u16 pci_header_type;
300 	u32 status;
301 
302 	e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type);
303 	if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
304 		status = E1000_READ_REG(hw, E1000_STATUS);
305 		bus->func = (status & E1000_STATUS_FUNC_MASK)
306 			    >> E1000_STATUS_FUNC_SHIFT;
307 	} else {
308 		bus->func = 0;
309 	}
310 }
311 
312 /**
313  *  e1000_set_lan_id_single_port - Set LAN id for a single port device
314  *  @hw: pointer to the HW structure
315  *
316  *  Sets the LAN function id to zero for a single port device.
317  **/
318 void e1000_set_lan_id_single_port(struct e1000_hw *hw)
319 {
320 	struct e1000_bus_info *bus = &hw->bus;
321 
322 	bus->func = 0;
323 }
324 
325 /**
326  *  e1000_clear_vfta_generic - Clear VLAN filter table
327  *  @hw: pointer to the HW structure
328  *
329  *  Clears the register array which contains the VLAN filter table by
330  *  setting all the values to 0.
331  **/
332 void e1000_clear_vfta_generic(struct e1000_hw *hw)
333 {
334 	u32 offset;
335 
336 	DEBUGFUNC("e1000_clear_vfta_generic");
337 
338 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
339 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
340 		E1000_WRITE_FLUSH(hw);
341 	}
342 }
343 
344 /**
345  *  e1000_write_vfta_generic - Write value to VLAN filter table
346  *  @hw: pointer to the HW structure
347  *  @offset: register offset in VLAN filter table
348  *  @value: register value written to VLAN filter table
349  *
350  *  Writes value at the given offset in the register array which stores
351  *  the VLAN filter table.
352  **/
353 void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
354 {
355 	DEBUGFUNC("e1000_write_vfta_generic");
356 
357 	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
358 	E1000_WRITE_FLUSH(hw);
359 }
360 
361 /**
362  *  e1000_init_rx_addrs_generic - Initialize receive address's
363  *  @hw: pointer to the HW structure
364  *  @rar_count: receive address registers
365  *
366  *  Setup the receive address registers by setting the base receive address
367  *  register to the devices MAC address and clearing all the other receive
368  *  address registers to 0.
369  **/
370 void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count)
371 {
372 	u32 i;
373 	u8 mac_addr[ETH_ADDR_LEN] = {0};
374 
375 	DEBUGFUNC("e1000_init_rx_addrs_generic");
376 
377 	/* Setup the receive address */
378 	DEBUGOUT("Programming MAC Address into RAR[0]\n");
379 
380 	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
381 
382 	/* Zero out the other (rar_entry_count - 1) receive addresses */
383 	DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1);
384 	for (i = 1; i < rar_count; i++)
385 		hw->mac.ops.rar_set(hw, mac_addr, i);
386 }
387 
388 /**
389  *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
390  *  @hw: pointer to the HW structure
391  *
392  *  Checks the nvm for an alternate MAC address.  An alternate MAC address
393  *  can be setup by pre-boot software and must be treated like a permanent
394  *  address and must override the actual permanent MAC address. If an
395  *  alternate MAC address is found it is programmed into RAR0, replacing
396  *  the permanent address that was installed into RAR0 by the Si on reset.
397  *  This function will return SUCCESS unless it encounters an error while
398  *  reading the EEPROM.
399  **/
400 s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
401 {
402 	u32 i;
403 	s32 ret_val;
404 	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
405 	u8 alt_mac_addr[ETH_ADDR_LEN];
406 
407 	DEBUGFUNC("e1000_check_alt_mac_addr_generic");
408 
409 	ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data);
410 	if (ret_val)
411 		return ret_val;
412 
413 	/* not supported on older hardware or 82573 */
414 	if ((hw->mac.type < e1000_82571) || (hw->mac.type == e1000_82573))
415 		return E1000_SUCCESS;
416 
417 	/* Alternate MAC address is handled by the option ROM for 82580
418 	 * and newer. SW support not required.
419 	 */
420 	if (hw->mac.type >= e1000_82580)
421 		return E1000_SUCCESS;
422 
423 	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
424 				   &nvm_alt_mac_addr_offset);
425 	if (ret_val) {
426 		DEBUGOUT("NVM Read Error\n");
427 		return ret_val;
428 	}
429 
430 	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
431 	    (nvm_alt_mac_addr_offset == 0x0000))
432 		/* There is no Alternate MAC Address */
433 		return E1000_SUCCESS;
434 
435 	if (hw->bus.func == E1000_FUNC_1)
436 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
437 	if (hw->bus.func == E1000_FUNC_2)
438 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
439 
440 	if (hw->bus.func == E1000_FUNC_3)
441 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
442 	for (i = 0; i < ETH_ADDR_LEN; i += 2) {
443 		offset = nvm_alt_mac_addr_offset + (i >> 1);
444 		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
445 		if (ret_val) {
446 			DEBUGOUT("NVM Read Error\n");
447 			return ret_val;
448 		}
449 
450 		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
451 		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
452 	}
453 
454 	/* if multicast bit is set, the alternate address will not be used */
455 	if (alt_mac_addr[0] & 0x01) {
456 		DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n");
457 		return E1000_SUCCESS;
458 	}
459 
460 	/* We have a valid alternate MAC address, and we want to treat it the
461 	 * same as the normal permanent MAC address stored by the HW into the
462 	 * RAR. Do this by mapping this address into RAR0.
463 	 */
464 	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
465 
466 	return E1000_SUCCESS;
467 }
468 
469 /**
470  *  e1000_rar_set_generic - Set receive address register
471  *  @hw: pointer to the HW structure
472  *  @addr: pointer to the receive address
473  *  @index: receive address array register
474  *
475  *  Sets the receive address array register at index to the address passed
476  *  in by addr.
477  **/
478 static int e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
479 {
480 	u32 rar_low, rar_high;
481 
482 	DEBUGFUNC("e1000_rar_set_generic");
483 
484 	/* HW expects these in little endian so we reverse the byte order
485 	 * from network order (big endian) to little endian
486 	 */
487 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
488 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
489 
490 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
491 
492 	/* If MAC address zero, no need to set the AV bit */
493 	if (rar_low || rar_high)
494 		rar_high |= E1000_RAH_AV;
495 
496 	/* Some bridges will combine consecutive 32-bit writes into
497 	 * a single burst write, which will malfunction on some parts.
498 	 * The flushes avoid this.
499 	 */
500 	E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
501 	E1000_WRITE_FLUSH(hw);
502 	E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
503 	E1000_WRITE_FLUSH(hw);
504 
505 	return E1000_SUCCESS;
506 }
507 
508 /**
509  *  e1000_hash_mc_addr_generic - Generate a multicast hash value
510  *  @hw: pointer to the HW structure
511  *  @mc_addr: pointer to a multicast address
512  *
513  *  Generates a multicast address hash value which is used to determine
514  *  the multicast filter table array address and new table value.
515  **/
516 u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr)
517 {
518 	u32 hash_value, hash_mask;
519 	u8 bit_shift = 0;
520 
521 	DEBUGFUNC("e1000_hash_mc_addr_generic");
522 
523 	/* Register count multiplied by bits per register */
524 	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
525 
526 	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
527 	 * where 0xFF would still fall within the hash mask.
528 	 */
529 	while (hash_mask >> bit_shift != 0xFF)
530 		bit_shift++;
531 
532 	/* The portion of the address that is used for the hash table
533 	 * is determined by the mc_filter_type setting.
534 	 * The algorithm is such that there is a total of 8 bits of shifting.
535 	 * The bit_shift for a mc_filter_type of 0 represents the number of
536 	 * left-shifts where the MSB of mc_addr[5] would still fall within
537 	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
538 	 * of 8 bits of shifting, then mc_addr[4] will shift right the
539 	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
540 	 * cases are a variation of this algorithm...essentially raising the
541 	 * number of bits to shift mc_addr[5] left, while still keeping the
542 	 * 8-bit shifting total.
543 	 *
544 	 * For example, given the following Destination MAC Address and an
545 	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
546 	 * we can see that the bit_shift for case 0 is 4.  These are the hash
547 	 * values resulting from each mc_filter_type...
548 	 * [0] [1] [2] [3] [4] [5]
549 	 * 01  AA  00  12  34  56
550 	 * LSB		 MSB
551 	 *
552 	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
553 	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
554 	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
555 	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
556 	 */
557 	switch (hw->mac.mc_filter_type) {
558 	default:
559 	case 0:
560 		break;
561 	case 1:
562 		bit_shift += 1;
563 		break;
564 	case 2:
565 		bit_shift += 2;
566 		break;
567 	case 3:
568 		bit_shift += 4;
569 		break;
570 	}
571 
572 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
573 				  (((u16) mc_addr[5]) << bit_shift)));
574 
575 	return hash_value;
576 }
577 
578 /**
579  *  e1000_update_mc_addr_list_generic - Update Multicast addresses
580  *  @hw: pointer to the HW structure
581  *  @mc_addr_list: array of multicast addresses to program
582  *  @mc_addr_count: number of multicast addresses to program
583  *
584  *  Updates entire Multicast Table Array.
585  *  The caller must have a packed mc_addr_list of multicast addresses.
586  **/
587 void e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
588 				       u8 *mc_addr_list, u32 mc_addr_count)
589 {
590 	u32 hash_value, hash_bit, hash_reg;
591 	int i;
592 
593 	DEBUGFUNC("e1000_update_mc_addr_list_generic");
594 
595 	/* clear mta_shadow */
596 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
597 
598 	/* update mta_shadow from mc_addr_list */
599 	for (i = 0; (u32) i < mc_addr_count; i++) {
600 		hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list);
601 
602 		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
603 		hash_bit = hash_value & 0x1F;
604 
605 		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
606 		mc_addr_list += (ETH_ADDR_LEN);
607 	}
608 
609 	/* replace the entire MTA table */
610 	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
611 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
612 	E1000_WRITE_FLUSH(hw);
613 }
614 
615 /**
616  *  e1000_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value
617  *  @hw: pointer to the HW structure
618  *
619  *  In certain situations, a system BIOS may report that the PCIx maximum
620  *  memory read byte count (MMRBC) value is higher than than the actual
621  *  value. We check the PCIx command register with the current PCIx status
622  *  register.
623  **/
624 void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw)
625 {
626 	u16 cmd_mmrbc;
627 	u16 pcix_cmd;
628 	u16 pcix_stat_hi_word;
629 	u16 stat_mmrbc;
630 
631 	DEBUGFUNC("e1000_pcix_mmrbc_workaround_generic");
632 
633 	/* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */
634 	if (hw->bus.type != e1000_bus_type_pcix)
635 		return;
636 
637 	e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
638 	e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word);
639 	cmd_mmrbc = (pcix_cmd & PCIX_COMMAND_MMRBC_MASK) >>
640 		     PCIX_COMMAND_MMRBC_SHIFT;
641 	stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
642 		      PCIX_STATUS_HI_MMRBC_SHIFT;
643 	if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
644 		stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
645 	if (cmd_mmrbc > stat_mmrbc) {
646 		pcix_cmd &= ~PCIX_COMMAND_MMRBC_MASK;
647 		pcix_cmd |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
648 		e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
649 	}
650 }
651 
652 /**
653  *  e1000_clear_hw_cntrs_base_generic - Clear base hardware counters
654  *  @hw: pointer to the HW structure
655  *
656  *  Clears the base hardware counters by reading the counter registers.
657  **/
658 void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw)
659 {
660 	DEBUGFUNC("e1000_clear_hw_cntrs_base_generic");
661 
662 	E1000_READ_REG(hw, E1000_CRCERRS);
663 	E1000_READ_REG(hw, E1000_SYMERRS);
664 	E1000_READ_REG(hw, E1000_MPC);
665 	E1000_READ_REG(hw, E1000_SCC);
666 	E1000_READ_REG(hw, E1000_ECOL);
667 	E1000_READ_REG(hw, E1000_MCC);
668 	E1000_READ_REG(hw, E1000_LATECOL);
669 	E1000_READ_REG(hw, E1000_COLC);
670 	E1000_READ_REG(hw, E1000_DC);
671 	E1000_READ_REG(hw, E1000_SEC);
672 	E1000_READ_REG(hw, E1000_RLEC);
673 	E1000_READ_REG(hw, E1000_XONRXC);
674 	E1000_READ_REG(hw, E1000_XONTXC);
675 	E1000_READ_REG(hw, E1000_XOFFRXC);
676 	E1000_READ_REG(hw, E1000_XOFFTXC);
677 	E1000_READ_REG(hw, E1000_FCRUC);
678 	E1000_READ_REG(hw, E1000_GPRC);
679 	E1000_READ_REG(hw, E1000_BPRC);
680 	E1000_READ_REG(hw, E1000_MPRC);
681 	E1000_READ_REG(hw, E1000_GPTC);
682 	E1000_READ_REG(hw, E1000_GORCL);
683 	E1000_READ_REG(hw, E1000_GORCH);
684 	E1000_READ_REG(hw, E1000_GOTCL);
685 	E1000_READ_REG(hw, E1000_GOTCH);
686 	E1000_READ_REG(hw, E1000_RNBC);
687 	E1000_READ_REG(hw, E1000_RUC);
688 	E1000_READ_REG(hw, E1000_RFC);
689 	E1000_READ_REG(hw, E1000_ROC);
690 	E1000_READ_REG(hw, E1000_RJC);
691 	E1000_READ_REG(hw, E1000_TORL);
692 	E1000_READ_REG(hw, E1000_TORH);
693 	E1000_READ_REG(hw, E1000_TOTL);
694 	E1000_READ_REG(hw, E1000_TOTH);
695 	E1000_READ_REG(hw, E1000_TPR);
696 	E1000_READ_REG(hw, E1000_TPT);
697 	E1000_READ_REG(hw, E1000_MPTC);
698 	E1000_READ_REG(hw, E1000_BPTC);
699 }
700 
701 /**
702  *  e1000_check_for_copper_link_generic - Check for link (Copper)
703  *  @hw: pointer to the HW structure
704  *
705  *  Checks to see of the link status of the hardware has changed.  If a
706  *  change in link status has been detected, then we read the PHY registers
707  *  to get the current speed/duplex if link exists.
708  **/
709 s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw)
710 {
711 	struct e1000_mac_info *mac = &hw->mac;
712 	s32 ret_val;
713 	bool link;
714 
715 	DEBUGFUNC("e1000_check_for_copper_link");
716 
717 	/* We only want to go out to the PHY registers to see if Auto-Neg
718 	 * has completed and/or if our link status has changed.  The
719 	 * get_link_status flag is set upon receiving a Link Status
720 	 * Change or Rx Sequence Error interrupt.
721 	 */
722 	if (!mac->get_link_status)
723 		return E1000_SUCCESS;
724 
725 	/* First we want to see if the MII Status Register reports
726 	 * link.  If so, then we want to get the current speed/duplex
727 	 * of the PHY.
728 	 */
729 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
730 	if (ret_val)
731 		return ret_val;
732 
733 	if (!link)
734 		return E1000_SUCCESS; /* No link detected */
735 
736 	mac->get_link_status = FALSE;
737 
738 	/* Check if there was DownShift, must be checked
739 	 * immediately after link-up
740 	 */
741 	e1000_check_downshift_generic(hw);
742 
743 	/* If we are forcing speed/duplex, then we simply return since
744 	 * we have already determined whether we have link or not.
745 	 */
746 	if (!mac->autoneg)
747 		return -E1000_ERR_CONFIG;
748 
749 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
750 	 * of MAC speed/duplex configuration.  So we only need to
751 	 * configure Collision Distance in the MAC.
752 	 */
753 	mac->ops.config_collision_dist(hw);
754 
755 	/* Configure Flow Control now that Auto-Neg has completed.
756 	 * First, we need to restore the desired flow control
757 	 * settings because we may have had to re-autoneg with a
758 	 * different link partner.
759 	 */
760 	ret_val = e1000_config_fc_after_link_up_generic(hw);
761 	if (ret_val)
762 		DEBUGOUT("Error configuring flow control\n");
763 
764 	return ret_val;
765 }
766 
767 /**
768  *  e1000_check_for_fiber_link_generic - Check for link (Fiber)
769  *  @hw: pointer to the HW structure
770  *
771  *  Checks for link up on the hardware.  If link is not up and we have
772  *  a signal, then we need to force link up.
773  **/
774 s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw)
775 {
776 	struct e1000_mac_info *mac = &hw->mac;
777 	u32 rxcw;
778 	u32 ctrl;
779 	u32 status;
780 	s32 ret_val;
781 
782 	DEBUGFUNC("e1000_check_for_fiber_link_generic");
783 
784 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
785 	status = E1000_READ_REG(hw, E1000_STATUS);
786 	rxcw = E1000_READ_REG(hw, E1000_RXCW);
787 
788 	/* If we don't have link (auto-negotiation failed or link partner
789 	 * cannot auto-negotiate), the cable is plugged in (we have signal),
790 	 * and our link partner is not trying to auto-negotiate with us (we
791 	 * are receiving idles or data), we need to force link up. We also
792 	 * need to give auto-negotiation time to complete, in case the cable
793 	 * was just plugged in. The autoneg_failed flag does this.
794 	 */
795 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
796 	if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
797 	    !(rxcw & E1000_RXCW_C)) {
798 		if (!mac->autoneg_failed) {
799 			mac->autoneg_failed = TRUE;
800 			return E1000_SUCCESS;
801 		}
802 		DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
803 
804 		/* Disable auto-negotiation in the TXCW register */
805 		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
806 
807 		/* Force link-up and also force full-duplex. */
808 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
809 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
810 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
811 
812 		/* Configure Flow Control after forcing link up. */
813 		ret_val = e1000_config_fc_after_link_up_generic(hw);
814 		if (ret_val) {
815 			DEBUGOUT("Error configuring flow control\n");
816 			return ret_val;
817 		}
818 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
819 		/* If we are forcing link and we are receiving /C/ ordered
820 		 * sets, re-enable auto-negotiation in the TXCW register
821 		 * and disable forced link in the Device Control register
822 		 * in an attempt to auto-negotiate with our link partner.
823 		 */
824 		DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
825 		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
826 		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
827 
828 		mac->serdes_has_link = TRUE;
829 	}
830 
831 	return E1000_SUCCESS;
832 }
833 
834 /**
835  *  e1000_check_for_serdes_link_generic - Check for link (Serdes)
836  *  @hw: pointer to the HW structure
837  *
838  *  Checks for link up on the hardware.  If link is not up and we have
839  *  a signal, then we need to force link up.
840  **/
841 s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
842 {
843 	struct e1000_mac_info *mac = &hw->mac;
844 	u32 rxcw;
845 	u32 ctrl;
846 	u32 status;
847 	s32 ret_val;
848 
849 	DEBUGFUNC("e1000_check_for_serdes_link_generic");
850 
851 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
852 	status = E1000_READ_REG(hw, E1000_STATUS);
853 	rxcw = E1000_READ_REG(hw, E1000_RXCW);
854 
855 	/* If we don't have link (auto-negotiation failed or link partner
856 	 * cannot auto-negotiate), and our link partner is not trying to
857 	 * auto-negotiate with us (we are receiving idles or data),
858 	 * we need to force link up. We also need to give auto-negotiation
859 	 * time to complete.
860 	 */
861 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
862 	if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
863 		if (!mac->autoneg_failed) {
864 			mac->autoneg_failed = TRUE;
865 			return E1000_SUCCESS;
866 		}
867 		DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
868 
869 		/* Disable auto-negotiation in the TXCW register */
870 		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
871 
872 		/* Force link-up and also force full-duplex. */
873 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
874 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
875 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
876 
877 		/* Configure Flow Control after forcing link up. */
878 		ret_val = e1000_config_fc_after_link_up_generic(hw);
879 		if (ret_val) {
880 			DEBUGOUT("Error configuring flow control\n");
881 			return ret_val;
882 		}
883 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
884 		/* If we are forcing link and we are receiving /C/ ordered
885 		 * sets, re-enable auto-negotiation in the TXCW register
886 		 * and disable forced link in the Device Control register
887 		 * in an attempt to auto-negotiate with our link partner.
888 		 */
889 		DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
890 		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
891 		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
892 
893 		mac->serdes_has_link = TRUE;
894 	} else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) {
895 		/* If we force link for non-auto-negotiation switch, check
896 		 * link status based on MAC synchronization for internal
897 		 * serdes media type.
898 		 */
899 		/* SYNCH bit and IV bit are sticky. */
900 		usec_delay(10);
901 		rxcw = E1000_READ_REG(hw, E1000_RXCW);
902 		if (rxcw & E1000_RXCW_SYNCH) {
903 			if (!(rxcw & E1000_RXCW_IV)) {
904 				mac->serdes_has_link = TRUE;
905 				DEBUGOUT("SERDES: Link up - forced.\n");
906 			}
907 		} else {
908 			mac->serdes_has_link = FALSE;
909 			DEBUGOUT("SERDES: Link down - force failed.\n");
910 		}
911 	}
912 
913 	if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) {
914 		status = E1000_READ_REG(hw, E1000_STATUS);
915 		if (status & E1000_STATUS_LU) {
916 			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
917 			usec_delay(10);
918 			rxcw = E1000_READ_REG(hw, E1000_RXCW);
919 			if (rxcw & E1000_RXCW_SYNCH) {
920 				if (!(rxcw & E1000_RXCW_IV)) {
921 					mac->serdes_has_link = TRUE;
922 					DEBUGOUT("SERDES: Link up - autoneg completed successfully.\n");
923 				} else {
924 					mac->serdes_has_link = FALSE;
925 					DEBUGOUT("SERDES: Link down - invalid codewords detected in autoneg.\n");
926 				}
927 			} else {
928 				mac->serdes_has_link = FALSE;
929 				DEBUGOUT("SERDES: Link down - no sync.\n");
930 			}
931 		} else {
932 			mac->serdes_has_link = FALSE;
933 			DEBUGOUT("SERDES: Link down - autoneg failed\n");
934 		}
935 	}
936 
937 	return E1000_SUCCESS;
938 }
939 
940 /**
941  *  e1000_set_default_fc_generic - Set flow control default values
942  *  @hw: pointer to the HW structure
943  *
944  *  Read the EEPROM for the default values for flow control and store the
945  *  values.
946  **/
947 #ifdef NO_82542_SUPPORT
948 static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
949 #else
950 s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
951 #endif
952 {
953 	s32 ret_val;
954 	u16 nvm_data;
955 
956 	DEBUGFUNC("e1000_set_default_fc_generic");
957 
958 	/* Read and store word 0x0F of the EEPROM. This word contains bits
959 	 * that determine the hardware's default PAUSE (flow control) mode,
960 	 * a bit that determines whether the HW defaults to enabling or
961 	 * disabling auto-negotiation, and the direction of the
962 	 * SW defined pins. If there is no SW over-ride of the flow
963 	 * control setting, then the variable hw->fc will
964 	 * be initialized based on a value in the EEPROM.
965 	 */
966 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
967 
968 	if (ret_val) {
969 		DEBUGOUT("NVM Read Error\n");
970 		return ret_val;
971 	}
972 
973 	if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
974 		hw->fc.requested_mode = e1000_fc_none;
975 	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
976 		 NVM_WORD0F_ASM_DIR)
977 		hw->fc.requested_mode = e1000_fc_tx_pause;
978 	else
979 		hw->fc.requested_mode = e1000_fc_full;
980 
981 	return E1000_SUCCESS;
982 }
983 
984 /**
985  *  e1000_setup_link_generic - Setup flow control and link settings
986  *  @hw: pointer to the HW structure
987  *
988  *  Determines which flow control settings to use, then configures flow
989  *  control.  Calls the appropriate media-specific link configuration
990  *  function.  Assuming the adapter has a valid link partner, a valid link
991  *  should be established.  Assumes the hardware has previously been reset
992  *  and the transmitter and receiver are not enabled.
993  **/
994 s32 e1000_setup_link_generic(struct e1000_hw *hw)
995 {
996 	s32 ret_val;
997 
998 	DEBUGFUNC("e1000_setup_link_generic");
999 
1000 	/* In the case of the phy reset being blocked, we already have a link.
1001 	 * We do not need to set it up again.
1002 	 */
1003 	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
1004 		return E1000_SUCCESS;
1005 
1006 	/* If requested flow control is set to default, set flow control
1007 	 * based on the EEPROM flow control settings.
1008 	 */
1009 	if (hw->fc.requested_mode == e1000_fc_default) {
1010 		ret_val = e1000_set_default_fc_generic(hw);
1011 		if (ret_val)
1012 			return ret_val;
1013 	}
1014 
1015 	/* Save off the requested flow control mode for use later.  Depending
1016 	 * on the link partner's capabilities, we may or may not use this mode.
1017 	 */
1018 	hw->fc.current_mode = hw->fc.requested_mode;
1019 
1020 	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
1021 		hw->fc.current_mode);
1022 
1023 	/* Call the necessary media_type subroutine to configure the link. */
1024 	ret_val = hw->mac.ops.setup_physical_interface(hw);
1025 	if (ret_val)
1026 		return ret_val;
1027 
1028 	/* Initialize the flow control address, type, and PAUSE timer
1029 	 * registers to their default values.  This is done even if flow
1030 	 * control is disabled, because it does not hurt anything to
1031 	 * initialize these registers.
1032 	 */
1033 	DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
1034 	E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);
1035 	E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1036 	E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
1037 
1038 	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
1039 
1040 	return e1000_set_fc_watermarks_generic(hw);
1041 }
1042 
1043 /**
1044  *  e1000_commit_fc_settings_generic - Configure flow control
1045  *  @hw: pointer to the HW structure
1046  *
1047  *  Write the flow control settings to the Transmit Config Word Register (TXCW)
1048  *  base on the flow control settings in e1000_mac_info.
1049  **/
1050 s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
1051 {
1052 	struct e1000_mac_info *mac = &hw->mac;
1053 	u32 txcw;
1054 
1055 	DEBUGFUNC("e1000_commit_fc_settings_generic");
1056 
1057 	/* Check for a software override of the flow control settings, and
1058 	 * setup the device accordingly.  If auto-negotiation is enabled, then
1059 	 * software will have to set the "PAUSE" bits to the correct value in
1060 	 * the Transmit Config Word Register (TXCW) and re-start auto-
1061 	 * negotiation.  However, if auto-negotiation is disabled, then
1062 	 * software will have to manually configure the two flow control enable
1063 	 * bits in the CTRL register.
1064 	 *
1065 	 * The possible values of the "fc" parameter are:
1066 	 *      0:  Flow control is completely disabled
1067 	 *      1:  Rx flow control is enabled (we can receive pause frames,
1068 	 *          but not send pause frames).
1069 	 *      2:  Tx flow control is enabled (we can send pause frames but we
1070 	 *          do not support receiving pause frames).
1071 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1072 	 */
1073 	switch (hw->fc.current_mode) {
1074 	case e1000_fc_none:
1075 		/* Flow control completely disabled by a software over-ride. */
1076 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1077 		break;
1078 	case e1000_fc_rx_pause:
1079 		/* Rx Flow control is enabled and Tx Flow control is disabled
1080 		 * by a software over-ride. Since there really isn't a way to
1081 		 * advertise that we are capable of Rx Pause ONLY, we will
1082 		 * advertise that we support both symmetric and asymmetric Rx
1083 		 * PAUSE.  Later, we will disable the adapter's ability to send
1084 		 * PAUSE frames.
1085 		 */
1086 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1087 		break;
1088 	case e1000_fc_tx_pause:
1089 		/* Tx Flow control is enabled, and Rx Flow control is disabled,
1090 		 * by a software over-ride.
1091 		 */
1092 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1093 		break;
1094 	case e1000_fc_full:
1095 		/* Flow control (both Rx and Tx) is enabled by a software
1096 		 * over-ride.
1097 		 */
1098 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1099 		break;
1100 	default:
1101 		DEBUGOUT("Flow control param set incorrectly\n");
1102 		return -E1000_ERR_CONFIG;
1103 		break;
1104 	}
1105 
1106 	E1000_WRITE_REG(hw, E1000_TXCW, txcw);
1107 	mac->txcw = txcw;
1108 
1109 	return E1000_SUCCESS;
1110 }
1111 
1112 /**
1113  *  e1000_poll_fiber_serdes_link_generic - Poll for link up
1114  *  @hw: pointer to the HW structure
1115  *
1116  *  Polls for link up by reading the status register, if link fails to come
1117  *  up with auto-negotiation, then the link is forced if a signal is detected.
1118  **/
1119 s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
1120 {
1121 	struct e1000_mac_info *mac = &hw->mac;
1122 	u32 i, status;
1123 	s32 ret_val;
1124 
1125 	DEBUGFUNC("e1000_poll_fiber_serdes_link_generic");
1126 
1127 	/* If we have a signal (the cable is plugged in, or assumed TRUE for
1128 	 * serdes media) then poll for a "Link-Up" indication in the Device
1129 	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
1130 	 * seconds (Auto-negotiation should complete in less than 500
1131 	 * milliseconds even if the other end is doing it in SW).
1132 	 */
1133 	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
1134 		msec_delay(10);
1135 		status = E1000_READ_REG(hw, E1000_STATUS);
1136 		if (status & E1000_STATUS_LU)
1137 			break;
1138 	}
1139 	if (i == FIBER_LINK_UP_LIMIT) {
1140 		DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1141 		mac->autoneg_failed = TRUE;
1142 		/* AutoNeg failed to achieve a link, so we'll call
1143 		 * mac->check_for_link. This routine will force the
1144 		 * link up if we detect a signal. This will allow us to
1145 		 * communicate with non-autonegotiating link partners.
1146 		 */
1147 		ret_val = mac->ops.check_for_link(hw);
1148 		if (ret_val) {
1149 			DEBUGOUT("Error while checking for link\n");
1150 			return ret_val;
1151 		}
1152 		mac->autoneg_failed = FALSE;
1153 	} else {
1154 		mac->autoneg_failed = FALSE;
1155 		DEBUGOUT("Valid Link Found\n");
1156 	}
1157 
1158 	return E1000_SUCCESS;
1159 }
1160 
1161 /**
1162  *  e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes
1163  *  @hw: pointer to the HW structure
1164  *
1165  *  Configures collision distance and flow control for fiber and serdes
1166  *  links.  Upon successful setup, poll for link.
1167  **/
1168 s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw)
1169 {
1170 	u32 ctrl;
1171 	s32 ret_val;
1172 
1173 	DEBUGFUNC("e1000_setup_fiber_serdes_link_generic");
1174 
1175 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1176 
1177 	/* Take the link out of reset */
1178 	ctrl &= ~E1000_CTRL_LRST;
1179 
1180 	hw->mac.ops.config_collision_dist(hw);
1181 
1182 	ret_val = e1000_commit_fc_settings_generic(hw);
1183 	if (ret_val)
1184 		return ret_val;
1185 
1186 	/* Since auto-negotiation is enabled, take the link out of reset (the
1187 	 * link will be in reset, because we previously reset the chip). This
1188 	 * will restart auto-negotiation.  If auto-negotiation is successful
1189 	 * then the link-up status bit will be set and the flow control enable
1190 	 * bits (RFCE and TFCE) will be set according to their negotiated value.
1191 	 */
1192 	DEBUGOUT("Auto-negotiation enabled\n");
1193 
1194 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1195 	E1000_WRITE_FLUSH(hw);
1196 	msec_delay(1);
1197 
1198 	/* For these adapters, the SW definable pin 1 is set when the optics
1199 	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
1200 	 * indication.
1201 	 */
1202 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1203 	    (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
1204 		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
1205 	} else {
1206 		DEBUGOUT("No signal detected\n");
1207 	}
1208 
1209 	return ret_val;
1210 }
1211 
1212 /**
1213  *  e1000_config_collision_dist_generic - Configure collision distance
1214  *  @hw: pointer to the HW structure
1215  *
1216  *  Configures the collision distance to the default value and is used
1217  *  during link setup.
1218  **/
1219 static void e1000_config_collision_dist_generic(struct e1000_hw *hw)
1220 {
1221 	u32 tctl;
1222 
1223 	DEBUGFUNC("e1000_config_collision_dist_generic");
1224 
1225 	tctl = E1000_READ_REG(hw, E1000_TCTL);
1226 
1227 	tctl &= ~E1000_TCTL_COLD;
1228 	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
1229 
1230 	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1231 	E1000_WRITE_FLUSH(hw);
1232 }
1233 
1234 /**
1235  *  e1000_set_fc_watermarks_generic - Set flow control high/low watermarks
1236  *  @hw: pointer to the HW structure
1237  *
1238  *  Sets the flow control high/low threshold (watermark) registers.  If
1239  *  flow control XON frame transmission is enabled, then set XON frame
1240  *  transmission as well.
1241  **/
1242 s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw)
1243 {
1244 	u32 fcrtl = 0, fcrth = 0;
1245 
1246 	DEBUGFUNC("e1000_set_fc_watermarks_generic");
1247 
1248 	/* Set the flow control receive threshold registers.  Normally,
1249 	 * these registers will be set to a default threshold that may be
1250 	 * adjusted later by the driver's runtime code.  However, if the
1251 	 * ability to transmit pause frames is not enabled, then these
1252 	 * registers will be set to 0.
1253 	 */
1254 	if (hw->fc.current_mode & e1000_fc_tx_pause) {
1255 		/* We need to set up the Receive Threshold high and low water
1256 		 * marks as well as (optionally) enabling the transmission of
1257 		 * XON frames.
1258 		 */
1259 		fcrtl = hw->fc.low_water;
1260 		if (hw->fc.send_xon)
1261 			fcrtl |= E1000_FCRTL_XONE;
1262 
1263 		fcrth = hw->fc.high_water;
1264 	}
1265 	E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl);
1266 	E1000_WRITE_REG(hw, E1000_FCRTH, fcrth);
1267 
1268 	return E1000_SUCCESS;
1269 }
1270 
1271 /**
1272  *  e1000_force_mac_fc_generic - Force the MAC's flow control settings
1273  *  @hw: pointer to the HW structure
1274  *
1275  *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
1276  *  device control register to reflect the adapter settings.  TFCE and RFCE
1277  *  need to be explicitly set by software when a copper PHY is used because
1278  *  autonegotiation is managed by the PHY rather than the MAC.  Software must
1279  *  also configure these bits when link is forced on a fiber connection.
1280  **/
1281 s32 e1000_force_mac_fc_generic(struct e1000_hw *hw)
1282 {
1283 	u32 ctrl;
1284 
1285 	DEBUGFUNC("e1000_force_mac_fc_generic");
1286 
1287 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1288 
1289 	/* Because we didn't get link via the internal auto-negotiation
1290 	 * mechanism (we either forced link or we got link via PHY
1291 	 * auto-neg), we have to manually enable/disable transmit an
1292 	 * receive flow control.
1293 	 *
1294 	 * The "Case" statement below enables/disable flow control
1295 	 * according to the "hw->fc.current_mode" parameter.
1296 	 *
1297 	 * The possible values of the "fc" parameter are:
1298 	 *      0:  Flow control is completely disabled
1299 	 *      1:  Rx flow control is enabled (we can receive pause
1300 	 *          frames but not send pause frames).
1301 	 *      2:  Tx flow control is enabled (we can send pause frames
1302 	 *          frames but we do not receive pause frames).
1303 	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
1304 	 *  other:  No other values should be possible at this point.
1305 	 */
1306 	DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode);
1307 
1308 	switch (hw->fc.current_mode) {
1309 	case e1000_fc_none:
1310 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
1311 		break;
1312 	case e1000_fc_rx_pause:
1313 		ctrl &= (~E1000_CTRL_TFCE);
1314 		ctrl |= E1000_CTRL_RFCE;
1315 		break;
1316 	case e1000_fc_tx_pause:
1317 		ctrl &= (~E1000_CTRL_RFCE);
1318 		ctrl |= E1000_CTRL_TFCE;
1319 		break;
1320 	case e1000_fc_full:
1321 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1322 		break;
1323 	default:
1324 		DEBUGOUT("Flow control param set incorrectly\n");
1325 		return -E1000_ERR_CONFIG;
1326 	}
1327 
1328 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1329 
1330 	return E1000_SUCCESS;
1331 }
1332 
1333 /**
1334  *  e1000_config_fc_after_link_up_generic - Configures flow control after link
1335  *  @hw: pointer to the HW structure
1336  *
1337  *  Checks the status of auto-negotiation after link up to ensure that the
1338  *  speed and duplex were not forced.  If the link needed to be forced, then
1339  *  flow control needs to be forced also.  If auto-negotiation is enabled
1340  *  and did not fail, then we configure flow control based on our link
1341  *  partner.
1342  **/
1343 s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw)
1344 {
1345 	struct e1000_mac_info *mac = &hw->mac;
1346 	s32 ret_val = E1000_SUCCESS;
1347 	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
1348 	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1349 	u16 speed, duplex;
1350 
1351 	DEBUGFUNC("e1000_config_fc_after_link_up_generic");
1352 
1353 	/* Check for the case where we have fiber media and auto-neg failed
1354 	 * so we had to force link.  In this case, we need to force the
1355 	 * configuration of the MAC to match the "fc" parameter.
1356 	 */
1357 	if (mac->autoneg_failed) {
1358 		if (hw->phy.media_type == e1000_media_type_fiber ||
1359 		    hw->phy.media_type == e1000_media_type_internal_serdes)
1360 			ret_val = e1000_force_mac_fc_generic(hw);
1361 	} else {
1362 		if (hw->phy.media_type == e1000_media_type_copper)
1363 			ret_val = e1000_force_mac_fc_generic(hw);
1364 	}
1365 
1366 	if (ret_val) {
1367 		DEBUGOUT("Error forcing flow control settings\n");
1368 		return ret_val;
1369 	}
1370 
1371 	/* Check for the case where we have copper media and auto-neg is
1372 	 * enabled.  In this case, we need to check and see if Auto-Neg
1373 	 * has completed, and if so, how the PHY and link partner has
1374 	 * flow control configured.
1375 	 */
1376 	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1377 		/* Read the MII Status Register and check to see if AutoNeg
1378 		 * has completed.  We read this twice because this reg has
1379 		 * some "sticky" (latched) bits.
1380 		 */
1381 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
1382 		if (ret_val)
1383 			return ret_val;
1384 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
1385 		if (ret_val)
1386 			return ret_val;
1387 
1388 		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
1389 			DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
1390 			return ret_val;
1391 		}
1392 
1393 		/* The AutoNeg process has completed, so we now need to
1394 		 * read both the Auto Negotiation Advertisement
1395 		 * Register (Address 4) and the Auto_Negotiation Base
1396 		 * Page Ability Register (Address 5) to determine how
1397 		 * flow control was negotiated.
1398 		 */
1399 		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
1400 					       &mii_nway_adv_reg);
1401 		if (ret_val)
1402 			return ret_val;
1403 		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
1404 					       &mii_nway_lp_ability_reg);
1405 		if (ret_val)
1406 			return ret_val;
1407 
1408 		/* Two bits in the Auto Negotiation Advertisement Register
1409 		 * (Address 4) and two bits in the Auto Negotiation Base
1410 		 * Page Ability Register (Address 5) determine flow control
1411 		 * for both the PHY and the link partner.  The following
1412 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1413 		 * 1999, describes these PAUSE resolution bits and how flow
1414 		 * control is determined based upon these settings.
1415 		 * NOTE:  DC = Don't Care
1416 		 *
1417 		 *   LOCAL DEVICE  |   LINK PARTNER
1418 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1419 		 *-------|---------|-------|---------|--------------------
1420 		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1421 		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1422 		 *   0   |    1    |   1   |    0    | e1000_fc_none
1423 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1424 		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1425 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1426 		 *   1   |    1    |   0   |    0    | e1000_fc_none
1427 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1428 		 *
1429 		 * Are both PAUSE bits set to 1?  If so, this implies
1430 		 * Symmetric Flow Control is enabled at both ends.  The
1431 		 * ASM_DIR bits are irrelevant per the spec.
1432 		 *
1433 		 * For Symmetric Flow Control:
1434 		 *
1435 		 *   LOCAL DEVICE  |   LINK PARTNER
1436 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1437 		 *-------|---------|-------|---------|--------------------
1438 		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
1439 		 *
1440 		 */
1441 		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1442 		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1443 			/* Now we need to check if the user selected Rx ONLY
1444 			 * of pause frames.  In this case, we had to advertise
1445 			 * FULL flow control because we could not advertise Rx
1446 			 * ONLY. Hence, we must now check to see if we need to
1447 			 * turn OFF the TRANSMISSION of PAUSE frames.
1448 			 */
1449 			if (hw->fc.requested_mode == e1000_fc_full) {
1450 				hw->fc.current_mode = e1000_fc_full;
1451 				DEBUGOUT("Flow Control = FULL.\n");
1452 			} else {
1453 				hw->fc.current_mode = e1000_fc_rx_pause;
1454 				DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
1455 			}
1456 		}
1457 		/* For receiving PAUSE frames ONLY.
1458 		 *
1459 		 *   LOCAL DEVICE  |   LINK PARTNER
1460 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1461 		 *-------|---------|-------|---------|--------------------
1462 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1463 		 */
1464 		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1465 			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1466 			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1467 			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1468 			hw->fc.current_mode = e1000_fc_tx_pause;
1469 			DEBUGOUT("Flow Control = Tx PAUSE frames only.\n");
1470 		}
1471 		/* For transmitting PAUSE frames ONLY.
1472 		 *
1473 		 *   LOCAL DEVICE  |   LINK PARTNER
1474 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1475 		 *-------|---------|-------|---------|--------------------
1476 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1477 		 */
1478 		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1479 			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1480 			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1481 			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1482 			hw->fc.current_mode = e1000_fc_rx_pause;
1483 			DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
1484 		} else {
1485 			/* Per the IEEE spec, at this point flow control
1486 			 * should be disabled.
1487 			 */
1488 			hw->fc.current_mode = e1000_fc_none;
1489 			DEBUGOUT("Flow Control = NONE.\n");
1490 		}
1491 
1492 		/* Now we need to do one last check...  If we auto-
1493 		 * negotiated to HALF DUPLEX, flow control should not be
1494 		 * enabled per IEEE 802.3 spec.
1495 		 */
1496 		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1497 		if (ret_val) {
1498 			DEBUGOUT("Error getting link speed and duplex\n");
1499 			return ret_val;
1500 		}
1501 
1502 		if (duplex == HALF_DUPLEX)
1503 			hw->fc.current_mode = e1000_fc_none;
1504 
1505 		/* Now we call a subroutine to actually force the MAC
1506 		 * controller to use the correct flow control settings.
1507 		 */
1508 		ret_val = e1000_force_mac_fc_generic(hw);
1509 		if (ret_val) {
1510 			DEBUGOUT("Error forcing flow control settings\n");
1511 			return ret_val;
1512 		}
1513 	}
1514 
1515 	/* Check for the case where we have SerDes media and auto-neg is
1516 	 * enabled.  In this case, we need to check and see if Auto-Neg
1517 	 * has completed, and if so, how the PHY and link partner has
1518 	 * flow control configured.
1519 	 */
1520 	if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
1521 	    mac->autoneg) {
1522 		/* Read the PCS_LSTS and check to see if AutoNeg
1523 		 * has completed.
1524 		 */
1525 		pcs_status_reg = E1000_READ_REG(hw, E1000_PCS_LSTAT);
1526 
1527 		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1528 			DEBUGOUT("PCS Auto Neg has not completed.\n");
1529 			return ret_val;
1530 		}
1531 
1532 		/* The AutoNeg process has completed, so we now need to
1533 		 * read both the Auto Negotiation Advertisement
1534 		 * Register (PCS_ANADV) and the Auto_Negotiation Base
1535 		 * Page Ability Register (PCS_LPAB) to determine how
1536 		 * flow control was negotiated.
1537 		 */
1538 		pcs_adv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV);
1539 		pcs_lp_ability_reg = E1000_READ_REG(hw, E1000_PCS_LPAB);
1540 
1541 		/* Two bits in the Auto Negotiation Advertisement Register
1542 		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1543 		 * Page Ability Register (PCS_LPAB) determine flow control
1544 		 * for both the PHY and the link partner.  The following
1545 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1546 		 * 1999, describes these PAUSE resolution bits and how flow
1547 		 * control is determined based upon these settings.
1548 		 * NOTE:  DC = Don't Care
1549 		 *
1550 		 *   LOCAL DEVICE  |   LINK PARTNER
1551 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1552 		 *-------|---------|-------|---------|--------------------
1553 		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1554 		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1555 		 *   0   |    1    |   1   |    0    | e1000_fc_none
1556 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1557 		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1558 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1559 		 *   1   |    1    |   0   |    0    | e1000_fc_none
1560 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1561 		 *
1562 		 * Are both PAUSE bits set to 1?  If so, this implies
1563 		 * Symmetric Flow Control is enabled at both ends.  The
1564 		 * ASM_DIR bits are irrelevant per the spec.
1565 		 *
1566 		 * For Symmetric Flow Control:
1567 		 *
1568 		 *   LOCAL DEVICE  |   LINK PARTNER
1569 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1570 		 *-------|---------|-------|---------|--------------------
1571 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1572 		 *
1573 		 */
1574 		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1575 		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1576 			/* Now we need to check if the user selected Rx ONLY
1577 			 * of pause frames.  In this case, we had to advertise
1578 			 * FULL flow control because we could not advertise Rx
1579 			 * ONLY. Hence, we must now check to see if we need to
1580 			 * turn OFF the TRANSMISSION of PAUSE frames.
1581 			 */
1582 			if (hw->fc.requested_mode == e1000_fc_full) {
1583 				hw->fc.current_mode = e1000_fc_full;
1584 				DEBUGOUT("Flow Control = FULL.\n");
1585 			} else {
1586 				hw->fc.current_mode = e1000_fc_rx_pause;
1587 				DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
1588 			}
1589 		}
1590 		/* For receiving PAUSE frames ONLY.
1591 		 *
1592 		 *   LOCAL DEVICE  |   LINK PARTNER
1593 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1594 		 *-------|---------|-------|---------|--------------------
1595 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1596 		 */
1597 		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1598 			  (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1599 			  (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1600 			  (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1601 			hw->fc.current_mode = e1000_fc_tx_pause;
1602 			DEBUGOUT("Flow Control = Tx PAUSE frames only.\n");
1603 		}
1604 		/* For transmitting PAUSE frames ONLY.
1605 		 *
1606 		 *   LOCAL DEVICE  |   LINK PARTNER
1607 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1608 		 *-------|---------|-------|---------|--------------------
1609 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1610 		 */
1611 		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1612 			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1613 			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1614 			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1615 			hw->fc.current_mode = e1000_fc_rx_pause;
1616 			DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
1617 		} else {
1618 			/* Per the IEEE spec, at this point flow control
1619 			 * should be disabled.
1620 			 */
1621 			hw->fc.current_mode = e1000_fc_none;
1622 			DEBUGOUT("Flow Control = NONE.\n");
1623 		}
1624 
1625 		/* Now we call a subroutine to actually force the MAC
1626 		 * controller to use the correct flow control settings.
1627 		 */
1628 		pcs_ctrl_reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
1629 		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1630 		E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_ctrl_reg);
1631 
1632 		ret_val = e1000_force_mac_fc_generic(hw);
1633 		if (ret_val) {
1634 			DEBUGOUT("Error forcing flow control settings\n");
1635 			return ret_val;
1636 		}
1637 	}
1638 
1639 	return E1000_SUCCESS;
1640 }
1641 
1642 /**
1643  *  e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex
1644  *  @hw: pointer to the HW structure
1645  *  @speed: stores the current speed
1646  *  @duplex: stores the current duplex
1647  *
1648  *  Read the status register for the current speed/duplex and store the current
1649  *  speed and duplex for copper connections.
1650  **/
1651 s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
1652 					      u16 *duplex)
1653 {
1654 	u32 status;
1655 
1656 	DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic");
1657 
1658 	status = E1000_READ_REG(hw, E1000_STATUS);
1659 	if (status & E1000_STATUS_SPEED_1000) {
1660 		*speed = SPEED_1000;
1661 		DEBUGOUT("1000 Mbs, ");
1662 	} else if (status & E1000_STATUS_SPEED_100) {
1663 		*speed = SPEED_100;
1664 		DEBUGOUT("100 Mbs, ");
1665 	} else {
1666 		*speed = SPEED_10;
1667 		DEBUGOUT("10 Mbs, ");
1668 	}
1669 
1670 	if (status & E1000_STATUS_FD) {
1671 		*duplex = FULL_DUPLEX;
1672 		DEBUGOUT("Full Duplex\n");
1673 	} else {
1674 		*duplex = HALF_DUPLEX;
1675 		DEBUGOUT("Half Duplex\n");
1676 	}
1677 
1678 	return E1000_SUCCESS;
1679 }
1680 
1681 /**
1682  *  e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex
1683  *  @hw: pointer to the HW structure
1684  *  @speed: stores the current speed
1685  *  @duplex: stores the current duplex
1686  *
1687  *  Sets the speed and duplex to gigabit full duplex (the only possible option)
1688  *  for fiber/serdes links.
1689  **/
1690 s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw E1000_UNUSEDARG *hw,
1691 						    u16 *speed, u16 *duplex)
1692 {
1693 	DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic");
1694 
1695 	*speed = SPEED_1000;
1696 	*duplex = FULL_DUPLEX;
1697 
1698 	return E1000_SUCCESS;
1699 }
1700 
1701 /**
1702  *  e1000_get_hw_semaphore_generic - Acquire hardware semaphore
1703  *  @hw: pointer to the HW structure
1704  *
1705  *  Acquire the HW semaphore to access the PHY or NVM
1706  **/
1707 s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw)
1708 {
1709 	u32 swsm;
1710 	s32 timeout = hw->nvm.word_size + 1;
1711 	s32 i = 0;
1712 
1713 	DEBUGFUNC("e1000_get_hw_semaphore_generic");
1714 
1715 	/* Get the SW semaphore */
1716 	while (i < timeout) {
1717 		swsm = E1000_READ_REG(hw, E1000_SWSM);
1718 		if (!(swsm & E1000_SWSM_SMBI))
1719 			break;
1720 
1721 		usec_delay(50);
1722 		i++;
1723 	}
1724 
1725 	if (i == timeout) {
1726 		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
1727 		return -E1000_ERR_NVM;
1728 	}
1729 
1730 	/* Get the FW semaphore. */
1731 	for (i = 0; i < timeout; i++) {
1732 		swsm = E1000_READ_REG(hw, E1000_SWSM);
1733 		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1734 
1735 		/* Semaphore acquired if bit latched */
1736 		if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
1737 			break;
1738 
1739 		usec_delay(50);
1740 	}
1741 
1742 	if (i == timeout) {
1743 		/* Release semaphores */
1744 		e1000_put_hw_semaphore_generic(hw);
1745 		DEBUGOUT("Driver can't access the NVM\n");
1746 		return -E1000_ERR_NVM;
1747 	}
1748 
1749 	return E1000_SUCCESS;
1750 }
1751 
1752 /**
1753  *  e1000_put_hw_semaphore_generic - Release hardware semaphore
1754  *  @hw: pointer to the HW structure
1755  *
1756  *  Release hardware semaphore used to access the PHY or NVM
1757  **/
1758 void e1000_put_hw_semaphore_generic(struct e1000_hw *hw)
1759 {
1760 	u32 swsm;
1761 
1762 	DEBUGFUNC("e1000_put_hw_semaphore_generic");
1763 
1764 	swsm = E1000_READ_REG(hw, E1000_SWSM);
1765 
1766 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1767 
1768 	E1000_WRITE_REG(hw, E1000_SWSM, swsm);
1769 }
1770 
1771 /**
1772  *  e1000_get_auto_rd_done_generic - Check for auto read completion
1773  *  @hw: pointer to the HW structure
1774  *
1775  *  Check EEPROM for Auto Read done bit.
1776  **/
1777 s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw)
1778 {
1779 	s32 i = 0;
1780 
1781 	DEBUGFUNC("e1000_get_auto_rd_done_generic");
1782 
1783 	while (i < AUTO_READ_DONE_TIMEOUT) {
1784 		if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD)
1785 			break;
1786 		msec_delay(1);
1787 		i++;
1788 	}
1789 
1790 	if (i == AUTO_READ_DONE_TIMEOUT) {
1791 		DEBUGOUT("Auto read by HW from NVM has not completed.\n");
1792 		return -E1000_ERR_RESET;
1793 	}
1794 
1795 	return E1000_SUCCESS;
1796 }
1797 
1798 /**
1799  *  e1000_valid_led_default_generic - Verify a valid default LED config
1800  *  @hw: pointer to the HW structure
1801  *  @data: pointer to the NVM (EEPROM)
1802  *
1803  *  Read the EEPROM for the current default LED configuration.  If the
1804  *  LED configuration is not valid, set to a valid LED configuration.
1805  **/
1806 s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data)
1807 {
1808 	s32 ret_val;
1809 
1810 	DEBUGFUNC("e1000_valid_led_default_generic");
1811 
1812 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1813 	if (ret_val) {
1814 		DEBUGOUT("NVM Read Error\n");
1815 		return ret_val;
1816 	}
1817 
1818 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1819 		*data = ID_LED_DEFAULT;
1820 
1821 	return E1000_SUCCESS;
1822 }
1823 
1824 /**
1825  *  e1000_id_led_init_generic -
1826  *  @hw: pointer to the HW structure
1827  *
1828  **/
1829 s32 e1000_id_led_init_generic(struct e1000_hw *hw)
1830 {
1831 	struct e1000_mac_info *mac = &hw->mac;
1832 	s32 ret_val;
1833 	const u32 ledctl_mask = 0x000000FF;
1834 	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1835 	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1836 	u16 data, i, temp;
1837 	const u16 led_mask = 0x0F;
1838 
1839 	DEBUGFUNC("e1000_id_led_init_generic");
1840 
1841 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1842 	if (ret_val)
1843 		return ret_val;
1844 
1845 	mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
1846 	mac->ledctl_mode1 = mac->ledctl_default;
1847 	mac->ledctl_mode2 = mac->ledctl_default;
1848 
1849 	for (i = 0; i < 4; i++) {
1850 		temp = (data >> (i << 2)) & led_mask;
1851 		switch (temp) {
1852 		case ID_LED_ON1_DEF2:
1853 		case ID_LED_ON1_ON2:
1854 		case ID_LED_ON1_OFF2:
1855 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1856 			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1857 			break;
1858 		case ID_LED_OFF1_DEF2:
1859 		case ID_LED_OFF1_ON2:
1860 		case ID_LED_OFF1_OFF2:
1861 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1862 			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1863 			break;
1864 		default:
1865 			/* Do nothing */
1866 			break;
1867 		}
1868 		switch (temp) {
1869 		case ID_LED_DEF1_ON2:
1870 		case ID_LED_ON1_ON2:
1871 		case ID_LED_OFF1_ON2:
1872 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1873 			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1874 			break;
1875 		case ID_LED_DEF1_OFF2:
1876 		case ID_LED_ON1_OFF2:
1877 		case ID_LED_OFF1_OFF2:
1878 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1879 			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1880 			break;
1881 		default:
1882 			/* Do nothing */
1883 			break;
1884 		}
1885 	}
1886 
1887 	return E1000_SUCCESS;
1888 }
1889 
1890 /**
1891  *  e1000_setup_led_generic - Configures SW controllable LED
1892  *  @hw: pointer to the HW structure
1893  *
1894  *  This prepares the SW controllable LED for use and saves the current state
1895  *  of the LED so it can be later restored.
1896  **/
1897 s32 e1000_setup_led_generic(struct e1000_hw *hw)
1898 {
1899 	u32 ledctl;
1900 
1901 	DEBUGFUNC("e1000_setup_led_generic");
1902 
1903 	if (hw->mac.ops.setup_led != e1000_setup_led_generic)
1904 		return -E1000_ERR_CONFIG;
1905 
1906 	if (hw->phy.media_type == e1000_media_type_fiber) {
1907 		ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
1908 		hw->mac.ledctl_default = ledctl;
1909 		/* Turn off LED0 */
1910 		ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
1911 			    E1000_LEDCTL_LED0_MODE_MASK);
1912 		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1913 			   E1000_LEDCTL_LED0_MODE_SHIFT);
1914 		E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
1915 	} else if (hw->phy.media_type == e1000_media_type_copper) {
1916 		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
1917 	}
1918 
1919 	return E1000_SUCCESS;
1920 }
1921 
1922 /**
1923  *  e1000_cleanup_led_generic - Set LED config to default operation
1924  *  @hw: pointer to the HW structure
1925  *
1926  *  Remove the current LED configuration and set the LED configuration
1927  *  to the default value, saved from the EEPROM.
1928  **/
1929 s32 e1000_cleanup_led_generic(struct e1000_hw *hw)
1930 {
1931 	DEBUGFUNC("e1000_cleanup_led_generic");
1932 
1933 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
1934 	return E1000_SUCCESS;
1935 }
1936 
1937 /**
1938  *  e1000_blink_led_generic - Blink LED
1939  *  @hw: pointer to the HW structure
1940  *
1941  *  Blink the LEDs which are set to be on.
1942  **/
1943 s32 e1000_blink_led_generic(struct e1000_hw *hw)
1944 {
1945 	u32 ledctl_blink = 0;
1946 	u32 i;
1947 
1948 	DEBUGFUNC("e1000_blink_led_generic");
1949 
1950 	if (hw->phy.media_type == e1000_media_type_fiber) {
1951 		/* always blink LED0 for PCI-E fiber */
1952 		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1953 		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1954 	} else {
1955 		/* Set the blink bit for each LED that's "on" (0x0E)
1956 		 * (or "off" if inverted) in ledctl_mode2.  The blink
1957 		 * logic in hardware only works when mode is set to "on"
1958 		 * so it must be changed accordingly when the mode is
1959 		 * "off" and inverted.
1960 		 */
1961 		ledctl_blink = hw->mac.ledctl_mode2;
1962 		for (i = 0; i < 32; i += 8) {
1963 			u32 mode = (hw->mac.ledctl_mode2 >> i) &
1964 			    E1000_LEDCTL_LED0_MODE_MASK;
1965 			u32 led_default = hw->mac.ledctl_default >> i;
1966 
1967 			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1968 			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1969 			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1970 			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1971 				ledctl_blink &=
1972 				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1973 				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1974 						 E1000_LEDCTL_MODE_LED_ON) << i;
1975 			}
1976 		}
1977 	}
1978 
1979 	E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink);
1980 
1981 	return E1000_SUCCESS;
1982 }
1983 
1984 /**
1985  *  e1000_led_on_generic - Turn LED on
1986  *  @hw: pointer to the HW structure
1987  *
1988  *  Turn LED on.
1989  **/
1990 s32 e1000_led_on_generic(struct e1000_hw *hw)
1991 {
1992 	u32 ctrl;
1993 
1994 	DEBUGFUNC("e1000_led_on_generic");
1995 
1996 	switch (hw->phy.media_type) {
1997 	case e1000_media_type_fiber:
1998 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
1999 		ctrl &= ~E1000_CTRL_SWDPIN0;
2000 		ctrl |= E1000_CTRL_SWDPIO0;
2001 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
2002 		break;
2003 	case e1000_media_type_copper:
2004 		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
2005 		break;
2006 	default:
2007 		break;
2008 	}
2009 
2010 	return E1000_SUCCESS;
2011 }
2012 
2013 /**
2014  *  e1000_led_off_generic - Turn LED off
2015  *  @hw: pointer to the HW structure
2016  *
2017  *  Turn LED off.
2018  **/
2019 s32 e1000_led_off_generic(struct e1000_hw *hw)
2020 {
2021 	u32 ctrl;
2022 
2023 	DEBUGFUNC("e1000_led_off_generic");
2024 
2025 	switch (hw->phy.media_type) {
2026 	case e1000_media_type_fiber:
2027 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
2028 		ctrl |= E1000_CTRL_SWDPIN0;
2029 		ctrl |= E1000_CTRL_SWDPIO0;
2030 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
2031 		break;
2032 	case e1000_media_type_copper:
2033 		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
2034 		break;
2035 	default:
2036 		break;
2037 	}
2038 
2039 	return E1000_SUCCESS;
2040 }
2041 
2042 /**
2043  *  e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities
2044  *  @hw: pointer to the HW structure
2045  *  @no_snoop: bitmap of snoop events
2046  *
2047  *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
2048  **/
2049 void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop)
2050 {
2051 	u32 gcr;
2052 
2053 	DEBUGFUNC("e1000_set_pcie_no_snoop_generic");
2054 
2055 	if (hw->bus.type != e1000_bus_type_pci_express)
2056 		return;
2057 
2058 	if (no_snoop) {
2059 		gcr = E1000_READ_REG(hw, E1000_GCR);
2060 		gcr &= ~(PCIE_NO_SNOOP_ALL);
2061 		gcr |= no_snoop;
2062 		E1000_WRITE_REG(hw, E1000_GCR, gcr);
2063 	}
2064 }
2065 
2066 /**
2067  *  e1000_disable_pcie_master_generic - Disables PCI-express master access
2068  *  @hw: pointer to the HW structure
2069  *
2070  *  Returns E1000_SUCCESS if successful, else returns -10
2071  *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
2072  *  the master requests to be disabled.
2073  *
2074  *  Disables PCI-Express master access and verifies there are no pending
2075  *  requests.
2076  **/
2077 s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw)
2078 {
2079 	u32 ctrl;
2080 	s32 timeout = MASTER_DISABLE_TIMEOUT;
2081 
2082 	DEBUGFUNC("e1000_disable_pcie_master_generic");
2083 
2084 	if (hw->bus.type != e1000_bus_type_pci_express)
2085 		return E1000_SUCCESS;
2086 
2087 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
2088 	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
2089 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
2090 
2091 	while (timeout) {
2092 		if (!(E1000_READ_REG(hw, E1000_STATUS) &
2093 		      E1000_STATUS_GIO_MASTER_ENABLE))
2094 			break;
2095 		usec_delay(100);
2096 		timeout--;
2097 	}
2098 
2099 	if (!timeout) {
2100 		DEBUGOUT("Master requests are pending.\n");
2101 		return -E1000_ERR_MASTER_REQUESTS_PENDING;
2102 	}
2103 
2104 	return E1000_SUCCESS;
2105 }
2106 
2107 /**
2108  *  e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing
2109  *  @hw: pointer to the HW structure
2110  *
2111  *  Reset the Adaptive Interframe Spacing throttle to default values.
2112  **/
2113 void e1000_reset_adaptive_generic(struct e1000_hw *hw)
2114 {
2115 	struct e1000_mac_info *mac = &hw->mac;
2116 
2117 	DEBUGFUNC("e1000_reset_adaptive_generic");
2118 
2119 	if (!mac->adaptive_ifs) {
2120 		DEBUGOUT("Not in Adaptive IFS mode!\n");
2121 		return;
2122 	}
2123 
2124 	mac->current_ifs_val = 0;
2125 	mac->ifs_min_val = IFS_MIN;
2126 	mac->ifs_max_val = IFS_MAX;
2127 	mac->ifs_step_size = IFS_STEP;
2128 	mac->ifs_ratio = IFS_RATIO;
2129 
2130 	mac->in_ifs_mode = FALSE;
2131 	E1000_WRITE_REG(hw, E1000_AIT, 0);
2132 }
2133 
2134 /**
2135  *  e1000_update_adaptive_generic - Update Adaptive Interframe Spacing
2136  *  @hw: pointer to the HW structure
2137  *
2138  *  Update the Adaptive Interframe Spacing Throttle value based on the
2139  *  time between transmitted packets and time between collisions.
2140  **/
2141 void e1000_update_adaptive_generic(struct e1000_hw *hw)
2142 {
2143 	struct e1000_mac_info *mac = &hw->mac;
2144 
2145 	DEBUGFUNC("e1000_update_adaptive_generic");
2146 
2147 	if (!mac->adaptive_ifs) {
2148 		DEBUGOUT("Not in Adaptive IFS mode!\n");
2149 		return;
2150 	}
2151 
2152 	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
2153 		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
2154 			mac->in_ifs_mode = TRUE;
2155 			if (mac->current_ifs_val < mac->ifs_max_val) {
2156 				if (!mac->current_ifs_val)
2157 					mac->current_ifs_val = mac->ifs_min_val;
2158 				else
2159 					mac->current_ifs_val +=
2160 						mac->ifs_step_size;
2161 				E1000_WRITE_REG(hw, E1000_AIT,
2162 						mac->current_ifs_val);
2163 			}
2164 		}
2165 	} else {
2166 		if (mac->in_ifs_mode &&
2167 		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
2168 			mac->current_ifs_val = 0;
2169 			mac->in_ifs_mode = FALSE;
2170 			E1000_WRITE_REG(hw, E1000_AIT, 0);
2171 		}
2172 	}
2173 }
2174 
2175 /**
2176  *  e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings
2177  *  @hw: pointer to the HW structure
2178  *
2179  *  Verify that when not using auto-negotiation that MDI/MDIx is correctly
2180  *  set, which is forced to MDI mode only.
2181  **/
2182 static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw)
2183 {
2184 	DEBUGFUNC("e1000_validate_mdi_setting_generic");
2185 
2186 	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
2187 		DEBUGOUT("Invalid MDI setting detected\n");
2188 		hw->phy.mdix = 1;
2189 		return -E1000_ERR_CONFIG;
2190 	}
2191 
2192 	return E1000_SUCCESS;
2193 }
2194 
2195 /**
2196  *  e1000_validate_mdi_setting_crossover_generic - Verify MDI/MDIx settings
2197  *  @hw: pointer to the HW structure
2198  *
2199  *  Validate the MDI/MDIx setting, allowing for auto-crossover during forced
2200  *  operation.
2201  **/
2202 s32 e1000_validate_mdi_setting_crossover_generic(struct e1000_hw E1000_UNUSEDARG *hw)
2203 {
2204 	DEBUGFUNC("e1000_validate_mdi_setting_crossover_generic");
2205 
2206 	return E1000_SUCCESS;
2207 }
2208 
2209 /**
2210  *  e1000_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register
2211  *  @hw: pointer to the HW structure
2212  *  @reg: 32bit register offset such as E1000_SCTL
2213  *  @offset: register offset to write to
2214  *  @data: data to write at register offset
2215  *
2216  *  Writes an address/data control type register.  There are several of these
2217  *  and they all have the format address << 8 | data and bit 31 is polled for
2218  *  completion.
2219  **/
2220 s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
2221 				      u32 offset, u8 data)
2222 {
2223 	u32 i, regvalue = 0;
2224 
2225 	DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic");
2226 
2227 	/* Set up the address and data */
2228 	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
2229 	E1000_WRITE_REG(hw, reg, regvalue);
2230 
2231 	/* Poll the ready bit to see if the MDI read completed */
2232 	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
2233 		usec_delay(5);
2234 		regvalue = E1000_READ_REG(hw, reg);
2235 		if (regvalue & E1000_GEN_CTL_READY)
2236 			break;
2237 	}
2238 	if (!(regvalue & E1000_GEN_CTL_READY)) {
2239 		DEBUGOUT1("Reg %08x did not indicate ready\n", reg);
2240 		return -E1000_ERR_PHY;
2241 	}
2242 
2243 	return E1000_SUCCESS;
2244 }
2245