xref: /dragonfly/sys/dev/netif/igb/if_igb.c (revision 0de090e1)
1 /*
2  * Copyright (c) 2001-2013, Intel Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  *  1. Redistributions of source code must retain the above copyright notice,
9  *     this list of conditions and the following disclaimer.
10  *
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  3. Neither the name of the Intel Corporation nor the names of its
16  *     contributors may be used to endorse or promote products derived from
17  *     this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include "opt_ifpoll.h"
33 #include "opt_igb.h"
34 
35 #include <sys/param.h>
36 #include <sys/bus.h>
37 #include <sys/endian.h>
38 #include <sys/interrupt.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/proc.h>
43 #include <sys/rman.h>
44 #include <sys/serialize.h>
45 #include <sys/serialize2.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50 
51 #include <net/bpf.h>
52 #include <net/ethernet.h>
53 #include <net/if.h>
54 #include <net/if_arp.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/ifq_var.h>
58 #include <net/toeplitz.h>
59 #include <net/toeplitz2.h>
60 #include <net/vlan/if_vlan_var.h>
61 #include <net/vlan/if_vlan_ether.h>
62 #include <net/if_poll.h>
63 
64 #include <netinet/in_systm.h>
65 #include <netinet/in.h>
66 #include <netinet/ip.h>
67 
68 #include <bus/pci/pcivar.h>
69 #include <bus/pci/pcireg.h>
70 
71 #include <dev/netif/ig_hal/e1000_api.h>
72 #include <dev/netif/ig_hal/e1000_82575.h>
73 #include <dev/netif/ig_hal/e1000_dragonfly.h>
74 #include <dev/netif/igb/if_igb.h>
75 
76 #ifdef IGB_RSS_DEBUG
77 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...) \
78 do { \
79 	if (sc->rss_debug >= lvl) \
80 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
81 } while (0)
82 #else	/* !IGB_RSS_DEBUG */
83 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
84 #endif	/* IGB_RSS_DEBUG */
85 
86 #define IGB_NAME	"Intel(R) PRO/1000 "
87 #define IGB_DEVICE(id)	\
88 	{ IGB_VENDOR_ID, E1000_DEV_ID_##id, IGB_NAME #id }
89 #define IGB_DEVICE_NULL	{ 0, 0, NULL }
90 
91 static struct igb_device {
92 	uint16_t	vid;
93 	uint16_t	did;
94 	const char	*desc;
95 } igb_devices[] = {
96 	IGB_DEVICE(82575EB_COPPER),
97 	IGB_DEVICE(82575EB_FIBER_SERDES),
98 	IGB_DEVICE(82575GB_QUAD_COPPER),
99 	IGB_DEVICE(82576),
100 	IGB_DEVICE(82576_NS),
101 	IGB_DEVICE(82576_NS_SERDES),
102 	IGB_DEVICE(82576_FIBER),
103 	IGB_DEVICE(82576_SERDES),
104 	IGB_DEVICE(82576_SERDES_QUAD),
105 	IGB_DEVICE(82576_QUAD_COPPER),
106 	IGB_DEVICE(82576_QUAD_COPPER_ET2),
107 	IGB_DEVICE(82576_VF),
108 	IGB_DEVICE(82580_COPPER),
109 	IGB_DEVICE(82580_FIBER),
110 	IGB_DEVICE(82580_SERDES),
111 	IGB_DEVICE(82580_SGMII),
112 	IGB_DEVICE(82580_COPPER_DUAL),
113 	IGB_DEVICE(82580_QUAD_FIBER),
114 	IGB_DEVICE(DH89XXCC_SERDES),
115 	IGB_DEVICE(DH89XXCC_SGMII),
116 	IGB_DEVICE(DH89XXCC_SFP),
117 	IGB_DEVICE(DH89XXCC_BACKPLANE),
118 	IGB_DEVICE(I350_COPPER),
119 	IGB_DEVICE(I350_FIBER),
120 	IGB_DEVICE(I350_SERDES),
121 	IGB_DEVICE(I350_SGMII),
122 	IGB_DEVICE(I350_VF),
123 	IGB_DEVICE(I210_COPPER),
124 	IGB_DEVICE(I210_COPPER_IT),
125 	IGB_DEVICE(I210_COPPER_OEM1),
126 	IGB_DEVICE(I210_COPPER_FLASHLESS),
127 	IGB_DEVICE(I210_SERDES_FLASHLESS),
128 	IGB_DEVICE(I210_FIBER),
129 	IGB_DEVICE(I210_SERDES),
130 	IGB_DEVICE(I210_SGMII),
131 	IGB_DEVICE(I211_COPPER),
132 	IGB_DEVICE(I354_BACKPLANE_1GBPS),
133 	IGB_DEVICE(I354_BACKPLANE_2_5GBPS),
134 	IGB_DEVICE(I354_SGMII),
135 
136 	/* required last entry */
137 	IGB_DEVICE_NULL
138 };
139 
140 static int	igb_probe(device_t);
141 static int	igb_attach(device_t);
142 static int	igb_detach(device_t);
143 static int	igb_shutdown(device_t);
144 static int	igb_suspend(device_t);
145 static int	igb_resume(device_t);
146 
147 static boolean_t igb_is_valid_ether_addr(const uint8_t *);
148 static void	igb_setup_ifp(struct igb_softc *);
149 static boolean_t igb_txcsum_ctx(struct igb_tx_ring *, struct mbuf *);
150 static int	igb_tso_pullup(struct igb_tx_ring *, struct mbuf **);
151 static void	igb_tso_ctx(struct igb_tx_ring *, struct mbuf *, uint32_t *);
152 static void	igb_add_sysctl(struct igb_softc *);
153 static void	igb_add_intr_rate_sysctl(struct igb_softc *, int,
154 		    const char *, const char *);
155 static int	igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
156 static int	igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
157 static int	igb_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
158 static int	igb_sysctl_rx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
159 static void	igb_set_ring_inuse(struct igb_softc *, boolean_t);
160 static int	igb_get_rxring_inuse(const struct igb_softc *, boolean_t);
161 static int	igb_get_txring_inuse(const struct igb_softc *, boolean_t);
162 static void	igb_set_timer_cpuid(struct igb_softc *, boolean_t);
163 #ifdef IFPOLL_ENABLE
164 static int	igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
165 static int	igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
166 #endif
167 
168 static void	igb_vf_init_stats(struct igb_softc *);
169 static void	igb_reset(struct igb_softc *, boolean_t);
170 static void	igb_update_stats_counters(struct igb_softc *);
171 static void	igb_update_vf_stats_counters(struct igb_softc *);
172 static void	igb_update_link_status(struct igb_softc *);
173 static void	igb_init_tx_unit(struct igb_softc *);
174 static void	igb_init_rx_unit(struct igb_softc *);
175 static void	igb_init_dmac(struct igb_softc *, uint32_t);
176 
177 static void	igb_set_vlan(struct igb_softc *);
178 static void	igb_set_multi(struct igb_softc *);
179 static void	igb_set_promisc(struct igb_softc *);
180 static void	igb_disable_promisc(struct igb_softc *);
181 
182 static int	igb_alloc_rings(struct igb_softc *);
183 static void	igb_free_rings(struct igb_softc *);
184 static int	igb_create_tx_ring(struct igb_tx_ring *);
185 static int	igb_create_rx_ring(struct igb_rx_ring *);
186 static void	igb_free_tx_ring(struct igb_tx_ring *);
187 static void	igb_free_rx_ring(struct igb_rx_ring *);
188 static void	igb_destroy_tx_ring(struct igb_tx_ring *, int);
189 static void	igb_destroy_rx_ring(struct igb_rx_ring *, int);
190 static void	igb_init_tx_ring(struct igb_tx_ring *);
191 static int	igb_init_rx_ring(struct igb_rx_ring *);
192 static int	igb_newbuf(struct igb_rx_ring *, int, boolean_t);
193 static int	igb_encap(struct igb_tx_ring *, struct mbuf **, int *, int *);
194 static void	igb_rx_refresh(struct igb_rx_ring *, int);
195 static void	igb_setup_serialize(struct igb_softc *);
196 
197 static void	igb_stop(struct igb_softc *);
198 static void	igb_init(void *);
199 static int	igb_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
200 static void	igb_media_status(struct ifnet *, struct ifmediareq *);
201 static int	igb_media_change(struct ifnet *);
202 static void	igb_timer(void *);
203 static void	igb_watchdog(struct ifaltq_subque *);
204 static void	igb_start(struct ifnet *, struct ifaltq_subque *);
205 #ifdef IFPOLL_ENABLE
206 static void	igb_npoll(struct ifnet *, struct ifpoll_info *);
207 static void	igb_npoll_rx(struct ifnet *, void *, int);
208 static void	igb_npoll_tx(struct ifnet *, void *, int);
209 static void	igb_npoll_status(struct ifnet *);
210 #endif
211 static void	igb_serialize(struct ifnet *, enum ifnet_serialize);
212 static void	igb_deserialize(struct ifnet *, enum ifnet_serialize);
213 static int	igb_tryserialize(struct ifnet *, enum ifnet_serialize);
214 #ifdef INVARIANTS
215 static void	igb_serialize_assert(struct ifnet *, enum ifnet_serialize,
216 		    boolean_t);
217 #endif
218 
219 static void	igb_intr(void *);
220 static void	igb_intr_shared(void *);
221 static void	igb_rxeof(struct igb_rx_ring *, int);
222 static void	igb_txeof(struct igb_tx_ring *, int);
223 static void	igb_set_eitr(struct igb_softc *, int, int);
224 static void	igb_enable_intr(struct igb_softc *);
225 static void	igb_disable_intr(struct igb_softc *);
226 static void	igb_init_unshared_intr(struct igb_softc *);
227 static void	igb_init_intr(struct igb_softc *);
228 static int	igb_setup_intr(struct igb_softc *);
229 static void	igb_set_txintr_mask(struct igb_tx_ring *, int *, int);
230 static void	igb_set_rxintr_mask(struct igb_rx_ring *, int *, int);
231 static void	igb_set_intr_mask(struct igb_softc *);
232 static int	igb_alloc_intr(struct igb_softc *);
233 static void	igb_free_intr(struct igb_softc *);
234 static void	igb_teardown_intr(struct igb_softc *, int);
235 static void	igb_alloc_msix(struct igb_softc *);
236 static void	igb_free_msix(struct igb_softc *, boolean_t);
237 static void	igb_msix_rx_conf(struct igb_softc *, int, int *, int);
238 static void	igb_msix_tx_conf(struct igb_softc *, int, int *, int);
239 static void	igb_msix_rx(void *);
240 static void	igb_msix_tx(void *);
241 static void	igb_msix_status(void *);
242 static void	igb_msix_rxtx(void *);
243 
244 /* Management and WOL Support */
245 static void	igb_get_mgmt(struct igb_softc *);
246 static void	igb_rel_mgmt(struct igb_softc *);
247 static void	igb_get_hw_control(struct igb_softc *);
248 static void	igb_rel_hw_control(struct igb_softc *);
249 static void	igb_enable_wol(device_t);
250 
251 static device_method_t igb_methods[] = {
252 	/* Device interface */
253 	DEVMETHOD(device_probe,		igb_probe),
254 	DEVMETHOD(device_attach,	igb_attach),
255 	DEVMETHOD(device_detach,	igb_detach),
256 	DEVMETHOD(device_shutdown,	igb_shutdown),
257 	DEVMETHOD(device_suspend,	igb_suspend),
258 	DEVMETHOD(device_resume,	igb_resume),
259 	DEVMETHOD_END
260 };
261 
262 static driver_t igb_driver = {
263 	"igb",
264 	igb_methods,
265 	sizeof(struct igb_softc),
266 };
267 
268 static devclass_t igb_devclass;
269 
270 DECLARE_DUMMY_MODULE(if_igb);
271 MODULE_DEPEND(igb, ig_hal, 1, 1, 1);
272 DRIVER_MODULE(if_igb, pci, igb_driver, igb_devclass, NULL, NULL);
273 
274 static int	igb_rxd = IGB_DEFAULT_RXD;
275 static int	igb_txd = IGB_DEFAULT_TXD;
276 static int	igb_rxr = 0;
277 static int	igb_txr = 0;
278 static int	igb_msi_enable = 1;
279 static int	igb_msix_enable = 1;
280 static int	igb_msix_agg_rxtx = 1;
281 static int	igb_eee_disabled = 1;	/* Energy Efficient Ethernet */
282 
283 static char	igb_flowctrl[IFM_ETH_FC_STRLEN] = IFM_ETH_FC_RXPAUSE;
284 
285 /*
286  * DMA Coalescing, only for i350 - default to off,
287  * this feature is for power savings
288  */
289 static int	igb_dma_coalesce = 0;
290 
291 TUNABLE_INT("hw.igb.rxd", &igb_rxd);
292 TUNABLE_INT("hw.igb.txd", &igb_txd);
293 TUNABLE_INT("hw.igb.rxr", &igb_rxr);
294 TUNABLE_INT("hw.igb.txr", &igb_txr);
295 TUNABLE_INT("hw.igb.msi.enable", &igb_msi_enable);
296 TUNABLE_INT("hw.igb.msix.enable", &igb_msix_enable);
297 TUNABLE_INT("hw.igb.msix.agg_rxtx", &igb_msix_agg_rxtx);
298 TUNABLE_STR("hw.igb.flow_ctrl", igb_flowctrl, sizeof(igb_flowctrl));
299 
300 /* i350 specific */
301 TUNABLE_INT("hw.igb.eee_disabled", &igb_eee_disabled);
302 TUNABLE_INT("hw.igb.dma_coalesce", &igb_dma_coalesce);
303 
304 static __inline void
305 igb_rxcsum(uint32_t staterr, struct mbuf *mp)
306 {
307 	/* Ignore Checksum bit is set */
308 	if (staterr & E1000_RXD_STAT_IXSM)
309 		return;
310 
311 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
312 	    E1000_RXD_STAT_IPCS)
313 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
314 
315 	if (staterr & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
316 		if ((staterr & E1000_RXDEXT_STATERR_TCPE) == 0) {
317 			mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
318 			    CSUM_PSEUDO_HDR | CSUM_FRAG_NOT_CHECKED;
319 			mp->m_pkthdr.csum_data = htons(0xffff);
320 		}
321 	}
322 }
323 
324 static __inline struct pktinfo *
325 igb_rssinfo(struct mbuf *m, struct pktinfo *pi,
326     uint32_t hash, uint32_t hashtype, uint32_t staterr)
327 {
328 	switch (hashtype) {
329 	case E1000_RXDADV_RSSTYPE_IPV4_TCP:
330 		pi->pi_netisr = NETISR_IP;
331 		pi->pi_flags = 0;
332 		pi->pi_l3proto = IPPROTO_TCP;
333 		break;
334 
335 	case E1000_RXDADV_RSSTYPE_IPV4:
336 		if (staterr & E1000_RXD_STAT_IXSM)
337 			return NULL;
338 
339 		if ((staterr &
340 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
341 		    E1000_RXD_STAT_TCPCS) {
342 			pi->pi_netisr = NETISR_IP;
343 			pi->pi_flags = 0;
344 			pi->pi_l3proto = IPPROTO_UDP;
345 			break;
346 		}
347 		/* FALL THROUGH */
348 	default:
349 		return NULL;
350 	}
351 
352 	m->m_flags |= M_HASH;
353 	m->m_pkthdr.hash = toeplitz_hash(hash);
354 	return pi;
355 }
356 
357 static int
358 igb_probe(device_t dev)
359 {
360 	const struct igb_device *d;
361 	uint16_t vid, did;
362 
363 	vid = pci_get_vendor(dev);
364 	did = pci_get_device(dev);
365 
366 	for (d = igb_devices; d->desc != NULL; ++d) {
367 		if (vid == d->vid && did == d->did) {
368 			device_set_desc(dev, d->desc);
369 			return 0;
370 		}
371 	}
372 	return ENXIO;
373 }
374 
375 static int
376 igb_attach(device_t dev)
377 {
378 	struct igb_softc *sc = device_get_softc(dev);
379 	uint16_t eeprom_data;
380 	int error = 0, ring_max;
381 	char flowctrl[IFM_ETH_FC_STRLEN];
382 #ifdef IFPOLL_ENABLE
383 	int offset, offset_def;
384 #endif
385 
386 #ifdef notyet
387 	/* SYSCTL stuff */
388 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
389 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
390 	    OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
391 	    igb_sysctl_nvm_info, "I", "NVM Information");
392 #endif
393 
394 	ifmedia_init(&sc->media, IFM_IMASK | IFM_ETH_FCMASK,
395 	    igb_media_change, igb_media_status);
396 	callout_init_mp(&sc->timer);
397 	lwkt_serialize_init(&sc->main_serialize);
398 
399 	if_initname(&sc->arpcom.ac_if, device_get_name(dev),
400 	    device_get_unit(dev));
401 	sc->dev = sc->osdep.dev = dev;
402 
403 	/* Enable bus mastering */
404 	pci_enable_busmaster(dev);
405 
406 	/*
407 	 * Determine hardware and mac type
408 	 */
409 	sc->hw.vendor_id = pci_get_vendor(dev);
410 	sc->hw.device_id = pci_get_device(dev);
411 	sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
412 	sc->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
413 	sc->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
414 
415 	if (e1000_set_mac_type(&sc->hw))
416 		return ENXIO;
417 
418 	/* Are we a VF device? */
419 	if (sc->hw.mac.type == e1000_vfadapt ||
420 	    sc->hw.mac.type == e1000_vfadapt_i350)
421 		sc->vf_ifp = 1;
422 	else
423 		sc->vf_ifp = 0;
424 
425 	/*
426 	 * Configure total supported RX/TX ring count
427 	 */
428 	switch (sc->hw.mac.type) {
429 	case e1000_82575:
430 		ring_max = IGB_MAX_RING_82575;
431 		break;
432 
433 	case e1000_82576:
434 		ring_max = IGB_MAX_RING_82576;
435 		break;
436 
437 	case e1000_82580:
438 		ring_max = IGB_MAX_RING_82580;
439 		break;
440 
441 	case e1000_i350:
442 		ring_max = IGB_MAX_RING_I350;
443 		break;
444 
445 	case e1000_i354:
446 		ring_max = IGB_MAX_RING_I354;
447 		break;
448 
449 	case e1000_i210:
450 		ring_max = IGB_MAX_RING_I210;
451 		break;
452 
453 	case e1000_i211:
454 		ring_max = IGB_MAX_RING_I211;
455 		break;
456 
457 	default:
458 		ring_max = IGB_MIN_RING;
459 		break;
460 	}
461 
462 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr", igb_rxr);
463 	sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, ring_max);
464 #ifdef IGB_RSS_DEBUG
465 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr_debug", sc->rx_ring_cnt);
466 #endif
467 	sc->rx_ring_inuse = sc->rx_ring_cnt;
468 
469 	sc->tx_ring_cnt = device_getenv_int(dev, "txr", igb_txr);
470 	sc->tx_ring_cnt = if_ring_count2(sc->tx_ring_cnt, ring_max);
471 #ifdef IGB_TSS_DEBUG
472 	sc->tx_ring_cnt = device_getenv_int(dev, "txr_debug", sc->tx_ring_cnt);
473 #endif
474 	sc->tx_ring_inuse = sc->tx_ring_cnt;
475 
476 	/* Setup flow control. */
477 	device_getenv_string(dev, "flow_ctrl", flowctrl, sizeof(flowctrl),
478 	    igb_flowctrl);
479 	sc->ifm_flowctrl = ifmedia_str2ethfc(flowctrl);
480 
481 	/*
482 	 * Allocate IO memory
483 	 */
484 	sc->mem_rid = PCIR_BAR(0);
485 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
486 	    RF_ACTIVE);
487 	if (sc->mem_res == NULL) {
488 		device_printf(dev, "Unable to allocate bus resource: memory\n");
489 		error = ENXIO;
490 		goto failed;
491 	}
492 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->mem_res);
493 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->mem_res);
494 
495 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
496 
497 	/* Save PCI command register for Shared Code */
498 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
499 	sc->hw.back = &sc->osdep;
500 
501 	/* Do Shared Code initialization */
502 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
503 		device_printf(dev, "Setup of Shared code failed\n");
504 		error = ENXIO;
505 		goto failed;
506 	}
507 
508 	e1000_get_bus_info(&sc->hw);
509 
510 	sc->hw.mac.autoneg = DO_AUTO_NEG;
511 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
512 	sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
513 
514 	/* Copper options */
515 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
516 		sc->hw.phy.mdix = AUTO_ALL_MODES;
517 		sc->hw.phy.disable_polarity_correction = FALSE;
518 		sc->hw.phy.ms_type = IGB_MASTER_SLAVE;
519 	}
520 
521 	/* Set the frame limits assuming  standard ethernet sized frames. */
522 	sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
523 
524 	/* Allocate RX/TX rings */
525 	error = igb_alloc_rings(sc);
526 	if (error)
527 		goto failed;
528 
529 #ifdef IFPOLL_ENABLE
530 	/*
531 	 * NPOLLING RX CPU offset
532 	 */
533 	if (sc->rx_ring_cnt == ncpus2) {
534 		offset = 0;
535 	} else {
536 		offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
537 		offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
538 		if (offset >= ncpus2 ||
539 		    offset % sc->rx_ring_cnt != 0) {
540 			device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
541 			    offset, offset_def);
542 			offset = offset_def;
543 		}
544 	}
545 	sc->rx_npoll_off = offset;
546 
547 	/*
548 	 * NPOLLING TX CPU offset
549 	 */
550 	if (sc->tx_ring_cnt == ncpus2) {
551 		offset = 0;
552 	} else {
553 		offset_def = (sc->tx_ring_cnt * device_get_unit(dev)) % ncpus2;
554 		offset = device_getenv_int(dev, "npoll.txoff", offset_def);
555 		if (offset >= ncpus2 ||
556 		    offset % sc->tx_ring_cnt != 0) {
557 			device_printf(dev, "invalid npoll.txoff %d, use %d\n",
558 			    offset, offset_def);
559 			offset = offset_def;
560 		}
561 	}
562 	sc->tx_npoll_off = offset;
563 #endif
564 
565 	/* Allocate interrupt */
566 	error = igb_alloc_intr(sc);
567 	if (error)
568 		goto failed;
569 
570 	/* Setup serializes */
571 	igb_setup_serialize(sc);
572 
573 	/* Allocate the appropriate stats memory */
574 	if (sc->vf_ifp) {
575 		sc->stats = kmalloc(sizeof(struct e1000_vf_stats), M_DEVBUF,
576 		    M_WAITOK | M_ZERO);
577 		igb_vf_init_stats(sc);
578 	} else {
579 		sc->stats = kmalloc(sizeof(struct e1000_hw_stats), M_DEVBUF,
580 		    M_WAITOK | M_ZERO);
581 	}
582 
583 	/* Allocate multicast array memory. */
584 	sc->mta = kmalloc(ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
585 	    M_DEVBUF, M_WAITOK);
586 
587 	/* Some adapter-specific advanced features */
588 	if (sc->hw.mac.type >= e1000_i350) {
589 #ifdef notyet
590 		igb_set_sysctl_value(adapter, "dma_coalesce",
591 		    "configure dma coalesce",
592 		    &adapter->dma_coalesce, igb_dma_coalesce);
593 		igb_set_sysctl_value(adapter, "eee_disabled",
594 		    "enable Energy Efficient Ethernet",
595 		    &adapter->hw.dev_spec._82575.eee_disable,
596 		    igb_eee_disabled);
597 #else
598 		sc->dma_coalesce = igb_dma_coalesce;
599 		sc->hw.dev_spec._82575.eee_disable = igb_eee_disabled;
600 #endif
601 		if (sc->hw.phy.media_type == e1000_media_type_copper) {
602                         if (sc->hw.mac.type == e1000_i354)
603 				e1000_set_eee_i354(&sc->hw, TRUE, TRUE);
604 			else
605 				e1000_set_eee_i350(&sc->hw, TRUE, TRUE);
606 		}
607 	}
608 
609 	/*
610 	 * Start from a known state, this is important in reading the nvm and
611 	 * mac from that.
612 	 */
613 	e1000_reset_hw(&sc->hw);
614 
615 	/* Make sure we have a good EEPROM before we read from it */
616 	if (sc->hw.mac.type != e1000_i210 && sc->hw.mac.type != e1000_i211 &&
617 	    e1000_validate_nvm_checksum(&sc->hw) < 0) {
618 		/*
619 		 * Some PCI-E parts fail the first check due to
620 		 * the link being in sleep state, call it again,
621 		 * if it fails a second time its a real issue.
622 		 */
623 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
624 			device_printf(dev,
625 			    "The EEPROM Checksum Is Not Valid\n");
626 			error = EIO;
627 			goto failed;
628 		}
629 	}
630 
631 	/* Copy the permanent MAC address out of the EEPROM */
632 	if (e1000_read_mac_addr(&sc->hw) < 0) {
633 		device_printf(dev, "EEPROM read error while reading MAC"
634 		    " address\n");
635 		error = EIO;
636 		goto failed;
637 	}
638 	if (!igb_is_valid_ether_addr(sc->hw.mac.addr)) {
639 		device_printf(dev, "Invalid MAC address\n");
640 		error = EIO;
641 		goto failed;
642 	}
643 
644 	/* Setup OS specific network interface */
645 	igb_setup_ifp(sc);
646 
647 	/* Add sysctl tree, must after igb_setup_ifp() */
648 	igb_add_sysctl(sc);
649 
650 	/* Now get a good starting state */
651 	igb_reset(sc, FALSE);
652 
653 	/* Initialize statistics */
654 	igb_update_stats_counters(sc);
655 
656 	sc->hw.mac.get_link_status = 1;
657 	igb_update_link_status(sc);
658 
659 	/* Indicate SOL/IDER usage */
660 	if (e1000_check_reset_block(&sc->hw)) {
661 		device_printf(dev,
662 		    "PHY reset is blocked due to SOL/IDER session.\n");
663 	}
664 
665 	/* Determine if we have to control management hardware */
666 	if (e1000_enable_mng_pass_thru(&sc->hw))
667 		sc->flags |= IGB_FLAG_HAS_MGMT;
668 
669 	/*
670 	 * Setup Wake-on-Lan
671 	 */
672 	/* APME bit in EEPROM is mapped to WUC.APME */
673 	eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC) & E1000_WUC_APME;
674 	if (eeprom_data)
675 		sc->wol = E1000_WUFC_MAG;
676 	/* XXX disable WOL */
677 	sc->wol = 0;
678 
679 #ifdef notyet
680 	/* Register for VLAN events */
681 	adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
682 	     igb_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
683 	adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
684 	     igb_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
685 #endif
686 
687 #ifdef notyet
688 	igb_add_hw_stats(adapter);
689 #endif
690 
691 	/*
692 	 * Disable interrupt to prevent spurious interrupts (line based
693 	 * interrupt, MSI or even MSI-X), which had been observed on
694 	 * several types of LOMs, from being handled.
695 	 */
696 	igb_disable_intr(sc);
697 
698 	error = igb_setup_intr(sc);
699 	if (error) {
700 		ether_ifdetach(&sc->arpcom.ac_if);
701 		goto failed;
702 	}
703 	return 0;
704 
705 failed:
706 	igb_detach(dev);
707 	return error;
708 }
709 
710 static int
711 igb_detach(device_t dev)
712 {
713 	struct igb_softc *sc = device_get_softc(dev);
714 
715 	if (device_is_attached(dev)) {
716 		struct ifnet *ifp = &sc->arpcom.ac_if;
717 
718 		ifnet_serialize_all(ifp);
719 
720 		igb_stop(sc);
721 
722 		e1000_phy_hw_reset(&sc->hw);
723 
724 		/* Give control back to firmware */
725 		igb_rel_mgmt(sc);
726 		igb_rel_hw_control(sc);
727 
728 		if (sc->wol) {
729 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
730 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
731 			igb_enable_wol(dev);
732 		}
733 
734 		igb_teardown_intr(sc, sc->intr_cnt);
735 
736 		ifnet_deserialize_all(ifp);
737 
738 		ether_ifdetach(ifp);
739 	} else if (sc->mem_res != NULL) {
740 		igb_rel_hw_control(sc);
741 	}
742 
743 	ifmedia_removeall(&sc->media);
744 	bus_generic_detach(dev);
745 
746 	igb_free_intr(sc);
747 
748 	if (sc->msix_mem_res != NULL) {
749 		bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_mem_rid,
750 		    sc->msix_mem_res);
751 	}
752 	if (sc->mem_res != NULL) {
753 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid,
754 		    sc->mem_res);
755 	}
756 
757 	igb_free_rings(sc);
758 
759 	if (sc->mta != NULL)
760 		kfree(sc->mta, M_DEVBUF);
761 	if (sc->stats != NULL)
762 		kfree(sc->stats, M_DEVBUF);
763 	if (sc->serializes != NULL)
764 		kfree(sc->serializes, M_DEVBUF);
765 
766 	return 0;
767 }
768 
769 static int
770 igb_shutdown(device_t dev)
771 {
772 	return igb_suspend(dev);
773 }
774 
775 static int
776 igb_suspend(device_t dev)
777 {
778 	struct igb_softc *sc = device_get_softc(dev);
779 	struct ifnet *ifp = &sc->arpcom.ac_if;
780 
781 	ifnet_serialize_all(ifp);
782 
783 	igb_stop(sc);
784 
785 	igb_rel_mgmt(sc);
786 	igb_rel_hw_control(sc);
787 
788 	if (sc->wol) {
789 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
790 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
791 		igb_enable_wol(dev);
792 	}
793 
794 	ifnet_deserialize_all(ifp);
795 
796 	return bus_generic_suspend(dev);
797 }
798 
799 static int
800 igb_resume(device_t dev)
801 {
802 	struct igb_softc *sc = device_get_softc(dev);
803 	struct ifnet *ifp = &sc->arpcom.ac_if;
804 	int i;
805 
806 	ifnet_serialize_all(ifp);
807 
808 	igb_init(sc);
809 	igb_get_mgmt(sc);
810 
811 	for (i = 0; i < sc->tx_ring_inuse; ++i)
812 		ifsq_devstart_sched(sc->tx_rings[i].ifsq);
813 
814 	ifnet_deserialize_all(ifp);
815 
816 	return bus_generic_resume(dev);
817 }
818 
819 static int
820 igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
821 {
822 	struct igb_softc *sc = ifp->if_softc;
823 	struct ifreq *ifr = (struct ifreq *)data;
824 	int max_frame_size, mask, reinit;
825 	int error = 0;
826 
827 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
828 
829 	switch (command) {
830 	case SIOCSIFMTU:
831 		max_frame_size = 9234;
832 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
833 		    ETHER_CRC_LEN) {
834 			error = EINVAL;
835 			break;
836 		}
837 
838 		ifp->if_mtu = ifr->ifr_mtu;
839 		sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
840 		    ETHER_CRC_LEN;
841 
842 		if (ifp->if_flags & IFF_RUNNING)
843 			igb_init(sc);
844 		break;
845 
846 	case SIOCSIFFLAGS:
847 		if (ifp->if_flags & IFF_UP) {
848 			if (ifp->if_flags & IFF_RUNNING) {
849 				if ((ifp->if_flags ^ sc->if_flags) &
850 				    (IFF_PROMISC | IFF_ALLMULTI)) {
851 					igb_disable_promisc(sc);
852 					igb_set_promisc(sc);
853 				}
854 			} else {
855 				igb_init(sc);
856 			}
857 		} else if (ifp->if_flags & IFF_RUNNING) {
858 			igb_stop(sc);
859 		}
860 		sc->if_flags = ifp->if_flags;
861 		break;
862 
863 	case SIOCADDMULTI:
864 	case SIOCDELMULTI:
865 		if (ifp->if_flags & IFF_RUNNING) {
866 			igb_disable_intr(sc);
867 			igb_set_multi(sc);
868 #ifdef IFPOLL_ENABLE
869 			if (!(ifp->if_flags & IFF_NPOLLING))
870 #endif
871 				igb_enable_intr(sc);
872 		}
873 		break;
874 
875 	case SIOCSIFMEDIA:
876 		/* Check SOL/IDER usage */
877 		if (e1000_check_reset_block(&sc->hw)) {
878 			if_printf(ifp, "Media change is "
879 			    "blocked due to SOL/IDER session.\n");
880 			break;
881 		}
882 		/* FALL THROUGH */
883 
884 	case SIOCGIFMEDIA:
885 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
886 		break;
887 
888 	case SIOCSIFCAP:
889 		reinit = 0;
890 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
891 		if (mask & IFCAP_RXCSUM) {
892 			ifp->if_capenable ^= IFCAP_RXCSUM;
893 			reinit = 1;
894 		}
895 		if (mask & IFCAP_VLAN_HWTAGGING) {
896 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
897 			reinit = 1;
898 		}
899 		if (mask & IFCAP_TXCSUM) {
900 			ifp->if_capenable ^= IFCAP_TXCSUM;
901 			if (ifp->if_capenable & IFCAP_TXCSUM)
902 				ifp->if_hwassist |= IGB_CSUM_FEATURES;
903 			else
904 				ifp->if_hwassist &= ~IGB_CSUM_FEATURES;
905 		}
906 		if (mask & IFCAP_TSO) {
907 			ifp->if_capenable ^= IFCAP_TSO;
908 			if (ifp->if_capenable & IFCAP_TSO)
909 				ifp->if_hwassist |= CSUM_TSO;
910 			else
911 				ifp->if_hwassist &= ~CSUM_TSO;
912 		}
913 		if (mask & IFCAP_RSS)
914 			ifp->if_capenable ^= IFCAP_RSS;
915 		if (reinit && (ifp->if_flags & IFF_RUNNING))
916 			igb_init(sc);
917 		break;
918 
919 	default:
920 		error = ether_ioctl(ifp, command, data);
921 		break;
922 	}
923 	return error;
924 }
925 
926 static void
927 igb_init(void *xsc)
928 {
929 	struct igb_softc *sc = xsc;
930 	struct ifnet *ifp = &sc->arpcom.ac_if;
931 	boolean_t polling;
932 	int i;
933 
934 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
935 
936 	igb_stop(sc);
937 
938 	/* Get the latest mac address, User can use a LAA */
939 	bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
940 
941 	/* Put the address into the Receive Address Array */
942 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
943 
944 	igb_reset(sc, FALSE);
945 	igb_update_link_status(sc);
946 
947 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
948 
949 	/* Configure for OS presence */
950 	igb_get_mgmt(sc);
951 
952 	polling = FALSE;
953 #ifdef IFPOLL_ENABLE
954 	if (ifp->if_flags & IFF_NPOLLING)
955 		polling = TRUE;
956 #endif
957 
958 	/* Configured used RX/TX rings */
959 	igb_set_ring_inuse(sc, polling);
960 	ifq_set_subq_mask(&ifp->if_snd, sc->tx_ring_inuse - 1);
961 
962 	/* Initialize interrupt */
963 	igb_init_intr(sc);
964 
965 	/* Prepare transmit descriptors and buffers */
966 	for (i = 0; i < sc->tx_ring_inuse; ++i)
967 		igb_init_tx_ring(&sc->tx_rings[i]);
968 	igb_init_tx_unit(sc);
969 
970 	/* Setup Multicast table */
971 	igb_set_multi(sc);
972 
973 #if 0
974 	/*
975 	 * Figure out the desired mbuf pool
976 	 * for doing jumbo/packetsplit
977 	 */
978 	if (adapter->max_frame_size <= 2048)
979 		adapter->rx_mbuf_sz = MCLBYTES;
980 	else if (adapter->max_frame_size <= 4096)
981 		adapter->rx_mbuf_sz = MJUMPAGESIZE;
982 	else
983 		adapter->rx_mbuf_sz = MJUM9BYTES;
984 #endif
985 
986 	/* Prepare receive descriptors and buffers */
987 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
988 		int error;
989 
990 		error = igb_init_rx_ring(&sc->rx_rings[i]);
991 		if (error) {
992 			if_printf(ifp, "Could not setup receive structures\n");
993 			igb_stop(sc);
994 			return;
995 		}
996 	}
997 	igb_init_rx_unit(sc);
998 
999 	/* Enable VLAN support */
1000 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1001 		igb_set_vlan(sc);
1002 
1003 	/* Don't lose promiscuous settings */
1004 	igb_set_promisc(sc);
1005 
1006 	ifp->if_flags |= IFF_RUNNING;
1007 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
1008 		ifsq_clr_oactive(sc->tx_rings[i].ifsq);
1009 		ifsq_watchdog_start(&sc->tx_rings[i].tx_watchdog);
1010 	}
1011 
1012 	igb_set_timer_cpuid(sc, polling);
1013 	callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
1014 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1015 
1016 	/* This clears any pending interrupts */
1017 	E1000_READ_REG(&sc->hw, E1000_ICR);
1018 
1019 	/*
1020 	 * Only enable interrupts if we are not polling, make sure
1021 	 * they are off otherwise.
1022 	 */
1023 	if (polling) {
1024 		igb_disable_intr(sc);
1025 	} else {
1026 		igb_enable_intr(sc);
1027 		E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
1028 	}
1029 
1030 	/* Set Energy Efficient Ethernet */
1031 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
1032 		if (sc->hw.mac.type == e1000_i354)
1033 			e1000_set_eee_i354(&sc->hw, TRUE, TRUE);
1034 		else
1035 			e1000_set_eee_i350(&sc->hw, TRUE, TRUE);
1036 	}
1037 }
1038 
1039 static void
1040 igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1041 {
1042 	struct igb_softc *sc = ifp->if_softc;
1043 
1044 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1045 
1046 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1047 		sc->hw.mac.get_link_status = 1;
1048 	igb_update_link_status(sc);
1049 
1050 	ifmr->ifm_status = IFM_AVALID;
1051 	ifmr->ifm_active = IFM_ETHER;
1052 
1053 	if (!sc->link_active) {
1054 		if (sc->hw.mac.autoneg)
1055 			ifmr->ifm_active |= IFM_NONE;
1056 		else
1057 			ifmr->ifm_active |= sc->media.ifm_media;
1058 		return;
1059 	}
1060 
1061 	ifmr->ifm_status |= IFM_ACTIVE;
1062 	if (sc->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1063 		ifmr->ifm_active |= sc->ifm_flowctrl;
1064 
1065 	switch (sc->link_speed) {
1066 	case 10:
1067 		ifmr->ifm_active |= IFM_10_T;
1068 		break;
1069 
1070 	case 100:
1071 		/*
1072 		 * Support for 100Mb SFP - these are Fiber
1073 		 * but the media type appears as serdes
1074 		 */
1075 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1076 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
1077 			ifmr->ifm_active |= IFM_100_FX;
1078 		else
1079 			ifmr->ifm_active |= IFM_100_TX;
1080 		break;
1081 
1082 	case 1000:
1083 		if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1084 		    sc->hw.phy.media_type == e1000_media_type_internal_serdes)
1085 			ifmr->ifm_active |= IFM_1000_SX;
1086 		else
1087 			ifmr->ifm_active |= IFM_1000_T;
1088 		break;
1089 
1090 	case 2500:
1091 		ifmr->ifm_active |= IFM_2500_SX;
1092 		break;
1093 	}
1094 
1095 	if (sc->link_duplex == FULL_DUPLEX)
1096 		ifmr->ifm_active |= IFM_FDX;
1097 	else
1098 		ifmr->ifm_active |= IFM_HDX;
1099 
1100 	if (sc->link_duplex == FULL_DUPLEX)
1101 		ifmr->ifm_active |= e1000_fc2ifmedia(sc->hw.fc.current_mode);
1102 }
1103 
1104 static int
1105 igb_media_change(struct ifnet *ifp)
1106 {
1107 	struct igb_softc *sc = ifp->if_softc;
1108 	struct ifmedia *ifm = &sc->media;
1109 
1110 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1111 
1112 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1113 		return EINVAL;
1114 
1115 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1116 	case IFM_AUTO:
1117 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1118 		sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1119 		break;
1120 
1121 	case IFM_1000_SX:
1122 	case IFM_1000_T:
1123 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1124 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1125 		break;
1126 
1127 	case IFM_100_TX:
1128 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1129 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1130 		} else {
1131 			if (IFM_OPTIONS(ifm->ifm_media) &
1132 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1133 				if (bootverbose) {
1134 					if_printf(ifp, "Flow control is not "
1135 					    "allowed for half-duplex\n");
1136 				}
1137 				return EINVAL;
1138 			}
1139 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1140 		}
1141 		sc->hw.mac.autoneg = FALSE;
1142 		sc->hw.phy.autoneg_advertised = 0;
1143 		break;
1144 
1145 	case IFM_10_T:
1146 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1147 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1148 		} else {
1149 			if (IFM_OPTIONS(ifm->ifm_media) &
1150 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1151 				if (bootverbose) {
1152 					if_printf(ifp, "Flow control is not "
1153 					    "allowed for half-duplex\n");
1154 				}
1155 				return EINVAL;
1156 			}
1157 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1158 		}
1159 		sc->hw.mac.autoneg = FALSE;
1160 		sc->hw.phy.autoneg_advertised = 0;
1161 		break;
1162 
1163 	default:
1164 		if (bootverbose) {
1165 			if_printf(ifp, "Unsupported media type %d\n",
1166 			    IFM_SUBTYPE(ifm->ifm_media));
1167 		}
1168 		return EINVAL;
1169 	}
1170 	sc->ifm_flowctrl = ifm->ifm_media & IFM_ETH_FCMASK;
1171 
1172 	if (ifp->if_flags & IFF_RUNNING)
1173 		igb_init(sc);
1174 
1175 	return 0;
1176 }
1177 
1178 static void
1179 igb_set_promisc(struct igb_softc *sc)
1180 {
1181 	struct ifnet *ifp = &sc->arpcom.ac_if;
1182 	struct e1000_hw *hw = &sc->hw;
1183 	uint32_t reg;
1184 
1185 	if (sc->vf_ifp) {
1186 		e1000_promisc_set_vf(hw, e1000_promisc_enabled);
1187 		return;
1188 	}
1189 
1190 	reg = E1000_READ_REG(hw, E1000_RCTL);
1191 	if (ifp->if_flags & IFF_PROMISC) {
1192 		reg |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1193 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
1194 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1195 		reg |= E1000_RCTL_MPE;
1196 		reg &= ~E1000_RCTL_UPE;
1197 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
1198 	}
1199 }
1200 
1201 static void
1202 igb_disable_promisc(struct igb_softc *sc)
1203 {
1204 	struct e1000_hw *hw = &sc->hw;
1205 	struct ifnet *ifp = &sc->arpcom.ac_if;
1206 	uint32_t reg;
1207 	int mcnt = 0;
1208 
1209 	if (sc->vf_ifp) {
1210 		e1000_promisc_set_vf(hw, e1000_promisc_disabled);
1211 		return;
1212 	}
1213 	reg = E1000_READ_REG(hw, E1000_RCTL);
1214 	reg &= ~E1000_RCTL_UPE;
1215 	if (ifp->if_flags & IFF_ALLMULTI) {
1216 		mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1217 	} else {
1218 		struct  ifmultiaddr *ifma;
1219 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1220 			if (ifma->ifma_addr->sa_family != AF_LINK)
1221 				continue;
1222 			if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1223 				break;
1224 			mcnt++;
1225 		}
1226 	}
1227 	/* Don't disable if in MAX groups */
1228 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1229 		reg &= ~E1000_RCTL_MPE;
1230 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
1231 }
1232 
1233 static void
1234 igb_set_multi(struct igb_softc *sc)
1235 {
1236 	struct ifnet *ifp = &sc->arpcom.ac_if;
1237 	struct ifmultiaddr *ifma;
1238 	uint32_t reg_rctl = 0;
1239 	uint8_t *mta;
1240 	int mcnt = 0;
1241 
1242 	mta = sc->mta;
1243 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1244 
1245 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1246 		if (ifma->ifma_addr->sa_family != AF_LINK)
1247 			continue;
1248 
1249 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1250 			break;
1251 
1252 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1253 		    &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
1254 		mcnt++;
1255 	}
1256 
1257 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1258 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1259 		reg_rctl |= E1000_RCTL_MPE;
1260 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1261 	} else {
1262 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1263 	}
1264 }
1265 
1266 static void
1267 igb_timer(void *xsc)
1268 {
1269 	struct igb_softc *sc = xsc;
1270 
1271 	lwkt_serialize_enter(&sc->main_serialize);
1272 
1273 	igb_update_link_status(sc);
1274 	igb_update_stats_counters(sc);
1275 
1276 	callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
1277 
1278 	lwkt_serialize_exit(&sc->main_serialize);
1279 }
1280 
1281 static void
1282 igb_update_link_status(struct igb_softc *sc)
1283 {
1284 	struct ifnet *ifp = &sc->arpcom.ac_if;
1285 	struct e1000_hw *hw = &sc->hw;
1286 	uint32_t link_check, thstat, ctrl;
1287 
1288 	link_check = thstat = ctrl = 0;
1289 
1290 	/* Get the cached link value or read for real */
1291 	switch (hw->phy.media_type) {
1292 	case e1000_media_type_copper:
1293 		if (hw->mac.get_link_status) {
1294 			/* Do the work to read phy */
1295 			e1000_check_for_link(hw);
1296 			link_check = !hw->mac.get_link_status;
1297 		} else {
1298 			link_check = TRUE;
1299 		}
1300 		break;
1301 
1302 	case e1000_media_type_fiber:
1303 		e1000_check_for_link(hw);
1304 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1305 		break;
1306 
1307 	case e1000_media_type_internal_serdes:
1308 		e1000_check_for_link(hw);
1309 		link_check = hw->mac.serdes_has_link;
1310 		break;
1311 
1312 	/* VF device is type_unknown */
1313 	case e1000_media_type_unknown:
1314 		e1000_check_for_link(hw);
1315 		link_check = !hw->mac.get_link_status;
1316 		/* Fall thru */
1317 	default:
1318 		break;
1319 	}
1320 
1321 	/* Check for thermal downshift or shutdown */
1322 	if (hw->mac.type == e1000_i350) {
1323 		thstat = E1000_READ_REG(hw, E1000_THSTAT);
1324 		ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1325 	}
1326 
1327 	/* Now we check if a transition has happened */
1328 	if (link_check && sc->link_active == 0) {
1329 		e1000_get_speed_and_duplex(hw,
1330 		    &sc->link_speed, &sc->link_duplex);
1331 		if (bootverbose) {
1332 			char flowctrl[IFM_ETH_FC_STRLEN];
1333 
1334 			/* Get the flow control for display */
1335 			e1000_fc2str(hw->fc.current_mode, flowctrl,
1336 			    sizeof(flowctrl));
1337 
1338 			if_printf(ifp, "Link is up %d Mbps %s, "
1339 			    "Flow control: %s\n",
1340 			    sc->link_speed,
1341 			    sc->link_duplex == FULL_DUPLEX ?
1342 			    "Full Duplex" : "Half Duplex",
1343 			    flowctrl);
1344 		}
1345 		if (sc->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1346 			e1000_force_flowctrl(hw, sc->ifm_flowctrl);
1347 		sc->link_active = 1;
1348 
1349 		ifp->if_baudrate = sc->link_speed * 1000000;
1350 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1351 		    (thstat & E1000_THSTAT_LINK_THROTTLE))
1352 			if_printf(ifp, "Link: thermal downshift\n");
1353 		/* Delay Link Up for Phy update */
1354 		if ((hw->mac.type == e1000_i210 ||
1355 		     hw->mac.type == e1000_i211) &&
1356 		    hw->phy.id == I210_I_PHY_ID)
1357 			msec_delay(IGB_I210_LINK_DELAY);
1358 		/*
1359 		 * Reset if the media type changed.
1360 		 * Support AutoMediaDetect for Marvell M88 PHY in i354.
1361 		 */
1362 		if (hw->dev_spec._82575.media_changed) {
1363 			hw->dev_spec._82575.media_changed = FALSE;
1364 			igb_reset(sc, TRUE);
1365 		}
1366 		/* This can sleep */
1367 		ifp->if_link_state = LINK_STATE_UP;
1368 		if_link_state_change(ifp);
1369 	} else if (!link_check && sc->link_active == 1) {
1370 		ifp->if_baudrate = sc->link_speed = 0;
1371 		sc->link_duplex = 0;
1372 		if (bootverbose)
1373 			if_printf(ifp, "Link is Down\n");
1374 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1375 		    (thstat & E1000_THSTAT_PWR_DOWN))
1376 			if_printf(ifp, "Link: thermal shutdown\n");
1377 		sc->link_active = 0;
1378 		/* This can sleep */
1379 		ifp->if_link_state = LINK_STATE_DOWN;
1380 		if_link_state_change(ifp);
1381 	}
1382 }
1383 
1384 static void
1385 igb_stop(struct igb_softc *sc)
1386 {
1387 	struct ifnet *ifp = &sc->arpcom.ac_if;
1388 	int i;
1389 
1390 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1391 
1392 	igb_disable_intr(sc);
1393 
1394 	callout_stop(&sc->timer);
1395 
1396 	ifp->if_flags &= ~IFF_RUNNING;
1397 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1398 		ifsq_clr_oactive(sc->tx_rings[i].ifsq);
1399 		ifsq_watchdog_stop(&sc->tx_rings[i].tx_watchdog);
1400 		sc->tx_rings[i].tx_flags &= ~IGB_TXFLAG_ENABLED;
1401 	}
1402 
1403 	e1000_reset_hw(&sc->hw);
1404 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1405 
1406 	e1000_led_off(&sc->hw);
1407 	e1000_cleanup_led(&sc->hw);
1408 
1409 	for (i = 0; i < sc->tx_ring_cnt; ++i)
1410 		igb_free_tx_ring(&sc->tx_rings[i]);
1411 	for (i = 0; i < sc->rx_ring_cnt; ++i)
1412 		igb_free_rx_ring(&sc->rx_rings[i]);
1413 }
1414 
1415 static void
1416 igb_reset(struct igb_softc *sc, boolean_t media_reset)
1417 {
1418 	struct ifnet *ifp = &sc->arpcom.ac_if;
1419 	struct e1000_hw *hw = &sc->hw;
1420 	struct e1000_fc_info *fc = &hw->fc;
1421 	uint32_t pba = 0;
1422 	uint16_t hwm;
1423 
1424 	/* Let the firmware know the OS is in control */
1425 	igb_get_hw_control(sc);
1426 
1427 	/*
1428 	 * Packet Buffer Allocation (PBA)
1429 	 * Writing PBA sets the receive portion of the buffer
1430 	 * the remainder is used for the transmit buffer.
1431 	 */
1432 	switch (hw->mac.type) {
1433 	case e1000_82575:
1434 		pba = E1000_PBA_32K;
1435 		break;
1436 
1437 	case e1000_82576:
1438 	case e1000_vfadapt:
1439 		pba = E1000_READ_REG(hw, E1000_RXPBS);
1440 		pba &= E1000_RXPBS_SIZE_MASK_82576;
1441 		break;
1442 
1443 	case e1000_82580:
1444 	case e1000_i350:
1445 	case e1000_i354:
1446 	case e1000_vfadapt_i350:
1447 		pba = E1000_READ_REG(hw, E1000_RXPBS);
1448 		pba = e1000_rxpbs_adjust_82580(pba);
1449 		break;
1450 
1451 	case e1000_i210:
1452 	case e1000_i211:
1453 		pba = E1000_PBA_34K;
1454 		break;
1455 
1456 	default:
1457 		break;
1458 	}
1459 
1460 	/* Special needs in case of Jumbo frames */
1461 	if (hw->mac.type == e1000_82575 && ifp->if_mtu > ETHERMTU) {
1462 		uint32_t tx_space, min_tx, min_rx;
1463 
1464 		pba = E1000_READ_REG(hw, E1000_PBA);
1465 		tx_space = pba >> 16;
1466 		pba &= 0xffff;
1467 
1468 		min_tx = (sc->max_frame_size +
1469 		    sizeof(struct e1000_tx_desc) - ETHER_CRC_LEN) * 2;
1470 		min_tx = roundup2(min_tx, 1024);
1471 		min_tx >>= 10;
1472 		min_rx = sc->max_frame_size;
1473 		min_rx = roundup2(min_rx, 1024);
1474 		min_rx >>= 10;
1475 		if (tx_space < min_tx && (min_tx - tx_space) < pba) {
1476 			pba = pba - (min_tx - tx_space);
1477 			/*
1478 			 * if short on rx space, rx wins
1479 			 * and must trump tx adjustment
1480 			 */
1481 			if (pba < min_rx)
1482 				pba = min_rx;
1483 		}
1484 		E1000_WRITE_REG(hw, E1000_PBA, pba);
1485 	}
1486 
1487 	/*
1488 	 * These parameters control the automatic generation (Tx) and
1489 	 * response (Rx) to Ethernet PAUSE frames.
1490 	 * - High water mark should allow for at least two frames to be
1491 	 *   received after sending an XOFF.
1492 	 * - Low water mark works best when it is very near the high water mark.
1493 	 *   This allows the receiver to restart by sending XON when it has
1494 	 *   drained a bit.
1495 	 */
1496 	hwm = min(((pba << 10) * 9 / 10),
1497 	    ((pba << 10) - 2 * sc->max_frame_size));
1498 
1499 	if (hw->mac.type < e1000_82576) {
1500 		fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1501 		fc->low_water = fc->high_water - 8;
1502 	} else {
1503 		fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1504 		fc->low_water = fc->high_water - 16;
1505 	}
1506 	fc->pause_time = IGB_FC_PAUSE_TIME;
1507 	fc->send_xon = TRUE;
1508 	fc->requested_mode = e1000_ifmedia2fc(sc->ifm_flowctrl);
1509 
1510 	/* Issue a global reset */
1511 	e1000_reset_hw(hw);
1512 	E1000_WRITE_REG(hw, E1000_WUC, 0);
1513 
1514 	/* Reset for AutoMediaDetect */
1515 	if (media_reset) {
1516 		e1000_setup_init_funcs(hw, TRUE);
1517 		e1000_get_bus_info(hw);
1518 	}
1519 
1520 	if (e1000_init_hw(hw) < 0)
1521 		if_printf(ifp, "Hardware Initialization Failed\n");
1522 
1523 	/* Setup DMA Coalescing */
1524 	igb_init_dmac(sc, pba);
1525 
1526 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1527 	e1000_get_phy_info(hw);
1528 	e1000_check_for_link(hw);
1529 }
1530 
1531 static void
1532 igb_setup_ifp(struct igb_softc *sc)
1533 {
1534 	struct ifnet *ifp = &sc->arpcom.ac_if;
1535 	int i;
1536 
1537 	ifp->if_softc = sc;
1538 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1539 	ifp->if_init = igb_init;
1540 	ifp->if_ioctl = igb_ioctl;
1541 	ifp->if_start = igb_start;
1542 	ifp->if_serialize = igb_serialize;
1543 	ifp->if_deserialize = igb_deserialize;
1544 	ifp->if_tryserialize = igb_tryserialize;
1545 #ifdef INVARIANTS
1546 	ifp->if_serialize_assert = igb_serialize_assert;
1547 #endif
1548 #ifdef IFPOLL_ENABLE
1549 	ifp->if_npoll = igb_npoll;
1550 #endif
1551 
1552 	ifp->if_nmbclusters = sc->rx_ring_cnt * sc->rx_rings[0].num_rx_desc;
1553 
1554 	ifq_set_maxlen(&ifp->if_snd, sc->tx_rings[0].num_tx_desc - 1);
1555 	ifq_set_ready(&ifp->if_snd);
1556 	ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt);
1557 
1558 	ifp->if_mapsubq = ifq_mapsubq_mask;
1559 	ifq_set_subq_mask(&ifp->if_snd, 0);
1560 
1561 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1562 
1563 	ifp->if_capabilities =
1564 	    IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_TSO;
1565 	if (IGB_ENABLE_HWRSS(sc))
1566 		ifp->if_capabilities |= IFCAP_RSS;
1567 	ifp->if_capenable = ifp->if_capabilities;
1568 	ifp->if_hwassist = IGB_CSUM_FEATURES | CSUM_TSO;
1569 
1570 	/*
1571 	 * Tell the upper layer(s) we support long frames
1572 	 */
1573 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1574 
1575 	/* Setup TX rings and subqueues */
1576 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1577 		struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
1578 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1579 
1580 		ifsq_set_cpuid(ifsq, txr->tx_intr_cpuid);
1581 		ifsq_set_priv(ifsq, txr);
1582 		ifsq_set_hw_serialize(ifsq, &txr->tx_serialize);
1583 		txr->ifsq = ifsq;
1584 
1585 		ifsq_watchdog_init(&txr->tx_watchdog, ifsq, igb_watchdog);
1586 	}
1587 
1588 	/*
1589 	 * Specify the media types supported by this adapter and register
1590 	 * callbacks to update media and link information
1591 	 */
1592 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1593 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1594 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1595 		    0, NULL);
1596 	} else {
1597 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1598 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1599 		    0, NULL);
1600 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1601 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1602 		    0, NULL);
1603 		if (sc->hw.phy.type != e1000_phy_ife) {
1604 			ifmedia_add(&sc->media,
1605 			    IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1606 		}
1607 	}
1608 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1609 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO | sc->ifm_flowctrl);
1610 }
1611 
1612 static void
1613 igb_add_sysctl(struct igb_softc *sc)
1614 {
1615 	struct sysctl_ctx_list *ctx;
1616 	struct sysctl_oid *tree;
1617 #if defined(IGB_RSS_DEBUG) || defined(IGB_TSS_DEBUG)
1618 	char node[32];
1619 	int i;
1620 #endif
1621 
1622 	ctx = device_get_sysctl_ctx(sc->dev);
1623 	tree = device_get_sysctl_tree(sc->dev);
1624 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1625 	    OID_AUTO, "rxr", CTLFLAG_RD, &sc->rx_ring_cnt, 0, "# of RX rings");
1626 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1627 	    OID_AUTO, "rxr_inuse", CTLFLAG_RD, &sc->rx_ring_inuse, 0,
1628 	    "# of RX rings used");
1629 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1630 	    OID_AUTO, "txr", CTLFLAG_RD, &sc->tx_ring_cnt, 0, "# of TX rings");
1631 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1632 	    OID_AUTO, "txr_inuse", CTLFLAG_RD, &sc->tx_ring_inuse, 0,
1633 	    "# of TX rings used");
1634 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1635 	    OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_rings[0].num_rx_desc, 0,
1636 	    "# of RX descs");
1637 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1638 	    OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_rings[0].num_tx_desc, 0,
1639 	    "# of TX descs");
1640 
1641 #define IGB_ADD_INTR_RATE_SYSCTL(sc, use, name) \
1642 do { \
1643 	igb_add_intr_rate_sysctl(sc, IGB_INTR_USE_##use, #name "_intr_rate", \
1644 	    #use " interrupt rate"); \
1645 } while (0)
1646 
1647 	IGB_ADD_INTR_RATE_SYSCTL(sc, RXTX, rxtx);
1648 	IGB_ADD_INTR_RATE_SYSCTL(sc, RX, rx);
1649 	IGB_ADD_INTR_RATE_SYSCTL(sc, TX, tx);
1650 	IGB_ADD_INTR_RATE_SYSCTL(sc, STATUS, sts);
1651 
1652 #undef IGB_ADD_INTR_RATE_SYSCTL
1653 
1654 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1655 	    OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1656 	    sc, 0, igb_sysctl_tx_intr_nsegs, "I",
1657 	    "# of segments per TX interrupt");
1658 
1659 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1660 	    OID_AUTO, "tx_wreg_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1661 	    sc, 0, igb_sysctl_tx_wreg_nsegs, "I",
1662 	    "# of segments sent before write to hardware register");
1663 
1664 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1665 	    OID_AUTO, "rx_wreg_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1666 	    sc, 0, igb_sysctl_rx_wreg_nsegs, "I",
1667 	    "# of segments received before write to hardware register");
1668 
1669 #ifdef IFPOLL_ENABLE
1670 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1671 	    OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
1672 	    sc, 0, igb_sysctl_npoll_rxoff, "I", "NPOLLING RX cpu offset");
1673 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1674 	    OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
1675 	    sc, 0, igb_sysctl_npoll_txoff, "I", "NPOLLING TX cpu offset");
1676 #endif
1677 
1678 #ifdef IGB_RSS_DEBUG
1679 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1680 	    OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug, 0,
1681 	    "RSS debug level");
1682 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1683 		ksnprintf(node, sizeof(node), "rx%d_pkt", i);
1684 		SYSCTL_ADD_ULONG(ctx,
1685 		    SYSCTL_CHILDREN(tree), OID_AUTO, node,
1686 		    CTLFLAG_RW, &sc->rx_rings[i].rx_packets, "RXed packets");
1687 	}
1688 #endif
1689 #ifdef IGB_TSS_DEBUG
1690 	for  (i = 0; i < sc->tx_ring_cnt; ++i) {
1691 		ksnprintf(node, sizeof(node), "tx%d_pkt", i);
1692 		SYSCTL_ADD_ULONG(ctx,
1693 		    SYSCTL_CHILDREN(tree), OID_AUTO, node,
1694 		    CTLFLAG_RW, &sc->tx_rings[i].tx_packets, "TXed packets");
1695 	}
1696 #endif
1697 }
1698 
1699 static int
1700 igb_alloc_rings(struct igb_softc *sc)
1701 {
1702 	int error, i;
1703 
1704 	/*
1705 	 * Create top level busdma tag
1706 	 */
1707 	error = bus_dma_tag_create(NULL, 1, 0,
1708 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1709 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1710 	    &sc->parent_tag);
1711 	if (error) {
1712 		device_printf(sc->dev, "could not create top level DMA tag\n");
1713 		return error;
1714 	}
1715 
1716 	/*
1717 	 * Allocate TX descriptor rings and buffers
1718 	 */
1719 	sc->tx_rings = kmalloc_cachealign(
1720 	    sizeof(struct igb_tx_ring) * sc->tx_ring_cnt,
1721 	    M_DEVBUF, M_WAITOK | M_ZERO);
1722 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1723 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1724 
1725 		/* Set up some basics */
1726 		txr->sc = sc;
1727 		txr->me = i;
1728 		lwkt_serialize_init(&txr->tx_serialize);
1729 
1730 		error = igb_create_tx_ring(txr);
1731 		if (error)
1732 			return error;
1733 	}
1734 
1735 	/*
1736 	 * Allocate RX descriptor rings and buffers
1737 	 */
1738 	sc->rx_rings = kmalloc_cachealign(
1739 	    sizeof(struct igb_rx_ring) * sc->rx_ring_cnt,
1740 	    M_DEVBUF, M_WAITOK | M_ZERO);
1741 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1742 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
1743 
1744 		/* Set up some basics */
1745 		rxr->sc = sc;
1746 		rxr->me = i;
1747 		lwkt_serialize_init(&rxr->rx_serialize);
1748 
1749 		error = igb_create_rx_ring(rxr);
1750 		if (error)
1751 			return error;
1752 	}
1753 
1754 	return 0;
1755 }
1756 
1757 static void
1758 igb_free_rings(struct igb_softc *sc)
1759 {
1760 	int i;
1761 
1762 	if (sc->tx_rings != NULL) {
1763 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
1764 			struct igb_tx_ring *txr = &sc->tx_rings[i];
1765 
1766 			igb_destroy_tx_ring(txr, txr->num_tx_desc);
1767 		}
1768 		kfree(sc->tx_rings, M_DEVBUF);
1769 	}
1770 
1771 	if (sc->rx_rings != NULL) {
1772 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
1773 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
1774 
1775 			igb_destroy_rx_ring(rxr, rxr->num_rx_desc);
1776 		}
1777 		kfree(sc->rx_rings, M_DEVBUF);
1778 	}
1779 }
1780 
1781 static int
1782 igb_create_tx_ring(struct igb_tx_ring *txr)
1783 {
1784 	int tsize, error, i, ntxd;
1785 
1786 	/*
1787 	 * Validate number of transmit descriptors. It must not exceed
1788 	 * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
1789 	 */
1790 	ntxd = device_getenv_int(txr->sc->dev, "txd", igb_txd);
1791 	if ((ntxd * sizeof(struct e1000_tx_desc)) % IGB_DBA_ALIGN != 0 ||
1792 	    ntxd > IGB_MAX_TXD || ntxd < IGB_MIN_TXD) {
1793 		device_printf(txr->sc->dev,
1794 		    "Using %d TX descriptors instead of %d!\n",
1795 		    IGB_DEFAULT_TXD, ntxd);
1796 		txr->num_tx_desc = IGB_DEFAULT_TXD;
1797 	} else {
1798 		txr->num_tx_desc = ntxd;
1799 	}
1800 
1801 	/*
1802 	 * Allocate TX descriptor ring
1803 	 */
1804 	tsize = roundup2(txr->num_tx_desc * sizeof(union e1000_adv_tx_desc),
1805 	    IGB_DBA_ALIGN);
1806 	txr->txdma.dma_vaddr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1807 	    IGB_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1808 	    &txr->txdma.dma_tag, &txr->txdma.dma_map, &txr->txdma.dma_paddr);
1809 	if (txr->txdma.dma_vaddr == NULL) {
1810 		device_printf(txr->sc->dev,
1811 		    "Unable to allocate TX Descriptor memory\n");
1812 		return ENOMEM;
1813 	}
1814 	txr->tx_base = txr->txdma.dma_vaddr;
1815 	bzero(txr->tx_base, tsize);
1816 
1817 	tsize = __VM_CACHELINE_ALIGN(
1818 	    sizeof(struct igb_tx_buf) * txr->num_tx_desc);
1819 	txr->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
1820 
1821 	/*
1822 	 * Allocate TX head write-back buffer
1823 	 */
1824 	txr->tx_hdr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1825 	    __VM_CACHELINE_SIZE, __VM_CACHELINE_SIZE, BUS_DMA_WAITOK,
1826 	    &txr->tx_hdr_dtag, &txr->tx_hdr_dmap, &txr->tx_hdr_paddr);
1827 	if (txr->tx_hdr == NULL) {
1828 		device_printf(txr->sc->dev,
1829 		    "Unable to allocate TX head write-back buffer\n");
1830 		return ENOMEM;
1831 	}
1832 
1833 	/*
1834 	 * Create DMA tag for TX buffers
1835 	 */
1836 	error = bus_dma_tag_create(txr->sc->parent_tag,
1837 	    1, 0,		/* alignment, bounds */
1838 	    BUS_SPACE_MAXADDR,	/* lowaddr */
1839 	    BUS_SPACE_MAXADDR,	/* highaddr */
1840 	    NULL, NULL,		/* filter, filterarg */
1841 	    IGB_TSO_SIZE,	/* maxsize */
1842 	    IGB_MAX_SCATTER,	/* nsegments */
1843 	    PAGE_SIZE,		/* maxsegsize */
1844 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1845 	    BUS_DMA_ONEBPAGE,	/* flags */
1846 	    &txr->tx_tag);
1847 	if (error) {
1848 		device_printf(txr->sc->dev, "Unable to allocate TX DMA tag\n");
1849 		kfree(txr->tx_buf, M_DEVBUF);
1850 		txr->tx_buf = NULL;
1851 		return error;
1852 	}
1853 
1854 	/*
1855 	 * Create DMA maps for TX buffers
1856 	 */
1857 	for (i = 0; i < txr->num_tx_desc; ++i) {
1858 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1859 
1860 		error = bus_dmamap_create(txr->tx_tag,
1861 		    BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE, &txbuf->map);
1862 		if (error) {
1863 			device_printf(txr->sc->dev,
1864 			    "Unable to create TX DMA map\n");
1865 			igb_destroy_tx_ring(txr, i);
1866 			return error;
1867 		}
1868 	}
1869 
1870 	if (txr->sc->hw.mac.type == e1000_82575)
1871 		txr->tx_flags |= IGB_TXFLAG_TSO_IPLEN0;
1872 
1873 	/*
1874 	 * Initialize various watermark
1875 	 */
1876 	txr->intr_nsegs = txr->num_tx_desc / 16;
1877 	txr->wreg_nsegs = IGB_DEF_TXWREG_NSEGS;
1878 
1879 	return 0;
1880 }
1881 
1882 static void
1883 igb_free_tx_ring(struct igb_tx_ring *txr)
1884 {
1885 	int i;
1886 
1887 	for (i = 0; i < txr->num_tx_desc; ++i) {
1888 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1889 
1890 		if (txbuf->m_head != NULL) {
1891 			bus_dmamap_unload(txr->tx_tag, txbuf->map);
1892 			m_freem(txbuf->m_head);
1893 			txbuf->m_head = NULL;
1894 		}
1895 	}
1896 }
1897 
1898 static void
1899 igb_destroy_tx_ring(struct igb_tx_ring *txr, int ndesc)
1900 {
1901 	int i;
1902 
1903 	if (txr->txdma.dma_vaddr != NULL) {
1904 		bus_dmamap_unload(txr->txdma.dma_tag, txr->txdma.dma_map);
1905 		bus_dmamem_free(txr->txdma.dma_tag, txr->txdma.dma_vaddr,
1906 		    txr->txdma.dma_map);
1907 		bus_dma_tag_destroy(txr->txdma.dma_tag);
1908 		txr->txdma.dma_vaddr = NULL;
1909 	}
1910 
1911 	if (txr->tx_hdr != NULL) {
1912 		bus_dmamap_unload(txr->tx_hdr_dtag, txr->tx_hdr_dmap);
1913 		bus_dmamem_free(txr->tx_hdr_dtag, txr->tx_hdr,
1914 		    txr->tx_hdr_dmap);
1915 		bus_dma_tag_destroy(txr->tx_hdr_dtag);
1916 		txr->tx_hdr = NULL;
1917 	}
1918 
1919 	if (txr->tx_buf == NULL)
1920 		return;
1921 
1922 	for (i = 0; i < ndesc; ++i) {
1923 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1924 
1925 		KKASSERT(txbuf->m_head == NULL);
1926 		bus_dmamap_destroy(txr->tx_tag, txbuf->map);
1927 	}
1928 	bus_dma_tag_destroy(txr->tx_tag);
1929 
1930 	kfree(txr->tx_buf, M_DEVBUF);
1931 	txr->tx_buf = NULL;
1932 }
1933 
1934 static void
1935 igb_init_tx_ring(struct igb_tx_ring *txr)
1936 {
1937 	/* Clear the old descriptor contents */
1938 	bzero(txr->tx_base,
1939 	    sizeof(union e1000_adv_tx_desc) * txr->num_tx_desc);
1940 
1941 	/* Clear TX head write-back buffer */
1942 	*(txr->tx_hdr) = 0;
1943 
1944 	/* Reset indices */
1945 	txr->next_avail_desc = 0;
1946 	txr->next_to_clean = 0;
1947 	txr->tx_nsegs = 0;
1948 
1949 	/* Set number of descriptors available */
1950 	txr->tx_avail = txr->num_tx_desc;
1951 
1952 	/* Enable this TX ring */
1953 	txr->tx_flags |= IGB_TXFLAG_ENABLED;
1954 }
1955 
1956 static void
1957 igb_init_tx_unit(struct igb_softc *sc)
1958 {
1959 	struct e1000_hw *hw = &sc->hw;
1960 	uint32_t tctl;
1961 	int i;
1962 
1963 	/* Setup the Tx Descriptor Rings */
1964 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
1965 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1966 		uint64_t bus_addr = txr->txdma.dma_paddr;
1967 		uint64_t hdr_paddr = txr->tx_hdr_paddr;
1968 		uint32_t txdctl = 0;
1969 		uint32_t dca_txctrl;
1970 
1971 		E1000_WRITE_REG(hw, E1000_TDLEN(i),
1972 		    txr->num_tx_desc * sizeof(struct e1000_tx_desc));
1973 		E1000_WRITE_REG(hw, E1000_TDBAH(i),
1974 		    (uint32_t)(bus_addr >> 32));
1975 		E1000_WRITE_REG(hw, E1000_TDBAL(i),
1976 		    (uint32_t)bus_addr);
1977 
1978 		/* Setup the HW Tx Head and Tail descriptor pointers */
1979 		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
1980 		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
1981 
1982 		dca_txctrl = E1000_READ_REG(hw, E1000_DCA_TXCTRL(i));
1983 		dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1984 		E1000_WRITE_REG(hw, E1000_DCA_TXCTRL(i), dca_txctrl);
1985 
1986 		/*
1987 		 * Don't set WB_on_EITR:
1988 		 * - 82575 does not have it
1989 		 * - It almost has no effect on 82576, see:
1990 		 *   82576 specification update errata #26
1991 		 * - It causes unnecessary bus traffic
1992 		 */
1993 		E1000_WRITE_REG(hw, E1000_TDWBAH(i),
1994 		    (uint32_t)(hdr_paddr >> 32));
1995 		E1000_WRITE_REG(hw, E1000_TDWBAL(i),
1996 		    ((uint32_t)hdr_paddr) | E1000_TX_HEAD_WB_ENABLE);
1997 
1998 		/*
1999 		 * WTHRESH is ignored by the hardware, since header
2000 		 * write back mode is used.
2001 		 */
2002 		txdctl |= IGB_TX_PTHRESH;
2003 		txdctl |= IGB_TX_HTHRESH << 8;
2004 		txdctl |= IGB_TX_WTHRESH << 16;
2005 		txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2006 		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
2007 	}
2008 
2009 	if (sc->vf_ifp)
2010 		return;
2011 
2012 	e1000_config_collision_dist(hw);
2013 
2014 	/* Program the Transmit Control Register */
2015 	tctl = E1000_READ_REG(hw, E1000_TCTL);
2016 	tctl &= ~E1000_TCTL_CT;
2017 	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2018 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
2019 
2020 	/* This write will effectively turn on the transmit unit. */
2021 	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
2022 }
2023 
2024 static boolean_t
2025 igb_txcsum_ctx(struct igb_tx_ring *txr, struct mbuf *mp)
2026 {
2027 	struct e1000_adv_tx_context_desc *TXD;
2028 	uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
2029 	int ehdrlen, ctxd, ip_hlen = 0;
2030 	boolean_t offload = TRUE;
2031 
2032 	if ((mp->m_pkthdr.csum_flags & IGB_CSUM_FEATURES) == 0)
2033 		offload = FALSE;
2034 
2035 	vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
2036 
2037 	ctxd = txr->next_avail_desc;
2038 	TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
2039 
2040 	/*
2041 	 * In advanced descriptors the vlan tag must
2042 	 * be placed into the context descriptor, thus
2043 	 * we need to be here just for that setup.
2044 	 */
2045 	if (mp->m_flags & M_VLANTAG) {
2046 		uint16_t vlantag;
2047 
2048 		vlantag = htole16(mp->m_pkthdr.ether_vlantag);
2049 		vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
2050 	} else if (!offload) {
2051 		return FALSE;
2052 	}
2053 
2054 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2055 	KASSERT(ehdrlen > 0, ("invalid ether hlen"));
2056 
2057 	/* Set the ether header length */
2058 	vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
2059 	if (mp->m_pkthdr.csum_flags & CSUM_IP) {
2060 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
2061 		ip_hlen = mp->m_pkthdr.csum_iphlen;
2062 		KASSERT(ip_hlen > 0, ("invalid ip hlen"));
2063 	}
2064 	vlan_macip_lens |= ip_hlen;
2065 
2066 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
2067 	if (mp->m_pkthdr.csum_flags & CSUM_TCP)
2068 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
2069 	else if (mp->m_pkthdr.csum_flags & CSUM_UDP)
2070 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
2071 
2072 	/*
2073 	 * 82575 needs the TX context index added; the queue
2074 	 * index is used as TX context index here.
2075 	 */
2076 	if (txr->sc->hw.mac.type == e1000_82575)
2077 		mss_l4len_idx = txr->me << 4;
2078 
2079 	/* Now copy bits into descriptor */
2080 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
2081 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
2082 	TXD->seqnum_seed = htole32(0);
2083 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
2084 
2085 	/* We've consumed the first desc, adjust counters */
2086 	if (++ctxd == txr->num_tx_desc)
2087 		ctxd = 0;
2088 	txr->next_avail_desc = ctxd;
2089 	--txr->tx_avail;
2090 
2091 	return offload;
2092 }
2093 
2094 static void
2095 igb_txeof(struct igb_tx_ring *txr, int hdr)
2096 {
2097 	int first, avail;
2098 
2099 	if (txr->tx_avail == txr->num_tx_desc)
2100 		return;
2101 
2102 	first = txr->next_to_clean;
2103 	if (first == hdr)
2104 		return;
2105 
2106 	avail = txr->tx_avail;
2107 	while (first != hdr) {
2108 		struct igb_tx_buf *txbuf = &txr->tx_buf[first];
2109 
2110 		++avail;
2111 		if (txbuf->m_head) {
2112 			bus_dmamap_unload(txr->tx_tag, txbuf->map);
2113 			m_freem(txbuf->m_head);
2114 			txbuf->m_head = NULL;
2115 		}
2116 		if (++first == txr->num_tx_desc)
2117 			first = 0;
2118 	}
2119 	txr->next_to_clean = first;
2120 	txr->tx_avail = avail;
2121 
2122 	/*
2123 	 * If we have a minimum free, clear OACTIVE
2124 	 * to tell the stack that it is OK to send packets.
2125 	 */
2126 	if (txr->tx_avail > IGB_MAX_SCATTER + IGB_TX_RESERVED) {
2127 		ifsq_clr_oactive(txr->ifsq);
2128 
2129 		/*
2130 		 * We have enough TX descriptors, turn off
2131 		 * the watchdog.  We allow small amount of
2132 		 * packets (roughly intr_nsegs) pending on
2133 		 * the transmit ring.
2134 		 */
2135 		txr->tx_watchdog.wd_timer = 0;
2136 	}
2137 }
2138 
2139 static int
2140 igb_create_rx_ring(struct igb_rx_ring *rxr)
2141 {
2142 	int rsize, i, error, nrxd;
2143 
2144 	/*
2145 	 * Validate number of receive descriptors. It must not exceed
2146 	 * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
2147 	 */
2148 	nrxd = device_getenv_int(rxr->sc->dev, "rxd", igb_rxd);
2149 	if ((nrxd * sizeof(struct e1000_rx_desc)) % IGB_DBA_ALIGN != 0 ||
2150 	    nrxd > IGB_MAX_RXD || nrxd < IGB_MIN_RXD) {
2151 		device_printf(rxr->sc->dev,
2152 		    "Using %d RX descriptors instead of %d!\n",
2153 		    IGB_DEFAULT_RXD, nrxd);
2154 		rxr->num_rx_desc = IGB_DEFAULT_RXD;
2155 	} else {
2156 		rxr->num_rx_desc = nrxd;
2157 	}
2158 
2159 	/*
2160 	 * Allocate RX descriptor ring
2161 	 */
2162 	rsize = roundup2(rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc),
2163 	    IGB_DBA_ALIGN);
2164 	rxr->rxdma.dma_vaddr = bus_dmamem_coherent_any(rxr->sc->parent_tag,
2165 	    IGB_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2166 	    &rxr->rxdma.dma_tag, &rxr->rxdma.dma_map,
2167 	    &rxr->rxdma.dma_paddr);
2168 	if (rxr->rxdma.dma_vaddr == NULL) {
2169 		device_printf(rxr->sc->dev,
2170 		    "Unable to allocate RxDescriptor memory\n");
2171 		return ENOMEM;
2172 	}
2173 	rxr->rx_base = rxr->rxdma.dma_vaddr;
2174 	bzero(rxr->rx_base, rsize);
2175 
2176 	rsize = __VM_CACHELINE_ALIGN(
2177 	    sizeof(struct igb_rx_buf) * rxr->num_rx_desc);
2178 	rxr->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2179 
2180 	/*
2181 	 * Create DMA tag for RX buffers
2182 	 */
2183 	error = bus_dma_tag_create(rxr->sc->parent_tag,
2184 	    1, 0,		/* alignment, bounds */
2185 	    BUS_SPACE_MAXADDR,	/* lowaddr */
2186 	    BUS_SPACE_MAXADDR,	/* highaddr */
2187 	    NULL, NULL,		/* filter, filterarg */
2188 	    MCLBYTES,		/* maxsize */
2189 	    1,			/* nsegments */
2190 	    MCLBYTES,		/* maxsegsize */
2191 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2192 	    &rxr->rx_tag);
2193 	if (error) {
2194 		device_printf(rxr->sc->dev,
2195 		    "Unable to create RX payload DMA tag\n");
2196 		kfree(rxr->rx_buf, M_DEVBUF);
2197 		rxr->rx_buf = NULL;
2198 		return error;
2199 	}
2200 
2201 	/*
2202 	 * Create spare DMA map for RX buffers
2203 	 */
2204 	error = bus_dmamap_create(rxr->rx_tag, BUS_DMA_WAITOK,
2205 	    &rxr->rx_sparemap);
2206 	if (error) {
2207 		device_printf(rxr->sc->dev,
2208 		    "Unable to create spare RX DMA maps\n");
2209 		bus_dma_tag_destroy(rxr->rx_tag);
2210 		kfree(rxr->rx_buf, M_DEVBUF);
2211 		rxr->rx_buf = NULL;
2212 		return error;
2213 	}
2214 
2215 	/*
2216 	 * Create DMA maps for RX buffers
2217 	 */
2218 	for (i = 0; i < rxr->num_rx_desc; i++) {
2219 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2220 
2221 		error = bus_dmamap_create(rxr->rx_tag,
2222 		    BUS_DMA_WAITOK, &rxbuf->map);
2223 		if (error) {
2224 			device_printf(rxr->sc->dev,
2225 			    "Unable to create RX DMA maps\n");
2226 			igb_destroy_rx_ring(rxr, i);
2227 			return error;
2228 		}
2229 	}
2230 
2231 	/*
2232 	 * Initialize various watermark
2233 	 */
2234 	rxr->wreg_nsegs = IGB_DEF_RXWREG_NSEGS;
2235 
2236 	return 0;
2237 }
2238 
2239 static void
2240 igb_free_rx_ring(struct igb_rx_ring *rxr)
2241 {
2242 	int i;
2243 
2244 	for (i = 0; i < rxr->num_rx_desc; ++i) {
2245 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2246 
2247 		if (rxbuf->m_head != NULL) {
2248 			bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2249 			m_freem(rxbuf->m_head);
2250 			rxbuf->m_head = NULL;
2251 		}
2252 	}
2253 
2254 	if (rxr->fmp != NULL)
2255 		m_freem(rxr->fmp);
2256 	rxr->fmp = NULL;
2257 	rxr->lmp = NULL;
2258 }
2259 
2260 static void
2261 igb_destroy_rx_ring(struct igb_rx_ring *rxr, int ndesc)
2262 {
2263 	int i;
2264 
2265 	if (rxr->rxdma.dma_vaddr != NULL) {
2266 		bus_dmamap_unload(rxr->rxdma.dma_tag, rxr->rxdma.dma_map);
2267 		bus_dmamem_free(rxr->rxdma.dma_tag, rxr->rxdma.dma_vaddr,
2268 		    rxr->rxdma.dma_map);
2269 		bus_dma_tag_destroy(rxr->rxdma.dma_tag);
2270 		rxr->rxdma.dma_vaddr = NULL;
2271 	}
2272 
2273 	if (rxr->rx_buf == NULL)
2274 		return;
2275 
2276 	for (i = 0; i < ndesc; ++i) {
2277 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2278 
2279 		KKASSERT(rxbuf->m_head == NULL);
2280 		bus_dmamap_destroy(rxr->rx_tag, rxbuf->map);
2281 	}
2282 	bus_dmamap_destroy(rxr->rx_tag, rxr->rx_sparemap);
2283 	bus_dma_tag_destroy(rxr->rx_tag);
2284 
2285 	kfree(rxr->rx_buf, M_DEVBUF);
2286 	rxr->rx_buf = NULL;
2287 }
2288 
2289 static void
2290 igb_setup_rxdesc(union e1000_adv_rx_desc *rxd, const struct igb_rx_buf *rxbuf)
2291 {
2292 	rxd->read.pkt_addr = htole64(rxbuf->paddr);
2293 	rxd->wb.upper.status_error = 0;
2294 }
2295 
2296 static int
2297 igb_newbuf(struct igb_rx_ring *rxr, int i, boolean_t wait)
2298 {
2299 	struct mbuf *m;
2300 	bus_dma_segment_t seg;
2301 	bus_dmamap_t map;
2302 	struct igb_rx_buf *rxbuf;
2303 	int error, nseg;
2304 
2305 	m = m_getcl(wait ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
2306 	if (m == NULL) {
2307 		if (wait) {
2308 			if_printf(&rxr->sc->arpcom.ac_if,
2309 			    "Unable to allocate RX mbuf\n");
2310 		}
2311 		return ENOBUFS;
2312 	}
2313 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2314 
2315 	if (rxr->sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2316 		m_adj(m, ETHER_ALIGN);
2317 
2318 	error = bus_dmamap_load_mbuf_segment(rxr->rx_tag,
2319 	    rxr->rx_sparemap, m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
2320 	if (error) {
2321 		m_freem(m);
2322 		if (wait) {
2323 			if_printf(&rxr->sc->arpcom.ac_if,
2324 			    "Unable to load RX mbuf\n");
2325 		}
2326 		return error;
2327 	}
2328 
2329 	rxbuf = &rxr->rx_buf[i];
2330 	if (rxbuf->m_head != NULL)
2331 		bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2332 
2333 	map = rxbuf->map;
2334 	rxbuf->map = rxr->rx_sparemap;
2335 	rxr->rx_sparemap = map;
2336 
2337 	rxbuf->m_head = m;
2338 	rxbuf->paddr = seg.ds_addr;
2339 
2340 	igb_setup_rxdesc(&rxr->rx_base[i], rxbuf);
2341 	return 0;
2342 }
2343 
2344 static int
2345 igb_init_rx_ring(struct igb_rx_ring *rxr)
2346 {
2347 	int i;
2348 
2349 	/* Clear the ring contents */
2350 	bzero(rxr->rx_base,
2351 	    rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc));
2352 
2353 	/* Now replenish the ring mbufs */
2354 	for (i = 0; i < rxr->num_rx_desc; ++i) {
2355 		int error;
2356 
2357 		error = igb_newbuf(rxr, i, TRUE);
2358 		if (error)
2359 			return error;
2360 	}
2361 
2362 	/* Setup our descriptor indices */
2363 	rxr->next_to_check = 0;
2364 
2365 	rxr->fmp = NULL;
2366 	rxr->lmp = NULL;
2367 	rxr->discard = FALSE;
2368 
2369 	return 0;
2370 }
2371 
2372 static void
2373 igb_init_rx_unit(struct igb_softc *sc)
2374 {
2375 	struct ifnet *ifp = &sc->arpcom.ac_if;
2376 	struct e1000_hw *hw = &sc->hw;
2377 	uint32_t rctl, rxcsum, srrctl = 0;
2378 	int i;
2379 
2380 	/*
2381 	 * Make sure receives are disabled while setting
2382 	 * up the descriptor ring
2383 	 */
2384 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2385 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2386 
2387 #if 0
2388 	/*
2389 	** Set up for header split
2390 	*/
2391 	if (igb_header_split) {
2392 		/* Use a standard mbuf for the header */
2393 		srrctl |= IGB_HDR_BUF << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2394 		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2395 	} else
2396 #endif
2397 		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2398 
2399 	/*
2400 	** Set up for jumbo frames
2401 	*/
2402 	if (ifp->if_mtu > ETHERMTU) {
2403 		rctl |= E1000_RCTL_LPE;
2404 #if 0
2405 		if (adapter->rx_mbuf_sz == MJUMPAGESIZE) {
2406 			srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2407 			rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
2408 		} else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) {
2409 			srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2410 			rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
2411 		}
2412 		/* Set maximum packet len */
2413 		psize = adapter->max_frame_size;
2414 		/* are we on a vlan? */
2415 		if (adapter->ifp->if_vlantrunk != NULL)
2416 			psize += VLAN_TAG_SIZE;
2417 		E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
2418 #else
2419 		srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2420 		rctl |= E1000_RCTL_SZ_2048;
2421 #endif
2422 	} else {
2423 		rctl &= ~E1000_RCTL_LPE;
2424 		srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2425 		rctl |= E1000_RCTL_SZ_2048;
2426 	}
2427 
2428 	/* Setup the Base and Length of the Rx Descriptor Rings */
2429 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2430 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
2431 		uint64_t bus_addr = rxr->rxdma.dma_paddr;
2432 		uint32_t rxdctl;
2433 
2434 		E1000_WRITE_REG(hw, E1000_RDLEN(i),
2435 		    rxr->num_rx_desc * sizeof(struct e1000_rx_desc));
2436 		E1000_WRITE_REG(hw, E1000_RDBAH(i),
2437 		    (uint32_t)(bus_addr >> 32));
2438 		E1000_WRITE_REG(hw, E1000_RDBAL(i),
2439 		    (uint32_t)bus_addr);
2440 		E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2441 		/* Enable this Queue */
2442 		rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2443 		rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2444 		rxdctl &= 0xFFF00000;
2445 		rxdctl |= IGB_RX_PTHRESH;
2446 		rxdctl |= IGB_RX_HTHRESH << 8;
2447 		/*
2448 		 * Don't set WTHRESH to a value above 1 on 82576, see:
2449 		 * 82576 specification update errata #26
2450 		 */
2451 		rxdctl |= IGB_RX_WTHRESH << 16;
2452 		E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2453 	}
2454 
2455 	rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2456 	rxcsum &= ~(E1000_RXCSUM_PCSS_MASK | E1000_RXCSUM_IPPCSE);
2457 
2458 	/*
2459 	 * Receive Checksum Offload for TCP and UDP
2460 	 *
2461 	 * Checksum offloading is also enabled if multiple receive
2462 	 * queue is to be supported, since we need it to figure out
2463 	 * fragments.
2464 	 */
2465 	if ((ifp->if_capenable & IFCAP_RXCSUM) || IGB_ENABLE_HWRSS(sc)) {
2466 		/*
2467 		 * NOTE:
2468 		 * PCSD must be enabled to enable multiple
2469 		 * receive queues.
2470 		 */
2471 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2472 		    E1000_RXCSUM_PCSD;
2473 	} else {
2474 		rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2475 		    E1000_RXCSUM_PCSD);
2476 	}
2477 	E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2478 
2479 	if (IGB_ENABLE_HWRSS(sc)) {
2480 		uint8_t key[IGB_NRSSRK * IGB_RSSRK_SIZE];
2481 		uint32_t reta_shift;
2482 		int j, r;
2483 
2484 		/*
2485 		 * NOTE:
2486 		 * When we reach here, RSS has already been disabled
2487 		 * in igb_stop(), so we could safely configure RSS key
2488 		 * and redirect table.
2489 		 */
2490 
2491 		/*
2492 		 * Configure RSS key
2493 		 */
2494 		toeplitz_get_key(key, sizeof(key));
2495 		for (i = 0; i < IGB_NRSSRK; ++i) {
2496 			uint32_t rssrk;
2497 
2498 			rssrk = IGB_RSSRK_VAL(key, i);
2499 			IGB_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2500 
2501 			E1000_WRITE_REG(hw, E1000_RSSRK(i), rssrk);
2502 		}
2503 
2504 		/*
2505 		 * Configure RSS redirect table in following fashion:
2506 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2507 		 */
2508 		reta_shift = IGB_RETA_SHIFT;
2509 		if (hw->mac.type == e1000_82575)
2510 			reta_shift = IGB_RETA_SHIFT_82575;
2511 
2512 		r = 0;
2513 		for (j = 0; j < IGB_NRETA; ++j) {
2514 			uint32_t reta = 0;
2515 
2516 			for (i = 0; i < IGB_RETA_SIZE; ++i) {
2517 				uint32_t q;
2518 
2519 				q = (r % sc->rx_ring_inuse) << reta_shift;
2520 				reta |= q << (8 * i);
2521 				++r;
2522 			}
2523 			IGB_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2524 			E1000_WRITE_REG(hw, E1000_RETA(j), reta);
2525 		}
2526 
2527 		/*
2528 		 * Enable multiple receive queues.
2529 		 * Enable IPv4 RSS standard hash functions.
2530 		 * Disable RSS interrupt on 82575
2531 		 */
2532 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2533 				E1000_MRQC_ENABLE_RSS_4Q |
2534 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2535 				E1000_MRQC_RSS_FIELD_IPV4);
2536 	}
2537 
2538 	/* Setup the Receive Control Register */
2539 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2540 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2541 	    E1000_RCTL_RDMTS_HALF |
2542 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2543 	/* Strip CRC bytes. */
2544 	rctl |= E1000_RCTL_SECRC;
2545 	/* Make sure VLAN Filters are off */
2546 	rctl &= ~E1000_RCTL_VFE;
2547 	/* Don't store bad packets */
2548 	rctl &= ~E1000_RCTL_SBP;
2549 
2550 	/* Enable Receives */
2551 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2552 
2553 	/*
2554 	 * Setup the HW Rx Head and Tail Descriptor Pointers
2555 	 *   - needs to be after enable
2556 	 */
2557 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2558 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
2559 
2560 		E1000_WRITE_REG(hw, E1000_RDH(i), rxr->next_to_check);
2561 		E1000_WRITE_REG(hw, E1000_RDT(i), rxr->num_rx_desc - 1);
2562 	}
2563 }
2564 
2565 static void
2566 igb_rx_refresh(struct igb_rx_ring *rxr, int i)
2567 {
2568 	if (--i < 0)
2569 		i = rxr->num_rx_desc - 1;
2570 	E1000_WRITE_REG(&rxr->sc->hw, E1000_RDT(rxr->me), i);
2571 }
2572 
2573 static void
2574 igb_rxeof(struct igb_rx_ring *rxr, int count)
2575 {
2576 	struct ifnet *ifp = &rxr->sc->arpcom.ac_if;
2577 	union e1000_adv_rx_desc	*cur;
2578 	uint32_t staterr;
2579 	int i, ncoll = 0, cpuid = mycpuid;
2580 
2581 	i = rxr->next_to_check;
2582 	cur = &rxr->rx_base[i];
2583 	staterr = le32toh(cur->wb.upper.status_error);
2584 
2585 	if ((staterr & E1000_RXD_STAT_DD) == 0)
2586 		return;
2587 
2588 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2589 		struct pktinfo *pi = NULL, pi0;
2590 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2591 		struct mbuf *m = NULL;
2592 		boolean_t eop;
2593 
2594 		eop = (staterr & E1000_RXD_STAT_EOP) ? TRUE : FALSE;
2595 		if (eop)
2596 			--count;
2597 
2598 		++ncoll;
2599 		if ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) == 0 &&
2600 		    !rxr->discard) {
2601 			struct mbuf *mp = rxbuf->m_head;
2602 			uint32_t hash, hashtype;
2603 			uint16_t vlan;
2604 			int len;
2605 
2606 			len = le16toh(cur->wb.upper.length);
2607 			if ((rxr->sc->hw.mac.type == e1000_i350 ||
2608 			     rxr->sc->hw.mac.type == e1000_i354) &&
2609 			    (staterr & E1000_RXDEXT_STATERR_LB))
2610 				vlan = be16toh(cur->wb.upper.vlan);
2611 			else
2612 				vlan = le16toh(cur->wb.upper.vlan);
2613 
2614 			hash = le32toh(cur->wb.lower.hi_dword.rss);
2615 			hashtype = le32toh(cur->wb.lower.lo_dword.data) &
2616 			    E1000_RXDADV_RSSTYPE_MASK;
2617 
2618 			IGB_RSS_DPRINTF(rxr->sc, 10,
2619 			    "ring%d, hash 0x%08x, hashtype %u\n",
2620 			    rxr->me, hash, hashtype);
2621 
2622 			bus_dmamap_sync(rxr->rx_tag, rxbuf->map,
2623 			    BUS_DMASYNC_POSTREAD);
2624 
2625 			if (igb_newbuf(rxr, i, FALSE) != 0) {
2626 				IFNET_STAT_INC(ifp, iqdrops, 1);
2627 				goto discard;
2628 			}
2629 
2630 			mp->m_len = len;
2631 			if (rxr->fmp == NULL) {
2632 				mp->m_pkthdr.len = len;
2633 				rxr->fmp = mp;
2634 				rxr->lmp = mp;
2635 			} else {
2636 				rxr->lmp->m_next = mp;
2637 				rxr->lmp = rxr->lmp->m_next;
2638 				rxr->fmp->m_pkthdr.len += len;
2639 			}
2640 
2641 			if (eop) {
2642 				m = rxr->fmp;
2643 				rxr->fmp = NULL;
2644 				rxr->lmp = NULL;
2645 
2646 				m->m_pkthdr.rcvif = ifp;
2647 				IFNET_STAT_INC(ifp, ipackets, 1);
2648 
2649 				if (ifp->if_capenable & IFCAP_RXCSUM)
2650 					igb_rxcsum(staterr, m);
2651 
2652 				if (staterr & E1000_RXD_STAT_VP) {
2653 					m->m_pkthdr.ether_vlantag = vlan;
2654 					m->m_flags |= M_VLANTAG;
2655 				}
2656 
2657 				if (ifp->if_capenable & IFCAP_RSS) {
2658 					pi = igb_rssinfo(m, &pi0,
2659 					    hash, hashtype, staterr);
2660 				}
2661 #ifdef IGB_RSS_DEBUG
2662 				rxr->rx_packets++;
2663 #endif
2664 			}
2665 		} else {
2666 			IFNET_STAT_INC(ifp, ierrors, 1);
2667 discard:
2668 			igb_setup_rxdesc(cur, rxbuf);
2669 			if (!eop)
2670 				rxr->discard = TRUE;
2671 			else
2672 				rxr->discard = FALSE;
2673 			if (rxr->fmp != NULL) {
2674 				m_freem(rxr->fmp);
2675 				rxr->fmp = NULL;
2676 				rxr->lmp = NULL;
2677 			}
2678 			m = NULL;
2679 		}
2680 
2681 		if (m != NULL)
2682 			ifp->if_input(ifp, m, pi, cpuid);
2683 
2684 		/* Advance our pointers to the next descriptor. */
2685 		if (++i == rxr->num_rx_desc)
2686 			i = 0;
2687 
2688 		if (ncoll >= rxr->wreg_nsegs) {
2689 			igb_rx_refresh(rxr, i);
2690 			ncoll = 0;
2691 		}
2692 
2693 		cur = &rxr->rx_base[i];
2694 		staterr = le32toh(cur->wb.upper.status_error);
2695 	}
2696 	rxr->next_to_check = i;
2697 
2698 	if (ncoll > 0)
2699 		igb_rx_refresh(rxr, i);
2700 }
2701 
2702 
2703 static void
2704 igb_set_vlan(struct igb_softc *sc)
2705 {
2706 	struct e1000_hw *hw = &sc->hw;
2707 	uint32_t reg;
2708 #if 0
2709 	struct ifnet *ifp = sc->arpcom.ac_if;
2710 #endif
2711 
2712 	if (sc->vf_ifp) {
2713 		e1000_rlpml_set_vf(hw, sc->max_frame_size + VLAN_TAG_SIZE);
2714 		return;
2715 	}
2716 
2717 	reg = E1000_READ_REG(hw, E1000_CTRL);
2718 	reg |= E1000_CTRL_VME;
2719 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
2720 
2721 #if 0
2722 	/* Enable the Filter Table */
2723 	if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
2724 		reg = E1000_READ_REG(hw, E1000_RCTL);
2725 		reg &= ~E1000_RCTL_CFIEN;
2726 		reg |= E1000_RCTL_VFE;
2727 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
2728 	}
2729 #endif
2730 
2731 	/* Update the frame size */
2732 	E1000_WRITE_REG(&sc->hw, E1000_RLPML,
2733 	    sc->max_frame_size + VLAN_TAG_SIZE);
2734 
2735 #if 0
2736 	/* Don't bother with table if no vlans */
2737 	if ((adapter->num_vlans == 0) ||
2738 	    ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0))
2739 		return;
2740 	/*
2741 	** A soft reset zero's out the VFTA, so
2742 	** we need to repopulate it now.
2743 	*/
2744 	for (int i = 0; i < IGB_VFTA_SIZE; i++)
2745 		if (adapter->shadow_vfta[i] != 0) {
2746 			if (adapter->vf_ifp)
2747 				e1000_vfta_set_vf(hw,
2748 				    adapter->shadow_vfta[i], TRUE);
2749 			else
2750 				E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
2751 				 i, adapter->shadow_vfta[i]);
2752 		}
2753 #endif
2754 }
2755 
2756 static void
2757 igb_enable_intr(struct igb_softc *sc)
2758 {
2759 	int i;
2760 
2761 	for (i = 0; i < sc->intr_cnt; ++i)
2762 		lwkt_serialize_handler_enable(sc->intr_data[i].intr_serialize);
2763 
2764 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2765 		if (sc->intr_type == PCI_INTR_TYPE_MSIX)
2766 			E1000_WRITE_REG(&sc->hw, E1000_EIAC, sc->intr_mask);
2767 		else
2768 			E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2769 		E1000_WRITE_REG(&sc->hw, E1000_EIAM, sc->intr_mask);
2770 		E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
2771 		E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
2772 	} else {
2773 		E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
2774 	}
2775 	E1000_WRITE_FLUSH(&sc->hw);
2776 }
2777 
2778 static void
2779 igb_disable_intr(struct igb_softc *sc)
2780 {
2781 	int i;
2782 
2783 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2784 		E1000_WRITE_REG(&sc->hw, E1000_EIMC, 0xffffffff);
2785 		E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2786 	}
2787 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2788 	E1000_WRITE_FLUSH(&sc->hw);
2789 
2790 	for (i = 0; i < sc->intr_cnt; ++i)
2791 		lwkt_serialize_handler_disable(sc->intr_data[i].intr_serialize);
2792 }
2793 
2794 /*
2795  * Bit of a misnomer, what this really means is
2796  * to enable OS management of the system... aka
2797  * to disable special hardware management features
2798  */
2799 static void
2800 igb_get_mgmt(struct igb_softc *sc)
2801 {
2802 	if (sc->flags & IGB_FLAG_HAS_MGMT) {
2803 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2804 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2805 
2806 		/* disable hardware interception of ARP */
2807 		manc &= ~E1000_MANC_ARP_EN;
2808 
2809 		/* enable receiving management packets to the host */
2810 		manc |= E1000_MANC_EN_MNG2HOST;
2811 		manc2h |= 1 << 5; /* Mng Port 623 */
2812 		manc2h |= 1 << 6; /* Mng Port 664 */
2813 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
2814 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2815 	}
2816 }
2817 
2818 /*
2819  * Give control back to hardware management controller
2820  * if there is one.
2821  */
2822 static void
2823 igb_rel_mgmt(struct igb_softc *sc)
2824 {
2825 	if (sc->flags & IGB_FLAG_HAS_MGMT) {
2826 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2827 
2828 		/* Re-enable hardware interception of ARP */
2829 		manc |= E1000_MANC_ARP_EN;
2830 		manc &= ~E1000_MANC_EN_MNG2HOST;
2831 
2832 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2833 	}
2834 }
2835 
2836 /*
2837  * Sets CTRL_EXT:DRV_LOAD bit.
2838  *
2839  * For ASF and Pass Through versions of f/w this means that
2840  * the driver is loaded.
2841  */
2842 static void
2843 igb_get_hw_control(struct igb_softc *sc)
2844 {
2845 	uint32_t ctrl_ext;
2846 
2847 	if (sc->vf_ifp)
2848 		return;
2849 
2850 	/* Let firmware know the driver has taken over */
2851 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2852 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2853 	    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2854 }
2855 
2856 /*
2857  * Resets CTRL_EXT:DRV_LOAD bit.
2858  *
2859  * For ASF and Pass Through versions of f/w this means that the
2860  * driver is no longer loaded.
2861  */
2862 static void
2863 igb_rel_hw_control(struct igb_softc *sc)
2864 {
2865 	uint32_t ctrl_ext;
2866 
2867 	if (sc->vf_ifp)
2868 		return;
2869 
2870 	/* Let firmware taken over control of h/w */
2871 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2872 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2873 	    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2874 }
2875 
2876 static boolean_t
2877 igb_is_valid_ether_addr(const uint8_t *addr)
2878 {
2879 	uint8_t zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
2880 
2881 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
2882 		return FALSE;
2883 	return TRUE;
2884 }
2885 
2886 /*
2887  * Enable PCI Wake On Lan capability
2888  */
2889 static void
2890 igb_enable_wol(device_t dev)
2891 {
2892 	uint16_t cap, status;
2893 	uint8_t id;
2894 
2895 	/* First find the capabilities pointer*/
2896 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
2897 
2898 	/* Read the PM Capabilities */
2899 	id = pci_read_config(dev, cap, 1);
2900 	if (id != PCIY_PMG)     /* Something wrong */
2901 		return;
2902 
2903 	/*
2904 	 * OK, we have the power capabilities,
2905 	 * so now get the status register
2906 	 */
2907 	cap += PCIR_POWER_STATUS;
2908 	status = pci_read_config(dev, cap, 2);
2909 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2910 	pci_write_config(dev, cap, status, 2);
2911 }
2912 
2913 static void
2914 igb_update_stats_counters(struct igb_softc *sc)
2915 {
2916 	struct e1000_hw *hw = &sc->hw;
2917 	struct e1000_hw_stats *stats;
2918 	struct ifnet *ifp = &sc->arpcom.ac_if;
2919 
2920 	/*
2921 	 * The virtual function adapter has only a
2922 	 * small controlled set of stats, do only
2923 	 * those and return.
2924 	 */
2925 	if (sc->vf_ifp) {
2926 		igb_update_vf_stats_counters(sc);
2927 		return;
2928 	}
2929 	stats = sc->stats;
2930 
2931 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
2932 	    (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
2933 		stats->symerrs +=
2934 		    E1000_READ_REG(hw,E1000_SYMERRS);
2935 		stats->sec += E1000_READ_REG(hw, E1000_SEC);
2936 	}
2937 
2938 	stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
2939 	stats->mpc += E1000_READ_REG(hw, E1000_MPC);
2940 	stats->scc += E1000_READ_REG(hw, E1000_SCC);
2941 	stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
2942 
2943 	stats->mcc += E1000_READ_REG(hw, E1000_MCC);
2944 	stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
2945 	stats->colc += E1000_READ_REG(hw, E1000_COLC);
2946 	stats->dc += E1000_READ_REG(hw, E1000_DC);
2947 	stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
2948 	stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
2949 	stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
2950 
2951 	/*
2952 	 * For watchdog management we need to know if we have been
2953 	 * paused during the last interval, so capture that here.
2954 	 */
2955 	sc->pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
2956 	stats->xoffrxc += sc->pause_frames;
2957 	stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
2958 	stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
2959 	stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
2960 	stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
2961 	stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
2962 	stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
2963 	stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
2964 	stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
2965 	stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
2966 	stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
2967 	stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
2968 	stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
2969 
2970 	/* For the 64-bit byte counters the low dword must be read first. */
2971 	/* Both registers clear on the read of the high dword */
2972 
2973 	stats->gorc += E1000_READ_REG(hw, E1000_GORCL) +
2974 	    ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
2975 	stats->gotc += E1000_READ_REG(hw, E1000_GOTCL) +
2976 	    ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
2977 
2978 	stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
2979 	stats->ruc += E1000_READ_REG(hw, E1000_RUC);
2980 	stats->rfc += E1000_READ_REG(hw, E1000_RFC);
2981 	stats->roc += E1000_READ_REG(hw, E1000_ROC);
2982 	stats->rjc += E1000_READ_REG(hw, E1000_RJC);
2983 
2984 	stats->tor += E1000_READ_REG(hw, E1000_TORH);
2985 	stats->tot += E1000_READ_REG(hw, E1000_TOTH);
2986 
2987 	stats->tpr += E1000_READ_REG(hw, E1000_TPR);
2988 	stats->tpt += E1000_READ_REG(hw, E1000_TPT);
2989 	stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
2990 	stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
2991 	stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
2992 	stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
2993 	stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
2994 	stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
2995 	stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
2996 	stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
2997 
2998 	/* Interrupt Counts */
2999 
3000 	stats->iac += E1000_READ_REG(hw, E1000_IAC);
3001 	stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
3002 	stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
3003 	stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
3004 	stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
3005 	stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
3006 	stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
3007 	stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
3008 	stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
3009 
3010 	/* Host to Card Statistics */
3011 
3012 	stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
3013 	stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
3014 	stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
3015 	stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
3016 	stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
3017 	stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
3018 	stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
3019 	stats->hgorc += (E1000_READ_REG(hw, E1000_HGORCL) +
3020 	    ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32));
3021 	stats->hgotc += (E1000_READ_REG(hw, E1000_HGOTCL) +
3022 	    ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32));
3023 	stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
3024 	stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
3025 	stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
3026 
3027 	stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
3028 	stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
3029 	stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
3030 	stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
3031 	stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
3032 	stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
3033 
3034 	IFNET_STAT_SET(ifp, collisions, stats->colc);
3035 
3036 	/* Rx Errors */
3037 	IFNET_STAT_SET(ifp, ierrors,
3038 	    stats->rxerrc + stats->crcerrs + stats->algnerrc +
3039 	    stats->ruc + stats->roc + stats->mpc + stats->cexterr);
3040 
3041 	/* Tx Errors */
3042 	IFNET_STAT_SET(ifp, oerrors,
3043 	    stats->ecol + stats->latecol + sc->watchdog_events);
3044 
3045 	/* Driver specific counters */
3046 	sc->device_control = E1000_READ_REG(hw, E1000_CTRL);
3047 	sc->rx_control = E1000_READ_REG(hw, E1000_RCTL);
3048 	sc->int_mask = E1000_READ_REG(hw, E1000_IMS);
3049 	sc->eint_mask = E1000_READ_REG(hw, E1000_EIMS);
3050 	sc->packet_buf_alloc_tx =
3051 	    ((E1000_READ_REG(hw, E1000_PBA) & 0xffff0000) >> 16);
3052 	sc->packet_buf_alloc_rx =
3053 	    (E1000_READ_REG(hw, E1000_PBA) & 0xffff);
3054 }
3055 
3056 static void
3057 igb_vf_init_stats(struct igb_softc *sc)
3058 {
3059 	struct e1000_hw *hw = &sc->hw;
3060 	struct e1000_vf_stats *stats;
3061 
3062 	stats = sc->stats;
3063 	stats->last_gprc = E1000_READ_REG(hw, E1000_VFGPRC);
3064 	stats->last_gorc = E1000_READ_REG(hw, E1000_VFGORC);
3065 	stats->last_gptc = E1000_READ_REG(hw, E1000_VFGPTC);
3066 	stats->last_gotc = E1000_READ_REG(hw, E1000_VFGOTC);
3067 	stats->last_mprc = E1000_READ_REG(hw, E1000_VFMPRC);
3068 }
3069 
3070 static void
3071 igb_update_vf_stats_counters(struct igb_softc *sc)
3072 {
3073 	struct e1000_hw *hw = &sc->hw;
3074 	struct e1000_vf_stats *stats;
3075 
3076 	if (sc->link_speed == 0)
3077 		return;
3078 
3079 	stats = sc->stats;
3080 	UPDATE_VF_REG(E1000_VFGPRC, stats->last_gprc, stats->gprc);
3081 	UPDATE_VF_REG(E1000_VFGORC, stats->last_gorc, stats->gorc);
3082 	UPDATE_VF_REG(E1000_VFGPTC, stats->last_gptc, stats->gptc);
3083 	UPDATE_VF_REG(E1000_VFGOTC, stats->last_gotc, stats->gotc);
3084 	UPDATE_VF_REG(E1000_VFMPRC, stats->last_mprc, stats->mprc);
3085 }
3086 
3087 #ifdef IFPOLL_ENABLE
3088 
3089 static void
3090 igb_npoll_status(struct ifnet *ifp)
3091 {
3092 	struct igb_softc *sc = ifp->if_softc;
3093 	uint32_t reg_icr;
3094 
3095 	ASSERT_SERIALIZED(&sc->main_serialize);
3096 
3097 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3098 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3099 		sc->hw.mac.get_link_status = 1;
3100 		igb_update_link_status(sc);
3101 	}
3102 }
3103 
3104 static void
3105 igb_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
3106 {
3107 	struct igb_tx_ring *txr = arg;
3108 
3109 	ASSERT_SERIALIZED(&txr->tx_serialize);
3110 
3111 	igb_txeof(txr, *(txr->tx_hdr));
3112 	if (!ifsq_is_empty(txr->ifsq))
3113 		ifsq_devstart(txr->ifsq);
3114 }
3115 
3116 static void
3117 igb_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
3118 {
3119 	struct igb_rx_ring *rxr = arg;
3120 
3121 	ASSERT_SERIALIZED(&rxr->rx_serialize);
3122 
3123 	igb_rxeof(rxr, cycle);
3124 }
3125 
3126 static void
3127 igb_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3128 {
3129 	struct igb_softc *sc = ifp->if_softc;
3130 	int i, txr_cnt, rxr_cnt;
3131 
3132 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3133 
3134 	if (info) {
3135 		int off;
3136 
3137 		info->ifpi_status.status_func = igb_npoll_status;
3138 		info->ifpi_status.serializer = &sc->main_serialize;
3139 
3140 		txr_cnt = igb_get_txring_inuse(sc, TRUE);
3141 		off = sc->tx_npoll_off;
3142 		for (i = 0; i < txr_cnt; ++i) {
3143 			struct igb_tx_ring *txr = &sc->tx_rings[i];
3144 			int idx = i + off;
3145 
3146 			KKASSERT(idx < ncpus2);
3147 			info->ifpi_tx[idx].poll_func = igb_npoll_tx;
3148 			info->ifpi_tx[idx].arg = txr;
3149 			info->ifpi_tx[idx].serializer = &txr->tx_serialize;
3150 			ifsq_set_cpuid(txr->ifsq, idx);
3151 		}
3152 
3153 		rxr_cnt = igb_get_rxring_inuse(sc, TRUE);
3154 		off = sc->rx_npoll_off;
3155 		for (i = 0; i < rxr_cnt; ++i) {
3156 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
3157 			int idx = i + off;
3158 
3159 			KKASSERT(idx < ncpus2);
3160 			info->ifpi_rx[idx].poll_func = igb_npoll_rx;
3161 			info->ifpi_rx[idx].arg = rxr;
3162 			info->ifpi_rx[idx].serializer = &rxr->rx_serialize;
3163 		}
3164 
3165 		if (ifp->if_flags & IFF_RUNNING) {
3166 			if (rxr_cnt == sc->rx_ring_inuse &&
3167 			    txr_cnt == sc->tx_ring_inuse) {
3168 				igb_set_timer_cpuid(sc, TRUE);
3169 				igb_disable_intr(sc);
3170 			} else {
3171 				igb_init(sc);
3172 			}
3173 		}
3174 	} else {
3175 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
3176 			struct igb_tx_ring *txr = &sc->tx_rings[i];
3177 
3178 			ifsq_set_cpuid(txr->ifsq, txr->tx_intr_cpuid);
3179 		}
3180 
3181 		if (ifp->if_flags & IFF_RUNNING) {
3182 			txr_cnt = igb_get_txring_inuse(sc, FALSE);
3183 			rxr_cnt = igb_get_rxring_inuse(sc, FALSE);
3184 
3185 			if (rxr_cnt == sc->rx_ring_inuse &&
3186 			    txr_cnt == sc->tx_ring_inuse) {
3187 				igb_set_timer_cpuid(sc, FALSE);
3188 				igb_enable_intr(sc);
3189 			} else {
3190 				igb_init(sc);
3191 			}
3192 		}
3193 	}
3194 }
3195 
3196 #endif /* IFPOLL_ENABLE */
3197 
3198 static void
3199 igb_intr(void *xsc)
3200 {
3201 	struct igb_softc *sc = xsc;
3202 	struct ifnet *ifp = &sc->arpcom.ac_if;
3203 	uint32_t eicr;
3204 
3205 	ASSERT_SERIALIZED(&sc->main_serialize);
3206 
3207 	eicr = E1000_READ_REG(&sc->hw, E1000_EICR);
3208 
3209 	if (eicr == 0)
3210 		return;
3211 
3212 	if (ifp->if_flags & IFF_RUNNING) {
3213 		struct igb_tx_ring *txr = &sc->tx_rings[0];
3214 		int i;
3215 
3216 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3217 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
3218 
3219 			if (eicr & rxr->rx_intr_mask) {
3220 				lwkt_serialize_enter(&rxr->rx_serialize);
3221 				igb_rxeof(rxr, -1);
3222 				lwkt_serialize_exit(&rxr->rx_serialize);
3223 			}
3224 		}
3225 
3226 		if (eicr & txr->tx_intr_mask) {
3227 			lwkt_serialize_enter(&txr->tx_serialize);
3228 			igb_txeof(txr, *(txr->tx_hdr));
3229 			if (!ifsq_is_empty(txr->ifsq))
3230 				ifsq_devstart(txr->ifsq);
3231 			lwkt_serialize_exit(&txr->tx_serialize);
3232 		}
3233 	}
3234 
3235 	if (eicr & E1000_EICR_OTHER) {
3236 		uint32_t icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3237 
3238 		/* Link status change */
3239 		if (icr & E1000_ICR_LSC) {
3240 			sc->hw.mac.get_link_status = 1;
3241 			igb_update_link_status(sc);
3242 		}
3243 	}
3244 
3245 	/*
3246 	 * Reading EICR has the side effect to clear interrupt mask,
3247 	 * so all interrupts need to be enabled here.
3248 	 */
3249 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
3250 }
3251 
3252 static void
3253 igb_intr_shared(void *xsc)
3254 {
3255 	struct igb_softc *sc = xsc;
3256 	struct ifnet *ifp = &sc->arpcom.ac_if;
3257 	uint32_t reg_icr;
3258 
3259 	ASSERT_SERIALIZED(&sc->main_serialize);
3260 
3261 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3262 
3263 	/* Hot eject?  */
3264 	if (reg_icr == 0xffffffff)
3265 		return;
3266 
3267 	/* Definitely not our interrupt.  */
3268 	if (reg_icr == 0x0)
3269 		return;
3270 
3271 	if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0)
3272 		return;
3273 
3274 	if (ifp->if_flags & IFF_RUNNING) {
3275 		if (reg_icr &
3276 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
3277 			int i;
3278 
3279 			for (i = 0; i < sc->rx_ring_inuse; ++i) {
3280 				struct igb_rx_ring *rxr = &sc->rx_rings[i];
3281 
3282 				lwkt_serialize_enter(&rxr->rx_serialize);
3283 				igb_rxeof(rxr, -1);
3284 				lwkt_serialize_exit(&rxr->rx_serialize);
3285 			}
3286 		}
3287 
3288 		if (reg_icr & E1000_ICR_TXDW) {
3289 			struct igb_tx_ring *txr = &sc->tx_rings[0];
3290 
3291 			lwkt_serialize_enter(&txr->tx_serialize);
3292 			igb_txeof(txr, *(txr->tx_hdr));
3293 			if (!ifsq_is_empty(txr->ifsq))
3294 				ifsq_devstart(txr->ifsq);
3295 			lwkt_serialize_exit(&txr->tx_serialize);
3296 		}
3297 	}
3298 
3299 	/* Link status change */
3300 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3301 		sc->hw.mac.get_link_status = 1;
3302 		igb_update_link_status(sc);
3303 	}
3304 
3305 	if (reg_icr & E1000_ICR_RXO)
3306 		sc->rx_overruns++;
3307 }
3308 
3309 static int
3310 igb_encap(struct igb_tx_ring *txr, struct mbuf **m_headp,
3311     int *segs_used, int *idx)
3312 {
3313 	bus_dma_segment_t segs[IGB_MAX_SCATTER];
3314 	bus_dmamap_t map;
3315 	struct igb_tx_buf *tx_buf, *tx_buf_mapped;
3316 	union e1000_adv_tx_desc	*txd = NULL;
3317 	struct mbuf *m_head = *m_headp;
3318 	uint32_t olinfo_status = 0, cmd_type_len = 0, cmd_rs = 0;
3319 	int maxsegs, nsegs, i, j, error;
3320 	uint32_t hdrlen = 0;
3321 
3322 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3323 		error = igb_tso_pullup(txr, m_headp);
3324 		if (error)
3325 			return error;
3326 		m_head = *m_headp;
3327 	}
3328 
3329 	/* Set basic descriptor constants */
3330 	cmd_type_len |= E1000_ADVTXD_DTYP_DATA;
3331 	cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
3332 	if (m_head->m_flags & M_VLANTAG)
3333 		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3334 
3335 	/*
3336 	 * Map the packet for DMA.
3337 	 */
3338 	tx_buf = &txr->tx_buf[txr->next_avail_desc];
3339 	tx_buf_mapped = tx_buf;
3340 	map = tx_buf->map;
3341 
3342 	maxsegs = txr->tx_avail - IGB_TX_RESERVED;
3343 	if (maxsegs > IGB_MAX_SCATTER)
3344 		maxsegs = IGB_MAX_SCATTER;
3345 
3346 	error = bus_dmamap_load_mbuf_defrag(txr->tx_tag, map, m_headp,
3347 	    segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3348 	if (error) {
3349 		if (error == ENOBUFS)
3350 			txr->sc->mbuf_defrag_failed++;
3351 		else
3352 			txr->sc->no_tx_dma_setup++;
3353 
3354 		m_freem(*m_headp);
3355 		*m_headp = NULL;
3356 		return error;
3357 	}
3358 	bus_dmamap_sync(txr->tx_tag, map, BUS_DMASYNC_PREWRITE);
3359 
3360 	m_head = *m_headp;
3361 
3362 	/*
3363 	 * Set up the TX context descriptor, if any hardware offloading is
3364 	 * needed.  This includes CSUM, VLAN, and TSO.  It will consume one
3365 	 * TX descriptor.
3366 	 *
3367 	 * Unlike these chips' predecessors (em/emx), TX context descriptor
3368 	 * will _not_ interfere TX data fetching pipelining.
3369 	 */
3370 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3371 		igb_tso_ctx(txr, m_head, &hdrlen);
3372 		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3373 		olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3374 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3375 		txr->tx_nsegs++;
3376 		(*segs_used)++;
3377 	} else if (igb_txcsum_ctx(txr, m_head)) {
3378 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3379 			olinfo_status |= (E1000_TXD_POPTS_IXSM << 8);
3380 		if (m_head->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_TCP))
3381 			olinfo_status |= (E1000_TXD_POPTS_TXSM << 8);
3382 		txr->tx_nsegs++;
3383 		(*segs_used)++;
3384 	}
3385 
3386 	*segs_used += nsegs;
3387 	txr->tx_nsegs += nsegs;
3388 	if (txr->tx_nsegs >= txr->intr_nsegs) {
3389 		/*
3390 		 * Report Status (RS) is turned on every intr_nsegs
3391 		 * descriptors (roughly).
3392 		 */
3393 		txr->tx_nsegs = 0;
3394 		cmd_rs = E1000_ADVTXD_DCMD_RS;
3395 	}
3396 
3397 	/* Calculate payload length */
3398 	olinfo_status |= ((m_head->m_pkthdr.len - hdrlen)
3399 	    << E1000_ADVTXD_PAYLEN_SHIFT);
3400 
3401 	/*
3402 	 * 82575 needs the TX context index added; the queue
3403 	 * index is used as TX context index here.
3404 	 */
3405 	if (txr->sc->hw.mac.type == e1000_82575)
3406 		olinfo_status |= txr->me << 4;
3407 
3408 	/* Set up our transmit descriptors */
3409 	i = txr->next_avail_desc;
3410 	for (j = 0; j < nsegs; j++) {
3411 		bus_size_t seg_len;
3412 		bus_addr_t seg_addr;
3413 
3414 		tx_buf = &txr->tx_buf[i];
3415 		txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
3416 		seg_addr = segs[j].ds_addr;
3417 		seg_len = segs[j].ds_len;
3418 
3419 		txd->read.buffer_addr = htole64(seg_addr);
3420 		txd->read.cmd_type_len = htole32(cmd_type_len | seg_len);
3421 		txd->read.olinfo_status = htole32(olinfo_status);
3422 		if (++i == txr->num_tx_desc)
3423 			i = 0;
3424 		tx_buf->m_head = NULL;
3425 	}
3426 
3427 	KASSERT(txr->tx_avail > nsegs, ("invalid avail TX desc\n"));
3428 	txr->next_avail_desc = i;
3429 	txr->tx_avail -= nsegs;
3430 
3431 	tx_buf->m_head = m_head;
3432 	tx_buf_mapped->map = tx_buf->map;
3433 	tx_buf->map = map;
3434 
3435 	/*
3436 	 * Last Descriptor of Packet needs End Of Packet (EOP)
3437 	 */
3438 	txd->read.cmd_type_len |= htole32(E1000_ADVTXD_DCMD_EOP | cmd_rs);
3439 
3440 	/*
3441 	 * Defer TDT updating, until enough descrptors are setup
3442 	 */
3443 	*idx = i;
3444 #ifdef IGB_TSS_DEBUG
3445 	++txr->tx_packets;
3446 #endif
3447 
3448 	return 0;
3449 }
3450 
3451 static void
3452 igb_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3453 {
3454 	struct igb_softc *sc = ifp->if_softc;
3455 	struct igb_tx_ring *txr = ifsq_get_priv(ifsq);
3456 	struct mbuf *m_head;
3457 	int idx = -1, nsegs = 0;
3458 
3459 	KKASSERT(txr->ifsq == ifsq);
3460 	ASSERT_SERIALIZED(&txr->tx_serialize);
3461 
3462 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
3463 		return;
3464 
3465 	if (!sc->link_active || (txr->tx_flags & IGB_TXFLAG_ENABLED) == 0) {
3466 		ifsq_purge(ifsq);
3467 		return;
3468 	}
3469 
3470 	while (!ifsq_is_empty(ifsq)) {
3471 		if (txr->tx_avail <= IGB_MAX_SCATTER + IGB_TX_RESERVED) {
3472 			ifsq_set_oactive(ifsq);
3473 			/* Set watchdog on */
3474 			txr->tx_watchdog.wd_timer = 5;
3475 			break;
3476 		}
3477 
3478 		m_head = ifsq_dequeue(ifsq);
3479 		if (m_head == NULL)
3480 			break;
3481 
3482 		if (igb_encap(txr, &m_head, &nsegs, &idx)) {
3483 			IFNET_STAT_INC(ifp, oerrors, 1);
3484 			continue;
3485 		}
3486 
3487 		/*
3488 		 * TX interrupt are aggressively aggregated, so increasing
3489 		 * opackets at TX interrupt time will make the opackets
3490 		 * statistics vastly inaccurate; we do the opackets increment
3491 		 * now.
3492 		 */
3493 		IFNET_STAT_INC(ifp, opackets, 1);
3494 
3495 		if (nsegs >= txr->wreg_nsegs) {
3496 			E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3497 			idx = -1;
3498 			nsegs = 0;
3499 		}
3500 
3501 		/* Send a copy of the frame to the BPF listener */
3502 		ETHER_BPF_MTAP(ifp, m_head);
3503 	}
3504 	if (idx >= 0)
3505 		E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3506 }
3507 
3508 static void
3509 igb_watchdog(struct ifaltq_subque *ifsq)
3510 {
3511 	struct igb_tx_ring *txr = ifsq_get_priv(ifsq);
3512 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
3513 	struct igb_softc *sc = ifp->if_softc;
3514 	int i;
3515 
3516 	KKASSERT(txr->ifsq == ifsq);
3517 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3518 
3519 	/*
3520 	 * If flow control has paused us since last checking
3521 	 * it invalidates the watchdog timing, so dont run it.
3522 	 */
3523 	if (sc->pause_frames) {
3524 		sc->pause_frames = 0;
3525 		txr->tx_watchdog.wd_timer = 5;
3526 		return;
3527 	}
3528 
3529 	if_printf(ifp, "Watchdog timeout -- resetting\n");
3530 	if_printf(ifp, "Queue(%d) tdh = %d, hw tdt = %d\n", txr->me,
3531 	    E1000_READ_REG(&sc->hw, E1000_TDH(txr->me)),
3532 	    E1000_READ_REG(&sc->hw, E1000_TDT(txr->me)));
3533 	if_printf(ifp, "TX(%d) desc avail = %d, "
3534 	    "Next TX to Clean = %d\n",
3535 	    txr->me, txr->tx_avail, txr->next_to_clean);
3536 
3537 	IFNET_STAT_INC(ifp, oerrors, 1);
3538 	sc->watchdog_events++;
3539 
3540 	igb_init(sc);
3541 	for (i = 0; i < sc->tx_ring_inuse; ++i)
3542 		ifsq_devstart_sched(sc->tx_rings[i].ifsq);
3543 }
3544 
3545 static void
3546 igb_set_eitr(struct igb_softc *sc, int idx, int rate)
3547 {
3548 	uint32_t eitr = 0;
3549 
3550 	if (rate > 0) {
3551 		if (sc->hw.mac.type == e1000_82575) {
3552 			eitr = 1000000000 / 256 / rate;
3553 			/*
3554 			 * NOTE:
3555 			 * Document is wrong on the 2 bits left shift
3556 			 */
3557 		} else {
3558 			eitr = 1000000 / rate;
3559 			eitr <<= IGB_EITR_INTVL_SHIFT;
3560 		}
3561 
3562 		if (eitr == 0) {
3563 			/* Don't disable it */
3564 			eitr = 1 << IGB_EITR_INTVL_SHIFT;
3565 		} else if (eitr > IGB_EITR_INTVL_MASK) {
3566 			/* Don't allow it to be too large */
3567 			eitr = IGB_EITR_INTVL_MASK;
3568 		}
3569 	}
3570 	if (sc->hw.mac.type == e1000_82575)
3571 		eitr |= eitr << 16;
3572 	else
3573 		eitr |= E1000_EITR_CNT_IGNR;
3574 	E1000_WRITE_REG(&sc->hw, E1000_EITR(idx), eitr);
3575 }
3576 
3577 static void
3578 igb_add_intr_rate_sysctl(struct igb_softc *sc, int use,
3579     const char *name, const char *desc)
3580 {
3581 	int i;
3582 
3583 	for (i = 0; i < sc->intr_cnt; ++i) {
3584 		if (sc->intr_data[i].intr_use == use) {
3585 			SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
3586 			    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
3587 			    OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW,
3588 			    sc, use, igb_sysctl_intr_rate, "I", desc);
3589 			break;
3590 		}
3591 	}
3592 }
3593 
3594 static int
3595 igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3596 {
3597 	struct igb_softc *sc = (void *)arg1;
3598 	int use = arg2;
3599 	struct ifnet *ifp = &sc->arpcom.ac_if;
3600 	int error, rate, i;
3601 	struct igb_intr_data *intr;
3602 
3603 	rate = 0;
3604 	for (i = 0; i < sc->intr_cnt; ++i) {
3605 		intr = &sc->intr_data[i];
3606 		if (intr->intr_use == use) {
3607 			rate = intr->intr_rate;
3608 			break;
3609 		}
3610 	}
3611 
3612 	error = sysctl_handle_int(oidp, &rate, 0, req);
3613 	if (error || req->newptr == NULL)
3614 		return error;
3615 	if (rate <= 0)
3616 		return EINVAL;
3617 
3618 	ifnet_serialize_all(ifp);
3619 
3620 	for (i = 0; i < sc->intr_cnt; ++i) {
3621 		intr = &sc->intr_data[i];
3622 		if (intr->intr_use == use && intr->intr_rate != rate) {
3623 			intr->intr_rate = rate;
3624 			if (ifp->if_flags & IFF_RUNNING)
3625 				igb_set_eitr(sc, i, rate);
3626 		}
3627 	}
3628 
3629 	ifnet_deserialize_all(ifp);
3630 
3631 	return error;
3632 }
3633 
3634 static int
3635 igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3636 {
3637 	struct igb_softc *sc = (void *)arg1;
3638 	struct ifnet *ifp = &sc->arpcom.ac_if;
3639 	struct igb_tx_ring *txr = &sc->tx_rings[0];
3640 	int error, nsegs;
3641 
3642 	nsegs = txr->intr_nsegs;
3643 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3644 	if (error || req->newptr == NULL)
3645 		return error;
3646 	if (nsegs <= 0)
3647 		return EINVAL;
3648 
3649 	ifnet_serialize_all(ifp);
3650 
3651 	if (nsegs >= txr->num_tx_desc - IGB_MAX_SCATTER - IGB_TX_RESERVED) {
3652 		error = EINVAL;
3653 	} else {
3654 		int i;
3655 
3656 		error = 0;
3657 		for (i = 0; i < sc->tx_ring_cnt; ++i)
3658 			sc->tx_rings[i].intr_nsegs = nsegs;
3659 	}
3660 
3661 	ifnet_deserialize_all(ifp);
3662 
3663 	return error;
3664 }
3665 
3666 static int
3667 igb_sysctl_rx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3668 {
3669 	struct igb_softc *sc = (void *)arg1;
3670 	struct ifnet *ifp = &sc->arpcom.ac_if;
3671 	int error, nsegs, i;
3672 
3673 	nsegs = sc->rx_rings[0].wreg_nsegs;
3674 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3675 	if (error || req->newptr == NULL)
3676 		return error;
3677 
3678 	ifnet_serialize_all(ifp);
3679 	for (i = 0; i < sc->rx_ring_cnt; ++i)
3680 		sc->rx_rings[i].wreg_nsegs = nsegs;
3681 	ifnet_deserialize_all(ifp);
3682 
3683 	return 0;
3684 }
3685 
3686 static int
3687 igb_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3688 {
3689 	struct igb_softc *sc = (void *)arg1;
3690 	struct ifnet *ifp = &sc->arpcom.ac_if;
3691 	int error, nsegs, i;
3692 
3693 	nsegs = sc->tx_rings[0].wreg_nsegs;
3694 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3695 	if (error || req->newptr == NULL)
3696 		return error;
3697 
3698 	ifnet_serialize_all(ifp);
3699 	for (i = 0; i < sc->tx_ring_cnt; ++i)
3700 		sc->tx_rings[i].wreg_nsegs = nsegs;
3701 	ifnet_deserialize_all(ifp);
3702 
3703 	return 0;
3704 }
3705 
3706 #ifdef IFPOLL_ENABLE
3707 
3708 static int
3709 igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3710 {
3711 	struct igb_softc *sc = (void *)arg1;
3712 	struct ifnet *ifp = &sc->arpcom.ac_if;
3713 	int error, off;
3714 
3715 	off = sc->rx_npoll_off;
3716 	error = sysctl_handle_int(oidp, &off, 0, req);
3717 	if (error || req->newptr == NULL)
3718 		return error;
3719 	if (off < 0)
3720 		return EINVAL;
3721 
3722 	ifnet_serialize_all(ifp);
3723 	if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3724 		error = EINVAL;
3725 	} else {
3726 		error = 0;
3727 		sc->rx_npoll_off = off;
3728 	}
3729 	ifnet_deserialize_all(ifp);
3730 
3731 	return error;
3732 }
3733 
3734 static int
3735 igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3736 {
3737 	struct igb_softc *sc = (void *)arg1;
3738 	struct ifnet *ifp = &sc->arpcom.ac_if;
3739 	int error, off;
3740 
3741 	off = sc->tx_npoll_off;
3742 	error = sysctl_handle_int(oidp, &off, 0, req);
3743 	if (error || req->newptr == NULL)
3744 		return error;
3745 	if (off < 0)
3746 		return EINVAL;
3747 
3748 	ifnet_serialize_all(ifp);
3749 	if (off >= ncpus2 || off % sc->tx_ring_cnt != 0) {
3750 		error = EINVAL;
3751 	} else {
3752 		error = 0;
3753 		sc->tx_npoll_off = off;
3754 	}
3755 	ifnet_deserialize_all(ifp);
3756 
3757 	return error;
3758 }
3759 
3760 #endif	/* IFPOLL_ENABLE */
3761 
3762 static void
3763 igb_init_intr(struct igb_softc *sc)
3764 {
3765 	int i;
3766 
3767 	igb_set_intr_mask(sc);
3768 
3769 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0)
3770 		igb_init_unshared_intr(sc);
3771 
3772 	for (i = 0; i < sc->intr_cnt; ++i)
3773 		igb_set_eitr(sc, i, sc->intr_data[i].intr_rate);
3774 }
3775 
3776 static void
3777 igb_init_unshared_intr(struct igb_softc *sc)
3778 {
3779 	struct e1000_hw *hw = &sc->hw;
3780 	const struct igb_rx_ring *rxr;
3781 	const struct igb_tx_ring *txr;
3782 	uint32_t ivar, index;
3783 	int i;
3784 
3785 	/*
3786 	 * Enable extended mode
3787 	 */
3788 	if (sc->hw.mac.type != e1000_82575) {
3789 		uint32_t gpie;
3790 		int ivar_max;
3791 
3792 		gpie = E1000_GPIE_NSICR;
3793 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3794 			gpie |= E1000_GPIE_MSIX_MODE |
3795 			    E1000_GPIE_EIAME |
3796 			    E1000_GPIE_PBA;
3797 		}
3798 		E1000_WRITE_REG(hw, E1000_GPIE, gpie);
3799 
3800 		/*
3801 		 * Clear IVARs
3802 		 */
3803 		switch (sc->hw.mac.type) {
3804 		case e1000_82576:
3805 			ivar_max = IGB_MAX_IVAR_82576;
3806 			break;
3807 
3808 		case e1000_82580:
3809 			ivar_max = IGB_MAX_IVAR_82580;
3810 			break;
3811 
3812 		case e1000_i350:
3813 			ivar_max = IGB_MAX_IVAR_I350;
3814 			break;
3815 
3816 		case e1000_i354:
3817 			ivar_max = IGB_MAX_IVAR_I354;
3818 			break;
3819 
3820 		case e1000_vfadapt:
3821 		case e1000_vfadapt_i350:
3822 			ivar_max = IGB_MAX_IVAR_VF;
3823 			break;
3824 
3825 		case e1000_i210:
3826 			ivar_max = IGB_MAX_IVAR_I210;
3827 			break;
3828 
3829 		case e1000_i211:
3830 			ivar_max = IGB_MAX_IVAR_I211;
3831 			break;
3832 
3833 		default:
3834 			panic("unknown mac type %d\n", sc->hw.mac.type);
3835 		}
3836 		for (i = 0; i < ivar_max; ++i)
3837 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, 0);
3838 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, 0);
3839 	} else {
3840 		uint32_t tmp;
3841 
3842 		KASSERT(sc->intr_type != PCI_INTR_TYPE_MSIX,
3843 		    ("82575 w/ MSI-X"));
3844 		tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
3845 		tmp |= E1000_CTRL_EXT_IRCA;
3846 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
3847 	}
3848 
3849 	/*
3850 	 * Map TX/RX interrupts to EICR
3851 	 */
3852 	switch (sc->hw.mac.type) {
3853 	case e1000_82580:
3854 	case e1000_i350:
3855 	case e1000_i354:
3856 	case e1000_vfadapt:
3857 	case e1000_vfadapt_i350:
3858 	case e1000_i210:
3859 	case e1000_i211:
3860 		/* RX entries */
3861 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3862 			rxr = &sc->rx_rings[i];
3863 
3864 			index = i >> 1;
3865 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3866 
3867 			if (i & 1) {
3868 				ivar &= 0xff00ffff;
3869 				ivar |=
3870 				(rxr->rx_intr_vec | E1000_IVAR_VALID) << 16;
3871 			} else {
3872 				ivar &= 0xffffff00;
3873 				ivar |=
3874 				(rxr->rx_intr_vec | E1000_IVAR_VALID);
3875 			}
3876 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3877 		}
3878 		/* TX entries */
3879 		for (i = 0; i < sc->tx_ring_inuse; ++i) {
3880 			txr = &sc->tx_rings[i];
3881 
3882 			index = i >> 1;
3883 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3884 
3885 			if (i & 1) {
3886 				ivar &= 0x00ffffff;
3887 				ivar |=
3888 				(txr->tx_intr_vec | E1000_IVAR_VALID) << 24;
3889 			} else {
3890 				ivar &= 0xffff00ff;
3891 				ivar |=
3892 				(txr->tx_intr_vec | E1000_IVAR_VALID) << 8;
3893 			}
3894 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3895 		}
3896 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3897 			ivar = (sc->sts_msix_vec | E1000_IVAR_VALID) << 8;
3898 			E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3899 		}
3900 		break;
3901 
3902 	case e1000_82576:
3903 		/* RX entries */
3904 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3905 			rxr = &sc->rx_rings[i];
3906 
3907 			index = i & 0x7; /* Each IVAR has two entries */
3908 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3909 
3910 			if (i < 8) {
3911 				ivar &= 0xffffff00;
3912 				ivar |=
3913 				(rxr->rx_intr_vec | E1000_IVAR_VALID);
3914 			} else {
3915 				ivar &= 0xff00ffff;
3916 				ivar |=
3917 				(rxr->rx_intr_vec | E1000_IVAR_VALID) << 16;
3918 			}
3919 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3920 		}
3921 		/* TX entries */
3922 		for (i = 0; i < sc->tx_ring_inuse; ++i) {
3923 			txr = &sc->tx_rings[i];
3924 
3925 			index = i & 0x7; /* Each IVAR has two entries */
3926 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3927 
3928 			if (i < 8) {
3929 				ivar &= 0xffff00ff;
3930 				ivar |=
3931 				(txr->tx_intr_vec | E1000_IVAR_VALID) << 8;
3932 			} else {
3933 				ivar &= 0x00ffffff;
3934 				ivar |=
3935 				(txr->tx_intr_vec | E1000_IVAR_VALID) << 24;
3936 			}
3937 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3938 		}
3939 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3940 			ivar = (sc->sts_msix_vec | E1000_IVAR_VALID) << 8;
3941 			E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3942 		}
3943 		break;
3944 
3945 	case e1000_82575:
3946 		/*
3947 		 * Enable necessary interrupt bits.
3948 		 *
3949 		 * The name of the register is confusing; in addition to
3950 		 * configuring the first vector of MSI-X, it also configures
3951 		 * which bits of EICR could be set by the hardware even when
3952 		 * MSI or line interrupt is used; it thus controls interrupt
3953 		 * generation.  It MUST be configured explicitly; the default
3954 		 * value mentioned in the datasheet is wrong: RX queue0 and
3955 		 * TX queue0 are NOT enabled by default.
3956 		 */
3957 		E1000_WRITE_REG(&sc->hw, E1000_MSIXBM(0), sc->intr_mask);
3958 		break;
3959 
3960 	default:
3961 		panic("unknown mac type %d\n", sc->hw.mac.type);
3962 	}
3963 }
3964 
3965 static int
3966 igb_setup_intr(struct igb_softc *sc)
3967 {
3968 	int i;
3969 
3970 	for (i = 0; i < sc->intr_cnt; ++i) {
3971 		struct igb_intr_data *intr = &sc->intr_data[i];
3972 		int error;
3973 
3974 		error = bus_setup_intr_descr(sc->dev, intr->intr_res,
3975 		    INTR_MPSAFE, intr->intr_func, intr->intr_funcarg,
3976 		    &intr->intr_hand, intr->intr_serialize, intr->intr_desc);
3977 		if (error) {
3978 			device_printf(sc->dev, "can't setup %dth intr\n", i);
3979 			igb_teardown_intr(sc, i);
3980 			return error;
3981 		}
3982 	}
3983 	return 0;
3984 }
3985 
3986 static void
3987 igb_set_txintr_mask(struct igb_tx_ring *txr, int *intr_vec0, int intr_vecmax)
3988 {
3989 	if (txr->sc->hw.mac.type == e1000_82575) {
3990 		txr->tx_intr_vec = 0;	/* unused */
3991 		switch (txr->me) {
3992 		case 0:
3993 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE0;
3994 			break;
3995 		case 1:
3996 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE1;
3997 			break;
3998 		case 2:
3999 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE2;
4000 			break;
4001 		case 3:
4002 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE3;
4003 			break;
4004 		default:
4005 			panic("unsupported # of TX ring, %d\n", txr->me);
4006 		}
4007 	} else {
4008 		int intr_vec = *intr_vec0;
4009 
4010 		txr->tx_intr_vec = intr_vec % intr_vecmax;
4011 		txr->tx_intr_mask = 1 << txr->tx_intr_vec;
4012 
4013 		*intr_vec0 = intr_vec + 1;
4014 	}
4015 }
4016 
4017 static void
4018 igb_set_rxintr_mask(struct igb_rx_ring *rxr, int *intr_vec0, int intr_vecmax)
4019 {
4020 	if (rxr->sc->hw.mac.type == e1000_82575) {
4021 		rxr->rx_intr_vec = 0;	/* unused */
4022 		switch (rxr->me) {
4023 		case 0:
4024 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE0;
4025 			break;
4026 		case 1:
4027 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE1;
4028 			break;
4029 		case 2:
4030 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE2;
4031 			break;
4032 		case 3:
4033 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE3;
4034 			break;
4035 		default:
4036 			panic("unsupported # of RX ring, %d\n", rxr->me);
4037 		}
4038 	} else {
4039 		int intr_vec = *intr_vec0;
4040 
4041 		rxr->rx_intr_vec = intr_vec % intr_vecmax;
4042 		rxr->rx_intr_mask = 1 << rxr->rx_intr_vec;
4043 
4044 		*intr_vec0 = intr_vec + 1;
4045 	}
4046 }
4047 
4048 static void
4049 igb_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
4050 {
4051 	struct igb_softc *sc = ifp->if_softc;
4052 
4053 	ifnet_serialize_array_enter(sc->serializes, sc->serialize_cnt, slz);
4054 }
4055 
4056 static void
4057 igb_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4058 {
4059 	struct igb_softc *sc = ifp->if_softc;
4060 
4061 	ifnet_serialize_array_exit(sc->serializes, sc->serialize_cnt, slz);
4062 }
4063 
4064 static int
4065 igb_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4066 {
4067 	struct igb_softc *sc = ifp->if_softc;
4068 
4069 	return ifnet_serialize_array_try(sc->serializes, sc->serialize_cnt,
4070 	    slz);
4071 }
4072 
4073 #ifdef INVARIANTS
4074 
4075 static void
4076 igb_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
4077     boolean_t serialized)
4078 {
4079 	struct igb_softc *sc = ifp->if_softc;
4080 
4081 	ifnet_serialize_array_assert(sc->serializes, sc->serialize_cnt,
4082 	    slz, serialized);
4083 }
4084 
4085 #endif	/* INVARIANTS */
4086 
4087 static void
4088 igb_set_intr_mask(struct igb_softc *sc)
4089 {
4090 	int i;
4091 
4092 	sc->intr_mask = sc->sts_intr_mask;
4093 	for (i = 0; i < sc->rx_ring_inuse; ++i)
4094 		sc->intr_mask |= sc->rx_rings[i].rx_intr_mask;
4095 	for (i = 0; i < sc->tx_ring_inuse; ++i)
4096 		sc->intr_mask |= sc->tx_rings[i].tx_intr_mask;
4097 	if (bootverbose) {
4098 		if_printf(&sc->arpcom.ac_if, "intr mask 0x%08x\n",
4099 		    sc->intr_mask);
4100 	}
4101 }
4102 
4103 static int
4104 igb_alloc_intr(struct igb_softc *sc)
4105 {
4106 	struct igb_intr_data *intr;
4107 	int i, intr_vec, intr_vecmax;
4108 	u_int intr_flags;
4109 
4110 	igb_alloc_msix(sc);
4111 	if (sc->intr_type == PCI_INTR_TYPE_MSIX)
4112 		goto done;
4113 
4114 	if (sc->intr_data != NULL)
4115 		kfree(sc->intr_data, M_DEVBUF);
4116 
4117 	sc->intr_cnt = 1;
4118 	sc->intr_data = kmalloc(sizeof(struct igb_intr_data), M_DEVBUF,
4119 	    M_WAITOK | M_ZERO);
4120 	intr = &sc->intr_data[0];
4121 
4122 	/*
4123 	 * Allocate MSI/legacy interrupt resource
4124 	 */
4125 	sc->intr_type = pci_alloc_1intr(sc->dev, igb_msi_enable,
4126 	    &intr->intr_rid, &intr_flags);
4127 
4128 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
4129 		int unshared;
4130 
4131 		unshared = device_getenv_int(sc->dev, "irq.unshared", 0);
4132 		if (!unshared) {
4133 			sc->flags |= IGB_FLAG_SHARED_INTR;
4134 			if (bootverbose)
4135 				device_printf(sc->dev, "IRQ shared\n");
4136 		} else {
4137 			intr_flags &= ~RF_SHAREABLE;
4138 			if (bootverbose)
4139 				device_printf(sc->dev, "IRQ unshared\n");
4140 		}
4141 	}
4142 
4143 	intr->intr_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4144 	    &intr->intr_rid, intr_flags);
4145 	if (intr->intr_res == NULL) {
4146 		device_printf(sc->dev, "Unable to allocate bus resource: "
4147 		    "interrupt\n");
4148 		return ENXIO;
4149 	}
4150 
4151 	intr->intr_serialize = &sc->main_serialize;
4152 	intr->intr_cpuid = rman_get_cpuid(intr->intr_res);
4153 	intr->intr_func = (sc->flags & IGB_FLAG_SHARED_INTR) ?
4154 	    igb_intr_shared : igb_intr;
4155 	intr->intr_funcarg = sc;
4156 	intr->intr_rate = IGB_INTR_RATE;
4157 	intr->intr_use = IGB_INTR_USE_RXTX;
4158 
4159 	for (i = 0; i < sc->tx_ring_cnt; ++i)
4160 		sc->tx_rings[i].tx_intr_cpuid = intr->intr_cpuid;
4161 
4162 	/*
4163 	 * Setup MSI/legacy interrupt mask
4164 	 */
4165 	switch (sc->hw.mac.type) {
4166 	case e1000_82575:
4167 		intr_vecmax = IGB_MAX_TXRXINT_82575;
4168 		break;
4169 
4170 	case e1000_82576:
4171 		intr_vecmax = IGB_MAX_TXRXINT_82576;
4172 		break;
4173 
4174 	case e1000_82580:
4175 		intr_vecmax = IGB_MAX_TXRXINT_82580;
4176 		break;
4177 
4178 	case e1000_i350:
4179 		intr_vecmax = IGB_MAX_TXRXINT_I350;
4180 		break;
4181 
4182 	case e1000_i354:
4183 		intr_vecmax = IGB_MAX_TXRXINT_I354;
4184 		break;
4185 
4186 	case e1000_i210:
4187 		intr_vecmax = IGB_MAX_TXRXINT_I210;
4188 		break;
4189 
4190 	case e1000_i211:
4191 		intr_vecmax = IGB_MAX_TXRXINT_I211;
4192 		break;
4193 
4194 	default:
4195 		intr_vecmax = IGB_MIN_TXRXINT;
4196 		break;
4197 	}
4198 	intr_vec = 0;
4199 	for (i = 0; i < sc->tx_ring_cnt; ++i)
4200 		igb_set_txintr_mask(&sc->tx_rings[i], &intr_vec, intr_vecmax);
4201 	for (i = 0; i < sc->rx_ring_cnt; ++i)
4202 		igb_set_rxintr_mask(&sc->rx_rings[i], &intr_vec, intr_vecmax);
4203 	sc->sts_intr_mask = E1000_EICR_OTHER;
4204 done:
4205 	igb_set_ring_inuse(sc, FALSE);
4206 	igb_set_intr_mask(sc);
4207 	return 0;
4208 }
4209 
4210 static void
4211 igb_free_intr(struct igb_softc *sc)
4212 {
4213 	if (sc->intr_data == NULL)
4214 		return;
4215 
4216 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
4217 		struct igb_intr_data *intr = &sc->intr_data[0];
4218 
4219 		KKASSERT(sc->intr_cnt == 1);
4220 		if (intr->intr_res != NULL) {
4221 			bus_release_resource(sc->dev, SYS_RES_IRQ,
4222 			    intr->intr_rid, intr->intr_res);
4223 		}
4224 		if (sc->intr_type == PCI_INTR_TYPE_MSI)
4225 			pci_release_msi(sc->dev);
4226 
4227 		kfree(sc->intr_data, M_DEVBUF);
4228 	} else {
4229 		igb_free_msix(sc, TRUE);
4230 	}
4231 }
4232 
4233 static void
4234 igb_teardown_intr(struct igb_softc *sc, int intr_cnt)
4235 {
4236 	int i;
4237 
4238 	if (sc->intr_data == NULL)
4239 		return;
4240 
4241 	for (i = 0; i < intr_cnt; ++i) {
4242 		struct igb_intr_data *intr = &sc->intr_data[i];
4243 
4244 		bus_teardown_intr(sc->dev, intr->intr_res, intr->intr_hand);
4245 	}
4246 }
4247 
4248 static void
4249 igb_alloc_msix(struct igb_softc *sc)
4250 {
4251 	int msix_enable, msix_cnt, msix_cnt2, alloc_cnt;
4252 	int i, x, error;
4253 	int offset, offset_def, agg_rxtx, ring_max;
4254 	struct igb_intr_data *intr;
4255 	boolean_t aggregate, setup = FALSE;
4256 
4257 	/*
4258 	 * Don't enable MSI-X on 82575, see:
4259 	 * 82575 specification update errata #25
4260 	 */
4261 	if (sc->hw.mac.type == e1000_82575)
4262 		return;
4263 
4264 	/* Don't enable MSI-X on VF */
4265 	if (sc->vf_ifp)
4266 		return;
4267 
4268 	msix_enable = device_getenv_int(sc->dev, "msix.enable",
4269 	    igb_msix_enable);
4270 	if (!msix_enable)
4271 		return;
4272 
4273 	msix_cnt = pci_msix_count(sc->dev);
4274 #ifdef IGB_MSIX_DEBUG
4275 	msix_cnt = device_getenv_int(sc->dev, "msix.count", msix_cnt);
4276 #endif
4277 	if (msix_cnt <= 1) {
4278 		/* One MSI-X model does not make sense */
4279 		return;
4280 	}
4281 
4282 	i = 0;
4283 	while ((1 << (i + 1)) <= msix_cnt)
4284 		++i;
4285 	msix_cnt2 = 1 << i;
4286 
4287 	if (bootverbose) {
4288 		device_printf(sc->dev, "MSI-X count %d/%d\n",
4289 		    msix_cnt2, msix_cnt);
4290 	}
4291 
4292 	KKASSERT(msix_cnt2 <= msix_cnt);
4293 	if (msix_cnt == msix_cnt2) {
4294 		/* We need at least one MSI-X for link status */
4295 		msix_cnt2 >>= 1;
4296 		if (msix_cnt2 <= 1) {
4297 			/* One MSI-X for RX/TX does not make sense */
4298 			device_printf(sc->dev, "not enough MSI-X for TX/RX, "
4299 			    "MSI-X count %d/%d\n", msix_cnt2, msix_cnt);
4300 			return;
4301 		}
4302 		KKASSERT(msix_cnt > msix_cnt2);
4303 
4304 		if (bootverbose) {
4305 			device_printf(sc->dev, "MSI-X count fixup %d/%d\n",
4306 			    msix_cnt2, msix_cnt);
4307 		}
4308 	}
4309 
4310 	sc->rx_ring_msix = sc->rx_ring_cnt;
4311 	if (sc->rx_ring_msix > msix_cnt2)
4312 		sc->rx_ring_msix = msix_cnt2;
4313 
4314 	sc->tx_ring_msix = sc->tx_ring_cnt;
4315 	if (sc->tx_ring_msix > msix_cnt2)
4316 		sc->tx_ring_msix = msix_cnt2;
4317 
4318 	ring_max = sc->rx_ring_msix;
4319 	if (ring_max < sc->tx_ring_msix)
4320 		ring_max = sc->tx_ring_msix;
4321 
4322 	/* Allow user to force independent RX/TX MSI-X handling */
4323 	agg_rxtx = device_getenv_int(sc->dev, "msix.agg_rxtx",
4324 	    igb_msix_agg_rxtx);
4325 
4326 	if (!agg_rxtx && msix_cnt >= sc->tx_ring_msix + sc->rx_ring_msix + 1) {
4327 		/*
4328 		 * Independent TX/RX MSI-X
4329 		 */
4330 		aggregate = FALSE;
4331 		if (bootverbose)
4332 			device_printf(sc->dev, "independent TX/RX MSI-X\n");
4333 		alloc_cnt = sc->tx_ring_msix + sc->rx_ring_msix;
4334 	} else {
4335 		/*
4336 		 * Aggregate TX/RX MSI-X
4337 		 */
4338 		aggregate = TRUE;
4339 		if (bootverbose)
4340 			device_printf(sc->dev, "aggregate TX/RX MSI-X\n");
4341 		alloc_cnt = msix_cnt2;
4342 		if (alloc_cnt > ring_max)
4343 			alloc_cnt = ring_max;
4344 		KKASSERT(alloc_cnt >= sc->rx_ring_msix &&
4345 		    alloc_cnt >= sc->tx_ring_msix);
4346 	}
4347 	++alloc_cnt;	/* For link status */
4348 
4349 	if (bootverbose) {
4350 		device_printf(sc->dev, "MSI-X alloc %d, "
4351 		    "RX ring %d, TX ring %d\n", alloc_cnt,
4352 		    sc->rx_ring_msix, sc->tx_ring_msix);
4353 	}
4354 
4355 	sc->msix_mem_rid = PCIR_BAR(IGB_MSIX_BAR);
4356 	sc->msix_mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4357 	    &sc->msix_mem_rid, RF_ACTIVE);
4358 	if (sc->msix_mem_res == NULL) {
4359 		sc->msix_mem_rid = PCIR_BAR(IGB_MSIX_BAR_ALT);
4360 		sc->msix_mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4361 		    &sc->msix_mem_rid, RF_ACTIVE);
4362 		if (sc->msix_mem_res == NULL) {
4363 			device_printf(sc->dev, "Unable to map MSI-X table\n");
4364 			return;
4365 		}
4366 	}
4367 
4368 	sc->intr_cnt = alloc_cnt;
4369 	sc->intr_data = kmalloc(sizeof(struct igb_intr_data) * sc->intr_cnt,
4370 	    M_DEVBUF, M_WAITOK | M_ZERO);
4371 	for (x = 0; x < sc->intr_cnt; ++x) {
4372 		intr = &sc->intr_data[x];
4373 		intr->intr_rid = -1;
4374 		intr->intr_rate = IGB_INTR_RATE;
4375 	}
4376 
4377 	x = 0;
4378 	if (!aggregate) {
4379 		/*
4380 		 * RX rings
4381 		 */
4382 		if (sc->rx_ring_msix == ncpus2) {
4383 			offset = 0;
4384 		} else {
4385 			offset_def = (sc->rx_ring_msix *
4386 			    device_get_unit(sc->dev)) % ncpus2;
4387 
4388 			offset = device_getenv_int(sc->dev,
4389 			    "msix.rxoff", offset_def);
4390 			if (offset >= ncpus2 ||
4391 			    offset % sc->rx_ring_msix != 0) {
4392 				device_printf(sc->dev,
4393 				    "invalid msix.rxoff %d, use %d\n",
4394 				    offset, offset_def);
4395 				offset = offset_def;
4396 			}
4397 		}
4398 		igb_msix_rx_conf(sc, 0, &x, offset);
4399 
4400 		/*
4401 		 * TX rings
4402 		 */
4403 		if (sc->tx_ring_msix == ncpus2) {
4404 			offset = 0;
4405 		} else {
4406 			offset_def = (sc->tx_ring_msix *
4407 			    device_get_unit(sc->dev)) % ncpus2;
4408 
4409 			offset = device_getenv_int(sc->dev,
4410 			    "msix.txoff", offset_def);
4411 			if (offset >= ncpus2 ||
4412 			    offset % sc->tx_ring_msix != 0) {
4413 				device_printf(sc->dev,
4414 				    "invalid msix.txoff %d, use %d\n",
4415 				    offset, offset_def);
4416 				offset = offset_def;
4417 			}
4418 		}
4419 		igb_msix_tx_conf(sc, 0, &x, offset);
4420 	} else {
4421 		int ring_agg;
4422 
4423 		ring_agg = sc->rx_ring_msix;
4424 		if (ring_agg > sc->tx_ring_msix)
4425 			ring_agg = sc->tx_ring_msix;
4426 
4427 		if (ring_max == ncpus2) {
4428 			offset = 0;
4429 		} else {
4430 			offset_def = (ring_max * device_get_unit(sc->dev)) %
4431 			    ncpus2;
4432 
4433 			offset = device_getenv_int(sc->dev, "msix.off",
4434 			    offset_def);
4435 			if (offset >= ncpus2 || offset % ring_max != 0) {
4436 				device_printf(sc->dev,
4437 				    "invalid msix.off %d, use %d\n",
4438 				    offset, offset_def);
4439 				offset = offset_def;
4440 			}
4441 		}
4442 
4443 		for (i = 0; i < ring_agg; ++i) {
4444 			struct igb_tx_ring *txr = &sc->tx_rings[i];
4445 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
4446 
4447 			KKASSERT(x < sc->intr_cnt);
4448 			rxr->rx_intr_vec = x;
4449 			rxr->rx_intr_mask = 1 << rxr->rx_intr_vec;
4450 			rxr->rx_txr = txr;
4451 			txr->tx_intr_vec = rxr->rx_intr_vec;
4452 			txr->tx_intr_mask = rxr->rx_intr_mask;
4453 
4454 			intr = &sc->intr_data[x++];
4455 
4456 			intr->intr_serialize = &rxr->rx_serialize;
4457 			intr->intr_func = igb_msix_rxtx;
4458 			intr->intr_funcarg = rxr;
4459 			intr->intr_use = IGB_INTR_USE_RXTX;
4460 
4461 			intr->intr_cpuid = i + offset;
4462 			KKASSERT(intr->intr_cpuid < ncpus2);
4463 			txr->tx_intr_cpuid = intr->intr_cpuid;
4464 
4465 			ksnprintf(intr->intr_desc0, sizeof(intr->intr_desc0),
4466 			    "%s rxtx%d", device_get_nameunit(sc->dev), i);
4467 			intr->intr_desc = intr->intr_desc0;
4468 		}
4469 
4470 		if (ring_agg != ring_max) {
4471 			if (ring_max == sc->tx_ring_msix)
4472 				igb_msix_tx_conf(sc, i, &x, offset);
4473 			else
4474 				igb_msix_rx_conf(sc, i, &x, offset);
4475 		}
4476 	}
4477 
4478 	/*
4479 	 * Link status
4480 	 */
4481 	KKASSERT(x < sc->intr_cnt);
4482 	sc->sts_msix_vec = x;
4483 	sc->sts_intr_mask = 1 << sc->sts_msix_vec;
4484 
4485 	intr = &sc->intr_data[x++];
4486 
4487 	intr->intr_serialize = &sc->main_serialize;
4488 	intr->intr_func = igb_msix_status;
4489 	intr->intr_funcarg = sc;
4490 	intr->intr_cpuid = 0;
4491 	intr->intr_use = IGB_INTR_USE_STATUS;
4492 
4493 	ksnprintf(intr->intr_desc0, sizeof(intr->intr_desc0), "%s sts",
4494 	    device_get_nameunit(sc->dev));
4495 	intr->intr_desc = intr->intr_desc0;
4496 
4497 	KKASSERT(x == sc->intr_cnt);
4498 
4499 	error = pci_setup_msix(sc->dev);
4500 	if (error) {
4501 		device_printf(sc->dev, "Setup MSI-X failed\n");
4502 		goto back;
4503 	}
4504 	setup = TRUE;
4505 
4506 	for (i = 0; i < sc->intr_cnt; ++i) {
4507 		intr = &sc->intr_data[i];
4508 
4509 		error = pci_alloc_msix_vector(sc->dev, i, &intr->intr_rid,
4510 		    intr->intr_cpuid);
4511 		if (error) {
4512 			device_printf(sc->dev,
4513 			    "Unable to allocate MSI-X %d on cpu%d\n", i,
4514 			    intr->intr_cpuid);
4515 			goto back;
4516 		}
4517 
4518 		intr->intr_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4519 		    &intr->intr_rid, RF_ACTIVE);
4520 		if (intr->intr_res == NULL) {
4521 			device_printf(sc->dev,
4522 			    "Unable to allocate MSI-X %d resource\n", i);
4523 			error = ENOMEM;
4524 			goto back;
4525 		}
4526 	}
4527 
4528 	pci_enable_msix(sc->dev);
4529 	sc->intr_type = PCI_INTR_TYPE_MSIX;
4530 back:
4531 	if (error)
4532 		igb_free_msix(sc, setup);
4533 }
4534 
4535 static void
4536 igb_free_msix(struct igb_softc *sc, boolean_t setup)
4537 {
4538 	int i;
4539 
4540 	KKASSERT(sc->intr_cnt > 1);
4541 
4542 	for (i = 0; i < sc->intr_cnt; ++i) {
4543 		struct igb_intr_data *intr = &sc->intr_data[i];
4544 
4545 		if (intr->intr_res != NULL) {
4546 			bus_release_resource(sc->dev, SYS_RES_IRQ,
4547 			    intr->intr_rid, intr->intr_res);
4548 		}
4549 		if (intr->intr_rid >= 0)
4550 			pci_release_msix_vector(sc->dev, intr->intr_rid);
4551 	}
4552 	if (setup)
4553 		pci_teardown_msix(sc->dev);
4554 
4555 	sc->intr_cnt = 0;
4556 	kfree(sc->intr_data, M_DEVBUF);
4557 	sc->intr_data = NULL;
4558 }
4559 
4560 static void
4561 igb_msix_rx(void *arg)
4562 {
4563 	struct igb_rx_ring *rxr = arg;
4564 
4565 	ASSERT_SERIALIZED(&rxr->rx_serialize);
4566 	igb_rxeof(rxr, -1);
4567 
4568 	E1000_WRITE_REG(&rxr->sc->hw, E1000_EIMS, rxr->rx_intr_mask);
4569 }
4570 
4571 static void
4572 igb_msix_tx(void *arg)
4573 {
4574 	struct igb_tx_ring *txr = arg;
4575 
4576 	ASSERT_SERIALIZED(&txr->tx_serialize);
4577 
4578 	igb_txeof(txr, *(txr->tx_hdr));
4579 	if (!ifsq_is_empty(txr->ifsq))
4580 		ifsq_devstart(txr->ifsq);
4581 
4582 	E1000_WRITE_REG(&txr->sc->hw, E1000_EIMS, txr->tx_intr_mask);
4583 }
4584 
4585 static void
4586 igb_msix_status(void *arg)
4587 {
4588 	struct igb_softc *sc = arg;
4589 	uint32_t icr;
4590 
4591 	ASSERT_SERIALIZED(&sc->main_serialize);
4592 
4593 	icr = E1000_READ_REG(&sc->hw, E1000_ICR);
4594 	if (icr & E1000_ICR_LSC) {
4595 		sc->hw.mac.get_link_status = 1;
4596 		igb_update_link_status(sc);
4597 	}
4598 
4599 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->sts_intr_mask);
4600 }
4601 
4602 static void
4603 igb_set_ring_inuse(struct igb_softc *sc, boolean_t polling)
4604 {
4605 	sc->rx_ring_inuse = igb_get_rxring_inuse(sc, polling);
4606 	sc->tx_ring_inuse = igb_get_txring_inuse(sc, polling);
4607 	if (bootverbose) {
4608 		if_printf(&sc->arpcom.ac_if, "RX rings %d/%d, TX rings %d/%d\n",
4609 		    sc->rx_ring_inuse, sc->rx_ring_cnt,
4610 		    sc->tx_ring_inuse, sc->tx_ring_cnt);
4611 	}
4612 }
4613 
4614 static int
4615 igb_get_rxring_inuse(const struct igb_softc *sc, boolean_t polling)
4616 {
4617 	if (!IGB_ENABLE_HWRSS(sc))
4618 		return 1;
4619 
4620 	if (polling)
4621 		return sc->rx_ring_cnt;
4622 	else if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4623 		return IGB_MIN_RING_RSS;
4624 	else
4625 		return sc->rx_ring_msix;
4626 }
4627 
4628 static int
4629 igb_get_txring_inuse(const struct igb_softc *sc, boolean_t polling)
4630 {
4631 	if (!IGB_ENABLE_HWTSS(sc))
4632 		return 1;
4633 
4634 	if (polling)
4635 		return sc->tx_ring_cnt;
4636 	else if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4637 		return IGB_MIN_RING;
4638 	else
4639 		return sc->tx_ring_msix;
4640 }
4641 
4642 static int
4643 igb_tso_pullup(struct igb_tx_ring *txr, struct mbuf **mp)
4644 {
4645 	int hoff, iphlen, thoff;
4646 	struct mbuf *m;
4647 
4648 	m = *mp;
4649 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4650 
4651 	iphlen = m->m_pkthdr.csum_iphlen;
4652 	thoff = m->m_pkthdr.csum_thlen;
4653 	hoff = m->m_pkthdr.csum_lhlen;
4654 
4655 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4656 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4657 	KASSERT(hoff > 0, ("invalid ether hlen"));
4658 
4659 	if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
4660 		m = m_pullup(m, hoff + iphlen + thoff);
4661 		if (m == NULL) {
4662 			*mp = NULL;
4663 			return ENOBUFS;
4664 		}
4665 		*mp = m;
4666 	}
4667 	if (txr->tx_flags & IGB_TXFLAG_TSO_IPLEN0) {
4668 		struct ip *ip;
4669 
4670 		ip = mtodoff(m, struct ip *, hoff);
4671 		ip->ip_len = 0;
4672 	}
4673 
4674 	return 0;
4675 }
4676 
4677 static void
4678 igb_tso_ctx(struct igb_tx_ring *txr, struct mbuf *m, uint32_t *hlen)
4679 {
4680 	struct e1000_adv_tx_context_desc *TXD;
4681 	uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
4682 	int hoff, ctxd, iphlen, thoff;
4683 
4684 	iphlen = m->m_pkthdr.csum_iphlen;
4685 	thoff = m->m_pkthdr.csum_thlen;
4686 	hoff = m->m_pkthdr.csum_lhlen;
4687 
4688 	vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
4689 
4690 	ctxd = txr->next_avail_desc;
4691 	TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
4692 
4693 	if (m->m_flags & M_VLANTAG) {
4694 		uint16_t vlantag;
4695 
4696 		vlantag = htole16(m->m_pkthdr.ether_vlantag);
4697 		vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
4698 	}
4699 
4700 	vlan_macip_lens |= (hoff << E1000_ADVTXD_MACLEN_SHIFT);
4701 	vlan_macip_lens |= iphlen;
4702 
4703 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4704 	type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
4705 	type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
4706 
4707 	mss_l4len_idx |= (m->m_pkthdr.tso_segsz << E1000_ADVTXD_MSS_SHIFT);
4708 	mss_l4len_idx |= (thoff << E1000_ADVTXD_L4LEN_SHIFT);
4709 
4710 	/*
4711 	 * 82575 needs the TX context index added; the queue
4712 	 * index is used as TX context index here.
4713 	 */
4714 	if (txr->sc->hw.mac.type == e1000_82575)
4715 		mss_l4len_idx |= txr->me << 4;
4716 
4717 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
4718 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
4719 	TXD->seqnum_seed = htole32(0);
4720 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
4721 
4722 	/* We've consumed the first desc, adjust counters */
4723 	if (++ctxd == txr->num_tx_desc)
4724 		ctxd = 0;
4725 	txr->next_avail_desc = ctxd;
4726 	--txr->tx_avail;
4727 
4728 	*hlen = hoff + iphlen + thoff;
4729 }
4730 
4731 static void
4732 igb_setup_serialize(struct igb_softc *sc)
4733 {
4734 	int i = 0, j;
4735 
4736 	/* Main + RX + TX */
4737 	sc->serialize_cnt = 1 + sc->rx_ring_cnt + sc->tx_ring_cnt;
4738 	sc->serializes =
4739 	    kmalloc(sc->serialize_cnt * sizeof(struct lwkt_serialize *),
4740 	        M_DEVBUF, M_WAITOK | M_ZERO);
4741 
4742 	/*
4743 	 * Setup serializes
4744 	 *
4745 	 * NOTE: Order is critical
4746 	 */
4747 
4748 	KKASSERT(i < sc->serialize_cnt);
4749 	sc->serializes[i++] = &sc->main_serialize;
4750 
4751 	for (j = 0; j < sc->rx_ring_cnt; ++j) {
4752 		KKASSERT(i < sc->serialize_cnt);
4753 		sc->serializes[i++] = &sc->rx_rings[j].rx_serialize;
4754 	}
4755 
4756 	for (j = 0; j < sc->tx_ring_cnt; ++j) {
4757 		KKASSERT(i < sc->serialize_cnt);
4758 		sc->serializes[i++] = &sc->tx_rings[j].tx_serialize;
4759 	}
4760 
4761 	KKASSERT(i == sc->serialize_cnt);
4762 }
4763 
4764 static void
4765 igb_msix_rx_conf(struct igb_softc *sc, int i, int *x0, int offset)
4766 {
4767 	int x = *x0;
4768 
4769 	for (; i < sc->rx_ring_msix; ++i) {
4770 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
4771 		struct igb_intr_data *intr;
4772 
4773 		KKASSERT(x < sc->intr_cnt);
4774 		rxr->rx_intr_vec = x;
4775 		rxr->rx_intr_mask = 1 << rxr->rx_intr_vec;
4776 
4777 		intr = &sc->intr_data[x++];
4778 
4779 		intr->intr_serialize = &rxr->rx_serialize;
4780 		intr->intr_func = igb_msix_rx;
4781 		intr->intr_funcarg = rxr;
4782 		intr->intr_rate = IGB_MSIX_RX_RATE;
4783 		intr->intr_use = IGB_INTR_USE_RX;
4784 
4785 		intr->intr_cpuid = i + offset;
4786 		KKASSERT(intr->intr_cpuid < ncpus2);
4787 
4788 		ksnprintf(intr->intr_desc0, sizeof(intr->intr_desc0), "%s rx%d",
4789 		    device_get_nameunit(sc->dev), i);
4790 		intr->intr_desc = intr->intr_desc0;
4791 	}
4792 	*x0 = x;
4793 }
4794 
4795 static void
4796 igb_msix_tx_conf(struct igb_softc *sc, int i, int *x0, int offset)
4797 {
4798 	int x = *x0;
4799 
4800 	for (; i < sc->tx_ring_msix; ++i) {
4801 		struct igb_tx_ring *txr = &sc->tx_rings[i];
4802 		struct igb_intr_data *intr;
4803 
4804 		KKASSERT(x < sc->intr_cnt);
4805 		txr->tx_intr_vec = x;
4806 		txr->tx_intr_mask = 1 << txr->tx_intr_vec;
4807 
4808 		intr = &sc->intr_data[x++];
4809 
4810 		intr->intr_serialize = &txr->tx_serialize;
4811 		intr->intr_func = igb_msix_tx;
4812 		intr->intr_funcarg = txr;
4813 		intr->intr_rate = IGB_MSIX_TX_RATE;
4814 		intr->intr_use = IGB_INTR_USE_TX;
4815 
4816 		intr->intr_cpuid = i + offset;
4817 		KKASSERT(intr->intr_cpuid < ncpus2);
4818 		txr->tx_intr_cpuid = intr->intr_cpuid;
4819 
4820 		ksnprintf(intr->intr_desc0, sizeof(intr->intr_desc0), "%s tx%d",
4821 		    device_get_nameunit(sc->dev), i);
4822 		intr->intr_desc = intr->intr_desc0;
4823 	}
4824 	*x0 = x;
4825 }
4826 
4827 static void
4828 igb_msix_rxtx(void *arg)
4829 {
4830 	struct igb_rx_ring *rxr = arg;
4831 	struct igb_tx_ring *txr;
4832 	int hdr;
4833 
4834 	ASSERT_SERIALIZED(&rxr->rx_serialize);
4835 
4836 	igb_rxeof(rxr, -1);
4837 
4838 	/*
4839 	 * NOTE:
4840 	 * Since next_to_clean is only changed by igb_txeof(),
4841 	 * which is called only in interrupt handler, the
4842 	 * check w/o holding tx serializer is MPSAFE.
4843 	 */
4844 	txr = rxr->rx_txr;
4845 	hdr = *(txr->tx_hdr);
4846 	if (hdr != txr->next_to_clean) {
4847 		lwkt_serialize_enter(&txr->tx_serialize);
4848 		igb_txeof(txr, hdr);
4849 		if (!ifsq_is_empty(txr->ifsq))
4850 			ifsq_devstart(txr->ifsq);
4851 		lwkt_serialize_exit(&txr->tx_serialize);
4852 	}
4853 
4854 	E1000_WRITE_REG(&rxr->sc->hw, E1000_EIMS, rxr->rx_intr_mask);
4855 }
4856 
4857 static void
4858 igb_set_timer_cpuid(struct igb_softc *sc, boolean_t polling)
4859 {
4860 	if (polling || sc->intr_type == PCI_INTR_TYPE_MSIX)
4861 		sc->timer_cpuid = 0; /* XXX fixed */
4862 	else
4863 		sc->timer_cpuid = rman_get_cpuid(sc->intr_data[0].intr_res);
4864 }
4865 
4866 static void
4867 igb_init_dmac(struct igb_softc *sc, uint32_t pba)
4868 {
4869 	struct e1000_hw *hw = &sc->hw;
4870 	uint32_t reg;
4871 
4872 	if (hw->mac.type == e1000_i211)
4873 		return;
4874 
4875 	if (hw->mac.type > e1000_82580) {
4876 		uint32_t dmac;
4877 		uint16_t hwm;
4878 
4879 		if (sc->dma_coalesce == 0) { /* Disabling it */
4880 			reg = ~E1000_DMACR_DMAC_EN;
4881 			E1000_WRITE_REG(hw, E1000_DMACR, reg);
4882 			return;
4883 		} else {
4884 			if_printf(&sc->arpcom.ac_if,
4885 			    "DMA Coalescing enabled\n");
4886 		}
4887 
4888 		/* Set starting threshold */
4889 		E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
4890 
4891 		hwm = 64 * pba - sc->max_frame_size / 16;
4892 		if (hwm < 64 * (pba - 6))
4893 			hwm = 64 * (pba - 6);
4894 		reg = E1000_READ_REG(hw, E1000_FCRTC);
4895 		reg &= ~E1000_FCRTC_RTH_COAL_MASK;
4896 		reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
4897 		    & E1000_FCRTC_RTH_COAL_MASK);
4898 		E1000_WRITE_REG(hw, E1000_FCRTC, reg);
4899 
4900 		dmac = pba - sc->max_frame_size / 512;
4901 		if (dmac < pba - 10)
4902 			dmac = pba - 10;
4903 		reg = E1000_READ_REG(hw, E1000_DMACR);
4904 		reg &= ~E1000_DMACR_DMACTHR_MASK;
4905 		reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
4906 		    & E1000_DMACR_DMACTHR_MASK);
4907 
4908 		/* transition to L0x or L1 if available..*/
4909 		reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
4910 
4911 		/*
4912 		 * Check if status is 2.5Gb backplane connection
4913 		 * before configuration of watchdog timer, which
4914 		 * is in msec values in 12.8usec intervals watchdog
4915 		 * timer = msec values in 32usec intervals for non
4916 		 * 2.5Gb connection.
4917 		 */
4918 		if (hw->mac.type == e1000_i354) {
4919 			int status = E1000_READ_REG(hw, E1000_STATUS);
4920 
4921 			if ((status & E1000_STATUS_2P5_SKU) &&
4922 			    !(status & E1000_STATUS_2P5_SKU_OVER))
4923 				reg |= ((sc->dma_coalesce * 5) >> 6);
4924 			else
4925 				reg |= (sc->dma_coalesce >> 5);
4926 		} else {
4927 			reg |= (sc->dma_coalesce >> 5);
4928 		}
4929 
4930 		E1000_WRITE_REG(hw, E1000_DMACR, reg);
4931 
4932 		E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
4933 
4934 		/* Set the interval before transition */
4935 		reg = E1000_READ_REG(hw, E1000_DMCTLX);
4936 		if (hw->mac.type == e1000_i350)
4937 			reg |= IGB_DMCTLX_DCFLUSH_DIS;
4938 		/*
4939 		 * In 2.5Gb connection, TTLX unit is 0.4 usec, which
4940 		 * is 0x4*2 = 0xA.  But delay is still 4 usec.
4941 		 */
4942 		if (hw->mac.type == e1000_i354) {
4943 			int status = E1000_READ_REG(hw, E1000_STATUS);
4944 
4945 			if ((status & E1000_STATUS_2P5_SKU) &&
4946 			    !(status & E1000_STATUS_2P5_SKU_OVER))
4947 				reg |= 0xA;
4948 			else
4949 				reg |= 0x4;
4950 		} else {
4951 			reg |= 0x4;
4952 		}
4953 		E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
4954 
4955 		/* Free space in tx packet buffer to wake from DMA coal */
4956 		E1000_WRITE_REG(hw, E1000_DMCTXTH,
4957 		    (IGB_TXPBSIZE - (2 * sc->max_frame_size)) >> 6);
4958 
4959 		/* Make low power state decision controlled by DMA coal */
4960 		reg = E1000_READ_REG(hw, E1000_PCIEMISC);
4961 		reg &= ~E1000_PCIEMISC_LX_DECISION;
4962 		E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
4963 	} else if (hw->mac.type == e1000_82580) {
4964 		reg = E1000_READ_REG(hw, E1000_PCIEMISC);
4965 		E1000_WRITE_REG(hw, E1000_PCIEMISC,
4966 		    reg & ~E1000_PCIEMISC_LX_DECISION);
4967 		E1000_WRITE_REG(hw, E1000_DMACR, 0);
4968 	}
4969 }
4970