xref: /dragonfly/sys/dev/netif/igb/if_igb.c (revision 03517d4e)
1 /*
2  * Copyright (c) 2001-2013, Intel Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  *  1. Redistributions of source code must retain the above copyright notice,
9  *     this list of conditions and the following disclaimer.
10  *
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  3. Neither the name of the Intel Corporation nor the names of its
16  *     contributors may be used to endorse or promote products derived from
17  *     this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include "opt_ifpoll.h"
33 #include "opt_igb.h"
34 
35 #include <sys/param.h>
36 #include <sys/bus.h>
37 #include <sys/endian.h>
38 #include <sys/interrupt.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/proc.h>
43 #include <sys/rman.h>
44 #include <sys/serialize.h>
45 #include <sys/serialize2.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50 
51 #include <net/bpf.h>
52 #include <net/ethernet.h>
53 #include <net/if.h>
54 #include <net/if_arp.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/ifq_var.h>
58 #include <net/if_ringmap.h>
59 #include <net/toeplitz.h>
60 #include <net/toeplitz2.h>
61 #include <net/vlan/if_vlan_var.h>
62 #include <net/vlan/if_vlan_ether.h>
63 #include <net/if_poll.h>
64 
65 #include <netinet/in_systm.h>
66 #include <netinet/in.h>
67 #include <netinet/ip.h>
68 
69 #include <bus/pci/pcivar.h>
70 #include <bus/pci/pcireg.h>
71 
72 #include <dev/netif/ig_hal/e1000_api.h>
73 #include <dev/netif/ig_hal/e1000_82575.h>
74 #include <dev/netif/ig_hal/e1000_dragonfly.h>
75 #include <dev/netif/igb/if_igb.h>
76 
77 #ifdef IGB_RSS_DEBUG
78 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...) \
79 do { \
80 	if (sc->rss_debug >= lvl) \
81 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
82 } while (0)
83 #else	/* !IGB_RSS_DEBUG */
84 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
85 #endif	/* IGB_RSS_DEBUG */
86 
87 #define IGB_NAME	"Intel(R) PRO/1000 "
88 #define IGB_DEVICE(id)	\
89 	{ IGB_VENDOR_ID, E1000_DEV_ID_##id, IGB_NAME #id }
90 #define IGB_DEVICE_NULL	{ 0, 0, NULL }
91 
92 static struct igb_device {
93 	uint16_t	vid;
94 	uint16_t	did;
95 	const char	*desc;
96 } igb_devices[] = {
97 	IGB_DEVICE(82575EB_COPPER),
98 	IGB_DEVICE(82575EB_FIBER_SERDES),
99 	IGB_DEVICE(82575GB_QUAD_COPPER),
100 	IGB_DEVICE(82576),
101 	IGB_DEVICE(82576_NS),
102 	IGB_DEVICE(82576_NS_SERDES),
103 	IGB_DEVICE(82576_FIBER),
104 	IGB_DEVICE(82576_SERDES),
105 	IGB_DEVICE(82576_SERDES_QUAD),
106 	IGB_DEVICE(82576_QUAD_COPPER),
107 	IGB_DEVICE(82576_QUAD_COPPER_ET2),
108 	IGB_DEVICE(82576_VF),
109 	IGB_DEVICE(82580_COPPER),
110 	IGB_DEVICE(82580_FIBER),
111 	IGB_DEVICE(82580_SERDES),
112 	IGB_DEVICE(82580_SGMII),
113 	IGB_DEVICE(82580_COPPER_DUAL),
114 	IGB_DEVICE(82580_QUAD_FIBER),
115 	IGB_DEVICE(DH89XXCC_SERDES),
116 	IGB_DEVICE(DH89XXCC_SGMII),
117 	IGB_DEVICE(DH89XXCC_SFP),
118 	IGB_DEVICE(DH89XXCC_BACKPLANE),
119 	IGB_DEVICE(I350_COPPER),
120 	IGB_DEVICE(I350_FIBER),
121 	IGB_DEVICE(I350_SERDES),
122 	IGB_DEVICE(I350_SGMII),
123 	IGB_DEVICE(I350_VF),
124 	IGB_DEVICE(I210_COPPER),
125 	IGB_DEVICE(I210_COPPER_IT),
126 	IGB_DEVICE(I210_COPPER_OEM1),
127 	IGB_DEVICE(I210_COPPER_FLASHLESS),
128 	IGB_DEVICE(I210_SERDES_FLASHLESS),
129 	IGB_DEVICE(I210_FIBER),
130 	IGB_DEVICE(I210_SERDES),
131 	IGB_DEVICE(I210_SGMII),
132 	IGB_DEVICE(I211_COPPER),
133 	IGB_DEVICE(I354_BACKPLANE_1GBPS),
134 	IGB_DEVICE(I354_BACKPLANE_2_5GBPS),
135 	IGB_DEVICE(I354_SGMII),
136 
137 	/* required last entry */
138 	IGB_DEVICE_NULL
139 };
140 
141 static int	igb_probe(device_t);
142 static int	igb_attach(device_t);
143 static int	igb_detach(device_t);
144 static int	igb_shutdown(device_t);
145 static int	igb_suspend(device_t);
146 static int	igb_resume(device_t);
147 
148 static boolean_t igb_is_valid_ether_addr(const uint8_t *);
149 static void	igb_setup_ifp(struct igb_softc *);
150 static boolean_t igb_txcsum_ctx(struct igb_tx_ring *, struct mbuf *);
151 static int	igb_tso_pullup(struct igb_tx_ring *, struct mbuf **);
152 static void	igb_tso_ctx(struct igb_tx_ring *, struct mbuf *, uint32_t *);
153 static void	igb_add_sysctl(struct igb_softc *);
154 static void	igb_add_intr_rate_sysctl(struct igb_softc *, int,
155 		    const char *, const char *);
156 static int	igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
157 static int	igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
158 static int	igb_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
159 static int	igb_sysctl_rx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
160 static void	igb_set_ring_inuse(struct igb_softc *, boolean_t);
161 static int	igb_get_rxring_inuse(const struct igb_softc *, boolean_t);
162 static int	igb_get_txring_inuse(const struct igb_softc *, boolean_t);
163 static void	igb_set_timer_cpuid(struct igb_softc *, boolean_t);
164 
165 static void	igb_vf_init_stats(struct igb_softc *);
166 static void	igb_reset(struct igb_softc *, boolean_t);
167 static void	igb_update_stats_counters(struct igb_softc *);
168 static void	igb_update_vf_stats_counters(struct igb_softc *);
169 static void	igb_update_link_status(struct igb_softc *);
170 static void	igb_init_tx_unit(struct igb_softc *);
171 static void	igb_init_rx_unit(struct igb_softc *, boolean_t);
172 static void	igb_init_dmac(struct igb_softc *, uint32_t);
173 static void	igb_reg_dump(struct igb_softc *);
174 static int	igb_sysctl_reg_dump(SYSCTL_HANDLER_ARGS);
175 
176 static void	igb_set_vlan(struct igb_softc *);
177 static void	igb_set_multi(struct igb_softc *);
178 static void	igb_set_promisc(struct igb_softc *);
179 static void	igb_disable_promisc(struct igb_softc *);
180 
181 static int	igb_get_ring_max(const struct igb_softc *);
182 static void	igb_get_rxring_cnt(const struct igb_softc *, int *, int *);
183 static void	igb_get_txring_cnt(const struct igb_softc *, int *, int *);
184 static int	igb_alloc_rings(struct igb_softc *);
185 static void	igb_free_rings(struct igb_softc *);
186 static int	igb_create_tx_ring(struct igb_tx_ring *);
187 static int	igb_create_rx_ring(struct igb_rx_ring *);
188 static void	igb_free_tx_ring(struct igb_tx_ring *);
189 static void	igb_free_rx_ring(struct igb_rx_ring *);
190 static void	igb_destroy_tx_ring(struct igb_tx_ring *, int);
191 static void	igb_destroy_rx_ring(struct igb_rx_ring *, int);
192 static void	igb_init_tx_ring(struct igb_tx_ring *);
193 static int	igb_init_rx_ring(struct igb_rx_ring *);
194 static int	igb_newbuf(struct igb_rx_ring *, int, boolean_t);
195 static int	igb_encap(struct igb_tx_ring *, struct mbuf **, int *, int *);
196 static void	igb_rx_refresh(struct igb_rx_ring *, int);
197 static void	igb_setup_serialize(struct igb_softc *);
198 
199 static void	igb_stop(struct igb_softc *);
200 static void	igb_init(void *);
201 static int	igb_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
202 static void	igb_media_status(struct ifnet *, struct ifmediareq *);
203 static int	igb_media_change(struct ifnet *);
204 static void	igb_timer(void *);
205 static void	igb_watchdog(struct ifaltq_subque *);
206 static void	igb_start(struct ifnet *, struct ifaltq_subque *);
207 #ifdef IFPOLL_ENABLE
208 static void	igb_npoll(struct ifnet *, struct ifpoll_info *);
209 static void	igb_npoll_rx(struct ifnet *, void *, int);
210 static void	igb_npoll_tx(struct ifnet *, void *, int);
211 static void	igb_npoll_status(struct ifnet *);
212 #endif
213 static void	igb_serialize(struct ifnet *, enum ifnet_serialize);
214 static void	igb_deserialize(struct ifnet *, enum ifnet_serialize);
215 static int	igb_tryserialize(struct ifnet *, enum ifnet_serialize);
216 #ifdef INVARIANTS
217 static void	igb_serialize_assert(struct ifnet *, enum ifnet_serialize,
218 		    boolean_t);
219 #endif
220 
221 static void	igb_intr(void *);
222 static void	igb_intr_shared(void *);
223 static void	igb_rxeof(struct igb_rx_ring *, int);
224 static void	igb_txeof(struct igb_tx_ring *, int);
225 static void	igb_txgc(struct igb_tx_ring *);
226 static void	igb_txgc_timer(void *);
227 static void	igb_set_eitr(struct igb_softc *, int, int);
228 static void	igb_enable_intr(struct igb_softc *);
229 static void	igb_disable_intr(struct igb_softc *);
230 static void	igb_init_unshared_intr(struct igb_softc *);
231 static void	igb_init_intr(struct igb_softc *);
232 static int	igb_setup_intr(struct igb_softc *);
233 static void	igb_set_txintr_mask(struct igb_tx_ring *, int *, int);
234 static void	igb_set_rxintr_mask(struct igb_rx_ring *, int *, int);
235 static void	igb_set_intr_mask(struct igb_softc *);
236 static int	igb_alloc_intr(struct igb_softc *);
237 static void	igb_free_intr(struct igb_softc *);
238 static void	igb_teardown_intr(struct igb_softc *, int);
239 static void	igb_alloc_msix(struct igb_softc *);
240 static void	igb_free_msix(struct igb_softc *, boolean_t);
241 static void	igb_msix_rx(void *);
242 static void	igb_msix_tx(void *);
243 static void	igb_msix_status(void *);
244 static void	igb_msix_rxtx(void *);
245 
246 /* Management and WOL Support */
247 static void	igb_get_mgmt(struct igb_softc *);
248 static void	igb_rel_mgmt(struct igb_softc *);
249 static void	igb_get_hw_control(struct igb_softc *);
250 static void	igb_rel_hw_control(struct igb_softc *);
251 static void	igb_enable_wol(struct igb_softc *);
252 static int	igb_enable_phy_wol(struct igb_softc *);
253 
254 static device_method_t igb_methods[] = {
255 	/* Device interface */
256 	DEVMETHOD(device_probe,		igb_probe),
257 	DEVMETHOD(device_attach,	igb_attach),
258 	DEVMETHOD(device_detach,	igb_detach),
259 	DEVMETHOD(device_shutdown,	igb_shutdown),
260 	DEVMETHOD(device_suspend,	igb_suspend),
261 	DEVMETHOD(device_resume,	igb_resume),
262 	DEVMETHOD_END
263 };
264 
265 static driver_t igb_driver = {
266 	"igb",
267 	igb_methods,
268 	sizeof(struct igb_softc),
269 };
270 
271 static devclass_t igb_devclass;
272 
273 DECLARE_DUMMY_MODULE(if_igb);
274 MODULE_DEPEND(igb, ig_hal, 1, 1, 1);
275 DRIVER_MODULE(if_igb, pci, igb_driver, igb_devclass, NULL, NULL);
276 
277 static int	igb_rxd = IGB_DEFAULT_RXD;
278 static int	igb_txd = IGB_DEFAULT_TXD;
279 static int	igb_rxr = 0;
280 static int	igb_txr = 0;
281 static int	igb_msi_enable = 1;
282 static int	igb_msix_enable = 1;
283 static int	igb_eee_disabled = 1;	/* Energy Efficient Ethernet */
284 
285 static char	igb_flowctrl[IFM_ETH_FC_STRLEN] = IFM_ETH_FC_NONE;
286 
287 /*
288  * DMA Coalescing, only for i350 - default to off,
289  * this feature is for power savings
290  */
291 static int	igb_dma_coalesce = 0;
292 
293 TUNABLE_INT("hw.igb.rxd", &igb_rxd);
294 TUNABLE_INT("hw.igb.txd", &igb_txd);
295 TUNABLE_INT("hw.igb.rxr", &igb_rxr);
296 TUNABLE_INT("hw.igb.txr", &igb_txr);
297 TUNABLE_INT("hw.igb.msi.enable", &igb_msi_enable);
298 TUNABLE_INT("hw.igb.msix.enable", &igb_msix_enable);
299 TUNABLE_STR("hw.igb.flow_ctrl", igb_flowctrl, sizeof(igb_flowctrl));
300 
301 /* i350 specific */
302 TUNABLE_INT("hw.igb.eee_disabled", &igb_eee_disabled);
303 TUNABLE_INT("hw.igb.dma_coalesce", &igb_dma_coalesce);
304 
305 static __inline void
306 igb_tx_intr(struct igb_tx_ring *txr, int hdr)
307 {
308 
309 	igb_txeof(txr, hdr);
310 	if (!ifsq_is_empty(txr->ifsq))
311 		ifsq_devstart(txr->ifsq);
312 }
313 
314 static __inline void
315 igb_try_txgc(struct igb_tx_ring *txr, int16_t dec)
316 {
317 
318 	if (txr->tx_running > 0) {
319 		txr->tx_running -= dec;
320 		if (txr->tx_running <= 0 && txr->tx_nmbuf &&
321 		    txr->tx_avail < txr->num_tx_desc &&
322 		    txr->tx_avail + txr->intr_nsegs > txr->num_tx_desc)
323 			igb_txgc(txr);
324 	}
325 }
326 
327 static void
328 igb_txgc_timer(void *xtxr)
329 {
330 	struct igb_tx_ring *txr = xtxr;
331 	struct ifnet *ifp = &txr->sc->arpcom.ac_if;
332 
333 	if ((ifp->if_flags & (IFF_RUNNING | IFF_UP | IFF_NPOLLING)) !=
334 	    (IFF_RUNNING | IFF_UP))
335 		return;
336 
337 	if (!lwkt_serialize_try(&txr->tx_serialize))
338 		goto done;
339 
340 	if ((ifp->if_flags & (IFF_RUNNING | IFF_UP | IFF_NPOLLING)) !=
341 	    (IFF_RUNNING | IFF_UP)) {
342 		lwkt_serialize_exit(&txr->tx_serialize);
343 		return;
344 	}
345 	igb_try_txgc(txr, IGB_TX_RUNNING_DEC);
346 
347 	lwkt_serialize_exit(&txr->tx_serialize);
348 done:
349 	callout_reset(&txr->tx_gc_timer, 1, igb_txgc_timer, txr);
350 }
351 
352 static __inline void
353 igb_free_txbuf(struct igb_tx_ring *txr, struct igb_tx_buf *txbuf)
354 {
355 
356 	KKASSERT(txbuf->m_head != NULL);
357 	KKASSERT(txr->tx_nmbuf > 0);
358 	txr->tx_nmbuf--;
359 
360 	bus_dmamap_unload(txr->tx_tag, txbuf->map);
361 	m_freem(txbuf->m_head);
362 	txbuf->m_head = NULL;
363 }
364 
365 static __inline void
366 igb_rxcsum(uint32_t staterr, struct mbuf *mp)
367 {
368 	/* Ignore Checksum bit is set */
369 	if (staterr & E1000_RXD_STAT_IXSM)
370 		return;
371 
372 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
373 	    E1000_RXD_STAT_IPCS)
374 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
375 
376 	if (staterr & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
377 		if ((staterr & E1000_RXDEXT_STATERR_TCPE) == 0) {
378 			mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
379 			    CSUM_PSEUDO_HDR | CSUM_FRAG_NOT_CHECKED;
380 			mp->m_pkthdr.csum_data = htons(0xffff);
381 		}
382 	}
383 }
384 
385 static __inline struct pktinfo *
386 igb_rssinfo(struct mbuf *m, struct pktinfo *pi,
387     uint32_t hash, uint32_t hashtype, uint32_t staterr)
388 {
389 	switch (hashtype) {
390 	case E1000_RXDADV_RSSTYPE_IPV4_TCP:
391 		pi->pi_netisr = NETISR_IP;
392 		pi->pi_flags = 0;
393 		pi->pi_l3proto = IPPROTO_TCP;
394 		break;
395 
396 	case E1000_RXDADV_RSSTYPE_IPV4:
397 		if (staterr & E1000_RXD_STAT_IXSM)
398 			return NULL;
399 
400 		if ((staterr &
401 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
402 		    E1000_RXD_STAT_TCPCS) {
403 			pi->pi_netisr = NETISR_IP;
404 			pi->pi_flags = 0;
405 			pi->pi_l3proto = IPPROTO_UDP;
406 			break;
407 		}
408 		/* FALL THROUGH */
409 	default:
410 		return NULL;
411 	}
412 
413 	m_sethash(m, toeplitz_hash(hash));
414 	return pi;
415 }
416 
417 static int
418 igb_get_ring_max(const struct igb_softc *sc)
419 {
420 
421 	switch (sc->hw.mac.type) {
422 	case e1000_82575:
423 		return (IGB_MAX_RING_82575);
424 
425 	case e1000_82576:
426 		return (IGB_MAX_RING_82576);
427 
428 	case e1000_82580:
429 		return (IGB_MAX_RING_82580);
430 
431 	case e1000_i350:
432 		return (IGB_MAX_RING_I350);
433 
434 	case e1000_i354:
435 		return (IGB_MAX_RING_I354);
436 
437 	case e1000_i210:
438 		return (IGB_MAX_RING_I210);
439 
440 	case e1000_i211:
441 		return (IGB_MAX_RING_I211);
442 
443 	default:
444 		return (IGB_MIN_RING);
445 	}
446 }
447 
448 static void
449 igb_get_rxring_cnt(const struct igb_softc *sc, int *ring_cnt, int *ring_max)
450 {
451 
452 	*ring_max = igb_get_ring_max(sc);
453 	*ring_cnt = device_getenv_int(sc->dev, "rxr", igb_rxr);
454 }
455 
456 static void
457 igb_get_txring_cnt(const struct igb_softc *sc, int *ring_cnt, int *ring_max)
458 {
459 
460 	*ring_max = igb_get_ring_max(sc);
461 	*ring_cnt = device_getenv_int(sc->dev, "txr", igb_txr);
462 }
463 
464 static int
465 igb_probe(device_t dev)
466 {
467 	const struct igb_device *d;
468 	uint16_t vid, did;
469 
470 	vid = pci_get_vendor(dev);
471 	did = pci_get_device(dev);
472 
473 	for (d = igb_devices; d->desc != NULL; ++d) {
474 		if (vid == d->vid && did == d->did) {
475 			device_set_desc(dev, d->desc);
476 			return 0;
477 		}
478 	}
479 	return ENXIO;
480 }
481 
482 static int
483 igb_attach(device_t dev)
484 {
485 	struct igb_softc *sc = device_get_softc(dev);
486 	uint16_t eeprom_data;
487 	int error = 0, ring_max, ring_cnt;
488 	char flowctrl[IFM_ETH_FC_STRLEN];
489 
490 #ifdef notyet
491 	/* SYSCTL stuff */
492 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
493 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
494 	    OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
495 	    igb_sysctl_nvm_info, "I", "NVM Information");
496 #endif
497 
498 	ifmedia_init(&sc->media, IFM_IMASK | IFM_ETH_FCMASK,
499 	    igb_media_change, igb_media_status);
500 	callout_init_mp(&sc->timer);
501 	lwkt_serialize_init(&sc->main_serialize);
502 
503 	if_initname(&sc->arpcom.ac_if, device_get_name(dev),
504 	    device_get_unit(dev));
505 	sc->dev = sc->osdep.dev = dev;
506 
507 	/* Enable bus mastering */
508 	pci_enable_busmaster(dev);
509 
510 	/*
511 	 * Determine hardware and mac type
512 	 */
513 	sc->hw.vendor_id = pci_get_vendor(dev);
514 	sc->hw.device_id = pci_get_device(dev);
515 	sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
516 	sc->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
517 	sc->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
518 
519 	if (e1000_set_mac_type(&sc->hw))
520 		return ENXIO;
521 
522 	/* Are we a VF device? */
523 	if (sc->hw.mac.type == e1000_vfadapt ||
524 	    sc->hw.mac.type == e1000_vfadapt_i350)
525 		sc->vf_ifp = 1;
526 	else
527 		sc->vf_ifp = 0;
528 
529 	/*
530 	 * Configure total supported RX/TX ring count
531 	 */
532 	igb_get_rxring_cnt(sc, &ring_cnt, &ring_max);
533 	sc->rx_rmap = if_ringmap_alloc(dev, ring_cnt, ring_max);
534 	igb_get_txring_cnt(sc, &ring_cnt, &ring_max);
535 	sc->tx_rmap = if_ringmap_alloc(dev, ring_cnt, ring_max);
536 	if_ringmap_match(dev, sc->rx_rmap, sc->tx_rmap);
537 
538 	sc->rx_ring_cnt = if_ringmap_count(sc->rx_rmap);
539 	sc->rx_ring_inuse = sc->rx_ring_cnt;
540 	sc->tx_ring_cnt = if_ringmap_count(sc->tx_rmap);
541 	sc->tx_ring_inuse = sc->tx_ring_cnt;
542 
543 	/* Setup flow control. */
544 	device_getenv_string(dev, "flow_ctrl", flowctrl, sizeof(flowctrl),
545 	    igb_flowctrl);
546 	sc->ifm_flowctrl = ifmedia_str2ethfc(flowctrl);
547 
548 	/*
549 	 * Allocate IO memory
550 	 */
551 	sc->mem_rid = PCIR_BAR(0);
552 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
553 	    RF_ACTIVE);
554 	if (sc->mem_res == NULL) {
555 		device_printf(dev, "Unable to allocate bus resource: memory\n");
556 		error = ENXIO;
557 		goto failed;
558 	}
559 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->mem_res);
560 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->mem_res);
561 
562 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
563 
564 	/* Save PCI command register for Shared Code */
565 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
566 	sc->hw.back = &sc->osdep;
567 
568 	/* Do Shared Code initialization */
569 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
570 		device_printf(dev, "Setup of Shared code failed\n");
571 		error = ENXIO;
572 		goto failed;
573 	}
574 
575 	e1000_get_bus_info(&sc->hw);
576 
577 	sc->hw.mac.autoneg = DO_AUTO_NEG;
578 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
579 	sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
580 
581 	/* Copper options */
582 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
583 		sc->hw.phy.mdix = AUTO_ALL_MODES;
584 		sc->hw.phy.disable_polarity_correction = FALSE;
585 		sc->hw.phy.ms_type = IGB_MASTER_SLAVE;
586 	}
587 
588 	/* Set the frame limits assuming  standard ethernet sized frames. */
589 	sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
590 
591 	/* Allocate RX/TX rings */
592 	error = igb_alloc_rings(sc);
593 	if (error)
594 		goto failed;
595 
596 	/* Allocate interrupt */
597 	error = igb_alloc_intr(sc);
598 	if (error)
599 		goto failed;
600 
601 	/* Setup serializes */
602 	igb_setup_serialize(sc);
603 
604 	/* Allocate the appropriate stats memory */
605 	if (sc->vf_ifp) {
606 		sc->stats = kmalloc(sizeof(struct e1000_vf_stats), M_DEVBUF,
607 		    M_WAITOK | M_ZERO);
608 		igb_vf_init_stats(sc);
609 	} else {
610 		sc->stats = kmalloc(sizeof(struct e1000_hw_stats), M_DEVBUF,
611 		    M_WAITOK | M_ZERO);
612 	}
613 
614 	/* Allocate multicast array memory. */
615 	sc->mta = kmalloc(ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
616 	    M_DEVBUF, M_WAITOK);
617 
618 	/* Some adapter-specific advanced features */
619 	if (sc->hw.mac.type >= e1000_i350) {
620 #ifdef notyet
621 		igb_set_sysctl_value(adapter, "dma_coalesce",
622 		    "configure dma coalesce",
623 		    &adapter->dma_coalesce, igb_dma_coalesce);
624 		igb_set_sysctl_value(adapter, "eee_disabled",
625 		    "enable Energy Efficient Ethernet",
626 		    &adapter->hw.dev_spec._82575.eee_disable,
627 		    igb_eee_disabled);
628 #else
629 		sc->dma_coalesce = igb_dma_coalesce;
630 		sc->hw.dev_spec._82575.eee_disable = igb_eee_disabled;
631 #endif
632 		if (sc->hw.phy.media_type == e1000_media_type_copper) {
633                         if (sc->hw.mac.type == e1000_i354)
634 				e1000_set_eee_i354(&sc->hw, TRUE, TRUE);
635 			else
636 				e1000_set_eee_i350(&sc->hw, TRUE, TRUE);
637 		}
638 	}
639 
640 	/*
641 	 * Start from a known state, this is important in reading the nvm and
642 	 * mac from that.
643 	 */
644 	e1000_reset_hw(&sc->hw);
645 
646 	/* Make sure we have a good EEPROM before we read from it */
647 	if (sc->hw.mac.type != e1000_i210 && sc->hw.mac.type != e1000_i211 &&
648 	    e1000_validate_nvm_checksum(&sc->hw) < 0) {
649 		/*
650 		 * Some PCI-E parts fail the first check due to
651 		 * the link being in sleep state, call it again,
652 		 * if it fails a second time its a real issue.
653 		 */
654 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
655 			device_printf(dev,
656 			    "The EEPROM Checksum Is Not Valid\n");
657 			error = EIO;
658 			goto failed;
659 		}
660 	}
661 
662 	/* Copy the permanent MAC address out of the EEPROM */
663 	if (e1000_read_mac_addr(&sc->hw) < 0) {
664 		device_printf(dev, "EEPROM read error while reading MAC"
665 		    " address\n");
666 		error = EIO;
667 		goto failed;
668 	}
669 	if (!igb_is_valid_ether_addr(sc->hw.mac.addr)) {
670 		device_printf(dev, "Invalid MAC address\n");
671 		error = EIO;
672 		goto failed;
673 	}
674 
675 	/* Setup OS specific network interface */
676 	igb_setup_ifp(sc);
677 
678 	/* Add sysctl tree, must after igb_setup_ifp() */
679 	igb_add_sysctl(sc);
680 
681 	/* Now get a good starting state */
682 	igb_reset(sc, FALSE);
683 
684 	/* Initialize statistics */
685 	igb_update_stats_counters(sc);
686 
687 	sc->hw.mac.get_link_status = 1;
688 	igb_update_link_status(sc);
689 
690 	/* Indicate SOL/IDER usage */
691 	if (e1000_check_reset_block(&sc->hw)) {
692 		device_printf(dev,
693 		    "PHY reset is blocked due to SOL/IDER session.\n");
694 	}
695 
696 	/* Determine if we have to control management hardware */
697 	if (e1000_enable_mng_pass_thru(&sc->hw))
698 		sc->flags |= IGB_FLAG_HAS_MGMT;
699 
700 	/*
701 	 * Setup Wake-on-Lan
702 	 */
703 	/* APME bit in EEPROM is mapped to WUC.APME */
704 	eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC) & E1000_WUC_APME;
705 	if (eeprom_data) {
706 		/* XXX E1000_WUFC_MC always be cleared from E1000_WUC. */
707 		sc->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
708 		device_printf(dev, "has WOL\n");
709 	}
710 
711 #ifdef notyet
712 	/* Register for VLAN events */
713 	adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
714 	     igb_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
715 	adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
716 	     igb_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
717 #endif
718 
719 #ifdef notyet
720 	igb_add_hw_stats(adapter);
721 #endif
722 
723 	/*
724 	 * Disable interrupt to prevent spurious interrupts (line based
725 	 * interrupt, MSI or even MSI-X), which had been observed on
726 	 * several types of LOMs, from being handled.
727 	 */
728 	igb_disable_intr(sc);
729 
730 	error = igb_setup_intr(sc);
731 	if (error) {
732 		ether_ifdetach(&sc->arpcom.ac_if);
733 		goto failed;
734 	}
735 	return 0;
736 
737 failed:
738 	igb_detach(dev);
739 	return error;
740 }
741 
742 static int
743 igb_detach(device_t dev)
744 {
745 	struct igb_softc *sc = device_get_softc(dev);
746 
747 	if (device_is_attached(dev)) {
748 		struct ifnet *ifp = &sc->arpcom.ac_if;
749 
750 		ifnet_serialize_all(ifp);
751 
752 		igb_stop(sc);
753 
754 		e1000_phy_hw_reset(&sc->hw);
755 
756 		/* Give control back to firmware */
757 		igb_rel_mgmt(sc);
758 		igb_rel_hw_control(sc);
759 		igb_enable_wol(sc);
760 
761 		igb_teardown_intr(sc, sc->intr_cnt);
762 
763 		ifnet_deserialize_all(ifp);
764 
765 		ether_ifdetach(ifp);
766 	} else if (sc->mem_res != NULL) {
767 		igb_rel_hw_control(sc);
768 	}
769 
770 	ifmedia_removeall(&sc->media);
771 	bus_generic_detach(dev);
772 
773 	igb_free_intr(sc);
774 
775 	if (sc->msix_mem_res != NULL) {
776 		bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_mem_rid,
777 		    sc->msix_mem_res);
778 	}
779 	if (sc->mem_res != NULL) {
780 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid,
781 		    sc->mem_res);
782 	}
783 
784 	igb_free_rings(sc);
785 
786 	if (sc->mta != NULL)
787 		kfree(sc->mta, M_DEVBUF);
788 	if (sc->stats != NULL)
789 		kfree(sc->stats, M_DEVBUF);
790 	if (sc->serializes != NULL)
791 		kfree(sc->serializes, M_DEVBUF);
792 	if (sc->rx_rmap != NULL)
793 		if_ringmap_free(sc->rx_rmap);
794 	if (sc->rx_rmap_intr != NULL)
795 		if_ringmap_free(sc->rx_rmap_intr);
796 	if (sc->tx_rmap != NULL)
797 		if_ringmap_free(sc->tx_rmap);
798 	if (sc->tx_rmap_intr != NULL)
799 		if_ringmap_free(sc->tx_rmap_intr);
800 
801 	return 0;
802 }
803 
804 static int
805 igb_shutdown(device_t dev)
806 {
807 	return igb_suspend(dev);
808 }
809 
810 static int
811 igb_suspend(device_t dev)
812 {
813 	struct igb_softc *sc = device_get_softc(dev);
814 	struct ifnet *ifp = &sc->arpcom.ac_if;
815 
816 	ifnet_serialize_all(ifp);
817 
818 	igb_stop(sc);
819 
820 	igb_rel_mgmt(sc);
821 	igb_rel_hw_control(sc);
822 	igb_enable_wol(sc);
823 
824 	ifnet_deserialize_all(ifp);
825 
826 	return bus_generic_suspend(dev);
827 }
828 
829 static int
830 igb_resume(device_t dev)
831 {
832 	struct igb_softc *sc = device_get_softc(dev);
833 	struct ifnet *ifp = &sc->arpcom.ac_if;
834 	int i;
835 
836 	ifnet_serialize_all(ifp);
837 
838 	igb_init(sc);
839 	igb_get_mgmt(sc);
840 
841 	for (i = 0; i < sc->tx_ring_inuse; ++i)
842 		ifsq_devstart_sched(sc->tx_rings[i].ifsq);
843 
844 	ifnet_deserialize_all(ifp);
845 
846 	return bus_generic_resume(dev);
847 }
848 
849 static int
850 igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
851 {
852 	struct igb_softc *sc = ifp->if_softc;
853 	struct ifreq *ifr = (struct ifreq *)data;
854 	int max_frame_size, mask, reinit;
855 	int error = 0;
856 
857 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
858 
859 	switch (command) {
860 	case SIOCSIFMTU:
861 		max_frame_size = 9234;
862 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
863 		    ETHER_CRC_LEN) {
864 			error = EINVAL;
865 			break;
866 		}
867 
868 		ifp->if_mtu = ifr->ifr_mtu;
869 		sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
870 		    ETHER_CRC_LEN;
871 
872 		if (ifp->if_flags & IFF_RUNNING)
873 			igb_init(sc);
874 		break;
875 
876 	case SIOCSIFFLAGS:
877 		if (ifp->if_flags & IFF_UP) {
878 			if (ifp->if_flags & IFF_RUNNING) {
879 				if ((ifp->if_flags ^ sc->if_flags) &
880 				    (IFF_PROMISC | IFF_ALLMULTI)) {
881 					igb_disable_promisc(sc);
882 					igb_set_promisc(sc);
883 				}
884 			} else {
885 				igb_init(sc);
886 			}
887 		} else if (ifp->if_flags & IFF_RUNNING) {
888 			igb_stop(sc);
889 		}
890 		sc->if_flags = ifp->if_flags;
891 		break;
892 
893 	case SIOCADDMULTI:
894 	case SIOCDELMULTI:
895 		if (ifp->if_flags & IFF_RUNNING) {
896 			igb_disable_intr(sc);
897 			igb_set_multi(sc);
898 #ifdef IFPOLL_ENABLE
899 			if (!(ifp->if_flags & IFF_NPOLLING))
900 #endif
901 				igb_enable_intr(sc);
902 		}
903 		break;
904 
905 	case SIOCSIFMEDIA:
906 		/* Check SOL/IDER usage */
907 		if (e1000_check_reset_block(&sc->hw)) {
908 			if_printf(ifp, "Media change is "
909 			    "blocked due to SOL/IDER session.\n");
910 			break;
911 		}
912 		/* FALL THROUGH */
913 
914 	case SIOCGIFMEDIA:
915 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
916 		break;
917 
918 	case SIOCSIFCAP:
919 		reinit = 0;
920 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
921 		if (mask & IFCAP_RXCSUM) {
922 			ifp->if_capenable ^= IFCAP_RXCSUM;
923 			reinit = 1;
924 		}
925 		if (mask & IFCAP_VLAN_HWTAGGING) {
926 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
927 			reinit = 1;
928 		}
929 		if (mask & IFCAP_TXCSUM) {
930 			ifp->if_capenable ^= IFCAP_TXCSUM;
931 			if (ifp->if_capenable & IFCAP_TXCSUM)
932 				ifp->if_hwassist |= IGB_CSUM_FEATURES;
933 			else
934 				ifp->if_hwassist &= ~IGB_CSUM_FEATURES;
935 		}
936 		if (mask & IFCAP_TSO) {
937 			ifp->if_capenable ^= IFCAP_TSO;
938 			if (ifp->if_capenable & IFCAP_TSO)
939 				ifp->if_hwassist |= CSUM_TSO;
940 			else
941 				ifp->if_hwassist &= ~CSUM_TSO;
942 		}
943 		if (mask & IFCAP_RSS)
944 			ifp->if_capenable ^= IFCAP_RSS;
945 		if (reinit && (ifp->if_flags & IFF_RUNNING))
946 			igb_init(sc);
947 		break;
948 
949 	default:
950 		error = ether_ioctl(ifp, command, data);
951 		break;
952 	}
953 	return error;
954 }
955 
956 static void
957 igb_init(void *xsc)
958 {
959 	struct igb_softc *sc = xsc;
960 	struct ifnet *ifp = &sc->arpcom.ac_if;
961 	boolean_t polling;
962 	int i;
963 
964 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
965 
966 	igb_stop(sc);
967 
968 	/* Get the latest mac address, User can use a LAA */
969 	bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
970 
971 	/* Put the address into the Receive Address Array */
972 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
973 
974 	igb_reset(sc, FALSE);
975 	igb_update_link_status(sc);
976 
977 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
978 
979 	/* Clear bad data from Rx FIFOs */
980 	e1000_rx_fifo_flush_82575(&sc->hw);
981 
982 	/* Configure for OS presence */
983 	igb_get_mgmt(sc);
984 
985 	polling = FALSE;
986 #ifdef IFPOLL_ENABLE
987 	if (ifp->if_flags & IFF_NPOLLING)
988 		polling = TRUE;
989 #endif
990 
991 	/* Configured used RX/TX rings */
992 	igb_set_ring_inuse(sc, polling);
993 	ifq_set_subq_divisor(&ifp->if_snd, sc->tx_ring_inuse);
994 
995 	/* Initialize interrupt */
996 	igb_init_intr(sc);
997 
998 	/* Prepare transmit descriptors and buffers */
999 	for (i = 0; i < sc->tx_ring_inuse; ++i)
1000 		igb_init_tx_ring(&sc->tx_rings[i]);
1001 	igb_init_tx_unit(sc);
1002 
1003 	/* Setup Multicast table */
1004 	igb_set_multi(sc);
1005 
1006 #if 0
1007 	/*
1008 	 * Figure out the desired mbuf pool
1009 	 * for doing jumbo/packetsplit
1010 	 */
1011 	if (adapter->max_frame_size <= 2048)
1012 		adapter->rx_mbuf_sz = MCLBYTES;
1013 	else if (adapter->max_frame_size <= 4096)
1014 		adapter->rx_mbuf_sz = MJUMPAGESIZE;
1015 	else
1016 		adapter->rx_mbuf_sz = MJUM9BYTES;
1017 #endif
1018 
1019 	/* Prepare receive descriptors and buffers */
1020 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
1021 		int error;
1022 
1023 		error = igb_init_rx_ring(&sc->rx_rings[i]);
1024 		if (error) {
1025 			if_printf(ifp, "Could not setup receive structures\n");
1026 			igb_stop(sc);
1027 			return;
1028 		}
1029 	}
1030 	igb_init_rx_unit(sc, polling);
1031 
1032 	/* Enable VLAN support */
1033 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1034 		igb_set_vlan(sc);
1035 
1036 	/* Don't lose promiscuous settings */
1037 	igb_set_promisc(sc);
1038 
1039 	/* Clear counters */
1040 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1041 
1042 	/* This clears any pending interrupts */
1043 	E1000_READ_REG(&sc->hw, E1000_ICR);
1044 
1045 	/*
1046 	 * Only enable interrupts if we are not polling, make sure
1047 	 * they are off otherwise.
1048 	 */
1049 	if (polling) {
1050 		igb_disable_intr(sc);
1051 	} else {
1052 		igb_enable_intr(sc);
1053 		E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
1054 	}
1055 
1056 	/* Set Energy Efficient Ethernet */
1057 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
1058 		if (sc->hw.mac.type == e1000_i354)
1059 			e1000_set_eee_i354(&sc->hw, TRUE, TRUE);
1060 		else
1061 			e1000_set_eee_i350(&sc->hw, TRUE, TRUE);
1062 	}
1063 
1064 	ifp->if_flags |= IFF_RUNNING;
1065 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
1066 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1067 
1068 		ifsq_clr_oactive(txr->ifsq);
1069 		ifsq_watchdog_start(&txr->tx_watchdog);
1070 
1071 		if (!polling) {
1072 			callout_reset_bycpu(&txr->tx_gc_timer, 1,
1073 			    igb_txgc_timer, txr, txr->tx_intr_cpuid);
1074                 }
1075 	}
1076 
1077 	igb_set_timer_cpuid(sc, polling);
1078 	callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
1079 }
1080 
1081 static void
1082 igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1083 {
1084 	struct igb_softc *sc = ifp->if_softc;
1085 
1086 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1087 
1088 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1089 		sc->hw.mac.get_link_status = 1;
1090 	igb_update_link_status(sc);
1091 
1092 	ifmr->ifm_status = IFM_AVALID;
1093 	ifmr->ifm_active = IFM_ETHER;
1094 
1095 	if (!sc->link_active) {
1096 		if (sc->hw.mac.autoneg)
1097 			ifmr->ifm_active |= IFM_NONE;
1098 		else
1099 			ifmr->ifm_active |= sc->media.ifm_media;
1100 		return;
1101 	}
1102 
1103 	ifmr->ifm_status |= IFM_ACTIVE;
1104 	if (sc->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1105 		ifmr->ifm_active |= sc->ifm_flowctrl;
1106 
1107 	switch (sc->link_speed) {
1108 	case 10:
1109 		ifmr->ifm_active |= IFM_10_T;
1110 		break;
1111 
1112 	case 100:
1113 		/*
1114 		 * Support for 100Mb SFP - these are Fiber
1115 		 * but the media type appears as serdes
1116 		 */
1117 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1118 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
1119 			ifmr->ifm_active |= IFM_100_FX;
1120 		else
1121 			ifmr->ifm_active |= IFM_100_TX;
1122 		break;
1123 
1124 	case 1000:
1125 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1126 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
1127 			ifmr->ifm_active |= IFM_1000_SX;
1128 		else
1129 			ifmr->ifm_active |= IFM_1000_T;
1130 		break;
1131 
1132 	case 2500:
1133 		ifmr->ifm_active |= IFM_2500_SX;
1134 		break;
1135 	}
1136 
1137 	if (sc->link_duplex == FULL_DUPLEX)
1138 		ifmr->ifm_active |= IFM_FDX;
1139 	else
1140 		ifmr->ifm_active |= IFM_HDX;
1141 
1142 	if (sc->link_duplex == FULL_DUPLEX)
1143 		ifmr->ifm_active |= e1000_fc2ifmedia(sc->hw.fc.current_mode);
1144 }
1145 
1146 static int
1147 igb_media_change(struct ifnet *ifp)
1148 {
1149 	struct igb_softc *sc = ifp->if_softc;
1150 	struct ifmedia *ifm = &sc->media;
1151 
1152 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1153 
1154 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1155 		return EINVAL;
1156 
1157 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1158 	case IFM_AUTO:
1159 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1160 		sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1161 		break;
1162 
1163 	case IFM_1000_SX:
1164 	case IFM_1000_T:
1165 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1166 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1167 		break;
1168 
1169 	case IFM_100_TX:
1170 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1171 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1172 		} else {
1173 			if (IFM_OPTIONS(ifm->ifm_media) &
1174 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1175 				if (bootverbose) {
1176 					if_printf(ifp, "Flow control is not "
1177 					    "allowed for half-duplex\n");
1178 				}
1179 				return EINVAL;
1180 			}
1181 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1182 		}
1183 		sc->hw.mac.autoneg = FALSE;
1184 		sc->hw.phy.autoneg_advertised = 0;
1185 		break;
1186 
1187 	case IFM_10_T:
1188 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1189 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1190 		} else {
1191 			if (IFM_OPTIONS(ifm->ifm_media) &
1192 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1193 				if (bootverbose) {
1194 					if_printf(ifp, "Flow control is not "
1195 					    "allowed for half-duplex\n");
1196 				}
1197 				return EINVAL;
1198 			}
1199 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1200 		}
1201 		sc->hw.mac.autoneg = FALSE;
1202 		sc->hw.phy.autoneg_advertised = 0;
1203 		break;
1204 
1205 	default:
1206 		if (bootverbose) {
1207 			if_printf(ifp, "Unsupported media type %d\n",
1208 			    IFM_SUBTYPE(ifm->ifm_media));
1209 		}
1210 		return EINVAL;
1211 	}
1212 	sc->ifm_flowctrl = ifm->ifm_media & IFM_ETH_FCMASK;
1213 
1214 	if (ifp->if_flags & IFF_RUNNING)
1215 		igb_init(sc);
1216 
1217 	return 0;
1218 }
1219 
1220 static void
1221 igb_set_promisc(struct igb_softc *sc)
1222 {
1223 	struct ifnet *ifp = &sc->arpcom.ac_if;
1224 	struct e1000_hw *hw = &sc->hw;
1225 	uint32_t reg;
1226 
1227 	if (sc->vf_ifp) {
1228 		e1000_promisc_set_vf(hw, e1000_promisc_enabled);
1229 		return;
1230 	}
1231 
1232 	reg = E1000_READ_REG(hw, E1000_RCTL);
1233 	if (ifp->if_flags & IFF_PROMISC) {
1234 		reg |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1235 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
1236 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1237 		reg |= E1000_RCTL_MPE;
1238 		reg &= ~E1000_RCTL_UPE;
1239 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
1240 	}
1241 }
1242 
1243 static void
1244 igb_disable_promisc(struct igb_softc *sc)
1245 {
1246 	struct e1000_hw *hw = &sc->hw;
1247 	struct ifnet *ifp = &sc->arpcom.ac_if;
1248 	uint32_t reg;
1249 	int mcnt = 0;
1250 
1251 	if (sc->vf_ifp) {
1252 		e1000_promisc_set_vf(hw, e1000_promisc_disabled);
1253 		return;
1254 	}
1255 	reg = E1000_READ_REG(hw, E1000_RCTL);
1256 	reg &= ~E1000_RCTL_UPE;
1257 	if (ifp->if_flags & IFF_ALLMULTI) {
1258 		mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1259 	} else {
1260 		struct  ifmultiaddr *ifma;
1261 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1262 			if (ifma->ifma_addr->sa_family != AF_LINK)
1263 				continue;
1264 			if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1265 				break;
1266 			mcnt++;
1267 		}
1268 	}
1269 	/* Don't disable if in MAX groups */
1270 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1271 		reg &= ~E1000_RCTL_MPE;
1272 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
1273 }
1274 
1275 static void
1276 igb_set_multi(struct igb_softc *sc)
1277 {
1278 	struct ifnet *ifp = &sc->arpcom.ac_if;
1279 	struct ifmultiaddr *ifma;
1280 	uint32_t reg_rctl = 0;
1281 	uint8_t *mta;
1282 	int mcnt = 0;
1283 
1284 	mta = sc->mta;
1285 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1286 
1287 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1288 		if (ifma->ifma_addr->sa_family != AF_LINK)
1289 			continue;
1290 
1291 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1292 			break;
1293 
1294 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1295 		    &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
1296 		mcnt++;
1297 	}
1298 
1299 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1300 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1301 		reg_rctl |= E1000_RCTL_MPE;
1302 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1303 	} else {
1304 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1305 	}
1306 }
1307 
1308 static void
1309 igb_timer(void *xsc)
1310 {
1311 	struct igb_softc *sc = xsc;
1312 
1313 	lwkt_serialize_enter(&sc->main_serialize);
1314 
1315 	igb_update_link_status(sc);
1316 	igb_update_stats_counters(sc);
1317 
1318 	callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
1319 
1320 	lwkt_serialize_exit(&sc->main_serialize);
1321 }
1322 
1323 static void
1324 igb_update_link_status(struct igb_softc *sc)
1325 {
1326 	struct ifnet *ifp = &sc->arpcom.ac_if;
1327 	struct e1000_hw *hw = &sc->hw;
1328 	uint32_t link_check, thstat, ctrl;
1329 
1330 	link_check = thstat = ctrl = 0;
1331 
1332 	/* Get the cached link value or read for real */
1333 	switch (hw->phy.media_type) {
1334 	case e1000_media_type_copper:
1335 		if (hw->mac.get_link_status) {
1336 			/* Do the work to read phy */
1337 			e1000_check_for_link(hw);
1338 			link_check = !hw->mac.get_link_status;
1339 		} else {
1340 			link_check = TRUE;
1341 		}
1342 		break;
1343 
1344 	case e1000_media_type_fiber:
1345 		e1000_check_for_link(hw);
1346 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1347 		break;
1348 
1349 	case e1000_media_type_internal_serdes:
1350 		e1000_check_for_link(hw);
1351 		link_check = hw->mac.serdes_has_link;
1352 		break;
1353 
1354 	/* VF device is type_unknown */
1355 	case e1000_media_type_unknown:
1356 		e1000_check_for_link(hw);
1357 		link_check = !hw->mac.get_link_status;
1358 		/* Fall thru */
1359 	default:
1360 		break;
1361 	}
1362 
1363 	/* Check for thermal downshift or shutdown */
1364 	if (hw->mac.type == e1000_i350) {
1365 		thstat = E1000_READ_REG(hw, E1000_THSTAT);
1366 		ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1367 	}
1368 
1369 	/* Now we check if a transition has happened */
1370 	if (link_check && sc->link_active == 0) {
1371 		e1000_get_speed_and_duplex(hw,
1372 		    &sc->link_speed, &sc->link_duplex);
1373 		if (bootverbose) {
1374 			char flowctrl[IFM_ETH_FC_STRLEN];
1375 
1376 			/* Get the flow control for display */
1377 			e1000_fc2str(hw->fc.current_mode, flowctrl,
1378 			    sizeof(flowctrl));
1379 
1380 			if_printf(ifp, "Link is up %d Mbps %s, "
1381 			    "Flow control: %s\n",
1382 			    sc->link_speed,
1383 			    sc->link_duplex == FULL_DUPLEX ?
1384 			    "Full Duplex" : "Half Duplex",
1385 			    flowctrl);
1386 		}
1387 		if (sc->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1388 			e1000_force_flowctrl(hw, sc->ifm_flowctrl);
1389 		sc->link_active = 1;
1390 
1391 		ifp->if_baudrate = sc->link_speed * 1000000;
1392 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1393 		    (thstat & E1000_THSTAT_LINK_THROTTLE))
1394 			if_printf(ifp, "Link: thermal downshift\n");
1395 		/* Delay Link Up for Phy update */
1396 		if ((hw->mac.type == e1000_i210 ||
1397 		     hw->mac.type == e1000_i211) &&
1398 		    hw->phy.id == I210_I_PHY_ID)
1399 			msec_delay(IGB_I210_LINK_DELAY);
1400 		/*
1401 		 * Reset if the media type changed.
1402 		 * Support AutoMediaDetect for Marvell M88 PHY in i354.
1403 		 */
1404 		if (hw->dev_spec._82575.media_changed) {
1405 			hw->dev_spec._82575.media_changed = FALSE;
1406 			igb_reset(sc, TRUE);
1407 		}
1408 		/* This can sleep */
1409 		ifp->if_link_state = LINK_STATE_UP;
1410 		if_link_state_change(ifp);
1411 	} else if (!link_check && sc->link_active == 1) {
1412 		ifp->if_baudrate = sc->link_speed = 0;
1413 		sc->link_duplex = 0;
1414 		if (bootverbose)
1415 			if_printf(ifp, "Link is Down\n");
1416 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1417 		    (thstat & E1000_THSTAT_PWR_DOWN))
1418 			if_printf(ifp, "Link: thermal shutdown\n");
1419 		sc->link_active = 0;
1420 		/* This can sleep */
1421 		ifp->if_link_state = LINK_STATE_DOWN;
1422 		if_link_state_change(ifp);
1423 	}
1424 }
1425 
1426 static void
1427 igb_stop(struct igb_softc *sc)
1428 {
1429 	struct ifnet *ifp = &sc->arpcom.ac_if;
1430 	int i;
1431 
1432 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1433 
1434 	igb_disable_intr(sc);
1435 
1436 	callout_stop(&sc->timer);
1437 
1438 	ifp->if_flags &= ~IFF_RUNNING;
1439 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1440 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1441 
1442 		ifsq_clr_oactive(txr->ifsq);
1443 		ifsq_watchdog_stop(&txr->tx_watchdog);
1444 		txr->tx_flags &= ~IGB_TXFLAG_ENABLED;
1445 
1446 		txr->tx_running = 0;
1447 		callout_stop(&txr->tx_gc_timer);
1448 	}
1449 
1450 	e1000_reset_hw(&sc->hw);
1451 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1452 
1453 	e1000_led_off(&sc->hw);
1454 	e1000_cleanup_led(&sc->hw);
1455 
1456 	for (i = 0; i < sc->tx_ring_cnt; ++i)
1457 		igb_free_tx_ring(&sc->tx_rings[i]);
1458 	for (i = 0; i < sc->rx_ring_cnt; ++i)
1459 		igb_free_rx_ring(&sc->rx_rings[i]);
1460 }
1461 
1462 static void
1463 igb_reset(struct igb_softc *sc, boolean_t media_reset)
1464 {
1465 	struct ifnet *ifp = &sc->arpcom.ac_if;
1466 	struct e1000_hw *hw = &sc->hw;
1467 	struct e1000_fc_info *fc = &hw->fc;
1468 	uint32_t pba = 0;
1469 	uint16_t hwm;
1470 
1471 	/* Let the firmware know the OS is in control */
1472 	igb_get_hw_control(sc);
1473 
1474 	/*
1475 	 * Packet Buffer Allocation (PBA)
1476 	 * Writing PBA sets the receive portion of the buffer
1477 	 * the remainder is used for the transmit buffer.
1478 	 */
1479 	switch (hw->mac.type) {
1480 	case e1000_82575:
1481 		pba = E1000_PBA_32K;
1482 		break;
1483 
1484 	case e1000_82576:
1485 	case e1000_vfadapt:
1486 		pba = E1000_READ_REG(hw, E1000_RXPBS);
1487 		pba &= E1000_RXPBS_SIZE_MASK_82576;
1488 		break;
1489 
1490 	case e1000_82580:
1491 	case e1000_i350:
1492 	case e1000_i354:
1493 	case e1000_vfadapt_i350:
1494 		pba = E1000_READ_REG(hw, E1000_RXPBS);
1495 		pba = e1000_rxpbs_adjust_82580(pba);
1496 		break;
1497 
1498 	case e1000_i210:
1499 	case e1000_i211:
1500 		pba = E1000_PBA_34K;
1501 		break;
1502 
1503 	default:
1504 		break;
1505 	}
1506 
1507 	/* Special needs in case of Jumbo frames */
1508 	if (hw->mac.type == e1000_82575 && ifp->if_mtu > ETHERMTU) {
1509 		uint32_t tx_space, min_tx, min_rx;
1510 
1511 		pba = E1000_READ_REG(hw, E1000_PBA);
1512 		tx_space = pba >> 16;
1513 		pba &= 0xffff;
1514 
1515 		min_tx = (sc->max_frame_size +
1516 		    sizeof(struct e1000_tx_desc) - ETHER_CRC_LEN) * 2;
1517 		min_tx = roundup2(min_tx, 1024);
1518 		min_tx >>= 10;
1519 		min_rx = sc->max_frame_size;
1520 		min_rx = roundup2(min_rx, 1024);
1521 		min_rx >>= 10;
1522 		if (tx_space < min_tx && (min_tx - tx_space) < pba) {
1523 			pba = pba - (min_tx - tx_space);
1524 			/*
1525 			 * if short on rx space, rx wins
1526 			 * and must trump tx adjustment
1527 			 */
1528 			if (pba < min_rx)
1529 				pba = min_rx;
1530 		}
1531 		E1000_WRITE_REG(hw, E1000_PBA, pba);
1532 	}
1533 
1534 	/*
1535 	 * These parameters control the automatic generation (Tx) and
1536 	 * response (Rx) to Ethernet PAUSE frames.
1537 	 * - High water mark should allow for at least two frames to be
1538 	 *   received after sending an XOFF.
1539 	 * - Low water mark works best when it is very near the high water mark.
1540 	 *   This allows the receiver to restart by sending XON when it has
1541 	 *   drained a bit.
1542 	 */
1543 	hwm = min(((pba << 10) * 9 / 10),
1544 	    ((pba << 10) - 2 * sc->max_frame_size));
1545 
1546 	if (hw->mac.type < e1000_82576) {
1547 		fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1548 		fc->low_water = fc->high_water - 8;
1549 	} else {
1550 		fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1551 		fc->low_water = fc->high_water - 16;
1552 	}
1553 	fc->pause_time = IGB_FC_PAUSE_TIME;
1554 	fc->send_xon = TRUE;
1555 	fc->requested_mode = e1000_ifmedia2fc(sc->ifm_flowctrl);
1556 
1557 	/* Issue a global reset */
1558 	e1000_reset_hw(hw);
1559 	E1000_WRITE_REG(hw, E1000_WUC, 0);
1560 
1561 	/* Reset for AutoMediaDetect */
1562 	if (media_reset) {
1563 		e1000_setup_init_funcs(hw, TRUE);
1564 		e1000_get_bus_info(hw);
1565 	}
1566 
1567 	if (e1000_init_hw(hw) < 0)
1568 		if_printf(ifp, "Hardware Initialization Failed\n");
1569 
1570 	/* Setup DMA Coalescing */
1571 	igb_init_dmac(sc, pba);
1572 
1573 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1574 	e1000_get_phy_info(hw);
1575 	e1000_check_for_link(hw);
1576 }
1577 
1578 static void
1579 igb_setup_ifp(struct igb_softc *sc)
1580 {
1581 	struct ifnet *ifp = &sc->arpcom.ac_if;
1582 	int i;
1583 
1584 	ifp->if_softc = sc;
1585 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1586 	ifp->if_init = igb_init;
1587 	ifp->if_ioctl = igb_ioctl;
1588 	ifp->if_start = igb_start;
1589 	ifp->if_serialize = igb_serialize;
1590 	ifp->if_deserialize = igb_deserialize;
1591 	ifp->if_tryserialize = igb_tryserialize;
1592 #ifdef INVARIANTS
1593 	ifp->if_serialize_assert = igb_serialize_assert;
1594 #endif
1595 #ifdef IFPOLL_ENABLE
1596 	ifp->if_npoll = igb_npoll;
1597 #endif
1598 
1599 	ifp->if_nmbclusters = sc->rx_ring_cnt * sc->rx_rings[0].num_rx_desc;
1600 
1601 	ifq_set_maxlen(&ifp->if_snd, sc->tx_rings[0].num_tx_desc - 1);
1602 	ifq_set_ready(&ifp->if_snd);
1603 	ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt);
1604 
1605 	ifp->if_mapsubq = ifq_mapsubq_modulo;
1606 	ifq_set_subq_divisor(&ifp->if_snd, 1);
1607 
1608 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1609 
1610 	ifp->if_capabilities =
1611 	    IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_TSO;
1612 	if (IGB_ENABLE_HWRSS(sc))
1613 		ifp->if_capabilities |= IFCAP_RSS;
1614 	ifp->if_capenable = ifp->if_capabilities;
1615 	ifp->if_hwassist = IGB_CSUM_FEATURES | CSUM_TSO;
1616 
1617 	/*
1618 	 * Tell the upper layer(s) we support long frames
1619 	 */
1620 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1621 
1622 	/* Setup TX rings and subqueues */
1623 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1624 		struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
1625 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1626 
1627 		ifsq_set_cpuid(ifsq, txr->tx_intr_cpuid);
1628 		ifsq_set_priv(ifsq, txr);
1629 		ifsq_set_hw_serialize(ifsq, &txr->tx_serialize);
1630 		txr->ifsq = ifsq;
1631 
1632 		ifsq_watchdog_init(&txr->tx_watchdog, ifsq, igb_watchdog, 0);
1633 	}
1634 
1635 	/*
1636 	 * Specify the media types supported by this adapter and register
1637 	 * callbacks to update media and link information
1638 	 */
1639 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1640 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1641 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1642 		    0, NULL);
1643 	} else {
1644 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1645 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1646 		    0, NULL);
1647 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1648 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1649 		    0, NULL);
1650 		if (sc->hw.phy.type != e1000_phy_ife) {
1651 			ifmedia_add(&sc->media,
1652 			    IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1653 		}
1654 	}
1655 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1656 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO | sc->ifm_flowctrl);
1657 }
1658 
1659 static void
1660 igb_add_sysctl(struct igb_softc *sc)
1661 {
1662 	struct sysctl_ctx_list *ctx;
1663 	struct sysctl_oid *tree;
1664 	char node[32];
1665 	int i;
1666 
1667 	ctx = device_get_sysctl_ctx(sc->dev);
1668 	tree = device_get_sysctl_tree(sc->dev);
1669 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1670 	    OID_AUTO, "rxr", CTLFLAG_RD, &sc->rx_ring_cnt, 0, "# of RX rings");
1671 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1672 	    OID_AUTO, "rxr_inuse", CTLFLAG_RD, &sc->rx_ring_inuse, 0,
1673 	    "# of RX rings used");
1674 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1675 	    OID_AUTO, "txr", CTLFLAG_RD, &sc->tx_ring_cnt, 0, "# of TX rings");
1676 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1677 	    OID_AUTO, "txr_inuse", CTLFLAG_RD, &sc->tx_ring_inuse, 0,
1678 	    "# of TX rings used");
1679 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1680 	    OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_rings[0].num_rx_desc, 0,
1681 	    "# of RX descs");
1682 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1683 	    OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_rings[0].num_tx_desc, 0,
1684 	    "# of TX descs");
1685 
1686 #define IGB_ADD_INTR_RATE_SYSCTL(sc, use, name) \
1687 do { \
1688 	igb_add_intr_rate_sysctl(sc, IGB_INTR_USE_##use, #name "_intr_rate", \
1689 	    #use " interrupt rate"); \
1690 } while (0)
1691 
1692 	IGB_ADD_INTR_RATE_SYSCTL(sc, RXTX, rxtx);
1693 	IGB_ADD_INTR_RATE_SYSCTL(sc, RX, rx);
1694 	IGB_ADD_INTR_RATE_SYSCTL(sc, TX, tx);
1695 	IGB_ADD_INTR_RATE_SYSCTL(sc, STATUS, sts);
1696 
1697 #undef IGB_ADD_INTR_RATE_SYSCTL
1698 
1699 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1700 	    OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1701 	    sc, 0, igb_sysctl_tx_intr_nsegs, "I",
1702 	    "# of segments per TX interrupt");
1703 
1704 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1705 	    OID_AUTO, "tx_wreg_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1706 	    sc, 0, igb_sysctl_tx_wreg_nsegs, "I",
1707 	    "# of segments sent before write to hardware register");
1708 
1709 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1710 	    OID_AUTO, "rx_wreg_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1711 	    sc, 0, igb_sysctl_rx_wreg_nsegs, "I",
1712 	    "# of segments received before write to hardware register");
1713 
1714 	if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
1715 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1716 		    OID_AUTO, "tx_msix_cpumap", CTLTYPE_OPAQUE | CTLFLAG_RD,
1717 		    sc->tx_rmap_intr, 0, if_ringmap_cpumap_sysctl, "I",
1718 		    "TX MSI-X CPU map");
1719 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1720 		    OID_AUTO, "rx_msix_cpumap", CTLTYPE_OPAQUE | CTLFLAG_RD,
1721 		    sc->rx_rmap_intr, 0, if_ringmap_cpumap_sysctl, "I",
1722 		    "RX MSI-X CPU map");
1723 	}
1724 #ifdef IFPOLL_ENABLE
1725 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1726 	    OID_AUTO, "tx_poll_cpumap", CTLTYPE_OPAQUE | CTLFLAG_RD,
1727 	    sc->tx_rmap, 0, if_ringmap_cpumap_sysctl, "I",
1728 	    "TX polling CPU map");
1729 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1730 	    OID_AUTO, "rx_poll_cpumap", CTLTYPE_OPAQUE | CTLFLAG_RD,
1731 	    sc->rx_rmap, 0, if_ringmap_cpumap_sysctl, "I",
1732 	    "RX polling CPU map");
1733 #endif
1734 
1735 #ifdef IGB_RSS_DEBUG
1736 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1737 	    OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug, 0,
1738 	    "RSS debug level");
1739 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1740 		ksnprintf(node, sizeof(node), "rx%d_pkt", i);
1741 		SYSCTL_ADD_ULONG(ctx,
1742 		    SYSCTL_CHILDREN(tree), OID_AUTO, node,
1743 		    CTLFLAG_RW, &sc->rx_rings[i].rx_packets, "RXed packets");
1744 	}
1745 #endif
1746 	for  (i = 0; i < sc->tx_ring_cnt; ++i) {
1747 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1748 
1749 #ifdef IGB_TSS_DEBUG
1750 		ksnprintf(node, sizeof(node), "tx%d_pkt", i);
1751 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, node,
1752 		    CTLFLAG_RW, &txr->tx_packets, "TXed packets");
1753 #endif
1754 		ksnprintf(node, sizeof(node), "tx%d_nmbuf", i);
1755 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, node,
1756 		    CTLFLAG_RD, &txr->tx_nmbuf, 0, "# of pending TX mbufs");
1757 
1758 		ksnprintf(node, sizeof(node), "tx%d_gc", i);
1759 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, node,
1760 		    CTLFLAG_RW, &txr->tx_gc, "# of TX desc GC");
1761 	}
1762 
1763 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1764 	    OID_AUTO, "dumpreg", CTLTYPE_INT | CTLFLAG_RW,
1765 	    sc, 0, igb_sysctl_reg_dump, "I", "dump registers");
1766 }
1767 
1768 static int
1769 igb_alloc_rings(struct igb_softc *sc)
1770 {
1771 	int error, i;
1772 
1773 	/*
1774 	 * Create top level busdma tag
1775 	 */
1776 	error = bus_dma_tag_create(NULL, 1, 0,
1777 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1778 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1779 	    &sc->parent_tag);
1780 	if (error) {
1781 		device_printf(sc->dev, "could not create top level DMA tag\n");
1782 		return error;
1783 	}
1784 
1785 	/*
1786 	 * Allocate TX descriptor rings and buffers
1787 	 */
1788 	sc->tx_rings = kmalloc(sizeof(struct igb_tx_ring) * sc->tx_ring_cnt,
1789 			       M_DEVBUF,
1790 			       M_WAITOK | M_ZERO | M_CACHEALIGN);
1791 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1792 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1793 
1794 		/* Set up some basics */
1795 		txr->sc = sc;
1796 		txr->me = i;
1797 		txr->tx_intr_cpuid = -1;
1798 		lwkt_serialize_init(&txr->tx_serialize);
1799 		callout_init_mp(&txr->tx_gc_timer);
1800 
1801 		error = igb_create_tx_ring(txr);
1802 		if (error)
1803 			return error;
1804 	}
1805 
1806 	/*
1807 	 * Allocate RX descriptor rings and buffers
1808 	 */
1809 	sc->rx_rings = kmalloc(sizeof(struct igb_rx_ring) * sc->rx_ring_cnt,
1810 			       M_DEVBUF,
1811 			       M_WAITOK | M_ZERO | M_CACHEALIGN);
1812 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1813 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
1814 
1815 		/* Set up some basics */
1816 		rxr->sc = sc;
1817 		rxr->me = i;
1818 		lwkt_serialize_init(&rxr->rx_serialize);
1819 
1820 		error = igb_create_rx_ring(rxr);
1821 		if (error)
1822 			return error;
1823 	}
1824 
1825 	return 0;
1826 }
1827 
1828 static void
1829 igb_free_rings(struct igb_softc *sc)
1830 {
1831 	int i;
1832 
1833 	if (sc->tx_rings != NULL) {
1834 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
1835 			struct igb_tx_ring *txr = &sc->tx_rings[i];
1836 
1837 			igb_destroy_tx_ring(txr, txr->num_tx_desc);
1838 		}
1839 		kfree(sc->tx_rings, M_DEVBUF);
1840 	}
1841 
1842 	if (sc->rx_rings != NULL) {
1843 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
1844 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
1845 
1846 			igb_destroy_rx_ring(rxr, rxr->num_rx_desc);
1847 		}
1848 		kfree(sc->rx_rings, M_DEVBUF);
1849 	}
1850 }
1851 
1852 static int
1853 igb_create_tx_ring(struct igb_tx_ring *txr)
1854 {
1855 	int tsize, error, i, ntxd;
1856 
1857 	/*
1858 	 * Validate number of transmit descriptors. It must not exceed
1859 	 * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
1860 	 */
1861 	ntxd = device_getenv_int(txr->sc->dev, "txd", igb_txd);
1862 	if ((ntxd * sizeof(struct e1000_tx_desc)) % IGB_DBA_ALIGN != 0 ||
1863 	    ntxd > IGB_MAX_TXD || ntxd < IGB_MIN_TXD) {
1864 		device_printf(txr->sc->dev,
1865 		    "Using %d TX descriptors instead of %d!\n",
1866 		    IGB_DEFAULT_TXD, ntxd);
1867 		txr->num_tx_desc = IGB_DEFAULT_TXD;
1868 	} else {
1869 		txr->num_tx_desc = ntxd;
1870 	}
1871 
1872 	/*
1873 	 * Allocate TX descriptor ring
1874 	 */
1875 	tsize = roundup2(txr->num_tx_desc * sizeof(union e1000_adv_tx_desc),
1876 	    IGB_DBA_ALIGN);
1877 	txr->txdma.dma_vaddr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1878 	    IGB_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1879 	    &txr->txdma.dma_tag, &txr->txdma.dma_map, &txr->txdma.dma_paddr);
1880 	if (txr->txdma.dma_vaddr == NULL) {
1881 		device_printf(txr->sc->dev,
1882 		    "Unable to allocate TX Descriptor memory\n");
1883 		return ENOMEM;
1884 	}
1885 	txr->tx_base = txr->txdma.dma_vaddr;
1886 	bzero(txr->tx_base, tsize);
1887 
1888 	tsize = __VM_CACHELINE_ALIGN(
1889 	    sizeof(struct igb_tx_buf) * txr->num_tx_desc);
1890 	txr->tx_buf = kmalloc(tsize, M_DEVBUF,
1891 			      M_WAITOK | M_ZERO | M_CACHEALIGN);
1892 
1893 	/*
1894 	 * Allocate TX head write-back buffer
1895 	 */
1896 	txr->tx_hdr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1897 	    __VM_CACHELINE_SIZE, __VM_CACHELINE_SIZE, BUS_DMA_WAITOK,
1898 	    &txr->tx_hdr_dtag, &txr->tx_hdr_dmap, &txr->tx_hdr_paddr);
1899 	if (txr->tx_hdr == NULL) {
1900 		device_printf(txr->sc->dev,
1901 		    "Unable to allocate TX head write-back buffer\n");
1902 		return ENOMEM;
1903 	}
1904 
1905 	/*
1906 	 * Create DMA tag for TX buffers
1907 	 */
1908 	error = bus_dma_tag_create(txr->sc->parent_tag,
1909 	    1, 0,		/* alignment, bounds */
1910 	    BUS_SPACE_MAXADDR,	/* lowaddr */
1911 	    BUS_SPACE_MAXADDR,	/* highaddr */
1912 	    IGB_TSO_SIZE,	/* maxsize */
1913 	    IGB_MAX_SCATTER,	/* nsegments */
1914 	    PAGE_SIZE,		/* maxsegsize */
1915 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1916 	    BUS_DMA_ONEBPAGE,	/* flags */
1917 	    &txr->tx_tag);
1918 	if (error) {
1919 		device_printf(txr->sc->dev, "Unable to allocate TX DMA tag\n");
1920 		kfree(txr->tx_buf, M_DEVBUF);
1921 		txr->tx_buf = NULL;
1922 		return error;
1923 	}
1924 
1925 	/*
1926 	 * Create DMA maps for TX buffers
1927 	 */
1928 	for (i = 0; i < txr->num_tx_desc; ++i) {
1929 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1930 
1931 		error = bus_dmamap_create(txr->tx_tag,
1932 		    BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE, &txbuf->map);
1933 		if (error) {
1934 			device_printf(txr->sc->dev,
1935 			    "Unable to create TX DMA map\n");
1936 			igb_destroy_tx_ring(txr, i);
1937 			return error;
1938 		}
1939 	}
1940 
1941 	if (txr->sc->hw.mac.type == e1000_82575)
1942 		txr->tx_flags |= IGB_TXFLAG_TSO_IPLEN0;
1943 
1944 	/*
1945 	 * Initialize various watermark
1946 	 */
1947 	if (txr->sc->hw.mac.type == e1000_82575) {
1948 		/*
1949 		 * There no ways to GC pending TX mbufs in 'header
1950 		 * write back' mode with reduced # of RS TX descs,
1951 		 * since TDH does _not_ move for 82575.
1952 		 */
1953 		txr->intr_nsegs = 1;
1954 	} else {
1955 		txr->intr_nsegs = txr->num_tx_desc / 16;
1956 	}
1957 	txr->wreg_nsegs = IGB_DEF_TXWREG_NSEGS;
1958 
1959 	return 0;
1960 }
1961 
1962 static void
1963 igb_free_tx_ring(struct igb_tx_ring *txr)
1964 {
1965 	int i;
1966 
1967 	for (i = 0; i < txr->num_tx_desc; ++i) {
1968 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1969 
1970 		if (txbuf->m_head != NULL)
1971 			igb_free_txbuf(txr, txbuf);
1972 	}
1973 }
1974 
1975 static void
1976 igb_destroy_tx_ring(struct igb_tx_ring *txr, int ndesc)
1977 {
1978 	int i;
1979 
1980 	if (txr->txdma.dma_vaddr != NULL) {
1981 		bus_dmamap_unload(txr->txdma.dma_tag, txr->txdma.dma_map);
1982 		bus_dmamem_free(txr->txdma.dma_tag, txr->txdma.dma_vaddr,
1983 		    txr->txdma.dma_map);
1984 		bus_dma_tag_destroy(txr->txdma.dma_tag);
1985 		txr->txdma.dma_vaddr = NULL;
1986 	}
1987 
1988 	if (txr->tx_hdr != NULL) {
1989 		bus_dmamap_unload(txr->tx_hdr_dtag, txr->tx_hdr_dmap);
1990 		bus_dmamem_free(txr->tx_hdr_dtag, txr->tx_hdr,
1991 		    txr->tx_hdr_dmap);
1992 		bus_dma_tag_destroy(txr->tx_hdr_dtag);
1993 		txr->tx_hdr = NULL;
1994 	}
1995 
1996 	if (txr->tx_buf == NULL)
1997 		return;
1998 
1999 	for (i = 0; i < ndesc; ++i) {
2000 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
2001 
2002 		KKASSERT(txbuf->m_head == NULL);
2003 		bus_dmamap_destroy(txr->tx_tag, txbuf->map);
2004 	}
2005 	bus_dma_tag_destroy(txr->tx_tag);
2006 
2007 	kfree(txr->tx_buf, M_DEVBUF);
2008 	txr->tx_buf = NULL;
2009 }
2010 
2011 static void
2012 igb_init_tx_ring(struct igb_tx_ring *txr)
2013 {
2014 	/* Clear the old descriptor contents */
2015 	bzero(txr->tx_base,
2016 	    sizeof(union e1000_adv_tx_desc) * txr->num_tx_desc);
2017 
2018 	/* Clear TX head write-back buffer */
2019 	*(txr->tx_hdr) = 0;
2020 
2021 	/* Reset indices */
2022 	txr->next_avail_desc = 0;
2023 	txr->next_to_clean = 0;
2024 	txr->tx_nsegs = 0;
2025 	txr->tx_running = 0;
2026 	txr->tx_nmbuf = 0;
2027 
2028 	/* Set number of descriptors available */
2029 	txr->tx_avail = txr->num_tx_desc;
2030 
2031 	/* Enable this TX ring */
2032 	txr->tx_flags |= IGB_TXFLAG_ENABLED;
2033 }
2034 
2035 static void
2036 igb_init_tx_unit(struct igb_softc *sc)
2037 {
2038 	struct e1000_hw *hw = &sc->hw;
2039 	uint32_t tctl;
2040 	int i;
2041 
2042 	/* Setup the Tx Descriptor Rings */
2043 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
2044 		struct igb_tx_ring *txr = &sc->tx_rings[i];
2045 		uint64_t bus_addr = txr->txdma.dma_paddr;
2046 		uint64_t hdr_paddr = txr->tx_hdr_paddr;
2047 		uint32_t txdctl = 0;
2048 		uint32_t dca_txctrl;
2049 
2050 		E1000_WRITE_REG(hw, E1000_TDLEN(i),
2051 		    txr->num_tx_desc * sizeof(struct e1000_tx_desc));
2052 		E1000_WRITE_REG(hw, E1000_TDBAH(i),
2053 		    (uint32_t)(bus_addr >> 32));
2054 		E1000_WRITE_REG(hw, E1000_TDBAL(i),
2055 		    (uint32_t)bus_addr);
2056 
2057 		/* Setup the HW Tx Head and Tail descriptor pointers */
2058 		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
2059 		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
2060 
2061 		dca_txctrl = E1000_READ_REG(hw, E1000_DCA_TXCTRL(i));
2062 		dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
2063 		E1000_WRITE_REG(hw, E1000_DCA_TXCTRL(i), dca_txctrl);
2064 
2065 		/*
2066 		 * Don't set WB_on_EITR:
2067 		 * - 82575 does not have it
2068 		 * - It almost has no effect on 82576, see:
2069 		 *   82576 specification update errata #26
2070 		 * - It causes unnecessary bus traffic
2071 		 */
2072 		E1000_WRITE_REG(hw, E1000_TDWBAH(i),
2073 		    (uint32_t)(hdr_paddr >> 32));
2074 		E1000_WRITE_REG(hw, E1000_TDWBAL(i),
2075 		    ((uint32_t)hdr_paddr) | E1000_TX_HEAD_WB_ENABLE);
2076 
2077 		/*
2078 		 * WTHRESH is ignored by the hardware, since header
2079 		 * write back mode is used.
2080 		 */
2081 		txdctl |= IGB_TX_PTHRESH;
2082 		txdctl |= IGB_TX_HTHRESH << 8;
2083 		txdctl |= IGB_TX_WTHRESH << 16;
2084 		txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2085 		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
2086 	}
2087 
2088 	if (sc->vf_ifp)
2089 		return;
2090 
2091 	e1000_config_collision_dist(hw);
2092 
2093 	/* Program the Transmit Control Register */
2094 	tctl = E1000_READ_REG(hw, E1000_TCTL);
2095 	tctl &= ~E1000_TCTL_CT;
2096 	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2097 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
2098 
2099 	/* This write will effectively turn on the transmit unit. */
2100 	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
2101 }
2102 
2103 static boolean_t
2104 igb_txcsum_ctx(struct igb_tx_ring *txr, struct mbuf *mp)
2105 {
2106 	struct e1000_adv_tx_context_desc *TXD;
2107 	uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
2108 	int ehdrlen, ctxd, ip_hlen = 0;
2109 	boolean_t offload = TRUE;
2110 
2111 	if ((mp->m_pkthdr.csum_flags & IGB_CSUM_FEATURES) == 0)
2112 		offload = FALSE;
2113 
2114 	vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
2115 
2116 	ctxd = txr->next_avail_desc;
2117 	TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
2118 
2119 	/*
2120 	 * In advanced descriptors the vlan tag must
2121 	 * be placed into the context descriptor, thus
2122 	 * we need to be here just for that setup.
2123 	 */
2124 	if (mp->m_flags & M_VLANTAG) {
2125 		uint16_t vlantag;
2126 
2127 		vlantag = htole16(mp->m_pkthdr.ether_vlantag);
2128 		vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
2129 	} else if (!offload) {
2130 		return FALSE;
2131 	}
2132 
2133 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2134 	KASSERT(ehdrlen > 0, ("invalid ether hlen"));
2135 
2136 	/* Set the ether header length */
2137 	vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
2138 	if (mp->m_pkthdr.csum_flags & CSUM_IP) {
2139 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
2140 		ip_hlen = mp->m_pkthdr.csum_iphlen;
2141 		KASSERT(ip_hlen > 0, ("invalid ip hlen"));
2142 	}
2143 	vlan_macip_lens |= ip_hlen;
2144 
2145 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
2146 	if (mp->m_pkthdr.csum_flags & CSUM_TCP)
2147 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
2148 	else if (mp->m_pkthdr.csum_flags & CSUM_UDP)
2149 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
2150 
2151 	/*
2152 	 * 82575 needs the TX context index added; the queue
2153 	 * index is used as TX context index here.
2154 	 */
2155 	if (txr->sc->hw.mac.type == e1000_82575)
2156 		mss_l4len_idx = txr->me << 4;
2157 
2158 	/* Now copy bits into descriptor */
2159 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
2160 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
2161 	TXD->seqnum_seed = htole32(0);
2162 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
2163 
2164 	/* We've consumed the first desc, adjust counters */
2165 	if (++ctxd == txr->num_tx_desc)
2166 		ctxd = 0;
2167 	txr->next_avail_desc = ctxd;
2168 	--txr->tx_avail;
2169 
2170 	return offload;
2171 }
2172 
2173 static void
2174 igb_txeof(struct igb_tx_ring *txr, int hdr)
2175 {
2176 	int first, avail;
2177 
2178 	if (txr->tx_avail == txr->num_tx_desc)
2179 		return;
2180 
2181 	first = txr->next_to_clean;
2182 	if (first == hdr)
2183 		return;
2184 
2185 	avail = txr->tx_avail;
2186 	while (first != hdr) {
2187 		struct igb_tx_buf *txbuf = &txr->tx_buf[first];
2188 
2189 		KKASSERT(avail < txr->num_tx_desc);
2190 		++avail;
2191 
2192 		if (txbuf->m_head)
2193 			igb_free_txbuf(txr, txbuf);
2194 
2195 		if (++first == txr->num_tx_desc)
2196 			first = 0;
2197 	}
2198 	txr->next_to_clean = first;
2199 	txr->tx_avail = avail;
2200 
2201 	/*
2202 	 * If we have a minimum free, clear OACTIVE
2203 	 * to tell the stack that it is OK to send packets.
2204 	 */
2205 	if (txr->tx_avail > IGB_MAX_SCATTER + IGB_TX_RESERVED) {
2206 		ifsq_clr_oactive(txr->ifsq);
2207 
2208 		/*
2209 		 * We have enough TX descriptors, turn off
2210 		 * the watchdog.  We allow small amount of
2211 		 * packets (roughly intr_nsegs) pending on
2212 		 * the transmit ring.
2213 		 */
2214 		ifsq_watchdog_set_count(&txr->tx_watchdog, 0);
2215 	}
2216 	txr->tx_running = IGB_TX_RUNNING;
2217 }
2218 
2219 static void
2220 igb_txgc(struct igb_tx_ring *txr)
2221 {
2222 	int first, hdr;
2223 #ifdef INVARIANTS
2224 	int avail;
2225 #endif
2226 
2227 	if (txr->tx_avail == txr->num_tx_desc)
2228 		return;
2229 
2230 	hdr = E1000_READ_REG(&txr->sc->hw, E1000_TDH(txr->me)),
2231 	first = txr->next_to_clean;
2232 	if (first == hdr)
2233 		goto done;
2234 	txr->tx_gc++;
2235 
2236 #ifdef INVARIANTS
2237 	avail = txr->tx_avail;
2238 #endif
2239 	while (first != hdr) {
2240 		struct igb_tx_buf *txbuf = &txr->tx_buf[first];
2241 
2242 #ifdef INVARIANTS
2243 		KKASSERT(avail < txr->num_tx_desc);
2244 		++avail;
2245 #endif
2246 		if (txbuf->m_head)
2247 			igb_free_txbuf(txr, txbuf);
2248 
2249 		if (++first == txr->num_tx_desc)
2250 			first = 0;
2251 	}
2252 done:
2253 	if (txr->tx_nmbuf)
2254 		txr->tx_running = IGB_TX_RUNNING;
2255 }
2256 
2257 static int
2258 igb_create_rx_ring(struct igb_rx_ring *rxr)
2259 {
2260 	int rsize, i, error, nrxd;
2261 
2262 	/*
2263 	 * Validate number of receive descriptors. It must not exceed
2264 	 * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
2265 	 */
2266 	nrxd = device_getenv_int(rxr->sc->dev, "rxd", igb_rxd);
2267 	if ((nrxd * sizeof(struct e1000_rx_desc)) % IGB_DBA_ALIGN != 0 ||
2268 	    nrxd > IGB_MAX_RXD || nrxd < IGB_MIN_RXD) {
2269 		device_printf(rxr->sc->dev,
2270 		    "Using %d RX descriptors instead of %d!\n",
2271 		    IGB_DEFAULT_RXD, nrxd);
2272 		rxr->num_rx_desc = IGB_DEFAULT_RXD;
2273 	} else {
2274 		rxr->num_rx_desc = nrxd;
2275 	}
2276 
2277 	/*
2278 	 * Allocate RX descriptor ring
2279 	 */
2280 	rsize = roundup2(rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc),
2281 	    IGB_DBA_ALIGN);
2282 	rxr->rxdma.dma_vaddr = bus_dmamem_coherent_any(rxr->sc->parent_tag,
2283 	    IGB_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2284 	    &rxr->rxdma.dma_tag, &rxr->rxdma.dma_map,
2285 	    &rxr->rxdma.dma_paddr);
2286 	if (rxr->rxdma.dma_vaddr == NULL) {
2287 		device_printf(rxr->sc->dev,
2288 		    "Unable to allocate RxDescriptor memory\n");
2289 		return ENOMEM;
2290 	}
2291 	rxr->rx_base = rxr->rxdma.dma_vaddr;
2292 	bzero(rxr->rx_base, rsize);
2293 
2294 	rsize = __VM_CACHELINE_ALIGN(
2295 	    sizeof(struct igb_rx_buf) * rxr->num_rx_desc);
2296 	rxr->rx_buf = kmalloc(rsize, M_DEVBUF,
2297 			      M_WAITOK | M_ZERO | M_CACHEALIGN);
2298 
2299 	/*
2300 	 * Create DMA tag for RX buffers
2301 	 */
2302 	error = bus_dma_tag_create(rxr->sc->parent_tag,
2303 	    1, 0,		/* alignment, bounds */
2304 	    BUS_SPACE_MAXADDR,	/* lowaddr */
2305 	    BUS_SPACE_MAXADDR,	/* highaddr */
2306 	    MCLBYTES,		/* maxsize */
2307 	    1,			/* nsegments */
2308 	    MCLBYTES,		/* maxsegsize */
2309 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2310 	    &rxr->rx_tag);
2311 	if (error) {
2312 		device_printf(rxr->sc->dev,
2313 		    "Unable to create RX payload DMA tag\n");
2314 		kfree(rxr->rx_buf, M_DEVBUF);
2315 		rxr->rx_buf = NULL;
2316 		return error;
2317 	}
2318 
2319 	/*
2320 	 * Create spare DMA map for RX buffers
2321 	 */
2322 	error = bus_dmamap_create(rxr->rx_tag, BUS_DMA_WAITOK,
2323 	    &rxr->rx_sparemap);
2324 	if (error) {
2325 		device_printf(rxr->sc->dev,
2326 		    "Unable to create spare RX DMA maps\n");
2327 		bus_dma_tag_destroy(rxr->rx_tag);
2328 		kfree(rxr->rx_buf, M_DEVBUF);
2329 		rxr->rx_buf = NULL;
2330 		return error;
2331 	}
2332 
2333 	/*
2334 	 * Create DMA maps for RX buffers
2335 	 */
2336 	for (i = 0; i < rxr->num_rx_desc; i++) {
2337 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2338 
2339 		error = bus_dmamap_create(rxr->rx_tag,
2340 		    BUS_DMA_WAITOK, &rxbuf->map);
2341 		if (error) {
2342 			device_printf(rxr->sc->dev,
2343 			    "Unable to create RX DMA maps\n");
2344 			igb_destroy_rx_ring(rxr, i);
2345 			return error;
2346 		}
2347 	}
2348 
2349 	/*
2350 	 * Initialize various watermark
2351 	 */
2352 	rxr->wreg_nsegs = IGB_DEF_RXWREG_NSEGS;
2353 
2354 	return 0;
2355 }
2356 
2357 static void
2358 igb_free_rx_ring(struct igb_rx_ring *rxr)
2359 {
2360 	int i;
2361 
2362 	for (i = 0; i < rxr->num_rx_desc; ++i) {
2363 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2364 
2365 		if (rxbuf->m_head != NULL) {
2366 			bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2367 			m_freem(rxbuf->m_head);
2368 			rxbuf->m_head = NULL;
2369 		}
2370 	}
2371 
2372 	if (rxr->fmp != NULL)
2373 		m_freem(rxr->fmp);
2374 	rxr->fmp = NULL;
2375 	rxr->lmp = NULL;
2376 }
2377 
2378 static void
2379 igb_destroy_rx_ring(struct igb_rx_ring *rxr, int ndesc)
2380 {
2381 	int i;
2382 
2383 	if (rxr->rxdma.dma_vaddr != NULL) {
2384 		bus_dmamap_unload(rxr->rxdma.dma_tag, rxr->rxdma.dma_map);
2385 		bus_dmamem_free(rxr->rxdma.dma_tag, rxr->rxdma.dma_vaddr,
2386 		    rxr->rxdma.dma_map);
2387 		bus_dma_tag_destroy(rxr->rxdma.dma_tag);
2388 		rxr->rxdma.dma_vaddr = NULL;
2389 	}
2390 
2391 	if (rxr->rx_buf == NULL)
2392 		return;
2393 
2394 	for (i = 0; i < ndesc; ++i) {
2395 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2396 
2397 		KKASSERT(rxbuf->m_head == NULL);
2398 		bus_dmamap_destroy(rxr->rx_tag, rxbuf->map);
2399 	}
2400 	bus_dmamap_destroy(rxr->rx_tag, rxr->rx_sparemap);
2401 	bus_dma_tag_destroy(rxr->rx_tag);
2402 
2403 	kfree(rxr->rx_buf, M_DEVBUF);
2404 	rxr->rx_buf = NULL;
2405 }
2406 
2407 static void
2408 igb_setup_rxdesc(union e1000_adv_rx_desc *rxd, const struct igb_rx_buf *rxbuf)
2409 {
2410 	rxd->read.pkt_addr = htole64(rxbuf->paddr);
2411 	rxd->wb.upper.status_error = 0;
2412 }
2413 
2414 static int
2415 igb_newbuf(struct igb_rx_ring *rxr, int i, boolean_t wait)
2416 {
2417 	struct mbuf *m;
2418 	bus_dma_segment_t seg;
2419 	bus_dmamap_t map;
2420 	struct igb_rx_buf *rxbuf;
2421 	int error, nseg;
2422 
2423 	m = m_getcl(wait ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
2424 	if (m == NULL) {
2425 		if (wait) {
2426 			if_printf(&rxr->sc->arpcom.ac_if,
2427 			    "Unable to allocate RX mbuf\n");
2428 		}
2429 		return ENOBUFS;
2430 	}
2431 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2432 
2433 	if (rxr->sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2434 		m_adj(m, ETHER_ALIGN);
2435 
2436 	error = bus_dmamap_load_mbuf_segment(rxr->rx_tag,
2437 	    rxr->rx_sparemap, m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
2438 	if (error) {
2439 		m_freem(m);
2440 		if (wait) {
2441 			if_printf(&rxr->sc->arpcom.ac_if,
2442 			    "Unable to load RX mbuf\n");
2443 		}
2444 		return error;
2445 	}
2446 
2447 	rxbuf = &rxr->rx_buf[i];
2448 	if (rxbuf->m_head != NULL)
2449 		bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2450 
2451 	map = rxbuf->map;
2452 	rxbuf->map = rxr->rx_sparemap;
2453 	rxr->rx_sparemap = map;
2454 
2455 	rxbuf->m_head = m;
2456 	rxbuf->paddr = seg.ds_addr;
2457 
2458 	igb_setup_rxdesc(&rxr->rx_base[i], rxbuf);
2459 	return 0;
2460 }
2461 
2462 static int
2463 igb_init_rx_ring(struct igb_rx_ring *rxr)
2464 {
2465 	int i;
2466 
2467 	/* Clear the ring contents */
2468 	bzero(rxr->rx_base,
2469 	    rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc));
2470 
2471 	/* Now replenish the ring mbufs */
2472 	for (i = 0; i < rxr->num_rx_desc; ++i) {
2473 		int error;
2474 
2475 		error = igb_newbuf(rxr, i, TRUE);
2476 		if (error)
2477 			return error;
2478 	}
2479 
2480 	/* Setup our descriptor indices */
2481 	rxr->next_to_check = 0;
2482 
2483 	rxr->fmp = NULL;
2484 	rxr->lmp = NULL;
2485 	rxr->discard = FALSE;
2486 
2487 	return 0;
2488 }
2489 
2490 static void
2491 igb_init_rx_unit(struct igb_softc *sc, boolean_t polling)
2492 {
2493 	struct ifnet *ifp = &sc->arpcom.ac_if;
2494 	struct e1000_hw *hw = &sc->hw;
2495 	uint32_t rctl, rxcsum, srrctl = 0;
2496 	int i;
2497 
2498 	/*
2499 	 * Make sure receives are disabled while setting
2500 	 * up the descriptor ring
2501 	 */
2502 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2503 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2504 
2505 #if 0
2506 	/*
2507 	** Set up for header split
2508 	*/
2509 	if (igb_header_split) {
2510 		/* Use a standard mbuf for the header */
2511 		srrctl |= IGB_HDR_BUF << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2512 		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2513 	} else
2514 #endif
2515 		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2516 
2517 	/*
2518 	** Set up for jumbo frames
2519 	*/
2520 	if (ifp->if_mtu > ETHERMTU) {
2521 		rctl |= E1000_RCTL_LPE;
2522 #if 0
2523 		if (adapter->rx_mbuf_sz == MJUMPAGESIZE) {
2524 			srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2525 			rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
2526 		} else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) {
2527 			srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2528 			rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
2529 		}
2530 		/* Set maximum packet len */
2531 		psize = adapter->max_frame_size;
2532 		/* are we on a vlan? */
2533 		if (adapter->ifp->if_vlantrunk != NULL)
2534 			psize += VLAN_TAG_SIZE;
2535 		E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
2536 #else
2537 		srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2538 		rctl |= E1000_RCTL_SZ_2048;
2539 #endif
2540 	} else {
2541 		rctl &= ~E1000_RCTL_LPE;
2542 		srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2543 		rctl |= E1000_RCTL_SZ_2048;
2544 	}
2545 
2546 	/*
2547 	 * If TX flow control is disabled and more the 1 RX rings
2548 	 * are enabled, enable DROP.
2549 	 *
2550 	 * This drops frames rather than hanging the RX MAC for all
2551 	 * RX rings.
2552 	 */
2553 	if (sc->rx_ring_inuse > 1 &&
2554 	    (sc->ifm_flowctrl & IFM_ETH_TXPAUSE) == 0) {
2555 		srrctl |= E1000_SRRCTL_DROP_EN;
2556 		if (bootverbose)
2557 			if_printf(ifp, "enable RX drop\n");
2558 	}
2559 
2560 	/* Setup the Base and Length of the Rx Descriptor Rings */
2561 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2562 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
2563 		uint64_t bus_addr = rxr->rxdma.dma_paddr;
2564 		uint32_t rxdctl;
2565 
2566 		E1000_WRITE_REG(hw, E1000_RDLEN(i),
2567 		    rxr->num_rx_desc * sizeof(struct e1000_rx_desc));
2568 		E1000_WRITE_REG(hw, E1000_RDBAH(i),
2569 		    (uint32_t)(bus_addr >> 32));
2570 		E1000_WRITE_REG(hw, E1000_RDBAL(i),
2571 		    (uint32_t)bus_addr);
2572 		E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2573 		/* Enable this Queue */
2574 		rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2575 		rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2576 		rxdctl &= 0xFFF00000;
2577 		rxdctl |= IGB_RX_PTHRESH;
2578 		rxdctl |= IGB_RX_HTHRESH << 8;
2579 		/*
2580 		 * Don't set WTHRESH to a value above 1 on 82576, see:
2581 		 * 82576 specification update errata #26
2582 		 */
2583 		rxdctl |= IGB_RX_WTHRESH << 16;
2584 		E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2585 	}
2586 
2587 	rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2588 	rxcsum &= ~(E1000_RXCSUM_PCSS_MASK | E1000_RXCSUM_IPPCSE);
2589 
2590 	/*
2591 	 * Receive Checksum Offload for TCP and UDP
2592 	 *
2593 	 * Checksum offloading is also enabled if multiple receive
2594 	 * queue is to be supported, since we need it to figure out
2595 	 * fragments.
2596 	 */
2597 	if ((ifp->if_capenable & IFCAP_RXCSUM) || IGB_ENABLE_HWRSS(sc)) {
2598 		/*
2599 		 * NOTE:
2600 		 * PCSD must be enabled to enable multiple
2601 		 * receive queues.
2602 		 */
2603 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2604 		    E1000_RXCSUM_PCSD;
2605 	} else {
2606 		rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2607 		    E1000_RXCSUM_PCSD);
2608 	}
2609 	E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2610 
2611 	if (sc->rx_ring_inuse > 1) {
2612 		uint8_t key[IGB_NRSSRK * IGB_RSSRK_SIZE];
2613 		const struct if_ringmap *rm;
2614 		uint32_t reta_shift;
2615 		int j, r;
2616 
2617 		/*
2618 		 * NOTE:
2619 		 * When we reach here, RSS has already been disabled
2620 		 * in igb_stop(), so we could safely configure RSS key
2621 		 * and redirect table.
2622 		 */
2623 
2624 		/*
2625 		 * Configure RSS key
2626 		 */
2627 		toeplitz_get_key(key, sizeof(key));
2628 		for (i = 0; i < IGB_NRSSRK; ++i) {
2629 			uint32_t rssrk;
2630 
2631 			rssrk = IGB_RSSRK_VAL(key, i);
2632 			IGB_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2633 
2634 			E1000_WRITE_REG(hw, E1000_RSSRK(i), rssrk);
2635 		}
2636 
2637 		/*
2638 		 * Configure RSS redirect table
2639 		 */
2640 		if (polling)
2641 			rm = sc->rx_rmap;
2642 		else
2643 			rm = sc->rx_rmap_intr;
2644 		if_ringmap_rdrtable(rm, sc->rdr_table, IGB_RDRTABLE_SIZE);
2645 
2646 		reta_shift = IGB_RETA_SHIFT;
2647 		if (hw->mac.type == e1000_82575)
2648 			reta_shift = IGB_RETA_SHIFT_82575;
2649 
2650 		r = 0;
2651 		for (j = 0; j < IGB_NRETA; ++j) {
2652 			uint32_t reta = 0;
2653 
2654 			for (i = 0; i < IGB_RETA_SIZE; ++i) {
2655 				uint32_t q;
2656 
2657 				q = sc->rdr_table[r] << reta_shift;
2658 				reta |= q << (8 * i);
2659 				++r;
2660 			}
2661 			IGB_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2662 			E1000_WRITE_REG(hw, E1000_RETA(j), reta);
2663 		}
2664 
2665 		/*
2666 		 * Enable multiple receive queues.
2667 		 * Enable IPv4 RSS standard hash functions.
2668 		 * Disable RSS interrupt on 82575
2669 		 */
2670 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2671 				E1000_MRQC_ENABLE_RSS_4Q |
2672 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2673 				E1000_MRQC_RSS_FIELD_IPV4);
2674 	}
2675 
2676 	/* Setup the Receive Control Register */
2677 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2678 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2679 	    E1000_RCTL_RDMTS_HALF |
2680 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2681 	/* Strip CRC bytes. */
2682 	rctl |= E1000_RCTL_SECRC;
2683 	/* Make sure VLAN Filters are off */
2684 	rctl &= ~E1000_RCTL_VFE;
2685 	/* Don't store bad packets */
2686 	rctl &= ~E1000_RCTL_SBP;
2687 
2688 	/* Enable Receives */
2689 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2690 
2691 	/*
2692 	 * Setup the HW Rx Head and Tail Descriptor Pointers
2693 	 *   - needs to be after enable
2694 	 */
2695 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2696 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
2697 
2698 		E1000_WRITE_REG(hw, E1000_RDH(i), rxr->next_to_check);
2699 		E1000_WRITE_REG(hw, E1000_RDT(i), rxr->num_rx_desc - 1);
2700 	}
2701 }
2702 
2703 static void
2704 igb_rx_refresh(struct igb_rx_ring *rxr, int i)
2705 {
2706 	if (--i < 0)
2707 		i = rxr->num_rx_desc - 1;
2708 	E1000_WRITE_REG(&rxr->sc->hw, E1000_RDT(rxr->me), i);
2709 }
2710 
2711 static void
2712 igb_rxeof(struct igb_rx_ring *rxr, int count)
2713 {
2714 	struct ifnet *ifp = &rxr->sc->arpcom.ac_if;
2715 	union e1000_adv_rx_desc	*cur;
2716 	uint32_t staterr;
2717 	int i, ncoll = 0, cpuid = mycpuid;
2718 
2719 	i = rxr->next_to_check;
2720 	cur = &rxr->rx_base[i];
2721 	staterr = le32toh(cur->wb.upper.status_error);
2722 
2723 	if ((staterr & E1000_RXD_STAT_DD) == 0)
2724 		return;
2725 
2726 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2727 		struct pktinfo *pi = NULL, pi0;
2728 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2729 		struct mbuf *m = NULL;
2730 		boolean_t eop;
2731 
2732 		eop = (staterr & E1000_RXD_STAT_EOP) ? TRUE : FALSE;
2733 		if (eop)
2734 			--count;
2735 
2736 		++ncoll;
2737 		if ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) == 0 &&
2738 		    !rxr->discard) {
2739 			struct mbuf *mp = rxbuf->m_head;
2740 			uint32_t hash, hashtype;
2741 			uint16_t vlan;
2742 			int len;
2743 
2744 			len = le16toh(cur->wb.upper.length);
2745 			if ((rxr->sc->hw.mac.type == e1000_i350 ||
2746 			     rxr->sc->hw.mac.type == e1000_i354) &&
2747 			    (staterr & E1000_RXDEXT_STATERR_LB))
2748 				vlan = be16toh(cur->wb.upper.vlan);
2749 			else
2750 				vlan = le16toh(cur->wb.upper.vlan);
2751 
2752 			hash = le32toh(cur->wb.lower.hi_dword.rss);
2753 			hashtype = le32toh(cur->wb.lower.lo_dword.data) &
2754 			    E1000_RXDADV_RSSTYPE_MASK;
2755 
2756 			IGB_RSS_DPRINTF(rxr->sc, 10,
2757 			    "ring%d, hash 0x%08x, hashtype %u\n",
2758 			    rxr->me, hash, hashtype);
2759 
2760 			bus_dmamap_sync(rxr->rx_tag, rxbuf->map,
2761 			    BUS_DMASYNC_POSTREAD);
2762 
2763 			if (igb_newbuf(rxr, i, FALSE) != 0) {
2764 				IFNET_STAT_INC(ifp, iqdrops, 1);
2765 				goto discard;
2766 			}
2767 
2768 			mp->m_len = len;
2769 			if (rxr->fmp == NULL) {
2770 				mp->m_pkthdr.len = len;
2771 				rxr->fmp = mp;
2772 				rxr->lmp = mp;
2773 			} else {
2774 				rxr->lmp->m_next = mp;
2775 				rxr->lmp = rxr->lmp->m_next;
2776 				rxr->fmp->m_pkthdr.len += len;
2777 			}
2778 
2779 			if (eop) {
2780 				m = rxr->fmp;
2781 				rxr->fmp = NULL;
2782 				rxr->lmp = NULL;
2783 
2784 				m->m_pkthdr.rcvif = ifp;
2785 				IFNET_STAT_INC(ifp, ipackets, 1);
2786 
2787 				if (ifp->if_capenable & IFCAP_RXCSUM)
2788 					igb_rxcsum(staterr, m);
2789 
2790 				if (staterr & E1000_RXD_STAT_VP) {
2791 					m->m_pkthdr.ether_vlantag = vlan;
2792 					m->m_flags |= M_VLANTAG;
2793 				}
2794 
2795 				if (ifp->if_capenable & IFCAP_RSS) {
2796 					pi = igb_rssinfo(m, &pi0,
2797 					    hash, hashtype, staterr);
2798 				}
2799 #ifdef IGB_RSS_DEBUG
2800 				rxr->rx_packets++;
2801 #endif
2802 			}
2803 		} else {
2804 			IFNET_STAT_INC(ifp, ierrors, 1);
2805 discard:
2806 			igb_setup_rxdesc(cur, rxbuf);
2807 			if (!eop)
2808 				rxr->discard = TRUE;
2809 			else
2810 				rxr->discard = FALSE;
2811 			if (rxr->fmp != NULL) {
2812 				m_freem(rxr->fmp);
2813 				rxr->fmp = NULL;
2814 				rxr->lmp = NULL;
2815 			}
2816 			m = NULL;
2817 		}
2818 
2819 		if (m != NULL)
2820 			ifp->if_input(ifp, m, pi, cpuid);
2821 
2822 		/* Advance our pointers to the next descriptor. */
2823 		if (++i == rxr->num_rx_desc)
2824 			i = 0;
2825 
2826 		if (ncoll >= rxr->wreg_nsegs) {
2827 			igb_rx_refresh(rxr, i);
2828 			ncoll = 0;
2829 		}
2830 
2831 		cur = &rxr->rx_base[i];
2832 		staterr = le32toh(cur->wb.upper.status_error);
2833 	}
2834 	rxr->next_to_check = i;
2835 
2836 	if (ncoll > 0)
2837 		igb_rx_refresh(rxr, i);
2838 }
2839 
2840 
2841 static void
2842 igb_set_vlan(struct igb_softc *sc)
2843 {
2844 	struct e1000_hw *hw = &sc->hw;
2845 	uint32_t reg;
2846 #if 0
2847 	struct ifnet *ifp = sc->arpcom.ac_if;
2848 #endif
2849 
2850 	if (sc->vf_ifp) {
2851 		e1000_rlpml_set_vf(hw, sc->max_frame_size + VLAN_TAG_SIZE);
2852 		return;
2853 	}
2854 
2855 	reg = E1000_READ_REG(hw, E1000_CTRL);
2856 	reg |= E1000_CTRL_VME;
2857 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
2858 
2859 #if 0
2860 	/* Enable the Filter Table */
2861 	if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
2862 		reg = E1000_READ_REG(hw, E1000_RCTL);
2863 		reg &= ~E1000_RCTL_CFIEN;
2864 		reg |= E1000_RCTL_VFE;
2865 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
2866 	}
2867 #endif
2868 
2869 	/* Update the frame size */
2870 	E1000_WRITE_REG(&sc->hw, E1000_RLPML,
2871 	    sc->max_frame_size + VLAN_TAG_SIZE);
2872 
2873 #if 0
2874 	/* Don't bother with table if no vlans */
2875 	if ((adapter->num_vlans == 0) ||
2876 	    ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0))
2877 		return;
2878 	/*
2879 	** A soft reset zero's out the VFTA, so
2880 	** we need to repopulate it now.
2881 	*/
2882 	for (int i = 0; i < IGB_VFTA_SIZE; i++)
2883 		if (adapter->shadow_vfta[i] != 0) {
2884 			if (adapter->vf_ifp)
2885 				e1000_vfta_set_vf(hw,
2886 				    adapter->shadow_vfta[i], TRUE);
2887 			else
2888 				E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
2889 				 i, adapter->shadow_vfta[i]);
2890 		}
2891 #endif
2892 }
2893 
2894 static void
2895 igb_enable_intr(struct igb_softc *sc)
2896 {
2897 	int i;
2898 
2899 	for (i = 0; i < sc->intr_cnt; ++i)
2900 		lwkt_serialize_handler_enable(sc->intr_data[i].intr_serialize);
2901 
2902 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2903 		if (sc->intr_type == PCI_INTR_TYPE_MSIX)
2904 			E1000_WRITE_REG(&sc->hw, E1000_EIAC, sc->intr_mask);
2905 		else
2906 			E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2907 		E1000_WRITE_REG(&sc->hw, E1000_EIAM, sc->intr_mask);
2908 		E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
2909 		E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
2910 	} else {
2911 		E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
2912 	}
2913 	E1000_WRITE_FLUSH(&sc->hw);
2914 }
2915 
2916 static void
2917 igb_disable_intr(struct igb_softc *sc)
2918 {
2919 	int i;
2920 
2921 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2922 		E1000_WRITE_REG(&sc->hw, E1000_EIMC, 0xffffffff);
2923 		E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2924 	}
2925 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2926 	E1000_WRITE_FLUSH(&sc->hw);
2927 
2928 	for (i = 0; i < sc->intr_cnt; ++i)
2929 		lwkt_serialize_handler_disable(sc->intr_data[i].intr_serialize);
2930 }
2931 
2932 /*
2933  * Bit of a misnomer, what this really means is
2934  * to enable OS management of the system... aka
2935  * to disable special hardware management features
2936  */
2937 static void
2938 igb_get_mgmt(struct igb_softc *sc)
2939 {
2940 	if (sc->flags & IGB_FLAG_HAS_MGMT) {
2941 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2942 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2943 
2944 		/* disable hardware interception of ARP */
2945 		manc &= ~E1000_MANC_ARP_EN;
2946 
2947 		/* enable receiving management packets to the host */
2948 		manc |= E1000_MANC_EN_MNG2HOST;
2949 		manc2h |= 1 << 5; /* Mng Port 623 */
2950 		manc2h |= 1 << 6; /* Mng Port 664 */
2951 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
2952 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2953 	}
2954 }
2955 
2956 /*
2957  * Give control back to hardware management controller
2958  * if there is one.
2959  */
2960 static void
2961 igb_rel_mgmt(struct igb_softc *sc)
2962 {
2963 	if (sc->flags & IGB_FLAG_HAS_MGMT) {
2964 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2965 
2966 		/* Re-enable hardware interception of ARP */
2967 		manc |= E1000_MANC_ARP_EN;
2968 		manc &= ~E1000_MANC_EN_MNG2HOST;
2969 
2970 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2971 	}
2972 }
2973 
2974 /*
2975  * Sets CTRL_EXT:DRV_LOAD bit.
2976  *
2977  * For ASF and Pass Through versions of f/w this means that
2978  * the driver is loaded.
2979  */
2980 static void
2981 igb_get_hw_control(struct igb_softc *sc)
2982 {
2983 	uint32_t ctrl_ext;
2984 
2985 	if (sc->vf_ifp)
2986 		return;
2987 
2988 	/* Let firmware know the driver has taken over */
2989 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2990 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2991 	    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2992 }
2993 
2994 /*
2995  * Resets CTRL_EXT:DRV_LOAD bit.
2996  *
2997  * For ASF and Pass Through versions of f/w this means that the
2998  * driver is no longer loaded.
2999  */
3000 static void
3001 igb_rel_hw_control(struct igb_softc *sc)
3002 {
3003 	uint32_t ctrl_ext;
3004 
3005 	if (sc->vf_ifp)
3006 		return;
3007 
3008 	/* Let firmware taken over control of h/w */
3009 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3010 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3011 	    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3012 }
3013 
3014 static boolean_t
3015 igb_is_valid_ether_addr(const uint8_t *addr)
3016 {
3017 	uint8_t zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3018 
3019 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3020 		return FALSE;
3021 	return TRUE;
3022 }
3023 
3024 /*
3025  * Enable PCI Wake On Lan capability
3026  */
3027 static void
3028 igb_enable_wol(struct igb_softc *sc)
3029 {
3030 	device_t dev = sc->dev;
3031 	int error = 0;
3032 	uint32_t pmc, ctrl;
3033 	uint16_t status;
3034 
3035 	if (pci_find_extcap(dev, PCIY_PMG, &pmc) != 0) {
3036 		device_printf(dev, "no PMG\n");
3037 		return;
3038 	}
3039 
3040 	/*
3041 	 * Set the type of wakeup.
3042 	 */
3043 	sc->wol &= ~(E1000_WUFC_EX | E1000_WUFC_MC);
3044 	if ((sc->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC)) == 0)
3045 		goto pme;
3046 
3047 	/*
3048 	 * Advertise the wakeup capabilities.
3049 	 */
3050 	ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
3051 	ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
3052 	E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
3053 
3054 	/*
3055 	 * Keep the laser running on Fiber adapters.
3056 	 */
3057 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
3058 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
3059 		uint32_t ctrl_ext;
3060 
3061 		ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3062 		ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
3063 		E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, ctrl_ext);
3064 	}
3065 
3066 	error = igb_enable_phy_wol(sc);
3067 	if (error)
3068 		goto pme;
3069 
3070 	/* XXX will this happen? ich/pch specific. */
3071 	if (sc->hw.phy.type == e1000_phy_igp_3)
3072 		e1000_igp3_phy_powerdown_workaround_ich8lan(&sc->hw);
3073 
3074 pme:
3075 	status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
3076 	status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3077 	if (!error)
3078 		status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3079 	pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
3080 }
3081 
3082 /*
3083  * WOL in the newer chipset interfaces (pchlan)
3084  * require thing to be copied into the phy
3085  */
3086 static int
3087 igb_enable_phy_wol(struct igb_softc *sc)
3088 {
3089 	struct e1000_hw *hw = &sc->hw;
3090 	uint32_t mreg;
3091 	uint16_t preg;
3092 	int ret = 0, i;
3093 
3094 	/* Copy MAC RARs to PHY RARs */
3095 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
3096 
3097 	/* Copy MAC MTA to PHY MTA */
3098 	for (i = 0; i < hw->mac.mta_reg_count; i++) {
3099 		mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
3100 		e1000_write_phy_reg(hw, BM_MTA(i), (uint16_t)(mreg & 0xFFFF));
3101 		e1000_write_phy_reg(hw, BM_MTA(i) + 1,
3102 		    (uint16_t)((mreg >> 16) & 0xFFFF));
3103 	}
3104 
3105 	/* Configure PHY Rx Control register */
3106 	e1000_read_phy_reg(hw, BM_RCTL, &preg);
3107 	mreg = E1000_READ_REG(hw, E1000_RCTL);
3108 	if (mreg & E1000_RCTL_UPE)
3109 		preg |= BM_RCTL_UPE;
3110 	if (mreg & E1000_RCTL_MPE)
3111 		preg |= BM_RCTL_MPE;
3112 	preg &= ~(BM_RCTL_MO_MASK);
3113 	if (mreg & E1000_RCTL_MO_3) {
3114 		preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
3115 				<< BM_RCTL_MO_SHIFT);
3116 	}
3117 	if (mreg & E1000_RCTL_BAM)
3118 		preg |= BM_RCTL_BAM;
3119 	if (mreg & E1000_RCTL_PMCF)
3120 		preg |= BM_RCTL_PMCF;
3121 	mreg = E1000_READ_REG(hw, E1000_CTRL);
3122 	if (mreg & E1000_CTRL_RFCE)
3123 		preg |= BM_RCTL_RFCE;
3124 	e1000_write_phy_reg(&sc->hw, BM_RCTL, preg);
3125 
3126 	/* Enable PHY wakeup in MAC register. */
3127 	E1000_WRITE_REG(hw, E1000_WUC,
3128 	    E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
3129 	E1000_WRITE_REG(hw, E1000_WUFC, sc->wol);
3130 
3131 	/* Configure and enable PHY wakeup in PHY registers */
3132 	e1000_write_phy_reg(hw, BM_WUFC, sc->wol);
3133 	e1000_write_phy_reg(hw, BM_WUC, E1000_WUC_PME_EN);
3134 	/* Activate PHY wakeup */
3135 	ret = hw->phy.ops.acquire(hw);
3136 	if (ret) {
3137 		if_printf(&sc->arpcom.ac_if, "Could not acquire PHY\n");
3138 		return ret;
3139 	}
3140 	e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3141 	                         (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
3142 	ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
3143 	if (ret) {
3144 		if_printf(&sc->arpcom.ac_if, "Could not read PHY page 769\n");
3145 		goto out;
3146 	}
3147 	preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
3148 	ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
3149 	if (ret) {
3150 		if_printf(&sc->arpcom.ac_if,
3151 		    "Could not set PHY Host Wakeup bit\n");
3152 	}
3153 out:
3154 	hw->phy.ops.release(hw);
3155 	return ret;
3156 }
3157 
3158 static void
3159 igb_update_stats_counters(struct igb_softc *sc)
3160 {
3161 	struct e1000_hw *hw = &sc->hw;
3162 	struct e1000_hw_stats *stats;
3163 	struct ifnet *ifp = &sc->arpcom.ac_if;
3164 
3165 	/*
3166 	 * The virtual function adapter has only a
3167 	 * small controlled set of stats, do only
3168 	 * those and return.
3169 	 */
3170 	if (sc->vf_ifp) {
3171 		igb_update_vf_stats_counters(sc);
3172 		return;
3173 	}
3174 	stats = sc->stats;
3175 
3176 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
3177 	    (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
3178 		stats->symerrs +=
3179 		    E1000_READ_REG(hw,E1000_SYMERRS);
3180 		stats->sec += E1000_READ_REG(hw, E1000_SEC);
3181 	}
3182 
3183 	stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
3184 	stats->mpc += E1000_READ_REG(hw, E1000_MPC);
3185 	stats->scc += E1000_READ_REG(hw, E1000_SCC);
3186 	stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
3187 
3188 	stats->mcc += E1000_READ_REG(hw, E1000_MCC);
3189 	stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
3190 	stats->colc += E1000_READ_REG(hw, E1000_COLC);
3191 	stats->dc += E1000_READ_REG(hw, E1000_DC);
3192 	stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
3193 	stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
3194 	stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
3195 
3196 	/*
3197 	 * For watchdog management we need to know if we have been
3198 	 * paused during the last interval, so capture that here.
3199 	 */
3200 	sc->pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
3201 	stats->xoffrxc += sc->pause_frames;
3202 	stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
3203 	stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
3204 	stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
3205 	stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
3206 	stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
3207 	stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
3208 	stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
3209 	stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
3210 	stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
3211 	stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
3212 	stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
3213 	stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
3214 
3215 	/* For the 64-bit byte counters the low dword must be read first. */
3216 	/* Both registers clear on the read of the high dword */
3217 
3218 	stats->gorc += E1000_READ_REG(hw, E1000_GORCL) +
3219 	    ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
3220 	stats->gotc += E1000_READ_REG(hw, E1000_GOTCL) +
3221 	    ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
3222 
3223 	stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
3224 	stats->ruc += E1000_READ_REG(hw, E1000_RUC);
3225 	stats->rfc += E1000_READ_REG(hw, E1000_RFC);
3226 	stats->roc += E1000_READ_REG(hw, E1000_ROC);
3227 	stats->rjc += E1000_READ_REG(hw, E1000_RJC);
3228 
3229 	stats->mgprc += E1000_READ_REG(hw, E1000_MGTPRC);
3230 	stats->mgpdc += E1000_READ_REG(hw, E1000_MGTPDC);
3231 	stats->mgptc += E1000_READ_REG(hw, E1000_MGTPTC);
3232 
3233 	stats->tor += E1000_READ_REG(hw, E1000_TORL) +
3234 	    ((uint64_t)E1000_READ_REG(hw, E1000_TORH) << 32);
3235 	stats->tot += E1000_READ_REG(hw, E1000_TOTL) +
3236 	    ((uint64_t)E1000_READ_REG(hw, E1000_TOTH) << 32);
3237 
3238 	stats->tpr += E1000_READ_REG(hw, E1000_TPR);
3239 	stats->tpt += E1000_READ_REG(hw, E1000_TPT);
3240 	stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
3241 	stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
3242 	stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
3243 	stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
3244 	stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
3245 	stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
3246 	stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
3247 	stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
3248 
3249 	/* Interrupt Counts */
3250 
3251 	stats->iac += E1000_READ_REG(hw, E1000_IAC);
3252 	stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
3253 	stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
3254 	stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
3255 	stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
3256 	stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
3257 	stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
3258 	stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
3259 	stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
3260 
3261 	/* Host to Card Statistics */
3262 
3263 	stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
3264 	stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
3265 	stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
3266 	stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
3267 	stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
3268 	stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
3269 	stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
3270 	stats->hgorc += (E1000_READ_REG(hw, E1000_HGORCL) +
3271 	    ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32));
3272 	stats->hgotc += (E1000_READ_REG(hw, E1000_HGOTCL) +
3273 	    ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32));
3274 	stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
3275 	stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
3276 	stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
3277 
3278 	stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
3279 	stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
3280 	stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
3281 	stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
3282 	stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
3283 	stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
3284 
3285 	IFNET_STAT_SET(ifp, collisions, stats->colc);
3286 
3287 	/* Rx Errors */
3288 	IFNET_STAT_SET(ifp, ierrors,
3289 	    stats->rxerrc + stats->crcerrs + stats->algnerrc +
3290 	    stats->ruc + stats->roc + stats->mpc + stats->cexterr);
3291 
3292 	/* Tx Errors */
3293 	IFNET_STAT_SET(ifp, oerrors,
3294 	    stats->ecol + stats->latecol + sc->watchdog_events);
3295 
3296 	/* Driver specific counters */
3297 	sc->device_control = E1000_READ_REG(hw, E1000_CTRL);
3298 	sc->rx_control = E1000_READ_REG(hw, E1000_RCTL);
3299 	sc->int_mask = E1000_READ_REG(hw, E1000_IMS);
3300 	sc->eint_mask = E1000_READ_REG(hw, E1000_EIMS);
3301 	sc->packet_buf_alloc_tx =
3302 	    ((E1000_READ_REG(hw, E1000_PBA) & 0xffff0000) >> 16);
3303 	sc->packet_buf_alloc_rx =
3304 	    (E1000_READ_REG(hw, E1000_PBA) & 0xffff);
3305 }
3306 
3307 static void
3308 igb_vf_init_stats(struct igb_softc *sc)
3309 {
3310 	struct e1000_hw *hw = &sc->hw;
3311 	struct e1000_vf_stats *stats;
3312 
3313 	stats = sc->stats;
3314 	stats->last_gprc = E1000_READ_REG(hw, E1000_VFGPRC);
3315 	stats->last_gorc = E1000_READ_REG(hw, E1000_VFGORC);
3316 	stats->last_gptc = E1000_READ_REG(hw, E1000_VFGPTC);
3317 	stats->last_gotc = E1000_READ_REG(hw, E1000_VFGOTC);
3318 	stats->last_mprc = E1000_READ_REG(hw, E1000_VFMPRC);
3319 }
3320 
3321 static void
3322 igb_update_vf_stats_counters(struct igb_softc *sc)
3323 {
3324 	struct e1000_hw *hw = &sc->hw;
3325 	struct e1000_vf_stats *stats;
3326 
3327 	if (sc->link_speed == 0)
3328 		return;
3329 
3330 	stats = sc->stats;
3331 	UPDATE_VF_REG(E1000_VFGPRC, stats->last_gprc, stats->gprc);
3332 	UPDATE_VF_REG(E1000_VFGORC, stats->last_gorc, stats->gorc);
3333 	UPDATE_VF_REG(E1000_VFGPTC, stats->last_gptc, stats->gptc);
3334 	UPDATE_VF_REG(E1000_VFGOTC, stats->last_gotc, stats->gotc);
3335 	UPDATE_VF_REG(E1000_VFMPRC, stats->last_mprc, stats->mprc);
3336 }
3337 
3338 #ifdef IFPOLL_ENABLE
3339 
3340 static void
3341 igb_npoll_status(struct ifnet *ifp)
3342 {
3343 	struct igb_softc *sc = ifp->if_softc;
3344 	uint32_t reg_icr;
3345 
3346 	ASSERT_SERIALIZED(&sc->main_serialize);
3347 
3348 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3349 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3350 		sc->hw.mac.get_link_status = 1;
3351 		igb_update_link_status(sc);
3352 	}
3353 }
3354 
3355 static void
3356 igb_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
3357 {
3358 	struct igb_tx_ring *txr = arg;
3359 
3360 	ASSERT_SERIALIZED(&txr->tx_serialize);
3361 	igb_tx_intr(txr, *(txr->tx_hdr));
3362 	igb_try_txgc(txr, 1);
3363 }
3364 
3365 static void
3366 igb_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
3367 {
3368 	struct igb_rx_ring *rxr = arg;
3369 
3370 	ASSERT_SERIALIZED(&rxr->rx_serialize);
3371 
3372 	igb_rxeof(rxr, cycle);
3373 }
3374 
3375 static void
3376 igb_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3377 {
3378 	struct igb_softc *sc = ifp->if_softc;
3379 	int i, txr_cnt, rxr_cnt;
3380 
3381 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3382 
3383 	if (info) {
3384 		int cpu;
3385 
3386 		info->ifpi_status.status_func = igb_npoll_status;
3387 		info->ifpi_status.serializer = &sc->main_serialize;
3388 
3389 		txr_cnt = igb_get_txring_inuse(sc, TRUE);
3390 		for (i = 0; i < txr_cnt; ++i) {
3391 			struct igb_tx_ring *txr = &sc->tx_rings[i];
3392 
3393 			cpu = if_ringmap_cpumap(sc->tx_rmap, i);
3394 			KKASSERT(cpu < netisr_ncpus);
3395 			info->ifpi_tx[cpu].poll_func = igb_npoll_tx;
3396 			info->ifpi_tx[cpu].arg = txr;
3397 			info->ifpi_tx[cpu].serializer = &txr->tx_serialize;
3398 			ifsq_set_cpuid(txr->ifsq, cpu);
3399 		}
3400 
3401 		rxr_cnt = igb_get_rxring_inuse(sc, TRUE);
3402 		for (i = 0; i < rxr_cnt; ++i) {
3403 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
3404 
3405 			cpu = if_ringmap_cpumap(sc->rx_rmap, i);
3406 			KKASSERT(cpu < netisr_ncpus);
3407 			info->ifpi_rx[cpu].poll_func = igb_npoll_rx;
3408 			info->ifpi_rx[cpu].arg = rxr;
3409 			info->ifpi_rx[cpu].serializer = &rxr->rx_serialize;
3410 		}
3411 	} else {
3412 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
3413 			struct igb_tx_ring *txr = &sc->tx_rings[i];
3414 
3415 			ifsq_set_cpuid(txr->ifsq, txr->tx_intr_cpuid);
3416 		}
3417 	}
3418 	if (ifp->if_flags & IFF_RUNNING)
3419 		igb_init(sc);
3420 }
3421 
3422 #endif /* IFPOLL_ENABLE */
3423 
3424 static void
3425 igb_intr(void *xsc)
3426 {
3427 	struct igb_softc *sc = xsc;
3428 	struct ifnet *ifp = &sc->arpcom.ac_if;
3429 	uint32_t eicr;
3430 
3431 	ASSERT_SERIALIZED(&sc->main_serialize);
3432 
3433 	eicr = E1000_READ_REG(&sc->hw, E1000_EICR);
3434 
3435 	if (eicr == 0)
3436 		return;
3437 
3438 	if (ifp->if_flags & IFF_RUNNING) {
3439 		struct igb_tx_ring *txr = &sc->tx_rings[0];
3440 		int i;
3441 
3442 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3443 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
3444 
3445 			if (eicr & rxr->rx_intr_mask) {
3446 				lwkt_serialize_enter(&rxr->rx_serialize);
3447 				igb_rxeof(rxr, -1);
3448 				lwkt_serialize_exit(&rxr->rx_serialize);
3449 			}
3450 		}
3451 
3452 		if (eicr & txr->tx_intr_mask) {
3453 			lwkt_serialize_enter(&txr->tx_serialize);
3454 			igb_tx_intr(txr, *(txr->tx_hdr));
3455 			lwkt_serialize_exit(&txr->tx_serialize);
3456 		}
3457 	}
3458 
3459 	if (eicr & E1000_EICR_OTHER) {
3460 		uint32_t icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3461 
3462 		/* Link status change */
3463 		if (icr & E1000_ICR_LSC) {
3464 			sc->hw.mac.get_link_status = 1;
3465 			igb_update_link_status(sc);
3466 		}
3467 	}
3468 
3469 	/*
3470 	 * Reading EICR has the side effect to clear interrupt mask,
3471 	 * so all interrupts need to be enabled here.
3472 	 */
3473 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
3474 }
3475 
3476 static void
3477 igb_intr_shared(void *xsc)
3478 {
3479 	struct igb_softc *sc = xsc;
3480 	struct ifnet *ifp = &sc->arpcom.ac_if;
3481 	uint32_t reg_icr;
3482 
3483 	ASSERT_SERIALIZED(&sc->main_serialize);
3484 
3485 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3486 
3487 	/* Hot eject?  */
3488 	if (reg_icr == 0xffffffff)
3489 		return;
3490 
3491 	/* Definitely not our interrupt.  */
3492 	if (reg_icr == 0x0)
3493 		return;
3494 
3495 	if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0)
3496 		return;
3497 
3498 	if (ifp->if_flags & IFF_RUNNING) {
3499 		if (reg_icr &
3500 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
3501 			int i;
3502 
3503 			for (i = 0; i < sc->rx_ring_inuse; ++i) {
3504 				struct igb_rx_ring *rxr = &sc->rx_rings[i];
3505 
3506 				lwkt_serialize_enter(&rxr->rx_serialize);
3507 				igb_rxeof(rxr, -1);
3508 				lwkt_serialize_exit(&rxr->rx_serialize);
3509 			}
3510 		}
3511 
3512 		if (reg_icr & E1000_ICR_TXDW) {
3513 			struct igb_tx_ring *txr = &sc->tx_rings[0];
3514 
3515 			lwkt_serialize_enter(&txr->tx_serialize);
3516 			igb_tx_intr(txr, *(txr->tx_hdr));
3517 			lwkt_serialize_exit(&txr->tx_serialize);
3518 		}
3519 	}
3520 
3521 	/* Link status change */
3522 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3523 		sc->hw.mac.get_link_status = 1;
3524 		igb_update_link_status(sc);
3525 	}
3526 
3527 	if (reg_icr & E1000_ICR_RXO)
3528 		sc->rx_overruns++;
3529 }
3530 
3531 static int
3532 igb_encap(struct igb_tx_ring *txr, struct mbuf **m_headp,
3533     int *segs_used, int *idx)
3534 {
3535 	bus_dma_segment_t segs[IGB_MAX_SCATTER];
3536 	bus_dmamap_t map;
3537 	struct igb_tx_buf *tx_buf, *tx_buf_mapped;
3538 	union e1000_adv_tx_desc	*txd = NULL;
3539 	struct mbuf *m_head = *m_headp;
3540 	uint32_t olinfo_status = 0, cmd_type_len = 0, cmd_rs = 0;
3541 	int maxsegs, nsegs, i, j, error;
3542 	uint32_t hdrlen = 0;
3543 
3544 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3545 		error = igb_tso_pullup(txr, m_headp);
3546 		if (error)
3547 			return error;
3548 		m_head = *m_headp;
3549 	}
3550 
3551 	/* Set basic descriptor constants */
3552 	cmd_type_len |= E1000_ADVTXD_DTYP_DATA;
3553 	cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
3554 	if (m_head->m_flags & M_VLANTAG)
3555 		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3556 
3557 	/*
3558 	 * Map the packet for DMA.
3559 	 */
3560 	tx_buf = &txr->tx_buf[txr->next_avail_desc];
3561 	tx_buf_mapped = tx_buf;
3562 	map = tx_buf->map;
3563 
3564 	maxsegs = txr->tx_avail - IGB_TX_RESERVED;
3565 	if (maxsegs > IGB_MAX_SCATTER)
3566 		maxsegs = IGB_MAX_SCATTER;
3567 
3568 	error = bus_dmamap_load_mbuf_defrag(txr->tx_tag, map, m_headp,
3569 	    segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3570 	if (error) {
3571 		if (error == ENOBUFS)
3572 			txr->sc->mbuf_defrag_failed++;
3573 		else
3574 			txr->sc->no_tx_dma_setup++;
3575 
3576 		m_freem(*m_headp);
3577 		*m_headp = NULL;
3578 		return error;
3579 	}
3580 	bus_dmamap_sync(txr->tx_tag, map, BUS_DMASYNC_PREWRITE);
3581 
3582 	m_head = *m_headp;
3583 
3584 	/*
3585 	 * Set up the TX context descriptor, if any hardware offloading is
3586 	 * needed.  This includes CSUM, VLAN, and TSO.  It will consume one
3587 	 * TX descriptor.
3588 	 *
3589 	 * Unlike these chips' predecessors (em/emx), TX context descriptor
3590 	 * will _not_ interfere TX data fetching pipelining.
3591 	 */
3592 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3593 		igb_tso_ctx(txr, m_head, &hdrlen);
3594 		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3595 		olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3596 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3597 		txr->tx_nsegs++;
3598 		(*segs_used)++;
3599 	} else if (igb_txcsum_ctx(txr, m_head)) {
3600 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3601 			olinfo_status |= (E1000_TXD_POPTS_IXSM << 8);
3602 		if (m_head->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_TCP))
3603 			olinfo_status |= (E1000_TXD_POPTS_TXSM << 8);
3604 		txr->tx_nsegs++;
3605 		(*segs_used)++;
3606 	}
3607 
3608 	*segs_used += nsegs;
3609 	txr->tx_nsegs += nsegs;
3610 	if (txr->tx_nsegs >= txr->intr_nsegs) {
3611 		/*
3612 		 * Report Status (RS) is turned on every intr_nsegs
3613 		 * descriptors (roughly).
3614 		 */
3615 		txr->tx_nsegs = 0;
3616 		cmd_rs = E1000_ADVTXD_DCMD_RS;
3617 	}
3618 
3619 	/* Calculate payload length */
3620 	olinfo_status |= ((m_head->m_pkthdr.len - hdrlen)
3621 	    << E1000_ADVTXD_PAYLEN_SHIFT);
3622 
3623 	/*
3624 	 * 82575 needs the TX context index added; the queue
3625 	 * index is used as TX context index here.
3626 	 */
3627 	if (txr->sc->hw.mac.type == e1000_82575)
3628 		olinfo_status |= txr->me << 4;
3629 
3630 	/* Set up our transmit descriptors */
3631 	i = txr->next_avail_desc;
3632 	for (j = 0; j < nsegs; j++) {
3633 		bus_size_t seg_len;
3634 		bus_addr_t seg_addr;
3635 
3636 		tx_buf = &txr->tx_buf[i];
3637 		txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
3638 		seg_addr = segs[j].ds_addr;
3639 		seg_len = segs[j].ds_len;
3640 
3641 		txd->read.buffer_addr = htole64(seg_addr);
3642 		txd->read.cmd_type_len = htole32(cmd_type_len | seg_len);
3643 		txd->read.olinfo_status = htole32(olinfo_status);
3644 		if (++i == txr->num_tx_desc)
3645 			i = 0;
3646 		tx_buf->m_head = NULL;
3647 	}
3648 
3649 	KASSERT(txr->tx_avail > nsegs, ("invalid avail TX desc\n"));
3650 	txr->next_avail_desc = i;
3651 	txr->tx_avail -= nsegs;
3652 	txr->tx_nmbuf++;
3653 
3654 	tx_buf->m_head = m_head;
3655 	tx_buf_mapped->map = tx_buf->map;
3656 	tx_buf->map = map;
3657 
3658 	/*
3659 	 * Last Descriptor of Packet needs End Of Packet (EOP)
3660 	 */
3661 	txd->read.cmd_type_len |= htole32(E1000_ADVTXD_DCMD_EOP | cmd_rs);
3662 
3663 	/*
3664 	 * Defer TDT updating, until enough descrptors are setup
3665 	 */
3666 	*idx = i;
3667 #ifdef IGB_TSS_DEBUG
3668 	++txr->tx_packets;
3669 #endif
3670 
3671 	return 0;
3672 }
3673 
3674 static void
3675 igb_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3676 {
3677 	struct igb_softc *sc = ifp->if_softc;
3678 	struct igb_tx_ring *txr = ifsq_get_priv(ifsq);
3679 	struct mbuf *m_head;
3680 	int idx = -1, nsegs = 0;
3681 
3682 	KKASSERT(txr->ifsq == ifsq);
3683 	ASSERT_SERIALIZED(&txr->tx_serialize);
3684 
3685 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
3686 		return;
3687 
3688 	if (!sc->link_active || (txr->tx_flags & IGB_TXFLAG_ENABLED) == 0) {
3689 		ifsq_purge(ifsq);
3690 		return;
3691 	}
3692 
3693 	while (!ifsq_is_empty(ifsq)) {
3694 		if (txr->tx_avail <= IGB_MAX_SCATTER + IGB_TX_RESERVED) {
3695 			ifsq_set_oactive(ifsq);
3696 			/* Set watchdog on */
3697 			ifsq_watchdog_set_count(&txr->tx_watchdog, 5);
3698 			break;
3699 		}
3700 
3701 		m_head = ifsq_dequeue(ifsq);
3702 		if (m_head == NULL)
3703 			break;
3704 
3705 		if (igb_encap(txr, &m_head, &nsegs, &idx)) {
3706 			IFNET_STAT_INC(ifp, oerrors, 1);
3707 			continue;
3708 		}
3709 
3710 		/*
3711 		 * TX interrupt are aggressively aggregated, so increasing
3712 		 * opackets at TX interrupt time will make the opackets
3713 		 * statistics vastly inaccurate; we do the opackets increment
3714 		 * now.
3715 		 */
3716 		IFNET_STAT_INC(ifp, opackets, 1);
3717 
3718 		if (nsegs >= txr->wreg_nsegs) {
3719 			E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3720 			idx = -1;
3721 			nsegs = 0;
3722 		}
3723 
3724 		/* Send a copy of the frame to the BPF listener */
3725 		ETHER_BPF_MTAP(ifp, m_head);
3726 	}
3727 	if (idx >= 0)
3728 		E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3729 	txr->tx_running = IGB_TX_RUNNING;
3730 }
3731 
3732 static void
3733 igb_watchdog(struct ifaltq_subque *ifsq)
3734 {
3735 	struct igb_tx_ring *txr = ifsq_get_priv(ifsq);
3736 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
3737 	struct igb_softc *sc = ifp->if_softc;
3738 	int i;
3739 
3740 	KKASSERT(txr->ifsq == ifsq);
3741 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3742 
3743 	/*
3744 	 * If flow control has paused us since last checking
3745 	 * it invalidates the watchdog timing, so dont run it.
3746 	 */
3747 	if (sc->pause_frames) {
3748 		sc->pause_frames = 0;
3749 		ifsq_watchdog_set_count(&txr->tx_watchdog, 5);
3750 		return;
3751 	}
3752 
3753 	if_printf(ifp, "Watchdog timeout -- resetting\n");
3754 	if_printf(ifp, "Queue(%d) tdh = %d, hw tdt = %d\n", txr->me,
3755 	    E1000_READ_REG(&sc->hw, E1000_TDH(txr->me)),
3756 	    E1000_READ_REG(&sc->hw, E1000_TDT(txr->me)));
3757 	if_printf(ifp, "TX(%d) desc avail = %d, "
3758 	    "Next TX to Clean = %d\n",
3759 	    txr->me, txr->tx_avail, txr->next_to_clean);
3760 
3761 	IFNET_STAT_INC(ifp, oerrors, 1);
3762 	sc->watchdog_events++;
3763 
3764 	igb_init(sc);
3765 	for (i = 0; i < sc->tx_ring_inuse; ++i)
3766 		ifsq_devstart_sched(sc->tx_rings[i].ifsq);
3767 }
3768 
3769 static void
3770 igb_set_eitr(struct igb_softc *sc, int idx, int rate)
3771 {
3772 	uint32_t eitr = 0;
3773 
3774 	if (rate > 0) {
3775 		if (sc->hw.mac.type == e1000_82575) {
3776 			eitr = 1000000000 / 256 / rate;
3777 			/*
3778 			 * NOTE:
3779 			 * Document is wrong on the 2 bits left shift
3780 			 */
3781 		} else {
3782 			eitr = 1000000 / rate;
3783 			eitr <<= IGB_EITR_INTVL_SHIFT;
3784 		}
3785 
3786 		if (eitr == 0) {
3787 			/* Don't disable it */
3788 			eitr = 1 << IGB_EITR_INTVL_SHIFT;
3789 		} else if (eitr > IGB_EITR_INTVL_MASK) {
3790 			/* Don't allow it to be too large */
3791 			eitr = IGB_EITR_INTVL_MASK;
3792 		}
3793 	}
3794 	if (sc->hw.mac.type == e1000_82575)
3795 		eitr |= eitr << 16;
3796 	else
3797 		eitr |= E1000_EITR_CNT_IGNR;
3798 	E1000_WRITE_REG(&sc->hw, E1000_EITR(idx), eitr);
3799 }
3800 
3801 static void
3802 igb_add_intr_rate_sysctl(struct igb_softc *sc, int use,
3803     const char *name, const char *desc)
3804 {
3805 	int i;
3806 
3807 	for (i = 0; i < sc->intr_cnt; ++i) {
3808 		if (sc->intr_data[i].intr_use == use) {
3809 			SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
3810 			    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
3811 			    OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW,
3812 			    sc, use, igb_sysctl_intr_rate, "I", desc);
3813 			break;
3814 		}
3815 	}
3816 }
3817 
3818 static int
3819 igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3820 {
3821 	struct igb_softc *sc = (void *)arg1;
3822 	int use = arg2;
3823 	struct ifnet *ifp = &sc->arpcom.ac_if;
3824 	int error, rate, i;
3825 	struct igb_intr_data *intr;
3826 
3827 	rate = 0;
3828 	for (i = 0; i < sc->intr_cnt; ++i) {
3829 		intr = &sc->intr_data[i];
3830 		if (intr->intr_use == use) {
3831 			rate = intr->intr_rate;
3832 			break;
3833 		}
3834 	}
3835 
3836 	error = sysctl_handle_int(oidp, &rate, 0, req);
3837 	if (error || req->newptr == NULL)
3838 		return error;
3839 	if (rate <= 0)
3840 		return EINVAL;
3841 
3842 	ifnet_serialize_all(ifp);
3843 
3844 	for (i = 0; i < sc->intr_cnt; ++i) {
3845 		intr = &sc->intr_data[i];
3846 		if (intr->intr_use == use && intr->intr_rate != rate) {
3847 			intr->intr_rate = rate;
3848 			if (ifp->if_flags & IFF_RUNNING)
3849 				igb_set_eitr(sc, i, rate);
3850 		}
3851 	}
3852 
3853 	ifnet_deserialize_all(ifp);
3854 
3855 	return error;
3856 }
3857 
3858 static int
3859 igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3860 {
3861 	struct igb_softc *sc = (void *)arg1;
3862 	struct ifnet *ifp = &sc->arpcom.ac_if;
3863 	struct igb_tx_ring *txr = &sc->tx_rings[0];
3864 	int error, nsegs;
3865 
3866 	nsegs = txr->intr_nsegs;
3867 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3868 	if (error || req->newptr == NULL)
3869 		return error;
3870 	if (nsegs <= 0)
3871 		return EINVAL;
3872 
3873 	ifnet_serialize_all(ifp);
3874 
3875 	if (nsegs >= txr->num_tx_desc - IGB_MAX_SCATTER - IGB_TX_RESERVED) {
3876 		error = EINVAL;
3877 	} else {
3878 		int i;
3879 
3880 		error = 0;
3881 		for (i = 0; i < sc->tx_ring_cnt; ++i)
3882 			sc->tx_rings[i].intr_nsegs = nsegs;
3883 	}
3884 
3885 	ifnet_deserialize_all(ifp);
3886 
3887 	return error;
3888 }
3889 
3890 static int
3891 igb_sysctl_rx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3892 {
3893 	struct igb_softc *sc = (void *)arg1;
3894 	struct ifnet *ifp = &sc->arpcom.ac_if;
3895 	int error, nsegs, i;
3896 
3897 	nsegs = sc->rx_rings[0].wreg_nsegs;
3898 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3899 	if (error || req->newptr == NULL)
3900 		return error;
3901 
3902 	ifnet_serialize_all(ifp);
3903 	for (i = 0; i < sc->rx_ring_cnt; ++i)
3904 		sc->rx_rings[i].wreg_nsegs = nsegs;
3905 	ifnet_deserialize_all(ifp);
3906 
3907 	return 0;
3908 }
3909 
3910 static int
3911 igb_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3912 {
3913 	struct igb_softc *sc = (void *)arg1;
3914 	struct ifnet *ifp = &sc->arpcom.ac_if;
3915 	int error, nsegs, i;
3916 
3917 	nsegs = sc->tx_rings[0].wreg_nsegs;
3918 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3919 	if (error || req->newptr == NULL)
3920 		return error;
3921 
3922 	ifnet_serialize_all(ifp);
3923 	for (i = 0; i < sc->tx_ring_cnt; ++i)
3924 		sc->tx_rings[i].wreg_nsegs = nsegs;
3925 	ifnet_deserialize_all(ifp);
3926 
3927 	return 0;
3928 }
3929 
3930 static void
3931 igb_init_intr(struct igb_softc *sc)
3932 {
3933 	int i;
3934 
3935 	igb_set_intr_mask(sc);
3936 
3937 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0)
3938 		igb_init_unshared_intr(sc);
3939 
3940 	for (i = 0; i < sc->intr_cnt; ++i)
3941 		igb_set_eitr(sc, i, sc->intr_data[i].intr_rate);
3942 }
3943 
3944 static void
3945 igb_init_unshared_intr(struct igb_softc *sc)
3946 {
3947 	struct e1000_hw *hw = &sc->hw;
3948 	const struct igb_rx_ring *rxr;
3949 	const struct igb_tx_ring *txr;
3950 	uint32_t ivar, index;
3951 	int i;
3952 
3953 	/*
3954 	 * Enable extended mode
3955 	 */
3956 	if (sc->hw.mac.type != e1000_82575) {
3957 		uint32_t gpie;
3958 		int ivar_max;
3959 
3960 		gpie = E1000_GPIE_NSICR;
3961 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3962 			gpie |= E1000_GPIE_MSIX_MODE |
3963 			    E1000_GPIE_EIAME |
3964 			    E1000_GPIE_PBA;
3965 		}
3966 		E1000_WRITE_REG(hw, E1000_GPIE, gpie);
3967 
3968 		/*
3969 		 * Clear IVARs
3970 		 */
3971 		switch (sc->hw.mac.type) {
3972 		case e1000_82576:
3973 			ivar_max = IGB_MAX_IVAR_82576;
3974 			break;
3975 
3976 		case e1000_82580:
3977 			ivar_max = IGB_MAX_IVAR_82580;
3978 			break;
3979 
3980 		case e1000_i350:
3981 			ivar_max = IGB_MAX_IVAR_I350;
3982 			break;
3983 
3984 		case e1000_i354:
3985 			ivar_max = IGB_MAX_IVAR_I354;
3986 			break;
3987 
3988 		case e1000_vfadapt:
3989 		case e1000_vfadapt_i350:
3990 			ivar_max = IGB_MAX_IVAR_VF;
3991 			break;
3992 
3993 		case e1000_i210:
3994 			ivar_max = IGB_MAX_IVAR_I210;
3995 			break;
3996 
3997 		case e1000_i211:
3998 			ivar_max = IGB_MAX_IVAR_I211;
3999 			break;
4000 
4001 		default:
4002 			panic("unknown mac type %d\n", sc->hw.mac.type);
4003 		}
4004 		for (i = 0; i < ivar_max; ++i)
4005 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, 0);
4006 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, 0);
4007 	} else {
4008 		uint32_t tmp;
4009 
4010 		KASSERT(sc->intr_type != PCI_INTR_TYPE_MSIX,
4011 		    ("82575 w/ MSI-X"));
4012 		tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
4013 		tmp |= E1000_CTRL_EXT_IRCA;
4014 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
4015 	}
4016 
4017 	/*
4018 	 * Map TX/RX interrupts to EICR
4019 	 */
4020 	switch (sc->hw.mac.type) {
4021 	case e1000_82580:
4022 	case e1000_i350:
4023 	case e1000_i354:
4024 	case e1000_vfadapt:
4025 	case e1000_vfadapt_i350:
4026 	case e1000_i210:
4027 	case e1000_i211:
4028 		/* RX entries */
4029 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
4030 			rxr = &sc->rx_rings[i];
4031 
4032 			index = i >> 1;
4033 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4034 
4035 			if (i & 1) {
4036 				ivar &= 0xff00ffff;
4037 				ivar |=
4038 				(rxr->rx_intr_vec | E1000_IVAR_VALID) << 16;
4039 			} else {
4040 				ivar &= 0xffffff00;
4041 				ivar |=
4042 				(rxr->rx_intr_vec | E1000_IVAR_VALID);
4043 			}
4044 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4045 		}
4046 		/* TX entries */
4047 		for (i = 0; i < sc->tx_ring_inuse; ++i) {
4048 			txr = &sc->tx_rings[i];
4049 
4050 			index = i >> 1;
4051 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4052 
4053 			if (i & 1) {
4054 				ivar &= 0x00ffffff;
4055 				ivar |=
4056 				(txr->tx_intr_vec | E1000_IVAR_VALID) << 24;
4057 			} else {
4058 				ivar &= 0xffff00ff;
4059 				ivar |=
4060 				(txr->tx_intr_vec | E1000_IVAR_VALID) << 8;
4061 			}
4062 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4063 		}
4064 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
4065 			ivar = (sc->sts_msix_vec | E1000_IVAR_VALID) << 8;
4066 			E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
4067 		}
4068 		break;
4069 
4070 	case e1000_82576:
4071 		/* RX entries */
4072 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
4073 			rxr = &sc->rx_rings[i];
4074 
4075 			index = i & 0x7; /* Each IVAR has two entries */
4076 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4077 
4078 			if (i < 8) {
4079 				ivar &= 0xffffff00;
4080 				ivar |=
4081 				(rxr->rx_intr_vec | E1000_IVAR_VALID);
4082 			} else {
4083 				ivar &= 0xff00ffff;
4084 				ivar |=
4085 				(rxr->rx_intr_vec | E1000_IVAR_VALID) << 16;
4086 			}
4087 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4088 		}
4089 		/* TX entries */
4090 		for (i = 0; i < sc->tx_ring_inuse; ++i) {
4091 			txr = &sc->tx_rings[i];
4092 
4093 			index = i & 0x7; /* Each IVAR has two entries */
4094 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4095 
4096 			if (i < 8) {
4097 				ivar &= 0xffff00ff;
4098 				ivar |=
4099 				(txr->tx_intr_vec | E1000_IVAR_VALID) << 8;
4100 			} else {
4101 				ivar &= 0x00ffffff;
4102 				ivar |=
4103 				(txr->tx_intr_vec | E1000_IVAR_VALID) << 24;
4104 			}
4105 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4106 		}
4107 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
4108 			ivar = (sc->sts_msix_vec | E1000_IVAR_VALID) << 8;
4109 			E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
4110 		}
4111 		break;
4112 
4113 	case e1000_82575:
4114 		/*
4115 		 * Enable necessary interrupt bits.
4116 		 *
4117 		 * The name of the register is confusing; in addition to
4118 		 * configuring the first vector of MSI-X, it also configures
4119 		 * which bits of EICR could be set by the hardware even when
4120 		 * MSI or line interrupt is used; it thus controls interrupt
4121 		 * generation.  It MUST be configured explicitly; the default
4122 		 * value mentioned in the datasheet is wrong: RX queue0 and
4123 		 * TX queue0 are NOT enabled by default.
4124 		 */
4125 		E1000_WRITE_REG(&sc->hw, E1000_MSIXBM(0), sc->intr_mask);
4126 		break;
4127 
4128 	default:
4129 		panic("unknown mac type %d\n", sc->hw.mac.type);
4130 	}
4131 }
4132 
4133 static int
4134 igb_setup_intr(struct igb_softc *sc)
4135 {
4136 	int i;
4137 
4138 	for (i = 0; i < sc->intr_cnt; ++i) {
4139 		struct igb_intr_data *intr = &sc->intr_data[i];
4140 		int error;
4141 
4142 		error = bus_setup_intr_descr(sc->dev, intr->intr_res,
4143 		    INTR_MPSAFE, intr->intr_func, intr->intr_funcarg,
4144 		    &intr->intr_hand, intr->intr_serialize, intr->intr_desc);
4145 		if (error) {
4146 			device_printf(sc->dev, "can't setup %dth intr\n", i);
4147 			igb_teardown_intr(sc, i);
4148 			return error;
4149 		}
4150 	}
4151 	return 0;
4152 }
4153 
4154 static void
4155 igb_set_txintr_mask(struct igb_tx_ring *txr, int *intr_vec0, int intr_vecmax)
4156 {
4157 	if (txr->sc->hw.mac.type == e1000_82575) {
4158 		txr->tx_intr_vec = 0;	/* unused */
4159 		switch (txr->me) {
4160 		case 0:
4161 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE0;
4162 			break;
4163 		case 1:
4164 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE1;
4165 			break;
4166 		case 2:
4167 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE2;
4168 			break;
4169 		case 3:
4170 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE3;
4171 			break;
4172 		default:
4173 			panic("unsupported # of TX ring, %d\n", txr->me);
4174 		}
4175 	} else {
4176 		int intr_vec = *intr_vec0;
4177 
4178 		txr->tx_intr_vec = intr_vec % intr_vecmax;
4179 		txr->tx_intr_mask = 1 << txr->tx_intr_vec;
4180 
4181 		*intr_vec0 = intr_vec + 1;
4182 	}
4183 }
4184 
4185 static void
4186 igb_set_rxintr_mask(struct igb_rx_ring *rxr, int *intr_vec0, int intr_vecmax)
4187 {
4188 	if (rxr->sc->hw.mac.type == e1000_82575) {
4189 		rxr->rx_intr_vec = 0;	/* unused */
4190 		switch (rxr->me) {
4191 		case 0:
4192 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE0;
4193 			break;
4194 		case 1:
4195 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE1;
4196 			break;
4197 		case 2:
4198 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE2;
4199 			break;
4200 		case 3:
4201 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE3;
4202 			break;
4203 		default:
4204 			panic("unsupported # of RX ring, %d\n", rxr->me);
4205 		}
4206 	} else {
4207 		int intr_vec = *intr_vec0;
4208 
4209 		rxr->rx_intr_vec = intr_vec % intr_vecmax;
4210 		rxr->rx_intr_mask = 1 << rxr->rx_intr_vec;
4211 
4212 		*intr_vec0 = intr_vec + 1;
4213 	}
4214 }
4215 
4216 static void
4217 igb_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
4218 {
4219 	struct igb_softc *sc = ifp->if_softc;
4220 
4221 	ifnet_serialize_array_enter(sc->serializes, sc->serialize_cnt, slz);
4222 }
4223 
4224 static void
4225 igb_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4226 {
4227 	struct igb_softc *sc = ifp->if_softc;
4228 
4229 	ifnet_serialize_array_exit(sc->serializes, sc->serialize_cnt, slz);
4230 }
4231 
4232 static int
4233 igb_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4234 {
4235 	struct igb_softc *sc = ifp->if_softc;
4236 
4237 	return ifnet_serialize_array_try(sc->serializes, sc->serialize_cnt,
4238 	    slz);
4239 }
4240 
4241 #ifdef INVARIANTS
4242 
4243 static void
4244 igb_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
4245     boolean_t serialized)
4246 {
4247 	struct igb_softc *sc = ifp->if_softc;
4248 
4249 	ifnet_serialize_array_assert(sc->serializes, sc->serialize_cnt,
4250 	    slz, serialized);
4251 }
4252 
4253 #endif	/* INVARIANTS */
4254 
4255 static void
4256 igb_set_intr_mask(struct igb_softc *sc)
4257 {
4258 	int i;
4259 
4260 	sc->intr_mask = sc->sts_intr_mask;
4261 	for (i = 0; i < sc->rx_ring_inuse; ++i)
4262 		sc->intr_mask |= sc->rx_rings[i].rx_intr_mask;
4263 	for (i = 0; i < sc->tx_ring_inuse; ++i)
4264 		sc->intr_mask |= sc->tx_rings[i].tx_intr_mask;
4265 	if (bootverbose) {
4266 		if_printf(&sc->arpcom.ac_if, "intr mask 0x%08x\n",
4267 		    sc->intr_mask);
4268 	}
4269 }
4270 
4271 static int
4272 igb_alloc_intr(struct igb_softc *sc)
4273 {
4274 	struct igb_tx_ring *txr;
4275 	struct igb_intr_data *intr;
4276 	int i, intr_vec, intr_vecmax;
4277 	u_int intr_flags;
4278 
4279 	igb_alloc_msix(sc);
4280 	if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
4281 		igb_set_ring_inuse(sc, FALSE);
4282 		goto done;
4283 	}
4284 
4285 	/*
4286 	 * Reset some settings changed by igb_alloc_msix().
4287 	 */
4288 	if (sc->rx_rmap_intr != NULL) {
4289 		if_ringmap_free(sc->rx_rmap_intr);
4290 		sc->rx_rmap_intr = NULL;
4291 	}
4292 	if (sc->tx_rmap_intr != NULL) {
4293 		if_ringmap_free(sc->tx_rmap_intr);
4294 		sc->tx_rmap_intr = NULL;
4295 	}
4296 	if (sc->intr_data != NULL) {
4297 		kfree(sc->intr_data, M_DEVBUF);
4298 		sc->intr_data = NULL;
4299 	}
4300 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
4301 		txr = &sc->tx_rings[i];
4302 		txr->tx_intr_vec = 0;
4303 		txr->tx_intr_mask = 0;
4304 		txr->tx_intr_cpuid = -1;
4305 	}
4306 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
4307 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
4308 
4309 		rxr->rx_intr_vec = 0;
4310 		rxr->rx_intr_mask = 0;
4311 		rxr->rx_txr = NULL;
4312 	}
4313 
4314 	sc->intr_cnt = 1;
4315 	sc->intr_data = kmalloc(sizeof(struct igb_intr_data), M_DEVBUF,
4316 	    M_WAITOK | M_ZERO);
4317 	intr = &sc->intr_data[0];
4318 
4319 	/*
4320 	 * Allocate MSI/legacy interrupt resource
4321 	 */
4322 	sc->intr_type = pci_alloc_1intr(sc->dev, igb_msi_enable,
4323 	    &intr->intr_rid, &intr_flags);
4324 
4325 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
4326 		int unshared;
4327 
4328 		unshared = device_getenv_int(sc->dev, "irq.unshared", 0);
4329 		if (!unshared) {
4330 			sc->flags |= IGB_FLAG_SHARED_INTR;
4331 			if (bootverbose)
4332 				device_printf(sc->dev, "IRQ shared\n");
4333 		} else {
4334 			intr_flags &= ~RF_SHAREABLE;
4335 			if (bootverbose)
4336 				device_printf(sc->dev, "IRQ unshared\n");
4337 		}
4338 	}
4339 
4340 	intr->intr_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4341 	    &intr->intr_rid, intr_flags);
4342 	if (intr->intr_res == NULL) {
4343 		device_printf(sc->dev, "Unable to allocate bus resource: "
4344 		    "interrupt\n");
4345 		return ENXIO;
4346 	}
4347 
4348 	intr->intr_serialize = &sc->main_serialize;
4349 	intr->intr_cpuid = rman_get_cpuid(intr->intr_res);
4350 	intr->intr_func = (sc->flags & IGB_FLAG_SHARED_INTR) ?
4351 	    igb_intr_shared : igb_intr;
4352 	intr->intr_funcarg = sc;
4353 	intr->intr_rate = IGB_INTR_RATE;
4354 	intr->intr_use = IGB_INTR_USE_RXTX;
4355 
4356 	sc->tx_rings[0].tx_intr_cpuid = intr->intr_cpuid;
4357 
4358 	/*
4359 	 * Setup MSI/legacy interrupt mask
4360 	 */
4361 	switch (sc->hw.mac.type) {
4362 	case e1000_82575:
4363 		intr_vecmax = IGB_MAX_TXRXINT_82575;
4364 		break;
4365 
4366 	case e1000_82576:
4367 		intr_vecmax = IGB_MAX_TXRXINT_82576;
4368 		break;
4369 
4370 	case e1000_82580:
4371 		intr_vecmax = IGB_MAX_TXRXINT_82580;
4372 		break;
4373 
4374 	case e1000_i350:
4375 		intr_vecmax = IGB_MAX_TXRXINT_I350;
4376 		break;
4377 
4378 	case e1000_i354:
4379 		intr_vecmax = IGB_MAX_TXRXINT_I354;
4380 		break;
4381 
4382 	case e1000_i210:
4383 		intr_vecmax = IGB_MAX_TXRXINT_I210;
4384 		break;
4385 
4386 	case e1000_i211:
4387 		intr_vecmax = IGB_MAX_TXRXINT_I211;
4388 		break;
4389 
4390 	default:
4391 		intr_vecmax = IGB_MIN_TXRXINT;
4392 		break;
4393 	}
4394 	intr_vec = 0;
4395 	for (i = 0; i < sc->tx_ring_cnt; ++i)
4396 		igb_set_txintr_mask(&sc->tx_rings[i], &intr_vec, intr_vecmax);
4397 	for (i = 0; i < sc->rx_ring_cnt; ++i)
4398 		igb_set_rxintr_mask(&sc->rx_rings[i], &intr_vec, intr_vecmax);
4399 	sc->sts_intr_mask = E1000_EICR_OTHER;
4400 
4401 	igb_set_ring_inuse(sc, FALSE);
4402 	KKASSERT(sc->rx_ring_inuse <= IGB_MIN_RING_RSS);
4403 	if (sc->rx_ring_inuse == IGB_MIN_RING_RSS) {
4404 		/*
4405 		 * Allocate RX ring map for RSS setup.
4406 		 */
4407 		sc->rx_rmap_intr = if_ringmap_alloc(sc->dev,
4408 		    IGB_MIN_RING_RSS, IGB_MIN_RING_RSS);
4409 		KASSERT(if_ringmap_count(sc->rx_rmap_intr) ==
4410 		    sc->rx_ring_inuse, ("RX ring inuse mismatch"));
4411 	}
4412 done:
4413 	igb_set_intr_mask(sc);
4414 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
4415 		txr = &sc->tx_rings[i];
4416 		if (txr->tx_intr_cpuid < 0)
4417 			txr->tx_intr_cpuid = 0;
4418 	}
4419 	return 0;
4420 }
4421 
4422 static void
4423 igb_free_intr(struct igb_softc *sc)
4424 {
4425 	if (sc->intr_data == NULL)
4426 		return;
4427 
4428 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
4429 		struct igb_intr_data *intr = &sc->intr_data[0];
4430 
4431 		KKASSERT(sc->intr_cnt == 1);
4432 		if (intr->intr_res != NULL) {
4433 			bus_release_resource(sc->dev, SYS_RES_IRQ,
4434 			    intr->intr_rid, intr->intr_res);
4435 		}
4436 		if (sc->intr_type == PCI_INTR_TYPE_MSI)
4437 			pci_release_msi(sc->dev);
4438 
4439 		kfree(sc->intr_data, M_DEVBUF);
4440 	} else {
4441 		igb_free_msix(sc, TRUE);
4442 	}
4443 }
4444 
4445 static void
4446 igb_teardown_intr(struct igb_softc *sc, int intr_cnt)
4447 {
4448 	int i;
4449 
4450 	if (sc->intr_data == NULL)
4451 		return;
4452 
4453 	for (i = 0; i < intr_cnt; ++i) {
4454 		struct igb_intr_data *intr = &sc->intr_data[i];
4455 
4456 		bus_teardown_intr(sc->dev, intr->intr_res, intr->intr_hand);
4457 	}
4458 }
4459 
4460 static void
4461 igb_alloc_msix(struct igb_softc *sc)
4462 {
4463 	int msix_enable, msix_cnt, msix_ring, alloc_cnt;
4464 	int i, x, error;
4465 	int ring_cnt, ring_cntmax;
4466 	struct igb_intr_data *intr;
4467 	boolean_t setup = FALSE;
4468 
4469 	/*
4470 	 * Don't enable MSI-X on 82575, see:
4471 	 * 82575 specification update errata #25
4472 	 */
4473 	if (sc->hw.mac.type == e1000_82575)
4474 		return;
4475 
4476 	/* Don't enable MSI-X on VF */
4477 	if (sc->vf_ifp)
4478 		return;
4479 
4480 	msix_enable = device_getenv_int(sc->dev, "msix.enable",
4481 	    igb_msix_enable);
4482 	if (!msix_enable)
4483 		return;
4484 
4485 	msix_cnt = pci_msix_count(sc->dev);
4486 #ifdef IGB_MSIX_DEBUG
4487 	msix_cnt = device_getenv_int(sc->dev, "msix.count", msix_cnt);
4488 #endif
4489 	if (msix_cnt <= 1) {
4490 		/* One MSI-X model does not make sense. */
4491 		return;
4492 	}
4493 	if (bootverbose)
4494 		device_printf(sc->dev, "MSI-X count %d\n", msix_cnt);
4495 	msix_ring = msix_cnt - 1; /* -1 for status */
4496 
4497 	/*
4498 	 * Configure # of RX/TX rings usable by MSI-X.
4499 	 */
4500 	igb_get_rxring_cnt(sc, &ring_cnt, &ring_cntmax);
4501 	if (ring_cntmax > msix_ring)
4502 		ring_cntmax = msix_ring;
4503 	sc->rx_rmap_intr = if_ringmap_alloc(sc->dev, ring_cnt, ring_cntmax);
4504 
4505 	igb_get_txring_cnt(sc, &ring_cnt, &ring_cntmax);
4506 	if (ring_cntmax > msix_ring)
4507 		ring_cntmax = msix_ring;
4508 	sc->tx_rmap_intr = if_ringmap_alloc(sc->dev, ring_cnt, ring_cntmax);
4509 
4510 	if_ringmap_match(sc->dev, sc->rx_rmap_intr, sc->tx_rmap_intr);
4511 	sc->rx_ring_msix = if_ringmap_count(sc->rx_rmap_intr);
4512 	KASSERT(sc->rx_ring_msix <= sc->rx_ring_cnt,
4513 	    ("total RX ring count %d, MSI-X RX ring count %d",
4514 	     sc->rx_ring_cnt, sc->rx_ring_msix));
4515 	sc->tx_ring_msix = if_ringmap_count(sc->tx_rmap_intr);
4516 	KASSERT(sc->tx_ring_msix <= sc->tx_ring_cnt,
4517 	    ("total TX ring count %d, MSI-X TX ring count %d",
4518 	     sc->tx_ring_cnt, sc->tx_ring_msix));
4519 
4520 	/*
4521 	 * Aggregate TX/RX MSI-X
4522 	 */
4523 	ring_cntmax = sc->rx_ring_msix;
4524 	if (ring_cntmax < sc->tx_ring_msix)
4525 		ring_cntmax = sc->tx_ring_msix;
4526 	KASSERT(ring_cntmax <= msix_ring,
4527 	    ("invalid ring count max %d, MSI-X count for rings %d",
4528 	     ring_cntmax, msix_ring));
4529 
4530 	alloc_cnt = ring_cntmax + 1; /* +1 for status */
4531 	if (bootverbose) {
4532 		device_printf(sc->dev, "MSI-X alloc %d, "
4533 		    "RX ring %d, TX ring %d\n", alloc_cnt,
4534 		    sc->rx_ring_msix, sc->tx_ring_msix);
4535 	}
4536 
4537 	sc->msix_mem_rid = PCIR_BAR(IGB_MSIX_BAR);
4538 	sc->msix_mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4539 	    &sc->msix_mem_rid, RF_ACTIVE);
4540 	if (sc->msix_mem_res == NULL) {
4541 		sc->msix_mem_rid = PCIR_BAR(IGB_MSIX_BAR_ALT);
4542 		sc->msix_mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4543 		    &sc->msix_mem_rid, RF_ACTIVE);
4544 		if (sc->msix_mem_res == NULL) {
4545 			device_printf(sc->dev, "Unable to map MSI-X table\n");
4546 			return;
4547 		}
4548 	}
4549 
4550 	sc->intr_cnt = alloc_cnt;
4551 	sc->intr_data = kmalloc(sizeof(struct igb_intr_data) * sc->intr_cnt,
4552 	    M_DEVBUF, M_WAITOK | M_ZERO);
4553 	for (x = 0; x < sc->intr_cnt; ++x) {
4554 		intr = &sc->intr_data[x];
4555 		intr->intr_rid = -1;
4556 		intr->intr_rate = IGB_INTR_RATE;
4557 	}
4558 
4559 	x = 0;
4560 	for (i = 0; i < sc->rx_ring_msix; ++i) {
4561 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
4562 		struct igb_tx_ring *txr = NULL;
4563 		int cpuid, j;
4564 
4565 		KKASSERT(x < sc->intr_cnt);
4566 		rxr->rx_intr_vec = x;
4567 		rxr->rx_intr_mask = 1 << rxr->rx_intr_vec;
4568 
4569 		cpuid = if_ringmap_cpumap(sc->rx_rmap_intr, i);
4570 
4571 		/*
4572 		 * Try finding TX ring to piggyback.
4573 		 */
4574 		for (j = 0; j < sc->tx_ring_msix; ++j) {
4575 			if (cpuid ==
4576 			    if_ringmap_cpumap(sc->tx_rmap_intr, j)) {
4577 				txr = &sc->tx_rings[j];
4578 				KKASSERT(txr->tx_intr_cpuid < 0);
4579 				break;
4580 			}
4581 		}
4582 		rxr->rx_txr = txr;
4583 
4584 		intr = &sc->intr_data[x++];
4585 		intr->intr_serialize = &rxr->rx_serialize;
4586 		intr->intr_cpuid = cpuid;
4587 		KKASSERT(intr->intr_cpuid < netisr_ncpus);
4588 		intr->intr_funcarg = rxr;
4589 		if (txr != NULL) {
4590 			intr->intr_func = igb_msix_rxtx;
4591 			intr->intr_use = IGB_INTR_USE_RXTX;
4592 			ksnprintf(intr->intr_desc0, sizeof(intr->intr_desc0),
4593 			    "%s rx%dtx%d", device_get_nameunit(sc->dev),
4594 			    i, txr->me);
4595 
4596 			txr->tx_intr_vec = rxr->rx_intr_vec;
4597 			txr->tx_intr_mask = rxr->rx_intr_mask;
4598 			txr->tx_intr_cpuid = intr->intr_cpuid;
4599 		} else {
4600 			intr->intr_func = igb_msix_rx;
4601 			intr->intr_rate = IGB_MSIX_RX_RATE;
4602 			intr->intr_use = IGB_INTR_USE_RX;
4603 
4604 			ksnprintf(intr->intr_desc0, sizeof(intr->intr_desc0),
4605 			    "%s rx%d", device_get_nameunit(sc->dev), i);
4606 		}
4607 		intr->intr_desc = intr->intr_desc0;
4608 	}
4609 
4610 	for (i = 0; i < sc->tx_ring_msix; ++i) {
4611 		struct igb_tx_ring *txr = &sc->tx_rings[i];
4612 
4613 		if (txr->tx_intr_cpuid >= 0) {
4614 			/* Piggybacked by RX ring. */
4615 			continue;
4616 		}
4617 
4618 		KKASSERT(x < sc->intr_cnt);
4619 		txr->tx_intr_vec = x;
4620 		txr->tx_intr_mask = 1 << txr->tx_intr_vec;
4621 
4622 		intr = &sc->intr_data[x++];
4623 		intr->intr_serialize = &txr->tx_serialize;
4624 		intr->intr_func = igb_msix_tx;
4625 		intr->intr_funcarg = txr;
4626 		intr->intr_rate = IGB_MSIX_TX_RATE;
4627 		intr->intr_use = IGB_INTR_USE_TX;
4628 
4629 		intr->intr_cpuid = if_ringmap_cpumap(sc->tx_rmap_intr, i);
4630 		KKASSERT(intr->intr_cpuid < netisr_ncpus);
4631 		txr->tx_intr_cpuid = intr->intr_cpuid;
4632 
4633 		ksnprintf(intr->intr_desc0, sizeof(intr->intr_desc0), "%s tx%d",
4634 		    device_get_nameunit(sc->dev), i);
4635 		intr->intr_desc = intr->intr_desc0;
4636 	}
4637 
4638 	/*
4639 	 * Link status
4640 	 */
4641 	KKASSERT(x < sc->intr_cnt);
4642 	sc->sts_msix_vec = x;
4643 	sc->sts_intr_mask = 1 << sc->sts_msix_vec;
4644 
4645 	intr = &sc->intr_data[x++];
4646 	intr->intr_serialize = &sc->main_serialize;
4647 	intr->intr_func = igb_msix_status;
4648 	intr->intr_funcarg = sc;
4649 	intr->intr_cpuid = 0;
4650 	intr->intr_use = IGB_INTR_USE_STATUS;
4651 
4652 	ksnprintf(intr->intr_desc0, sizeof(intr->intr_desc0), "%s sts",
4653 	    device_get_nameunit(sc->dev));
4654 	intr->intr_desc = intr->intr_desc0;
4655 
4656 	KKASSERT(x == sc->intr_cnt);
4657 
4658 	error = pci_setup_msix(sc->dev);
4659 	if (error) {
4660 		device_printf(sc->dev, "Setup MSI-X failed\n");
4661 		goto back;
4662 	}
4663 	setup = TRUE;
4664 
4665 	for (i = 0; i < sc->intr_cnt; ++i) {
4666 		intr = &sc->intr_data[i];
4667 
4668 		error = pci_alloc_msix_vector(sc->dev, i, &intr->intr_rid,
4669 		    intr->intr_cpuid);
4670 		if (error) {
4671 			device_printf(sc->dev,
4672 			    "Unable to allocate MSI-X %d on cpu%d\n", i,
4673 			    intr->intr_cpuid);
4674 			goto back;
4675 		}
4676 
4677 		intr->intr_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4678 		    &intr->intr_rid, RF_ACTIVE);
4679 		if (intr->intr_res == NULL) {
4680 			device_printf(sc->dev,
4681 			    "Unable to allocate MSI-X %d resource\n", i);
4682 			error = ENOMEM;
4683 			goto back;
4684 		}
4685 	}
4686 
4687 	pci_enable_msix(sc->dev);
4688 	sc->intr_type = PCI_INTR_TYPE_MSIX;
4689 back:
4690 	if (error)
4691 		igb_free_msix(sc, setup);
4692 }
4693 
4694 static void
4695 igb_free_msix(struct igb_softc *sc, boolean_t setup)
4696 {
4697 	int i;
4698 
4699 	KKASSERT(sc->intr_cnt > 1);
4700 
4701 	for (i = 0; i < sc->intr_cnt; ++i) {
4702 		struct igb_intr_data *intr = &sc->intr_data[i];
4703 
4704 		if (intr->intr_res != NULL) {
4705 			bus_release_resource(sc->dev, SYS_RES_IRQ,
4706 			    intr->intr_rid, intr->intr_res);
4707 		}
4708 		if (intr->intr_rid >= 0)
4709 			pci_release_msix_vector(sc->dev, intr->intr_rid);
4710 	}
4711 	if (setup)
4712 		pci_teardown_msix(sc->dev);
4713 
4714 	sc->intr_cnt = 0;
4715 	kfree(sc->intr_data, M_DEVBUF);
4716 	sc->intr_data = NULL;
4717 }
4718 
4719 static void
4720 igb_msix_rx(void *arg)
4721 {
4722 	struct igb_rx_ring *rxr = arg;
4723 
4724 	ASSERT_SERIALIZED(&rxr->rx_serialize);
4725 	igb_rxeof(rxr, -1);
4726 
4727 	E1000_WRITE_REG(&rxr->sc->hw, E1000_EIMS, rxr->rx_intr_mask);
4728 }
4729 
4730 static void
4731 igb_msix_tx(void *arg)
4732 {
4733 	struct igb_tx_ring *txr = arg;
4734 
4735 	ASSERT_SERIALIZED(&txr->tx_serialize);
4736 
4737 	igb_tx_intr(txr, *(txr->tx_hdr));
4738 	E1000_WRITE_REG(&txr->sc->hw, E1000_EIMS, txr->tx_intr_mask);
4739 }
4740 
4741 static void
4742 igb_msix_status(void *arg)
4743 {
4744 	struct igb_softc *sc = arg;
4745 	uint32_t icr;
4746 
4747 	ASSERT_SERIALIZED(&sc->main_serialize);
4748 
4749 	icr = E1000_READ_REG(&sc->hw, E1000_ICR);
4750 	if (icr & E1000_ICR_LSC) {
4751 		sc->hw.mac.get_link_status = 1;
4752 		igb_update_link_status(sc);
4753 	}
4754 
4755 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->sts_intr_mask);
4756 }
4757 
4758 static void
4759 igb_set_ring_inuse(struct igb_softc *sc, boolean_t polling)
4760 {
4761 	sc->rx_ring_inuse = igb_get_rxring_inuse(sc, polling);
4762 	sc->tx_ring_inuse = igb_get_txring_inuse(sc, polling);
4763 	if (bootverbose) {
4764 		if_printf(&sc->arpcom.ac_if, "RX rings %d/%d, TX rings %d/%d\n",
4765 		    sc->rx_ring_inuse, sc->rx_ring_cnt,
4766 		    sc->tx_ring_inuse, sc->tx_ring_cnt);
4767 	}
4768 }
4769 
4770 static int
4771 igb_get_rxring_inuse(const struct igb_softc *sc, boolean_t polling)
4772 {
4773 	if (!IGB_ENABLE_HWRSS(sc))
4774 		return 1;
4775 
4776 	if (polling)
4777 		return sc->rx_ring_cnt;
4778 	else if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4779 		return IGB_MIN_RING_RSS;
4780 	else
4781 		return sc->rx_ring_msix;
4782 }
4783 
4784 static int
4785 igb_get_txring_inuse(const struct igb_softc *sc, boolean_t polling)
4786 {
4787 	if (!IGB_ENABLE_HWTSS(sc))
4788 		return 1;
4789 
4790 	if (polling)
4791 		return sc->tx_ring_cnt;
4792 	else if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4793 		return IGB_MIN_RING;
4794 	else
4795 		return sc->tx_ring_msix;
4796 }
4797 
4798 static int
4799 igb_tso_pullup(struct igb_tx_ring *txr, struct mbuf **mp)
4800 {
4801 	int hoff, iphlen, thoff;
4802 	struct mbuf *m;
4803 
4804 	m = *mp;
4805 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4806 
4807 	iphlen = m->m_pkthdr.csum_iphlen;
4808 	thoff = m->m_pkthdr.csum_thlen;
4809 	hoff = m->m_pkthdr.csum_lhlen;
4810 
4811 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4812 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4813 	KASSERT(hoff > 0, ("invalid ether hlen"));
4814 
4815 	if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
4816 		m = m_pullup(m, hoff + iphlen + thoff);
4817 		if (m == NULL) {
4818 			*mp = NULL;
4819 			return ENOBUFS;
4820 		}
4821 		*mp = m;
4822 	}
4823 	if (txr->tx_flags & IGB_TXFLAG_TSO_IPLEN0) {
4824 		struct ip *ip;
4825 
4826 		ip = mtodoff(m, struct ip *, hoff);
4827 		ip->ip_len = 0;
4828 	}
4829 
4830 	return 0;
4831 }
4832 
4833 static void
4834 igb_tso_ctx(struct igb_tx_ring *txr, struct mbuf *m, uint32_t *hlen)
4835 {
4836 	struct e1000_adv_tx_context_desc *TXD;
4837 	uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
4838 	int hoff, ctxd, iphlen, thoff;
4839 
4840 	iphlen = m->m_pkthdr.csum_iphlen;
4841 	thoff = m->m_pkthdr.csum_thlen;
4842 	hoff = m->m_pkthdr.csum_lhlen;
4843 
4844 	vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
4845 
4846 	ctxd = txr->next_avail_desc;
4847 	TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
4848 
4849 	if (m->m_flags & M_VLANTAG) {
4850 		uint16_t vlantag;
4851 
4852 		vlantag = htole16(m->m_pkthdr.ether_vlantag);
4853 		vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
4854 	}
4855 
4856 	vlan_macip_lens |= (hoff << E1000_ADVTXD_MACLEN_SHIFT);
4857 	vlan_macip_lens |= iphlen;
4858 
4859 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4860 	type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
4861 	type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
4862 
4863 	mss_l4len_idx |= (m->m_pkthdr.tso_segsz << E1000_ADVTXD_MSS_SHIFT);
4864 	mss_l4len_idx |= (thoff << E1000_ADVTXD_L4LEN_SHIFT);
4865 
4866 	/*
4867 	 * 82575 needs the TX context index added; the queue
4868 	 * index is used as TX context index here.
4869 	 */
4870 	if (txr->sc->hw.mac.type == e1000_82575)
4871 		mss_l4len_idx |= txr->me << 4;
4872 
4873 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
4874 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
4875 	TXD->seqnum_seed = htole32(0);
4876 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
4877 
4878 	/* We've consumed the first desc, adjust counters */
4879 	if (++ctxd == txr->num_tx_desc)
4880 		ctxd = 0;
4881 	txr->next_avail_desc = ctxd;
4882 	--txr->tx_avail;
4883 
4884 	*hlen = hoff + iphlen + thoff;
4885 }
4886 
4887 static void
4888 igb_setup_serialize(struct igb_softc *sc)
4889 {
4890 	int i = 0, j;
4891 
4892 	/* Main + RX + TX */
4893 	sc->serialize_cnt = 1 + sc->rx_ring_cnt + sc->tx_ring_cnt;
4894 	sc->serializes =
4895 	    kmalloc(sc->serialize_cnt * sizeof(struct lwkt_serialize *),
4896 	        M_DEVBUF, M_WAITOK | M_ZERO);
4897 
4898 	/*
4899 	 * Setup serializes
4900 	 *
4901 	 * NOTE: Order is critical
4902 	 */
4903 
4904 	KKASSERT(i < sc->serialize_cnt);
4905 	sc->serializes[i++] = &sc->main_serialize;
4906 
4907 	for (j = 0; j < sc->rx_ring_cnt; ++j) {
4908 		KKASSERT(i < sc->serialize_cnt);
4909 		sc->serializes[i++] = &sc->rx_rings[j].rx_serialize;
4910 	}
4911 
4912 	for (j = 0; j < sc->tx_ring_cnt; ++j) {
4913 		KKASSERT(i < sc->serialize_cnt);
4914 		sc->serializes[i++] = &sc->tx_rings[j].tx_serialize;
4915 	}
4916 
4917 	KKASSERT(i == sc->serialize_cnt);
4918 }
4919 
4920 static void
4921 igb_msix_rxtx(void *arg)
4922 {
4923 	struct igb_rx_ring *rxr = arg;
4924 	struct igb_tx_ring *txr;
4925 	int hdr;
4926 
4927 	ASSERT_SERIALIZED(&rxr->rx_serialize);
4928 
4929 	igb_rxeof(rxr, -1);
4930 
4931 	/*
4932 	 * NOTE:
4933 	 * Since next_to_clean is only changed by igb_txeof(),
4934 	 * which is called only in interrupt handler, the
4935 	 * check w/o holding tx serializer is MPSAFE.
4936 	 */
4937 	txr = rxr->rx_txr;
4938 	hdr = *(txr->tx_hdr);
4939 	if (hdr != txr->next_to_clean) {
4940 		lwkt_serialize_enter(&txr->tx_serialize);
4941 		igb_tx_intr(txr, hdr);
4942 		lwkt_serialize_exit(&txr->tx_serialize);
4943 	}
4944 
4945 	E1000_WRITE_REG(&rxr->sc->hw, E1000_EIMS, rxr->rx_intr_mask);
4946 }
4947 
4948 static void
4949 igb_set_timer_cpuid(struct igb_softc *sc, boolean_t polling)
4950 {
4951 	if (polling || sc->intr_type == PCI_INTR_TYPE_MSIX)
4952 		sc->timer_cpuid = 0; /* XXX fixed */
4953 	else
4954 		sc->timer_cpuid = rman_get_cpuid(sc->intr_data[0].intr_res);
4955 }
4956 
4957 static void
4958 igb_init_dmac(struct igb_softc *sc, uint32_t pba)
4959 {
4960 	struct e1000_hw *hw = &sc->hw;
4961 	uint32_t reg;
4962 
4963 	if (hw->mac.type == e1000_i211)
4964 		return;
4965 
4966 	if (hw->mac.type > e1000_82580) {
4967 		uint32_t dmac;
4968 		uint16_t hwm;
4969 
4970 		if (sc->dma_coalesce == 0) { /* Disabling it */
4971 			reg = ~E1000_DMACR_DMAC_EN;
4972 			E1000_WRITE_REG(hw, E1000_DMACR, reg);
4973 			return;
4974 		} else {
4975 			if_printf(&sc->arpcom.ac_if,
4976 			    "DMA Coalescing enabled\n");
4977 		}
4978 
4979 		/* Set starting threshold */
4980 		E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
4981 
4982 		hwm = 64 * pba - sc->max_frame_size / 16;
4983 		if (hwm < 64 * (pba - 6))
4984 			hwm = 64 * (pba - 6);
4985 		reg = E1000_READ_REG(hw, E1000_FCRTC);
4986 		reg &= ~E1000_FCRTC_RTH_COAL_MASK;
4987 		reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
4988 		    & E1000_FCRTC_RTH_COAL_MASK);
4989 		E1000_WRITE_REG(hw, E1000_FCRTC, reg);
4990 
4991 		dmac = pba - sc->max_frame_size / 512;
4992 		if (dmac < pba - 10)
4993 			dmac = pba - 10;
4994 		reg = E1000_READ_REG(hw, E1000_DMACR);
4995 		reg &= ~E1000_DMACR_DMACTHR_MASK;
4996 		reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
4997 		    & E1000_DMACR_DMACTHR_MASK);
4998 
4999 		/* transition to L0x or L1 if available..*/
5000 		reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
5001 
5002 		/*
5003 		 * Check if status is 2.5Gb backplane connection
5004 		 * before configuration of watchdog timer, which
5005 		 * is in msec values in 12.8usec intervals watchdog
5006 		 * timer = msec values in 32usec intervals for non
5007 		 * 2.5Gb connection.
5008 		 */
5009 		if (hw->mac.type == e1000_i354) {
5010 			int status = E1000_READ_REG(hw, E1000_STATUS);
5011 
5012 			if ((status & E1000_STATUS_2P5_SKU) &&
5013 			    !(status & E1000_STATUS_2P5_SKU_OVER))
5014 				reg |= ((sc->dma_coalesce * 5) >> 6);
5015 			else
5016 				reg |= (sc->dma_coalesce >> 5);
5017 		} else {
5018 			reg |= (sc->dma_coalesce >> 5);
5019 		}
5020 
5021 		E1000_WRITE_REG(hw, E1000_DMACR, reg);
5022 
5023 		E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
5024 
5025 		/* Set the interval before transition */
5026 		reg = E1000_READ_REG(hw, E1000_DMCTLX);
5027 		if (hw->mac.type == e1000_i350)
5028 			reg |= IGB_DMCTLX_DCFLUSH_DIS;
5029 		/*
5030 		 * In 2.5Gb connection, TTLX unit is 0.4 usec, which
5031 		 * is 0x4*2 = 0xA.  But delay is still 4 usec.
5032 		 */
5033 		if (hw->mac.type == e1000_i354) {
5034 			int status = E1000_READ_REG(hw, E1000_STATUS);
5035 
5036 			if ((status & E1000_STATUS_2P5_SKU) &&
5037 			    !(status & E1000_STATUS_2P5_SKU_OVER))
5038 				reg |= 0xA;
5039 			else
5040 				reg |= 0x4;
5041 		} else {
5042 			reg |= 0x4;
5043 		}
5044 		E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
5045 
5046 		/* Free space in tx packet buffer to wake from DMA coal */
5047 		E1000_WRITE_REG(hw, E1000_DMCTXTH,
5048 		    (IGB_TXPBSIZE - (2 * sc->max_frame_size)) >> 6);
5049 
5050 		/* Make low power state decision controlled by DMA coal */
5051 		reg = E1000_READ_REG(hw, E1000_PCIEMISC);
5052 		reg &= ~E1000_PCIEMISC_LX_DECISION;
5053 		E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
5054 	} else if (hw->mac.type == e1000_82580) {
5055 		reg = E1000_READ_REG(hw, E1000_PCIEMISC);
5056 		E1000_WRITE_REG(hw, E1000_PCIEMISC,
5057 		    reg & ~E1000_PCIEMISC_LX_DECISION);
5058 		E1000_WRITE_REG(hw, E1000_DMACR, 0);
5059 	}
5060 }
5061 
5062 static void
5063 igb_reg_dump(struct igb_softc *sc)
5064 {
5065 	device_t dev = sc->dev;
5066 	int col = 0;
5067 
5068 #define DUMPREG(regno)	\
5069 	kprintf(" %13s=%08x", #regno + 6, E1000_READ_REG(&sc->hw, regno));\
5070 	if (++col == 3) {		\
5071 		kprintf("\n");		\
5072 		col = 0;		\
5073 	}				\
5074 
5075 	device_printf(dev, "REGISTER DUMP\n");
5076 	DUMPREG(E1000_CTRL);
5077 	DUMPREG(E1000_STATUS);
5078 	DUMPREG(E1000_EECD);
5079 	DUMPREG(E1000_EERD);
5080 	DUMPREG(E1000_CTRL_EXT);
5081 	DUMPREG(E1000_FLA);
5082 	DUMPREG(E1000_MDIC);
5083 	DUMPREG(E1000_SCTL);
5084 	DUMPREG(E1000_FCAL);
5085 	DUMPREG(E1000_FCAH);
5086 	DUMPREG(E1000_FCT);
5087 	DUMPREG(E1000_CONNSW);
5088 	DUMPREG(E1000_VET);
5089 	DUMPREG(E1000_ICR);
5090 	DUMPREG(E1000_ITR);
5091 	DUMPREG(E1000_IMS);
5092 	DUMPREG(E1000_IVAR);
5093 	DUMPREG(E1000_SVCR);
5094 	DUMPREG(E1000_SVT);
5095 	DUMPREG(E1000_LPIC);
5096 	DUMPREG(E1000_RCTL);
5097 	DUMPREG(E1000_FCTTV);
5098 	DUMPREG(E1000_TXCW);
5099 	DUMPREG(E1000_RXCW);
5100 	DUMPREG(E1000_EIMS);
5101 	DUMPREG(E1000_EIAC);
5102 	DUMPREG(E1000_EIAM);
5103 	DUMPREG(E1000_GPIE);
5104 	DUMPREG(E1000_IVAR0);
5105 	DUMPREG(E1000_IVAR_MISC);
5106 	DUMPREG(E1000_TCTL);
5107 	DUMPREG(E1000_TCTL_EXT);
5108 	DUMPREG(E1000_TIPG);
5109 	DUMPREG(E1000_TBT);
5110 	DUMPREG(E1000_AIT);
5111 	DUMPREG(E1000_LEDCTL);
5112 	DUMPREG(E1000_EXTCNF_CTRL);
5113 	DUMPREG(E1000_EXTCNF_SIZE);
5114 	DUMPREG(E1000_PHY_CTRL);
5115 	DUMPREG(E1000_PBA);
5116 	DUMPREG(E1000_PBS);
5117 	DUMPREG(E1000_PBECCSTS);
5118 	DUMPREG(E1000_EEMNGCTL);
5119 	DUMPREG(E1000_EEARBC);
5120 	DUMPREG(E1000_FLASHT);
5121 	DUMPREG(E1000_EEARBC_I210);
5122 	DUMPREG(E1000_EEWR);
5123 	DUMPREG(E1000_FLSWCTL);
5124 	DUMPREG(E1000_FLSWDATA);
5125 	DUMPREG(E1000_FLSWCNT);
5126 	DUMPREG(E1000_FLOP);
5127 	DUMPREG(E1000_I2CCMD);
5128 	DUMPREG(E1000_I2CPARAMS);
5129 	DUMPREG(E1000_WDSTP);
5130 	DUMPREG(E1000_SWDSTS);
5131 	DUMPREG(E1000_FRTIMER);
5132 	DUMPREG(E1000_TCPTIMER);
5133 	DUMPREG(E1000_VPDDIAG);
5134 	DUMPREG(E1000_IMS_V2);
5135 	DUMPREG(E1000_IAM_V2);
5136 	DUMPREG(E1000_ERT);
5137 	DUMPREG(E1000_FCRTL);
5138 	DUMPREG(E1000_FCRTH);
5139 	DUMPREG(E1000_PSRCTL);
5140 	DUMPREG(E1000_RDFH);
5141 	DUMPREG(E1000_RDFT);
5142 	DUMPREG(E1000_RDFHS);
5143 	DUMPREG(E1000_RDFTS);
5144 	DUMPREG(E1000_RDFPC);
5145 	DUMPREG(E1000_PBRTH);
5146 	DUMPREG(E1000_FCRTV);
5147 	DUMPREG(E1000_RDPUMB);
5148 	DUMPREG(E1000_RDPUAD);
5149 	DUMPREG(E1000_RDPUWD);
5150 	DUMPREG(E1000_RDPURD);
5151 	DUMPREG(E1000_RDPUCTL);
5152 	DUMPREG(E1000_PBDIAG);
5153 	DUMPREG(E1000_RXPBS);
5154 	DUMPREG(E1000_IRPBS);
5155 	DUMPREG(E1000_PBRWAC);
5156 	DUMPREG(E1000_RDTR);
5157 	DUMPREG(E1000_RADV);
5158 	DUMPREG(E1000_SRWR);
5159 	DUMPREG(E1000_I210_FLMNGCTL);
5160 	DUMPREG(E1000_I210_FLMNGDATA);
5161 	DUMPREG(E1000_I210_FLMNGCNT);
5162 	DUMPREG(E1000_I210_FLSWCTL);
5163 	DUMPREG(E1000_I210_FLSWDATA);
5164 	DUMPREG(E1000_I210_FLSWCNT);
5165 	DUMPREG(E1000_I210_FLA);
5166 	DUMPREG(E1000_INVM_SIZE);
5167 	DUMPREG(E1000_I210_TQAVCTRL);
5168 	DUMPREG(E1000_RSRPD);
5169 	DUMPREG(E1000_RAID);
5170 	DUMPREG(E1000_TXDMAC);
5171 	DUMPREG(E1000_KABGTXD);
5172 	DUMPREG(E1000_PBSLAC);
5173 	DUMPREG(E1000_TXPBS);
5174 	DUMPREG(E1000_ITPBS);
5175 	DUMPREG(E1000_TDFH);
5176 	DUMPREG(E1000_TDFT);
5177 	DUMPREG(E1000_TDFHS);
5178 	DUMPREG(E1000_TDFTS);
5179 	DUMPREG(E1000_TDFPC);
5180 	DUMPREG(E1000_TDPUMB);
5181 	DUMPREG(E1000_TDPUAD);
5182 	DUMPREG(E1000_TDPUWD);
5183 	DUMPREG(E1000_TDPURD);
5184 	DUMPREG(E1000_TDPUCTL);
5185 	DUMPREG(E1000_DTXCTL);
5186 	DUMPREG(E1000_DTXTCPFLGL);
5187 	DUMPREG(E1000_DTXTCPFLGH);
5188 	DUMPREG(E1000_DTXMXSZRQ);
5189 	DUMPREG(E1000_TIDV);
5190 	DUMPREG(E1000_TADV);
5191 	DUMPREG(E1000_TSPMT);
5192 	DUMPREG(E1000_VFGPRC);
5193 	DUMPREG(E1000_VFGORC);
5194 	DUMPREG(E1000_VFMPRC);
5195 	DUMPREG(E1000_VFGPTC);
5196 	DUMPREG(E1000_VFGOTC);
5197 	DUMPREG(E1000_VFGOTLBC);
5198 	DUMPREG(E1000_VFGPTLBC);
5199 	DUMPREG(E1000_VFGORLBC);
5200 	DUMPREG(E1000_VFGPRLBC);
5201 	DUMPREG(E1000_LSECTXCAP);
5202 	DUMPREG(E1000_LSECRXCAP);
5203 	DUMPREG(E1000_LSECTXCTRL);
5204 	DUMPREG(E1000_LSECRXCTRL);
5205 	DUMPREG(E1000_LSECTXSCL);
5206 	DUMPREG(E1000_LSECTXSCH);
5207 	DUMPREG(E1000_LSECTXSA);
5208 	DUMPREG(E1000_LSECTXPN0);
5209 	DUMPREG(E1000_LSECTXPN1);
5210 	DUMPREG(E1000_LSECRXSCL);
5211 	DUMPREG(E1000_LSECRXSCH);
5212 	DUMPREG(E1000_IPSCTRL);
5213 	DUMPREG(E1000_IPSRXCMD);
5214 	DUMPREG(E1000_IPSRXIDX);
5215 	DUMPREG(E1000_IPSRXSALT);
5216 	DUMPREG(E1000_IPSRXSPI);
5217 	DUMPREG(E1000_IPSTXSALT);
5218 	DUMPREG(E1000_IPSTXIDX);
5219 	DUMPREG(E1000_PCS_CFG0);
5220 	DUMPREG(E1000_PCS_LCTL);
5221 	DUMPREG(E1000_PCS_LSTAT);
5222 	DUMPREG(E1000_PCS_ANADV);
5223 	DUMPREG(E1000_PCS_LPAB);
5224 	DUMPREG(E1000_PCS_NPTX);
5225 	DUMPREG(E1000_PCS_LPABNP);
5226 	DUMPREG(E1000_RXCSUM);
5227 	DUMPREG(E1000_RLPML);
5228 	DUMPREG(E1000_RFCTL);
5229 	DUMPREG(E1000_MTA);
5230 	DUMPREG(E1000_RA);
5231 	DUMPREG(E1000_RA2);
5232 	DUMPREG(E1000_VFTA);
5233 	DUMPREG(E1000_VT_CTL);
5234 	DUMPREG(E1000_CIAA);
5235 	DUMPREG(E1000_CIAD);
5236 	DUMPREG(E1000_VFQA0);
5237 	DUMPREG(E1000_VFQA1);
5238 	DUMPREG(E1000_WUC);
5239 	DUMPREG(E1000_WUFC);
5240 	DUMPREG(E1000_WUS);
5241 	DUMPREG(E1000_MANC);
5242 	DUMPREG(E1000_IPAV);
5243 	DUMPREG(E1000_IP4AT);
5244 	DUMPREG(E1000_IP6AT);
5245 	DUMPREG(E1000_WUPL);
5246 	DUMPREG(E1000_WUPM);
5247 	DUMPREG(E1000_PBACL);
5248 	DUMPREG(E1000_FFLT);
5249 	DUMPREG(E1000_HOST_IF);
5250 	DUMPREG(E1000_HIBBA);
5251 	DUMPREG(E1000_KMRNCTRLSTA);
5252 	DUMPREG(E1000_MANC2H);
5253 	DUMPREG(E1000_CCMCTL);
5254 	DUMPREG(E1000_GIOCTL);
5255 	DUMPREG(E1000_SCCTL);
5256 
5257 #define E1000_WCS	0x558C
5258 	DUMPREG(E1000_WCS);
5259 #define E1000_GCR_EXT	0x586C
5260 	DUMPREG(E1000_GCR_EXT);
5261 	DUMPREG(E1000_GCR);
5262 	DUMPREG(E1000_GCR2);
5263 	DUMPREG(E1000_FACTPS);
5264 	DUMPREG(E1000_DCA_ID);
5265 	DUMPREG(E1000_DCA_CTRL);
5266 	DUMPREG(E1000_UFUSE);
5267 	DUMPREG(E1000_FFLT_DBG);
5268 	DUMPREG(E1000_HICR);
5269 	DUMPREG(E1000_FWSTS);
5270 	DUMPREG(E1000_CPUVEC);
5271 	DUMPREG(E1000_MRQC);
5272 	DUMPREG(E1000_SWPBS);
5273 	DUMPREG(E1000_MBVFICR);
5274 	DUMPREG(E1000_MBVFIMR);
5275 	DUMPREG(E1000_VFLRE);
5276 	DUMPREG(E1000_VFRE);
5277 	DUMPREG(E1000_VFTE);
5278 	DUMPREG(E1000_QDE);
5279 	DUMPREG(E1000_DTXSWC);
5280 	DUMPREG(E1000_WVBR);
5281 	DUMPREG(E1000_RPLOLR);
5282 	DUMPREG(E1000_UTA);
5283 	DUMPREG(E1000_IOVTCL);
5284 	DUMPREG(E1000_VMRCTL);
5285 	DUMPREG(E1000_VMRVLAN);
5286 	DUMPREG(E1000_VMRVM);
5287 	DUMPREG(E1000_LVMMC);
5288 	DUMPREG(E1000_TXSWC);
5289 	DUMPREG(E1000_SCCRL);
5290 	DUMPREG(E1000_BSCTRH);
5291 	DUMPREG(E1000_MSCTRH);
5292 	DUMPREG(E1000_RXSTMPL);
5293 	DUMPREG(E1000_RXSTMPH);
5294 	DUMPREG(E1000_RXSATRL);
5295 	DUMPREG(E1000_RXSATRH);
5296 	DUMPREG(E1000_TXSTMPL);
5297 	DUMPREG(E1000_TXSTMPH);
5298 	DUMPREG(E1000_TIMINCA);
5299 	DUMPREG(E1000_TIMADJL);
5300 	DUMPREG(E1000_TIMADJH);
5301 	DUMPREG(E1000_TSAUXC);
5302 	DUMPREG(E1000_SYSSTMPL);
5303 	DUMPREG(E1000_SYSSTMPH);
5304 	DUMPREG(E1000_PLTSTMPL);
5305 	DUMPREG(E1000_PLTSTMPH);
5306 	DUMPREG(E1000_RXMTRL);
5307 	DUMPREG(E1000_RXUDP);
5308 	DUMPREG(E1000_SYSTIMR);
5309 	DUMPREG(E1000_TSICR);
5310 	DUMPREG(E1000_TSIM);
5311 	DUMPREG(E1000_DMACR);
5312 	DUMPREG(E1000_DMCTXTH);
5313 	DUMPREG(E1000_DMCTLX);
5314 	DUMPREG(E1000_DMCRTRH);
5315 	DUMPREG(E1000_DMCCNT);
5316 	DUMPREG(E1000_FCRTC);
5317 	DUMPREG(E1000_PCIEMISC);
5318 	DUMPREG(E1000_PCIEERRSTS);
5319 	DUMPREG(E1000_IPCNFG);
5320 	DUMPREG(E1000_LTRC);
5321 	DUMPREG(E1000_EEER);
5322 	DUMPREG(E1000_EEE_SU);
5323 	DUMPREG(E1000_TLPIC);
5324 	DUMPREG(E1000_RLPIC);
5325 	if (++col != 1)
5326 		kprintf("\n");
5327 	kprintf("\n");
5328 }
5329 
5330 static int
5331 igb_sysctl_reg_dump(SYSCTL_HANDLER_ARGS)
5332 {
5333 	struct igb_softc *sc = (void *)arg1;
5334 	struct ifnet *ifp = &sc->arpcom.ac_if;
5335 	int error, dump = 0;
5336 
5337 	error = sysctl_handle_int(oidp, &dump, 0, req);
5338 	if (error || req->newptr == NULL)
5339 		return error;
5340 	if (dump <= 0)
5341 		return EINVAL;
5342 
5343 	ifnet_serialize_all(ifp);
5344 	igb_reg_dump(sc);
5345 	ifnet_deserialize_all(ifp);
5346 
5347 	return error;
5348 }
5349