xref: /dragonfly/sys/dev/netif/igb/if_igb.c (revision 07a2f99c)
1 /*
2  * Copyright (c) 2001-2011, Intel Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  *  1. Redistributions of source code must retain the above copyright notice,
9  *     this list of conditions and the following disclaimer.
10  *
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  3. Neither the name of the Intel Corporation nor the names of its
16  *     contributors may be used to endorse or promote products derived from
17  *     this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include "opt_ifpoll.h"
33 #include "opt_igb.h"
34 
35 #include <sys/param.h>
36 #include <sys/bus.h>
37 #include <sys/endian.h>
38 #include <sys/interrupt.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/proc.h>
43 #include <sys/rman.h>
44 #include <sys/serialize.h>
45 #include <sys/serialize2.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50 
51 #include <net/bpf.h>
52 #include <net/ethernet.h>
53 #include <net/if.h>
54 #include <net/if_arp.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/ifq_var.h>
58 #include <net/toeplitz.h>
59 #include <net/toeplitz2.h>
60 #include <net/vlan/if_vlan_var.h>
61 #include <net/vlan/if_vlan_ether.h>
62 #include <net/if_poll.h>
63 
64 #include <netinet/in_systm.h>
65 #include <netinet/in.h>
66 #include <netinet/ip.h>
67 #include <netinet/tcp.h>
68 #include <netinet/udp.h>
69 
70 #include <bus/pci/pcivar.h>
71 #include <bus/pci/pcireg.h>
72 
73 #include <dev/netif/ig_hal/e1000_api.h>
74 #include <dev/netif/ig_hal/e1000_82575.h>
75 #include <dev/netif/igb/if_igb.h>
76 
77 #ifdef IGB_RSS_DEBUG
78 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...) \
79 do { \
80 	if (sc->rss_debug >= lvl) \
81 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
82 } while (0)
83 #else	/* !IGB_RSS_DEBUG */
84 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
85 #endif	/* IGB_RSS_DEBUG */
86 
87 #define IGB_NAME	"Intel(R) PRO/1000 "
88 #define IGB_DEVICE(id)	\
89 	{ IGB_VENDOR_ID, E1000_DEV_ID_##id, IGB_NAME #id }
90 #define IGB_DEVICE_NULL	{ 0, 0, NULL }
91 
92 static struct igb_device {
93 	uint16_t	vid;
94 	uint16_t	did;
95 	const char	*desc;
96 } igb_devices[] = {
97 	IGB_DEVICE(82575EB_COPPER),
98 	IGB_DEVICE(82575EB_FIBER_SERDES),
99 	IGB_DEVICE(82575GB_QUAD_COPPER),
100 	IGB_DEVICE(82576),
101 	IGB_DEVICE(82576_NS),
102 	IGB_DEVICE(82576_NS_SERDES),
103 	IGB_DEVICE(82576_FIBER),
104 	IGB_DEVICE(82576_SERDES),
105 	IGB_DEVICE(82576_SERDES_QUAD),
106 	IGB_DEVICE(82576_QUAD_COPPER),
107 	IGB_DEVICE(82576_QUAD_COPPER_ET2),
108 	IGB_DEVICE(82576_VF),
109 	IGB_DEVICE(82580_COPPER),
110 	IGB_DEVICE(82580_FIBER),
111 	IGB_DEVICE(82580_SERDES),
112 	IGB_DEVICE(82580_SGMII),
113 	IGB_DEVICE(82580_COPPER_DUAL),
114 	IGB_DEVICE(82580_QUAD_FIBER),
115 	IGB_DEVICE(DH89XXCC_SERDES),
116 	IGB_DEVICE(DH89XXCC_SGMII),
117 	IGB_DEVICE(DH89XXCC_SFP),
118 	IGB_DEVICE(DH89XXCC_BACKPLANE),
119 	IGB_DEVICE(I350_COPPER),
120 	IGB_DEVICE(I350_FIBER),
121 	IGB_DEVICE(I350_SERDES),
122 	IGB_DEVICE(I350_SGMII),
123 	IGB_DEVICE(I350_VF),
124 
125 	/* required last entry */
126 	IGB_DEVICE_NULL
127 };
128 
129 static int	igb_probe(device_t);
130 static int	igb_attach(device_t);
131 static int	igb_detach(device_t);
132 static int	igb_shutdown(device_t);
133 static int	igb_suspend(device_t);
134 static int	igb_resume(device_t);
135 
136 static boolean_t igb_is_valid_ether_addr(const uint8_t *);
137 static void	igb_setup_ifp(struct igb_softc *);
138 static boolean_t igb_txcsum_ctx(struct igb_tx_ring *, struct mbuf *);
139 static int	igb_tso_pullup(struct igb_tx_ring *, struct mbuf **);
140 static void	igb_tso_ctx(struct igb_tx_ring *, struct mbuf *, uint32_t *);
141 static void	igb_add_sysctl(struct igb_softc *);
142 static int	igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
143 static int	igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS);
144 static int	igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
145 static void	igb_set_ring_inuse(struct igb_softc *, boolean_t);
146 #ifdef IFPOLL_ENABLE
147 static int	igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
148 static int	igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
149 #endif
150 
151 static void	igb_vf_init_stats(struct igb_softc *);
152 static void	igb_reset(struct igb_softc *);
153 static void	igb_update_stats_counters(struct igb_softc *);
154 static void	igb_update_vf_stats_counters(struct igb_softc *);
155 static void	igb_update_link_status(struct igb_softc *);
156 static void	igb_init_tx_unit(struct igb_softc *);
157 static void	igb_init_rx_unit(struct igb_softc *);
158 
159 static void	igb_set_vlan(struct igb_softc *);
160 static void	igb_set_multi(struct igb_softc *);
161 static void	igb_set_promisc(struct igb_softc *);
162 static void	igb_disable_promisc(struct igb_softc *);
163 
164 static int	igb_alloc_rings(struct igb_softc *);
165 static void	igb_free_rings(struct igb_softc *);
166 static int	igb_create_tx_ring(struct igb_tx_ring *);
167 static int	igb_create_rx_ring(struct igb_rx_ring *);
168 static void	igb_free_tx_ring(struct igb_tx_ring *);
169 static void	igb_free_rx_ring(struct igb_rx_ring *);
170 static void	igb_destroy_tx_ring(struct igb_tx_ring *, int);
171 static void	igb_destroy_rx_ring(struct igb_rx_ring *, int);
172 static void	igb_init_tx_ring(struct igb_tx_ring *);
173 static int	igb_init_rx_ring(struct igb_rx_ring *);
174 static int	igb_newbuf(struct igb_rx_ring *, int, boolean_t);
175 static int	igb_encap(struct igb_tx_ring *, struct mbuf **, int *, int *);
176 static void	igb_rx_refresh(struct igb_rx_ring *, int);
177 
178 static void	igb_stop(struct igb_softc *);
179 static void	igb_init(void *);
180 static int	igb_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
181 static void	igb_media_status(struct ifnet *, struct ifmediareq *);
182 static int	igb_media_change(struct ifnet *);
183 static void	igb_timer(void *);
184 static void	igb_watchdog(struct ifnet *);
185 static void	igb_start(struct ifnet *);
186 #ifdef IFPOLL_ENABLE
187 static void	igb_npoll(struct ifnet *, struct ifpoll_info *);
188 static void	igb_npoll_rx(struct ifnet *, void *, int);
189 static void	igb_npoll_tx(struct ifnet *, void *, int);
190 static void	igb_npoll_status(struct ifnet *);
191 #endif
192 static void	igb_serialize(struct ifnet *, enum ifnet_serialize);
193 static void	igb_deserialize(struct ifnet *, enum ifnet_serialize);
194 static int	igb_tryserialize(struct ifnet *, enum ifnet_serialize);
195 #ifdef INVARIANTS
196 static void	igb_serialize_assert(struct ifnet *, enum ifnet_serialize,
197 		    boolean_t);
198 #endif
199 
200 static void	igb_intr(void *);
201 static void	igb_intr_shared(void *);
202 static void	igb_rxeof(struct igb_rx_ring *, int);
203 static void	igb_txeof(struct igb_tx_ring *);
204 static void	igb_set_eitr(struct igb_softc *, int, int);
205 static void	igb_enable_intr(struct igb_softc *);
206 static void	igb_disable_intr(struct igb_softc *);
207 static void	igb_init_unshared_intr(struct igb_softc *);
208 static void	igb_init_intr(struct igb_softc *);
209 static int	igb_setup_intr(struct igb_softc *);
210 static void	igb_set_txintr_mask(struct igb_tx_ring *, int *, int);
211 static void	igb_set_rxintr_mask(struct igb_rx_ring *, int *, int);
212 static void	igb_set_intr_mask(struct igb_softc *);
213 static int	igb_alloc_intr(struct igb_softc *);
214 static void	igb_free_intr(struct igb_softc *);
215 static void	igb_teardown_intr(struct igb_softc *);
216 static void	igb_msix_try_alloc(struct igb_softc *);
217 static void	igb_msix_free(struct igb_softc *, boolean_t);
218 static int	igb_msix_setup(struct igb_softc *);
219 static void	igb_msix_teardown(struct igb_softc *, int);
220 static void	igb_msix_rx(void *);
221 static void	igb_msix_tx(void *);
222 static void	igb_msix_status(void *);
223 
224 /* Management and WOL Support */
225 static void	igb_get_mgmt(struct igb_softc *);
226 static void	igb_rel_mgmt(struct igb_softc *);
227 static void	igb_get_hw_control(struct igb_softc *);
228 static void	igb_rel_hw_control(struct igb_softc *);
229 static void	igb_enable_wol(device_t);
230 
231 static device_method_t igb_methods[] = {
232 	/* Device interface */
233 	DEVMETHOD(device_probe,		igb_probe),
234 	DEVMETHOD(device_attach,	igb_attach),
235 	DEVMETHOD(device_detach,	igb_detach),
236 	DEVMETHOD(device_shutdown,	igb_shutdown),
237 	DEVMETHOD(device_suspend,	igb_suspend),
238 	DEVMETHOD(device_resume,	igb_resume),
239 	{ 0, 0 }
240 };
241 
242 static driver_t igb_driver = {
243 	"igb",
244 	igb_methods,
245 	sizeof(struct igb_softc),
246 };
247 
248 static devclass_t igb_devclass;
249 
250 DECLARE_DUMMY_MODULE(if_igb);
251 MODULE_DEPEND(igb, ig_hal, 1, 1, 1);
252 DRIVER_MODULE(if_igb, pci, igb_driver, igb_devclass, NULL, NULL);
253 
254 static int	igb_rxd = IGB_DEFAULT_RXD;
255 static int	igb_txd = IGB_DEFAULT_TXD;
256 static int	igb_rxr = 0;
257 static int	igb_msi_enable = 1;
258 static int	igb_msix_enable = 1;
259 static int	igb_eee_disabled = 1;	/* Energy Efficient Ethernet */
260 static int	igb_fc_setting = e1000_fc_full;
261 
262 /*
263  * DMA Coalescing, only for i350 - default to off,
264  * this feature is for power savings
265  */
266 static int	igb_dma_coalesce = 0;
267 
268 TUNABLE_INT("hw.igb.rxd", &igb_rxd);
269 TUNABLE_INT("hw.igb.txd", &igb_txd);
270 TUNABLE_INT("hw.igb.rxr", &igb_rxr);
271 TUNABLE_INT("hw.igb.msi.enable", &igb_msi_enable);
272 TUNABLE_INT("hw.igb.msix.enable", &igb_msix_enable);
273 TUNABLE_INT("hw.igb.fc_setting", &igb_fc_setting);
274 
275 /* i350 specific */
276 TUNABLE_INT("hw.igb.eee_disabled", &igb_eee_disabled);
277 TUNABLE_INT("hw.igb.dma_coalesce", &igb_dma_coalesce);
278 
279 static __inline void
280 igb_rxcsum(uint32_t staterr, struct mbuf *mp)
281 {
282 	/* Ignore Checksum bit is set */
283 	if (staterr & E1000_RXD_STAT_IXSM)
284 		return;
285 
286 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
287 	    E1000_RXD_STAT_IPCS)
288 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
289 
290 	if (staterr & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
291 		if ((staterr & E1000_RXDEXT_STATERR_TCPE) == 0) {
292 			mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
293 			    CSUM_PSEUDO_HDR | CSUM_FRAG_NOT_CHECKED;
294 			mp->m_pkthdr.csum_data = htons(0xffff);
295 		}
296 	}
297 }
298 
299 static __inline struct pktinfo *
300 igb_rssinfo(struct mbuf *m, struct pktinfo *pi,
301     uint32_t hash, uint32_t hashtype, uint32_t staterr)
302 {
303 	switch (hashtype) {
304 	case E1000_RXDADV_RSSTYPE_IPV4_TCP:
305 		pi->pi_netisr = NETISR_IP;
306 		pi->pi_flags = 0;
307 		pi->pi_l3proto = IPPROTO_TCP;
308 		break;
309 
310 	case E1000_RXDADV_RSSTYPE_IPV4:
311 		if (staterr & E1000_RXD_STAT_IXSM)
312 			return NULL;
313 
314 		if ((staterr &
315 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
316 		    E1000_RXD_STAT_TCPCS) {
317 			pi->pi_netisr = NETISR_IP;
318 			pi->pi_flags = 0;
319 			pi->pi_l3proto = IPPROTO_UDP;
320 			break;
321 		}
322 		/* FALL THROUGH */
323 	default:
324 		return NULL;
325 	}
326 
327 	m->m_flags |= M_HASH;
328 	m->m_pkthdr.hash = toeplitz_hash(hash);
329 	return pi;
330 }
331 
332 static int
333 igb_probe(device_t dev)
334 {
335 	const struct igb_device *d;
336 	uint16_t vid, did;
337 
338 	vid = pci_get_vendor(dev);
339 	did = pci_get_device(dev);
340 
341 	for (d = igb_devices; d->desc != NULL; ++d) {
342 		if (vid == d->vid && did == d->did) {
343 			device_set_desc(dev, d->desc);
344 			return 0;
345 		}
346 	}
347 	return ENXIO;
348 }
349 
350 static int
351 igb_attach(device_t dev)
352 {
353 	struct igb_softc *sc = device_get_softc(dev);
354 	uint16_t eeprom_data;
355 	int error = 0, i, j, ring_max;
356 #ifdef IFPOLL_ENABLE
357 	int offset, offset_def;
358 #endif
359 
360 #ifdef notyet
361 	/* SYSCTL stuff */
362 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
363 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
364 	    OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
365 	    igb_sysctl_nvm_info, "I", "NVM Information");
366 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
367 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
368 	    OID_AUTO, "flow_control", CTLTYPE_INT|CTLFLAG_RW,
369 	    adapter, 0, igb_set_flowcntl, "I", "Flow Control");
370 #endif
371 
372 	callout_init_mp(&sc->timer);
373 	lwkt_serialize_init(&sc->main_serialize);
374 
375 	if_initname(&sc->arpcom.ac_if, device_get_name(dev),
376 	    device_get_unit(dev));
377 	sc->dev = sc->osdep.dev = dev;
378 
379 	/*
380 	 * Determine hardware and mac type
381 	 */
382 	sc->hw.vendor_id = pci_get_vendor(dev);
383 	sc->hw.device_id = pci_get_device(dev);
384 	sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
385 	sc->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
386 	sc->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
387 
388 	if (e1000_set_mac_type(&sc->hw))
389 		return ENXIO;
390 
391 	/* Are we a VF device? */
392 	if (sc->hw.mac.type == e1000_vfadapt ||
393 	    sc->hw.mac.type == e1000_vfadapt_i350)
394 		sc->vf_ifp = 1;
395 	else
396 		sc->vf_ifp = 0;
397 
398 	/*
399 	 * Configure total supported RX/TX ring count
400 	 */
401 	switch (sc->hw.mac.type) {
402 	case e1000_82575:
403 		ring_max = IGB_MAX_RING_82575;
404 		break;
405 	case e1000_82580:
406 		ring_max = IGB_MAX_RING_82580;
407 		break;
408 	case e1000_i350:
409 		ring_max = IGB_MAX_RING_I350;
410 		break;
411 	case e1000_82576:
412 		ring_max = IGB_MAX_RING_82576;
413 		break;
414 	default:
415 		ring_max = IGB_MIN_RING;
416 		break;
417 	}
418 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr", igb_rxr);
419 	sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, ring_max);
420 #ifdef IGB_RSS_DEBUG
421 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr_debug", sc->rx_ring_cnt);
422 #endif
423 	sc->rx_ring_inuse = sc->rx_ring_cnt;
424 	sc->tx_ring_cnt = 1; /* XXX */
425 
426 	if (sc->hw.mac.type == e1000_82575)
427 		sc->flags |= IGB_FLAG_TSO_IPLEN0;
428 
429 	/* Enable bus mastering */
430 	pci_enable_busmaster(dev);
431 
432 	/*
433 	 * Allocate IO memory
434 	 */
435 	sc->mem_rid = PCIR_BAR(0);
436 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
437 	    RF_ACTIVE);
438 	if (sc->mem_res == NULL) {
439 		device_printf(dev, "Unable to allocate bus resource: memory\n");
440 		error = ENXIO;
441 		goto failed;
442 	}
443 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->mem_res);
444 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->mem_res);
445 
446 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
447 
448 	/* Save PCI command register for Shared Code */
449 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
450 	sc->hw.back = &sc->osdep;
451 
452 	/* Do Shared Code initialization */
453 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
454 		device_printf(dev, "Setup of Shared code failed\n");
455 		error = ENXIO;
456 		goto failed;
457 	}
458 
459 	e1000_get_bus_info(&sc->hw);
460 
461 	sc->hw.mac.autoneg = DO_AUTO_NEG;
462 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
463 	sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
464 
465 	/* Copper options */
466 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
467 		sc->hw.phy.mdix = AUTO_ALL_MODES;
468 		sc->hw.phy.disable_polarity_correction = FALSE;
469 		sc->hw.phy.ms_type = IGB_MASTER_SLAVE;
470 	}
471 
472 	/* Set the frame limits assuming  standard ethernet sized frames. */
473 	sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
474 
475 	/* Allocate RX/TX rings */
476 	error = igb_alloc_rings(sc);
477 	if (error)
478 		goto failed;
479 
480 #ifdef IFPOLL_ENABLE
481 	/*
482 	 * NPOLLING RX CPU offset
483 	 */
484 	if (sc->rx_ring_cnt == ncpus2) {
485 		offset = 0;
486 	} else {
487 		offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
488 		offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
489 		if (offset >= ncpus2 ||
490 		    offset % sc->rx_ring_cnt != 0) {
491 			device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
492 			    offset, offset_def);
493 			offset = offset_def;
494 		}
495 	}
496 	sc->rx_npoll_off = offset;
497 
498 	/*
499 	 * NPOLLING TX CPU offset
500 	 */
501 	offset_def = sc->rx_npoll_off;
502 	offset = device_getenv_int(dev, "npoll.txoff", offset_def);
503 	if (offset >= ncpus2) {
504 		device_printf(dev, "invalid npoll.txoff %d, use %d\n",
505 		    offset, offset_def);
506 		offset = offset_def;
507 	}
508 	sc->tx_npoll_off = offset;
509 #endif
510 
511 	/* Allocate interrupt */
512 	error = igb_alloc_intr(sc);
513 	if (error)
514 		goto failed;
515 
516 	/*
517 	 * Setup serializers
518 	 */
519 	i = 0;
520 	sc->serializes[i++] = &sc->main_serialize;
521 
522 	sc->tx_serialize = i;
523 	for (j = 0; j < sc->tx_ring_cnt; ++j)
524 		sc->serializes[i++] = &sc->tx_rings[j].tx_serialize;
525 
526 	sc->rx_serialize = i;
527 	for (j = 0; j < sc->rx_ring_cnt; ++j)
528 		sc->serializes[i++] = &sc->rx_rings[j].rx_serialize;
529 
530 	sc->serialize_cnt = i;
531 	KKASSERT(sc->serialize_cnt <= IGB_NSERIALIZE);
532 
533 	/* Allocate the appropriate stats memory */
534 	if (sc->vf_ifp) {
535 		sc->stats = kmalloc(sizeof(struct e1000_vf_stats), M_DEVBUF,
536 		    M_WAITOK | M_ZERO);
537 		igb_vf_init_stats(sc);
538 	} else {
539 		sc->stats = kmalloc(sizeof(struct e1000_hw_stats), M_DEVBUF,
540 		    M_WAITOK | M_ZERO);
541 	}
542 
543 	/* Allocate multicast array memory. */
544 	sc->mta = kmalloc(ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
545 	    M_DEVBUF, M_WAITOK);
546 
547 	/* Some adapter-specific advanced features */
548 	if (sc->hw.mac.type >= e1000_i350) {
549 #ifdef notyet
550 		igb_set_sysctl_value(adapter, "dma_coalesce",
551 		    "configure dma coalesce",
552 		    &adapter->dma_coalesce, igb_dma_coalesce);
553 		igb_set_sysctl_value(adapter, "eee_disabled",
554 		    "enable Energy Efficient Ethernet",
555 		    &adapter->hw.dev_spec._82575.eee_disable,
556 		    igb_eee_disabled);
557 #else
558 		sc->dma_coalesce = igb_dma_coalesce;
559 		sc->hw.dev_spec._82575.eee_disable = igb_eee_disabled;
560 #endif
561 		e1000_set_eee_i350(&sc->hw);
562 	}
563 
564 	/*
565 	 * Start from a known state, this is important in reading the nvm and
566 	 * mac from that.
567 	 */
568 	e1000_reset_hw(&sc->hw);
569 
570 	/* Make sure we have a good EEPROM before we read from it */
571 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
572 		/*
573 		 * Some PCI-E parts fail the first check due to
574 		 * the link being in sleep state, call it again,
575 		 * if it fails a second time its a real issue.
576 		 */
577 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
578 			device_printf(dev,
579 			    "The EEPROM Checksum Is Not Valid\n");
580 			error = EIO;
581 			goto failed;
582 		}
583 	}
584 
585 	/* Copy the permanent MAC address out of the EEPROM */
586 	if (e1000_read_mac_addr(&sc->hw) < 0) {
587 		device_printf(dev, "EEPROM read error while reading MAC"
588 		    " address\n");
589 		error = EIO;
590 		goto failed;
591 	}
592 	if (!igb_is_valid_ether_addr(sc->hw.mac.addr)) {
593 		device_printf(dev, "Invalid MAC address\n");
594 		error = EIO;
595 		goto failed;
596 	}
597 
598 	/* Setup OS specific network interface */
599 	igb_setup_ifp(sc);
600 
601 	/* Add sysctl tree, must after igb_setup_ifp() */
602 	igb_add_sysctl(sc);
603 
604 	/* Now get a good starting state */
605 	igb_reset(sc);
606 
607 	/* Initialize statistics */
608 	igb_update_stats_counters(sc);
609 
610 	sc->hw.mac.get_link_status = 1;
611 	igb_update_link_status(sc);
612 
613 	/* Indicate SOL/IDER usage */
614 	if (e1000_check_reset_block(&sc->hw)) {
615 		device_printf(dev,
616 		    "PHY reset is blocked due to SOL/IDER session.\n");
617 	}
618 
619 	/* Determine if we have to control management hardware */
620 	if (e1000_enable_mng_pass_thru(&sc->hw))
621 		sc->flags |= IGB_FLAG_HAS_MGMT;
622 
623 	/*
624 	 * Setup Wake-on-Lan
625 	 */
626 	/* APME bit in EEPROM is mapped to WUC.APME */
627 	eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC) & E1000_WUC_APME;
628 	if (eeprom_data)
629 		sc->wol = E1000_WUFC_MAG;
630 	/* XXX disable WOL */
631 	sc->wol = 0;
632 
633 #ifdef notyet
634 	/* Register for VLAN events */
635 	adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
636 	     igb_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
637 	adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
638 	     igb_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
639 #endif
640 
641 #ifdef notyet
642 	igb_add_hw_stats(adapter);
643 #endif
644 
645 	error = igb_setup_intr(sc);
646 	if (error) {
647 		ether_ifdetach(&sc->arpcom.ac_if);
648 		goto failed;
649 	}
650 	return 0;
651 
652 failed:
653 	igb_detach(dev);
654 	return error;
655 }
656 
657 static int
658 igb_detach(device_t dev)
659 {
660 	struct igb_softc *sc = device_get_softc(dev);
661 
662 	if (device_is_attached(dev)) {
663 		struct ifnet *ifp = &sc->arpcom.ac_if;
664 
665 		ifnet_serialize_all(ifp);
666 
667 		igb_stop(sc);
668 
669 		e1000_phy_hw_reset(&sc->hw);
670 
671 		/* Give control back to firmware */
672 		igb_rel_mgmt(sc);
673 		igb_rel_hw_control(sc);
674 
675 		if (sc->wol) {
676 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
677 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
678 			igb_enable_wol(dev);
679 		}
680 
681 		igb_teardown_intr(sc);
682 
683 		ifnet_deserialize_all(ifp);
684 
685 		ether_ifdetach(ifp);
686 	} else if (sc->mem_res != NULL) {
687 		igb_rel_hw_control(sc);
688 	}
689 	bus_generic_detach(dev);
690 
691 	if (sc->sysctl_tree != NULL)
692 		sysctl_ctx_free(&sc->sysctl_ctx);
693 
694 	igb_free_intr(sc);
695 
696 	if (sc->msix_mem_res != NULL) {
697 		bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_mem_rid,
698 		    sc->msix_mem_res);
699 	}
700 	if (sc->mem_res != NULL) {
701 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid,
702 		    sc->mem_res);
703 	}
704 
705 	igb_free_rings(sc);
706 
707 	if (sc->mta != NULL)
708 		kfree(sc->mta, M_DEVBUF);
709 	if (sc->stats != NULL)
710 		kfree(sc->stats, M_DEVBUF);
711 
712 	return 0;
713 }
714 
715 static int
716 igb_shutdown(device_t dev)
717 {
718 	return igb_suspend(dev);
719 }
720 
721 static int
722 igb_suspend(device_t dev)
723 {
724 	struct igb_softc *sc = device_get_softc(dev);
725 	struct ifnet *ifp = &sc->arpcom.ac_if;
726 
727 	ifnet_serialize_all(ifp);
728 
729 	igb_stop(sc);
730 
731 	igb_rel_mgmt(sc);
732 	igb_rel_hw_control(sc);
733 
734 	if (sc->wol) {
735 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
736 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
737 		igb_enable_wol(dev);
738 	}
739 
740 	ifnet_deserialize_all(ifp);
741 
742 	return bus_generic_suspend(dev);
743 }
744 
745 static int
746 igb_resume(device_t dev)
747 {
748 	struct igb_softc *sc = device_get_softc(dev);
749 	struct ifnet *ifp = &sc->arpcom.ac_if;
750 
751 	ifnet_serialize_all(ifp);
752 
753 	igb_init(sc);
754 	igb_get_mgmt(sc);
755 
756 	if_devstart(ifp);
757 
758 	ifnet_deserialize_all(ifp);
759 
760 	return bus_generic_resume(dev);
761 }
762 
763 static int
764 igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
765 {
766 	struct igb_softc *sc = ifp->if_softc;
767 	struct ifreq *ifr = (struct ifreq *)data;
768 	int max_frame_size, mask, reinit;
769 	int error = 0;
770 
771 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
772 
773 	switch (command) {
774 	case SIOCSIFMTU:
775 		max_frame_size = 9234;
776 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
777 		    ETHER_CRC_LEN) {
778 			error = EINVAL;
779 			break;
780 		}
781 
782 		ifp->if_mtu = ifr->ifr_mtu;
783 		sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
784 		    ETHER_CRC_LEN;
785 
786 		if (ifp->if_flags & IFF_RUNNING)
787 			igb_init(sc);
788 		break;
789 
790 	case SIOCSIFFLAGS:
791 		if (ifp->if_flags & IFF_UP) {
792 			if (ifp->if_flags & IFF_RUNNING) {
793 				if ((ifp->if_flags ^ sc->if_flags) &
794 				    (IFF_PROMISC | IFF_ALLMULTI)) {
795 					igb_disable_promisc(sc);
796 					igb_set_promisc(sc);
797 				}
798 			} else {
799 				igb_init(sc);
800 			}
801 		} else if (ifp->if_flags & IFF_RUNNING) {
802 			igb_stop(sc);
803 		}
804 		sc->if_flags = ifp->if_flags;
805 		break;
806 
807 	case SIOCADDMULTI:
808 	case SIOCDELMULTI:
809 		if (ifp->if_flags & IFF_RUNNING) {
810 			igb_disable_intr(sc);
811 			igb_set_multi(sc);
812 #ifdef IFPOLL_ENABLE
813 			if (!(ifp->if_flags & IFF_NPOLLING))
814 #endif
815 				igb_enable_intr(sc);
816 		}
817 		break;
818 
819 	case SIOCSIFMEDIA:
820 		/*
821 		 * As the speed/duplex settings are being
822 		 * changed, we need toreset the PHY.
823 		 */
824 		sc->hw.phy.reset_disable = FALSE;
825 
826 		/* Check SOL/IDER usage */
827 		if (e1000_check_reset_block(&sc->hw)) {
828 			if_printf(ifp, "Media change is "
829 			    "blocked due to SOL/IDER session.\n");
830 			break;
831 		}
832 		/* FALL THROUGH */
833 
834 	case SIOCGIFMEDIA:
835 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
836 		break;
837 
838 	case SIOCSIFCAP:
839 		reinit = 0;
840 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
841 		if (mask & IFCAP_RXCSUM) {
842 			ifp->if_capenable ^= IFCAP_RXCSUM;
843 			reinit = 1;
844 		}
845 		if (mask & IFCAP_VLAN_HWTAGGING) {
846 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
847 			reinit = 1;
848 		}
849 		if (mask & IFCAP_TXCSUM) {
850 			ifp->if_capenable ^= IFCAP_TXCSUM;
851 			if (ifp->if_capenable & IFCAP_TXCSUM)
852 				ifp->if_hwassist |= IGB_CSUM_FEATURES;
853 			else
854 				ifp->if_hwassist &= ~IGB_CSUM_FEATURES;
855 		}
856 		if (mask & IFCAP_TSO) {
857 			ifp->if_capenable ^= IFCAP_TSO;
858 			if (ifp->if_capenable & IFCAP_TSO)
859 				ifp->if_hwassist |= CSUM_TSO;
860 			else
861 				ifp->if_hwassist &= ~CSUM_TSO;
862 		}
863 		if (mask & IFCAP_RSS)
864 			ifp->if_capenable ^= IFCAP_RSS;
865 		if (reinit && (ifp->if_flags & IFF_RUNNING))
866 			igb_init(sc);
867 		break;
868 
869 	default:
870 		error = ether_ioctl(ifp, command, data);
871 		break;
872 	}
873 	return error;
874 }
875 
876 static void
877 igb_init(void *xsc)
878 {
879 	struct igb_softc *sc = xsc;
880 	struct ifnet *ifp = &sc->arpcom.ac_if;
881 	boolean_t polling;
882 	int i;
883 
884 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
885 
886 	igb_stop(sc);
887 
888 	/* Get the latest mac address, User can use a LAA */
889 	bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
890 
891 	/* Put the address into the Receive Address Array */
892 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
893 
894 	igb_reset(sc);
895 	igb_update_link_status(sc);
896 
897 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
898 
899 	/* Configure for OS presence */
900 	igb_get_mgmt(sc);
901 
902 	polling = FALSE;
903 #ifdef IFPOLL_ENABLE
904 	if (ifp->if_flags & IFF_NPOLLING)
905 		polling = TRUE;
906 #endif
907 
908 	/* Configured used RX/TX rings */
909 	igb_set_ring_inuse(sc, polling);
910 
911 	/* Initialize interrupt */
912 	igb_init_intr(sc);
913 
914 	/* Prepare transmit descriptors and buffers */
915 	for (i = 0; i < sc->tx_ring_cnt; ++i)
916 		igb_init_tx_ring(&sc->tx_rings[i]);
917 	igb_init_tx_unit(sc);
918 
919 	/* Setup Multicast table */
920 	igb_set_multi(sc);
921 
922 #if 0
923 	/*
924 	 * Figure out the desired mbuf pool
925 	 * for doing jumbo/packetsplit
926 	 */
927 	if (adapter->max_frame_size <= 2048)
928 		adapter->rx_mbuf_sz = MCLBYTES;
929 	else if (adapter->max_frame_size <= 4096)
930 		adapter->rx_mbuf_sz = MJUMPAGESIZE;
931 	else
932 		adapter->rx_mbuf_sz = MJUM9BYTES;
933 #endif
934 
935 	/* Prepare receive descriptors and buffers */
936 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
937 		int error;
938 
939 		error = igb_init_rx_ring(&sc->rx_rings[i]);
940 		if (error) {
941 			if_printf(ifp, "Could not setup receive structures\n");
942 			igb_stop(sc);
943 			return;
944 		}
945 	}
946 	igb_init_rx_unit(sc);
947 
948 	/* Enable VLAN support */
949 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
950 		igb_set_vlan(sc);
951 
952 	/* Don't lose promiscuous settings */
953 	igb_set_promisc(sc);
954 
955 	ifp->if_flags |= IFF_RUNNING;
956 	ifp->if_flags &= ~IFF_OACTIVE;
957 
958 	if (polling || sc->intr_type == PCI_INTR_TYPE_MSIX)
959 		sc->timer_cpuid = 0; /* XXX fixed */
960 	else
961 		sc->timer_cpuid = rman_get_cpuid(sc->intr_res);
962 	callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
963 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
964 
965 	/* This clears any pending interrupts */
966 	E1000_READ_REG(&sc->hw, E1000_ICR);
967 
968 	/*
969 	 * Only enable interrupts if we are not polling, make sure
970 	 * they are off otherwise.
971 	 */
972 	if (polling) {
973 		igb_disable_intr(sc);
974 	} else {
975 		igb_enable_intr(sc);
976 		E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
977 	}
978 
979 	/* Set Energy Efficient Ethernet */
980 	e1000_set_eee_i350(&sc->hw);
981 
982 	/* Don't reset the phy next time init gets called */
983 	sc->hw.phy.reset_disable = TRUE;
984 }
985 
986 static void
987 igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
988 {
989 	struct igb_softc *sc = ifp->if_softc;
990 	u_char fiber_type = IFM_1000_SX;
991 
992 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
993 
994 	igb_update_link_status(sc);
995 
996 	ifmr->ifm_status = IFM_AVALID;
997 	ifmr->ifm_active = IFM_ETHER;
998 
999 	if (!sc->link_active)
1000 		return;
1001 
1002 	ifmr->ifm_status |= IFM_ACTIVE;
1003 
1004 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1005 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1006 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1007 	} else {
1008 		switch (sc->link_speed) {
1009 		case 10:
1010 			ifmr->ifm_active |= IFM_10_T;
1011 			break;
1012 
1013 		case 100:
1014 			ifmr->ifm_active |= IFM_100_TX;
1015 			break;
1016 
1017 		case 1000:
1018 			ifmr->ifm_active |= IFM_1000_T;
1019 			break;
1020 		}
1021 		if (sc->link_duplex == FULL_DUPLEX)
1022 			ifmr->ifm_active |= IFM_FDX;
1023 		else
1024 			ifmr->ifm_active |= IFM_HDX;
1025 	}
1026 }
1027 
1028 static int
1029 igb_media_change(struct ifnet *ifp)
1030 {
1031 	struct igb_softc *sc = ifp->if_softc;
1032 	struct ifmedia *ifm = &sc->media;
1033 
1034 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1035 
1036 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1037 		return EINVAL;
1038 
1039 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1040 	case IFM_AUTO:
1041 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1042 		sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1043 		break;
1044 
1045 	case IFM_1000_LX:
1046 	case IFM_1000_SX:
1047 	case IFM_1000_T:
1048 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1049 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1050 		break;
1051 
1052 	case IFM_100_TX:
1053 		sc->hw.mac.autoneg = FALSE;
1054 		sc->hw.phy.autoneg_advertised = 0;
1055 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1056 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1057 		else
1058 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1059 		break;
1060 
1061 	case IFM_10_T:
1062 		sc->hw.mac.autoneg = FALSE;
1063 		sc->hw.phy.autoneg_advertised = 0;
1064 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1065 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1066 		else
1067 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1068 		break;
1069 
1070 	default:
1071 		if_printf(ifp, "Unsupported media type\n");
1072 		break;
1073 	}
1074 
1075 	igb_init(sc);
1076 
1077 	return 0;
1078 }
1079 
1080 static void
1081 igb_set_promisc(struct igb_softc *sc)
1082 {
1083 	struct ifnet *ifp = &sc->arpcom.ac_if;
1084 	struct e1000_hw *hw = &sc->hw;
1085 	uint32_t reg;
1086 
1087 	if (sc->vf_ifp) {
1088 		e1000_promisc_set_vf(hw, e1000_promisc_enabled);
1089 		return;
1090 	}
1091 
1092 	reg = E1000_READ_REG(hw, E1000_RCTL);
1093 	if (ifp->if_flags & IFF_PROMISC) {
1094 		reg |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1095 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
1096 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1097 		reg |= E1000_RCTL_MPE;
1098 		reg &= ~E1000_RCTL_UPE;
1099 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
1100 	}
1101 }
1102 
1103 static void
1104 igb_disable_promisc(struct igb_softc *sc)
1105 {
1106 	struct e1000_hw *hw = &sc->hw;
1107 	uint32_t reg;
1108 
1109 	if (sc->vf_ifp) {
1110 		e1000_promisc_set_vf(hw, e1000_promisc_disabled);
1111 		return;
1112 	}
1113 	reg = E1000_READ_REG(hw, E1000_RCTL);
1114 	reg &= ~E1000_RCTL_UPE;
1115 	reg &= ~E1000_RCTL_MPE;
1116 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
1117 }
1118 
1119 static void
1120 igb_set_multi(struct igb_softc *sc)
1121 {
1122 	struct ifnet *ifp = &sc->arpcom.ac_if;
1123 	struct ifmultiaddr *ifma;
1124 	uint32_t reg_rctl = 0;
1125 	uint8_t *mta;
1126 	int mcnt = 0;
1127 
1128 	mta = sc->mta;
1129 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1130 
1131 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1132 		if (ifma->ifma_addr->sa_family != AF_LINK)
1133 			continue;
1134 
1135 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1136 			break;
1137 
1138 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1139 		    &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
1140 		mcnt++;
1141 	}
1142 
1143 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1144 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1145 		reg_rctl |= E1000_RCTL_MPE;
1146 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1147 	} else {
1148 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1149 	}
1150 }
1151 
1152 static void
1153 igb_timer(void *xsc)
1154 {
1155 	struct igb_softc *sc = xsc;
1156 
1157 	lwkt_serialize_enter(&sc->main_serialize);
1158 
1159 	igb_update_link_status(sc);
1160 	igb_update_stats_counters(sc);
1161 
1162 	callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
1163 
1164 	lwkt_serialize_exit(&sc->main_serialize);
1165 }
1166 
1167 static void
1168 igb_update_link_status(struct igb_softc *sc)
1169 {
1170 	struct ifnet *ifp = &sc->arpcom.ac_if;
1171 	struct e1000_hw *hw = &sc->hw;
1172 	uint32_t link_check, thstat, ctrl;
1173 
1174 	link_check = thstat = ctrl = 0;
1175 
1176 	/* Get the cached link value or read for real */
1177 	switch (hw->phy.media_type) {
1178 	case e1000_media_type_copper:
1179 		if (hw->mac.get_link_status) {
1180 			/* Do the work to read phy */
1181 			e1000_check_for_link(hw);
1182 			link_check = !hw->mac.get_link_status;
1183 		} else {
1184 			link_check = TRUE;
1185 		}
1186 		break;
1187 
1188 	case e1000_media_type_fiber:
1189 		e1000_check_for_link(hw);
1190 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1191 		break;
1192 
1193 	case e1000_media_type_internal_serdes:
1194 		e1000_check_for_link(hw);
1195 		link_check = hw->mac.serdes_has_link;
1196 		break;
1197 
1198 	/* VF device is type_unknown */
1199 	case e1000_media_type_unknown:
1200 		e1000_check_for_link(hw);
1201 		link_check = !hw->mac.get_link_status;
1202 		/* Fall thru */
1203 	default:
1204 		break;
1205 	}
1206 
1207 	/* Check for thermal downshift or shutdown */
1208 	if (hw->mac.type == e1000_i350) {
1209 		thstat = E1000_READ_REG(hw, E1000_THSTAT);
1210 		ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1211 	}
1212 
1213 	/* Now we check if a transition has happened */
1214 	if (link_check && sc->link_active == 0) {
1215 		e1000_get_speed_and_duplex(hw,
1216 		    &sc->link_speed, &sc->link_duplex);
1217 		if (bootverbose) {
1218 			if_printf(ifp, "Link is up %d Mbps %s\n",
1219 			    sc->link_speed,
1220 			    sc->link_duplex == FULL_DUPLEX ?
1221 			    "Full Duplex" : "Half Duplex");
1222 		}
1223 		sc->link_active = 1;
1224 
1225 		ifp->if_baudrate = sc->link_speed * 1000000;
1226 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1227 		    (thstat & E1000_THSTAT_LINK_THROTTLE))
1228 			if_printf(ifp, "Link: thermal downshift\n");
1229 		/* This can sleep */
1230 		ifp->if_link_state = LINK_STATE_UP;
1231 		if_link_state_change(ifp);
1232 	} else if (!link_check && sc->link_active == 1) {
1233 		ifp->if_baudrate = sc->link_speed = 0;
1234 		sc->link_duplex = 0;
1235 		if (bootverbose)
1236 			if_printf(ifp, "Link is Down\n");
1237 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1238 		    (thstat & E1000_THSTAT_PWR_DOWN))
1239 			if_printf(ifp, "Link: thermal shutdown\n");
1240 		sc->link_active = 0;
1241 		/* This can sleep */
1242 		ifp->if_link_state = LINK_STATE_DOWN;
1243 		if_link_state_change(ifp);
1244 	}
1245 }
1246 
1247 static void
1248 igb_stop(struct igb_softc *sc)
1249 {
1250 	struct ifnet *ifp = &sc->arpcom.ac_if;
1251 	int i;
1252 
1253 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1254 
1255 	igb_disable_intr(sc);
1256 
1257 	callout_stop(&sc->timer);
1258 
1259 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1260 	ifp->if_timer = 0;
1261 
1262 	e1000_reset_hw(&sc->hw);
1263 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1264 
1265 	e1000_led_off(&sc->hw);
1266 	e1000_cleanup_led(&sc->hw);
1267 
1268 	for (i = 0; i < sc->tx_ring_cnt; ++i)
1269 		igb_free_tx_ring(&sc->tx_rings[i]);
1270 	for (i = 0; i < sc->rx_ring_cnt; ++i)
1271 		igb_free_rx_ring(&sc->rx_rings[i]);
1272 }
1273 
1274 static void
1275 igb_reset(struct igb_softc *sc)
1276 {
1277 	struct ifnet *ifp = &sc->arpcom.ac_if;
1278 	struct e1000_hw *hw = &sc->hw;
1279 	struct e1000_fc_info *fc = &hw->fc;
1280 	uint32_t pba = 0;
1281 	uint16_t hwm;
1282 
1283 	/* Let the firmware know the OS is in control */
1284 	igb_get_hw_control(sc);
1285 
1286 	/*
1287 	 * Packet Buffer Allocation (PBA)
1288 	 * Writing PBA sets the receive portion of the buffer
1289 	 * the remainder is used for the transmit buffer.
1290 	 */
1291 	switch (hw->mac.type) {
1292 	case e1000_82575:
1293 		pba = E1000_PBA_32K;
1294 		break;
1295 
1296 	case e1000_82576:
1297 	case e1000_vfadapt:
1298 		pba = E1000_READ_REG(hw, E1000_RXPBS);
1299 		pba &= E1000_RXPBS_SIZE_MASK_82576;
1300 		break;
1301 
1302 	case e1000_82580:
1303 	case e1000_i350:
1304 	case e1000_vfadapt_i350:
1305 		pba = E1000_READ_REG(hw, E1000_RXPBS);
1306 		pba = e1000_rxpbs_adjust_82580(pba);
1307 		break;
1308 		/* XXX pba = E1000_PBA_35K; */
1309 
1310 	default:
1311 		break;
1312 	}
1313 
1314 	/* Special needs in case of Jumbo frames */
1315 	if (hw->mac.type == e1000_82575 && ifp->if_mtu > ETHERMTU) {
1316 		uint32_t tx_space, min_tx, min_rx;
1317 
1318 		pba = E1000_READ_REG(hw, E1000_PBA);
1319 		tx_space = pba >> 16;
1320 		pba &= 0xffff;
1321 
1322 		min_tx = (sc->max_frame_size +
1323 		    sizeof(struct e1000_tx_desc) - ETHER_CRC_LEN) * 2;
1324 		min_tx = roundup2(min_tx, 1024);
1325 		min_tx >>= 10;
1326 		min_rx = sc->max_frame_size;
1327 		min_rx = roundup2(min_rx, 1024);
1328 		min_rx >>= 10;
1329 		if (tx_space < min_tx && (min_tx - tx_space) < pba) {
1330 			pba = pba - (min_tx - tx_space);
1331 			/*
1332 			 * if short on rx space, rx wins
1333 			 * and must trump tx adjustment
1334 			 */
1335 			if (pba < min_rx)
1336 				pba = min_rx;
1337 		}
1338 		E1000_WRITE_REG(hw, E1000_PBA, pba);
1339 	}
1340 
1341 	/*
1342 	 * These parameters control the automatic generation (Tx) and
1343 	 * response (Rx) to Ethernet PAUSE frames.
1344 	 * - High water mark should allow for at least two frames to be
1345 	 *   received after sending an XOFF.
1346 	 * - Low water mark works best when it is very near the high water mark.
1347 	 *   This allows the receiver to restart by sending XON when it has
1348 	 *   drained a bit.
1349 	 */
1350 	hwm = min(((pba << 10) * 9 / 10),
1351 	    ((pba << 10) - 2 * sc->max_frame_size));
1352 
1353 	if (hw->mac.type < e1000_82576) {
1354 		fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1355 		fc->low_water = fc->high_water - 8;
1356 	} else {
1357 		fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1358 		fc->low_water = fc->high_water - 16;
1359 	}
1360 	fc->pause_time = IGB_FC_PAUSE_TIME;
1361 	fc->send_xon = TRUE;
1362 
1363 	/* Issue a global reset */
1364 	e1000_reset_hw(hw);
1365 	E1000_WRITE_REG(hw, E1000_WUC, 0);
1366 
1367 	if (e1000_init_hw(hw) < 0)
1368 		if_printf(ifp, "Hardware Initialization Failed\n");
1369 
1370 	/* Setup DMA Coalescing */
1371 	if (hw->mac.type == e1000_i350 && sc->dma_coalesce) {
1372 		uint32_t reg;
1373 
1374 		hwm = (pba - 4) << 10;
1375 		reg = ((pba - 6) << E1000_DMACR_DMACTHR_SHIFT)
1376 		    & E1000_DMACR_DMACTHR_MASK;
1377 
1378 		/* transition to L0x or L1 if available..*/
1379 		reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1380 
1381 		/* timer = +-1000 usec in 32usec intervals */
1382 		reg |= (1000 >> 5);
1383 		E1000_WRITE_REG(hw, E1000_DMACR, reg);
1384 
1385 		/* No lower threshold */
1386 		E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
1387 
1388 		/* set hwm to PBA -  2 * max frame size */
1389 		E1000_WRITE_REG(hw, E1000_FCRTC, hwm);
1390 
1391 		/* Set the interval before transition */
1392 		reg = E1000_READ_REG(hw, E1000_DMCTLX);
1393 		reg |= 0x800000FF; /* 255 usec */
1394 		E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
1395 
1396 		/* free space in tx packet buffer to wake from DMA coal */
1397 		E1000_WRITE_REG(hw, E1000_DMCTXTH,
1398 		    (20480 - (2 * sc->max_frame_size)) >> 6);
1399 
1400 		/* make low power state decision controlled by DMA coal */
1401 		reg = E1000_READ_REG(hw, E1000_PCIEMISC);
1402 		E1000_WRITE_REG(hw, E1000_PCIEMISC,
1403 		    reg | E1000_PCIEMISC_LX_DECISION);
1404 		if_printf(ifp, "DMA Coalescing enabled\n");
1405 	}
1406 
1407 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1408 	e1000_get_phy_info(hw);
1409 	e1000_check_for_link(hw);
1410 }
1411 
1412 static void
1413 igb_setup_ifp(struct igb_softc *sc)
1414 {
1415 	struct ifnet *ifp = &sc->arpcom.ac_if;
1416 
1417 	ifp->if_softc = sc;
1418 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1419 	ifp->if_init = igb_init;
1420 	ifp->if_ioctl = igb_ioctl;
1421 	ifp->if_start = igb_start;
1422 	ifp->if_serialize = igb_serialize;
1423 	ifp->if_deserialize = igb_deserialize;
1424 	ifp->if_tryserialize = igb_tryserialize;
1425 #ifdef INVARIANTS
1426 	ifp->if_serialize_assert = igb_serialize_assert;
1427 #endif
1428 #ifdef IFPOLL_ENABLE
1429 	ifp->if_npoll = igb_npoll;
1430 #endif
1431 	ifp->if_watchdog = igb_watchdog;
1432 
1433 	ifq_set_maxlen(&ifp->if_snd, sc->tx_rings[0].num_tx_desc - 1);
1434 	ifq_set_ready(&ifp->if_snd);
1435 
1436 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1437 
1438 	ifp->if_capabilities =
1439 	    IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_TSO;
1440 	if (IGB_ENABLE_HWRSS(sc))
1441 		ifp->if_capabilities |= IFCAP_RSS;
1442 	ifp->if_capenable = ifp->if_capabilities;
1443 	ifp->if_hwassist = IGB_CSUM_FEATURES | CSUM_TSO;
1444 
1445 	/*
1446 	 * Tell the upper layer(s) we support long frames
1447 	 */
1448 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1449 
1450 	/*
1451 	 * Specify the media types supported by this adapter and register
1452 	 * callbacks to update media and link information
1453 	 */
1454 	ifmedia_init(&sc->media, IFM_IMASK, igb_media_change, igb_media_status);
1455 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1456 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1457 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1458 		    0, NULL);
1459 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1460 	} else {
1461 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1462 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1463 		    0, NULL);
1464 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1465 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1466 		    0, NULL);
1467 		if (sc->hw.phy.type != e1000_phy_ife) {
1468 			ifmedia_add(&sc->media,
1469 			    IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1470 			ifmedia_add(&sc->media,
1471 			    IFM_ETHER | IFM_1000_T, 0, NULL);
1472 		}
1473 	}
1474 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1475 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1476 }
1477 
1478 static void
1479 igb_add_sysctl(struct igb_softc *sc)
1480 {
1481 	char node[32];
1482 	int i;
1483 
1484 	sysctl_ctx_init(&sc->sysctl_ctx);
1485 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1486 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
1487 	    device_get_nameunit(sc->dev), CTLFLAG_RD, 0, "");
1488 	if (sc->sysctl_tree == NULL) {
1489 		device_printf(sc->dev, "can't add sysctl node\n");
1490 		return;
1491 	}
1492 
1493 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1494 	    OID_AUTO, "rxr", CTLFLAG_RD, &sc->rx_ring_cnt, 0, "# of RX rings");
1495 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1496 	    OID_AUTO, "rxr_inuse", CTLFLAG_RD, &sc->rx_ring_inuse, 0,
1497 	    "# of RX rings used");
1498 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1499 	    OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_rings[0].num_rx_desc, 0,
1500 	    "# of RX descs");
1501 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1502 	    OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_rings[0].num_tx_desc, 0,
1503 	    "# of TX descs");
1504 
1505 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
1506 		SYSCTL_ADD_PROC(&sc->sysctl_ctx,
1507 		    SYSCTL_CHILDREN(sc->sysctl_tree),
1508 		    OID_AUTO, "intr_rate", CTLTYPE_INT | CTLFLAG_RW,
1509 		    sc, 0, igb_sysctl_intr_rate, "I", "interrupt rate");
1510 	} else {
1511 		for (i = 0; i < sc->msix_cnt; ++i) {
1512 			struct igb_msix_data *msix = &sc->msix_data[i];
1513 
1514 			ksnprintf(node, sizeof(node), "msix%d_rate", i);
1515 			SYSCTL_ADD_PROC(&sc->sysctl_ctx,
1516 			    SYSCTL_CHILDREN(sc->sysctl_tree),
1517 			    OID_AUTO, node, CTLTYPE_INT | CTLFLAG_RW,
1518 			    msix, 0, igb_sysctl_msix_rate, "I",
1519 			    msix->msix_rate_desc);
1520 		}
1521 	}
1522 
1523 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1524 	    OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1525 	    sc, 0, igb_sysctl_tx_intr_nsegs, "I",
1526 	    "# of segments per TX interrupt");
1527 
1528 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1529 	    OID_AUTO, "tx_wreg_nsegs", CTLFLAG_RW,
1530 	    &sc->tx_rings[0].wreg_nsegs, 0,
1531 	    "# of segments before write to hardare register");
1532 
1533 #ifdef IFPOLL_ENABLE
1534 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1535 	    OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
1536 	    sc, 0, igb_sysctl_npoll_rxoff, "I", "NPOLLING RX cpu offset");
1537 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1538 	    OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
1539 	    sc, 0, igb_sysctl_npoll_txoff, "I", "NPOLLING TX cpu offset");
1540 #endif
1541 
1542 #ifdef IGB_RSS_DEBUG
1543 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1544 	    OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug, 0,
1545 	    "RSS debug level");
1546 #endif
1547 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1548 #ifdef IGB_RSS_DEBUG
1549 		ksnprintf(node, sizeof(node), "rx%d_pkt", i);
1550 		SYSCTL_ADD_ULONG(&sc->sysctl_ctx,
1551 		    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, node,
1552 		    CTLFLAG_RW, &sc->rx_rings[i].rx_packets, "RXed packets");
1553 #endif
1554 		ksnprintf(node, sizeof(node), "rx%d_wreg", i);
1555 		SYSCTL_ADD_INT(&sc->sysctl_ctx,
1556 		    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, node,
1557 		    CTLFLAG_RW, &sc->rx_rings[i].rx_wreg, 0,
1558 		    "# of segments before write to hardare register");
1559 	}
1560 }
1561 
1562 static int
1563 igb_alloc_rings(struct igb_softc *sc)
1564 {
1565 	int error, i;
1566 
1567 	/*
1568 	 * Create top level busdma tag
1569 	 */
1570 	error = bus_dma_tag_create(NULL, 1, 0,
1571 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1572 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1573 	    &sc->parent_tag);
1574 	if (error) {
1575 		device_printf(sc->dev, "could not create top level DMA tag\n");
1576 		return error;
1577 	}
1578 
1579 	/*
1580 	 * Allocate TX descriptor rings and buffers
1581 	 */
1582 	sc->tx_rings = kmalloc_cachealign(
1583 	    sizeof(struct igb_tx_ring) * sc->tx_ring_cnt,
1584 	    M_DEVBUF, M_WAITOK | M_ZERO);
1585 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1586 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1587 
1588 		/* Set up some basics */
1589 		txr->sc = sc;
1590 		txr->me = i;
1591 		lwkt_serialize_init(&txr->tx_serialize);
1592 
1593 		error = igb_create_tx_ring(txr);
1594 		if (error)
1595 			return error;
1596 	}
1597 
1598 	/*
1599 	 * Allocate RX descriptor rings and buffers
1600 	 */
1601 	sc->rx_rings = kmalloc_cachealign(
1602 	    sizeof(struct igb_rx_ring) * sc->rx_ring_cnt,
1603 	    M_DEVBUF, M_WAITOK | M_ZERO);
1604 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1605 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
1606 
1607 		/* Set up some basics */
1608 		rxr->sc = sc;
1609 		rxr->me = i;
1610 		lwkt_serialize_init(&rxr->rx_serialize);
1611 
1612 		error = igb_create_rx_ring(rxr);
1613 		if (error)
1614 			return error;
1615 	}
1616 
1617 	return 0;
1618 }
1619 
1620 static void
1621 igb_free_rings(struct igb_softc *sc)
1622 {
1623 	int i;
1624 
1625 	if (sc->tx_rings != NULL) {
1626 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
1627 			struct igb_tx_ring *txr = &sc->tx_rings[i];
1628 
1629 			igb_destroy_tx_ring(txr, txr->num_tx_desc);
1630 		}
1631 		kfree(sc->tx_rings, M_DEVBUF);
1632 	}
1633 
1634 	if (sc->rx_rings != NULL) {
1635 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
1636 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
1637 
1638 			igb_destroy_rx_ring(rxr, rxr->num_rx_desc);
1639 		}
1640 		kfree(sc->rx_rings, M_DEVBUF);
1641 	}
1642 }
1643 
1644 static int
1645 igb_create_tx_ring(struct igb_tx_ring *txr)
1646 {
1647 	int tsize, error, i, ntxd;
1648 
1649 	/*
1650 	 * Validate number of transmit descriptors. It must not exceed
1651 	 * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
1652 	 */
1653 	ntxd = device_getenv_int(txr->sc->dev, "txd", igb_txd);
1654 	if ((ntxd * sizeof(struct e1000_tx_desc)) % IGB_DBA_ALIGN != 0 ||
1655 	    ntxd > IGB_MAX_TXD || ntxd < IGB_MIN_TXD) {
1656 		device_printf(txr->sc->dev,
1657 		    "Using %d TX descriptors instead of %d!\n",
1658 		    IGB_DEFAULT_TXD, ntxd);
1659 		txr->num_tx_desc = IGB_DEFAULT_TXD;
1660 	} else {
1661 		txr->num_tx_desc = ntxd;
1662 	}
1663 
1664 	/*
1665 	 * Allocate TX descriptor ring
1666 	 */
1667 	tsize = roundup2(txr->num_tx_desc * sizeof(union e1000_adv_tx_desc),
1668 	    IGB_DBA_ALIGN);
1669 	txr->txdma.dma_vaddr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1670 	    IGB_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1671 	    &txr->txdma.dma_tag, &txr->txdma.dma_map, &txr->txdma.dma_paddr);
1672 	if (txr->txdma.dma_vaddr == NULL) {
1673 		device_printf(txr->sc->dev,
1674 		    "Unable to allocate TX Descriptor memory\n");
1675 		return ENOMEM;
1676 	}
1677 	txr->tx_base = txr->txdma.dma_vaddr;
1678 	bzero(txr->tx_base, tsize);
1679 
1680 	tsize = __VM_CACHELINE_ALIGN(
1681 	    sizeof(struct igb_tx_buf) * txr->num_tx_desc);
1682 	txr->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
1683 
1684 	/*
1685 	 * Allocate TX head write-back buffer
1686 	 */
1687 	txr->tx_hdr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1688 	    __VM_CACHELINE_SIZE, __VM_CACHELINE_SIZE, BUS_DMA_WAITOK,
1689 	    &txr->tx_hdr_dtag, &txr->tx_hdr_dmap, &txr->tx_hdr_paddr);
1690 	if (txr->tx_hdr == NULL) {
1691 		device_printf(txr->sc->dev,
1692 		    "Unable to allocate TX head write-back buffer\n");
1693 		return ENOMEM;
1694 	}
1695 
1696 	/*
1697 	 * Create DMA tag for TX buffers
1698 	 */
1699 	error = bus_dma_tag_create(txr->sc->parent_tag,
1700 	    1, 0,		/* alignment, bounds */
1701 	    BUS_SPACE_MAXADDR,	/* lowaddr */
1702 	    BUS_SPACE_MAXADDR,	/* highaddr */
1703 	    NULL, NULL,		/* filter, filterarg */
1704 	    IGB_TSO_SIZE,	/* maxsize */
1705 	    IGB_MAX_SCATTER,	/* nsegments */
1706 	    PAGE_SIZE,		/* maxsegsize */
1707 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1708 	    BUS_DMA_ONEBPAGE,	/* flags */
1709 	    &txr->tx_tag);
1710 	if (error) {
1711 		device_printf(txr->sc->dev, "Unable to allocate TX DMA tag\n");
1712 		kfree(txr->tx_buf, M_DEVBUF);
1713 		txr->tx_buf = NULL;
1714 		return error;
1715 	}
1716 
1717 	/*
1718 	 * Create DMA maps for TX buffers
1719 	 */
1720 	for (i = 0; i < txr->num_tx_desc; ++i) {
1721 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1722 
1723 		error = bus_dmamap_create(txr->tx_tag,
1724 		    BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE, &txbuf->map);
1725 		if (error) {
1726 			device_printf(txr->sc->dev,
1727 			    "Unable to create TX DMA map\n");
1728 			igb_destroy_tx_ring(txr, i);
1729 			return error;
1730 		}
1731 	}
1732 
1733 	/*
1734 	 * Initialize various watermark
1735 	 */
1736 	txr->spare_desc = IGB_TX_SPARE;
1737 	txr->intr_nsegs = txr->num_tx_desc / 16;
1738 	txr->wreg_nsegs = 8;
1739 	txr->oact_hi_desc = txr->num_tx_desc / 2;
1740 	txr->oact_lo_desc = txr->num_tx_desc / 8;
1741 	if (txr->oact_lo_desc > IGB_TX_OACTIVE_MAX)
1742 		txr->oact_lo_desc = IGB_TX_OACTIVE_MAX;
1743 	if (txr->oact_lo_desc < txr->spare_desc + IGB_TX_RESERVED)
1744 		txr->oact_lo_desc = txr->spare_desc + IGB_TX_RESERVED;
1745 
1746 	return 0;
1747 }
1748 
1749 static void
1750 igb_free_tx_ring(struct igb_tx_ring *txr)
1751 {
1752 	int i;
1753 
1754 	for (i = 0; i < txr->num_tx_desc; ++i) {
1755 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1756 
1757 		if (txbuf->m_head != NULL) {
1758 			bus_dmamap_unload(txr->tx_tag, txbuf->map);
1759 			m_freem(txbuf->m_head);
1760 			txbuf->m_head = NULL;
1761 		}
1762 	}
1763 }
1764 
1765 static void
1766 igb_destroy_tx_ring(struct igb_tx_ring *txr, int ndesc)
1767 {
1768 	int i;
1769 
1770 	if (txr->txdma.dma_vaddr != NULL) {
1771 		bus_dmamap_unload(txr->txdma.dma_tag, txr->txdma.dma_map);
1772 		bus_dmamem_free(txr->txdma.dma_tag, txr->txdma.dma_vaddr,
1773 		    txr->txdma.dma_map);
1774 		bus_dma_tag_destroy(txr->txdma.dma_tag);
1775 		txr->txdma.dma_vaddr = NULL;
1776 	}
1777 
1778 	if (txr->tx_hdr != NULL) {
1779 		bus_dmamap_unload(txr->tx_hdr_dtag, txr->tx_hdr_dmap);
1780 		bus_dmamem_free(txr->tx_hdr_dtag, txr->tx_hdr,
1781 		    txr->tx_hdr_dmap);
1782 		bus_dma_tag_destroy(txr->tx_hdr_dtag);
1783 		txr->tx_hdr = NULL;
1784 	}
1785 
1786 	if (txr->tx_buf == NULL)
1787 		return;
1788 
1789 	for (i = 0; i < ndesc; ++i) {
1790 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1791 
1792 		KKASSERT(txbuf->m_head == NULL);
1793 		bus_dmamap_destroy(txr->tx_tag, txbuf->map);
1794 	}
1795 	bus_dma_tag_destroy(txr->tx_tag);
1796 
1797 	kfree(txr->tx_buf, M_DEVBUF);
1798 	txr->tx_buf = NULL;
1799 }
1800 
1801 static void
1802 igb_init_tx_ring(struct igb_tx_ring *txr)
1803 {
1804 	/* Clear the old descriptor contents */
1805 	bzero(txr->tx_base,
1806 	    sizeof(union e1000_adv_tx_desc) * txr->num_tx_desc);
1807 
1808 	/* Clear TX head write-back buffer */
1809 	*(txr->tx_hdr) = 0;
1810 
1811 	/* Reset indices */
1812 	txr->next_avail_desc = 0;
1813 	txr->next_to_clean = 0;
1814 	txr->tx_nsegs = 0;
1815 
1816 	/* Set number of descriptors available */
1817 	txr->tx_avail = txr->num_tx_desc;
1818 }
1819 
1820 static void
1821 igb_init_tx_unit(struct igb_softc *sc)
1822 {
1823 	struct e1000_hw *hw = &sc->hw;
1824 	uint32_t tctl;
1825 	int i;
1826 
1827 	/* Setup the Tx Descriptor Rings */
1828 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1829 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1830 		uint64_t bus_addr = txr->txdma.dma_paddr;
1831 		uint64_t hdr_paddr = txr->tx_hdr_paddr;
1832 		uint32_t txdctl = 0;
1833 		uint32_t dca_txctrl;
1834 
1835 		E1000_WRITE_REG(hw, E1000_TDLEN(i),
1836 		    txr->num_tx_desc * sizeof(struct e1000_tx_desc));
1837 		E1000_WRITE_REG(hw, E1000_TDBAH(i),
1838 		    (uint32_t)(bus_addr >> 32));
1839 		E1000_WRITE_REG(hw, E1000_TDBAL(i),
1840 		    (uint32_t)bus_addr);
1841 
1842 		/* Setup the HW Tx Head and Tail descriptor pointers */
1843 		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
1844 		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
1845 
1846 		dca_txctrl = E1000_READ_REG(hw, E1000_DCA_TXCTRL(i));
1847 		dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1848 		E1000_WRITE_REG(hw, E1000_DCA_TXCTRL(i), dca_txctrl);
1849 
1850 		/*
1851 		 * Don't set WB_on_EITR:
1852 		 * - 82575 does not have it
1853 		 * - It almost has no effect on 82576, see:
1854 		 *   82576 specification update errata #26
1855 		 * - It causes unnecessary bus traffic
1856 		 */
1857 		E1000_WRITE_REG(hw, E1000_TDWBAH(i),
1858 		    (uint32_t)(hdr_paddr >> 32));
1859 		E1000_WRITE_REG(hw, E1000_TDWBAL(i),
1860 		    ((uint32_t)hdr_paddr) | E1000_TX_HEAD_WB_ENABLE);
1861 
1862 		/*
1863 		 * WTHRESH is ignored by the hardware, since header
1864 		 * write back mode is used.
1865 		 */
1866 		txdctl |= IGB_TX_PTHRESH;
1867 		txdctl |= IGB_TX_HTHRESH << 8;
1868 		txdctl |= IGB_TX_WTHRESH << 16;
1869 		txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1870 		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
1871 	}
1872 
1873 	if (sc->vf_ifp)
1874 		return;
1875 
1876 	e1000_config_collision_dist(hw);
1877 
1878 	/* Program the Transmit Control Register */
1879 	tctl = E1000_READ_REG(hw, E1000_TCTL);
1880 	tctl &= ~E1000_TCTL_CT;
1881 	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
1882 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
1883 
1884 	/* This write will effectively turn on the transmit unit. */
1885 	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1886 }
1887 
1888 static boolean_t
1889 igb_txcsum_ctx(struct igb_tx_ring *txr, struct mbuf *mp)
1890 {
1891 	struct e1000_adv_tx_context_desc *TXD;
1892 	uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
1893 	int ehdrlen, ctxd, ip_hlen = 0;
1894 	boolean_t offload = TRUE;
1895 
1896 	if ((mp->m_pkthdr.csum_flags & IGB_CSUM_FEATURES) == 0)
1897 		offload = FALSE;
1898 
1899 	vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
1900 
1901 	ctxd = txr->next_avail_desc;
1902 	TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
1903 
1904 	/*
1905 	 * In advanced descriptors the vlan tag must
1906 	 * be placed into the context descriptor, thus
1907 	 * we need to be here just for that setup.
1908 	 */
1909 	if (mp->m_flags & M_VLANTAG) {
1910 		uint16_t vlantag;
1911 
1912 		vlantag = htole16(mp->m_pkthdr.ether_vlantag);
1913 		vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
1914 	} else if (!offload) {
1915 		return FALSE;
1916 	}
1917 
1918 	ehdrlen = mp->m_pkthdr.csum_lhlen;
1919 	KASSERT(ehdrlen > 0, ("invalid ether hlen"));
1920 
1921 	/* Set the ether header length */
1922 	vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
1923 	if (mp->m_pkthdr.csum_flags & CSUM_IP) {
1924 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
1925 		ip_hlen = mp->m_pkthdr.csum_iphlen;
1926 		KASSERT(ip_hlen > 0, ("invalid ip hlen"));
1927 	}
1928 	vlan_macip_lens |= ip_hlen;
1929 
1930 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1931 	if (mp->m_pkthdr.csum_flags & CSUM_TCP)
1932 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
1933 	else if (mp->m_pkthdr.csum_flags & CSUM_UDP)
1934 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
1935 
1936 	/* 82575 needs the queue index added */
1937 	if (txr->sc->hw.mac.type == e1000_82575)
1938 		mss_l4len_idx = txr->me << 4;
1939 
1940 	/* Now copy bits into descriptor */
1941 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
1942 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
1943 	TXD->seqnum_seed = htole32(0);
1944 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
1945 
1946 	/* We've consumed the first desc, adjust counters */
1947 	if (++ctxd == txr->num_tx_desc)
1948 		ctxd = 0;
1949 	txr->next_avail_desc = ctxd;
1950 	--txr->tx_avail;
1951 
1952 	return offload;
1953 }
1954 
1955 static void
1956 igb_txeof(struct igb_tx_ring *txr)
1957 {
1958 	struct ifnet *ifp = &txr->sc->arpcom.ac_if;
1959 	int first, hdr, avail;
1960 
1961 	if (txr->tx_avail == txr->num_tx_desc)
1962 		return;
1963 
1964 	first = txr->next_to_clean;
1965 	hdr = *(txr->tx_hdr);
1966 
1967 	if (first == hdr)
1968 		return;
1969 
1970 	avail = txr->tx_avail;
1971 	while (first != hdr) {
1972 		struct igb_tx_buf *txbuf = &txr->tx_buf[first];
1973 
1974 		++avail;
1975 		if (txbuf->m_head) {
1976 			bus_dmamap_unload(txr->tx_tag, txbuf->map);
1977 			m_freem(txbuf->m_head);
1978 			txbuf->m_head = NULL;
1979 			++ifp->if_opackets;
1980 		}
1981 		if (++first == txr->num_tx_desc)
1982 			first = 0;
1983 	}
1984 	txr->next_to_clean = first;
1985 	txr->tx_avail = avail;
1986 
1987 	/*
1988 	 * If we have a minimum free, clear IFF_OACTIVE
1989 	 * to tell the stack that it is OK to send packets.
1990 	 */
1991 	if (IGB_IS_NOT_OACTIVE(txr)) {
1992 		ifp->if_flags &= ~IFF_OACTIVE;
1993 
1994 		/*
1995 		 * We have enough TX descriptors, turn off
1996 		 * the watchdog.  We allow small amount of
1997 		 * packets (roughly intr_nsegs) pending on
1998 		 * the transmit ring.
1999 		 */
2000 		ifp->if_timer = 0;
2001 	}
2002 }
2003 
2004 static int
2005 igb_create_rx_ring(struct igb_rx_ring *rxr)
2006 {
2007 	int rsize, i, error, nrxd;
2008 
2009 	/*
2010 	 * Validate number of receive descriptors. It must not exceed
2011 	 * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
2012 	 */
2013 	nrxd = device_getenv_int(rxr->sc->dev, "rxd", igb_rxd);
2014 	if ((nrxd * sizeof(struct e1000_rx_desc)) % IGB_DBA_ALIGN != 0 ||
2015 	    nrxd > IGB_MAX_RXD || nrxd < IGB_MIN_RXD) {
2016 		device_printf(rxr->sc->dev,
2017 		    "Using %d RX descriptors instead of %d!\n",
2018 		    IGB_DEFAULT_RXD, nrxd);
2019 		rxr->num_rx_desc = IGB_DEFAULT_RXD;
2020 	} else {
2021 		rxr->num_rx_desc = nrxd;
2022 	}
2023 
2024 	/*
2025 	 * Allocate RX descriptor ring
2026 	 */
2027 	rsize = roundup2(rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc),
2028 	    IGB_DBA_ALIGN);
2029 	rxr->rxdma.dma_vaddr = bus_dmamem_coherent_any(rxr->sc->parent_tag,
2030 	    IGB_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2031 	    &rxr->rxdma.dma_tag, &rxr->rxdma.dma_map,
2032 	    &rxr->rxdma.dma_paddr);
2033 	if (rxr->rxdma.dma_vaddr == NULL) {
2034 		device_printf(rxr->sc->dev,
2035 		    "Unable to allocate RxDescriptor memory\n");
2036 		return ENOMEM;
2037 	}
2038 	rxr->rx_base = rxr->rxdma.dma_vaddr;
2039 	bzero(rxr->rx_base, rsize);
2040 
2041 	rsize = __VM_CACHELINE_ALIGN(
2042 	    sizeof(struct igb_rx_buf) * rxr->num_rx_desc);
2043 	rxr->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2044 
2045 	/*
2046 	 * Create DMA tag for RX buffers
2047 	 */
2048 	error = bus_dma_tag_create(rxr->sc->parent_tag,
2049 	    1, 0,		/* alignment, bounds */
2050 	    BUS_SPACE_MAXADDR,	/* lowaddr */
2051 	    BUS_SPACE_MAXADDR,	/* highaddr */
2052 	    NULL, NULL,		/* filter, filterarg */
2053 	    MCLBYTES,		/* maxsize */
2054 	    1,			/* nsegments */
2055 	    MCLBYTES,		/* maxsegsize */
2056 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2057 	    &rxr->rx_tag);
2058 	if (error) {
2059 		device_printf(rxr->sc->dev,
2060 		    "Unable to create RX payload DMA tag\n");
2061 		kfree(rxr->rx_buf, M_DEVBUF);
2062 		rxr->rx_buf = NULL;
2063 		return error;
2064 	}
2065 
2066 	/*
2067 	 * Create spare DMA map for RX buffers
2068 	 */
2069 	error = bus_dmamap_create(rxr->rx_tag, BUS_DMA_WAITOK,
2070 	    &rxr->rx_sparemap);
2071 	if (error) {
2072 		device_printf(rxr->sc->dev,
2073 		    "Unable to create spare RX DMA maps\n");
2074 		bus_dma_tag_destroy(rxr->rx_tag);
2075 		kfree(rxr->rx_buf, M_DEVBUF);
2076 		rxr->rx_buf = NULL;
2077 		return error;
2078 	}
2079 
2080 	/*
2081 	 * Create DMA maps for RX buffers
2082 	 */
2083 	for (i = 0; i < rxr->num_rx_desc; i++) {
2084 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2085 
2086 		error = bus_dmamap_create(rxr->rx_tag,
2087 		    BUS_DMA_WAITOK, &rxbuf->map);
2088 		if (error) {
2089 			device_printf(rxr->sc->dev,
2090 			    "Unable to create RX DMA maps\n");
2091 			igb_destroy_rx_ring(rxr, i);
2092 			return error;
2093 		}
2094 	}
2095 
2096 	/*
2097 	 * Initialize various watermark
2098 	 */
2099 	rxr->rx_wreg = 32;
2100 
2101 	return 0;
2102 }
2103 
2104 static void
2105 igb_free_rx_ring(struct igb_rx_ring *rxr)
2106 {
2107 	int i;
2108 
2109 	for (i = 0; i < rxr->num_rx_desc; ++i) {
2110 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2111 
2112 		if (rxbuf->m_head != NULL) {
2113 			bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2114 			m_freem(rxbuf->m_head);
2115 			rxbuf->m_head = NULL;
2116 		}
2117 	}
2118 
2119 	if (rxr->fmp != NULL)
2120 		m_freem(rxr->fmp);
2121 	rxr->fmp = NULL;
2122 	rxr->lmp = NULL;
2123 }
2124 
2125 static void
2126 igb_destroy_rx_ring(struct igb_rx_ring *rxr, int ndesc)
2127 {
2128 	int i;
2129 
2130 	if (rxr->rxdma.dma_vaddr != NULL) {
2131 		bus_dmamap_unload(rxr->rxdma.dma_tag, rxr->rxdma.dma_map);
2132 		bus_dmamem_free(rxr->rxdma.dma_tag, rxr->rxdma.dma_vaddr,
2133 		    rxr->rxdma.dma_map);
2134 		bus_dma_tag_destroy(rxr->rxdma.dma_tag);
2135 		rxr->rxdma.dma_vaddr = NULL;
2136 	}
2137 
2138 	if (rxr->rx_buf == NULL)
2139 		return;
2140 
2141 	for (i = 0; i < ndesc; ++i) {
2142 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2143 
2144 		KKASSERT(rxbuf->m_head == NULL);
2145 		bus_dmamap_destroy(rxr->rx_tag, rxbuf->map);
2146 	}
2147 	bus_dmamap_destroy(rxr->rx_tag, rxr->rx_sparemap);
2148 	bus_dma_tag_destroy(rxr->rx_tag);
2149 
2150 	kfree(rxr->rx_buf, M_DEVBUF);
2151 	rxr->rx_buf = NULL;
2152 }
2153 
2154 static void
2155 igb_setup_rxdesc(union e1000_adv_rx_desc *rxd, const struct igb_rx_buf *rxbuf)
2156 {
2157 	rxd->read.pkt_addr = htole64(rxbuf->paddr);
2158 	rxd->wb.upper.status_error = 0;
2159 }
2160 
2161 static int
2162 igb_newbuf(struct igb_rx_ring *rxr, int i, boolean_t wait)
2163 {
2164 	struct mbuf *m;
2165 	bus_dma_segment_t seg;
2166 	bus_dmamap_t map;
2167 	struct igb_rx_buf *rxbuf;
2168 	int error, nseg;
2169 
2170 	m = m_getcl(wait ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2171 	if (m == NULL) {
2172 		if (wait) {
2173 			if_printf(&rxr->sc->arpcom.ac_if,
2174 			    "Unable to allocate RX mbuf\n");
2175 		}
2176 		return ENOBUFS;
2177 	}
2178 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2179 
2180 	if (rxr->sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2181 		m_adj(m, ETHER_ALIGN);
2182 
2183 	error = bus_dmamap_load_mbuf_segment(rxr->rx_tag,
2184 	    rxr->rx_sparemap, m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
2185 	if (error) {
2186 		m_freem(m);
2187 		if (wait) {
2188 			if_printf(&rxr->sc->arpcom.ac_if,
2189 			    "Unable to load RX mbuf\n");
2190 		}
2191 		return error;
2192 	}
2193 
2194 	rxbuf = &rxr->rx_buf[i];
2195 	if (rxbuf->m_head != NULL)
2196 		bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2197 
2198 	map = rxbuf->map;
2199 	rxbuf->map = rxr->rx_sparemap;
2200 	rxr->rx_sparemap = map;
2201 
2202 	rxbuf->m_head = m;
2203 	rxbuf->paddr = seg.ds_addr;
2204 
2205 	igb_setup_rxdesc(&rxr->rx_base[i], rxbuf);
2206 	return 0;
2207 }
2208 
2209 static int
2210 igb_init_rx_ring(struct igb_rx_ring *rxr)
2211 {
2212 	int i;
2213 
2214 	/* Clear the ring contents */
2215 	bzero(rxr->rx_base,
2216 	    rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc));
2217 
2218 	/* Now replenish the ring mbufs */
2219 	for (i = 0; i < rxr->num_rx_desc; ++i) {
2220 		int error;
2221 
2222 		error = igb_newbuf(rxr, i, TRUE);
2223 		if (error)
2224 			return error;
2225 	}
2226 
2227 	/* Setup our descriptor indices */
2228 	rxr->next_to_check = 0;
2229 
2230 	rxr->fmp = NULL;
2231 	rxr->lmp = NULL;
2232 	rxr->discard = FALSE;
2233 
2234 	return 0;
2235 }
2236 
2237 static void
2238 igb_init_rx_unit(struct igb_softc *sc)
2239 {
2240 	struct ifnet *ifp = &sc->arpcom.ac_if;
2241 	struct e1000_hw *hw = &sc->hw;
2242 	uint32_t rctl, rxcsum, srrctl = 0;
2243 	int i;
2244 
2245 	/*
2246 	 * Make sure receives are disabled while setting
2247 	 * up the descriptor ring
2248 	 */
2249 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2250 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2251 
2252 #if 0
2253 	/*
2254 	** Set up for header split
2255 	*/
2256 	if (igb_header_split) {
2257 		/* Use a standard mbuf for the header */
2258 		srrctl |= IGB_HDR_BUF << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2259 		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2260 	} else
2261 #endif
2262 		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2263 
2264 	/*
2265 	** Set up for jumbo frames
2266 	*/
2267 	if (ifp->if_mtu > ETHERMTU) {
2268 		rctl |= E1000_RCTL_LPE;
2269 #if 0
2270 		if (adapter->rx_mbuf_sz == MJUMPAGESIZE) {
2271 			srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2272 			rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
2273 		} else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) {
2274 			srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2275 			rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
2276 		}
2277 		/* Set maximum packet len */
2278 		psize = adapter->max_frame_size;
2279 		/* are we on a vlan? */
2280 		if (adapter->ifp->if_vlantrunk != NULL)
2281 			psize += VLAN_TAG_SIZE;
2282 		E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
2283 #else
2284 		srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2285 		rctl |= E1000_RCTL_SZ_2048;
2286 #endif
2287 	} else {
2288 		rctl &= ~E1000_RCTL_LPE;
2289 		srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2290 		rctl |= E1000_RCTL_SZ_2048;
2291 	}
2292 
2293 	/* Setup the Base and Length of the Rx Descriptor Rings */
2294 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2295 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
2296 		uint64_t bus_addr = rxr->rxdma.dma_paddr;
2297 		uint32_t rxdctl;
2298 
2299 		E1000_WRITE_REG(hw, E1000_RDLEN(i),
2300 		    rxr->num_rx_desc * sizeof(struct e1000_rx_desc));
2301 		E1000_WRITE_REG(hw, E1000_RDBAH(i),
2302 		    (uint32_t)(bus_addr >> 32));
2303 		E1000_WRITE_REG(hw, E1000_RDBAL(i),
2304 		    (uint32_t)bus_addr);
2305 		E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2306 		/* Enable this Queue */
2307 		rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2308 		rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2309 		rxdctl &= 0xFFF00000;
2310 		rxdctl |= IGB_RX_PTHRESH;
2311 		rxdctl |= IGB_RX_HTHRESH << 8;
2312 		/*
2313 		 * Don't set WTHRESH to a value above 1 on 82576, see:
2314 		 * 82576 specification update errata #26
2315 		 */
2316 		rxdctl |= IGB_RX_WTHRESH << 16;
2317 		E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2318 	}
2319 
2320 	rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2321 	rxcsum &= ~(E1000_RXCSUM_PCSS_MASK | E1000_RXCSUM_IPPCSE);
2322 
2323 	/*
2324 	 * Receive Checksum Offload for TCP and UDP
2325 	 *
2326 	 * Checksum offloading is also enabled if multiple receive
2327 	 * queue is to be supported, since we need it to figure out
2328 	 * fragments.
2329 	 */
2330 	if ((ifp->if_capenable & IFCAP_RXCSUM) || IGB_ENABLE_HWRSS(sc)) {
2331 		/*
2332 		 * NOTE:
2333 		 * PCSD must be enabled to enable multiple
2334 		 * receive queues.
2335 		 */
2336 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2337 		    E1000_RXCSUM_PCSD;
2338 	} else {
2339 		rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2340 		    E1000_RXCSUM_PCSD);
2341 	}
2342 	E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2343 
2344 	if (IGB_ENABLE_HWRSS(sc)) {
2345 		uint8_t key[IGB_NRSSRK * IGB_RSSRK_SIZE];
2346 		uint32_t reta_shift;
2347 		int j, r;
2348 
2349 		/*
2350 		 * NOTE:
2351 		 * When we reach here, RSS has already been disabled
2352 		 * in igb_stop(), so we could safely configure RSS key
2353 		 * and redirect table.
2354 		 */
2355 
2356 		/*
2357 		 * Configure RSS key
2358 		 */
2359 		toeplitz_get_key(key, sizeof(key));
2360 		for (i = 0; i < IGB_NRSSRK; ++i) {
2361 			uint32_t rssrk;
2362 
2363 			rssrk = IGB_RSSRK_VAL(key, i);
2364 			IGB_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2365 
2366 			E1000_WRITE_REG(hw, E1000_RSSRK(i), rssrk);
2367 		}
2368 
2369 		/*
2370 		 * Configure RSS redirect table in following fashion:
2371 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2372 		 */
2373 		reta_shift = IGB_RETA_SHIFT;
2374 		if (hw->mac.type == e1000_82575)
2375 			reta_shift = IGB_RETA_SHIFT_82575;
2376 
2377 		r = 0;
2378 		for (j = 0; j < IGB_NRETA; ++j) {
2379 			uint32_t reta = 0;
2380 
2381 			for (i = 0; i < IGB_RETA_SIZE; ++i) {
2382 				uint32_t q;
2383 
2384 				q = (r % sc->rx_ring_inuse) << reta_shift;
2385 				reta |= q << (8 * i);
2386 				++r;
2387 			}
2388 			IGB_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2389 			E1000_WRITE_REG(hw, E1000_RETA(j), reta);
2390 		}
2391 
2392 		/*
2393 		 * Enable multiple receive queues.
2394 		 * Enable IPv4 RSS standard hash functions.
2395 		 * Disable RSS interrupt on 82575
2396 		 */
2397 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2398 				E1000_MRQC_ENABLE_RSS_4Q |
2399 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2400 				E1000_MRQC_RSS_FIELD_IPV4);
2401 	}
2402 
2403 	/* Setup the Receive Control Register */
2404 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2405 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2406 	    E1000_RCTL_RDMTS_HALF |
2407 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2408 	/* Strip CRC bytes. */
2409 	rctl |= E1000_RCTL_SECRC;
2410 	/* Make sure VLAN Filters are off */
2411 	rctl &= ~E1000_RCTL_VFE;
2412 	/* Don't store bad packets */
2413 	rctl &= ~E1000_RCTL_SBP;
2414 
2415 	/* Enable Receives */
2416 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2417 
2418 	/*
2419 	 * Setup the HW Rx Head and Tail Descriptor Pointers
2420 	 *   - needs to be after enable
2421 	 */
2422 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2423 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
2424 
2425 		E1000_WRITE_REG(hw, E1000_RDH(i), rxr->next_to_check);
2426 		E1000_WRITE_REG(hw, E1000_RDT(i), rxr->num_rx_desc - 1);
2427 	}
2428 }
2429 
2430 static void
2431 igb_rx_refresh(struct igb_rx_ring *rxr, int i)
2432 {
2433 	if (--i < 0)
2434 		i = rxr->num_rx_desc - 1;
2435 	E1000_WRITE_REG(&rxr->sc->hw, E1000_RDT(rxr->me), i);
2436 }
2437 
2438 static void
2439 igb_rxeof(struct igb_rx_ring *rxr, int count)
2440 {
2441 	struct ifnet *ifp = &rxr->sc->arpcom.ac_if;
2442 	union e1000_adv_rx_desc	*cur;
2443 	uint32_t staterr;
2444 	int i, ncoll = 0;
2445 
2446 	i = rxr->next_to_check;
2447 	cur = &rxr->rx_base[i];
2448 	staterr = le32toh(cur->wb.upper.status_error);
2449 
2450 	if ((staterr & E1000_RXD_STAT_DD) == 0)
2451 		return;
2452 
2453 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2454 		struct pktinfo *pi = NULL, pi0;
2455 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2456 		struct mbuf *m = NULL;
2457 		boolean_t eop;
2458 
2459 		eop = (staterr & E1000_RXD_STAT_EOP) ? TRUE : FALSE;
2460 		if (eop)
2461 			--count;
2462 
2463 		++ncoll;
2464 		if ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) == 0 &&
2465 		    !rxr->discard) {
2466 			struct mbuf *mp = rxbuf->m_head;
2467 			uint32_t hash, hashtype;
2468 			uint16_t vlan;
2469 			int len;
2470 
2471 			len = le16toh(cur->wb.upper.length);
2472 			if (rxr->sc->hw.mac.type == e1000_i350 &&
2473 			    (staterr & E1000_RXDEXT_STATERR_LB))
2474 				vlan = be16toh(cur->wb.upper.vlan);
2475 			else
2476 				vlan = le16toh(cur->wb.upper.vlan);
2477 
2478 			hash = le32toh(cur->wb.lower.hi_dword.rss);
2479 			hashtype = le32toh(cur->wb.lower.lo_dword.data) &
2480 			    E1000_RXDADV_RSSTYPE_MASK;
2481 
2482 			IGB_RSS_DPRINTF(rxr->sc, 10,
2483 			    "ring%d, hash 0x%08x, hashtype %u\n",
2484 			    rxr->me, hash, hashtype);
2485 
2486 			bus_dmamap_sync(rxr->rx_tag, rxbuf->map,
2487 			    BUS_DMASYNC_POSTREAD);
2488 
2489 			if (igb_newbuf(rxr, i, FALSE) != 0) {
2490 				ifp->if_iqdrops++;
2491 				goto discard;
2492 			}
2493 
2494 			mp->m_len = len;
2495 			if (rxr->fmp == NULL) {
2496 				mp->m_pkthdr.len = len;
2497 				rxr->fmp = mp;
2498 				rxr->lmp = mp;
2499 			} else {
2500 				rxr->lmp->m_next = mp;
2501 				rxr->lmp = rxr->lmp->m_next;
2502 				rxr->fmp->m_pkthdr.len += len;
2503 			}
2504 
2505 			if (eop) {
2506 				m = rxr->fmp;
2507 				rxr->fmp = NULL;
2508 				rxr->lmp = NULL;
2509 
2510 				m->m_pkthdr.rcvif = ifp;
2511 				ifp->if_ipackets++;
2512 
2513 				if (ifp->if_capenable & IFCAP_RXCSUM)
2514 					igb_rxcsum(staterr, m);
2515 
2516 				if (staterr & E1000_RXD_STAT_VP) {
2517 					m->m_pkthdr.ether_vlantag = vlan;
2518 					m->m_flags |= M_VLANTAG;
2519 				}
2520 
2521 				if (ifp->if_capenable & IFCAP_RSS) {
2522 					pi = igb_rssinfo(m, &pi0,
2523 					    hash, hashtype, staterr);
2524 				}
2525 #ifdef IGB_RSS_DEBUG
2526 				rxr->rx_packets++;
2527 #endif
2528 			}
2529 		} else {
2530 			ifp->if_ierrors++;
2531 discard:
2532 			igb_setup_rxdesc(cur, rxbuf);
2533 			if (!eop)
2534 				rxr->discard = TRUE;
2535 			else
2536 				rxr->discard = FALSE;
2537 			if (rxr->fmp != NULL) {
2538 				m_freem(rxr->fmp);
2539 				rxr->fmp = NULL;
2540 				rxr->lmp = NULL;
2541 			}
2542 			m = NULL;
2543 		}
2544 
2545 		if (m != NULL)
2546 			ether_input_pkt(ifp, m, pi);
2547 
2548 		/* Advance our pointers to the next descriptor. */
2549 		if (++i == rxr->num_rx_desc)
2550 			i = 0;
2551 
2552 		if (ncoll >= rxr->rx_wreg) {
2553 			igb_rx_refresh(rxr, i);
2554 			ncoll = 0;
2555 		}
2556 
2557 		cur = &rxr->rx_base[i];
2558 		staterr = le32toh(cur->wb.upper.status_error);
2559 	}
2560 	rxr->next_to_check = i;
2561 
2562 	if (ncoll > 0)
2563 		igb_rx_refresh(rxr, i);
2564 }
2565 
2566 
2567 static void
2568 igb_set_vlan(struct igb_softc *sc)
2569 {
2570 	struct e1000_hw *hw = &sc->hw;
2571 	uint32_t reg;
2572 #if 0
2573 	struct ifnet *ifp = sc->arpcom.ac_if;
2574 #endif
2575 
2576 	if (sc->vf_ifp) {
2577 		e1000_rlpml_set_vf(hw, sc->max_frame_size + VLAN_TAG_SIZE);
2578 		return;
2579 	}
2580 
2581 	reg = E1000_READ_REG(hw, E1000_CTRL);
2582 	reg |= E1000_CTRL_VME;
2583 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
2584 
2585 #if 0
2586 	/* Enable the Filter Table */
2587 	if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
2588 		reg = E1000_READ_REG(hw, E1000_RCTL);
2589 		reg &= ~E1000_RCTL_CFIEN;
2590 		reg |= E1000_RCTL_VFE;
2591 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
2592 	}
2593 #endif
2594 
2595 	/* Update the frame size */
2596 	E1000_WRITE_REG(&sc->hw, E1000_RLPML,
2597 	    sc->max_frame_size + VLAN_TAG_SIZE);
2598 
2599 #if 0
2600 	/* Don't bother with table if no vlans */
2601 	if ((adapter->num_vlans == 0) ||
2602 	    ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0))
2603 		return;
2604 	/*
2605 	** A soft reset zero's out the VFTA, so
2606 	** we need to repopulate it now.
2607 	*/
2608 	for (int i = 0; i < IGB_VFTA_SIZE; i++)
2609 		if (adapter->shadow_vfta[i] != 0) {
2610 			if (adapter->vf_ifp)
2611 				e1000_vfta_set_vf(hw,
2612 				    adapter->shadow_vfta[i], TRUE);
2613 			else
2614 				E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
2615 				 i, adapter->shadow_vfta[i]);
2616 		}
2617 #endif
2618 }
2619 
2620 static void
2621 igb_enable_intr(struct igb_softc *sc)
2622 {
2623 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2624 		lwkt_serialize_handler_enable(&sc->main_serialize);
2625 	} else {
2626 		int i;
2627 
2628 		for (i = 0; i < sc->msix_cnt; ++i) {
2629 			lwkt_serialize_handler_enable(
2630 			    sc->msix_data[i].msix_serialize);
2631 		}
2632 	}
2633 
2634 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2635 		if (sc->intr_type == PCI_INTR_TYPE_MSIX)
2636 			E1000_WRITE_REG(&sc->hw, E1000_EIAC, sc->intr_mask);
2637 		else
2638 			E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2639 		E1000_WRITE_REG(&sc->hw, E1000_EIAM, sc->intr_mask);
2640 		E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
2641 		E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
2642 	} else {
2643 		E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
2644 	}
2645 	E1000_WRITE_FLUSH(&sc->hw);
2646 }
2647 
2648 static void
2649 igb_disable_intr(struct igb_softc *sc)
2650 {
2651 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2652 		E1000_WRITE_REG(&sc->hw, E1000_EIMC, 0xffffffff);
2653 		E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2654 	}
2655 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2656 	E1000_WRITE_FLUSH(&sc->hw);
2657 
2658 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2659 		lwkt_serialize_handler_disable(&sc->main_serialize);
2660 	} else {
2661 		int i;
2662 
2663 		for (i = 0; i < sc->msix_cnt; ++i) {
2664 			lwkt_serialize_handler_disable(
2665 			    sc->msix_data[i].msix_serialize);
2666 		}
2667 	}
2668 }
2669 
2670 /*
2671  * Bit of a misnomer, what this really means is
2672  * to enable OS management of the system... aka
2673  * to disable special hardware management features
2674  */
2675 static void
2676 igb_get_mgmt(struct igb_softc *sc)
2677 {
2678 	if (sc->flags & IGB_FLAG_HAS_MGMT) {
2679 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2680 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2681 
2682 		/* disable hardware interception of ARP */
2683 		manc &= ~E1000_MANC_ARP_EN;
2684 
2685 		/* enable receiving management packets to the host */
2686 		manc |= E1000_MANC_EN_MNG2HOST;
2687 		manc2h |= 1 << 5; /* Mng Port 623 */
2688 		manc2h |= 1 << 6; /* Mng Port 664 */
2689 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
2690 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2691 	}
2692 }
2693 
2694 /*
2695  * Give control back to hardware management controller
2696  * if there is one.
2697  */
2698 static void
2699 igb_rel_mgmt(struct igb_softc *sc)
2700 {
2701 	if (sc->flags & IGB_FLAG_HAS_MGMT) {
2702 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2703 
2704 		/* Re-enable hardware interception of ARP */
2705 		manc |= E1000_MANC_ARP_EN;
2706 		manc &= ~E1000_MANC_EN_MNG2HOST;
2707 
2708 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2709 	}
2710 }
2711 
2712 /*
2713  * Sets CTRL_EXT:DRV_LOAD bit.
2714  *
2715  * For ASF and Pass Through versions of f/w this means that
2716  * the driver is loaded.
2717  */
2718 static void
2719 igb_get_hw_control(struct igb_softc *sc)
2720 {
2721 	uint32_t ctrl_ext;
2722 
2723 	if (sc->vf_ifp)
2724 		return;
2725 
2726 	/* Let firmware know the driver has taken over */
2727 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2728 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2729 	    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2730 }
2731 
2732 /*
2733  * Resets CTRL_EXT:DRV_LOAD bit.
2734  *
2735  * For ASF and Pass Through versions of f/w this means that the
2736  * driver is no longer loaded.
2737  */
2738 static void
2739 igb_rel_hw_control(struct igb_softc *sc)
2740 {
2741 	uint32_t ctrl_ext;
2742 
2743 	if (sc->vf_ifp)
2744 		return;
2745 
2746 	/* Let firmware taken over control of h/w */
2747 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2748 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2749 	    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2750 }
2751 
2752 static int
2753 igb_is_valid_ether_addr(const uint8_t *addr)
2754 {
2755 	uint8_t zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
2756 
2757 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
2758 		return FALSE;
2759 	return TRUE;
2760 }
2761 
2762 /*
2763  * Enable PCI Wake On Lan capability
2764  */
2765 static void
2766 igb_enable_wol(device_t dev)
2767 {
2768 	uint16_t cap, status;
2769 	uint8_t id;
2770 
2771 	/* First find the capabilities pointer*/
2772 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
2773 
2774 	/* Read the PM Capabilities */
2775 	id = pci_read_config(dev, cap, 1);
2776 	if (id != PCIY_PMG)     /* Something wrong */
2777 		return;
2778 
2779 	/*
2780 	 * OK, we have the power capabilities,
2781 	 * so now get the status register
2782 	 */
2783 	cap += PCIR_POWER_STATUS;
2784 	status = pci_read_config(dev, cap, 2);
2785 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2786 	pci_write_config(dev, cap, status, 2);
2787 }
2788 
2789 static void
2790 igb_update_stats_counters(struct igb_softc *sc)
2791 {
2792 	struct e1000_hw *hw = &sc->hw;
2793 	struct e1000_hw_stats *stats;
2794 	struct ifnet *ifp = &sc->arpcom.ac_if;
2795 
2796 	/*
2797 	 * The virtual function adapter has only a
2798 	 * small controlled set of stats, do only
2799 	 * those and return.
2800 	 */
2801 	if (sc->vf_ifp) {
2802 		igb_update_vf_stats_counters(sc);
2803 		return;
2804 	}
2805 	stats = sc->stats;
2806 
2807 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
2808 	    (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
2809 		stats->symerrs +=
2810 		    E1000_READ_REG(hw,E1000_SYMERRS);
2811 		stats->sec += E1000_READ_REG(hw, E1000_SEC);
2812 	}
2813 
2814 	stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
2815 	stats->mpc += E1000_READ_REG(hw, E1000_MPC);
2816 	stats->scc += E1000_READ_REG(hw, E1000_SCC);
2817 	stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
2818 
2819 	stats->mcc += E1000_READ_REG(hw, E1000_MCC);
2820 	stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
2821 	stats->colc += E1000_READ_REG(hw, E1000_COLC);
2822 	stats->dc += E1000_READ_REG(hw, E1000_DC);
2823 	stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
2824 	stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
2825 	stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
2826 
2827 	/*
2828 	 * For watchdog management we need to know if we have been
2829 	 * paused during the last interval, so capture that here.
2830 	 */
2831 	sc->pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
2832 	stats->xoffrxc += sc->pause_frames;
2833 	stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
2834 	stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
2835 	stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
2836 	stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
2837 	stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
2838 	stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
2839 	stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
2840 	stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
2841 	stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
2842 	stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
2843 	stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
2844 	stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
2845 
2846 	/* For the 64-bit byte counters the low dword must be read first. */
2847 	/* Both registers clear on the read of the high dword */
2848 
2849 	stats->gorc += E1000_READ_REG(hw, E1000_GORCL) +
2850 	    ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
2851 	stats->gotc += E1000_READ_REG(hw, E1000_GOTCL) +
2852 	    ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
2853 
2854 	stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
2855 	stats->ruc += E1000_READ_REG(hw, E1000_RUC);
2856 	stats->rfc += E1000_READ_REG(hw, E1000_RFC);
2857 	stats->roc += E1000_READ_REG(hw, E1000_ROC);
2858 	stats->rjc += E1000_READ_REG(hw, E1000_RJC);
2859 
2860 	stats->tor += E1000_READ_REG(hw, E1000_TORH);
2861 	stats->tot += E1000_READ_REG(hw, E1000_TOTH);
2862 
2863 	stats->tpr += E1000_READ_REG(hw, E1000_TPR);
2864 	stats->tpt += E1000_READ_REG(hw, E1000_TPT);
2865 	stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
2866 	stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
2867 	stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
2868 	stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
2869 	stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
2870 	stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
2871 	stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
2872 	stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
2873 
2874 	/* Interrupt Counts */
2875 
2876 	stats->iac += E1000_READ_REG(hw, E1000_IAC);
2877 	stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
2878 	stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
2879 	stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
2880 	stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
2881 	stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
2882 	stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
2883 	stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
2884 	stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
2885 
2886 	/* Host to Card Statistics */
2887 
2888 	stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
2889 	stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
2890 	stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
2891 	stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
2892 	stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
2893 	stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
2894 	stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
2895 	stats->hgorc += (E1000_READ_REG(hw, E1000_HGORCL) +
2896 	    ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32));
2897 	stats->hgotc += (E1000_READ_REG(hw, E1000_HGOTCL) +
2898 	    ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32));
2899 	stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
2900 	stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
2901 	stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
2902 
2903 	stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
2904 	stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
2905 	stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
2906 	stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
2907 	stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
2908 	stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
2909 
2910 	ifp->if_collisions = stats->colc;
2911 
2912 	/* Rx Errors */
2913 	ifp->if_ierrors = stats->rxerrc + stats->crcerrs + stats->algnerrc +
2914 	    stats->ruc + stats->roc + stats->mpc + stats->cexterr;
2915 
2916 	/* Tx Errors */
2917 	ifp->if_oerrors = stats->ecol + stats->latecol + sc->watchdog_events;
2918 
2919 	/* Driver specific counters */
2920 	sc->device_control = E1000_READ_REG(hw, E1000_CTRL);
2921 	sc->rx_control = E1000_READ_REG(hw, E1000_RCTL);
2922 	sc->int_mask = E1000_READ_REG(hw, E1000_IMS);
2923 	sc->eint_mask = E1000_READ_REG(hw, E1000_EIMS);
2924 	sc->packet_buf_alloc_tx =
2925 	    ((E1000_READ_REG(hw, E1000_PBA) & 0xffff0000) >> 16);
2926 	sc->packet_buf_alloc_rx =
2927 	    (E1000_READ_REG(hw, E1000_PBA) & 0xffff);
2928 }
2929 
2930 static void
2931 igb_vf_init_stats(struct igb_softc *sc)
2932 {
2933 	struct e1000_hw *hw = &sc->hw;
2934 	struct e1000_vf_stats *stats;
2935 
2936 	stats = sc->stats;
2937 	stats->last_gprc = E1000_READ_REG(hw, E1000_VFGPRC);
2938 	stats->last_gorc = E1000_READ_REG(hw, E1000_VFGORC);
2939 	stats->last_gptc = E1000_READ_REG(hw, E1000_VFGPTC);
2940 	stats->last_gotc = E1000_READ_REG(hw, E1000_VFGOTC);
2941 	stats->last_mprc = E1000_READ_REG(hw, E1000_VFMPRC);
2942 }
2943 
2944 static void
2945 igb_update_vf_stats_counters(struct igb_softc *sc)
2946 {
2947 	struct e1000_hw *hw = &sc->hw;
2948 	struct e1000_vf_stats *stats;
2949 
2950 	if (sc->link_speed == 0)
2951 		return;
2952 
2953 	stats = sc->stats;
2954 	UPDATE_VF_REG(E1000_VFGPRC, stats->last_gprc, stats->gprc);
2955 	UPDATE_VF_REG(E1000_VFGORC, stats->last_gorc, stats->gorc);
2956 	UPDATE_VF_REG(E1000_VFGPTC, stats->last_gptc, stats->gptc);
2957 	UPDATE_VF_REG(E1000_VFGOTC, stats->last_gotc, stats->gotc);
2958 	UPDATE_VF_REG(E1000_VFMPRC, stats->last_mprc, stats->mprc);
2959 }
2960 
2961 #ifdef IFPOLL_ENABLE
2962 
2963 static void
2964 igb_npoll_status(struct ifnet *ifp)
2965 {
2966 	struct igb_softc *sc = ifp->if_softc;
2967 	uint32_t reg_icr;
2968 
2969 	ASSERT_SERIALIZED(&sc->main_serialize);
2970 
2971 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
2972 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
2973 		sc->hw.mac.get_link_status = 1;
2974 		igb_update_link_status(sc);
2975 	}
2976 }
2977 
2978 static void
2979 igb_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
2980 {
2981 	struct igb_tx_ring *txr = arg;
2982 
2983 	ASSERT_SERIALIZED(&txr->tx_serialize);
2984 
2985 	igb_txeof(txr);
2986 	if (!ifq_is_empty(&ifp->if_snd))
2987 		if_devstart(ifp);
2988 }
2989 
2990 static void
2991 igb_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
2992 {
2993 	struct igb_rx_ring *rxr = arg;
2994 
2995 	ASSERT_SERIALIZED(&rxr->rx_serialize);
2996 
2997 	igb_rxeof(rxr, cycle);
2998 }
2999 
3000 static void
3001 igb_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3002 {
3003 	struct igb_softc *sc = ifp->if_softc;
3004 
3005 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3006 
3007 	if (info) {
3008 		struct igb_tx_ring *txr;
3009 		int i, off;
3010 
3011 		info->ifpi_status.status_func = igb_npoll_status;
3012 		info->ifpi_status.serializer = &sc->main_serialize;
3013 
3014 		off = sc->tx_npoll_off;
3015 		KKASSERT(off < ncpus2);
3016 		txr = &sc->tx_rings[0];
3017 		info->ifpi_tx[off].poll_func = igb_npoll_tx;
3018 		info->ifpi_tx[off].arg = txr;
3019 		info->ifpi_tx[off].serializer = &txr->tx_serialize;
3020 
3021 		off = sc->rx_npoll_off;
3022 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
3023 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
3024 			int idx = i + off;
3025 
3026 			KKASSERT(idx < ncpus2);
3027 			info->ifpi_rx[idx].poll_func = igb_npoll_rx;
3028 			info->ifpi_rx[idx].arg = rxr;
3029 			info->ifpi_rx[idx].serializer = &rxr->rx_serialize;
3030 		}
3031 
3032 		if (ifp->if_flags & IFF_RUNNING) {
3033 			if (sc->rx_ring_inuse == sc->rx_ring_cnt)
3034 				igb_disable_intr(sc);
3035 			else
3036 				igb_init(sc);
3037 		}
3038 		ifp->if_npoll_cpuid = sc->tx_npoll_off;
3039 	} else {
3040 		if (ifp->if_flags & IFF_RUNNING) {
3041 			if (sc->rx_ring_inuse == sc->rx_ring_cnt)
3042 				igb_enable_intr(sc);
3043 			else
3044 				igb_init(sc);
3045 		}
3046 		ifp->if_npoll_cpuid = -1;
3047 	}
3048 }
3049 
3050 #endif /* IFPOLL_ENABLE */
3051 
3052 static void
3053 igb_intr(void *xsc)
3054 {
3055 	struct igb_softc *sc = xsc;
3056 	struct ifnet *ifp = &sc->arpcom.ac_if;
3057 	uint32_t eicr;
3058 
3059 	ASSERT_SERIALIZED(&sc->main_serialize);
3060 
3061 	eicr = E1000_READ_REG(&sc->hw, E1000_EICR);
3062 
3063 	if (eicr == 0)
3064 		return;
3065 
3066 	if (ifp->if_flags & IFF_RUNNING) {
3067 		struct igb_tx_ring *txr;
3068 		int i;
3069 
3070 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3071 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
3072 
3073 			if (eicr & rxr->rx_intr_mask) {
3074 				lwkt_serialize_enter(&rxr->rx_serialize);
3075 				igb_rxeof(rxr, -1);
3076 				lwkt_serialize_exit(&rxr->rx_serialize);
3077 			}
3078 		}
3079 
3080 		txr = &sc->tx_rings[0];
3081 		if (eicr & txr->tx_intr_mask) {
3082 			lwkt_serialize_enter(&txr->tx_serialize);
3083 			igb_txeof(txr);
3084 			if (!ifq_is_empty(&ifp->if_snd))
3085 				if_devstart(ifp);
3086 			lwkt_serialize_exit(&txr->tx_serialize);
3087 		}
3088 	}
3089 
3090 	if (eicr & E1000_EICR_OTHER) {
3091 		uint32_t icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3092 
3093 		/* Link status change */
3094 		if (icr & E1000_ICR_LSC) {
3095 			sc->hw.mac.get_link_status = 1;
3096 			igb_update_link_status(sc);
3097 		}
3098 	}
3099 
3100 	/*
3101 	 * Reading EICR has the side effect to clear interrupt mask,
3102 	 * so all interrupts need to be enabled here.
3103 	 */
3104 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
3105 }
3106 
3107 static void
3108 igb_intr_shared(void *xsc)
3109 {
3110 	struct igb_softc *sc = xsc;
3111 	struct ifnet *ifp = &sc->arpcom.ac_if;
3112 	uint32_t reg_icr;
3113 
3114 	ASSERT_SERIALIZED(&sc->main_serialize);
3115 
3116 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3117 
3118 	/* Hot eject?  */
3119 	if (reg_icr == 0xffffffff)
3120 		return;
3121 
3122 	/* Definitely not our interrupt.  */
3123 	if (reg_icr == 0x0)
3124 		return;
3125 
3126 	if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0)
3127 		return;
3128 
3129 	if (ifp->if_flags & IFF_RUNNING) {
3130 		if (reg_icr &
3131 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
3132 			int i;
3133 
3134 			for (i = 0; i < sc->rx_ring_inuse; ++i) {
3135 				struct igb_rx_ring *rxr = &sc->rx_rings[i];
3136 
3137 				lwkt_serialize_enter(&rxr->rx_serialize);
3138 				igb_rxeof(rxr, -1);
3139 				lwkt_serialize_exit(&rxr->rx_serialize);
3140 			}
3141 		}
3142 
3143 		if (reg_icr & E1000_ICR_TXDW) {
3144 			struct igb_tx_ring *txr = &sc->tx_rings[0];
3145 
3146 			lwkt_serialize_enter(&txr->tx_serialize);
3147 			igb_txeof(txr);
3148 			if (!ifq_is_empty(&ifp->if_snd))
3149 				if_devstart(ifp);
3150 			lwkt_serialize_exit(&txr->tx_serialize);
3151 		}
3152 	}
3153 
3154 	/* Link status change */
3155 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3156 		sc->hw.mac.get_link_status = 1;
3157 		igb_update_link_status(sc);
3158 	}
3159 
3160 	if (reg_icr & E1000_ICR_RXO)
3161 		sc->rx_overruns++;
3162 }
3163 
3164 static int
3165 igb_encap(struct igb_tx_ring *txr, struct mbuf **m_headp,
3166     int *segs_used, int *idx)
3167 {
3168 	bus_dma_segment_t segs[IGB_MAX_SCATTER];
3169 	bus_dmamap_t map;
3170 	struct igb_tx_buf *tx_buf, *tx_buf_mapped;
3171 	union e1000_adv_tx_desc	*txd = NULL;
3172 	struct mbuf *m_head = *m_headp;
3173 	uint32_t olinfo_status = 0, cmd_type_len = 0, cmd_rs = 0;
3174 	int maxsegs, nsegs, i, j, error, last = 0;
3175 	uint32_t hdrlen = 0;
3176 
3177 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3178 		error = igb_tso_pullup(txr, m_headp);
3179 		if (error)
3180 			return error;
3181 		m_head = *m_headp;
3182 	}
3183 
3184 	/* Set basic descriptor constants */
3185 	cmd_type_len |= E1000_ADVTXD_DTYP_DATA;
3186 	cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
3187 	if (m_head->m_flags & M_VLANTAG)
3188 		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3189 
3190 	/*
3191 	 * Map the packet for DMA.
3192 	 */
3193 	tx_buf = &txr->tx_buf[txr->next_avail_desc];
3194 	tx_buf_mapped = tx_buf;
3195 	map = tx_buf->map;
3196 
3197 	maxsegs = txr->tx_avail - IGB_TX_RESERVED;
3198 	KASSERT(maxsegs >= txr->spare_desc, ("not enough spare TX desc\n"));
3199 	if (maxsegs > IGB_MAX_SCATTER)
3200 		maxsegs = IGB_MAX_SCATTER;
3201 
3202 	error = bus_dmamap_load_mbuf_defrag(txr->tx_tag, map, m_headp,
3203 	    segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3204 	if (error) {
3205 		if (error == ENOBUFS)
3206 			txr->sc->mbuf_defrag_failed++;
3207 		else
3208 			txr->sc->no_tx_dma_setup++;
3209 
3210 		m_freem(*m_headp);
3211 		*m_headp = NULL;
3212 		return error;
3213 	}
3214 	bus_dmamap_sync(txr->tx_tag, map, BUS_DMASYNC_PREWRITE);
3215 
3216 	m_head = *m_headp;
3217 
3218 	/*
3219 	 * Set up the TX context descriptor, if any hardware offloading is
3220 	 * needed.  This includes CSUM, VLAN, and TSO.  It will consume one
3221 	 * TX descriptor.
3222 	 *
3223 	 * Unlike these chips' predecessors (em/emx), TX context descriptor
3224 	 * will _not_ interfere TX data fetching pipelining.
3225 	 */
3226 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3227 		igb_tso_ctx(txr, m_head, &hdrlen);
3228 		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3229 		olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3230 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3231 		txr->tx_nsegs++;
3232 		(*segs_used)++;
3233 	} else if (igb_txcsum_ctx(txr, m_head)) {
3234 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3235 			olinfo_status |= (E1000_TXD_POPTS_IXSM << 8);
3236 		if (m_head->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_TCP))
3237 			olinfo_status |= (E1000_TXD_POPTS_TXSM << 8);
3238 		txr->tx_nsegs++;
3239 		(*segs_used)++;
3240 	}
3241 
3242 	*segs_used += nsegs;
3243 	txr->tx_nsegs += nsegs;
3244 	if (txr->tx_nsegs >= txr->intr_nsegs) {
3245 		/*
3246 		 * Report Status (RS) is turned on every intr_nsegs
3247 		 * descriptors (roughly).
3248 		 */
3249 		txr->tx_nsegs = 0;
3250 		cmd_rs = E1000_ADVTXD_DCMD_RS;
3251 	}
3252 
3253 	/* Calculate payload length */
3254 	olinfo_status |= ((m_head->m_pkthdr.len - hdrlen)
3255 	    << E1000_ADVTXD_PAYLEN_SHIFT);
3256 
3257 	/* 82575 needs the queue index added */
3258 	if (txr->sc->hw.mac.type == e1000_82575)
3259 		olinfo_status |= txr->me << 4;
3260 
3261 	/* Set up our transmit descriptors */
3262 	i = txr->next_avail_desc;
3263 	for (j = 0; j < nsegs; j++) {
3264 		bus_size_t seg_len;
3265 		bus_addr_t seg_addr;
3266 
3267 		tx_buf = &txr->tx_buf[i];
3268 		txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
3269 		seg_addr = segs[j].ds_addr;
3270 		seg_len = segs[j].ds_len;
3271 
3272 		txd->read.buffer_addr = htole64(seg_addr);
3273 		txd->read.cmd_type_len = htole32(cmd_type_len | seg_len);
3274 		txd->read.olinfo_status = htole32(olinfo_status);
3275 		last = i;
3276 		if (++i == txr->num_tx_desc)
3277 			i = 0;
3278 		tx_buf->m_head = NULL;
3279 	}
3280 
3281 	KASSERT(txr->tx_avail > nsegs, ("invalid avail TX desc\n"));
3282 	txr->next_avail_desc = i;
3283 	txr->tx_avail -= nsegs;
3284 
3285 	tx_buf->m_head = m_head;
3286 	tx_buf_mapped->map = tx_buf->map;
3287 	tx_buf->map = map;
3288 
3289 	/*
3290 	 * Last Descriptor of Packet needs End Of Packet (EOP)
3291 	 */
3292 	txd->read.cmd_type_len |= htole32(E1000_ADVTXD_DCMD_EOP | cmd_rs);
3293 
3294 	/*
3295 	 * Advance the Transmit Descriptor Tail (TDT), this tells the E1000
3296 	 * that this frame is available to transmit.
3297 	 */
3298 	*idx = i;
3299 	++txr->tx_packets;
3300 
3301 	return 0;
3302 }
3303 
3304 static void
3305 igb_start(struct ifnet *ifp)
3306 {
3307 	struct igb_softc *sc = ifp->if_softc;
3308 	struct igb_tx_ring *txr = &sc->tx_rings[0];
3309 	struct mbuf *m_head;
3310 	int idx = -1, nsegs = 0;
3311 
3312 	ASSERT_SERIALIZED(&txr->tx_serialize);
3313 
3314 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3315 		return;
3316 
3317 	if (!sc->link_active) {
3318 		ifq_purge(&ifp->if_snd);
3319 		return;
3320 	}
3321 
3322 	if (!IGB_IS_NOT_OACTIVE(txr))
3323 		igb_txeof(txr);
3324 
3325 	while (!ifq_is_empty(&ifp->if_snd)) {
3326 		if (IGB_IS_OACTIVE(txr)) {
3327 			ifp->if_flags |= IFF_OACTIVE;
3328 			/* Set watchdog on */
3329 			ifp->if_timer = 5;
3330 			break;
3331 		}
3332 
3333 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
3334 		if (m_head == NULL)
3335 			break;
3336 
3337 		if (igb_encap(txr, &m_head, &nsegs, &idx)) {
3338 			ifp->if_oerrors++;
3339 			continue;
3340 		}
3341 
3342 		if (nsegs >= txr->wreg_nsegs) {
3343 			E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3344 			idx = -1;
3345 			nsegs = 0;
3346 		}
3347 
3348 		/* Send a copy of the frame to the BPF listener */
3349 		ETHER_BPF_MTAP(ifp, m_head);
3350 	}
3351 	if (idx >= 0)
3352 		E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3353 }
3354 
3355 static void
3356 igb_watchdog(struct ifnet *ifp)
3357 {
3358 	struct igb_softc *sc = ifp->if_softc;
3359 	struct igb_tx_ring *txr = &sc->tx_rings[0];
3360 
3361 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3362 
3363 	/*
3364 	 * If flow control has paused us since last checking
3365 	 * it invalidates the watchdog timing, so dont run it.
3366 	 */
3367 	if (sc->pause_frames) {
3368 		sc->pause_frames = 0;
3369 		ifp->if_timer = 5;
3370 		return;
3371 	}
3372 
3373 	if_printf(ifp, "Watchdog timeout -- resetting\n");
3374 	if_printf(ifp, "Queue(%d) tdh = %d, hw tdt = %d\n", txr->me,
3375 	    E1000_READ_REG(&sc->hw, E1000_TDH(txr->me)),
3376 	    E1000_READ_REG(&sc->hw, E1000_TDT(txr->me)));
3377 	if_printf(ifp, "TX(%d) desc avail = %d, "
3378 	    "Next TX to Clean = %d\n",
3379 	    txr->me, txr->tx_avail, txr->next_to_clean);
3380 
3381 	ifp->if_oerrors++;
3382 	sc->watchdog_events++;
3383 
3384 	igb_init(sc);
3385 	if (!ifq_is_empty(&ifp->if_snd))
3386 		if_devstart(ifp);
3387 }
3388 
3389 static void
3390 igb_set_eitr(struct igb_softc *sc, int idx, int rate)
3391 {
3392 	uint32_t eitr = 0;
3393 
3394 	if (rate > 0) {
3395 		if (sc->hw.mac.type == e1000_82575) {
3396 			eitr = 1000000000 / 256 / rate;
3397 			/*
3398 			 * NOTE:
3399 			 * Document is wrong on the 2 bits left shift
3400 			 */
3401 		} else {
3402 			eitr = 1000000 / rate;
3403 			eitr <<= IGB_EITR_INTVL_SHIFT;
3404 		}
3405 
3406 		if (eitr == 0) {
3407 			/* Don't disable it */
3408 			eitr = 1 << IGB_EITR_INTVL_SHIFT;
3409 		} else if (eitr > IGB_EITR_INTVL_MASK) {
3410 			/* Don't allow it to be too large */
3411 			eitr = IGB_EITR_INTVL_MASK;
3412 		}
3413 	}
3414 	if (sc->hw.mac.type == e1000_82575)
3415 		eitr |= eitr << 16;
3416 	else
3417 		eitr |= E1000_EITR_CNT_IGNR;
3418 	E1000_WRITE_REG(&sc->hw, E1000_EITR(idx), eitr);
3419 }
3420 
3421 static int
3422 igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3423 {
3424 	struct igb_softc *sc = (void *)arg1;
3425 	struct ifnet *ifp = &sc->arpcom.ac_if;
3426 	int error, intr_rate;
3427 
3428 	intr_rate = sc->intr_rate;
3429 	error = sysctl_handle_int(oidp, &intr_rate, 0, req);
3430 	if (error || req->newptr == NULL)
3431 		return error;
3432 	if (intr_rate < 0)
3433 		return EINVAL;
3434 
3435 	ifnet_serialize_all(ifp);
3436 
3437 	sc->intr_rate = intr_rate;
3438 	if (ifp->if_flags & IFF_RUNNING)
3439 		igb_set_eitr(sc, 0, sc->intr_rate);
3440 
3441 	if (bootverbose)
3442 		if_printf(ifp, "interrupt rate set to %d/sec\n", sc->intr_rate);
3443 
3444 	ifnet_deserialize_all(ifp);
3445 
3446 	return 0;
3447 }
3448 
3449 static int
3450 igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS)
3451 {
3452 	struct igb_msix_data *msix = (void *)arg1;
3453 	struct igb_softc *sc = msix->msix_sc;
3454 	struct ifnet *ifp = &sc->arpcom.ac_if;
3455 	int error, msix_rate;
3456 
3457 	msix_rate = msix->msix_rate;
3458 	error = sysctl_handle_int(oidp, &msix_rate, 0, req);
3459 	if (error || req->newptr == NULL)
3460 		return error;
3461 	if (msix_rate < 0)
3462 		return EINVAL;
3463 
3464 	lwkt_serialize_enter(msix->msix_serialize);
3465 
3466 	msix->msix_rate = msix_rate;
3467 	if (ifp->if_flags & IFF_RUNNING)
3468 		igb_set_eitr(sc, msix->msix_vector, msix->msix_rate);
3469 
3470 	if (bootverbose) {
3471 		if_printf(ifp, "%s set to %d/sec\n", msix->msix_rate_desc,
3472 		    msix->msix_rate);
3473 	}
3474 
3475 	lwkt_serialize_exit(msix->msix_serialize);
3476 
3477 	return 0;
3478 }
3479 
3480 static int
3481 igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3482 {
3483 	struct igb_softc *sc = (void *)arg1;
3484 	struct ifnet *ifp = &sc->arpcom.ac_if;
3485 	struct igb_tx_ring *txr = &sc->tx_rings[0];
3486 	int error, nsegs;
3487 
3488 	nsegs = txr->intr_nsegs;
3489 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3490 	if (error || req->newptr == NULL)
3491 		return error;
3492 	if (nsegs <= 0)
3493 		return EINVAL;
3494 
3495 	ifnet_serialize_all(ifp);
3496 
3497 	if (nsegs >= txr->num_tx_desc - txr->oact_lo_desc ||
3498 	    nsegs >= txr->oact_hi_desc - IGB_MAX_SCATTER) {
3499 		error = EINVAL;
3500 	} else {
3501 		error = 0;
3502 		txr->intr_nsegs = nsegs;
3503 	}
3504 
3505 	ifnet_deserialize_all(ifp);
3506 
3507 	return error;
3508 }
3509 
3510 #ifdef IFPOLL_ENABLE
3511 
3512 static int
3513 igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3514 {
3515 	struct igb_softc *sc = (void *)arg1;
3516 	struct ifnet *ifp = &sc->arpcom.ac_if;
3517 	int error, off;
3518 
3519 	off = sc->rx_npoll_off;
3520 	error = sysctl_handle_int(oidp, &off, 0, req);
3521 	if (error || req->newptr == NULL)
3522 		return error;
3523 	if (off < 0)
3524 		return EINVAL;
3525 
3526 	ifnet_serialize_all(ifp);
3527 	if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3528 		error = EINVAL;
3529 	} else {
3530 		error = 0;
3531 		sc->rx_npoll_off = off;
3532 	}
3533 	ifnet_deserialize_all(ifp);
3534 
3535 	return error;
3536 }
3537 
3538 static int
3539 igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3540 {
3541 	struct igb_softc *sc = (void *)arg1;
3542 	struct ifnet *ifp = &sc->arpcom.ac_if;
3543 	int error, off;
3544 
3545 	off = sc->tx_npoll_off;
3546 	error = sysctl_handle_int(oidp, &off, 0, req);
3547 	if (error || req->newptr == NULL)
3548 		return error;
3549 	if (off < 0)
3550 		return EINVAL;
3551 
3552 	ifnet_serialize_all(ifp);
3553 	if (off >= ncpus2) {
3554 		error = EINVAL;
3555 	} else {
3556 		error = 0;
3557 		sc->tx_npoll_off = off;
3558 	}
3559 	ifnet_deserialize_all(ifp);
3560 
3561 	return error;
3562 }
3563 
3564 #endif	/* IFPOLL_ENABLE */
3565 
3566 static void
3567 igb_init_intr(struct igb_softc *sc)
3568 {
3569 	igb_set_intr_mask(sc);
3570 
3571 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0)
3572 		igb_init_unshared_intr(sc);
3573 
3574 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
3575 		igb_set_eitr(sc, 0, sc->intr_rate);
3576 	} else {
3577 		int i;
3578 
3579 		for (i = 0; i < sc->msix_cnt; ++i)
3580 			igb_set_eitr(sc, i, sc->msix_data[i].msix_rate);
3581 	}
3582 }
3583 
3584 static void
3585 igb_init_unshared_intr(struct igb_softc *sc)
3586 {
3587 	struct e1000_hw *hw = &sc->hw;
3588 	const struct igb_rx_ring *rxr;
3589 	const struct igb_tx_ring *txr;
3590 	uint32_t ivar, index;
3591 	int i;
3592 
3593 	/*
3594 	 * Enable extended mode
3595 	 */
3596 	if (sc->hw.mac.type != e1000_82575) {
3597 		uint32_t gpie;
3598 		int ivar_max;
3599 
3600 		gpie = E1000_GPIE_NSICR;
3601 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3602 			gpie |= E1000_GPIE_MSIX_MODE |
3603 			    E1000_GPIE_EIAME |
3604 			    E1000_GPIE_PBA;
3605 		}
3606 		E1000_WRITE_REG(hw, E1000_GPIE, gpie);
3607 
3608 		/*
3609 		 * Clear IVARs
3610 		 */
3611 		switch (sc->hw.mac.type) {
3612 		case e1000_82580:
3613 			ivar_max = IGB_MAX_IVAR_82580;
3614 			break;
3615 
3616 		case e1000_i350:
3617 			ivar_max = IGB_MAX_IVAR_I350;
3618 			break;
3619 
3620 		case e1000_vfadapt:
3621 		case e1000_vfadapt_i350:
3622 			ivar_max = IGB_MAX_IVAR_VF;
3623 			break;
3624 
3625 		case e1000_82576:
3626 			ivar_max = IGB_MAX_IVAR_82576;
3627 			break;
3628 
3629 		default:
3630 			panic("unknown mac type %d\n", sc->hw.mac.type);
3631 		}
3632 		for (i = 0; i < ivar_max; ++i)
3633 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, 0);
3634 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, 0);
3635 	} else {
3636 		uint32_t tmp;
3637 
3638 		KASSERT(sc->intr_type != PCI_INTR_TYPE_MSIX,
3639 		    ("82575 w/ MSI-X"));
3640 		tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
3641 		tmp |= E1000_CTRL_EXT_IRCA;
3642 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
3643 	}
3644 
3645 	/*
3646 	 * Map TX/RX interrupts to EICR
3647 	 */
3648 	switch (sc->hw.mac.type) {
3649 	case e1000_82580:
3650 	case e1000_i350:
3651 	case e1000_vfadapt:
3652 	case e1000_vfadapt_i350:
3653 		/* RX entries */
3654 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3655 			rxr = &sc->rx_rings[i];
3656 
3657 			index = i >> 1;
3658 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3659 
3660 			if (i & 1) {
3661 				ivar &= 0xff00ffff;
3662 				ivar |=
3663 				(rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3664 			} else {
3665 				ivar &= 0xffffff00;
3666 				ivar |=
3667 				(rxr->rx_intr_bit | E1000_IVAR_VALID);
3668 			}
3669 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3670 		}
3671 		/* TX entries */
3672 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
3673 			txr = &sc->tx_rings[i];
3674 
3675 			index = i >> 1;
3676 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3677 
3678 			if (i & 1) {
3679 				ivar &= 0x00ffffff;
3680 				ivar |=
3681 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3682 			} else {
3683 				ivar &= 0xffff00ff;
3684 				ivar |=
3685 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3686 			}
3687 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3688 		}
3689 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3690 			ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3691 			E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3692 		}
3693 		break;
3694 
3695 	case e1000_82576:
3696 		/* RX entries */
3697 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3698 			rxr = &sc->rx_rings[i];
3699 
3700 			index = i & 0x7; /* Each IVAR has two entries */
3701 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3702 
3703 			if (i < 8) {
3704 				ivar &= 0xffffff00;
3705 				ivar |=
3706 				(rxr->rx_intr_bit | E1000_IVAR_VALID);
3707 			} else {
3708 				ivar &= 0xff00ffff;
3709 				ivar |=
3710 				(rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3711 			}
3712 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3713 		}
3714 		/* TX entries */
3715 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
3716 			txr = &sc->tx_rings[i];
3717 
3718 			index = i & 0x7; /* Each IVAR has two entries */
3719 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3720 
3721 			if (i < 8) {
3722 				ivar &= 0xffff00ff;
3723 				ivar |=
3724 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3725 			} else {
3726 				ivar &= 0x00ffffff;
3727 				ivar |=
3728 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3729 			}
3730 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3731 		}
3732 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3733 			ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3734 			E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3735 		}
3736 		break;
3737 
3738 	case e1000_82575:
3739 		/*
3740 		 * Enable necessary interrupt bits.
3741 		 *
3742 		 * The name of the register is confusing; in addition to
3743 		 * configuring the first vector of MSI-X, it also configures
3744 		 * which bits of EICR could be set by the hardware even when
3745 		 * MSI or line interrupt is used; it thus controls interrupt
3746 		 * generation.  It MUST be configured explicitly; the default
3747 		 * value mentioned in the datasheet is wrong: RX queue0 and
3748 		 * TX queue0 are NOT enabled by default.
3749 		 */
3750 		E1000_WRITE_REG(&sc->hw, E1000_MSIXBM(0), sc->intr_mask);
3751 		break;
3752 
3753 	default:
3754 		panic("unknown mac type %d\n", sc->hw.mac.type);
3755 	}
3756 }
3757 
3758 static int
3759 igb_setup_intr(struct igb_softc *sc)
3760 {
3761 	struct ifnet *ifp = &sc->arpcom.ac_if;
3762 	int error;
3763 
3764 	if (sc->intr_type == PCI_INTR_TYPE_MSIX)
3765 		return igb_msix_setup(sc);
3766 
3767 	error = bus_setup_intr(sc->dev, sc->intr_res, INTR_MPSAFE,
3768 	    (sc->flags & IGB_FLAG_SHARED_INTR) ? igb_intr_shared : igb_intr,
3769 	    sc, &sc->intr_tag, &sc->main_serialize);
3770 	if (error) {
3771 		device_printf(sc->dev, "Failed to register interrupt handler");
3772 		return error;
3773 	}
3774 
3775 	ifp->if_cpuid = rman_get_cpuid(sc->intr_res);
3776 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
3777 
3778 	return 0;
3779 }
3780 
3781 static void
3782 igb_set_txintr_mask(struct igb_tx_ring *txr, int *intr_bit0, int intr_bitmax)
3783 {
3784 	if (txr->sc->hw.mac.type == e1000_82575) {
3785 		txr->tx_intr_bit = 0;	/* unused */
3786 		switch (txr->me) {
3787 		case 0:
3788 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE0;
3789 			break;
3790 		case 1:
3791 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE1;
3792 			break;
3793 		case 2:
3794 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE2;
3795 			break;
3796 		case 3:
3797 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE3;
3798 			break;
3799 		default:
3800 			panic("unsupported # of TX ring, %d\n", txr->me);
3801 		}
3802 	} else {
3803 		int intr_bit = *intr_bit0;
3804 
3805 		txr->tx_intr_bit = intr_bit % intr_bitmax;
3806 		txr->tx_intr_mask = 1 << txr->tx_intr_bit;
3807 
3808 		*intr_bit0 = intr_bit + 1;
3809 	}
3810 }
3811 
3812 static void
3813 igb_set_rxintr_mask(struct igb_rx_ring *rxr, int *intr_bit0, int intr_bitmax)
3814 {
3815 	if (rxr->sc->hw.mac.type == e1000_82575) {
3816 		rxr->rx_intr_bit = 0;	/* unused */
3817 		switch (rxr->me) {
3818 		case 0:
3819 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE0;
3820 			break;
3821 		case 1:
3822 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE1;
3823 			break;
3824 		case 2:
3825 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE2;
3826 			break;
3827 		case 3:
3828 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE3;
3829 			break;
3830 		default:
3831 			panic("unsupported # of RX ring, %d\n", rxr->me);
3832 		}
3833 	} else {
3834 		int intr_bit = *intr_bit0;
3835 
3836 		rxr->rx_intr_bit = intr_bit % intr_bitmax;
3837 		rxr->rx_intr_mask = 1 << rxr->rx_intr_bit;
3838 
3839 		*intr_bit0 = intr_bit + 1;
3840 	}
3841 }
3842 
3843 static void
3844 igb_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3845 {
3846 	struct igb_softc *sc = ifp->if_softc;
3847 
3848 	ifnet_serialize_array_enter(sc->serializes, sc->serialize_cnt,
3849 	    sc->tx_serialize, sc->rx_serialize, slz);
3850 }
3851 
3852 static void
3853 igb_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3854 {
3855 	struct igb_softc *sc = ifp->if_softc;
3856 
3857 	ifnet_serialize_array_exit(sc->serializes, sc->serialize_cnt,
3858 	    sc->tx_serialize, sc->rx_serialize, slz);
3859 }
3860 
3861 static int
3862 igb_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3863 {
3864 	struct igb_softc *sc = ifp->if_softc;
3865 
3866 	return ifnet_serialize_array_try(sc->serializes, sc->serialize_cnt,
3867 	    sc->tx_serialize, sc->rx_serialize, slz);
3868 }
3869 
3870 #ifdef INVARIANTS
3871 
3872 static void
3873 igb_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3874     boolean_t serialized)
3875 {
3876 	struct igb_softc *sc = ifp->if_softc;
3877 
3878 	ifnet_serialize_array_assert(sc->serializes, sc->serialize_cnt,
3879 	    sc->tx_serialize, sc->rx_serialize, slz, serialized);
3880 }
3881 
3882 #endif	/* INVARIANTS */
3883 
3884 static void
3885 igb_set_intr_mask(struct igb_softc *sc)
3886 {
3887 	int i;
3888 
3889 	sc->intr_mask = sc->sts_intr_mask;
3890 	for (i = 0; i < sc->rx_ring_inuse; ++i)
3891 		sc->intr_mask |= sc->rx_rings[i].rx_intr_mask;
3892 	for (i = 0; i < sc->tx_ring_cnt; ++i)
3893 		sc->intr_mask |= sc->tx_rings[i].tx_intr_mask;
3894 	if (bootverbose) {
3895 		if_printf(&sc->arpcom.ac_if, "intr mask 0x%08x\n",
3896 		    sc->intr_mask);
3897 	}
3898 }
3899 
3900 static int
3901 igb_alloc_intr(struct igb_softc *sc)
3902 {
3903 	int i, intr_bit, intr_bitmax;
3904 	u_int intr_flags;
3905 
3906 	igb_msix_try_alloc(sc);
3907 	if (sc->intr_type == PCI_INTR_TYPE_MSIX)
3908 		goto done;
3909 
3910 	/*
3911 	 * Allocate MSI/legacy interrupt resource
3912 	 */
3913 	sc->intr_type = pci_alloc_1intr(sc->dev, igb_msi_enable,
3914 	    &sc->intr_rid, &intr_flags);
3915 
3916 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
3917 		int unshared;
3918 
3919 		unshared = device_getenv_int(sc->dev, "irq.unshared", 0);
3920 		if (!unshared) {
3921 			sc->flags |= IGB_FLAG_SHARED_INTR;
3922 			if (bootverbose)
3923 				device_printf(sc->dev, "IRQ shared\n");
3924 		} else {
3925 			intr_flags &= ~RF_SHAREABLE;
3926 			if (bootverbose)
3927 				device_printf(sc->dev, "IRQ unshared\n");
3928 		}
3929 	}
3930 
3931 	sc->intr_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
3932 	    &sc->intr_rid, intr_flags);
3933 	if (sc->intr_res == NULL) {
3934 		device_printf(sc->dev, "Unable to allocate bus resource: "
3935 		    "interrupt\n");
3936 		return ENXIO;
3937 	}
3938 
3939 	/*
3940 	 * Setup MSI/legacy interrupt mask
3941 	 */
3942 	switch (sc->hw.mac.type) {
3943 	case e1000_82575:
3944 		intr_bitmax = IGB_MAX_TXRXINT_82575;
3945 		break;
3946 	case e1000_82580:
3947 		intr_bitmax = IGB_MAX_TXRXINT_82580;
3948 		break;
3949 	case e1000_i350:
3950 		intr_bitmax = IGB_MAX_TXRXINT_I350;
3951 		break;
3952 	case e1000_82576:
3953 		intr_bitmax = IGB_MAX_TXRXINT_82576;
3954 		break;
3955 	default:
3956 		intr_bitmax = IGB_MIN_TXRXINT;
3957 		break;
3958 	}
3959 	intr_bit = 0;
3960 	for (i = 0; i < sc->tx_ring_cnt; ++i)
3961 		igb_set_txintr_mask(&sc->tx_rings[i], &intr_bit, intr_bitmax);
3962 	for (i = 0; i < sc->rx_ring_cnt; ++i)
3963 		igb_set_rxintr_mask(&sc->rx_rings[i], &intr_bit, intr_bitmax);
3964 	sc->sts_intr_bit = 0;
3965 	sc->sts_intr_mask = E1000_EICR_OTHER;
3966 
3967 	/* Initialize interrupt rate */
3968 	sc->intr_rate = IGB_INTR_RATE;
3969 done:
3970 	igb_set_ring_inuse(sc, FALSE);
3971 	igb_set_intr_mask(sc);
3972 	return 0;
3973 }
3974 
3975 static void
3976 igb_free_intr(struct igb_softc *sc)
3977 {
3978 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
3979 		if (sc->intr_res != NULL) {
3980 			bus_release_resource(sc->dev, SYS_RES_IRQ, sc->intr_rid,
3981 			    sc->intr_res);
3982 		}
3983 		if (sc->intr_type == PCI_INTR_TYPE_MSI)
3984 			pci_release_msi(sc->dev);
3985 	} else {
3986 		igb_msix_free(sc, TRUE);
3987 	}
3988 }
3989 
3990 static void
3991 igb_teardown_intr(struct igb_softc *sc)
3992 {
3993 	if (sc->intr_type != PCI_INTR_TYPE_MSIX)
3994 		bus_teardown_intr(sc->dev, sc->intr_res, sc->intr_tag);
3995 	else
3996 		igb_msix_teardown(sc, sc->msix_cnt);
3997 }
3998 
3999 static void
4000 igb_msix_try_alloc(struct igb_softc *sc)
4001 {
4002 	int msix_enable, msix_cnt, msix_cnt2, alloc_cnt;
4003 	int i, x, error;
4004 	struct igb_msix_data *msix;
4005 	boolean_t aggregate, setup = FALSE;
4006 
4007 	/*
4008 	 * Don't enable MSI-X on 82575, see:
4009 	 * 82575 specification update errata #25
4010 	 */
4011 	if (sc->hw.mac.type == e1000_82575)
4012 		return;
4013 
4014 	/* Don't enable MSI-X on VF */
4015 	if (sc->vf_ifp)
4016 		return;
4017 
4018 	msix_enable = device_getenv_int(sc->dev, "msix.enable",
4019 	    igb_msix_enable);
4020 	if (!msix_enable)
4021 		return;
4022 
4023 	msix_cnt = pci_msix_count(sc->dev);
4024 #ifdef IGB_MSIX_DEBUG
4025 	msix_cnt = device_getenv_int(sc->dev, "msix.count", msix_cnt);
4026 #endif
4027 	if (msix_cnt <= 1) {
4028 		/* One MSI-X model does not make sense */
4029 		return;
4030 	}
4031 
4032 	i = 0;
4033 	while ((1 << (i + 1)) <= msix_cnt)
4034 		++i;
4035 	msix_cnt2 = 1 << i;
4036 
4037 	if (bootverbose) {
4038 		device_printf(sc->dev, "MSI-X count %d/%d\n",
4039 		    msix_cnt2, msix_cnt);
4040 	}
4041 
4042 	KKASSERT(msix_cnt2 <= msix_cnt);
4043 	if (msix_cnt == msix_cnt2) {
4044 		/* We need at least one MSI-X for link status */
4045 		msix_cnt2 >>= 1;
4046 		if (msix_cnt2 <= 1) {
4047 			/* One MSI-X for RX/TX does not make sense */
4048 			device_printf(sc->dev, "not enough MSI-X for TX/RX, "
4049 			    "MSI-X count %d/%d\n", msix_cnt2, msix_cnt);
4050 			return;
4051 		}
4052 		KKASSERT(msix_cnt > msix_cnt2);
4053 
4054 		if (bootverbose) {
4055 			device_printf(sc->dev, "MSI-X count fixup %d/%d\n",
4056 			    msix_cnt2, msix_cnt);
4057 		}
4058 	}
4059 
4060 	sc->rx_ring_msix = sc->rx_ring_cnt;
4061 	if (sc->rx_ring_msix > msix_cnt2)
4062 		sc->rx_ring_msix = msix_cnt2;
4063 
4064 	if (msix_cnt >= sc->tx_ring_cnt + sc->rx_ring_msix + 1) {
4065 		/*
4066 		 * Independent TX/RX MSI-X
4067 		 */
4068 		aggregate = FALSE;
4069 		if (bootverbose)
4070 			device_printf(sc->dev, "independent TX/RX MSI-X\n");
4071 		alloc_cnt = sc->tx_ring_cnt + sc->rx_ring_msix;
4072 	} else {
4073 		/*
4074 		 * Aggregate TX/RX MSI-X
4075 		 */
4076 		aggregate = TRUE;
4077 		if (bootverbose)
4078 			device_printf(sc->dev, "aggregate TX/RX MSI-X\n");
4079 		alloc_cnt = msix_cnt2;
4080 		if (alloc_cnt > ncpus2)
4081 			alloc_cnt = ncpus2;
4082 		if (sc->rx_ring_msix > alloc_cnt)
4083 			sc->rx_ring_msix = alloc_cnt;
4084 	}
4085 	++alloc_cnt;	/* For link status */
4086 
4087 	if (bootverbose) {
4088 		device_printf(sc->dev, "MSI-X alloc %d, RX ring %d\n",
4089 		    alloc_cnt, sc->rx_ring_msix);
4090 	}
4091 
4092 	sc->msix_mem_rid = PCIR_BAR(IGB_MSIX_BAR);
4093 	sc->msix_mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4094 	    &sc->msix_mem_rid, RF_ACTIVE);
4095 	if (sc->msix_mem_res == NULL) {
4096 		device_printf(sc->dev, "Unable to map MSI-X table\n");
4097 		return;
4098 	}
4099 
4100 	sc->msix_cnt = alloc_cnt;
4101 	sc->msix_data = kmalloc_cachealign(
4102 	    sizeof(struct igb_msix_data) * sc->msix_cnt,
4103 	    M_DEVBUF, M_WAITOK | M_ZERO);
4104 	for (x = 0; x < sc->msix_cnt; ++x) {
4105 		msix = &sc->msix_data[x];
4106 
4107 		lwkt_serialize_init(&msix->msix_serialize0);
4108 		msix->msix_sc = sc;
4109 		msix->msix_rid = -1;
4110 		msix->msix_vector = x;
4111 		msix->msix_mask = 1 << msix->msix_vector;
4112 		msix->msix_rate = IGB_INTR_RATE;
4113 	}
4114 
4115 	x = 0;
4116 	if (!aggregate) {
4117 		int offset, offset_def;
4118 
4119 		if (sc->rx_ring_msix == ncpus2) {
4120 			offset = 0;
4121 		} else {
4122 			offset_def = (sc->rx_ring_msix *
4123 			    device_get_unit(sc->dev)) % ncpus2;
4124 
4125 			offset = device_getenv_int(sc->dev,
4126 			    "msix.rxoff", offset_def);
4127 			if (offset >= ncpus2 ||
4128 			    offset % sc->rx_ring_msix != 0) {
4129 				device_printf(sc->dev,
4130 				    "invalid msix.rxoff %d, use %d\n",
4131 				    offset, offset_def);
4132 				offset = offset_def;
4133 			}
4134 		}
4135 
4136 		/* RX rings */
4137 		for (i = 0; i < sc->rx_ring_msix; ++i) {
4138 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
4139 
4140 			KKASSERT(x < sc->msix_cnt);
4141 			msix = &sc->msix_data[x++];
4142 			rxr->rx_intr_bit = msix->msix_vector;
4143 			rxr->rx_intr_mask = msix->msix_mask;
4144 
4145 			msix->msix_serialize = &rxr->rx_serialize;
4146 			msix->msix_func = igb_msix_rx;
4147 			msix->msix_arg = rxr;
4148 			msix->msix_cpuid = i + offset;
4149 			KKASSERT(msix->msix_cpuid < ncpus2);
4150 			ksnprintf(msix->msix_desc, sizeof(msix->msix_desc),
4151 			    "%s rx%d", device_get_nameunit(sc->dev), i);
4152 			msix->msix_rate = IGB_MSIX_RX_RATE;
4153 			ksnprintf(msix->msix_rate_desc,
4154 			    sizeof(msix->msix_rate_desc),
4155 			    "RX%d interrupt rate", i);
4156 		}
4157 
4158 		offset_def = device_get_unit(sc->dev) % ncpus2;
4159 		offset = device_getenv_int(sc->dev, "msix.txoff", offset_def);
4160 		if (offset >= ncpus2) {
4161 			device_printf(sc->dev, "invalid msix.txoff %d, "
4162 			    "use %d\n", offset, offset_def);
4163 			offset = offset_def;
4164 		}
4165 
4166 		/* TX rings */
4167 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
4168 			struct igb_tx_ring *txr = &sc->tx_rings[i];
4169 
4170 			KKASSERT(x < sc->msix_cnt);
4171 			msix = &sc->msix_data[x++];
4172 			txr->tx_intr_bit = msix->msix_vector;
4173 			txr->tx_intr_mask = msix->msix_mask;
4174 
4175 			msix->msix_serialize = &txr->tx_serialize;
4176 			msix->msix_func = igb_msix_tx;
4177 			msix->msix_arg = txr;
4178 			msix->msix_cpuid = i + offset;
4179 			sc->msix_tx_cpuid = msix->msix_cpuid; /* XXX */
4180 			KKASSERT(msix->msix_cpuid < ncpus2);
4181 			ksnprintf(msix->msix_desc, sizeof(msix->msix_desc),
4182 			    "%s tx%d", device_get_nameunit(sc->dev), i);
4183 			msix->msix_rate = IGB_MSIX_TX_RATE;
4184 			ksnprintf(msix->msix_rate_desc,
4185 			    sizeof(msix->msix_rate_desc),
4186 			    "TX%d interrupt rate", i);
4187 		}
4188 	} else {
4189 		/* TODO */
4190 		error = EOPNOTSUPP;
4191 		goto back;
4192 	}
4193 
4194 	/*
4195 	 * Link status
4196 	 */
4197 	KKASSERT(x < sc->msix_cnt);
4198 	msix = &sc->msix_data[x++];
4199 	sc->sts_intr_bit = msix->msix_vector;
4200 	sc->sts_intr_mask = msix->msix_mask;
4201 
4202 	msix->msix_serialize = &sc->main_serialize;
4203 	msix->msix_func = igb_msix_status;
4204 	msix->msix_arg = sc;
4205 	msix->msix_cpuid = 0; /* TODO tunable */
4206 	ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s sts",
4207 	    device_get_nameunit(sc->dev));
4208 	ksnprintf(msix->msix_rate_desc, sizeof(msix->msix_rate_desc),
4209 	    "status interrupt rate");
4210 
4211 	KKASSERT(x == sc->msix_cnt);
4212 
4213 	error = pci_setup_msix(sc->dev);
4214 	if (error) {
4215 		device_printf(sc->dev, "Setup MSI-X failed\n");
4216 		goto back;
4217 	}
4218 	setup = TRUE;
4219 
4220 	for (i = 0; i < sc->msix_cnt; ++i) {
4221 		msix = &sc->msix_data[i];
4222 
4223 		error = pci_alloc_msix_vector(sc->dev, msix->msix_vector,
4224 		    &msix->msix_rid, msix->msix_cpuid);
4225 		if (error) {
4226 			device_printf(sc->dev,
4227 			    "Unable to allocate MSI-X %d on cpu%d\n",
4228 			    msix->msix_vector, msix->msix_cpuid);
4229 			goto back;
4230 		}
4231 
4232 		msix->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4233 		    &msix->msix_rid, RF_ACTIVE);
4234 		if (msix->msix_res == NULL) {
4235 			device_printf(sc->dev,
4236 			    "Unable to allocate MSI-X %d resource\n",
4237 			    msix->msix_vector);
4238 			error = ENOMEM;
4239 			goto back;
4240 		}
4241 	}
4242 
4243 	pci_enable_msix(sc->dev);
4244 	sc->intr_type = PCI_INTR_TYPE_MSIX;
4245 back:
4246 	if (error)
4247 		igb_msix_free(sc, setup);
4248 }
4249 
4250 static void
4251 igb_msix_free(struct igb_softc *sc, boolean_t setup)
4252 {
4253 	int i;
4254 
4255 	KKASSERT(sc->msix_cnt > 1);
4256 
4257 	for (i = 0; i < sc->msix_cnt; ++i) {
4258 		struct igb_msix_data *msix = &sc->msix_data[i];
4259 
4260 		if (msix->msix_res != NULL) {
4261 			bus_release_resource(sc->dev, SYS_RES_IRQ,
4262 			    msix->msix_rid, msix->msix_res);
4263 		}
4264 		if (msix->msix_rid >= 0)
4265 			pci_release_msix_vector(sc->dev, msix->msix_rid);
4266 	}
4267 	if (setup)
4268 		pci_teardown_msix(sc->dev);
4269 
4270 	sc->msix_cnt = 0;
4271 	kfree(sc->msix_data, M_DEVBUF);
4272 	sc->msix_data = NULL;
4273 }
4274 
4275 static int
4276 igb_msix_setup(struct igb_softc *sc)
4277 {
4278 	struct ifnet *ifp = &sc->arpcom.ac_if;
4279 	int i;
4280 
4281 	for (i = 0; i < sc->msix_cnt; ++i) {
4282 		struct igb_msix_data *msix = &sc->msix_data[i];
4283 		int error;
4284 
4285 		error = bus_setup_intr_descr(sc->dev, msix->msix_res,
4286 		    INTR_MPSAFE, msix->msix_func, msix->msix_arg,
4287 		    &msix->msix_handle, msix->msix_serialize, msix->msix_desc);
4288 		if (error) {
4289 			device_printf(sc->dev, "could not set up %s "
4290 			    "interrupt handler.\n", msix->msix_desc);
4291 			igb_msix_teardown(sc, i);
4292 			return error;
4293 		}
4294 	}
4295 	ifp->if_cpuid = sc->msix_tx_cpuid;
4296 
4297 	return 0;
4298 }
4299 
4300 static void
4301 igb_msix_teardown(struct igb_softc *sc, int msix_cnt)
4302 {
4303 	int i;
4304 
4305 	for (i = 0; i < msix_cnt; ++i) {
4306 		struct igb_msix_data *msix = &sc->msix_data[i];
4307 
4308 		bus_teardown_intr(sc->dev, msix->msix_res, msix->msix_handle);
4309 	}
4310 }
4311 
4312 static void
4313 igb_msix_rx(void *arg)
4314 {
4315 	struct igb_rx_ring *rxr = arg;
4316 
4317 	ASSERT_SERIALIZED(&rxr->rx_serialize);
4318 	igb_rxeof(rxr, -1);
4319 
4320 	E1000_WRITE_REG(&rxr->sc->hw, E1000_EIMS, rxr->rx_intr_mask);
4321 }
4322 
4323 static void
4324 igb_msix_tx(void *arg)
4325 {
4326 	struct igb_tx_ring *txr = arg;
4327 	struct ifnet *ifp = &txr->sc->arpcom.ac_if;
4328 
4329 	ASSERT_SERIALIZED(&txr->tx_serialize);
4330 
4331 	igb_txeof(txr);
4332 	if (!ifq_is_empty(&ifp->if_snd))
4333 		if_devstart(ifp);
4334 
4335 	E1000_WRITE_REG(&txr->sc->hw, E1000_EIMS, txr->tx_intr_mask);
4336 }
4337 
4338 static void
4339 igb_msix_status(void *arg)
4340 {
4341 	struct igb_softc *sc = arg;
4342 	uint32_t icr;
4343 
4344 	ASSERT_SERIALIZED(&sc->main_serialize);
4345 
4346 	icr = E1000_READ_REG(&sc->hw, E1000_ICR);
4347 	if (icr & E1000_ICR_LSC) {
4348 		sc->hw.mac.get_link_status = 1;
4349 		igb_update_link_status(sc);
4350 	}
4351 
4352 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->sts_intr_mask);
4353 }
4354 
4355 static void
4356 igb_set_ring_inuse(struct igb_softc *sc, boolean_t polling)
4357 {
4358 	if (!IGB_ENABLE_HWRSS(sc))
4359 		return;
4360 
4361 	if (polling)
4362 		sc->rx_ring_inuse = sc->rx_ring_cnt;
4363 	else if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4364 		sc->rx_ring_inuse = IGB_MIN_RING_RSS;
4365 	else
4366 		sc->rx_ring_inuse = sc->rx_ring_msix;
4367 	if (bootverbose) {
4368 		if_printf(&sc->arpcom.ac_if, "RX rings %d/%d\n",
4369 		    sc->rx_ring_inuse, sc->rx_ring_cnt);
4370 	}
4371 }
4372 
4373 static int
4374 igb_tso_pullup(struct igb_tx_ring *txr, struct mbuf **mp)
4375 {
4376 	int hoff, iphlen, thoff;
4377 	struct mbuf *m;
4378 
4379 	m = *mp;
4380 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4381 
4382 	iphlen = m->m_pkthdr.csum_iphlen;
4383 	thoff = m->m_pkthdr.csum_thlen;
4384 	hoff = m->m_pkthdr.csum_lhlen;
4385 
4386 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4387 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4388 	KASSERT(hoff > 0, ("invalid ether hlen"));
4389 
4390 	if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
4391 		m = m_pullup(m, hoff + iphlen + thoff);
4392 		if (m == NULL) {
4393 			*mp = NULL;
4394 			return ENOBUFS;
4395 		}
4396 		*mp = m;
4397 	}
4398 	if (txr->sc->flags & IGB_FLAG_TSO_IPLEN0) {
4399 		struct ip *ip;
4400 
4401 		ip = mtodoff(m, struct ip *, hoff);
4402 		ip->ip_len = 0;
4403 	}
4404 
4405 	return 0;
4406 }
4407 
4408 static void
4409 igb_tso_ctx(struct igb_tx_ring *txr, struct mbuf *m, uint32_t *hlen)
4410 {
4411 	struct e1000_adv_tx_context_desc *TXD;
4412 	uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
4413 	int hoff, ctxd, iphlen, thoff;
4414 
4415 	iphlen = m->m_pkthdr.csum_iphlen;
4416 	thoff = m->m_pkthdr.csum_thlen;
4417 	hoff = m->m_pkthdr.csum_lhlen;
4418 
4419 	vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
4420 
4421 	ctxd = txr->next_avail_desc;
4422 	TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
4423 
4424 	if (m->m_flags & M_VLANTAG) {
4425 		uint16_t vlantag;
4426 
4427 		vlantag = htole16(m->m_pkthdr.ether_vlantag);
4428 		vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
4429 	}
4430 
4431 	vlan_macip_lens |= (hoff << E1000_ADVTXD_MACLEN_SHIFT);
4432 	vlan_macip_lens |= iphlen;
4433 
4434 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4435 	type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
4436 	type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
4437 
4438 	mss_l4len_idx |= (m->m_pkthdr.tso_segsz << E1000_ADVTXD_MSS_SHIFT);
4439 	mss_l4len_idx |= (thoff << E1000_ADVTXD_L4LEN_SHIFT);
4440 	/* 82575 needs the queue index added */
4441 	if (txr->sc->hw.mac.type == e1000_82575)
4442 		mss_l4len_idx |= txr->me << 4;
4443 
4444 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
4445 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
4446 	TXD->seqnum_seed = htole32(0);
4447 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
4448 
4449 	/* We've consumed the first desc, adjust counters */
4450 	if (++ctxd == txr->num_tx_desc)
4451 		ctxd = 0;
4452 	txr->next_avail_desc = ctxd;
4453 	--txr->tx_avail;
4454 
4455 	*hlen = hoff + iphlen + thoff;
4456 }
4457