xref: /dragonfly/sys/dev/netif/ig_hal/e1000_nvm.c (revision cfd1aba3)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2012, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD:$*/
34 
35 #include "e1000_api.h"
36 
37 static void e1000_reload_nvm_generic(struct e1000_hw *hw);
38 
39 /**
40  *  e1000_init_nvm_ops_generic - Initialize NVM function pointers
41  *  @hw: pointer to the HW structure
42  *
43  *  Setups up the function pointers to no-op functions
44  **/
45 void e1000_init_nvm_ops_generic(struct e1000_hw *hw)
46 {
47 	struct e1000_nvm_info *nvm = &hw->nvm;
48 	DEBUGFUNC("e1000_init_nvm_ops_generic");
49 
50 	/* Initialize function pointers */
51 	nvm->ops.init_params = e1000_null_ops_generic;
52 	nvm->ops.acquire = e1000_null_ops_generic;
53 	nvm->ops.read = e1000_null_read_nvm;
54 	nvm->ops.release = e1000_null_nvm_generic;
55 	nvm->ops.reload = e1000_reload_nvm_generic;
56 	nvm->ops.update = e1000_null_ops_generic;
57 	nvm->ops.valid_led_default = e1000_null_led_default;
58 	nvm->ops.validate = e1000_null_ops_generic;
59 	nvm->ops.write = e1000_null_write_nvm;
60 }
61 
62 /**
63  *  e1000_null_nvm_read - No-op function, return 0
64  *  @hw: pointer to the HW structure
65  **/
66 s32 e1000_null_read_nvm(struct e1000_hw E1000_UNUSEDARG *hw,
67 			u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b,
68 			u16 E1000_UNUSEDARG *c)
69 {
70 	DEBUGFUNC("e1000_null_read_nvm");
71 	return E1000_SUCCESS;
72 }
73 
74 /**
75  *  e1000_null_nvm_generic - No-op function, return void
76  *  @hw: pointer to the HW structure
77  **/
78 void e1000_null_nvm_generic(struct e1000_hw E1000_UNUSEDARG *hw)
79 {
80 	DEBUGFUNC("e1000_null_nvm_generic");
81 	return;
82 }
83 
84 /**
85  *  e1000_null_led_default - No-op function, return 0
86  *  @hw: pointer to the HW structure
87  **/
88 s32 e1000_null_led_default(struct e1000_hw E1000_UNUSEDARG *hw,
89 			   u16 E1000_UNUSEDARG *data)
90 {
91 	DEBUGFUNC("e1000_null_led_default");
92 	return E1000_SUCCESS;
93 }
94 
95 /**
96  *  e1000_null_write_nvm - No-op function, return 0
97  *  @hw: pointer to the HW structure
98  **/
99 s32 e1000_null_write_nvm(struct e1000_hw E1000_UNUSEDARG *hw,
100 			 u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b,
101 			 u16 E1000_UNUSEDARG *c)
102 {
103 	DEBUGFUNC("e1000_null_write_nvm");
104 	return E1000_SUCCESS;
105 }
106 
107 /**
108  *  e1000_raise_eec_clk - Raise EEPROM clock
109  *  @hw: pointer to the HW structure
110  *  @eecd: pointer to the EEPROM
111  *
112  *  Enable/Raise the EEPROM clock bit.
113  **/
114 static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
115 {
116 	*eecd = *eecd | E1000_EECD_SK;
117 	E1000_WRITE_REG(hw, E1000_EECD, *eecd);
118 	E1000_WRITE_FLUSH(hw);
119 	usec_delay(hw->nvm.delay_usec);
120 }
121 
122 /**
123  *  e1000_lower_eec_clk - Lower EEPROM clock
124  *  @hw: pointer to the HW structure
125  *  @eecd: pointer to the EEPROM
126  *
127  *  Clear/Lower the EEPROM clock bit.
128  **/
129 static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
130 {
131 	*eecd = *eecd & ~E1000_EECD_SK;
132 	E1000_WRITE_REG(hw, E1000_EECD, *eecd);
133 	E1000_WRITE_FLUSH(hw);
134 	usec_delay(hw->nvm.delay_usec);
135 }
136 
137 /**
138  *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
139  *  @hw: pointer to the HW structure
140  *  @data: data to send to the EEPROM
141  *  @count: number of bits to shift out
142  *
143  *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
144  *  "data" parameter will be shifted out to the EEPROM one bit at a time.
145  *  In order to do this, "data" must be broken down into bits.
146  **/
147 static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
148 {
149 	struct e1000_nvm_info *nvm = &hw->nvm;
150 	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
151 	u32 mask;
152 
153 	DEBUGFUNC("e1000_shift_out_eec_bits");
154 
155 	mask = 0x01 << (count - 1);
156 	if (nvm->type == e1000_nvm_eeprom_microwire)
157 		eecd &= ~E1000_EECD_DO;
158 	else
159 	if (nvm->type == e1000_nvm_eeprom_spi)
160 		eecd |= E1000_EECD_DO;
161 
162 	do {
163 		eecd &= ~E1000_EECD_DI;
164 
165 		if (data & mask)
166 			eecd |= E1000_EECD_DI;
167 
168 		E1000_WRITE_REG(hw, E1000_EECD, eecd);
169 		E1000_WRITE_FLUSH(hw);
170 
171 		usec_delay(nvm->delay_usec);
172 
173 		e1000_raise_eec_clk(hw, &eecd);
174 		e1000_lower_eec_clk(hw, &eecd);
175 
176 		mask >>= 1;
177 	} while (mask);
178 
179 	eecd &= ~E1000_EECD_DI;
180 	E1000_WRITE_REG(hw, E1000_EECD, eecd);
181 }
182 
183 /**
184  *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
185  *  @hw: pointer to the HW structure
186  *  @count: number of bits to shift in
187  *
188  *  In order to read a register from the EEPROM, we need to shift 'count' bits
189  *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
190  *  the EEPROM (setting the SK bit), and then reading the value of the data out
191  *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
192  *  always be clear.
193  **/
194 static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
195 {
196 	u32 eecd;
197 	u32 i;
198 	u16 data;
199 
200 	DEBUGFUNC("e1000_shift_in_eec_bits");
201 
202 	eecd = E1000_READ_REG(hw, E1000_EECD);
203 
204 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
205 	data = 0;
206 
207 	for (i = 0; i < count; i++) {
208 		data <<= 1;
209 		e1000_raise_eec_clk(hw, &eecd);
210 
211 		eecd = E1000_READ_REG(hw, E1000_EECD);
212 
213 		eecd &= ~E1000_EECD_DI;
214 		if (eecd & E1000_EECD_DO)
215 			data |= 1;
216 
217 		e1000_lower_eec_clk(hw, &eecd);
218 	}
219 
220 	return data;
221 }
222 
223 /**
224  *  e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion
225  *  @hw: pointer to the HW structure
226  *  @ee_reg: EEPROM flag for polling
227  *
228  *  Polls the EEPROM status bit for either read or write completion based
229  *  upon the value of 'ee_reg'.
230  **/
231 s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
232 {
233 	u32 attempts = 100000;
234 	u32 i, reg = 0;
235 
236 	DEBUGFUNC("e1000_poll_eerd_eewr_done");
237 
238 	for (i = 0; i < attempts; i++) {
239 		if (ee_reg == E1000_NVM_POLL_READ)
240 			reg = E1000_READ_REG(hw, E1000_EERD);
241 		else
242 			reg = E1000_READ_REG(hw, E1000_EEWR);
243 
244 		if (reg & E1000_NVM_RW_REG_DONE)
245 			return E1000_SUCCESS;
246 
247 		usec_delay(5);
248 	}
249 
250 	return -E1000_ERR_NVM;
251 }
252 
253 /**
254  *  e1000_acquire_nvm_generic - Generic request for access to EEPROM
255  *  @hw: pointer to the HW structure
256  *
257  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
258  *  Return successful if access grant bit set, else clear the request for
259  *  EEPROM access and return -E1000_ERR_NVM (-1).
260  **/
261 s32 e1000_acquire_nvm_generic(struct e1000_hw *hw)
262 {
263 	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
264 	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
265 
266 	DEBUGFUNC("e1000_acquire_nvm_generic");
267 
268 	E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ);
269 	eecd = E1000_READ_REG(hw, E1000_EECD);
270 
271 	while (timeout) {
272 		if (eecd & E1000_EECD_GNT)
273 			break;
274 		usec_delay(5);
275 		eecd = E1000_READ_REG(hw, E1000_EECD);
276 		timeout--;
277 	}
278 
279 	if (!timeout) {
280 		eecd &= ~E1000_EECD_REQ;
281 		E1000_WRITE_REG(hw, E1000_EECD, eecd);
282 		DEBUGOUT("Could not acquire NVM grant\n");
283 		return -E1000_ERR_NVM;
284 	}
285 
286 	return E1000_SUCCESS;
287 }
288 
289 /**
290  *  e1000_standby_nvm - Return EEPROM to standby state
291  *  @hw: pointer to the HW structure
292  *
293  *  Return the EEPROM to a standby state.
294  **/
295 static void e1000_standby_nvm(struct e1000_hw *hw)
296 {
297 	struct e1000_nvm_info *nvm = &hw->nvm;
298 	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
299 
300 	DEBUGFUNC("e1000_standby_nvm");
301 
302 	if (nvm->type == e1000_nvm_eeprom_microwire) {
303 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
304 		E1000_WRITE_REG(hw, E1000_EECD, eecd);
305 		E1000_WRITE_FLUSH(hw);
306 		usec_delay(nvm->delay_usec);
307 
308 		e1000_raise_eec_clk(hw, &eecd);
309 
310 		/* Select EEPROM */
311 		eecd |= E1000_EECD_CS;
312 		E1000_WRITE_REG(hw, E1000_EECD, eecd);
313 		E1000_WRITE_FLUSH(hw);
314 		usec_delay(nvm->delay_usec);
315 
316 		e1000_lower_eec_clk(hw, &eecd);
317 	} else if (nvm->type == e1000_nvm_eeprom_spi) {
318 		/* Toggle CS to flush commands */
319 		eecd |= E1000_EECD_CS;
320 		E1000_WRITE_REG(hw, E1000_EECD, eecd);
321 		E1000_WRITE_FLUSH(hw);
322 		usec_delay(nvm->delay_usec);
323 		eecd &= ~E1000_EECD_CS;
324 		E1000_WRITE_REG(hw, E1000_EECD, eecd);
325 		E1000_WRITE_FLUSH(hw);
326 		usec_delay(nvm->delay_usec);
327 	}
328 }
329 
330 /**
331  *  e1000_stop_nvm - Terminate EEPROM command
332  *  @hw: pointer to the HW structure
333  *
334  *  Terminates the current command by inverting the EEPROM's chip select pin.
335  **/
336 #ifdef NO_82542_SUPPORT
337 static void e1000_stop_nvm(struct e1000_hw *hw)
338 #else
339 void e1000_stop_nvm(struct e1000_hw *hw)
340 #endif
341 {
342 	u32 eecd;
343 
344 	DEBUGFUNC("e1000_stop_nvm");
345 
346 	eecd = E1000_READ_REG(hw, E1000_EECD);
347 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
348 		/* Pull CS high */
349 		eecd |= E1000_EECD_CS;
350 		e1000_lower_eec_clk(hw, &eecd);
351 	} else if (hw->nvm.type == e1000_nvm_eeprom_microwire) {
352 		/* CS on Microwire is active-high */
353 		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
354 		E1000_WRITE_REG(hw, E1000_EECD, eecd);
355 		e1000_raise_eec_clk(hw, &eecd);
356 		e1000_lower_eec_clk(hw, &eecd);
357 	}
358 }
359 
360 /**
361  *  e1000_release_nvm_generic - Release exclusive access to EEPROM
362  *  @hw: pointer to the HW structure
363  *
364  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
365  **/
366 void e1000_release_nvm_generic(struct e1000_hw *hw)
367 {
368 	u32 eecd;
369 
370 	DEBUGFUNC("e1000_release_nvm_generic");
371 
372 	e1000_stop_nvm(hw);
373 
374 	eecd = E1000_READ_REG(hw, E1000_EECD);
375 	eecd &= ~E1000_EECD_REQ;
376 	E1000_WRITE_REG(hw, E1000_EECD, eecd);
377 }
378 
379 /**
380  *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
381  *  @hw: pointer to the HW structure
382  *
383  *  Setups the EEPROM for reading and writing.
384  **/
385 static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
386 {
387 	struct e1000_nvm_info *nvm = &hw->nvm;
388 	u32 eecd = E1000_READ_REG(hw, E1000_EECD);
389 	u8 spi_stat_reg;
390 
391 	DEBUGFUNC("e1000_ready_nvm_eeprom");
392 
393 	if (nvm->type == e1000_nvm_eeprom_microwire) {
394 		/* Clear SK and DI */
395 		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
396 		E1000_WRITE_REG(hw, E1000_EECD, eecd);
397 		/* Set CS */
398 		eecd |= E1000_EECD_CS;
399 		E1000_WRITE_REG(hw, E1000_EECD, eecd);
400 	} else if (nvm->type == e1000_nvm_eeprom_spi) {
401 		u16 timeout = NVM_MAX_RETRY_SPI;
402 
403 		/* Clear SK and CS */
404 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
405 		E1000_WRITE_REG(hw, E1000_EECD, eecd);
406 		E1000_WRITE_FLUSH(hw);
407 		usec_delay(1);
408 
409 		/* Read "Status Register" repeatedly until the LSB is cleared.
410 		 * The EEPROM will signal that the command has been completed
411 		 * by clearing bit 0 of the internal status register.  If it's
412 		 * not cleared within 'timeout', then error out.
413 		 */
414 		while (timeout) {
415 			e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
416 						 hw->nvm.opcode_bits);
417 			spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
418 			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
419 				break;
420 
421 			usec_delay(5);
422 			e1000_standby_nvm(hw);
423 			timeout--;
424 		}
425 
426 		if (!timeout) {
427 			DEBUGOUT("SPI NVM Status error\n");
428 			return -E1000_ERR_NVM;
429 		}
430 	}
431 
432 	return E1000_SUCCESS;
433 }
434 
435 /**
436  *  e1000_read_nvm_spi - Read EEPROM's using SPI
437  *  @hw: pointer to the HW structure
438  *  @offset: offset of word in the EEPROM to read
439  *  @words: number of words to read
440  *  @data: word read from the EEPROM
441  *
442  *  Reads a 16 bit word from the EEPROM.
443  **/
444 s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
445 {
446 	struct e1000_nvm_info *nvm = &hw->nvm;
447 	u32 i = 0;
448 	s32 ret_val;
449 	u16 word_in;
450 	u8 read_opcode = NVM_READ_OPCODE_SPI;
451 
452 	DEBUGFUNC("e1000_read_nvm_spi");
453 
454 	/* A check for invalid values:  offset too large, too many words,
455 	 * and not enough words.
456 	 */
457 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
458 	    (words == 0)) {
459 		DEBUGOUT("nvm parameter(s) out of bounds\n");
460 		return -E1000_ERR_NVM;
461 	}
462 
463 	ret_val = nvm->ops.acquire(hw);
464 	if (ret_val)
465 		return ret_val;
466 
467 	ret_val = e1000_ready_nvm_eeprom(hw);
468 	if (ret_val)
469 		goto release;
470 
471 	e1000_standby_nvm(hw);
472 
473 	if ((nvm->address_bits == 8) && (offset >= 128))
474 		read_opcode |= NVM_A8_OPCODE_SPI;
475 
476 	/* Send the READ command (opcode + addr) */
477 	e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
478 	e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
479 
480 	/* Read the data.  SPI NVMs increment the address with each byte
481 	 * read and will roll over if reading beyond the end.  This allows
482 	 * us to read the whole NVM from any offset
483 	 */
484 	for (i = 0; i < words; i++) {
485 		word_in = e1000_shift_in_eec_bits(hw, 16);
486 		data[i] = (word_in >> 8) | (word_in << 8);
487 	}
488 
489 release:
490 	nvm->ops.release(hw);
491 
492 	return ret_val;
493 }
494 
495 /**
496  *  e1000_read_nvm_microwire - Reads EEPROM's using microwire
497  *  @hw: pointer to the HW structure
498  *  @offset: offset of word in the EEPROM to read
499  *  @words: number of words to read
500  *  @data: word read from the EEPROM
501  *
502  *  Reads a 16 bit word from the EEPROM.
503  **/
504 s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
505 			     u16 *data)
506 {
507 	struct e1000_nvm_info *nvm = &hw->nvm;
508 	u32 i = 0;
509 	s32 ret_val;
510 	u8 read_opcode = NVM_READ_OPCODE_MICROWIRE;
511 
512 	DEBUGFUNC("e1000_read_nvm_microwire");
513 
514 	/* A check for invalid values:  offset too large, too many words,
515 	 * and not enough words.
516 	 */
517 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
518 	    (words == 0)) {
519 		DEBUGOUT("nvm parameter(s) out of bounds\n");
520 		return -E1000_ERR_NVM;
521 	}
522 
523 	ret_val = nvm->ops.acquire(hw);
524 	if (ret_val)
525 		return ret_val;
526 
527 	ret_val = e1000_ready_nvm_eeprom(hw);
528 	if (ret_val)
529 		goto release;
530 
531 	for (i = 0; i < words; i++) {
532 		/* Send the READ command (opcode + addr) */
533 		e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
534 		e1000_shift_out_eec_bits(hw, (u16)(offset + i),
535 					nvm->address_bits);
536 
537 		/* Read the data.  For microwire, each word requires the
538 		 * overhead of setup and tear-down.
539 		 */
540 		data[i] = e1000_shift_in_eec_bits(hw, 16);
541 		e1000_standby_nvm(hw);
542 	}
543 
544 release:
545 	nvm->ops.release(hw);
546 
547 	return ret_val;
548 }
549 
550 /**
551  *  e1000_read_nvm_eerd - Reads EEPROM using EERD register
552  *  @hw: pointer to the HW structure
553  *  @offset: offset of word in the EEPROM to read
554  *  @words: number of words to read
555  *  @data: word read from the EEPROM
556  *
557  *  Reads a 16 bit word from the EEPROM using the EERD register.
558  **/
559 s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
560 {
561 	struct e1000_nvm_info *nvm = &hw->nvm;
562 	u32 i, eerd = 0;
563 	s32 ret_val = E1000_SUCCESS;
564 
565 	DEBUGFUNC("e1000_read_nvm_eerd");
566 
567 	/* A check for invalid values:  offset too large, too many words,
568 	 * too many words for the offset, and not enough words.
569 	 */
570 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
571 	    (words == 0)) {
572 		DEBUGOUT("nvm parameter(s) out of bounds\n");
573 		return -E1000_ERR_NVM;
574 	}
575 
576 	for (i = 0; i < words; i++) {
577 		eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
578 		       E1000_NVM_RW_REG_START;
579 
580 		E1000_WRITE_REG(hw, E1000_EERD, eerd);
581 		ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
582 		if (ret_val)
583 			break;
584 
585 		data[i] = (E1000_READ_REG(hw, E1000_EERD) >>
586 			   E1000_NVM_RW_REG_DATA);
587 	}
588 
589 	return ret_val;
590 }
591 
592 /**
593  *  e1000_write_nvm_spi - Write to EEPROM using SPI
594  *  @hw: pointer to the HW structure
595  *  @offset: offset within the EEPROM to be written to
596  *  @words: number of words to write
597  *  @data: 16 bit word(s) to be written to the EEPROM
598  *
599  *  Writes data to EEPROM at offset using SPI interface.
600  *
601  *  If e1000_update_nvm_checksum is not called after this function , the
602  *  EEPROM will most likely contain an invalid checksum.
603  **/
604 s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
605 {
606 	struct e1000_nvm_info *nvm = &hw->nvm;
607 	s32 ret_val = -E1000_ERR_NVM;
608 	u16 widx = 0;
609 
610 	DEBUGFUNC("e1000_write_nvm_spi");
611 
612 	/* A check for invalid values:  offset too large, too many words,
613 	 * and not enough words.
614 	 */
615 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
616 	    (words == 0)) {
617 		DEBUGOUT("nvm parameter(s) out of bounds\n");
618 		return -E1000_ERR_NVM;
619 	}
620 
621 	while (widx < words) {
622 		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
623 
624 		ret_val = nvm->ops.acquire(hw);
625 		if (ret_val)
626 			return ret_val;
627 
628 		ret_val = e1000_ready_nvm_eeprom(hw);
629 		if (ret_val) {
630 			nvm->ops.release(hw);
631 			return ret_val;
632 		}
633 
634 		e1000_standby_nvm(hw);
635 
636 		/* Send the WRITE ENABLE command (8 bit opcode) */
637 		e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
638 					 nvm->opcode_bits);
639 
640 		e1000_standby_nvm(hw);
641 
642 		/* Some SPI eeproms use the 8th address bit embedded in the
643 		 * opcode
644 		 */
645 		if ((nvm->address_bits == 8) && (offset >= 128))
646 			write_opcode |= NVM_A8_OPCODE_SPI;
647 
648 		/* Send the Write command (8-bit opcode + addr) */
649 		e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
650 		e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
651 					 nvm->address_bits);
652 
653 		/* Loop to allow for up to whole page write of eeprom */
654 		while (widx < words) {
655 			u16 word_out = data[widx];
656 			word_out = (word_out >> 8) | (word_out << 8);
657 			e1000_shift_out_eec_bits(hw, word_out, 16);
658 			widx++;
659 
660 			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
661 				e1000_standby_nvm(hw);
662 				break;
663 			}
664 		}
665 		msec_delay(10);
666 		nvm->ops.release(hw);
667 	}
668 
669 	return ret_val;
670 }
671 
672 /**
673  *  e1000_write_nvm_microwire - Writes EEPROM using microwire
674  *  @hw: pointer to the HW structure
675  *  @offset: offset within the EEPROM to be written to
676  *  @words: number of words to write
677  *  @data: 16 bit word(s) to be written to the EEPROM
678  *
679  *  Writes data to EEPROM at offset using microwire interface.
680  *
681  *  If e1000_update_nvm_checksum is not called after this function , the
682  *  EEPROM will most likely contain an invalid checksum.
683  **/
684 s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
685 			      u16 *data)
686 {
687 	struct e1000_nvm_info *nvm = &hw->nvm;
688 	s32  ret_val;
689 	u32 eecd;
690 	u16 words_written = 0;
691 	u16 widx = 0;
692 
693 	DEBUGFUNC("e1000_write_nvm_microwire");
694 
695 	/* A check for invalid values:  offset too large, too many words,
696 	 * and not enough words.
697 	 */
698 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
699 	    (words == 0)) {
700 		DEBUGOUT("nvm parameter(s) out of bounds\n");
701 		return -E1000_ERR_NVM;
702 	}
703 
704 	ret_val = nvm->ops.acquire(hw);
705 	if (ret_val)
706 		return ret_val;
707 
708 	ret_val = e1000_ready_nvm_eeprom(hw);
709 	if (ret_val)
710 		goto release;
711 
712 	e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE,
713 				 (u16)(nvm->opcode_bits + 2));
714 
715 	e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
716 
717 	e1000_standby_nvm(hw);
718 
719 	while (words_written < words) {
720 		e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE,
721 					 nvm->opcode_bits);
722 
723 		e1000_shift_out_eec_bits(hw, (u16)(offset + words_written),
724 					 nvm->address_bits);
725 
726 		e1000_shift_out_eec_bits(hw, data[words_written], 16);
727 
728 		e1000_standby_nvm(hw);
729 
730 		for (widx = 0; widx < 200; widx++) {
731 			eecd = E1000_READ_REG(hw, E1000_EECD);
732 			if (eecd & E1000_EECD_DO)
733 				break;
734 			usec_delay(50);
735 		}
736 
737 		if (widx == 200) {
738 			DEBUGOUT("NVM Write did not complete\n");
739 			ret_val = -E1000_ERR_NVM;
740 			goto release;
741 		}
742 
743 		e1000_standby_nvm(hw);
744 
745 		words_written++;
746 	}
747 
748 	e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE,
749 				 (u16)(nvm->opcode_bits + 2));
750 
751 	e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
752 
753 release:
754 	nvm->ops.release(hw);
755 
756 	return ret_val;
757 }
758 
759 /**
760  *  e1000_read_pba_string_generic - Read device part number
761  *  @hw: pointer to the HW structure
762  *  @pba_num: pointer to device part number
763  *  @pba_num_size: size of part number buffer
764  *
765  *  Reads the product board assembly (PBA) number from the EEPROM and stores
766  *  the value in pba_num.
767  **/
768 s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
769 				  u32 pba_num_size)
770 {
771 	s32 ret_val;
772 	u16 nvm_data;
773 	u16 pba_ptr;
774 	u16 offset;
775 	u16 length;
776 
777 	DEBUGFUNC("e1000_read_pba_string_generic");
778 
779 	if (pba_num == NULL) {
780 		DEBUGOUT("PBA string buffer was null\n");
781 		return -E1000_ERR_INVALID_ARGUMENT;
782 	}
783 
784 	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
785 	if (ret_val) {
786 		DEBUGOUT("NVM Read Error\n");
787 		return ret_val;
788 	}
789 
790 	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
791 	if (ret_val) {
792 		DEBUGOUT("NVM Read Error\n");
793 		return ret_val;
794 	}
795 
796 	/* if nvm_data is not ptr guard the PBA must be in legacy format which
797 	 * means pba_ptr is actually our second data word for the PBA number
798 	 * and we can decode it into an ascii string
799 	 */
800 	if (nvm_data != NVM_PBA_PTR_GUARD) {
801 		DEBUGOUT("NVM PBA number is not stored as string\n");
802 
803 		/* make sure callers buffer is big enough to store the PBA */
804 		if (pba_num_size < E1000_PBANUM_LENGTH) {
805 			DEBUGOUT("PBA string buffer too small\n");
806 			return E1000_ERR_NO_SPACE;
807 		}
808 
809 		/* extract hex string from data and pba_ptr */
810 		pba_num[0] = (nvm_data >> 12) & 0xF;
811 		pba_num[1] = (nvm_data >> 8) & 0xF;
812 		pba_num[2] = (nvm_data >> 4) & 0xF;
813 		pba_num[3] = nvm_data & 0xF;
814 		pba_num[4] = (pba_ptr >> 12) & 0xF;
815 		pba_num[5] = (pba_ptr >> 8) & 0xF;
816 		pba_num[6] = '-';
817 		pba_num[7] = 0;
818 		pba_num[8] = (pba_ptr >> 4) & 0xF;
819 		pba_num[9] = pba_ptr & 0xF;
820 
821 		/* put a null character on the end of our string */
822 		pba_num[10] = '\0';
823 
824 		/* switch all the data but the '-' to hex char */
825 		for (offset = 0; offset < 10; offset++) {
826 			if (pba_num[offset] < 0xA)
827 				pba_num[offset] += '0';
828 			else if (pba_num[offset] < 0x10)
829 				pba_num[offset] += 'A' - 0xA;
830 		}
831 
832 		return E1000_SUCCESS;
833 	}
834 
835 	ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
836 	if (ret_val) {
837 		DEBUGOUT("NVM Read Error\n");
838 		return ret_val;
839 	}
840 
841 	if (length == 0xFFFF || length == 0) {
842 		DEBUGOUT("NVM PBA number section invalid length\n");
843 		return -E1000_ERR_NVM_PBA_SECTION;
844 	}
845 	/* check if pba_num buffer is big enough */
846 	if (pba_num_size < (((u32)length * 2) - 1)) {
847 		DEBUGOUT("PBA string buffer too small\n");
848 		return -E1000_ERR_NO_SPACE;
849 	}
850 
851 	/* trim pba length from start of string */
852 	pba_ptr++;
853 	length--;
854 
855 	for (offset = 0; offset < length; offset++) {
856 		ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data);
857 		if (ret_val) {
858 			DEBUGOUT("NVM Read Error\n");
859 			return ret_val;
860 		}
861 		pba_num[offset * 2] = (u8)(nvm_data >> 8);
862 		pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
863 	}
864 	pba_num[offset * 2] = '\0';
865 
866 	return E1000_SUCCESS;
867 }
868 
869 /**
870  *  e1000_read_pba_length_generic - Read device part number length
871  *  @hw: pointer to the HW structure
872  *  @pba_num_size: size of part number buffer
873  *
874  *  Reads the product board assembly (PBA) number length from the EEPROM and
875  *  stores the value in pba_num_size.
876  **/
877 s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size)
878 {
879 	s32 ret_val;
880 	u16 nvm_data;
881 	u16 pba_ptr;
882 	u16 length;
883 
884 	DEBUGFUNC("e1000_read_pba_length_generic");
885 
886 	if (pba_num_size == NULL) {
887 		DEBUGOUT("PBA buffer size was null\n");
888 		return -E1000_ERR_INVALID_ARGUMENT;
889 	}
890 
891 	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
892 	if (ret_val) {
893 		DEBUGOUT("NVM Read Error\n");
894 		return ret_val;
895 	}
896 
897 	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
898 	if (ret_val) {
899 		DEBUGOUT("NVM Read Error\n");
900 		return ret_val;
901 	}
902 
903 	 /* if data is not ptr guard the PBA must be in legacy format */
904 	if (nvm_data != NVM_PBA_PTR_GUARD) {
905 		*pba_num_size = E1000_PBANUM_LENGTH;
906 		return E1000_SUCCESS;
907 	}
908 
909 	ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
910 	if (ret_val) {
911 		DEBUGOUT("NVM Read Error\n");
912 		return ret_val;
913 	}
914 
915 	if (length == 0xFFFF || length == 0) {
916 		DEBUGOUT("NVM PBA number section invalid length\n");
917 		return -E1000_ERR_NVM_PBA_SECTION;
918 	}
919 
920 	/* Convert from length in u16 values to u8 chars, add 1 for NULL,
921 	 * and subtract 2 because length field is included in length.
922 	 */
923 	*pba_num_size = ((u32)length * 2) - 1;
924 
925 	return E1000_SUCCESS;
926 }
927 
928 /**
929  *  e1000_read_pba_num_generic - Read device part number
930  *  @hw: pointer to the HW structure
931  *  @pba_num: pointer to device part number
932  *
933  *  Reads the product board assembly (PBA) number from the EEPROM and stores
934  *  the value in pba_num.
935  **/
936 s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num)
937 {
938 	s32 ret_val;
939 	u16 nvm_data;
940 
941 	DEBUGFUNC("e1000_read_pba_num_generic");
942 
943 	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
944 	if (ret_val) {
945 		DEBUGOUT("NVM Read Error\n");
946 		return ret_val;
947 	} else if (nvm_data == NVM_PBA_PTR_GUARD) {
948 		DEBUGOUT("NVM Not Supported\n");
949 		return -E1000_NOT_IMPLEMENTED;
950 	}
951 	*pba_num = (u32)(nvm_data << 16);
952 
953 	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
954 	if (ret_val) {
955 		DEBUGOUT("NVM Read Error\n");
956 		return ret_val;
957 	}
958 	*pba_num |= nvm_data;
959 
960 	return E1000_SUCCESS;
961 }
962 
963 /**
964  *  e1000_read_pba_raw
965  *  @hw: pointer to the HW structure
966  *  @eeprom_buf: optional pointer to EEPROM image
967  *  @eeprom_buf_size: size of EEPROM image in words
968  *  @max_pba_block_size: PBA block size limit
969  *  @pba: pointer to output PBA structure
970  *
971  *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
972  *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
973  *
974  **/
975 s32 e1000_read_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf,
976 		       u32 eeprom_buf_size, u16 max_pba_block_size,
977 		       struct e1000_pba *pba)
978 {
979 	s32 ret_val;
980 	u16 pba_block_size;
981 
982 	if (pba == NULL)
983 		return -E1000_ERR_PARAM;
984 
985 	if (eeprom_buf == NULL) {
986 		ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 2,
987 					 &pba->word[0]);
988 		if (ret_val)
989 			return ret_val;
990 	} else {
991 		if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
992 			pba->word[0] = eeprom_buf[NVM_PBA_OFFSET_0];
993 			pba->word[1] = eeprom_buf[NVM_PBA_OFFSET_1];
994 		} else {
995 			return -E1000_ERR_PARAM;
996 		}
997 	}
998 
999 	if (pba->word[0] == NVM_PBA_PTR_GUARD) {
1000 		if (pba->pba_block == NULL)
1001 			return -E1000_ERR_PARAM;
1002 
1003 		ret_val = e1000_get_pba_block_size(hw, eeprom_buf,
1004 						   eeprom_buf_size,
1005 						   &pba_block_size);
1006 		if (ret_val)
1007 			return ret_val;
1008 
1009 		if (pba_block_size > max_pba_block_size)
1010 			return -E1000_ERR_PARAM;
1011 
1012 		if (eeprom_buf == NULL) {
1013 			ret_val = e1000_read_nvm(hw, pba->word[1],
1014 						 pba_block_size,
1015 						 pba->pba_block);
1016 			if (ret_val)
1017 				return ret_val;
1018 		} else {
1019 			if (eeprom_buf_size > (u32)(pba->word[1] +
1020 					      pba->pba_block[0])) {
1021 				memcpy(pba->pba_block,
1022 				       &eeprom_buf[pba->word[1]],
1023 				       pba_block_size * sizeof(u16));
1024 			} else {
1025 				return -E1000_ERR_PARAM;
1026 			}
1027 		}
1028 	}
1029 
1030 	return E1000_SUCCESS;
1031 }
1032 
1033 /**
1034  *  e1000_write_pba_raw
1035  *  @hw: pointer to the HW structure
1036  *  @eeprom_buf: optional pointer to EEPROM image
1037  *  @eeprom_buf_size: size of EEPROM image in words
1038  *  @pba: pointer to PBA structure
1039  *
1040  *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
1041  *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
1042  *
1043  **/
1044 s32 e1000_write_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf,
1045 			u32 eeprom_buf_size, struct e1000_pba *pba)
1046 {
1047 	s32 ret_val;
1048 
1049 	if (pba == NULL)
1050 		return -E1000_ERR_PARAM;
1051 
1052 	if (eeprom_buf == NULL) {
1053 		ret_val = e1000_write_nvm(hw, NVM_PBA_OFFSET_0, 2,
1054 					  &pba->word[0]);
1055 		if (ret_val)
1056 			return ret_val;
1057 	} else {
1058 		if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
1059 			eeprom_buf[NVM_PBA_OFFSET_0] = pba->word[0];
1060 			eeprom_buf[NVM_PBA_OFFSET_1] = pba->word[1];
1061 		} else {
1062 			return -E1000_ERR_PARAM;
1063 		}
1064 	}
1065 
1066 	if (pba->word[0] == NVM_PBA_PTR_GUARD) {
1067 		if (pba->pba_block == NULL)
1068 			return -E1000_ERR_PARAM;
1069 
1070 		if (eeprom_buf == NULL) {
1071 			ret_val = e1000_write_nvm(hw, pba->word[1],
1072 						  pba->pba_block[0],
1073 						  pba->pba_block);
1074 			if (ret_val)
1075 				return ret_val;
1076 		} else {
1077 			if (eeprom_buf_size > (u32)(pba->word[1] +
1078 					      pba->pba_block[0])) {
1079 				memcpy(&eeprom_buf[pba->word[1]],
1080 				       pba->pba_block,
1081 				       pba->pba_block[0] * sizeof(u16));
1082 			} else {
1083 				return -E1000_ERR_PARAM;
1084 			}
1085 		}
1086 	}
1087 
1088 	return E1000_SUCCESS;
1089 }
1090 
1091 /**
1092  *  e1000_get_pba_block_size
1093  *  @hw: pointer to the HW structure
1094  *  @eeprom_buf: optional pointer to EEPROM image
1095  *  @eeprom_buf_size: size of EEPROM image in words
1096  *  @pba_data_size: pointer to output variable
1097  *
1098  *  Returns the size of the PBA block in words. Function operates on EEPROM
1099  *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
1100  *  EEPROM device.
1101  *
1102  **/
1103 s32 e1000_get_pba_block_size(struct e1000_hw *hw, u16 *eeprom_buf,
1104 			     u32 eeprom_buf_size, u16 *pba_block_size)
1105 {
1106 	s32 ret_val;
1107 	u16 pba_word[2];
1108 	u16 length;
1109 
1110 	DEBUGFUNC("e1000_get_pba_block_size");
1111 
1112 	if (eeprom_buf == NULL) {
1113 		ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 2, &pba_word[0]);
1114 		if (ret_val)
1115 			return ret_val;
1116 	} else {
1117 		if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
1118 			pba_word[0] = eeprom_buf[NVM_PBA_OFFSET_0];
1119 			pba_word[1] = eeprom_buf[NVM_PBA_OFFSET_1];
1120 		} else {
1121 			return -E1000_ERR_PARAM;
1122 		}
1123 	}
1124 
1125 	if (pba_word[0] == NVM_PBA_PTR_GUARD) {
1126 		if (eeprom_buf == NULL) {
1127 			ret_val = e1000_read_nvm(hw, pba_word[1] + 0, 1,
1128 						 &length);
1129 			if (ret_val)
1130 				return ret_val;
1131 		} else {
1132 			if (eeprom_buf_size > pba_word[1])
1133 				length = eeprom_buf[pba_word[1] + 0];
1134 			else
1135 				return -E1000_ERR_PARAM;
1136 		}
1137 
1138 		if (length == 0xFFFF || length == 0)
1139 			return -E1000_ERR_NVM_PBA_SECTION;
1140 	} else {
1141 		/* PBA number in legacy format, there is no PBA Block. */
1142 		length = 0;
1143 	}
1144 
1145 	if (pba_block_size != NULL)
1146 		*pba_block_size = length;
1147 
1148 	return E1000_SUCCESS;
1149 }
1150 
1151 /**
1152  *  e1000_read_mac_addr_generic - Read device MAC address
1153  *  @hw: pointer to the HW structure
1154  *
1155  *  Reads the device MAC address from the EEPROM and stores the value.
1156  *  Since devices with two ports use the same EEPROM, we increment the
1157  *  last bit in the MAC address for the second port.
1158  **/
1159 s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
1160 {
1161 	u32 rar_high;
1162 	u32 rar_low;
1163 	u16 i;
1164 
1165 	rar_high = E1000_READ_REG(hw, E1000_RAH(0));
1166 	rar_low = E1000_READ_REG(hw, E1000_RAL(0));
1167 
1168 	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
1169 		hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
1170 
1171 	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
1172 		hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
1173 
1174 	for (i = 0; i < ETH_ADDR_LEN; i++)
1175 		hw->mac.addr[i] = hw->mac.perm_addr[i];
1176 
1177 	return E1000_SUCCESS;
1178 }
1179 
1180 /**
1181  *  e1000_validate_nvm_checksum_generic - Validate EEPROM checksum
1182  *  @hw: pointer to the HW structure
1183  *
1184  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
1185  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
1186  **/
1187 s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw)
1188 {
1189 	s32 ret_val;
1190 	u16 checksum = 0;
1191 	u16 i, nvm_data;
1192 
1193 	DEBUGFUNC("e1000_validate_nvm_checksum_generic");
1194 
1195 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1196 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
1197 		if (ret_val) {
1198 			DEBUGOUT("NVM Read Error\n");
1199 			return ret_val;
1200 		}
1201 		checksum += nvm_data;
1202 	}
1203 
1204 	if (checksum != (u16) NVM_SUM) {
1205 		DEBUGOUT("NVM Checksum Invalid\n");
1206 		return -E1000_ERR_NVM;
1207 	}
1208 
1209 	return E1000_SUCCESS;
1210 }
1211 
1212 /**
1213  *  e1000_update_nvm_checksum_generic - Update EEPROM checksum
1214  *  @hw: pointer to the HW structure
1215  *
1216  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
1217  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
1218  *  value to the EEPROM.
1219  **/
1220 s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw)
1221 {
1222 	s32 ret_val;
1223 	u16 checksum = 0;
1224 	u16 i, nvm_data;
1225 
1226 	DEBUGFUNC("e1000_update_nvm_checksum");
1227 
1228 	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
1229 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
1230 		if (ret_val) {
1231 			DEBUGOUT("NVM Read Error while updating checksum.\n");
1232 			return ret_val;
1233 		}
1234 		checksum += nvm_data;
1235 	}
1236 	checksum = (u16) NVM_SUM - checksum;
1237 	ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
1238 	if (ret_val)
1239 		DEBUGOUT("NVM Write Error while updating checksum.\n");
1240 
1241 	return ret_val;
1242 }
1243 
1244 /**
1245  *  e1000_reload_nvm_generic - Reloads EEPROM
1246  *  @hw: pointer to the HW structure
1247  *
1248  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1249  *  extended control register.
1250  **/
1251 static void e1000_reload_nvm_generic(struct e1000_hw *hw)
1252 {
1253 	u32 ctrl_ext;
1254 
1255 	DEBUGFUNC("e1000_reload_nvm_generic");
1256 
1257 	usec_delay(10);
1258 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1259 	ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1260 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1261 	E1000_WRITE_FLUSH(hw);
1262 }
1263 
1264 /**
1265  *  e1000_get_fw_version - Get firmware version information
1266  *  @hw: pointer to the HW structure
1267  *  @fw_vers: pointer to output version structure
1268  *
1269  *  unsupported/not present features return 0 in version structure
1270  **/
1271 void e1000_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers)
1272 {
1273 	u16 eeprom_verh, eeprom_verl, etrack_test, fw_version;
1274 	u8 q, hval, rem, result;
1275 	u16 comb_verh, comb_verl, comb_offset;
1276 
1277 	memset(fw_vers, 0, sizeof(struct e1000_fw_version));
1278 
1279 	/* basic eeprom version numbers, bits used vary by part and by tool
1280 	 * used to create the nvm images */
1281 	/* Check which data format we have */
1282 	hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
1283 	switch (hw->mac.type) {
1284 	case e1000_i211:
1285 		e1000_read_invm_version(hw, fw_vers);
1286 		return;
1287 	case e1000_82575:
1288 	case e1000_82576:
1289 	case e1000_82580:
1290 		/* Use this format, unless EETRACK ID exists,
1291 		 * then use alternate format
1292 		 */
1293 		if ((etrack_test &  NVM_MAJOR_MASK) != NVM_ETRACK_VALID) {
1294 			hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
1295 			fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
1296 					      >> NVM_MAJOR_SHIFT;
1297 			fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK)
1298 					      >> NVM_MINOR_SHIFT;
1299 			fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK);
1300 			goto etrack_id;
1301 		}
1302 		break;
1303 	case e1000_i210:
1304 	case e1000_i350:
1305 		/* find combo image version */
1306 		hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
1307 		if ((comb_offset != 0x0) &&
1308 		    (comb_offset != NVM_VER_INVALID)) {
1309 
1310 			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
1311 					 + 1), 1, &comb_verh);
1312 			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
1313 					 1, &comb_verl);
1314 
1315 			/* get Option Rom version if it exists and is valid */
1316 			if ((comb_verh && comb_verl) &&
1317 			    ((comb_verh != NVM_VER_INVALID) &&
1318 			     (comb_verl != NVM_VER_INVALID))) {
1319 
1320 				fw_vers->or_valid = TRUE;
1321 				fw_vers->or_major =
1322 					comb_verl >> NVM_COMB_VER_SHFT;
1323 				fw_vers->or_build =
1324 					(comb_verl << NVM_COMB_VER_SHFT)
1325 					| (comb_verh >> NVM_COMB_VER_SHFT);
1326 				fw_vers->or_patch =
1327 					comb_verh & NVM_COMB_VER_MASK;
1328 			}
1329 		}
1330 		break;
1331 	default:
1332 		return;
1333 	}
1334 	hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
1335 	fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
1336 			      >> NVM_MAJOR_SHIFT;
1337 
1338 	/* check for old style version format in newer images*/
1339 	if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) {
1340 		eeprom_verl = (fw_version & NVM_COMB_VER_MASK);
1341 	} else {
1342 		eeprom_verl = (fw_version & NVM_MINOR_MASK)
1343 				>> NVM_MINOR_SHIFT;
1344 	}
1345 	/* Convert minor value to hex before assigning to output struct
1346 	 * Val to be converted will not be higher than 99, per tool output
1347 	 */
1348 	q = eeprom_verl / NVM_HEX_CONV;
1349 	hval = q * NVM_HEX_TENS;
1350 	rem = eeprom_verl % NVM_HEX_CONV;
1351 	result = hval + rem;
1352 	fw_vers->eep_minor = result;
1353 
1354 etrack_id:
1355 	if ((etrack_test &  NVM_MAJOR_MASK) == NVM_ETRACK_VALID) {
1356 		hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl);
1357 		hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh);
1358 		fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT)
1359 			| eeprom_verl;
1360 	}
1361 	return;
1362 }
1363 
1364 
1365