xref: /dragonfly/sys/dev/netif/ig_hal/e1000_nvm.c (revision 279dd846)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2014, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD:$*/
34 
35 #include "e1000_api.h"
36 
37 static void e1000_reload_nvm_generic(struct e1000_hw *hw);
38 
39 /**
40  *  e1000_init_nvm_ops_generic - Initialize NVM function pointers
41  *  @hw: pointer to the HW structure
42  *
43  *  Setups up the function pointers to no-op functions
44  **/
45 void e1000_init_nvm_ops_generic(struct e1000_hw *hw)
46 {
47 	struct e1000_nvm_info *nvm = &hw->nvm;
48 	DEBUGFUNC("e1000_init_nvm_ops_generic");
49 
50 	/* Initialize function pointers */
51 	nvm->ops.init_params = e1000_null_ops_generic;
52 	nvm->ops.acquire = e1000_null_ops_generic;
53 	nvm->ops.read = e1000_null_read_nvm;
54 	nvm->ops.release = e1000_null_nvm_generic;
55 	nvm->ops.reload = e1000_reload_nvm_generic;
56 	nvm->ops.update = e1000_null_ops_generic;
57 	nvm->ops.valid_led_default = e1000_null_led_default;
58 	nvm->ops.validate = e1000_null_ops_generic;
59 	nvm->ops.write = e1000_null_write_nvm;
60 }
61 
62 /**
63  *  e1000_null_nvm_read - No-op function, return 0
64  *  @hw: pointer to the HW structure
65  **/
66 s32 e1000_null_read_nvm(struct e1000_hw E1000_UNUSEDARG *hw,
67 			u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b,
68 			u16 E1000_UNUSEDARG *c)
69 {
70 	DEBUGFUNC("e1000_null_read_nvm");
71 	return E1000_SUCCESS;
72 }
73 
74 /**
75  *  e1000_null_nvm_generic - No-op function, return void
76  *  @hw: pointer to the HW structure
77  **/
78 void e1000_null_nvm_generic(struct e1000_hw E1000_UNUSEDARG *hw)
79 {
80 	DEBUGFUNC("e1000_null_nvm_generic");
81 	return;
82 }
83 
84 /**
85  *  e1000_null_led_default - No-op function, return 0
86  *  @hw: pointer to the HW structure
87  **/
88 s32 e1000_null_led_default(struct e1000_hw E1000_UNUSEDARG *hw,
89 			   u16 E1000_UNUSEDARG *data)
90 {
91 	DEBUGFUNC("e1000_null_led_default");
92 	return E1000_SUCCESS;
93 }
94 
95 /**
96  *  e1000_null_write_nvm - No-op function, return 0
97  *  @hw: pointer to the HW structure
98  **/
99 s32 e1000_null_write_nvm(struct e1000_hw E1000_UNUSEDARG *hw,
100 			 u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b,
101 			 u16 E1000_UNUSEDARG *c)
102 {
103 	DEBUGFUNC("e1000_null_write_nvm");
104 	return E1000_SUCCESS;
105 }
106 
107 /**
108  *  e1000_raise_eec_clk - Raise EEPROM clock
109  *  @hw: pointer to the HW structure
110  *  @eecd: pointer to the EEPROM
111  *
112  *  Enable/Raise the EEPROM clock bit.
113  **/
114 static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
115 {
116 	*eecd = *eecd | E1000_EECD_SK;
117 	E1000_WRITE_REG(hw, E1000_EECD, *eecd);
118 	E1000_WRITE_FLUSH(hw);
119 	usec_delay(hw->nvm.delay_usec);
120 }
121 
122 /**
123  *  e1000_lower_eec_clk - Lower EEPROM clock
124  *  @hw: pointer to the HW structure
125  *  @eecd: pointer to the EEPROM
126  *
127  *  Clear/Lower the EEPROM clock bit.
128  **/
129 static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
130 {
131 	*eecd = *eecd & ~E1000_EECD_SK;
132 	E1000_WRITE_REG(hw, E1000_EECD, *eecd);
133 	E1000_WRITE_FLUSH(hw);
134 	usec_delay(hw->nvm.delay_usec);
135 }
136 
137 /**
138  *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
139  *  @hw: pointer to the HW structure
140  *  @data: data to send to the EEPROM
141  *  @count: number of bits to shift out
142  *
143  *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
144  *  "data" parameter will be shifted out to the EEPROM one bit at a time.
145  *  In order to do this, "data" must be broken down into bits.
146  **/
147 static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
148 {
149 	struct e1000_nvm_info *nvm = &hw->nvm;
150 	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
151 	u32 mask;
152 
153 	DEBUGFUNC("e1000_shift_out_eec_bits");
154 
155 	mask = 0x01 << (count - 1);
156 	if (nvm->type == e1000_nvm_eeprom_microwire)
157 		eecd &= ~E1000_EECD_DO;
158 	else
159 	if (nvm->type == e1000_nvm_eeprom_spi)
160 		eecd |= E1000_EECD_DO;
161 
162 	do {
163 		eecd &= ~E1000_EECD_DI;
164 
165 		if (data & mask)
166 			eecd |= E1000_EECD_DI;
167 
168 		E1000_WRITE_REG(hw, E1000_EECD, eecd);
169 		E1000_WRITE_FLUSH(hw);
170 
171 		usec_delay(nvm->delay_usec);
172 
173 		e1000_raise_eec_clk(hw, &eecd);
174 		e1000_lower_eec_clk(hw, &eecd);
175 
176 		mask >>= 1;
177 	} while (mask);
178 
179 	eecd &= ~E1000_EECD_DI;
180 	E1000_WRITE_REG(hw, E1000_EECD, eecd);
181 }
182 
183 /**
184  *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
185  *  @hw: pointer to the HW structure
186  *  @count: number of bits to shift in
187  *
188  *  In order to read a register from the EEPROM, we need to shift 'count' bits
189  *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
190  *  the EEPROM (setting the SK bit), and then reading the value of the data out
191  *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
192  *  always be clear.
193  **/
194 static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
195 {
196 	u32 eecd;
197 	u32 i;
198 	u16 data;
199 
200 	DEBUGFUNC("e1000_shift_in_eec_bits");
201 
202 	eecd = E1000_READ_REG(hw, E1000_EECD);
203 
204 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
205 	data = 0;
206 
207 	for (i = 0; i < count; i++) {
208 		data <<= 1;
209 		e1000_raise_eec_clk(hw, &eecd);
210 
211 		eecd = E1000_READ_REG(hw, E1000_EECD);
212 
213 		eecd &= ~E1000_EECD_DI;
214 		if (eecd & E1000_EECD_DO)
215 			data |= 1;
216 
217 		e1000_lower_eec_clk(hw, &eecd);
218 	}
219 
220 	return data;
221 }
222 
223 /**
224  *  e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion
225  *  @hw: pointer to the HW structure
226  *  @ee_reg: EEPROM flag for polling
227  *
228  *  Polls the EEPROM status bit for either read or write completion based
229  *  upon the value of 'ee_reg'.
230  **/
231 s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
232 {
233 	u32 attempts = 100000;
234 	u32 i, reg = 0;
235 
236 	DEBUGFUNC("e1000_poll_eerd_eewr_done");
237 
238 	for (i = 0; i < attempts; i++) {
239 		if (ee_reg == E1000_NVM_POLL_READ)
240 			reg = E1000_READ_REG(hw, E1000_EERD);
241 		else
242 			reg = E1000_READ_REG(hw, E1000_EEWR);
243 
244 		if (reg & E1000_NVM_RW_REG_DONE)
245 			return E1000_SUCCESS;
246 
247 		usec_delay(5);
248 	}
249 
250 	return -E1000_ERR_NVM;
251 }
252 
253 /**
254  *  e1000_acquire_nvm_generic - Generic request for access to EEPROM
255  *  @hw: pointer to the HW structure
256  *
257  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
258  *  Return successful if access grant bit set, else clear the request for
259  *  EEPROM access and return -E1000_ERR_NVM (-1).
260  **/
261 s32 e1000_acquire_nvm_generic(struct e1000_hw *hw)
262 {
263 	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
264 	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
265 
266 	DEBUGFUNC("e1000_acquire_nvm_generic");
267 
268 	E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ);
269 	eecd = E1000_READ_REG(hw, E1000_EECD);
270 
271 	while (timeout) {
272 		if (eecd & E1000_EECD_GNT)
273 			break;
274 		usec_delay(5);
275 		eecd = E1000_READ_REG(hw, E1000_EECD);
276 		timeout--;
277 	}
278 
279 	if (!timeout) {
280 		eecd &= ~E1000_EECD_REQ;
281 		E1000_WRITE_REG(hw, E1000_EECD, eecd);
282 		DEBUGOUT("Could not acquire NVM grant\n");
283 		return -E1000_ERR_NVM;
284 	}
285 
286 	return E1000_SUCCESS;
287 }
288 
289 /**
290  *  e1000_standby_nvm - Return EEPROM to standby state
291  *  @hw: pointer to the HW structure
292  *
293  *  Return the EEPROM to a standby state.
294  **/
295 static void e1000_standby_nvm(struct e1000_hw *hw)
296 {
297 	struct e1000_nvm_info *nvm = &hw->nvm;
298 	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
299 
300 	DEBUGFUNC("e1000_standby_nvm");
301 
302 	if (nvm->type == e1000_nvm_eeprom_microwire) {
303 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
304 		E1000_WRITE_REG(hw, E1000_EECD, eecd);
305 		E1000_WRITE_FLUSH(hw);
306 		usec_delay(nvm->delay_usec);
307 
308 		e1000_raise_eec_clk(hw, &eecd);
309 
310 		/* Select EEPROM */
311 		eecd |= E1000_EECD_CS;
312 		E1000_WRITE_REG(hw, E1000_EECD, eecd);
313 		E1000_WRITE_FLUSH(hw);
314 		usec_delay(nvm->delay_usec);
315 
316 		e1000_lower_eec_clk(hw, &eecd);
317 	} else if (nvm->type == e1000_nvm_eeprom_spi) {
318 		/* Toggle CS to flush commands */
319 		eecd |= E1000_EECD_CS;
320 		E1000_WRITE_REG(hw, E1000_EECD, eecd);
321 		E1000_WRITE_FLUSH(hw);
322 		usec_delay(nvm->delay_usec);
323 		eecd &= ~E1000_EECD_CS;
324 		E1000_WRITE_REG(hw, E1000_EECD, eecd);
325 		E1000_WRITE_FLUSH(hw);
326 		usec_delay(nvm->delay_usec);
327 	}
328 }
329 
330 /**
331  *  e1000_stop_nvm - Terminate EEPROM command
332  *  @hw: pointer to the HW structure
333  *
334  *  Terminates the current command by inverting the EEPROM's chip select pin.
335  **/
336 #ifdef NO_82542_SUPPORT
337 static void e1000_stop_nvm(struct e1000_hw *hw)
338 #else
339 void e1000_stop_nvm(struct e1000_hw *hw)
340 #endif
341 {
342 	u32 eecd;
343 
344 	DEBUGFUNC("e1000_stop_nvm");
345 
346 	eecd = E1000_READ_REG(hw, E1000_EECD);
347 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
348 		/* Pull CS high */
349 		eecd |= E1000_EECD_CS;
350 		e1000_lower_eec_clk(hw, &eecd);
351 	} else if (hw->nvm.type == e1000_nvm_eeprom_microwire) {
352 		/* CS on Microwire is active-high */
353 		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
354 		E1000_WRITE_REG(hw, E1000_EECD, eecd);
355 		e1000_raise_eec_clk(hw, &eecd);
356 		e1000_lower_eec_clk(hw, &eecd);
357 	}
358 }
359 
360 /**
361  *  e1000_release_nvm_generic - Release exclusive access to EEPROM
362  *  @hw: pointer to the HW structure
363  *
364  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
365  **/
366 void e1000_release_nvm_generic(struct e1000_hw *hw)
367 {
368 	u32 eecd;
369 
370 	DEBUGFUNC("e1000_release_nvm_generic");
371 
372 	e1000_stop_nvm(hw);
373 
374 	eecd = E1000_READ_REG(hw, E1000_EECD);
375 	eecd &= ~E1000_EECD_REQ;
376 	E1000_WRITE_REG(hw, E1000_EECD, eecd);
377 }
378 
379 /**
380  *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
381  *  @hw: pointer to the HW structure
382  *
383  *  Setups the EEPROM for reading and writing.
384  **/
385 static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
386 {
387 	struct e1000_nvm_info *nvm = &hw->nvm;
388 	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
389 	u8 spi_stat_reg;
390 
391 	DEBUGFUNC("e1000_ready_nvm_eeprom");
392 
393 	if (nvm->type == e1000_nvm_eeprom_microwire) {
394 		/* Clear SK and DI */
395 		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
396 		E1000_WRITE_REG(hw, E1000_EECD, eecd);
397 		/* Set CS */
398 		eecd |= E1000_EECD_CS;
399 		E1000_WRITE_REG(hw, E1000_EECD, eecd);
400 	} else if (nvm->type == e1000_nvm_eeprom_spi) {
401 		u16 timeout = NVM_MAX_RETRY_SPI;
402 
403 		/* Clear SK and CS */
404 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
405 		E1000_WRITE_REG(hw, E1000_EECD, eecd);
406 		E1000_WRITE_FLUSH(hw);
407 		usec_delay(1);
408 
409 		/* Read "Status Register" repeatedly until the LSB is cleared.
410 		 * The EEPROM will signal that the command has been completed
411 		 * by clearing bit 0 of the internal status register.  If it's
412 		 * not cleared within 'timeout', then error out.
413 		 */
414 		while (timeout) {
415 			e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
416 						 hw->nvm.opcode_bits);
417 			spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
418 			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
419 				break;
420 
421 			usec_delay(5);
422 			e1000_standby_nvm(hw);
423 			timeout--;
424 		}
425 
426 		if (!timeout) {
427 			DEBUGOUT("SPI NVM Status error\n");
428 			return -E1000_ERR_NVM;
429 		}
430 	}
431 
432 	return E1000_SUCCESS;
433 }
434 
435 /**
436  *  e1000_read_nvm_spi - Read EEPROM's using SPI
437  *  @hw: pointer to the HW structure
438  *  @offset: offset of word in the EEPROM to read
439  *  @words: number of words to read
440  *  @data: word read from the EEPROM
441  *
442  *  Reads a 16 bit word from the EEPROM.
443  **/
444 s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
445 {
446 	struct e1000_nvm_info *nvm = &hw->nvm;
447 	u32 i = 0;
448 	s32 ret_val;
449 	u16 word_in;
450 	u8 read_opcode = NVM_READ_OPCODE_SPI;
451 
452 	DEBUGFUNC("e1000_read_nvm_spi");
453 
454 	/* A check for invalid values:  offset too large, too many words,
455 	 * and not enough words.
456 	 */
457 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
458 	    (words == 0)) {
459 		DEBUGOUT("nvm parameter(s) out of bounds\n");
460 		return -E1000_ERR_NVM;
461 	}
462 
463 	ret_val = nvm->ops.acquire(hw);
464 	if (ret_val)
465 		return ret_val;
466 
467 	ret_val = e1000_ready_nvm_eeprom(hw);
468 	if (ret_val)
469 		goto release;
470 
471 	e1000_standby_nvm(hw);
472 
473 	if ((nvm->address_bits == 8) && (offset >= 128))
474 		read_opcode |= NVM_A8_OPCODE_SPI;
475 
476 	/* Send the READ command (opcode + addr) */
477 	e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
478 	e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
479 
480 	/* Read the data.  SPI NVMs increment the address with each byte
481 	 * read and will roll over if reading beyond the end.  This allows
482 	 * us to read the whole NVM from any offset
483 	 */
484 	for (i = 0; i < words; i++) {
485 		word_in = e1000_shift_in_eec_bits(hw, 16);
486 		data[i] = (word_in >> 8) | (word_in << 8);
487 	}
488 
489 release:
490 	nvm->ops.release(hw);
491 
492 	return ret_val;
493 }
494 
495 /**
496  *  e1000_read_nvm_microwire - Reads EEPROM's using microwire
497  *  @hw: pointer to the HW structure
498  *  @offset: offset of word in the EEPROM to read
499  *  @words: number of words to read
500  *  @data: word read from the EEPROM
501  *
502  *  Reads a 16 bit word from the EEPROM.
503  **/
504 s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
505 			     u16 *data)
506 {
507 	struct e1000_nvm_info *nvm = &hw->nvm;
508 	u32 i = 0;
509 	s32 ret_val;
510 	u8 read_opcode = NVM_READ_OPCODE_MICROWIRE;
511 
512 	DEBUGFUNC("e1000_read_nvm_microwire");
513 
514 	/* A check for invalid values:  offset too large, too many words,
515 	 * and not enough words.
516 	 */
517 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
518 	    (words == 0)) {
519 		DEBUGOUT("nvm parameter(s) out of bounds\n");
520 		return -E1000_ERR_NVM;
521 	}
522 
523 	ret_val = nvm->ops.acquire(hw);
524 	if (ret_val)
525 		return ret_val;
526 
527 	ret_val = e1000_ready_nvm_eeprom(hw);
528 	if (ret_val)
529 		goto release;
530 
531 	for (i = 0; i < words; i++) {
532 		/* Send the READ command (opcode + addr) */
533 		e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
534 		e1000_shift_out_eec_bits(hw, (u16)(offset + i),
535 					nvm->address_bits);
536 
537 		/* Read the data.  For microwire, each word requires the
538 		 * overhead of setup and tear-down.
539 		 */
540 		data[i] = e1000_shift_in_eec_bits(hw, 16);
541 		e1000_standby_nvm(hw);
542 	}
543 
544 release:
545 	nvm->ops.release(hw);
546 
547 	return ret_val;
548 }
549 
550 /**
551  *  e1000_read_nvm_eerd - Reads EEPROM using EERD register
552  *  @hw: pointer to the HW structure
553  *  @offset: offset of word in the EEPROM to read
554  *  @words: number of words to read
555  *  @data: word read from the EEPROM
556  *
557  *  Reads a 16 bit word from the EEPROM using the EERD register.
558  **/
559 s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
560 {
561 	struct e1000_nvm_info *nvm = &hw->nvm;
562 	u32 i, eerd = 0;
563 	s32 ret_val = E1000_SUCCESS;
564 
565 	DEBUGFUNC("e1000_read_nvm_eerd");
566 
567 	/* A check for invalid values:  offset too large, too many words,
568 	 * too many words for the offset, and not enough words.
569 	 */
570 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
571 	    (words == 0)) {
572 		DEBUGOUT("nvm parameter(s) out of bounds\n");
573 		return -E1000_ERR_NVM;
574 	}
575 
576 	for (i = 0; i < words; i++) {
577 		eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
578 		       E1000_NVM_RW_REG_START;
579 
580 		E1000_WRITE_REG(hw, E1000_EERD, eerd);
581 		ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
582 		if (ret_val)
583 			break;
584 
585 		data[i] = (E1000_READ_REG(hw, E1000_EERD) >>
586 			   E1000_NVM_RW_REG_DATA);
587 	}
588 
589 	if (ret_val)
590 		DEBUGOUT1("NVM read error: %d\n", ret_val);
591 
592 	return ret_val;
593 }
594 
595 /**
596  *  e1000_write_nvm_spi - Write to EEPROM using SPI
597  *  @hw: pointer to the HW structure
598  *  @offset: offset within the EEPROM to be written to
599  *  @words: number of words to write
600  *  @data: 16 bit word(s) to be written to the EEPROM
601  *
602  *  Writes data to EEPROM at offset using SPI interface.
603  *
604  *  If e1000_update_nvm_checksum is not called after this function , the
605  *  EEPROM will most likely contain an invalid checksum.
606  **/
607 s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
608 {
609 	struct e1000_nvm_info *nvm = &hw->nvm;
610 	s32 ret_val = -E1000_ERR_NVM;
611 	u16 widx = 0;
612 
613 	DEBUGFUNC("e1000_write_nvm_spi");
614 
615 	/* A check for invalid values:  offset too large, too many words,
616 	 * and not enough words.
617 	 */
618 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
619 	    (words == 0)) {
620 		DEBUGOUT("nvm parameter(s) out of bounds\n");
621 		return -E1000_ERR_NVM;
622 	}
623 
624 	while (widx < words) {
625 		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
626 
627 		ret_val = nvm->ops.acquire(hw);
628 		if (ret_val)
629 			return ret_val;
630 
631 		ret_val = e1000_ready_nvm_eeprom(hw);
632 		if (ret_val) {
633 			nvm->ops.release(hw);
634 			return ret_val;
635 		}
636 
637 		e1000_standby_nvm(hw);
638 
639 		/* Send the WRITE ENABLE command (8 bit opcode) */
640 		e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
641 					 nvm->opcode_bits);
642 
643 		e1000_standby_nvm(hw);
644 
645 		/* Some SPI eeproms use the 8th address bit embedded in the
646 		 * opcode
647 		 */
648 		if ((nvm->address_bits == 8) && (offset >= 128))
649 			write_opcode |= NVM_A8_OPCODE_SPI;
650 
651 		/* Send the Write command (8-bit opcode + addr) */
652 		e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
653 		e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
654 					 nvm->address_bits);
655 
656 		/* Loop to allow for up to whole page write of eeprom */
657 		while (widx < words) {
658 			u16 word_out = data[widx];
659 			word_out = (word_out >> 8) | (word_out << 8);
660 			e1000_shift_out_eec_bits(hw, word_out, 16);
661 			widx++;
662 
663 			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
664 				e1000_standby_nvm(hw);
665 				break;
666 			}
667 		}
668 		msec_delay(10);
669 		nvm->ops.release(hw);
670 	}
671 
672 	return ret_val;
673 }
674 
675 /**
676  *  e1000_write_nvm_microwire - Writes EEPROM using microwire
677  *  @hw: pointer to the HW structure
678  *  @offset: offset within the EEPROM to be written to
679  *  @words: number of words to write
680  *  @data: 16 bit word(s) to be written to the EEPROM
681  *
682  *  Writes data to EEPROM at offset using microwire interface.
683  *
684  *  If e1000_update_nvm_checksum is not called after this function , the
685  *  EEPROM will most likely contain an invalid checksum.
686  **/
687 s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
688 			      u16 *data)
689 {
690 	struct e1000_nvm_info *nvm = &hw->nvm;
691 	s32  ret_val;
692 	u32 eecd;
693 	u16 words_written = 0;
694 	u16 widx = 0;
695 
696 	DEBUGFUNC("e1000_write_nvm_microwire");
697 
698 	/* A check for invalid values:  offset too large, too many words,
699 	 * and not enough words.
700 	 */
701 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
702 	    (words == 0)) {
703 		DEBUGOUT("nvm parameter(s) out of bounds\n");
704 		return -E1000_ERR_NVM;
705 	}
706 
707 	ret_val = nvm->ops.acquire(hw);
708 	if (ret_val)
709 		return ret_val;
710 
711 	ret_val = e1000_ready_nvm_eeprom(hw);
712 	if (ret_val)
713 		goto release;
714 
715 	e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE,
716 				 (u16)(nvm->opcode_bits + 2));
717 
718 	e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
719 
720 	e1000_standby_nvm(hw);
721 
722 	while (words_written < words) {
723 		e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE,
724 					 nvm->opcode_bits);
725 
726 		e1000_shift_out_eec_bits(hw, (u16)(offset + words_written),
727 					 nvm->address_bits);
728 
729 		e1000_shift_out_eec_bits(hw, data[words_written], 16);
730 
731 		e1000_standby_nvm(hw);
732 
733 		for (widx = 0; widx < 200; widx++) {
734 			eecd = E1000_READ_REG(hw, E1000_EECD);
735 			if (eecd & E1000_EECD_DO)
736 				break;
737 			usec_delay(50);
738 		}
739 
740 		if (widx == 200) {
741 			DEBUGOUT("NVM Write did not complete\n");
742 			ret_val = -E1000_ERR_NVM;
743 			goto release;
744 		}
745 
746 		e1000_standby_nvm(hw);
747 
748 		words_written++;
749 	}
750 
751 	e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE,
752 				 (u16)(nvm->opcode_bits + 2));
753 
754 	e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
755 
756 release:
757 	nvm->ops.release(hw);
758 
759 	return ret_val;
760 }
761 
762 /**
763  *  e1000_read_pba_string_generic - Read device part number
764  *  @hw: pointer to the HW structure
765  *  @pba_num: pointer to device part number
766  *  @pba_num_size: size of part number buffer
767  *
768  *  Reads the product board assembly (PBA) number from the EEPROM and stores
769  *  the value in pba_num.
770  **/
771 s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
772 				  u32 pba_num_size)
773 {
774 	s32 ret_val;
775 	u16 nvm_data;
776 	u16 pba_ptr;
777 	u16 offset;
778 	u16 length;
779 
780 	DEBUGFUNC("e1000_read_pba_string_generic");
781 
782 	if (pba_num == NULL) {
783 		DEBUGOUT("PBA string buffer was null\n");
784 		return -E1000_ERR_INVALID_ARGUMENT;
785 	}
786 
787 	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
788 	if (ret_val) {
789 		DEBUGOUT("NVM Read Error\n");
790 		return ret_val;
791 	}
792 
793 	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
794 	if (ret_val) {
795 		DEBUGOUT("NVM Read Error\n");
796 		return ret_val;
797 	}
798 
799 	/* if nvm_data is not ptr guard the PBA must be in legacy format which
800 	 * means pba_ptr is actually our second data word for the PBA number
801 	 * and we can decode it into an ascii string
802 	 */
803 	if (nvm_data != NVM_PBA_PTR_GUARD) {
804 		DEBUGOUT("NVM PBA number is not stored as string\n");
805 
806 		/* make sure callers buffer is big enough to store the PBA */
807 		if (pba_num_size < E1000_PBANUM_LENGTH) {
808 			DEBUGOUT("PBA string buffer too small\n");
809 			return E1000_ERR_NO_SPACE;
810 		}
811 
812 		/* extract hex string from data and pba_ptr */
813 		pba_num[0] = (nvm_data >> 12) & 0xF;
814 		pba_num[1] = (nvm_data >> 8) & 0xF;
815 		pba_num[2] = (nvm_data >> 4) & 0xF;
816 		pba_num[3] = nvm_data & 0xF;
817 		pba_num[4] = (pba_ptr >> 12) & 0xF;
818 		pba_num[5] = (pba_ptr >> 8) & 0xF;
819 		pba_num[6] = '-';
820 		pba_num[7] = 0;
821 		pba_num[8] = (pba_ptr >> 4) & 0xF;
822 		pba_num[9] = pba_ptr & 0xF;
823 
824 		/* put a null character on the end of our string */
825 		pba_num[10] = '\0';
826 
827 		/* switch all the data but the '-' to hex char */
828 		for (offset = 0; offset < 10; offset++) {
829 			if (pba_num[offset] < 0xA)
830 				pba_num[offset] += '0';
831 			else if (pba_num[offset] < 0x10)
832 				pba_num[offset] += 'A' - 0xA;
833 		}
834 
835 		return E1000_SUCCESS;
836 	}
837 
838 	ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
839 	if (ret_val) {
840 		DEBUGOUT("NVM Read Error\n");
841 		return ret_val;
842 	}
843 
844 	if (length == 0xFFFF || length == 0) {
845 		DEBUGOUT("NVM PBA number section invalid length\n");
846 		return -E1000_ERR_NVM_PBA_SECTION;
847 	}
848 	/* check if pba_num buffer is big enough */
849 	if (pba_num_size < (((u32)length * 2) - 1)) {
850 		DEBUGOUT("PBA string buffer too small\n");
851 		return -E1000_ERR_NO_SPACE;
852 	}
853 
854 	/* trim pba length from start of string */
855 	pba_ptr++;
856 	length--;
857 
858 	for (offset = 0; offset < length; offset++) {
859 		ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data);
860 		if (ret_val) {
861 			DEBUGOUT("NVM Read Error\n");
862 			return ret_val;
863 		}
864 		pba_num[offset * 2] = (u8)(nvm_data >> 8);
865 		pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
866 	}
867 	pba_num[offset * 2] = '\0';
868 
869 	return E1000_SUCCESS;
870 }
871 
872 /**
873  *  e1000_read_pba_length_generic - Read device part number length
874  *  @hw: pointer to the HW structure
875  *  @pba_num_size: size of part number buffer
876  *
877  *  Reads the product board assembly (PBA) number length from the EEPROM and
878  *  stores the value in pba_num_size.
879  **/
880 s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size)
881 {
882 	s32 ret_val;
883 	u16 nvm_data;
884 	u16 pba_ptr;
885 	u16 length;
886 
887 	DEBUGFUNC("e1000_read_pba_length_generic");
888 
889 	if (pba_num_size == NULL) {
890 		DEBUGOUT("PBA buffer size was null\n");
891 		return -E1000_ERR_INVALID_ARGUMENT;
892 	}
893 
894 	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
895 	if (ret_val) {
896 		DEBUGOUT("NVM Read Error\n");
897 		return ret_val;
898 	}
899 
900 	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
901 	if (ret_val) {
902 		DEBUGOUT("NVM Read Error\n");
903 		return ret_val;
904 	}
905 
906 	 /* if data is not ptr guard the PBA must be in legacy format */
907 	if (nvm_data != NVM_PBA_PTR_GUARD) {
908 		*pba_num_size = E1000_PBANUM_LENGTH;
909 		return E1000_SUCCESS;
910 	}
911 
912 	ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
913 	if (ret_val) {
914 		DEBUGOUT("NVM Read Error\n");
915 		return ret_val;
916 	}
917 
918 	if (length == 0xFFFF || length == 0) {
919 		DEBUGOUT("NVM PBA number section invalid length\n");
920 		return -E1000_ERR_NVM_PBA_SECTION;
921 	}
922 
923 	/* Convert from length in u16 values to u8 chars, add 1 for NULL,
924 	 * and subtract 2 because length field is included in length.
925 	 */
926 	*pba_num_size = ((u32)length * 2) - 1;
927 
928 	return E1000_SUCCESS;
929 }
930 
931 /**
932  *  e1000_read_pba_num_generic - Read device part number
933  *  @hw: pointer to the HW structure
934  *  @pba_num: pointer to device part number
935  *
936  *  Reads the product board assembly (PBA) number from the EEPROM and stores
937  *  the value in pba_num.
938  **/
939 s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num)
940 {
941 	s32 ret_val;
942 	u16 nvm_data;
943 
944 	DEBUGFUNC("e1000_read_pba_num_generic");
945 
946 	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
947 	if (ret_val) {
948 		DEBUGOUT("NVM Read Error\n");
949 		return ret_val;
950 	} else if (nvm_data == NVM_PBA_PTR_GUARD) {
951 		DEBUGOUT("NVM Not Supported\n");
952 		return -E1000_NOT_IMPLEMENTED;
953 	}
954 	*pba_num = (u32)(nvm_data << 16);
955 
956 	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
957 	if (ret_val) {
958 		DEBUGOUT("NVM Read Error\n");
959 		return ret_val;
960 	}
961 	*pba_num |= nvm_data;
962 
963 	return E1000_SUCCESS;
964 }
965 
966 /**
967  *  e1000_read_pba_raw
968  *  @hw: pointer to the HW structure
969  *  @eeprom_buf: optional pointer to EEPROM image
970  *  @eeprom_buf_size: size of EEPROM image in words
971  *  @max_pba_block_size: PBA block size limit
972  *  @pba: pointer to output PBA structure
973  *
974  *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
975  *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
976  *
977  **/
978 s32 e1000_read_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf,
979 		       u32 eeprom_buf_size, u16 max_pba_block_size,
980 		       struct e1000_pba *pba)
981 {
982 	s32 ret_val;
983 	u16 pba_block_size;
984 
985 	if (pba == NULL)
986 		return -E1000_ERR_PARAM;
987 
988 	if (eeprom_buf == NULL) {
989 		ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 2,
990 					 &pba->word[0]);
991 		if (ret_val)
992 			return ret_val;
993 	} else {
994 		if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
995 			pba->word[0] = eeprom_buf[NVM_PBA_OFFSET_0];
996 			pba->word[1] = eeprom_buf[NVM_PBA_OFFSET_1];
997 		} else {
998 			return -E1000_ERR_PARAM;
999 		}
1000 	}
1001 
1002 	if (pba->word[0] == NVM_PBA_PTR_GUARD) {
1003 		if (pba->pba_block == NULL)
1004 			return -E1000_ERR_PARAM;
1005 
1006 		ret_val = e1000_get_pba_block_size(hw, eeprom_buf,
1007 						   eeprom_buf_size,
1008 						   &pba_block_size);
1009 		if (ret_val)
1010 			return ret_val;
1011 
1012 		if (pba_block_size > max_pba_block_size)
1013 			return -E1000_ERR_PARAM;
1014 
1015 		if (eeprom_buf == NULL) {
1016 			ret_val = e1000_read_nvm(hw, pba->word[1],
1017 						 pba_block_size,
1018 						 pba->pba_block);
1019 			if (ret_val)
1020 				return ret_val;
1021 		} else {
1022 			if (eeprom_buf_size > (u32)(pba->word[1] +
1023 					      pba_block_size)) {
1024 				memcpy(pba->pba_block,
1025 				       &eeprom_buf[pba->word[1]],
1026 				       pba_block_size * sizeof(u16));
1027 			} else {
1028 				return -E1000_ERR_PARAM;
1029 			}
1030 		}
1031 	}
1032 
1033 	return E1000_SUCCESS;
1034 }
1035 
1036 /**
1037  *  e1000_write_pba_raw
1038  *  @hw: pointer to the HW structure
1039  *  @eeprom_buf: optional pointer to EEPROM image
1040  *  @eeprom_buf_size: size of EEPROM image in words
1041  *  @pba: pointer to PBA structure
1042  *
1043  *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
1044  *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
1045  *
1046  **/
1047 s32 e1000_write_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf,
1048 			u32 eeprom_buf_size, struct e1000_pba *pba)
1049 {
1050 	s32 ret_val;
1051 
1052 	if (pba == NULL)
1053 		return -E1000_ERR_PARAM;
1054 
1055 	if (eeprom_buf == NULL) {
1056 		ret_val = e1000_write_nvm(hw, NVM_PBA_OFFSET_0, 2,
1057 					  &pba->word[0]);
1058 		if (ret_val)
1059 			return ret_val;
1060 	} else {
1061 		if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
1062 			eeprom_buf[NVM_PBA_OFFSET_0] = pba->word[0];
1063 			eeprom_buf[NVM_PBA_OFFSET_1] = pba->word[1];
1064 		} else {
1065 			return -E1000_ERR_PARAM;
1066 		}
1067 	}
1068 
1069 	if (pba->word[0] == NVM_PBA_PTR_GUARD) {
1070 		if (pba->pba_block == NULL)
1071 			return -E1000_ERR_PARAM;
1072 
1073 		if (eeprom_buf == NULL) {
1074 			ret_val = e1000_write_nvm(hw, pba->word[1],
1075 						  pba->pba_block[0],
1076 						  pba->pba_block);
1077 			if (ret_val)
1078 				return ret_val;
1079 		} else {
1080 			if (eeprom_buf_size > (u32)(pba->word[1] +
1081 					      pba->pba_block[0])) {
1082 				memcpy(&eeprom_buf[pba->word[1]],
1083 				       pba->pba_block,
1084 				       pba->pba_block[0] * sizeof(u16));
1085 			} else {
1086 				return -E1000_ERR_PARAM;
1087 			}
1088 		}
1089 	}
1090 
1091 	return E1000_SUCCESS;
1092 }
1093 
1094 /**
1095  *  e1000_get_pba_block_size
1096  *  @hw: pointer to the HW structure
1097  *  @eeprom_buf: optional pointer to EEPROM image
1098  *  @eeprom_buf_size: size of EEPROM image in words
1099  *  @pba_data_size: pointer to output variable
1100  *
1101  *  Returns the size of the PBA block in words. Function operates on EEPROM
1102  *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
1103  *  EEPROM device.
1104  *
1105  **/
1106 s32 e1000_get_pba_block_size(struct e1000_hw *hw, u16 *eeprom_buf,
1107 			     u32 eeprom_buf_size, u16 *pba_block_size)
1108 {
1109 	s32 ret_val;
1110 	u16 pba_word[2];
1111 	u16 length;
1112 
1113 	DEBUGFUNC("e1000_get_pba_block_size");
1114 
1115 	if (eeprom_buf == NULL) {
1116 		ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 2, &pba_word[0]);
1117 		if (ret_val)
1118 			return ret_val;
1119 	} else {
1120 		if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
1121 			pba_word[0] = eeprom_buf[NVM_PBA_OFFSET_0];
1122 			pba_word[1] = eeprom_buf[NVM_PBA_OFFSET_1];
1123 		} else {
1124 			return -E1000_ERR_PARAM;
1125 		}
1126 	}
1127 
1128 	if (pba_word[0] == NVM_PBA_PTR_GUARD) {
1129 		if (eeprom_buf == NULL) {
1130 			ret_val = e1000_read_nvm(hw, pba_word[1] + 0, 1,
1131 						 &length);
1132 			if (ret_val)
1133 				return ret_val;
1134 		} else {
1135 			if (eeprom_buf_size > pba_word[1])
1136 				length = eeprom_buf[pba_word[1] + 0];
1137 			else
1138 				return -E1000_ERR_PARAM;
1139 		}
1140 
1141 		if (length == 0xFFFF || length == 0)
1142 			return -E1000_ERR_NVM_PBA_SECTION;
1143 	} else {
1144 		/* PBA number in legacy format, there is no PBA Block. */
1145 		length = 0;
1146 	}
1147 
1148 	if (pba_block_size != NULL)
1149 		*pba_block_size = length;
1150 
1151 	return E1000_SUCCESS;
1152 }
1153 
1154 /**
1155  *  e1000_read_mac_addr_generic - Read device MAC address
1156  *  @hw: pointer to the HW structure
1157  *
1158  *  Reads the device MAC address from the EEPROM and stores the value.
1159  *  Since devices with two ports use the same EEPROM, we increment the
1160  *  last bit in the MAC address for the second port.
1161  **/
1162 s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
1163 {
1164 	u32 rar_high;
1165 	u32 rar_low;
1166 	u16 i;
1167 
1168 	rar_high = E1000_READ_REG(hw, E1000_RAH(0));
1169 	rar_low = E1000_READ_REG(hw, E1000_RAL(0));
1170 
1171 	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
1172 		hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
1173 
1174 	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
1175 		hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
1176 
1177 	for (i = 0; i < ETH_ADDR_LEN; i++)
1178 		hw->mac.addr[i] = hw->mac.perm_addr[i];
1179 
1180 	return E1000_SUCCESS;
1181 }
1182 
1183 /**
1184  *  e1000_validate_nvm_checksum_generic - Validate EEPROM checksum
1185  *  @hw: pointer to the HW structure
1186  *
1187  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
1188  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
1189  **/
1190 s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw)
1191 {
1192 	s32 ret_val;
1193 	u16 checksum = 0;
1194 	u16 i, nvm_data;
1195 
1196 	DEBUGFUNC("e1000_validate_nvm_checksum_generic");
1197 
1198 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1199 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
1200 		if (ret_val) {
1201 			DEBUGOUT("NVM Read Error\n");
1202 			return ret_val;
1203 		}
1204 		checksum += nvm_data;
1205 	}
1206 
1207 	if (checksum != (u16) NVM_SUM) {
1208 		DEBUGOUT("NVM Checksum Invalid\n");
1209 		return -E1000_ERR_NVM;
1210 	}
1211 
1212 	return E1000_SUCCESS;
1213 }
1214 
1215 /**
1216  *  e1000_update_nvm_checksum_generic - Update EEPROM checksum
1217  *  @hw: pointer to the HW structure
1218  *
1219  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
1220  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
1221  *  value to the EEPROM.
1222  **/
1223 s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw)
1224 {
1225 	s32 ret_val;
1226 	u16 checksum = 0;
1227 	u16 i, nvm_data;
1228 
1229 	DEBUGFUNC("e1000_update_nvm_checksum");
1230 
1231 	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
1232 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
1233 		if (ret_val) {
1234 			DEBUGOUT("NVM Read Error while updating checksum.\n");
1235 			return ret_val;
1236 		}
1237 		checksum += nvm_data;
1238 	}
1239 	checksum = (u16) NVM_SUM - checksum;
1240 	ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
1241 	if (ret_val)
1242 		DEBUGOUT("NVM Write Error while updating checksum.\n");
1243 
1244 	return ret_val;
1245 }
1246 
1247 /**
1248  *  e1000_reload_nvm_generic - Reloads EEPROM
1249  *  @hw: pointer to the HW structure
1250  *
1251  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1252  *  extended control register.
1253  **/
1254 static void e1000_reload_nvm_generic(struct e1000_hw *hw)
1255 {
1256 	u32 ctrl_ext;
1257 
1258 	DEBUGFUNC("e1000_reload_nvm_generic");
1259 
1260 	usec_delay(10);
1261 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1262 	ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1263 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1264 	E1000_WRITE_FLUSH(hw);
1265 }
1266 
1267 /**
1268  *  e1000_get_fw_version - Get firmware version information
1269  *  @hw: pointer to the HW structure
1270  *  @fw_vers: pointer to output version structure
1271  *
1272  *  unsupported/not present features return 0 in version structure
1273  **/
1274 void e1000_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers)
1275 {
1276 	u16 eeprom_verh, eeprom_verl, etrack_test, fw_version;
1277 	u8 q, hval, rem, result;
1278 	u16 comb_verh, comb_verl, comb_offset;
1279 
1280 	memset(fw_vers, 0, sizeof(struct e1000_fw_version));
1281 
1282 	/* basic eeprom version numbers, bits used vary by part and by tool
1283 	 * used to create the nvm images */
1284 	/* Check which data format we have */
1285 	hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
1286 	switch (hw->mac.type) {
1287 	case e1000_i211:
1288 		e1000_read_invm_version(hw, fw_vers);
1289 		return;
1290 	case e1000_82575:
1291 	case e1000_82576:
1292 	case e1000_82580:
1293 		/* Use this format, unless EETRACK ID exists,
1294 		 * then use alternate format
1295 		 */
1296 		if ((etrack_test &  NVM_MAJOR_MASK) != NVM_ETRACK_VALID) {
1297 			hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
1298 			fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
1299 					      >> NVM_MAJOR_SHIFT;
1300 			fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK)
1301 					      >> NVM_MINOR_SHIFT;
1302 			fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK);
1303 			goto etrack_id;
1304 		}
1305 		break;
1306 	case e1000_i210:
1307 	case e1000_i350:
1308 		/* find combo image version */
1309 		hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
1310 		if ((comb_offset != 0x0) &&
1311 		    (comb_offset != NVM_VER_INVALID)) {
1312 
1313 			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
1314 					 + 1), 1, &comb_verh);
1315 			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
1316 					 1, &comb_verl);
1317 
1318 			/* get Option Rom version if it exists and is valid */
1319 			if ((comb_verh && comb_verl) &&
1320 			    ((comb_verh != NVM_VER_INVALID) &&
1321 			     (comb_verl != NVM_VER_INVALID))) {
1322 
1323 				fw_vers->or_valid = TRUE;
1324 				fw_vers->or_major =
1325 					comb_verl >> NVM_COMB_VER_SHFT;
1326 				fw_vers->or_build =
1327 					(comb_verl << NVM_COMB_VER_SHFT)
1328 					| (comb_verh >> NVM_COMB_VER_SHFT);
1329 				fw_vers->or_patch =
1330 					comb_verh & NVM_COMB_VER_MASK;
1331 			}
1332 		}
1333 		break;
1334 	default:
1335 		return;
1336 	}
1337 	hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
1338 	fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
1339 			      >> NVM_MAJOR_SHIFT;
1340 
1341 	/* check for old style version format in newer images*/
1342 	if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) {
1343 		eeprom_verl = (fw_version & NVM_COMB_VER_MASK);
1344 	} else {
1345 		eeprom_verl = (fw_version & NVM_MINOR_MASK)
1346 				>> NVM_MINOR_SHIFT;
1347 	}
1348 	/* Convert minor value to hex before assigning to output struct
1349 	 * Val to be converted will not be higher than 99, per tool output
1350 	 */
1351 	q = eeprom_verl / NVM_HEX_CONV;
1352 	hval = q * NVM_HEX_TENS;
1353 	rem = eeprom_verl % NVM_HEX_CONV;
1354 	result = hval + rem;
1355 	fw_vers->eep_minor = result;
1356 
1357 etrack_id:
1358 	if ((etrack_test &  NVM_MAJOR_MASK) == NVM_ETRACK_VALID) {
1359 		hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl);
1360 		hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh);
1361 		fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT)
1362 			| eeprom_verl;
1363 	}
1364 	return;
1365 }
1366 
1367 
1368