xref: /dragonfly/sys/dev/netif/igb/if_igb.c (revision 77b0c609)
1 /*
2  * Copyright (c) 2001-2011, Intel Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  *  1. Redistributions of source code must retain the above copyright notice,
9  *     this list of conditions and the following disclaimer.
10  *
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  3. Neither the name of the Intel Corporation nor the names of its
16  *     contributors may be used to endorse or promote products derived from
17  *     this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include "opt_ifpoll.h"
33 #include "opt_igb.h"
34 
35 #include <sys/param.h>
36 #include <sys/bus.h>
37 #include <sys/endian.h>
38 #include <sys/interrupt.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/proc.h>
43 #include <sys/rman.h>
44 #include <sys/serialize.h>
45 #include <sys/serialize2.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50 
51 #include <net/bpf.h>
52 #include <net/ethernet.h>
53 #include <net/if.h>
54 #include <net/if_arp.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/ifq_var.h>
58 #include <net/toeplitz.h>
59 #include <net/toeplitz2.h>
60 #include <net/vlan/if_vlan_var.h>
61 #include <net/vlan/if_vlan_ether.h>
62 #include <net/if_poll.h>
63 
64 #include <netinet/in_systm.h>
65 #include <netinet/in.h>
66 #include <netinet/ip.h>
67 #include <netinet/tcp.h>
68 #include <netinet/udp.h>
69 
70 #include <bus/pci/pcivar.h>
71 #include <bus/pci/pcireg.h>
72 
73 #include <dev/netif/ig_hal/e1000_api.h>
74 #include <dev/netif/ig_hal/e1000_82575.h>
75 #include <dev/netif/igb/if_igb.h>
76 
77 #ifdef IGB_RSS_DEBUG
78 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...) \
79 do { \
80 	if (sc->rss_debug >= lvl) \
81 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
82 } while (0)
83 #else	/* !IGB_RSS_DEBUG */
84 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
85 #endif	/* IGB_RSS_DEBUG */
86 
87 #define IGB_NAME	"Intel(R) PRO/1000 "
88 #define IGB_DEVICE(id)	\
89 	{ IGB_VENDOR_ID, E1000_DEV_ID_##id, IGB_NAME #id }
90 #define IGB_DEVICE_NULL	{ 0, 0, NULL }
91 
92 static struct igb_device {
93 	uint16_t	vid;
94 	uint16_t	did;
95 	const char	*desc;
96 } igb_devices[] = {
97 	IGB_DEVICE(82575EB_COPPER),
98 	IGB_DEVICE(82575EB_FIBER_SERDES),
99 	IGB_DEVICE(82575GB_QUAD_COPPER),
100 	IGB_DEVICE(82576),
101 	IGB_DEVICE(82576_NS),
102 	IGB_DEVICE(82576_NS_SERDES),
103 	IGB_DEVICE(82576_FIBER),
104 	IGB_DEVICE(82576_SERDES),
105 	IGB_DEVICE(82576_SERDES_QUAD),
106 	IGB_DEVICE(82576_QUAD_COPPER),
107 	IGB_DEVICE(82576_QUAD_COPPER_ET2),
108 	IGB_DEVICE(82576_VF),
109 	IGB_DEVICE(82580_COPPER),
110 	IGB_DEVICE(82580_FIBER),
111 	IGB_DEVICE(82580_SERDES),
112 	IGB_DEVICE(82580_SGMII),
113 	IGB_DEVICE(82580_COPPER_DUAL),
114 	IGB_DEVICE(82580_QUAD_FIBER),
115 	IGB_DEVICE(DH89XXCC_SERDES),
116 	IGB_DEVICE(DH89XXCC_SGMII),
117 	IGB_DEVICE(DH89XXCC_SFP),
118 	IGB_DEVICE(DH89XXCC_BACKPLANE),
119 	IGB_DEVICE(I350_COPPER),
120 	IGB_DEVICE(I350_FIBER),
121 	IGB_DEVICE(I350_SERDES),
122 	IGB_DEVICE(I350_SGMII),
123 	IGB_DEVICE(I350_VF),
124 
125 	/* required last entry */
126 	IGB_DEVICE_NULL
127 };
128 
129 static int	igb_probe(device_t);
130 static int	igb_attach(device_t);
131 static int	igb_detach(device_t);
132 static int	igb_shutdown(device_t);
133 static int	igb_suspend(device_t);
134 static int	igb_resume(device_t);
135 
136 static boolean_t igb_is_valid_ether_addr(const uint8_t *);
137 static void	igb_setup_ifp(struct igb_softc *);
138 static boolean_t igb_txcsum_ctx(struct igb_tx_ring *, struct mbuf *);
139 static int	igb_tso_pullup(struct igb_tx_ring *, struct mbuf **);
140 static void	igb_tso_ctx(struct igb_tx_ring *, struct mbuf *, uint32_t *);
141 static void	igb_add_sysctl(struct igb_softc *);
142 static int	igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
143 static int	igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS);
144 static int	igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
145 static void	igb_set_ring_inuse(struct igb_softc *, boolean_t);
146 #ifdef IFPOLL_ENABLE
147 static int	igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
148 static int	igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
149 #endif
150 
151 static void	igb_vf_init_stats(struct igb_softc *);
152 static void	igb_reset(struct igb_softc *);
153 static void	igb_update_stats_counters(struct igb_softc *);
154 static void	igb_update_vf_stats_counters(struct igb_softc *);
155 static void	igb_update_link_status(struct igb_softc *);
156 static void	igb_init_tx_unit(struct igb_softc *);
157 static void	igb_init_rx_unit(struct igb_softc *);
158 
159 static void	igb_set_vlan(struct igb_softc *);
160 static void	igb_set_multi(struct igb_softc *);
161 static void	igb_set_promisc(struct igb_softc *);
162 static void	igb_disable_promisc(struct igb_softc *);
163 
164 static int	igb_alloc_rings(struct igb_softc *);
165 static void	igb_free_rings(struct igb_softc *);
166 static int	igb_create_tx_ring(struct igb_tx_ring *);
167 static int	igb_create_rx_ring(struct igb_rx_ring *);
168 static void	igb_free_tx_ring(struct igb_tx_ring *);
169 static void	igb_free_rx_ring(struct igb_rx_ring *);
170 static void	igb_destroy_tx_ring(struct igb_tx_ring *, int);
171 static void	igb_destroy_rx_ring(struct igb_rx_ring *, int);
172 static void	igb_init_tx_ring(struct igb_tx_ring *);
173 static int	igb_init_rx_ring(struct igb_rx_ring *);
174 static int	igb_newbuf(struct igb_rx_ring *, int, boolean_t);
175 static int	igb_encap(struct igb_tx_ring *, struct mbuf **);
176 
177 static void	igb_stop(struct igb_softc *);
178 static void	igb_init(void *);
179 static int	igb_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
180 static void	igb_media_status(struct ifnet *, struct ifmediareq *);
181 static int	igb_media_change(struct ifnet *);
182 static void	igb_timer(void *);
183 static void	igb_watchdog(struct ifnet *);
184 static void	igb_start(struct ifnet *);
185 #ifdef IFPOLL_ENABLE
186 static void	igb_npoll(struct ifnet *, struct ifpoll_info *);
187 static void	igb_npoll_rx(struct ifnet *, void *, int);
188 static void	igb_npoll_tx(struct ifnet *, void *, int);
189 static void	igb_npoll_status(struct ifnet *);
190 #endif
191 static void	igb_serialize(struct ifnet *, enum ifnet_serialize);
192 static void	igb_deserialize(struct ifnet *, enum ifnet_serialize);
193 static int	igb_tryserialize(struct ifnet *, enum ifnet_serialize);
194 #ifdef INVARIANTS
195 static void	igb_serialize_assert(struct ifnet *, enum ifnet_serialize,
196 		    boolean_t);
197 #endif
198 
199 static void	igb_intr(void *);
200 static void	igb_intr_shared(void *);
201 static void	igb_rxeof(struct igb_rx_ring *, int);
202 static void	igb_txeof(struct igb_tx_ring *);
203 static void	igb_set_eitr(struct igb_softc *, int, int);
204 static void	igb_enable_intr(struct igb_softc *);
205 static void	igb_disable_intr(struct igb_softc *);
206 static void	igb_init_unshared_intr(struct igb_softc *);
207 static void	igb_init_intr(struct igb_softc *);
208 static int	igb_setup_intr(struct igb_softc *);
209 static void	igb_set_txintr_mask(struct igb_tx_ring *, int *, int);
210 static void	igb_set_rxintr_mask(struct igb_rx_ring *, int *, int);
211 static void	igb_set_intr_mask(struct igb_softc *);
212 static int	igb_alloc_intr(struct igb_softc *);
213 static void	igb_free_intr(struct igb_softc *);
214 static void	igb_teardown_intr(struct igb_softc *);
215 static void	igb_msix_try_alloc(struct igb_softc *);
216 static void	igb_msix_free(struct igb_softc *, boolean_t);
217 static int	igb_msix_setup(struct igb_softc *);
218 static void	igb_msix_teardown(struct igb_softc *, int);
219 static void	igb_msix_rx(void *);
220 static void	igb_msix_tx(void *);
221 static void	igb_msix_status(void *);
222 
223 /* Management and WOL Support */
224 static void	igb_get_mgmt(struct igb_softc *);
225 static void	igb_rel_mgmt(struct igb_softc *);
226 static void	igb_get_hw_control(struct igb_softc *);
227 static void	igb_rel_hw_control(struct igb_softc *);
228 static void	igb_enable_wol(device_t);
229 
230 static device_method_t igb_methods[] = {
231 	/* Device interface */
232 	DEVMETHOD(device_probe,		igb_probe),
233 	DEVMETHOD(device_attach,	igb_attach),
234 	DEVMETHOD(device_detach,	igb_detach),
235 	DEVMETHOD(device_shutdown,	igb_shutdown),
236 	DEVMETHOD(device_suspend,	igb_suspend),
237 	DEVMETHOD(device_resume,	igb_resume),
238 	{ 0, 0 }
239 };
240 
241 static driver_t igb_driver = {
242 	"igb",
243 	igb_methods,
244 	sizeof(struct igb_softc),
245 };
246 
247 static devclass_t igb_devclass;
248 
249 DECLARE_DUMMY_MODULE(if_igb);
250 MODULE_DEPEND(igb, ig_hal, 1, 1, 1);
251 DRIVER_MODULE(if_igb, pci, igb_driver, igb_devclass, NULL, NULL);
252 
253 static int	igb_rxd = IGB_DEFAULT_RXD;
254 static int	igb_txd = IGB_DEFAULT_TXD;
255 static int	igb_rxr = 0;
256 static int	igb_msi_enable = 1;
257 static int	igb_msix_enable = 1;
258 static int	igb_eee_disabled = 1;	/* Energy Efficient Ethernet */
259 static int	igb_fc_setting = e1000_fc_full;
260 
261 /*
262  * DMA Coalescing, only for i350 - default to off,
263  * this feature is for power savings
264  */
265 static int	igb_dma_coalesce = 0;
266 
267 TUNABLE_INT("hw.igb.rxd", &igb_rxd);
268 TUNABLE_INT("hw.igb.txd", &igb_txd);
269 TUNABLE_INT("hw.igb.rxr", &igb_rxr);
270 TUNABLE_INT("hw.igb.msi.enable", &igb_msi_enable);
271 TUNABLE_INT("hw.igb.msix.enable", &igb_msix_enable);
272 TUNABLE_INT("hw.igb.fc_setting", &igb_fc_setting);
273 
274 /* i350 specific */
275 TUNABLE_INT("hw.igb.eee_disabled", &igb_eee_disabled);
276 TUNABLE_INT("hw.igb.dma_coalesce", &igb_dma_coalesce);
277 
278 static __inline void
279 igb_rxcsum(uint32_t staterr, struct mbuf *mp)
280 {
281 	/* Ignore Checksum bit is set */
282 	if (staterr & E1000_RXD_STAT_IXSM)
283 		return;
284 
285 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
286 	    E1000_RXD_STAT_IPCS)
287 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
288 
289 	if (staterr & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
290 		if ((staterr & E1000_RXDEXT_STATERR_TCPE) == 0) {
291 			mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
292 			    CSUM_PSEUDO_HDR | CSUM_FRAG_NOT_CHECKED;
293 			mp->m_pkthdr.csum_data = htons(0xffff);
294 		}
295 	}
296 }
297 
298 static __inline struct pktinfo *
299 igb_rssinfo(struct mbuf *m, struct pktinfo *pi,
300     uint32_t hash, uint32_t hashtype, uint32_t staterr)
301 {
302 	switch (hashtype) {
303 	case E1000_RXDADV_RSSTYPE_IPV4_TCP:
304 		pi->pi_netisr = NETISR_IP;
305 		pi->pi_flags = 0;
306 		pi->pi_l3proto = IPPROTO_TCP;
307 		break;
308 
309 	case E1000_RXDADV_RSSTYPE_IPV4:
310 		if (staterr & E1000_RXD_STAT_IXSM)
311 			return NULL;
312 
313 		if ((staterr &
314 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
315 		    E1000_RXD_STAT_TCPCS) {
316 			pi->pi_netisr = NETISR_IP;
317 			pi->pi_flags = 0;
318 			pi->pi_l3proto = IPPROTO_UDP;
319 			break;
320 		}
321 		/* FALL THROUGH */
322 	default:
323 		return NULL;
324 	}
325 
326 	m->m_flags |= M_HASH;
327 	m->m_pkthdr.hash = toeplitz_hash(hash);
328 	return pi;
329 }
330 
331 static int
332 igb_probe(device_t dev)
333 {
334 	const struct igb_device *d;
335 	uint16_t vid, did;
336 
337 	vid = pci_get_vendor(dev);
338 	did = pci_get_device(dev);
339 
340 	for (d = igb_devices; d->desc != NULL; ++d) {
341 		if (vid == d->vid && did == d->did) {
342 			device_set_desc(dev, d->desc);
343 			return 0;
344 		}
345 	}
346 	return ENXIO;
347 }
348 
349 static int
350 igb_attach(device_t dev)
351 {
352 	struct igb_softc *sc = device_get_softc(dev);
353 	uint16_t eeprom_data;
354 	int error = 0, i, j, ring_max;
355 #ifdef IFPOLL_ENABLE
356 	int offset, offset_def;
357 #endif
358 
359 #ifdef notyet
360 	/* SYSCTL stuff */
361 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
362 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
363 	    OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
364 	    igb_sysctl_nvm_info, "I", "NVM Information");
365 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
366 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
367 	    OID_AUTO, "flow_control", CTLTYPE_INT|CTLFLAG_RW,
368 	    adapter, 0, igb_set_flowcntl, "I", "Flow Control");
369 #endif
370 
371 	callout_init_mp(&sc->timer);
372 	lwkt_serialize_init(&sc->main_serialize);
373 
374 	if_initname(&sc->arpcom.ac_if, device_get_name(dev),
375 	    device_get_unit(dev));
376 	sc->dev = sc->osdep.dev = dev;
377 
378 	/*
379 	 * Determine hardware and mac type
380 	 */
381 	sc->hw.vendor_id = pci_get_vendor(dev);
382 	sc->hw.device_id = pci_get_device(dev);
383 	sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
384 	sc->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
385 	sc->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
386 
387 	if (e1000_set_mac_type(&sc->hw))
388 		return ENXIO;
389 
390 	/* Are we a VF device? */
391 	if (sc->hw.mac.type == e1000_vfadapt ||
392 	    sc->hw.mac.type == e1000_vfadapt_i350)
393 		sc->vf_ifp = 1;
394 	else
395 		sc->vf_ifp = 0;
396 
397 	/*
398 	 * Configure total supported RX/TX ring count
399 	 */
400 	switch (sc->hw.mac.type) {
401 	case e1000_82575:
402 		ring_max = IGB_MAX_RING_82575;
403 		break;
404 	case e1000_82580:
405 		ring_max = IGB_MAX_RING_82580;
406 		break;
407 	case e1000_i350:
408 		ring_max = IGB_MAX_RING_I350;
409 		break;
410 	case e1000_82576:
411 		ring_max = IGB_MAX_RING_82576;
412 		break;
413 	default:
414 		ring_max = IGB_MIN_RING;
415 		break;
416 	}
417 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr", igb_rxr);
418 	sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, ring_max);
419 #ifdef IGB_RSS_DEBUG
420 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr_debug", sc->rx_ring_cnt);
421 #endif
422 	sc->rx_ring_inuse = sc->rx_ring_cnt;
423 	sc->tx_ring_cnt = 1; /* XXX */
424 
425 	if (sc->hw.mac.type == e1000_82575)
426 		sc->flags |= IGB_FLAG_TSO_IPLEN0;
427 
428 	/* Enable bus mastering */
429 	pci_enable_busmaster(dev);
430 
431 	/*
432 	 * Allocate IO memory
433 	 */
434 	sc->mem_rid = PCIR_BAR(0);
435 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
436 	    RF_ACTIVE);
437 	if (sc->mem_res == NULL) {
438 		device_printf(dev, "Unable to allocate bus resource: memory\n");
439 		error = ENXIO;
440 		goto failed;
441 	}
442 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->mem_res);
443 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->mem_res);
444 
445 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
446 
447 	/* Save PCI command register for Shared Code */
448 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
449 	sc->hw.back = &sc->osdep;
450 
451 	/* Do Shared Code initialization */
452 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
453 		device_printf(dev, "Setup of Shared code failed\n");
454 		error = ENXIO;
455 		goto failed;
456 	}
457 
458 	e1000_get_bus_info(&sc->hw);
459 
460 	sc->hw.mac.autoneg = DO_AUTO_NEG;
461 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
462 	sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
463 
464 	/* Copper options */
465 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
466 		sc->hw.phy.mdix = AUTO_ALL_MODES;
467 		sc->hw.phy.disable_polarity_correction = FALSE;
468 		sc->hw.phy.ms_type = IGB_MASTER_SLAVE;
469 	}
470 
471 	/* Set the frame limits assuming  standard ethernet sized frames. */
472 	sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
473 
474 	/* Allocate RX/TX rings */
475 	error = igb_alloc_rings(sc);
476 	if (error)
477 		goto failed;
478 
479 #ifdef IFPOLL_ENABLE
480 	/*
481 	 * NPOLLING RX CPU offset
482 	 */
483 	if (sc->rx_ring_cnt == ncpus2) {
484 		offset = 0;
485 	} else {
486 		offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
487 		offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
488 		if (offset >= ncpus2 ||
489 		    offset % sc->rx_ring_cnt != 0) {
490 			device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
491 			    offset, offset_def);
492 			offset = offset_def;
493 		}
494 	}
495 	sc->rx_npoll_off = offset;
496 
497 	/*
498 	 * NPOLLING TX CPU offset
499 	 */
500 	offset_def = sc->rx_npoll_off;
501 	offset = device_getenv_int(dev, "npoll.txoff", offset_def);
502 	if (offset >= ncpus2) {
503 		device_printf(dev, "invalid npoll.txoff %d, use %d\n",
504 		    offset, offset_def);
505 		offset = offset_def;
506 	}
507 	sc->tx_npoll_off = offset;
508 #endif
509 
510 	/* Allocate interrupt */
511 	error = igb_alloc_intr(sc);
512 	if (error)
513 		goto failed;
514 
515 	/*
516 	 * Setup serializers
517 	 */
518 	i = 0;
519 	sc->serializes[i++] = &sc->main_serialize;
520 
521 	sc->tx_serialize = i;
522 	for (j = 0; j < sc->tx_ring_cnt; ++j)
523 		sc->serializes[i++] = &sc->tx_rings[j].tx_serialize;
524 
525 	sc->rx_serialize = i;
526 	for (j = 0; j < sc->rx_ring_cnt; ++j)
527 		sc->serializes[i++] = &sc->rx_rings[j].rx_serialize;
528 
529 	sc->serialize_cnt = i;
530 	KKASSERT(sc->serialize_cnt <= IGB_NSERIALIZE);
531 
532 	/* Allocate the appropriate stats memory */
533 	if (sc->vf_ifp) {
534 		sc->stats = kmalloc(sizeof(struct e1000_vf_stats), M_DEVBUF,
535 		    M_WAITOK | M_ZERO);
536 		igb_vf_init_stats(sc);
537 	} else {
538 		sc->stats = kmalloc(sizeof(struct e1000_hw_stats), M_DEVBUF,
539 		    M_WAITOK | M_ZERO);
540 	}
541 
542 	/* Allocate multicast array memory. */
543 	sc->mta = kmalloc(ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
544 	    M_DEVBUF, M_WAITOK);
545 
546 	/* Some adapter-specific advanced features */
547 	if (sc->hw.mac.type >= e1000_i350) {
548 #ifdef notyet
549 		igb_set_sysctl_value(adapter, "dma_coalesce",
550 		    "configure dma coalesce",
551 		    &adapter->dma_coalesce, igb_dma_coalesce);
552 		igb_set_sysctl_value(adapter, "eee_disabled",
553 		    "enable Energy Efficient Ethernet",
554 		    &adapter->hw.dev_spec._82575.eee_disable,
555 		    igb_eee_disabled);
556 #else
557 		sc->dma_coalesce = igb_dma_coalesce;
558 		sc->hw.dev_spec._82575.eee_disable = igb_eee_disabled;
559 #endif
560 		e1000_set_eee_i350(&sc->hw);
561 	}
562 
563 	/*
564 	 * Start from a known state, this is important in reading the nvm and
565 	 * mac from that.
566 	 */
567 	e1000_reset_hw(&sc->hw);
568 
569 	/* Make sure we have a good EEPROM before we read from it */
570 	if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
571 		/*
572 		 * Some PCI-E parts fail the first check due to
573 		 * the link being in sleep state, call it again,
574 		 * if it fails a second time its a real issue.
575 		 */
576 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
577 			device_printf(dev,
578 			    "The EEPROM Checksum Is Not Valid\n");
579 			error = EIO;
580 			goto failed;
581 		}
582 	}
583 
584 	/* Copy the permanent MAC address out of the EEPROM */
585 	if (e1000_read_mac_addr(&sc->hw) < 0) {
586 		device_printf(dev, "EEPROM read error while reading MAC"
587 		    " address\n");
588 		error = EIO;
589 		goto failed;
590 	}
591 	if (!igb_is_valid_ether_addr(sc->hw.mac.addr)) {
592 		device_printf(dev, "Invalid MAC address\n");
593 		error = EIO;
594 		goto failed;
595 	}
596 
597 	/* Setup OS specific network interface */
598 	igb_setup_ifp(sc);
599 
600 	/* Add sysctl tree, must after igb_setup_ifp() */
601 	igb_add_sysctl(sc);
602 
603 	/* Now get a good starting state */
604 	igb_reset(sc);
605 
606 	/* Initialize statistics */
607 	igb_update_stats_counters(sc);
608 
609 	sc->hw.mac.get_link_status = 1;
610 	igb_update_link_status(sc);
611 
612 	/* Indicate SOL/IDER usage */
613 	if (e1000_check_reset_block(&sc->hw)) {
614 		device_printf(dev,
615 		    "PHY reset is blocked due to SOL/IDER session.\n");
616 	}
617 
618 	/* Determine if we have to control management hardware */
619 	if (e1000_enable_mng_pass_thru(&sc->hw))
620 		sc->flags |= IGB_FLAG_HAS_MGMT;
621 
622 	/*
623 	 * Setup Wake-on-Lan
624 	 */
625 	/* APME bit in EEPROM is mapped to WUC.APME */
626 	eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC) & E1000_WUC_APME;
627 	if (eeprom_data)
628 		sc->wol = E1000_WUFC_MAG;
629 	/* XXX disable WOL */
630 	sc->wol = 0;
631 
632 #ifdef notyet
633 	/* Register for VLAN events */
634 	adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
635 	     igb_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
636 	adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
637 	     igb_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
638 #endif
639 
640 #ifdef notyet
641 	igb_add_hw_stats(adapter);
642 #endif
643 
644 	error = igb_setup_intr(sc);
645 	if (error) {
646 		ether_ifdetach(&sc->arpcom.ac_if);
647 		goto failed;
648 	}
649 	return 0;
650 
651 failed:
652 	igb_detach(dev);
653 	return error;
654 }
655 
656 static int
657 igb_detach(device_t dev)
658 {
659 	struct igb_softc *sc = device_get_softc(dev);
660 
661 	if (device_is_attached(dev)) {
662 		struct ifnet *ifp = &sc->arpcom.ac_if;
663 
664 		ifnet_serialize_all(ifp);
665 
666 		igb_stop(sc);
667 
668 		e1000_phy_hw_reset(&sc->hw);
669 
670 		/* Give control back to firmware */
671 		igb_rel_mgmt(sc);
672 		igb_rel_hw_control(sc);
673 
674 		if (sc->wol) {
675 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
676 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
677 			igb_enable_wol(dev);
678 		}
679 
680 		igb_teardown_intr(sc);
681 
682 		ifnet_deserialize_all(ifp);
683 
684 		ether_ifdetach(ifp);
685 	} else if (sc->mem_res != NULL) {
686 		igb_rel_hw_control(sc);
687 	}
688 	bus_generic_detach(dev);
689 
690 	if (sc->sysctl_tree != NULL)
691 		sysctl_ctx_free(&sc->sysctl_ctx);
692 
693 	igb_free_intr(sc);
694 
695 	if (sc->msix_mem_res != NULL) {
696 		bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_mem_rid,
697 		    sc->msix_mem_res);
698 	}
699 	if (sc->mem_res != NULL) {
700 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid,
701 		    sc->mem_res);
702 	}
703 
704 	igb_free_rings(sc);
705 
706 	if (sc->mta != NULL)
707 		kfree(sc->mta, M_DEVBUF);
708 	if (sc->stats != NULL)
709 		kfree(sc->stats, M_DEVBUF);
710 
711 	return 0;
712 }
713 
714 static int
715 igb_shutdown(device_t dev)
716 {
717 	return igb_suspend(dev);
718 }
719 
720 static int
721 igb_suspend(device_t dev)
722 {
723 	struct igb_softc *sc = device_get_softc(dev);
724 	struct ifnet *ifp = &sc->arpcom.ac_if;
725 
726 	ifnet_serialize_all(ifp);
727 
728 	igb_stop(sc);
729 
730 	igb_rel_mgmt(sc);
731 	igb_rel_hw_control(sc);
732 
733 	if (sc->wol) {
734 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
735 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
736 		igb_enable_wol(dev);
737 	}
738 
739 	ifnet_deserialize_all(ifp);
740 
741 	return bus_generic_suspend(dev);
742 }
743 
744 static int
745 igb_resume(device_t dev)
746 {
747 	struct igb_softc *sc = device_get_softc(dev);
748 	struct ifnet *ifp = &sc->arpcom.ac_if;
749 
750 	ifnet_serialize_all(ifp);
751 
752 	igb_init(sc);
753 	igb_get_mgmt(sc);
754 
755 	if_devstart(ifp);
756 
757 	ifnet_deserialize_all(ifp);
758 
759 	return bus_generic_resume(dev);
760 }
761 
762 static int
763 igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
764 {
765 	struct igb_softc *sc = ifp->if_softc;
766 	struct ifreq *ifr = (struct ifreq *)data;
767 	int max_frame_size, mask, reinit;
768 	int error = 0;
769 
770 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
771 
772 	switch (command) {
773 	case SIOCSIFMTU:
774 		max_frame_size = 9234;
775 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
776 		    ETHER_CRC_LEN) {
777 			error = EINVAL;
778 			break;
779 		}
780 
781 		ifp->if_mtu = ifr->ifr_mtu;
782 		sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
783 		    ETHER_CRC_LEN;
784 
785 		if (ifp->if_flags & IFF_RUNNING)
786 			igb_init(sc);
787 		break;
788 
789 	case SIOCSIFFLAGS:
790 		if (ifp->if_flags & IFF_UP) {
791 			if (ifp->if_flags & IFF_RUNNING) {
792 				if ((ifp->if_flags ^ sc->if_flags) &
793 				    (IFF_PROMISC | IFF_ALLMULTI)) {
794 					igb_disable_promisc(sc);
795 					igb_set_promisc(sc);
796 				}
797 			} else {
798 				igb_init(sc);
799 			}
800 		} else if (ifp->if_flags & IFF_RUNNING) {
801 			igb_stop(sc);
802 		}
803 		sc->if_flags = ifp->if_flags;
804 		break;
805 
806 	case SIOCADDMULTI:
807 	case SIOCDELMULTI:
808 		if (ifp->if_flags & IFF_RUNNING) {
809 			igb_disable_intr(sc);
810 			igb_set_multi(sc);
811 #ifdef IFPOLL_ENABLE
812 			if (!(ifp->if_flags & IFF_NPOLLING))
813 #endif
814 				igb_enable_intr(sc);
815 		}
816 		break;
817 
818 	case SIOCSIFMEDIA:
819 		/*
820 		 * As the speed/duplex settings are being
821 		 * changed, we need toreset the PHY.
822 		 */
823 		sc->hw.phy.reset_disable = FALSE;
824 
825 		/* Check SOL/IDER usage */
826 		if (e1000_check_reset_block(&sc->hw)) {
827 			if_printf(ifp, "Media change is "
828 			    "blocked due to SOL/IDER session.\n");
829 			break;
830 		}
831 		/* FALL THROUGH */
832 
833 	case SIOCGIFMEDIA:
834 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
835 		break;
836 
837 	case SIOCSIFCAP:
838 		reinit = 0;
839 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
840 		if (mask & IFCAP_RXCSUM) {
841 			ifp->if_capenable ^= IFCAP_RXCSUM;
842 			reinit = 1;
843 		}
844 		if (mask & IFCAP_VLAN_HWTAGGING) {
845 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
846 			reinit = 1;
847 		}
848 		if (mask & IFCAP_TXCSUM) {
849 			ifp->if_capenable ^= IFCAP_TXCSUM;
850 			if (ifp->if_capenable & IFCAP_TXCSUM)
851 				ifp->if_hwassist |= IGB_CSUM_FEATURES;
852 			else
853 				ifp->if_hwassist &= ~IGB_CSUM_FEATURES;
854 		}
855 		if (mask & IFCAP_TSO) {
856 			ifp->if_capenable ^= IFCAP_TSO;
857 			if (ifp->if_capenable & IFCAP_TSO)
858 				ifp->if_hwassist |= CSUM_TSO;
859 			else
860 				ifp->if_hwassist &= ~CSUM_TSO;
861 		}
862 		if (mask & IFCAP_RSS)
863 			ifp->if_capenable ^= IFCAP_RSS;
864 		if (reinit && (ifp->if_flags & IFF_RUNNING))
865 			igb_init(sc);
866 		break;
867 
868 	default:
869 		error = ether_ioctl(ifp, command, data);
870 		break;
871 	}
872 	return error;
873 }
874 
875 static void
876 igb_init(void *xsc)
877 {
878 	struct igb_softc *sc = xsc;
879 	struct ifnet *ifp = &sc->arpcom.ac_if;
880 	boolean_t polling;
881 	int i;
882 
883 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
884 
885 	igb_stop(sc);
886 
887 	/* Get the latest mac address, User can use a LAA */
888 	bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
889 
890 	/* Put the address into the Receive Address Array */
891 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
892 
893 	igb_reset(sc);
894 	igb_update_link_status(sc);
895 
896 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
897 
898 	/* Configure for OS presence */
899 	igb_get_mgmt(sc);
900 
901 	polling = FALSE;
902 #ifdef IFPOLL_ENABLE
903 	if (ifp->if_flags & IFF_NPOLLING)
904 		polling = TRUE;
905 #endif
906 
907 	/* Configured used RX/TX rings */
908 	igb_set_ring_inuse(sc, polling);
909 
910 	/* Initialize interrupt */
911 	igb_init_intr(sc);
912 
913 	/* Prepare transmit descriptors and buffers */
914 	for (i = 0; i < sc->tx_ring_cnt; ++i)
915 		igb_init_tx_ring(&sc->tx_rings[i]);
916 	igb_init_tx_unit(sc);
917 
918 	/* Setup Multicast table */
919 	igb_set_multi(sc);
920 
921 #if 0
922 	/*
923 	 * Figure out the desired mbuf pool
924 	 * for doing jumbo/packetsplit
925 	 */
926 	if (adapter->max_frame_size <= 2048)
927 		adapter->rx_mbuf_sz = MCLBYTES;
928 	else if (adapter->max_frame_size <= 4096)
929 		adapter->rx_mbuf_sz = MJUMPAGESIZE;
930 	else
931 		adapter->rx_mbuf_sz = MJUM9BYTES;
932 #endif
933 
934 	/* Prepare receive descriptors and buffers */
935 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
936 		int error;
937 
938 		error = igb_init_rx_ring(&sc->rx_rings[i]);
939 		if (error) {
940 			if_printf(ifp, "Could not setup receive structures\n");
941 			igb_stop(sc);
942 			return;
943 		}
944 	}
945 	igb_init_rx_unit(sc);
946 
947 	/* Enable VLAN support */
948 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
949 		igb_set_vlan(sc);
950 
951 	/* Don't lose promiscuous settings */
952 	igb_set_promisc(sc);
953 
954 	ifp->if_flags |= IFF_RUNNING;
955 	ifp->if_flags &= ~IFF_OACTIVE;
956 
957 	callout_reset(&sc->timer, hz, igb_timer, sc);
958 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
959 
960 	/* This clears any pending interrupts */
961 	E1000_READ_REG(&sc->hw, E1000_ICR);
962 
963 	/*
964 	 * Only enable interrupts if we are not polling, make sure
965 	 * they are off otherwise.
966 	 */
967 	if (polling) {
968 		igb_disable_intr(sc);
969 	} else {
970 		igb_enable_intr(sc);
971 		E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
972 	}
973 
974 	/* Set Energy Efficient Ethernet */
975 	e1000_set_eee_i350(&sc->hw);
976 
977 	/* Don't reset the phy next time init gets called */
978 	sc->hw.phy.reset_disable = TRUE;
979 }
980 
981 static void
982 igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
983 {
984 	struct igb_softc *sc = ifp->if_softc;
985 	u_char fiber_type = IFM_1000_SX;
986 
987 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
988 
989 	igb_update_link_status(sc);
990 
991 	ifmr->ifm_status = IFM_AVALID;
992 	ifmr->ifm_active = IFM_ETHER;
993 
994 	if (!sc->link_active)
995 		return;
996 
997 	ifmr->ifm_status |= IFM_ACTIVE;
998 
999 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1000 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1001 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1002 	} else {
1003 		switch (sc->link_speed) {
1004 		case 10:
1005 			ifmr->ifm_active |= IFM_10_T;
1006 			break;
1007 
1008 		case 100:
1009 			ifmr->ifm_active |= IFM_100_TX;
1010 			break;
1011 
1012 		case 1000:
1013 			ifmr->ifm_active |= IFM_1000_T;
1014 			break;
1015 		}
1016 		if (sc->link_duplex == FULL_DUPLEX)
1017 			ifmr->ifm_active |= IFM_FDX;
1018 		else
1019 			ifmr->ifm_active |= IFM_HDX;
1020 	}
1021 }
1022 
1023 static int
1024 igb_media_change(struct ifnet *ifp)
1025 {
1026 	struct igb_softc *sc = ifp->if_softc;
1027 	struct ifmedia *ifm = &sc->media;
1028 
1029 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1030 
1031 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1032 		return EINVAL;
1033 
1034 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1035 	case IFM_AUTO:
1036 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1037 		sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1038 		break;
1039 
1040 	case IFM_1000_LX:
1041 	case IFM_1000_SX:
1042 	case IFM_1000_T:
1043 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1044 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1045 		break;
1046 
1047 	case IFM_100_TX:
1048 		sc->hw.mac.autoneg = FALSE;
1049 		sc->hw.phy.autoneg_advertised = 0;
1050 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1051 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1052 		else
1053 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1054 		break;
1055 
1056 	case IFM_10_T:
1057 		sc->hw.mac.autoneg = FALSE;
1058 		sc->hw.phy.autoneg_advertised = 0;
1059 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1060 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1061 		else
1062 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1063 		break;
1064 
1065 	default:
1066 		if_printf(ifp, "Unsupported media type\n");
1067 		break;
1068 	}
1069 
1070 	igb_init(sc);
1071 
1072 	return 0;
1073 }
1074 
1075 static void
1076 igb_set_promisc(struct igb_softc *sc)
1077 {
1078 	struct ifnet *ifp = &sc->arpcom.ac_if;
1079 	struct e1000_hw *hw = &sc->hw;
1080 	uint32_t reg;
1081 
1082 	if (sc->vf_ifp) {
1083 		e1000_promisc_set_vf(hw, e1000_promisc_enabled);
1084 		return;
1085 	}
1086 
1087 	reg = E1000_READ_REG(hw, E1000_RCTL);
1088 	if (ifp->if_flags & IFF_PROMISC) {
1089 		reg |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1090 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
1091 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1092 		reg |= E1000_RCTL_MPE;
1093 		reg &= ~E1000_RCTL_UPE;
1094 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
1095 	}
1096 }
1097 
1098 static void
1099 igb_disable_promisc(struct igb_softc *sc)
1100 {
1101 	struct e1000_hw *hw = &sc->hw;
1102 	uint32_t reg;
1103 
1104 	if (sc->vf_ifp) {
1105 		e1000_promisc_set_vf(hw, e1000_promisc_disabled);
1106 		return;
1107 	}
1108 	reg = E1000_READ_REG(hw, E1000_RCTL);
1109 	reg &= ~E1000_RCTL_UPE;
1110 	reg &= ~E1000_RCTL_MPE;
1111 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
1112 }
1113 
1114 static void
1115 igb_set_multi(struct igb_softc *sc)
1116 {
1117 	struct ifnet *ifp = &sc->arpcom.ac_if;
1118 	struct ifmultiaddr *ifma;
1119 	uint32_t reg_rctl = 0;
1120 	uint8_t *mta;
1121 	int mcnt = 0;
1122 
1123 	mta = sc->mta;
1124 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1125 
1126 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1127 		if (ifma->ifma_addr->sa_family != AF_LINK)
1128 			continue;
1129 
1130 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1131 			break;
1132 
1133 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1134 		    &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
1135 		mcnt++;
1136 	}
1137 
1138 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1139 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1140 		reg_rctl |= E1000_RCTL_MPE;
1141 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1142 	} else {
1143 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1144 	}
1145 }
1146 
1147 static void
1148 igb_timer(void *xsc)
1149 {
1150 	struct igb_softc *sc = xsc;
1151 
1152 	lwkt_serialize_enter(&sc->main_serialize);
1153 
1154 	igb_update_link_status(sc);
1155 	igb_update_stats_counters(sc);
1156 
1157 	callout_reset(&sc->timer, hz, igb_timer, sc);
1158 
1159 	lwkt_serialize_exit(&sc->main_serialize);
1160 }
1161 
1162 static void
1163 igb_update_link_status(struct igb_softc *sc)
1164 {
1165 	struct ifnet *ifp = &sc->arpcom.ac_if;
1166 	struct e1000_hw *hw = &sc->hw;
1167 	uint32_t link_check, thstat, ctrl;
1168 
1169 	link_check = thstat = ctrl = 0;
1170 
1171 	/* Get the cached link value or read for real */
1172 	switch (hw->phy.media_type) {
1173 	case e1000_media_type_copper:
1174 		if (hw->mac.get_link_status) {
1175 			/* Do the work to read phy */
1176 			e1000_check_for_link(hw);
1177 			link_check = !hw->mac.get_link_status;
1178 		} else {
1179 			link_check = TRUE;
1180 		}
1181 		break;
1182 
1183 	case e1000_media_type_fiber:
1184 		e1000_check_for_link(hw);
1185 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1186 		break;
1187 
1188 	case e1000_media_type_internal_serdes:
1189 		e1000_check_for_link(hw);
1190 		link_check = hw->mac.serdes_has_link;
1191 		break;
1192 
1193 	/* VF device is type_unknown */
1194 	case e1000_media_type_unknown:
1195 		e1000_check_for_link(hw);
1196 		link_check = !hw->mac.get_link_status;
1197 		/* Fall thru */
1198 	default:
1199 		break;
1200 	}
1201 
1202 	/* Check for thermal downshift or shutdown */
1203 	if (hw->mac.type == e1000_i350) {
1204 		thstat = E1000_READ_REG(hw, E1000_THSTAT);
1205 		ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1206 	}
1207 
1208 	/* Now we check if a transition has happened */
1209 	if (link_check && sc->link_active == 0) {
1210 		e1000_get_speed_and_duplex(hw,
1211 		    &sc->link_speed, &sc->link_duplex);
1212 		if (bootverbose) {
1213 			if_printf(ifp, "Link is up %d Mbps %s\n",
1214 			    sc->link_speed,
1215 			    sc->link_duplex == FULL_DUPLEX ?
1216 			    "Full Duplex" : "Half Duplex");
1217 		}
1218 		sc->link_active = 1;
1219 
1220 		ifp->if_baudrate = sc->link_speed * 1000000;
1221 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1222 		    (thstat & E1000_THSTAT_LINK_THROTTLE))
1223 			if_printf(ifp, "Link: thermal downshift\n");
1224 		/* This can sleep */
1225 		ifp->if_link_state = LINK_STATE_UP;
1226 		if_link_state_change(ifp);
1227 	} else if (!link_check && sc->link_active == 1) {
1228 		ifp->if_baudrate = sc->link_speed = 0;
1229 		sc->link_duplex = 0;
1230 		if (bootverbose)
1231 			if_printf(ifp, "Link is Down\n");
1232 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1233 		    (thstat & E1000_THSTAT_PWR_DOWN))
1234 			if_printf(ifp, "Link: thermal shutdown\n");
1235 		sc->link_active = 0;
1236 		/* This can sleep */
1237 		ifp->if_link_state = LINK_STATE_DOWN;
1238 		if_link_state_change(ifp);
1239 	}
1240 }
1241 
1242 static void
1243 igb_stop(struct igb_softc *sc)
1244 {
1245 	struct ifnet *ifp = &sc->arpcom.ac_if;
1246 	int i;
1247 
1248 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1249 
1250 	igb_disable_intr(sc);
1251 
1252 	callout_stop(&sc->timer);
1253 
1254 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1255 	ifp->if_timer = 0;
1256 
1257 	e1000_reset_hw(&sc->hw);
1258 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1259 
1260 	e1000_led_off(&sc->hw);
1261 	e1000_cleanup_led(&sc->hw);
1262 
1263 	for (i = 0; i < sc->tx_ring_cnt; ++i)
1264 		igb_free_tx_ring(&sc->tx_rings[i]);
1265 	for (i = 0; i < sc->rx_ring_cnt; ++i)
1266 		igb_free_rx_ring(&sc->rx_rings[i]);
1267 }
1268 
1269 static void
1270 igb_reset(struct igb_softc *sc)
1271 {
1272 	struct ifnet *ifp = &sc->arpcom.ac_if;
1273 	struct e1000_hw *hw = &sc->hw;
1274 	struct e1000_fc_info *fc = &hw->fc;
1275 	uint32_t pba = 0;
1276 	uint16_t hwm;
1277 
1278 	/* Let the firmware know the OS is in control */
1279 	igb_get_hw_control(sc);
1280 
1281 	/*
1282 	 * Packet Buffer Allocation (PBA)
1283 	 * Writing PBA sets the receive portion of the buffer
1284 	 * the remainder is used for the transmit buffer.
1285 	 */
1286 	switch (hw->mac.type) {
1287 	case e1000_82575:
1288 		pba = E1000_PBA_32K;
1289 		break;
1290 
1291 	case e1000_82576:
1292 	case e1000_vfadapt:
1293 		pba = E1000_READ_REG(hw, E1000_RXPBS);
1294 		pba &= E1000_RXPBS_SIZE_MASK_82576;
1295 		break;
1296 
1297 	case e1000_82580:
1298 	case e1000_i350:
1299 	case e1000_vfadapt_i350:
1300 		pba = E1000_READ_REG(hw, E1000_RXPBS);
1301 		pba = e1000_rxpbs_adjust_82580(pba);
1302 		break;
1303 		/* XXX pba = E1000_PBA_35K; */
1304 
1305 	default:
1306 		break;
1307 	}
1308 
1309 	/* Special needs in case of Jumbo frames */
1310 	if (hw->mac.type == e1000_82575 && ifp->if_mtu > ETHERMTU) {
1311 		uint32_t tx_space, min_tx, min_rx;
1312 
1313 		pba = E1000_READ_REG(hw, E1000_PBA);
1314 		tx_space = pba >> 16;
1315 		pba &= 0xffff;
1316 
1317 		min_tx = (sc->max_frame_size +
1318 		    sizeof(struct e1000_tx_desc) - ETHER_CRC_LEN) * 2;
1319 		min_tx = roundup2(min_tx, 1024);
1320 		min_tx >>= 10;
1321 		min_rx = sc->max_frame_size;
1322 		min_rx = roundup2(min_rx, 1024);
1323 		min_rx >>= 10;
1324 		if (tx_space < min_tx && (min_tx - tx_space) < pba) {
1325 			pba = pba - (min_tx - tx_space);
1326 			/*
1327 			 * if short on rx space, rx wins
1328 			 * and must trump tx adjustment
1329 			 */
1330 			if (pba < min_rx)
1331 				pba = min_rx;
1332 		}
1333 		E1000_WRITE_REG(hw, E1000_PBA, pba);
1334 	}
1335 
1336 	/*
1337 	 * These parameters control the automatic generation (Tx) and
1338 	 * response (Rx) to Ethernet PAUSE frames.
1339 	 * - High water mark should allow for at least two frames to be
1340 	 *   received after sending an XOFF.
1341 	 * - Low water mark works best when it is very near the high water mark.
1342 	 *   This allows the receiver to restart by sending XON when it has
1343 	 *   drained a bit.
1344 	 */
1345 	hwm = min(((pba << 10) * 9 / 10),
1346 	    ((pba << 10) - 2 * sc->max_frame_size));
1347 
1348 	if (hw->mac.type < e1000_82576) {
1349 		fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1350 		fc->low_water = fc->high_water - 8;
1351 	} else {
1352 		fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1353 		fc->low_water = fc->high_water - 16;
1354 	}
1355 	fc->pause_time = IGB_FC_PAUSE_TIME;
1356 	fc->send_xon = TRUE;
1357 
1358 	/* Issue a global reset */
1359 	e1000_reset_hw(hw);
1360 	E1000_WRITE_REG(hw, E1000_WUC, 0);
1361 
1362 	if (e1000_init_hw(hw) < 0)
1363 		if_printf(ifp, "Hardware Initialization Failed\n");
1364 
1365 	/* Setup DMA Coalescing */
1366 	if (hw->mac.type == e1000_i350 && sc->dma_coalesce) {
1367 		uint32_t reg;
1368 
1369 		hwm = (pba - 4) << 10;
1370 		reg = ((pba - 6) << E1000_DMACR_DMACTHR_SHIFT)
1371 		    & E1000_DMACR_DMACTHR_MASK;
1372 
1373 		/* transition to L0x or L1 if available..*/
1374 		reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1375 
1376 		/* timer = +-1000 usec in 32usec intervals */
1377 		reg |= (1000 >> 5);
1378 		E1000_WRITE_REG(hw, E1000_DMACR, reg);
1379 
1380 		/* No lower threshold */
1381 		E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
1382 
1383 		/* set hwm to PBA -  2 * max frame size */
1384 		E1000_WRITE_REG(hw, E1000_FCRTC, hwm);
1385 
1386 		/* Set the interval before transition */
1387 		reg = E1000_READ_REG(hw, E1000_DMCTLX);
1388 		reg |= 0x800000FF; /* 255 usec */
1389 		E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
1390 
1391 		/* free space in tx packet buffer to wake from DMA coal */
1392 		E1000_WRITE_REG(hw, E1000_DMCTXTH,
1393 		    (20480 - (2 * sc->max_frame_size)) >> 6);
1394 
1395 		/* make low power state decision controlled by DMA coal */
1396 		reg = E1000_READ_REG(hw, E1000_PCIEMISC);
1397 		E1000_WRITE_REG(hw, E1000_PCIEMISC,
1398 		    reg | E1000_PCIEMISC_LX_DECISION);
1399 		if_printf(ifp, "DMA Coalescing enabled\n");
1400 	}
1401 
1402 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1403 	e1000_get_phy_info(hw);
1404 	e1000_check_for_link(hw);
1405 }
1406 
1407 static void
1408 igb_setup_ifp(struct igb_softc *sc)
1409 {
1410 	struct ifnet *ifp = &sc->arpcom.ac_if;
1411 
1412 	ifp->if_softc = sc;
1413 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1414 	ifp->if_init = igb_init;
1415 	ifp->if_ioctl = igb_ioctl;
1416 	ifp->if_start = igb_start;
1417 	ifp->if_serialize = igb_serialize;
1418 	ifp->if_deserialize = igb_deserialize;
1419 	ifp->if_tryserialize = igb_tryserialize;
1420 #ifdef INVARIANTS
1421 	ifp->if_serialize_assert = igb_serialize_assert;
1422 #endif
1423 #ifdef IFPOLL_ENABLE
1424 	ifp->if_npoll = igb_npoll;
1425 #endif
1426 	ifp->if_watchdog = igb_watchdog;
1427 
1428 	ifq_set_maxlen(&ifp->if_snd, sc->tx_rings[0].num_tx_desc - 1);
1429 	ifq_set_ready(&ifp->if_snd);
1430 
1431 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1432 
1433 	ifp->if_capabilities =
1434 	    IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_TSO;
1435 	if (IGB_ENABLE_HWRSS(sc))
1436 		ifp->if_capabilities |= IFCAP_RSS;
1437 	ifp->if_capenable = ifp->if_capabilities;
1438 	ifp->if_hwassist = IGB_CSUM_FEATURES | CSUM_TSO;
1439 
1440 	/*
1441 	 * Tell the upper layer(s) we support long frames
1442 	 */
1443 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1444 
1445 	/*
1446 	 * Specify the media types supported by this adapter and register
1447 	 * callbacks to update media and link information
1448 	 */
1449 	ifmedia_init(&sc->media, IFM_IMASK, igb_media_change, igb_media_status);
1450 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1451 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1452 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1453 		    0, NULL);
1454 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1455 	} else {
1456 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1457 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1458 		    0, NULL);
1459 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1460 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1461 		    0, NULL);
1462 		if (sc->hw.phy.type != e1000_phy_ife) {
1463 			ifmedia_add(&sc->media,
1464 			    IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1465 			ifmedia_add(&sc->media,
1466 			    IFM_ETHER | IFM_1000_T, 0, NULL);
1467 		}
1468 	}
1469 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1470 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1471 }
1472 
1473 static void
1474 igb_add_sysctl(struct igb_softc *sc)
1475 {
1476 	char node[32];
1477 	int i;
1478 
1479 	sysctl_ctx_init(&sc->sysctl_ctx);
1480 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1481 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
1482 	    device_get_nameunit(sc->dev), CTLFLAG_RD, 0, "");
1483 	if (sc->sysctl_tree == NULL) {
1484 		device_printf(sc->dev, "can't add sysctl node\n");
1485 		return;
1486 	}
1487 
1488 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1489 	    OID_AUTO, "rxr", CTLFLAG_RD, &sc->rx_ring_cnt, 0, "# of RX rings");
1490 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1491 	    OID_AUTO, "rxr_inuse", CTLFLAG_RD, &sc->rx_ring_inuse, 0,
1492 	    "# of RX rings used");
1493 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1494 	    OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_rings[0].num_rx_desc, 0,
1495 	    "# of RX descs");
1496 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1497 	    OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_rings[0].num_tx_desc, 0,
1498 	    "# of TX descs");
1499 
1500 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
1501 		SYSCTL_ADD_PROC(&sc->sysctl_ctx,
1502 		    SYSCTL_CHILDREN(sc->sysctl_tree),
1503 		    OID_AUTO, "intr_rate", CTLTYPE_INT | CTLFLAG_RW,
1504 		    sc, 0, igb_sysctl_intr_rate, "I", "interrupt rate");
1505 	} else {
1506 		for (i = 0; i < sc->msix_cnt; ++i) {
1507 			struct igb_msix_data *msix = &sc->msix_data[i];
1508 
1509 			ksnprintf(node, sizeof(node), "msix%d_rate", i);
1510 			SYSCTL_ADD_PROC(&sc->sysctl_ctx,
1511 			    SYSCTL_CHILDREN(sc->sysctl_tree),
1512 			    OID_AUTO, node, CTLTYPE_INT | CTLFLAG_RW,
1513 			    msix, 0, igb_sysctl_msix_rate, "I",
1514 			    msix->msix_rate_desc);
1515 		}
1516 	}
1517 
1518 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1519 	    OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1520 	    sc, 0, igb_sysctl_tx_intr_nsegs, "I",
1521 	    "# of segments per TX interrupt");
1522 
1523 #ifdef IFPOLL_ENABLE
1524 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1525 	    OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
1526 	    sc, 0, igb_sysctl_npoll_rxoff, "I", "NPOLLING RX cpu offset");
1527 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1528 	    OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
1529 	    sc, 0, igb_sysctl_npoll_txoff, "I", "NPOLLING TX cpu offset");
1530 #endif
1531 
1532 #ifdef IGB_RSS_DEBUG
1533 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1534 	    OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug, 0,
1535 	    "RSS debug level");
1536 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1537 		ksnprintf(node, sizeof(node), "rx%d_pkt", i);
1538 		SYSCTL_ADD_ULONG(&sc->sysctl_ctx,
1539 		    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, node,
1540 		    CTLFLAG_RW, &sc->rx_rings[i].rx_packets, "RXed packets");
1541 	}
1542 #endif
1543 }
1544 
1545 static int
1546 igb_alloc_rings(struct igb_softc *sc)
1547 {
1548 	int error, i;
1549 
1550 	/*
1551 	 * Create top level busdma tag
1552 	 */
1553 	error = bus_dma_tag_create(NULL, 1, 0,
1554 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1555 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1556 	    &sc->parent_tag);
1557 	if (error) {
1558 		device_printf(sc->dev, "could not create top level DMA tag\n");
1559 		return error;
1560 	}
1561 
1562 	/*
1563 	 * Allocate TX descriptor rings and buffers
1564 	 */
1565 	sc->tx_rings = kmalloc_cachealign(
1566 	    sizeof(struct igb_tx_ring) * sc->tx_ring_cnt,
1567 	    M_DEVBUF, M_WAITOK | M_ZERO);
1568 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1569 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1570 
1571 		/* Set up some basics */
1572 		txr->sc = sc;
1573 		txr->me = i;
1574 		lwkt_serialize_init(&txr->tx_serialize);
1575 
1576 		error = igb_create_tx_ring(txr);
1577 		if (error)
1578 			return error;
1579 	}
1580 
1581 	/*
1582 	 * Allocate RX descriptor rings and buffers
1583 	 */
1584 	sc->rx_rings = kmalloc_cachealign(
1585 	    sizeof(struct igb_rx_ring) * sc->rx_ring_cnt,
1586 	    M_DEVBUF, M_WAITOK | M_ZERO);
1587 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1588 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
1589 
1590 		/* Set up some basics */
1591 		rxr->sc = sc;
1592 		rxr->me = i;
1593 		lwkt_serialize_init(&rxr->rx_serialize);
1594 
1595 		error = igb_create_rx_ring(rxr);
1596 		if (error)
1597 			return error;
1598 	}
1599 
1600 	return 0;
1601 }
1602 
1603 static void
1604 igb_free_rings(struct igb_softc *sc)
1605 {
1606 	int i;
1607 
1608 	if (sc->tx_rings != NULL) {
1609 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
1610 			struct igb_tx_ring *txr = &sc->tx_rings[i];
1611 
1612 			igb_destroy_tx_ring(txr, txr->num_tx_desc);
1613 		}
1614 		kfree(sc->tx_rings, M_DEVBUF);
1615 	}
1616 
1617 	if (sc->rx_rings != NULL) {
1618 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
1619 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
1620 
1621 			igb_destroy_rx_ring(rxr, rxr->num_rx_desc);
1622 		}
1623 		kfree(sc->rx_rings, M_DEVBUF);
1624 	}
1625 }
1626 
1627 static int
1628 igb_create_tx_ring(struct igb_tx_ring *txr)
1629 {
1630 	int tsize, error, i, ntxd;
1631 
1632 	/*
1633 	 * Validate number of transmit descriptors. It must not exceed
1634 	 * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
1635 	 */
1636 	ntxd = device_getenv_int(txr->sc->dev, "txd", igb_txd);
1637 	if ((ntxd * sizeof(struct e1000_tx_desc)) % IGB_DBA_ALIGN != 0 ||
1638 	    ntxd > IGB_MAX_TXD || ntxd < IGB_MIN_TXD) {
1639 		device_printf(txr->sc->dev,
1640 		    "Using %d TX descriptors instead of %d!\n",
1641 		    IGB_DEFAULT_TXD, ntxd);
1642 		txr->num_tx_desc = IGB_DEFAULT_TXD;
1643 	} else {
1644 		txr->num_tx_desc = ntxd;
1645 	}
1646 
1647 	/*
1648 	 * Allocate TX descriptor ring
1649 	 */
1650 	tsize = roundup2(txr->num_tx_desc * sizeof(union e1000_adv_tx_desc),
1651 	    IGB_DBA_ALIGN);
1652 	txr->txdma.dma_vaddr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1653 	    IGB_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1654 	    &txr->txdma.dma_tag, &txr->txdma.dma_map, &txr->txdma.dma_paddr);
1655 	if (txr->txdma.dma_vaddr == NULL) {
1656 		device_printf(txr->sc->dev,
1657 		    "Unable to allocate TX Descriptor memory\n");
1658 		return ENOMEM;
1659 	}
1660 	txr->tx_base = txr->txdma.dma_vaddr;
1661 	bzero(txr->tx_base, tsize);
1662 
1663 	tsize = __VM_CACHELINE_ALIGN(
1664 	    sizeof(struct igb_tx_buf) * txr->num_tx_desc);
1665 	txr->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
1666 
1667 	/*
1668 	 * Allocate TX head write-back buffer
1669 	 */
1670 	txr->tx_hdr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1671 	    __VM_CACHELINE_SIZE, __VM_CACHELINE_SIZE, BUS_DMA_WAITOK,
1672 	    &txr->tx_hdr_dtag, &txr->tx_hdr_dmap, &txr->tx_hdr_paddr);
1673 	if (txr->tx_hdr == NULL) {
1674 		device_printf(txr->sc->dev,
1675 		    "Unable to allocate TX head write-back buffer\n");
1676 		return ENOMEM;
1677 	}
1678 
1679 	/*
1680 	 * Create DMA tag for TX buffers
1681 	 */
1682 	error = bus_dma_tag_create(txr->sc->parent_tag,
1683 	    1, 0,		/* alignment, bounds */
1684 	    BUS_SPACE_MAXADDR,	/* lowaddr */
1685 	    BUS_SPACE_MAXADDR,	/* highaddr */
1686 	    NULL, NULL,		/* filter, filterarg */
1687 	    IGB_TSO_SIZE,	/* maxsize */
1688 	    IGB_MAX_SCATTER,	/* nsegments */
1689 	    PAGE_SIZE,		/* maxsegsize */
1690 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1691 	    BUS_DMA_ONEBPAGE,	/* flags */
1692 	    &txr->tx_tag);
1693 	if (error) {
1694 		device_printf(txr->sc->dev, "Unable to allocate TX DMA tag\n");
1695 		kfree(txr->tx_buf, M_DEVBUF);
1696 		txr->tx_buf = NULL;
1697 		return error;
1698 	}
1699 
1700 	/*
1701 	 * Create DMA maps for TX buffers
1702 	 */
1703 	for (i = 0; i < txr->num_tx_desc; ++i) {
1704 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1705 
1706 		error = bus_dmamap_create(txr->tx_tag,
1707 		    BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE, &txbuf->map);
1708 		if (error) {
1709 			device_printf(txr->sc->dev,
1710 			    "Unable to create TX DMA map\n");
1711 			igb_destroy_tx_ring(txr, i);
1712 			return error;
1713 		}
1714 	}
1715 
1716 	/*
1717 	 * Initialize various watermark
1718 	 */
1719 	txr->spare_desc = IGB_TX_SPARE;
1720 	txr->intr_nsegs = txr->num_tx_desc / 16;
1721 	txr->oact_hi_desc = txr->num_tx_desc / 2;
1722 	txr->oact_lo_desc = txr->num_tx_desc / 8;
1723 	if (txr->oact_lo_desc > IGB_TX_OACTIVE_MAX)
1724 		txr->oact_lo_desc = IGB_TX_OACTIVE_MAX;
1725 	if (txr->oact_lo_desc < txr->spare_desc + IGB_TX_RESERVED)
1726 		txr->oact_lo_desc = txr->spare_desc + IGB_TX_RESERVED;
1727 
1728 	return 0;
1729 }
1730 
1731 static void
1732 igb_free_tx_ring(struct igb_tx_ring *txr)
1733 {
1734 	int i;
1735 
1736 	for (i = 0; i < txr->num_tx_desc; ++i) {
1737 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1738 
1739 		if (txbuf->m_head != NULL) {
1740 			bus_dmamap_unload(txr->tx_tag, txbuf->map);
1741 			m_freem(txbuf->m_head);
1742 			txbuf->m_head = NULL;
1743 		}
1744 	}
1745 }
1746 
1747 static void
1748 igb_destroy_tx_ring(struct igb_tx_ring *txr, int ndesc)
1749 {
1750 	int i;
1751 
1752 	if (txr->txdma.dma_vaddr != NULL) {
1753 		bus_dmamap_unload(txr->txdma.dma_tag, txr->txdma.dma_map);
1754 		bus_dmamem_free(txr->txdma.dma_tag, txr->txdma.dma_vaddr,
1755 		    txr->txdma.dma_map);
1756 		bus_dma_tag_destroy(txr->txdma.dma_tag);
1757 		txr->txdma.dma_vaddr = NULL;
1758 	}
1759 
1760 	if (txr->tx_hdr != NULL) {
1761 		bus_dmamap_unload(txr->tx_hdr_dtag, txr->tx_hdr_dmap);
1762 		bus_dmamem_free(txr->tx_hdr_dtag, txr->tx_hdr,
1763 		    txr->tx_hdr_dmap);
1764 		bus_dma_tag_destroy(txr->tx_hdr_dtag);
1765 		txr->tx_hdr = NULL;
1766 	}
1767 
1768 	if (txr->tx_buf == NULL)
1769 		return;
1770 
1771 	for (i = 0; i < ndesc; ++i) {
1772 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1773 
1774 		KKASSERT(txbuf->m_head == NULL);
1775 		bus_dmamap_destroy(txr->tx_tag, txbuf->map);
1776 	}
1777 	bus_dma_tag_destroy(txr->tx_tag);
1778 
1779 	kfree(txr->tx_buf, M_DEVBUF);
1780 	txr->tx_buf = NULL;
1781 }
1782 
1783 static void
1784 igb_init_tx_ring(struct igb_tx_ring *txr)
1785 {
1786 	/* Clear the old descriptor contents */
1787 	bzero(txr->tx_base,
1788 	    sizeof(union e1000_adv_tx_desc) * txr->num_tx_desc);
1789 
1790 	/* Clear TX head write-back buffer */
1791 	*(txr->tx_hdr) = 0;
1792 
1793 	/* Reset indices */
1794 	txr->next_avail_desc = 0;
1795 	txr->next_to_clean = 0;
1796 	txr->tx_nsegs = 0;
1797 
1798 	/* Set number of descriptors available */
1799 	txr->tx_avail = txr->num_tx_desc;
1800 }
1801 
1802 static void
1803 igb_init_tx_unit(struct igb_softc *sc)
1804 {
1805 	struct e1000_hw *hw = &sc->hw;
1806 	uint32_t tctl;
1807 	int i;
1808 
1809 	/* Setup the Tx Descriptor Rings */
1810 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1811 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1812 		uint64_t bus_addr = txr->txdma.dma_paddr;
1813 		uint64_t hdr_paddr = txr->tx_hdr_paddr;
1814 		uint32_t txdctl = 0;
1815 		uint32_t dca_txctrl;
1816 
1817 		E1000_WRITE_REG(hw, E1000_TDLEN(i),
1818 		    txr->num_tx_desc * sizeof(struct e1000_tx_desc));
1819 		E1000_WRITE_REG(hw, E1000_TDBAH(i),
1820 		    (uint32_t)(bus_addr >> 32));
1821 		E1000_WRITE_REG(hw, E1000_TDBAL(i),
1822 		    (uint32_t)bus_addr);
1823 
1824 		/* Setup the HW Tx Head and Tail descriptor pointers */
1825 		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
1826 		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
1827 
1828 		/*
1829 		 * WTHRESH is ignored by the hardware, since header
1830 		 * write back mode is used.
1831 		 */
1832 		txdctl |= IGB_TX_PTHRESH;
1833 		txdctl |= IGB_TX_HTHRESH << 8;
1834 		txdctl |= IGB_TX_WTHRESH << 16;
1835 		txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1836 		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
1837 
1838 		dca_txctrl = E1000_READ_REG(hw, E1000_DCA_TXCTRL(i));
1839 		dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1840 		E1000_WRITE_REG(hw, E1000_DCA_TXCTRL(i), dca_txctrl);
1841 
1842 		/*
1843 		 * Don't set WB_on_EITR:
1844 		 * - 82575 does not have it
1845 		 * - It almost has no effect on 82576, see:
1846 		 *   82576 specification update errata #26
1847 		 * - It causes unnecessary bus traffic
1848 		 */
1849 		E1000_WRITE_REG(hw, E1000_TDWBAH(i),
1850 		    (uint32_t)(hdr_paddr >> 32));
1851 		E1000_WRITE_REG(hw, E1000_TDWBAL(i),
1852 		    ((uint32_t)hdr_paddr) | E1000_TX_HEAD_WB_ENABLE);
1853 	}
1854 
1855 	if (sc->vf_ifp)
1856 		return;
1857 
1858 	e1000_config_collision_dist(hw);
1859 
1860 	/* Program the Transmit Control Register */
1861 	tctl = E1000_READ_REG(hw, E1000_TCTL);
1862 	tctl &= ~E1000_TCTL_CT;
1863 	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
1864 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
1865 
1866 	/* This write will effectively turn on the transmit unit. */
1867 	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1868 }
1869 
1870 static boolean_t
1871 igb_txcsum_ctx(struct igb_tx_ring *txr, struct mbuf *mp)
1872 {
1873 	struct e1000_adv_tx_context_desc *TXD;
1874 	uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
1875 	int ehdrlen, ctxd, ip_hlen = 0;
1876 	boolean_t offload = TRUE;
1877 
1878 	if ((mp->m_pkthdr.csum_flags & IGB_CSUM_FEATURES) == 0)
1879 		offload = FALSE;
1880 
1881 	vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
1882 
1883 	ctxd = txr->next_avail_desc;
1884 	TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
1885 
1886 	/*
1887 	 * In advanced descriptors the vlan tag must
1888 	 * be placed into the context descriptor, thus
1889 	 * we need to be here just for that setup.
1890 	 */
1891 	if (mp->m_flags & M_VLANTAG) {
1892 		uint16_t vlantag;
1893 
1894 		vlantag = htole16(mp->m_pkthdr.ether_vlantag);
1895 		vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
1896 	} else if (!offload) {
1897 		return FALSE;
1898 	}
1899 
1900 	ehdrlen = mp->m_pkthdr.csum_lhlen;
1901 	KASSERT(ehdrlen > 0, ("invalid ether hlen"));
1902 
1903 	/* Set the ether header length */
1904 	vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
1905 	if (mp->m_pkthdr.csum_flags & CSUM_IP) {
1906 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
1907 		ip_hlen = mp->m_pkthdr.csum_iphlen;
1908 		KASSERT(ip_hlen > 0, ("invalid ip hlen"));
1909 	}
1910 	vlan_macip_lens |= ip_hlen;
1911 
1912 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1913 	if (mp->m_pkthdr.csum_flags & CSUM_TCP)
1914 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
1915 	else if (mp->m_pkthdr.csum_flags & CSUM_UDP)
1916 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
1917 
1918 	/* 82575 needs the queue index added */
1919 	if (txr->sc->hw.mac.type == e1000_82575)
1920 		mss_l4len_idx = txr->me << 4;
1921 
1922 	/* Now copy bits into descriptor */
1923 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
1924 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
1925 	TXD->seqnum_seed = htole32(0);
1926 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
1927 
1928 	/* We've consumed the first desc, adjust counters */
1929 	if (++ctxd == txr->num_tx_desc)
1930 		ctxd = 0;
1931 	txr->next_avail_desc = ctxd;
1932 	--txr->tx_avail;
1933 
1934 	return offload;
1935 }
1936 
1937 static void
1938 igb_txeof(struct igb_tx_ring *txr)
1939 {
1940 	struct ifnet *ifp = &txr->sc->arpcom.ac_if;
1941 	int first, hdr, avail;
1942 
1943 	if (txr->tx_avail == txr->num_tx_desc)
1944 		return;
1945 
1946 	first = txr->next_to_clean;
1947 	hdr = *(txr->tx_hdr);
1948 
1949 	if (first == hdr)
1950 		return;
1951 
1952 	avail = txr->tx_avail;
1953 	while (first != hdr) {
1954 		struct igb_tx_buf *txbuf = &txr->tx_buf[first];
1955 
1956 		++avail;
1957 		if (txbuf->m_head) {
1958 			bus_dmamap_unload(txr->tx_tag, txbuf->map);
1959 			m_freem(txbuf->m_head);
1960 			txbuf->m_head = NULL;
1961 			++ifp->if_opackets;
1962 		}
1963 		if (++first == txr->num_tx_desc)
1964 			first = 0;
1965 	}
1966 	txr->next_to_clean = first;
1967 	txr->tx_avail = avail;
1968 
1969 	/*
1970 	 * If we have a minimum free, clear IFF_OACTIVE
1971 	 * to tell the stack that it is OK to send packets.
1972 	 */
1973 	if (IGB_IS_NOT_OACTIVE(txr)) {
1974 		ifp->if_flags &= ~IFF_OACTIVE;
1975 
1976 		/*
1977 		 * We have enough TX descriptors, turn off
1978 		 * the watchdog.  We allow small amount of
1979 		 * packets (roughly intr_nsegs) pending on
1980 		 * the transmit ring.
1981 		 */
1982 		ifp->if_timer = 0;
1983 	}
1984 }
1985 
1986 static int
1987 igb_create_rx_ring(struct igb_rx_ring *rxr)
1988 {
1989 	int rsize, i, error, nrxd;
1990 
1991 	/*
1992 	 * Validate number of receive descriptors. It must not exceed
1993 	 * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
1994 	 */
1995 	nrxd = device_getenv_int(rxr->sc->dev, "rxd", igb_rxd);
1996 	if ((nrxd * sizeof(struct e1000_rx_desc)) % IGB_DBA_ALIGN != 0 ||
1997 	    nrxd > IGB_MAX_RXD || nrxd < IGB_MIN_RXD) {
1998 		device_printf(rxr->sc->dev,
1999 		    "Using %d RX descriptors instead of %d!\n",
2000 		    IGB_DEFAULT_RXD, nrxd);
2001 		rxr->num_rx_desc = IGB_DEFAULT_RXD;
2002 	} else {
2003 		rxr->num_rx_desc = nrxd;
2004 	}
2005 
2006 	/*
2007 	 * Allocate RX descriptor ring
2008 	 */
2009 	rsize = roundup2(rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc),
2010 	    IGB_DBA_ALIGN);
2011 	rxr->rxdma.dma_vaddr = bus_dmamem_coherent_any(rxr->sc->parent_tag,
2012 	    IGB_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2013 	    &rxr->rxdma.dma_tag, &rxr->rxdma.dma_map,
2014 	    &rxr->rxdma.dma_paddr);
2015 	if (rxr->rxdma.dma_vaddr == NULL) {
2016 		device_printf(rxr->sc->dev,
2017 		    "Unable to allocate RxDescriptor memory\n");
2018 		return ENOMEM;
2019 	}
2020 	rxr->rx_base = rxr->rxdma.dma_vaddr;
2021 	bzero(rxr->rx_base, rsize);
2022 
2023 	rsize = __VM_CACHELINE_ALIGN(
2024 	    sizeof(struct igb_rx_buf) * rxr->num_rx_desc);
2025 	rxr->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2026 
2027 	/*
2028 	 * Create DMA tag for RX buffers
2029 	 */
2030 	error = bus_dma_tag_create(rxr->sc->parent_tag,
2031 	    1, 0,		/* alignment, bounds */
2032 	    BUS_SPACE_MAXADDR,	/* lowaddr */
2033 	    BUS_SPACE_MAXADDR,	/* highaddr */
2034 	    NULL, NULL,		/* filter, filterarg */
2035 	    MCLBYTES,		/* maxsize */
2036 	    1,			/* nsegments */
2037 	    MCLBYTES,		/* maxsegsize */
2038 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2039 	    &rxr->rx_tag);
2040 	if (error) {
2041 		device_printf(rxr->sc->dev,
2042 		    "Unable to create RX payload DMA tag\n");
2043 		kfree(rxr->rx_buf, M_DEVBUF);
2044 		rxr->rx_buf = NULL;
2045 		return error;
2046 	}
2047 
2048 	/*
2049 	 * Create spare DMA map for RX buffers
2050 	 */
2051 	error = bus_dmamap_create(rxr->rx_tag, BUS_DMA_WAITOK,
2052 	    &rxr->rx_sparemap);
2053 	if (error) {
2054 		device_printf(rxr->sc->dev,
2055 		    "Unable to create spare RX DMA maps\n");
2056 		bus_dma_tag_destroy(rxr->rx_tag);
2057 		kfree(rxr->rx_buf, M_DEVBUF);
2058 		rxr->rx_buf = NULL;
2059 		return error;
2060 	}
2061 
2062 	/*
2063 	 * Create DMA maps for RX buffers
2064 	 */
2065 	for (i = 0; i < rxr->num_rx_desc; i++) {
2066 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2067 
2068 		error = bus_dmamap_create(rxr->rx_tag,
2069 		    BUS_DMA_WAITOK, &rxbuf->map);
2070 		if (error) {
2071 			device_printf(rxr->sc->dev,
2072 			    "Unable to create RX DMA maps\n");
2073 			igb_destroy_rx_ring(rxr, i);
2074 			return error;
2075 		}
2076 	}
2077 	return 0;
2078 }
2079 
2080 static void
2081 igb_free_rx_ring(struct igb_rx_ring *rxr)
2082 {
2083 	int i;
2084 
2085 	for (i = 0; i < rxr->num_rx_desc; ++i) {
2086 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2087 
2088 		if (rxbuf->m_head != NULL) {
2089 			bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2090 			m_freem(rxbuf->m_head);
2091 			rxbuf->m_head = NULL;
2092 		}
2093 	}
2094 
2095 	if (rxr->fmp != NULL)
2096 		m_freem(rxr->fmp);
2097 	rxr->fmp = NULL;
2098 	rxr->lmp = NULL;
2099 }
2100 
2101 static void
2102 igb_destroy_rx_ring(struct igb_rx_ring *rxr, int ndesc)
2103 {
2104 	int i;
2105 
2106 	if (rxr->rxdma.dma_vaddr != NULL) {
2107 		bus_dmamap_unload(rxr->rxdma.dma_tag, rxr->rxdma.dma_map);
2108 		bus_dmamem_free(rxr->rxdma.dma_tag, rxr->rxdma.dma_vaddr,
2109 		    rxr->rxdma.dma_map);
2110 		bus_dma_tag_destroy(rxr->rxdma.dma_tag);
2111 		rxr->rxdma.dma_vaddr = NULL;
2112 	}
2113 
2114 	if (rxr->rx_buf == NULL)
2115 		return;
2116 
2117 	for (i = 0; i < ndesc; ++i) {
2118 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2119 
2120 		KKASSERT(rxbuf->m_head == NULL);
2121 		bus_dmamap_destroy(rxr->rx_tag, rxbuf->map);
2122 	}
2123 	bus_dmamap_destroy(rxr->rx_tag, rxr->rx_sparemap);
2124 	bus_dma_tag_destroy(rxr->rx_tag);
2125 
2126 	kfree(rxr->rx_buf, M_DEVBUF);
2127 	rxr->rx_buf = NULL;
2128 }
2129 
2130 static void
2131 igb_setup_rxdesc(union e1000_adv_rx_desc *rxd, const struct igb_rx_buf *rxbuf)
2132 {
2133 	rxd->read.pkt_addr = htole64(rxbuf->paddr);
2134 	rxd->wb.upper.status_error = 0;
2135 }
2136 
2137 static int
2138 igb_newbuf(struct igb_rx_ring *rxr, int i, boolean_t wait)
2139 {
2140 	struct mbuf *m;
2141 	bus_dma_segment_t seg;
2142 	bus_dmamap_t map;
2143 	struct igb_rx_buf *rxbuf;
2144 	int error, nseg;
2145 
2146 	m = m_getcl(wait ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2147 	if (m == NULL) {
2148 		if (wait) {
2149 			if_printf(&rxr->sc->arpcom.ac_if,
2150 			    "Unable to allocate RX mbuf\n");
2151 		}
2152 		return ENOBUFS;
2153 	}
2154 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2155 
2156 	if (rxr->sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2157 		m_adj(m, ETHER_ALIGN);
2158 
2159 	error = bus_dmamap_load_mbuf_segment(rxr->rx_tag,
2160 	    rxr->rx_sparemap, m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
2161 	if (error) {
2162 		m_freem(m);
2163 		if (wait) {
2164 			if_printf(&rxr->sc->arpcom.ac_if,
2165 			    "Unable to load RX mbuf\n");
2166 		}
2167 		return error;
2168 	}
2169 
2170 	rxbuf = &rxr->rx_buf[i];
2171 	if (rxbuf->m_head != NULL)
2172 		bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2173 
2174 	map = rxbuf->map;
2175 	rxbuf->map = rxr->rx_sparemap;
2176 	rxr->rx_sparemap = map;
2177 
2178 	rxbuf->m_head = m;
2179 	rxbuf->paddr = seg.ds_addr;
2180 
2181 	igb_setup_rxdesc(&rxr->rx_base[i], rxbuf);
2182 	return 0;
2183 }
2184 
2185 static int
2186 igb_init_rx_ring(struct igb_rx_ring *rxr)
2187 {
2188 	int i;
2189 
2190 	/* Clear the ring contents */
2191 	bzero(rxr->rx_base,
2192 	    rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc));
2193 
2194 	/* Now replenish the ring mbufs */
2195 	for (i = 0; i < rxr->num_rx_desc; ++i) {
2196 		int error;
2197 
2198 		error = igb_newbuf(rxr, i, TRUE);
2199 		if (error)
2200 			return error;
2201 	}
2202 
2203 	/* Setup our descriptor indices */
2204 	rxr->next_to_check = 0;
2205 
2206 	rxr->fmp = NULL;
2207 	rxr->lmp = NULL;
2208 	rxr->discard = FALSE;
2209 
2210 	return 0;
2211 }
2212 
2213 static void
2214 igb_init_rx_unit(struct igb_softc *sc)
2215 {
2216 	struct ifnet *ifp = &sc->arpcom.ac_if;
2217 	struct e1000_hw *hw = &sc->hw;
2218 	uint32_t rctl, rxcsum, srrctl = 0;
2219 	int i;
2220 
2221 	/*
2222 	 * Make sure receives are disabled while setting
2223 	 * up the descriptor ring
2224 	 */
2225 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2226 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2227 
2228 #if 0
2229 	/*
2230 	** Set up for header split
2231 	*/
2232 	if (igb_header_split) {
2233 		/* Use a standard mbuf for the header */
2234 		srrctl |= IGB_HDR_BUF << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2235 		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2236 	} else
2237 #endif
2238 		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2239 
2240 	/*
2241 	** Set up for jumbo frames
2242 	*/
2243 	if (ifp->if_mtu > ETHERMTU) {
2244 		rctl |= E1000_RCTL_LPE;
2245 #if 0
2246 		if (adapter->rx_mbuf_sz == MJUMPAGESIZE) {
2247 			srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2248 			rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
2249 		} else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) {
2250 			srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2251 			rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
2252 		}
2253 		/* Set maximum packet len */
2254 		psize = adapter->max_frame_size;
2255 		/* are we on a vlan? */
2256 		if (adapter->ifp->if_vlantrunk != NULL)
2257 			psize += VLAN_TAG_SIZE;
2258 		E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
2259 #else
2260 		srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2261 		rctl |= E1000_RCTL_SZ_2048;
2262 #endif
2263 	} else {
2264 		rctl &= ~E1000_RCTL_LPE;
2265 		srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2266 		rctl |= E1000_RCTL_SZ_2048;
2267 	}
2268 
2269 	/* Setup the Base and Length of the Rx Descriptor Rings */
2270 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2271 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
2272 		uint64_t bus_addr = rxr->rxdma.dma_paddr;
2273 		uint32_t rxdctl;
2274 
2275 		E1000_WRITE_REG(hw, E1000_RDLEN(i),
2276 		    rxr->num_rx_desc * sizeof(struct e1000_rx_desc));
2277 		E1000_WRITE_REG(hw, E1000_RDBAH(i),
2278 		    (uint32_t)(bus_addr >> 32));
2279 		E1000_WRITE_REG(hw, E1000_RDBAL(i),
2280 		    (uint32_t)bus_addr);
2281 		E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2282 		/* Enable this Queue */
2283 		rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2284 		rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2285 		rxdctl &= 0xFFF00000;
2286 		rxdctl |= IGB_RX_PTHRESH;
2287 		rxdctl |= IGB_RX_HTHRESH << 8;
2288 		/*
2289 		 * Don't set WTHRESH to a value above 1 on 82576, see:
2290 		 * 82576 specification update errata #26
2291 		 */
2292 		rxdctl |= IGB_RX_WTHRESH << 16;
2293 		E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2294 	}
2295 
2296 	rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2297 	rxcsum &= ~(E1000_RXCSUM_PCSS_MASK | E1000_RXCSUM_IPPCSE);
2298 
2299 	/*
2300 	 * Receive Checksum Offload for TCP and UDP
2301 	 *
2302 	 * Checksum offloading is also enabled if multiple receive
2303 	 * queue is to be supported, since we need it to figure out
2304 	 * fragments.
2305 	 */
2306 	if ((ifp->if_capenable & IFCAP_RXCSUM) || IGB_ENABLE_HWRSS(sc)) {
2307 		/*
2308 		 * NOTE:
2309 		 * PCSD must be enabled to enable multiple
2310 		 * receive queues.
2311 		 */
2312 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2313 		    E1000_RXCSUM_PCSD;
2314 	} else {
2315 		rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2316 		    E1000_RXCSUM_PCSD);
2317 	}
2318 	E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2319 
2320 	if (IGB_ENABLE_HWRSS(sc)) {
2321 		uint8_t key[IGB_NRSSRK * IGB_RSSRK_SIZE];
2322 		uint32_t reta_shift;
2323 		int j, r;
2324 
2325 		/*
2326 		 * NOTE:
2327 		 * When we reach here, RSS has already been disabled
2328 		 * in igb_stop(), so we could safely configure RSS key
2329 		 * and redirect table.
2330 		 */
2331 
2332 		/*
2333 		 * Configure RSS key
2334 		 */
2335 		toeplitz_get_key(key, sizeof(key));
2336 		for (i = 0; i < IGB_NRSSRK; ++i) {
2337 			uint32_t rssrk;
2338 
2339 			rssrk = IGB_RSSRK_VAL(key, i);
2340 			IGB_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2341 
2342 			E1000_WRITE_REG(hw, E1000_RSSRK(i), rssrk);
2343 		}
2344 
2345 		/*
2346 		 * Configure RSS redirect table in following fashion:
2347 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2348 		 */
2349 		reta_shift = IGB_RETA_SHIFT;
2350 		if (hw->mac.type == e1000_82575)
2351 			reta_shift = IGB_RETA_SHIFT_82575;
2352 
2353 		r = 0;
2354 		for (j = 0; j < IGB_NRETA; ++j) {
2355 			uint32_t reta = 0;
2356 
2357 			for (i = 0; i < IGB_RETA_SIZE; ++i) {
2358 				uint32_t q;
2359 
2360 				q = (r % sc->rx_ring_inuse) << reta_shift;
2361 				reta |= q << (8 * i);
2362 				++r;
2363 			}
2364 			IGB_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2365 			E1000_WRITE_REG(hw, E1000_RETA(j), reta);
2366 		}
2367 
2368 		/*
2369 		 * Enable multiple receive queues.
2370 		 * Enable IPv4 RSS standard hash functions.
2371 		 * Disable RSS interrupt on 82575
2372 		 */
2373 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2374 				E1000_MRQC_ENABLE_RSS_4Q |
2375 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2376 				E1000_MRQC_RSS_FIELD_IPV4);
2377 	}
2378 
2379 	/* Setup the Receive Control Register */
2380 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2381 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2382 	    E1000_RCTL_RDMTS_HALF |
2383 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2384 	/* Strip CRC bytes. */
2385 	rctl |= E1000_RCTL_SECRC;
2386 	/* Make sure VLAN Filters are off */
2387 	rctl &= ~E1000_RCTL_VFE;
2388 	/* Don't store bad packets */
2389 	rctl &= ~E1000_RCTL_SBP;
2390 
2391 	/* Enable Receives */
2392 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2393 
2394 	/*
2395 	 * Setup the HW Rx Head and Tail Descriptor Pointers
2396 	 *   - needs to be after enable
2397 	 */
2398 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2399 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
2400 
2401 		E1000_WRITE_REG(hw, E1000_RDH(i), rxr->next_to_check);
2402 		E1000_WRITE_REG(hw, E1000_RDT(i), rxr->num_rx_desc - 1);
2403 	}
2404 }
2405 
2406 static void
2407 igb_rxeof(struct igb_rx_ring *rxr, int count)
2408 {
2409 	struct ifnet *ifp = &rxr->sc->arpcom.ac_if;
2410 	union e1000_adv_rx_desc	*cur;
2411 	uint32_t staterr;
2412 	int i;
2413 
2414 	i = rxr->next_to_check;
2415 	cur = &rxr->rx_base[i];
2416 	staterr = le32toh(cur->wb.upper.status_error);
2417 
2418 	if ((staterr & E1000_RXD_STAT_DD) == 0)
2419 		return;
2420 
2421 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2422 		struct pktinfo *pi = NULL, pi0;
2423 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2424 		struct mbuf *m = NULL;
2425 		boolean_t eop;
2426 
2427 		eop = (staterr & E1000_RXD_STAT_EOP) ? TRUE : FALSE;
2428 		if (eop)
2429 			--count;
2430 
2431 		if ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) == 0 &&
2432 		    !rxr->discard) {
2433 			struct mbuf *mp = rxbuf->m_head;
2434 			uint32_t hash, hashtype;
2435 			uint16_t vlan;
2436 			int len;
2437 
2438 			len = le16toh(cur->wb.upper.length);
2439 			if (rxr->sc->hw.mac.type == e1000_i350 &&
2440 			    (staterr & E1000_RXDEXT_STATERR_LB))
2441 				vlan = be16toh(cur->wb.upper.vlan);
2442 			else
2443 				vlan = le16toh(cur->wb.upper.vlan);
2444 
2445 			hash = le32toh(cur->wb.lower.hi_dword.rss);
2446 			hashtype = le32toh(cur->wb.lower.lo_dword.data) &
2447 			    E1000_RXDADV_RSSTYPE_MASK;
2448 
2449 			IGB_RSS_DPRINTF(rxr->sc, 10,
2450 			    "ring%d, hash 0x%08x, hashtype %u\n",
2451 			    rxr->me, hash, hashtype);
2452 
2453 			bus_dmamap_sync(rxr->rx_tag, rxbuf->map,
2454 			    BUS_DMASYNC_POSTREAD);
2455 
2456 			if (igb_newbuf(rxr, i, FALSE) != 0) {
2457 				ifp->if_iqdrops++;
2458 				goto discard;
2459 			}
2460 
2461 			mp->m_len = len;
2462 			if (rxr->fmp == NULL) {
2463 				mp->m_pkthdr.len = len;
2464 				rxr->fmp = mp;
2465 				rxr->lmp = mp;
2466 			} else {
2467 				rxr->lmp->m_next = mp;
2468 				rxr->lmp = rxr->lmp->m_next;
2469 				rxr->fmp->m_pkthdr.len += len;
2470 			}
2471 
2472 			if (eop) {
2473 				m = rxr->fmp;
2474 				rxr->fmp = NULL;
2475 				rxr->lmp = NULL;
2476 
2477 				m->m_pkthdr.rcvif = ifp;
2478 				ifp->if_ipackets++;
2479 
2480 				if (ifp->if_capenable & IFCAP_RXCSUM)
2481 					igb_rxcsum(staterr, m);
2482 
2483 				if (staterr & E1000_RXD_STAT_VP) {
2484 					m->m_pkthdr.ether_vlantag = vlan;
2485 					m->m_flags |= M_VLANTAG;
2486 				}
2487 
2488 				if (ifp->if_capenable & IFCAP_RSS) {
2489 					pi = igb_rssinfo(m, &pi0,
2490 					    hash, hashtype, staterr);
2491 				}
2492 #ifdef IGB_RSS_DEBUG
2493 				rxr->rx_packets++;
2494 #endif
2495 			}
2496 		} else {
2497 			ifp->if_ierrors++;
2498 discard:
2499 			igb_setup_rxdesc(cur, rxbuf);
2500 			if (!eop)
2501 				rxr->discard = TRUE;
2502 			else
2503 				rxr->discard = FALSE;
2504 			if (rxr->fmp != NULL) {
2505 				m_freem(rxr->fmp);
2506 				rxr->fmp = NULL;
2507 				rxr->lmp = NULL;
2508 			}
2509 			m = NULL;
2510 		}
2511 
2512 		if (m != NULL)
2513 			ether_input_pkt(ifp, m, pi);
2514 
2515 		/* Advance our pointers to the next descriptor. */
2516 		if (++i == rxr->num_rx_desc)
2517 			i = 0;
2518 
2519 		cur = &rxr->rx_base[i];
2520 		staterr = le32toh(cur->wb.upper.status_error);
2521 	}
2522 	rxr->next_to_check = i;
2523 
2524 	if (--i < 0)
2525 		i = rxr->num_rx_desc - 1;
2526 	E1000_WRITE_REG(&rxr->sc->hw, E1000_RDT(rxr->me), i);
2527 }
2528 
2529 
2530 static void
2531 igb_set_vlan(struct igb_softc *sc)
2532 {
2533 	struct e1000_hw *hw = &sc->hw;
2534 	uint32_t reg;
2535 #if 0
2536 	struct ifnet *ifp = sc->arpcom.ac_if;
2537 #endif
2538 
2539 	if (sc->vf_ifp) {
2540 		e1000_rlpml_set_vf(hw, sc->max_frame_size + VLAN_TAG_SIZE);
2541 		return;
2542 	}
2543 
2544 	reg = E1000_READ_REG(hw, E1000_CTRL);
2545 	reg |= E1000_CTRL_VME;
2546 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
2547 
2548 #if 0
2549 	/* Enable the Filter Table */
2550 	if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
2551 		reg = E1000_READ_REG(hw, E1000_RCTL);
2552 		reg &= ~E1000_RCTL_CFIEN;
2553 		reg |= E1000_RCTL_VFE;
2554 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
2555 	}
2556 #endif
2557 
2558 	/* Update the frame size */
2559 	E1000_WRITE_REG(&sc->hw, E1000_RLPML,
2560 	    sc->max_frame_size + VLAN_TAG_SIZE);
2561 
2562 #if 0
2563 	/* Don't bother with table if no vlans */
2564 	if ((adapter->num_vlans == 0) ||
2565 	    ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0))
2566 		return;
2567 	/*
2568 	** A soft reset zero's out the VFTA, so
2569 	** we need to repopulate it now.
2570 	*/
2571 	for (int i = 0; i < IGB_VFTA_SIZE; i++)
2572 		if (adapter->shadow_vfta[i] != 0) {
2573 			if (adapter->vf_ifp)
2574 				e1000_vfta_set_vf(hw,
2575 				    adapter->shadow_vfta[i], TRUE);
2576 			else
2577 				E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
2578 				 i, adapter->shadow_vfta[i]);
2579 		}
2580 #endif
2581 }
2582 
2583 static void
2584 igb_enable_intr(struct igb_softc *sc)
2585 {
2586 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2587 		lwkt_serialize_handler_enable(&sc->main_serialize);
2588 	} else {
2589 		int i;
2590 
2591 		for (i = 0; i < sc->msix_cnt; ++i) {
2592 			lwkt_serialize_handler_enable(
2593 			    sc->msix_data[i].msix_serialize);
2594 		}
2595 	}
2596 
2597 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2598 		if (sc->intr_type == PCI_INTR_TYPE_MSIX)
2599 			E1000_WRITE_REG(&sc->hw, E1000_EIAC, sc->intr_mask);
2600 		else
2601 			E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2602 		E1000_WRITE_REG(&sc->hw, E1000_EIAM, sc->intr_mask);
2603 		E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
2604 		E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
2605 	} else {
2606 		E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
2607 	}
2608 	E1000_WRITE_FLUSH(&sc->hw);
2609 }
2610 
2611 static void
2612 igb_disable_intr(struct igb_softc *sc)
2613 {
2614 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2615 		E1000_WRITE_REG(&sc->hw, E1000_EIMC, 0xffffffff);
2616 		E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2617 	}
2618 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2619 	E1000_WRITE_FLUSH(&sc->hw);
2620 
2621 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2622 		lwkt_serialize_handler_disable(&sc->main_serialize);
2623 	} else {
2624 		int i;
2625 
2626 		for (i = 0; i < sc->msix_cnt; ++i) {
2627 			lwkt_serialize_handler_disable(
2628 			    sc->msix_data[i].msix_serialize);
2629 		}
2630 	}
2631 }
2632 
2633 /*
2634  * Bit of a misnomer, what this really means is
2635  * to enable OS management of the system... aka
2636  * to disable special hardware management features
2637  */
2638 static void
2639 igb_get_mgmt(struct igb_softc *sc)
2640 {
2641 	if (sc->flags & IGB_FLAG_HAS_MGMT) {
2642 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2643 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2644 
2645 		/* disable hardware interception of ARP */
2646 		manc &= ~E1000_MANC_ARP_EN;
2647 
2648 		/* enable receiving management packets to the host */
2649 		manc |= E1000_MANC_EN_MNG2HOST;
2650 		manc2h |= 1 << 5; /* Mng Port 623 */
2651 		manc2h |= 1 << 6; /* Mng Port 664 */
2652 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
2653 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2654 	}
2655 }
2656 
2657 /*
2658  * Give control back to hardware management controller
2659  * if there is one.
2660  */
2661 static void
2662 igb_rel_mgmt(struct igb_softc *sc)
2663 {
2664 	if (sc->flags & IGB_FLAG_HAS_MGMT) {
2665 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2666 
2667 		/* Re-enable hardware interception of ARP */
2668 		manc |= E1000_MANC_ARP_EN;
2669 		manc &= ~E1000_MANC_EN_MNG2HOST;
2670 
2671 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2672 	}
2673 }
2674 
2675 /*
2676  * Sets CTRL_EXT:DRV_LOAD bit.
2677  *
2678  * For ASF and Pass Through versions of f/w this means that
2679  * the driver is loaded.
2680  */
2681 static void
2682 igb_get_hw_control(struct igb_softc *sc)
2683 {
2684 	uint32_t ctrl_ext;
2685 
2686 	if (sc->vf_ifp)
2687 		return;
2688 
2689 	/* Let firmware know the driver has taken over */
2690 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2691 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2692 	    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2693 }
2694 
2695 /*
2696  * Resets CTRL_EXT:DRV_LOAD bit.
2697  *
2698  * For ASF and Pass Through versions of f/w this means that the
2699  * driver is no longer loaded.
2700  */
2701 static void
2702 igb_rel_hw_control(struct igb_softc *sc)
2703 {
2704 	uint32_t ctrl_ext;
2705 
2706 	if (sc->vf_ifp)
2707 		return;
2708 
2709 	/* Let firmware taken over control of h/w */
2710 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2711 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2712 	    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2713 }
2714 
2715 static int
2716 igb_is_valid_ether_addr(const uint8_t *addr)
2717 {
2718 	uint8_t zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
2719 
2720 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
2721 		return FALSE;
2722 	return TRUE;
2723 }
2724 
2725 /*
2726  * Enable PCI Wake On Lan capability
2727  */
2728 static void
2729 igb_enable_wol(device_t dev)
2730 {
2731 	uint16_t cap, status;
2732 	uint8_t id;
2733 
2734 	/* First find the capabilities pointer*/
2735 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
2736 
2737 	/* Read the PM Capabilities */
2738 	id = pci_read_config(dev, cap, 1);
2739 	if (id != PCIY_PMG)     /* Something wrong */
2740 		return;
2741 
2742 	/*
2743 	 * OK, we have the power capabilities,
2744 	 * so now get the status register
2745 	 */
2746 	cap += PCIR_POWER_STATUS;
2747 	status = pci_read_config(dev, cap, 2);
2748 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2749 	pci_write_config(dev, cap, status, 2);
2750 }
2751 
2752 static void
2753 igb_update_stats_counters(struct igb_softc *sc)
2754 {
2755 	struct e1000_hw *hw = &sc->hw;
2756 	struct e1000_hw_stats *stats;
2757 	struct ifnet *ifp = &sc->arpcom.ac_if;
2758 
2759 	/*
2760 	 * The virtual function adapter has only a
2761 	 * small controlled set of stats, do only
2762 	 * those and return.
2763 	 */
2764 	if (sc->vf_ifp) {
2765 		igb_update_vf_stats_counters(sc);
2766 		return;
2767 	}
2768 	stats = sc->stats;
2769 
2770 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
2771 	    (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
2772 		stats->symerrs +=
2773 		    E1000_READ_REG(hw,E1000_SYMERRS);
2774 		stats->sec += E1000_READ_REG(hw, E1000_SEC);
2775 	}
2776 
2777 	stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
2778 	stats->mpc += E1000_READ_REG(hw, E1000_MPC);
2779 	stats->scc += E1000_READ_REG(hw, E1000_SCC);
2780 	stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
2781 
2782 	stats->mcc += E1000_READ_REG(hw, E1000_MCC);
2783 	stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
2784 	stats->colc += E1000_READ_REG(hw, E1000_COLC);
2785 	stats->dc += E1000_READ_REG(hw, E1000_DC);
2786 	stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
2787 	stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
2788 	stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
2789 
2790 	/*
2791 	 * For watchdog management we need to know if we have been
2792 	 * paused during the last interval, so capture that here.
2793 	 */
2794 	sc->pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
2795 	stats->xoffrxc += sc->pause_frames;
2796 	stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
2797 	stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
2798 	stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
2799 	stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
2800 	stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
2801 	stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
2802 	stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
2803 	stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
2804 	stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
2805 	stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
2806 	stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
2807 	stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
2808 
2809 	/* For the 64-bit byte counters the low dword must be read first. */
2810 	/* Both registers clear on the read of the high dword */
2811 
2812 	stats->gorc += E1000_READ_REG(hw, E1000_GORCL) +
2813 	    ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
2814 	stats->gotc += E1000_READ_REG(hw, E1000_GOTCL) +
2815 	    ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
2816 
2817 	stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
2818 	stats->ruc += E1000_READ_REG(hw, E1000_RUC);
2819 	stats->rfc += E1000_READ_REG(hw, E1000_RFC);
2820 	stats->roc += E1000_READ_REG(hw, E1000_ROC);
2821 	stats->rjc += E1000_READ_REG(hw, E1000_RJC);
2822 
2823 	stats->tor += E1000_READ_REG(hw, E1000_TORH);
2824 	stats->tot += E1000_READ_REG(hw, E1000_TOTH);
2825 
2826 	stats->tpr += E1000_READ_REG(hw, E1000_TPR);
2827 	stats->tpt += E1000_READ_REG(hw, E1000_TPT);
2828 	stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
2829 	stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
2830 	stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
2831 	stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
2832 	stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
2833 	stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
2834 	stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
2835 	stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
2836 
2837 	/* Interrupt Counts */
2838 
2839 	stats->iac += E1000_READ_REG(hw, E1000_IAC);
2840 	stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
2841 	stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
2842 	stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
2843 	stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
2844 	stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
2845 	stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
2846 	stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
2847 	stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
2848 
2849 	/* Host to Card Statistics */
2850 
2851 	stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
2852 	stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
2853 	stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
2854 	stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
2855 	stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
2856 	stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
2857 	stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
2858 	stats->hgorc += (E1000_READ_REG(hw, E1000_HGORCL) +
2859 	    ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32));
2860 	stats->hgotc += (E1000_READ_REG(hw, E1000_HGOTCL) +
2861 	    ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32));
2862 	stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
2863 	stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
2864 	stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
2865 
2866 	stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
2867 	stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
2868 	stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
2869 	stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
2870 	stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
2871 	stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
2872 
2873 	ifp->if_collisions = stats->colc;
2874 
2875 	/* Rx Errors */
2876 	ifp->if_ierrors = stats->rxerrc + stats->crcerrs + stats->algnerrc +
2877 	    stats->ruc + stats->roc + stats->mpc + stats->cexterr;
2878 
2879 	/* Tx Errors */
2880 	ifp->if_oerrors = stats->ecol + stats->latecol + sc->watchdog_events;
2881 
2882 	/* Driver specific counters */
2883 	sc->device_control = E1000_READ_REG(hw, E1000_CTRL);
2884 	sc->rx_control = E1000_READ_REG(hw, E1000_RCTL);
2885 	sc->int_mask = E1000_READ_REG(hw, E1000_IMS);
2886 	sc->eint_mask = E1000_READ_REG(hw, E1000_EIMS);
2887 	sc->packet_buf_alloc_tx =
2888 	    ((E1000_READ_REG(hw, E1000_PBA) & 0xffff0000) >> 16);
2889 	sc->packet_buf_alloc_rx =
2890 	    (E1000_READ_REG(hw, E1000_PBA) & 0xffff);
2891 }
2892 
2893 static void
2894 igb_vf_init_stats(struct igb_softc *sc)
2895 {
2896 	struct e1000_hw *hw = &sc->hw;
2897 	struct e1000_vf_stats *stats;
2898 
2899 	stats = sc->stats;
2900 	stats->last_gprc = E1000_READ_REG(hw, E1000_VFGPRC);
2901 	stats->last_gorc = E1000_READ_REG(hw, E1000_VFGORC);
2902 	stats->last_gptc = E1000_READ_REG(hw, E1000_VFGPTC);
2903 	stats->last_gotc = E1000_READ_REG(hw, E1000_VFGOTC);
2904 	stats->last_mprc = E1000_READ_REG(hw, E1000_VFMPRC);
2905 }
2906 
2907 static void
2908 igb_update_vf_stats_counters(struct igb_softc *sc)
2909 {
2910 	struct e1000_hw *hw = &sc->hw;
2911 	struct e1000_vf_stats *stats;
2912 
2913 	if (sc->link_speed == 0)
2914 		return;
2915 
2916 	stats = sc->stats;
2917 	UPDATE_VF_REG(E1000_VFGPRC, stats->last_gprc, stats->gprc);
2918 	UPDATE_VF_REG(E1000_VFGORC, stats->last_gorc, stats->gorc);
2919 	UPDATE_VF_REG(E1000_VFGPTC, stats->last_gptc, stats->gptc);
2920 	UPDATE_VF_REG(E1000_VFGOTC, stats->last_gotc, stats->gotc);
2921 	UPDATE_VF_REG(E1000_VFMPRC, stats->last_mprc, stats->mprc);
2922 }
2923 
2924 #ifdef IFPOLL_ENABLE
2925 
2926 static void
2927 igb_npoll_status(struct ifnet *ifp)
2928 {
2929 	struct igb_softc *sc = ifp->if_softc;
2930 	uint32_t reg_icr;
2931 
2932 	ASSERT_SERIALIZED(&sc->main_serialize);
2933 
2934 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
2935 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
2936 		sc->hw.mac.get_link_status = 1;
2937 		igb_update_link_status(sc);
2938 	}
2939 }
2940 
2941 static void
2942 igb_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
2943 {
2944 	struct igb_tx_ring *txr = arg;
2945 
2946 	ASSERT_SERIALIZED(&txr->tx_serialize);
2947 
2948 	igb_txeof(txr);
2949 	if (!ifq_is_empty(&ifp->if_snd))
2950 		if_devstart(ifp);
2951 }
2952 
2953 static void
2954 igb_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
2955 {
2956 	struct igb_rx_ring *rxr = arg;
2957 
2958 	ASSERT_SERIALIZED(&rxr->rx_serialize);
2959 
2960 	igb_rxeof(rxr, cycle);
2961 }
2962 
2963 static void
2964 igb_npoll(struct ifnet *ifp, struct ifpoll_info *info)
2965 {
2966 	struct igb_softc *sc = ifp->if_softc;
2967 
2968 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2969 
2970 	if (info) {
2971 		struct igb_tx_ring *txr;
2972 		int i, off;
2973 
2974 		info->ifpi_status.status_func = igb_npoll_status;
2975 		info->ifpi_status.serializer = &sc->main_serialize;
2976 
2977 		off = sc->tx_npoll_off;
2978 		KKASSERT(off < ncpus2);
2979 		txr = &sc->tx_rings[0];
2980 		info->ifpi_tx[off].poll_func = igb_npoll_tx;
2981 		info->ifpi_tx[off].arg = txr;
2982 		info->ifpi_tx[off].serializer = &txr->tx_serialize;
2983 
2984 		off = sc->rx_npoll_off;
2985 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
2986 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
2987 			int idx = i + off;
2988 
2989 			KKASSERT(idx < ncpus2);
2990 			info->ifpi_rx[idx].poll_func = igb_npoll_rx;
2991 			info->ifpi_rx[idx].arg = rxr;
2992 			info->ifpi_rx[idx].serializer = &rxr->rx_serialize;
2993 		}
2994 
2995 		if (ifp->if_flags & IFF_RUNNING) {
2996 			if (sc->rx_ring_inuse == sc->rx_ring_cnt)
2997 				igb_disable_intr(sc);
2998 			else
2999 				igb_init(sc);
3000 		}
3001 		ifp->if_npoll_cpuid = sc->tx_npoll_off;
3002 	} else {
3003 		if (ifp->if_flags & IFF_RUNNING) {
3004 			if (sc->rx_ring_inuse == sc->rx_ring_cnt)
3005 				igb_enable_intr(sc);
3006 			else
3007 				igb_init(sc);
3008 		}
3009 		ifp->if_npoll_cpuid = -1;
3010 	}
3011 }
3012 
3013 #endif /* IFPOLL_ENABLE */
3014 
3015 static void
3016 igb_intr(void *xsc)
3017 {
3018 	struct igb_softc *sc = xsc;
3019 	struct ifnet *ifp = &sc->arpcom.ac_if;
3020 	uint32_t eicr;
3021 
3022 	ASSERT_SERIALIZED(&sc->main_serialize);
3023 
3024 	eicr = E1000_READ_REG(&sc->hw, E1000_EICR);
3025 
3026 	if (eicr == 0)
3027 		return;
3028 
3029 	if (ifp->if_flags & IFF_RUNNING) {
3030 		struct igb_tx_ring *txr;
3031 		int i;
3032 
3033 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3034 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
3035 
3036 			if (eicr & rxr->rx_intr_mask) {
3037 				lwkt_serialize_enter(&rxr->rx_serialize);
3038 				igb_rxeof(rxr, -1);
3039 				lwkt_serialize_exit(&rxr->rx_serialize);
3040 			}
3041 		}
3042 
3043 		txr = &sc->tx_rings[0];
3044 		if (eicr & txr->tx_intr_mask) {
3045 			lwkt_serialize_enter(&txr->tx_serialize);
3046 			igb_txeof(txr);
3047 			if (!ifq_is_empty(&ifp->if_snd))
3048 				if_devstart(ifp);
3049 			lwkt_serialize_exit(&txr->tx_serialize);
3050 		}
3051 	}
3052 
3053 	if (eicr & E1000_EICR_OTHER) {
3054 		uint32_t icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3055 
3056 		/* Link status change */
3057 		if (icr & E1000_ICR_LSC) {
3058 			sc->hw.mac.get_link_status = 1;
3059 			igb_update_link_status(sc);
3060 		}
3061 	}
3062 
3063 	/*
3064 	 * Reading EICR has the side effect to clear interrupt mask,
3065 	 * so all interrupts need to be enabled here.
3066 	 */
3067 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
3068 }
3069 
3070 static void
3071 igb_intr_shared(void *xsc)
3072 {
3073 	struct igb_softc *sc = xsc;
3074 	struct ifnet *ifp = &sc->arpcom.ac_if;
3075 	uint32_t reg_icr;
3076 
3077 	ASSERT_SERIALIZED(&sc->main_serialize);
3078 
3079 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3080 
3081 	/* Hot eject?  */
3082 	if (reg_icr == 0xffffffff)
3083 		return;
3084 
3085 	/* Definitely not our interrupt.  */
3086 	if (reg_icr == 0x0)
3087 		return;
3088 
3089 	if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0)
3090 		return;
3091 
3092 	if (ifp->if_flags & IFF_RUNNING) {
3093 		if (reg_icr &
3094 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
3095 			int i;
3096 
3097 			for (i = 0; i < sc->rx_ring_inuse; ++i) {
3098 				struct igb_rx_ring *rxr = &sc->rx_rings[i];
3099 
3100 				lwkt_serialize_enter(&rxr->rx_serialize);
3101 				igb_rxeof(rxr, -1);
3102 				lwkt_serialize_exit(&rxr->rx_serialize);
3103 			}
3104 		}
3105 
3106 		if (reg_icr & E1000_ICR_TXDW) {
3107 			struct igb_tx_ring *txr = &sc->tx_rings[0];
3108 
3109 			lwkt_serialize_enter(&txr->tx_serialize);
3110 			igb_txeof(txr);
3111 			if (!ifq_is_empty(&ifp->if_snd))
3112 				if_devstart(ifp);
3113 			lwkt_serialize_exit(&txr->tx_serialize);
3114 		}
3115 	}
3116 
3117 	/* Link status change */
3118 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3119 		sc->hw.mac.get_link_status = 1;
3120 		igb_update_link_status(sc);
3121 	}
3122 
3123 	if (reg_icr & E1000_ICR_RXO)
3124 		sc->rx_overruns++;
3125 }
3126 
3127 static int
3128 igb_encap(struct igb_tx_ring *txr, struct mbuf **m_headp)
3129 {
3130 	bus_dma_segment_t segs[IGB_MAX_SCATTER];
3131 	bus_dmamap_t map;
3132 	struct igb_tx_buf *tx_buf, *tx_buf_mapped;
3133 	union e1000_adv_tx_desc	*txd = NULL;
3134 	struct mbuf *m_head = *m_headp;
3135 	uint32_t olinfo_status = 0, cmd_type_len = 0, cmd_rs = 0;
3136 	int maxsegs, nsegs, i, j, error, last = 0;
3137 	uint32_t hdrlen = 0;
3138 
3139 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3140 		error = igb_tso_pullup(txr, m_headp);
3141 		if (error)
3142 			return error;
3143 		m_head = *m_headp;
3144 	}
3145 
3146 	/* Set basic descriptor constants */
3147 	cmd_type_len |= E1000_ADVTXD_DTYP_DATA;
3148 	cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
3149 	if (m_head->m_flags & M_VLANTAG)
3150 		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3151 
3152 	/*
3153 	 * Map the packet for DMA.
3154 	 */
3155 	tx_buf = &txr->tx_buf[txr->next_avail_desc];
3156 	tx_buf_mapped = tx_buf;
3157 	map = tx_buf->map;
3158 
3159 	maxsegs = txr->tx_avail - IGB_TX_RESERVED;
3160 	KASSERT(maxsegs >= txr->spare_desc, ("not enough spare TX desc\n"));
3161 	if (maxsegs > IGB_MAX_SCATTER)
3162 		maxsegs = IGB_MAX_SCATTER;
3163 
3164 	error = bus_dmamap_load_mbuf_defrag(txr->tx_tag, map, m_headp,
3165 	    segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3166 	if (error) {
3167 		if (error == ENOBUFS)
3168 			txr->sc->mbuf_defrag_failed++;
3169 		else
3170 			txr->sc->no_tx_dma_setup++;
3171 
3172 		m_freem(*m_headp);
3173 		*m_headp = NULL;
3174 		return error;
3175 	}
3176 	bus_dmamap_sync(txr->tx_tag, map, BUS_DMASYNC_PREWRITE);
3177 
3178 	m_head = *m_headp;
3179 
3180 	/*
3181 	 * Set up the TX context descriptor, if any hardware offloading is
3182 	 * needed.  This includes CSUM, VLAN, and TSO.  It will consume one
3183 	 * TX descriptor.
3184 	 *
3185 	 * Unlike these chips' predecessors (em/emx), TX context descriptor
3186 	 * will _not_ interfere TX data fetching pipelining.
3187 	 */
3188 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3189 		igb_tso_ctx(txr, m_head, &hdrlen);
3190 		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3191 		olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3192 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3193 		txr->tx_nsegs++;
3194 	} else if (igb_txcsum_ctx(txr, m_head)) {
3195 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3196 			olinfo_status |= (E1000_TXD_POPTS_IXSM << 8);
3197 		if (m_head->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_TCP))
3198 			olinfo_status |= (E1000_TXD_POPTS_TXSM << 8);
3199 		txr->tx_nsegs++;
3200 	}
3201 
3202 	txr->tx_nsegs += nsegs;
3203 	if (txr->tx_nsegs >= txr->intr_nsegs) {
3204 		/*
3205 		 * Report Status (RS) is turned on every intr_nsegs
3206 		 * descriptors (roughly).
3207 		 */
3208 		txr->tx_nsegs = 0;
3209 		cmd_rs = E1000_ADVTXD_DCMD_RS;
3210 	}
3211 
3212 	/* Calculate payload length */
3213 	olinfo_status |= ((m_head->m_pkthdr.len - hdrlen)
3214 	    << E1000_ADVTXD_PAYLEN_SHIFT);
3215 
3216 	/* 82575 needs the queue index added */
3217 	if (txr->sc->hw.mac.type == e1000_82575)
3218 		olinfo_status |= txr->me << 4;
3219 
3220 	/* Set up our transmit descriptors */
3221 	i = txr->next_avail_desc;
3222 	for (j = 0; j < nsegs; j++) {
3223 		bus_size_t seg_len;
3224 		bus_addr_t seg_addr;
3225 
3226 		tx_buf = &txr->tx_buf[i];
3227 		txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
3228 		seg_addr = segs[j].ds_addr;
3229 		seg_len = segs[j].ds_len;
3230 
3231 		txd->read.buffer_addr = htole64(seg_addr);
3232 		txd->read.cmd_type_len = htole32(cmd_type_len | seg_len);
3233 		txd->read.olinfo_status = htole32(olinfo_status);
3234 		last = i;
3235 		if (++i == txr->num_tx_desc)
3236 			i = 0;
3237 		tx_buf->m_head = NULL;
3238 	}
3239 
3240 	KASSERT(txr->tx_avail > nsegs, ("invalid avail TX desc\n"));
3241 	txr->next_avail_desc = i;
3242 	txr->tx_avail -= nsegs;
3243 
3244 	tx_buf->m_head = m_head;
3245 	tx_buf_mapped->map = tx_buf->map;
3246 	tx_buf->map = map;
3247 
3248 	/*
3249 	 * Last Descriptor of Packet needs End Of Packet (EOP)
3250 	 */
3251 	txd->read.cmd_type_len |= htole32(E1000_ADVTXD_DCMD_EOP | cmd_rs);
3252 
3253 	/*
3254 	 * Advance the Transmit Descriptor Tail (TDT), this tells the E1000
3255 	 * that this frame is available to transmit.
3256 	 */
3257 	E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), i);
3258 	++txr->tx_packets;
3259 
3260 	return 0;
3261 }
3262 
3263 static void
3264 igb_start(struct ifnet *ifp)
3265 {
3266 	struct igb_softc *sc = ifp->if_softc;
3267 	struct igb_tx_ring *txr = &sc->tx_rings[0];
3268 	struct mbuf *m_head;
3269 
3270 	ASSERT_SERIALIZED(&txr->tx_serialize);
3271 
3272 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3273 		return;
3274 
3275 	if (!sc->link_active) {
3276 		ifq_purge(&ifp->if_snd);
3277 		return;
3278 	}
3279 
3280 	if (!IGB_IS_NOT_OACTIVE(txr))
3281 		igb_txeof(txr);
3282 
3283 	while (!ifq_is_empty(&ifp->if_snd)) {
3284 		if (IGB_IS_OACTIVE(txr)) {
3285 			ifp->if_flags |= IFF_OACTIVE;
3286 			/* Set watchdog on */
3287 			ifp->if_timer = 5;
3288 			break;
3289 		}
3290 
3291 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
3292 		if (m_head == NULL)
3293 			break;
3294 
3295 		if (igb_encap(txr, &m_head)) {
3296 			ifp->if_oerrors++;
3297 			continue;
3298 		}
3299 
3300 		/* Send a copy of the frame to the BPF listener */
3301 		ETHER_BPF_MTAP(ifp, m_head);
3302 	}
3303 }
3304 
3305 static void
3306 igb_watchdog(struct ifnet *ifp)
3307 {
3308 	struct igb_softc *sc = ifp->if_softc;
3309 	struct igb_tx_ring *txr = &sc->tx_rings[0];
3310 
3311 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3312 
3313 	/*
3314 	 * If flow control has paused us since last checking
3315 	 * it invalidates the watchdog timing, so dont run it.
3316 	 */
3317 	if (sc->pause_frames) {
3318 		sc->pause_frames = 0;
3319 		ifp->if_timer = 5;
3320 		return;
3321 	}
3322 
3323 	if_printf(ifp, "Watchdog timeout -- resetting\n");
3324 	if_printf(ifp, "Queue(%d) tdh = %d, hw tdt = %d\n", txr->me,
3325 	    E1000_READ_REG(&sc->hw, E1000_TDH(txr->me)),
3326 	    E1000_READ_REG(&sc->hw, E1000_TDT(txr->me)));
3327 	if_printf(ifp, "TX(%d) desc avail = %d, "
3328 	    "Next TX to Clean = %d\n",
3329 	    txr->me, txr->tx_avail, txr->next_to_clean);
3330 
3331 	ifp->if_oerrors++;
3332 	sc->watchdog_events++;
3333 
3334 	igb_init(sc);
3335 	if (!ifq_is_empty(&ifp->if_snd))
3336 		if_devstart(ifp);
3337 }
3338 
3339 static void
3340 igb_set_eitr(struct igb_softc *sc, int idx, int rate)
3341 {
3342 	uint32_t eitr = 0;
3343 
3344 	if (rate > 0) {
3345 		if (sc->hw.mac.type == e1000_82575) {
3346 			eitr = 1000000000 / 256 / rate;
3347 			/*
3348 			 * NOTE:
3349 			 * Document is wrong on the 2 bits left shift
3350 			 */
3351 		} else {
3352 			eitr = 1000000 / rate;
3353 			eitr <<= IGB_EITR_INTVL_SHIFT;
3354 		}
3355 
3356 		if (eitr == 0) {
3357 			/* Don't disable it */
3358 			eitr = 1 << IGB_EITR_INTVL_SHIFT;
3359 		} else if (eitr > IGB_EITR_INTVL_MASK) {
3360 			/* Don't allow it to be too large */
3361 			eitr = IGB_EITR_INTVL_MASK;
3362 		}
3363 	}
3364 	if (sc->hw.mac.type == e1000_82575)
3365 		eitr |= eitr << 16;
3366 	else
3367 		eitr |= E1000_EITR_CNT_IGNR;
3368 	E1000_WRITE_REG(&sc->hw, E1000_EITR(idx), eitr);
3369 }
3370 
3371 static int
3372 igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3373 {
3374 	struct igb_softc *sc = (void *)arg1;
3375 	struct ifnet *ifp = &sc->arpcom.ac_if;
3376 	int error, intr_rate;
3377 
3378 	intr_rate = sc->intr_rate;
3379 	error = sysctl_handle_int(oidp, &intr_rate, 0, req);
3380 	if (error || req->newptr == NULL)
3381 		return error;
3382 	if (intr_rate < 0)
3383 		return EINVAL;
3384 
3385 	ifnet_serialize_all(ifp);
3386 
3387 	sc->intr_rate = intr_rate;
3388 	if (ifp->if_flags & IFF_RUNNING)
3389 		igb_set_eitr(sc, 0, sc->intr_rate);
3390 
3391 	if (bootverbose)
3392 		if_printf(ifp, "interrupt rate set to %d/sec\n", sc->intr_rate);
3393 
3394 	ifnet_deserialize_all(ifp);
3395 
3396 	return 0;
3397 }
3398 
3399 static int
3400 igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS)
3401 {
3402 	struct igb_msix_data *msix = (void *)arg1;
3403 	struct igb_softc *sc = msix->msix_sc;
3404 	struct ifnet *ifp = &sc->arpcom.ac_if;
3405 	int error, msix_rate;
3406 
3407 	msix_rate = msix->msix_rate;
3408 	error = sysctl_handle_int(oidp, &msix_rate, 0, req);
3409 	if (error || req->newptr == NULL)
3410 		return error;
3411 	if (msix_rate < 0)
3412 		return EINVAL;
3413 
3414 	lwkt_serialize_enter(msix->msix_serialize);
3415 
3416 	msix->msix_rate = msix_rate;
3417 	if (ifp->if_flags & IFF_RUNNING)
3418 		igb_set_eitr(sc, msix->msix_vector, msix->msix_rate);
3419 
3420 	if (bootverbose) {
3421 		if_printf(ifp, "%s set to %d/sec\n", msix->msix_rate_desc,
3422 		    msix->msix_rate);
3423 	}
3424 
3425 	lwkt_serialize_exit(msix->msix_serialize);
3426 
3427 	return 0;
3428 }
3429 
3430 static int
3431 igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3432 {
3433 	struct igb_softc *sc = (void *)arg1;
3434 	struct ifnet *ifp = &sc->arpcom.ac_if;
3435 	struct igb_tx_ring *txr = &sc->tx_rings[0];
3436 	int error, nsegs;
3437 
3438 	nsegs = txr->intr_nsegs;
3439 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3440 	if (error || req->newptr == NULL)
3441 		return error;
3442 	if (nsegs <= 0)
3443 		return EINVAL;
3444 
3445 	ifnet_serialize_all(ifp);
3446 
3447 	if (nsegs >= txr->num_tx_desc - txr->oact_lo_desc ||
3448 	    nsegs >= txr->oact_hi_desc - IGB_MAX_SCATTER) {
3449 		error = EINVAL;
3450 	} else {
3451 		error = 0;
3452 		txr->intr_nsegs = nsegs;
3453 	}
3454 
3455 	ifnet_deserialize_all(ifp);
3456 
3457 	return error;
3458 }
3459 
3460 #ifdef IFPOLL_ENABLE
3461 
3462 static int
3463 igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3464 {
3465 	struct igb_softc *sc = (void *)arg1;
3466 	struct ifnet *ifp = &sc->arpcom.ac_if;
3467 	int error, off;
3468 
3469 	off = sc->rx_npoll_off;
3470 	error = sysctl_handle_int(oidp, &off, 0, req);
3471 	if (error || req->newptr == NULL)
3472 		return error;
3473 	if (off < 0)
3474 		return EINVAL;
3475 
3476 	ifnet_serialize_all(ifp);
3477 	if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3478 		error = EINVAL;
3479 	} else {
3480 		error = 0;
3481 		sc->rx_npoll_off = off;
3482 	}
3483 	ifnet_deserialize_all(ifp);
3484 
3485 	return error;
3486 }
3487 
3488 static int
3489 igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3490 {
3491 	struct igb_softc *sc = (void *)arg1;
3492 	struct ifnet *ifp = &sc->arpcom.ac_if;
3493 	int error, off;
3494 
3495 	off = sc->tx_npoll_off;
3496 	error = sysctl_handle_int(oidp, &off, 0, req);
3497 	if (error || req->newptr == NULL)
3498 		return error;
3499 	if (off < 0)
3500 		return EINVAL;
3501 
3502 	ifnet_serialize_all(ifp);
3503 	if (off >= ncpus2) {
3504 		error = EINVAL;
3505 	} else {
3506 		error = 0;
3507 		sc->tx_npoll_off = off;
3508 	}
3509 	ifnet_deserialize_all(ifp);
3510 
3511 	return error;
3512 }
3513 
3514 #endif	/* IFPOLL_ENABLE */
3515 
3516 static void
3517 igb_init_intr(struct igb_softc *sc)
3518 {
3519 	igb_set_intr_mask(sc);
3520 
3521 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0)
3522 		igb_init_unshared_intr(sc);
3523 
3524 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
3525 		igb_set_eitr(sc, 0, sc->intr_rate);
3526 	} else {
3527 		int i;
3528 
3529 		for (i = 0; i < sc->msix_cnt; ++i)
3530 			igb_set_eitr(sc, i, sc->msix_data[i].msix_rate);
3531 	}
3532 }
3533 
3534 static void
3535 igb_init_unshared_intr(struct igb_softc *sc)
3536 {
3537 	struct e1000_hw *hw = &sc->hw;
3538 	const struct igb_rx_ring *rxr;
3539 	const struct igb_tx_ring *txr;
3540 	uint32_t ivar, index;
3541 	int i;
3542 
3543 	/*
3544 	 * Enable extended mode
3545 	 */
3546 	if (sc->hw.mac.type != e1000_82575) {
3547 		uint32_t gpie;
3548 		int ivar_max;
3549 
3550 		gpie = E1000_GPIE_NSICR;
3551 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3552 			gpie |= E1000_GPIE_MSIX_MODE |
3553 			    E1000_GPIE_EIAME |
3554 			    E1000_GPIE_PBA;
3555 		}
3556 		E1000_WRITE_REG(hw, E1000_GPIE, gpie);
3557 
3558 		/*
3559 		 * Clear IVARs
3560 		 */
3561 		switch (sc->hw.mac.type) {
3562 		case e1000_82580:
3563 			ivar_max = IGB_MAX_IVAR_82580;
3564 			break;
3565 
3566 		case e1000_i350:
3567 			ivar_max = IGB_MAX_IVAR_I350;
3568 			break;
3569 
3570 		case e1000_vfadapt:
3571 		case e1000_vfadapt_i350:
3572 			ivar_max = IGB_MAX_IVAR_VF;
3573 			break;
3574 
3575 		case e1000_82576:
3576 			ivar_max = IGB_MAX_IVAR_82576;
3577 			break;
3578 
3579 		default:
3580 			panic("unknown mac type %d\n", sc->hw.mac.type);
3581 		}
3582 		for (i = 0; i < ivar_max; ++i)
3583 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, 0);
3584 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, 0);
3585 	} else {
3586 		uint32_t tmp;
3587 
3588 		KASSERT(sc->intr_type != PCI_INTR_TYPE_MSIX,
3589 		    ("82575 w/ MSI-X"));
3590 		tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
3591 		tmp |= E1000_CTRL_EXT_IRCA;
3592 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
3593 	}
3594 
3595 	/*
3596 	 * Map TX/RX interrupts to EICR
3597 	 */
3598 	switch (sc->hw.mac.type) {
3599 	case e1000_82580:
3600 	case e1000_i350:
3601 	case e1000_vfadapt:
3602 	case e1000_vfadapt_i350:
3603 		/* RX entries */
3604 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3605 			rxr = &sc->rx_rings[i];
3606 
3607 			index = i >> 1;
3608 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3609 
3610 			if (i & 1) {
3611 				ivar &= 0xff00ffff;
3612 				ivar |=
3613 				(rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3614 			} else {
3615 				ivar &= 0xffffff00;
3616 				ivar |=
3617 				(rxr->rx_intr_bit | E1000_IVAR_VALID);
3618 			}
3619 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3620 		}
3621 		/* TX entries */
3622 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
3623 			txr = &sc->tx_rings[i];
3624 
3625 			index = i >> 1;
3626 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3627 
3628 			if (i & 1) {
3629 				ivar &= 0x00ffffff;
3630 				ivar |=
3631 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3632 			} else {
3633 				ivar &= 0xffff00ff;
3634 				ivar |=
3635 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3636 			}
3637 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3638 		}
3639 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3640 			ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3641 			E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3642 		}
3643 		break;
3644 
3645 	case e1000_82576:
3646 		/* RX entries */
3647 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3648 			rxr = &sc->rx_rings[i];
3649 
3650 			index = i & 0x7; /* Each IVAR has two entries */
3651 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3652 
3653 			if (i < 8) {
3654 				ivar &= 0xffffff00;
3655 				ivar |=
3656 				(rxr->rx_intr_bit | E1000_IVAR_VALID);
3657 			} else {
3658 				ivar &= 0xff00ffff;
3659 				ivar |=
3660 				(rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3661 			}
3662 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3663 		}
3664 		/* TX entries */
3665 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
3666 			txr = &sc->tx_rings[i];
3667 
3668 			index = i & 0x7; /* Each IVAR has two entries */
3669 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3670 
3671 			if (i < 8) {
3672 				ivar &= 0xffff00ff;
3673 				ivar |=
3674 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3675 			} else {
3676 				ivar &= 0x00ffffff;
3677 				ivar |=
3678 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3679 			}
3680 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3681 		}
3682 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3683 			ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3684 			E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3685 		}
3686 		break;
3687 
3688 	case e1000_82575:
3689 		/*
3690 		 * Enable necessary interrupt bits.
3691 		 *
3692 		 * The name of the register is confusing; in addition to
3693 		 * configuring the first vector of MSI-X, it also configures
3694 		 * which bits of EICR could be set by the hardware even when
3695 		 * MSI or line interrupt is used; it thus controls interrupt
3696 		 * generation.  It MUST be configured explicitly; the default
3697 		 * value mentioned in the datasheet is wrong: RX queue0 and
3698 		 * TX queue0 are NOT enabled by default.
3699 		 */
3700 		E1000_WRITE_REG(&sc->hw, E1000_MSIXBM(0), sc->intr_mask);
3701 		break;
3702 
3703 	default:
3704 		panic("unknown mac type %d\n", sc->hw.mac.type);
3705 	}
3706 }
3707 
3708 static int
3709 igb_setup_intr(struct igb_softc *sc)
3710 {
3711 	struct ifnet *ifp = &sc->arpcom.ac_if;
3712 	int error;
3713 
3714 	if (sc->intr_type == PCI_INTR_TYPE_MSIX)
3715 		return igb_msix_setup(sc);
3716 
3717 	error = bus_setup_intr(sc->dev, sc->intr_res, INTR_MPSAFE,
3718 	    (sc->flags & IGB_FLAG_SHARED_INTR) ? igb_intr_shared : igb_intr,
3719 	    sc, &sc->intr_tag, &sc->main_serialize);
3720 	if (error) {
3721 		device_printf(sc->dev, "Failed to register interrupt handler");
3722 		return error;
3723 	}
3724 
3725 	ifp->if_cpuid = rman_get_cpuid(sc->intr_res);
3726 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
3727 
3728 	return 0;
3729 }
3730 
3731 static void
3732 igb_set_txintr_mask(struct igb_tx_ring *txr, int *intr_bit0, int intr_bitmax)
3733 {
3734 	if (txr->sc->hw.mac.type == e1000_82575) {
3735 		txr->tx_intr_bit = 0;	/* unused */
3736 		switch (txr->me) {
3737 		case 0:
3738 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE0;
3739 			break;
3740 		case 1:
3741 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE1;
3742 			break;
3743 		case 2:
3744 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE2;
3745 			break;
3746 		case 3:
3747 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE3;
3748 			break;
3749 		default:
3750 			panic("unsupported # of TX ring, %d\n", txr->me);
3751 		}
3752 	} else {
3753 		int intr_bit = *intr_bit0;
3754 
3755 		txr->tx_intr_bit = intr_bit % intr_bitmax;
3756 		txr->tx_intr_mask = 1 << txr->tx_intr_bit;
3757 
3758 		*intr_bit0 = intr_bit + 1;
3759 	}
3760 }
3761 
3762 static void
3763 igb_set_rxintr_mask(struct igb_rx_ring *rxr, int *intr_bit0, int intr_bitmax)
3764 {
3765 	if (rxr->sc->hw.mac.type == e1000_82575) {
3766 		rxr->rx_intr_bit = 0;	/* unused */
3767 		switch (rxr->me) {
3768 		case 0:
3769 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE0;
3770 			break;
3771 		case 1:
3772 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE1;
3773 			break;
3774 		case 2:
3775 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE2;
3776 			break;
3777 		case 3:
3778 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE3;
3779 			break;
3780 		default:
3781 			panic("unsupported # of RX ring, %d\n", rxr->me);
3782 		}
3783 	} else {
3784 		int intr_bit = *intr_bit0;
3785 
3786 		rxr->rx_intr_bit = intr_bit % intr_bitmax;
3787 		rxr->rx_intr_mask = 1 << rxr->rx_intr_bit;
3788 
3789 		*intr_bit0 = intr_bit + 1;
3790 	}
3791 }
3792 
3793 static void
3794 igb_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3795 {
3796 	struct igb_softc *sc = ifp->if_softc;
3797 
3798 	ifnet_serialize_array_enter(sc->serializes, sc->serialize_cnt,
3799 	    sc->tx_serialize, sc->rx_serialize, slz);
3800 }
3801 
3802 static void
3803 igb_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3804 {
3805 	struct igb_softc *sc = ifp->if_softc;
3806 
3807 	ifnet_serialize_array_exit(sc->serializes, sc->serialize_cnt,
3808 	    sc->tx_serialize, sc->rx_serialize, slz);
3809 }
3810 
3811 static int
3812 igb_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3813 {
3814 	struct igb_softc *sc = ifp->if_softc;
3815 
3816 	return ifnet_serialize_array_try(sc->serializes, sc->serialize_cnt,
3817 	    sc->tx_serialize, sc->rx_serialize, slz);
3818 }
3819 
3820 #ifdef INVARIANTS
3821 
3822 static void
3823 igb_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3824     boolean_t serialized)
3825 {
3826 	struct igb_softc *sc = ifp->if_softc;
3827 
3828 	ifnet_serialize_array_assert(sc->serializes, sc->serialize_cnt,
3829 	    sc->tx_serialize, sc->rx_serialize, slz, serialized);
3830 }
3831 
3832 #endif	/* INVARIANTS */
3833 
3834 static void
3835 igb_set_intr_mask(struct igb_softc *sc)
3836 {
3837 	int i;
3838 
3839 	sc->intr_mask = sc->sts_intr_mask;
3840 	for (i = 0; i < sc->rx_ring_inuse; ++i)
3841 		sc->intr_mask |= sc->rx_rings[i].rx_intr_mask;
3842 	for (i = 0; i < sc->tx_ring_cnt; ++i)
3843 		sc->intr_mask |= sc->tx_rings[i].tx_intr_mask;
3844 	if (bootverbose) {
3845 		if_printf(&sc->arpcom.ac_if, "intr mask 0x%08x\n",
3846 		    sc->intr_mask);
3847 	}
3848 }
3849 
3850 static int
3851 igb_alloc_intr(struct igb_softc *sc)
3852 {
3853 	int i, intr_bit, intr_bitmax;
3854 	u_int intr_flags;
3855 
3856 	igb_msix_try_alloc(sc);
3857 	if (sc->intr_type == PCI_INTR_TYPE_MSIX)
3858 		goto done;
3859 
3860 	/*
3861 	 * Allocate MSI/legacy interrupt resource
3862 	 */
3863 	sc->intr_type = pci_alloc_1intr(sc->dev, igb_msi_enable,
3864 	    &sc->intr_rid, &intr_flags);
3865 
3866 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
3867 		int unshared;
3868 
3869 		unshared = device_getenv_int(sc->dev, "irq.unshared", 0);
3870 		if (!unshared) {
3871 			sc->flags |= IGB_FLAG_SHARED_INTR;
3872 			if (bootverbose)
3873 				device_printf(sc->dev, "IRQ shared\n");
3874 		} else {
3875 			intr_flags &= ~RF_SHAREABLE;
3876 			if (bootverbose)
3877 				device_printf(sc->dev, "IRQ unshared\n");
3878 		}
3879 	}
3880 
3881 	sc->intr_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
3882 	    &sc->intr_rid, intr_flags);
3883 	if (sc->intr_res == NULL) {
3884 		device_printf(sc->dev, "Unable to allocate bus resource: "
3885 		    "interrupt\n");
3886 		return ENXIO;
3887 	}
3888 
3889 	/*
3890 	 * Setup MSI/legacy interrupt mask
3891 	 */
3892 	switch (sc->hw.mac.type) {
3893 	case e1000_82575:
3894 		intr_bitmax = IGB_MAX_TXRXINT_82575;
3895 		break;
3896 	case e1000_82580:
3897 		intr_bitmax = IGB_MAX_TXRXINT_82580;
3898 		break;
3899 	case e1000_i350:
3900 		intr_bitmax = IGB_MAX_TXRXINT_I350;
3901 		break;
3902 	case e1000_82576:
3903 		intr_bitmax = IGB_MAX_TXRXINT_82576;
3904 		break;
3905 	default:
3906 		intr_bitmax = IGB_MIN_TXRXINT;
3907 		break;
3908 	}
3909 	intr_bit = 0;
3910 	for (i = 0; i < sc->tx_ring_cnt; ++i)
3911 		igb_set_txintr_mask(&sc->tx_rings[i], &intr_bit, intr_bitmax);
3912 	for (i = 0; i < sc->rx_ring_cnt; ++i)
3913 		igb_set_rxintr_mask(&sc->rx_rings[i], &intr_bit, intr_bitmax);
3914 	sc->sts_intr_bit = 0;
3915 	sc->sts_intr_mask = E1000_EICR_OTHER;
3916 
3917 	/* Initialize interrupt rate */
3918 	sc->intr_rate = IGB_INTR_RATE;
3919 done:
3920 	igb_set_ring_inuse(sc, FALSE);
3921 	igb_set_intr_mask(sc);
3922 	return 0;
3923 }
3924 
3925 static void
3926 igb_free_intr(struct igb_softc *sc)
3927 {
3928 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
3929 		if (sc->intr_res != NULL) {
3930 			bus_release_resource(sc->dev, SYS_RES_IRQ, sc->intr_rid,
3931 			    sc->intr_res);
3932 		}
3933 		if (sc->intr_type == PCI_INTR_TYPE_MSI)
3934 			pci_release_msi(sc->dev);
3935 	} else {
3936 		igb_msix_free(sc, TRUE);
3937 	}
3938 }
3939 
3940 static void
3941 igb_teardown_intr(struct igb_softc *sc)
3942 {
3943 	if (sc->intr_type != PCI_INTR_TYPE_MSIX)
3944 		bus_teardown_intr(sc->dev, sc->intr_res, sc->intr_tag);
3945 	else
3946 		igb_msix_teardown(sc, sc->msix_cnt);
3947 }
3948 
3949 static void
3950 igb_msix_try_alloc(struct igb_softc *sc)
3951 {
3952 	int msix_enable, msix_cnt, msix_cnt2, alloc_cnt;
3953 	int i, x, error;
3954 	struct igb_msix_data *msix;
3955 	boolean_t aggregate, setup = FALSE;
3956 
3957 	/*
3958 	 * Don't enable MSI-X on 82575, see:
3959 	 * 82575 specification update errata #25
3960 	 */
3961 	if (sc->hw.mac.type == e1000_82575)
3962 		return;
3963 
3964 	/* Don't enable MSI-X on VF */
3965 	if (sc->vf_ifp)
3966 		return;
3967 
3968 	msix_enable = device_getenv_int(sc->dev, "msix.enable",
3969 	    igb_msix_enable);
3970 	if (!msix_enable)
3971 		return;
3972 
3973 	msix_cnt = pci_msix_count(sc->dev);
3974 #ifdef IGB_MSIX_DEBUG
3975 	msix_cnt = device_getenv_int(sc->dev, "msix.count", msix_cnt);
3976 #endif
3977 	if (msix_cnt <= 1) {
3978 		/* One MSI-X model does not make sense */
3979 		return;
3980 	}
3981 
3982 	i = 0;
3983 	while ((1 << (i + 1)) <= msix_cnt)
3984 		++i;
3985 	msix_cnt2 = 1 << i;
3986 
3987 	if (bootverbose) {
3988 		device_printf(sc->dev, "MSI-X count %d/%d\n",
3989 		    msix_cnt2, msix_cnt);
3990 	}
3991 
3992 	KKASSERT(msix_cnt2 <= msix_cnt);
3993 	if (msix_cnt == msix_cnt2) {
3994 		/* We need at least one MSI-X for link status */
3995 		msix_cnt2 >>= 1;
3996 		if (msix_cnt2 <= 1) {
3997 			/* One MSI-X for RX/TX does not make sense */
3998 			device_printf(sc->dev, "not enough MSI-X for TX/RX, "
3999 			    "MSI-X count %d/%d\n", msix_cnt2, msix_cnt);
4000 			return;
4001 		}
4002 		KKASSERT(msix_cnt > msix_cnt2);
4003 
4004 		if (bootverbose) {
4005 			device_printf(sc->dev, "MSI-X count fixup %d/%d\n",
4006 			    msix_cnt2, msix_cnt);
4007 		}
4008 	}
4009 
4010 	sc->rx_ring_msix = sc->rx_ring_cnt;
4011 	if (sc->rx_ring_msix > msix_cnt2)
4012 		sc->rx_ring_msix = msix_cnt2;
4013 
4014 	if (msix_cnt >= sc->tx_ring_cnt + sc->rx_ring_msix + 1) {
4015 		/*
4016 		 * Independent TX/RX MSI-X
4017 		 */
4018 		aggregate = FALSE;
4019 		if (bootverbose)
4020 			device_printf(sc->dev, "independent TX/RX MSI-X\n");
4021 		alloc_cnt = sc->tx_ring_cnt + sc->rx_ring_msix;
4022 	} else {
4023 		/*
4024 		 * Aggregate TX/RX MSI-X
4025 		 */
4026 		aggregate = TRUE;
4027 		if (bootverbose)
4028 			device_printf(sc->dev, "aggregate TX/RX MSI-X\n");
4029 		alloc_cnt = msix_cnt2;
4030 		if (alloc_cnt > ncpus2)
4031 			alloc_cnt = ncpus2;
4032 		if (sc->rx_ring_msix > alloc_cnt)
4033 			sc->rx_ring_msix = alloc_cnt;
4034 	}
4035 	++alloc_cnt;	/* For link status */
4036 
4037 	if (bootverbose) {
4038 		device_printf(sc->dev, "MSI-X alloc %d, RX ring %d\n",
4039 		    alloc_cnt, sc->rx_ring_msix);
4040 	}
4041 
4042 	sc->msix_mem_rid = PCIR_BAR(IGB_MSIX_BAR);
4043 	sc->msix_mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4044 	    &sc->msix_mem_rid, RF_ACTIVE);
4045 	if (sc->msix_mem_res == NULL) {
4046 		device_printf(sc->dev, "Unable to map MSI-X table\n");
4047 		return;
4048 	}
4049 
4050 	sc->msix_cnt = alloc_cnt;
4051 	sc->msix_data = kmalloc_cachealign(
4052 	    sizeof(struct igb_msix_data) * sc->msix_cnt,
4053 	    M_DEVBUF, M_WAITOK | M_ZERO);
4054 	for (x = 0; x < sc->msix_cnt; ++x) {
4055 		msix = &sc->msix_data[x];
4056 
4057 		lwkt_serialize_init(&msix->msix_serialize0);
4058 		msix->msix_sc = sc;
4059 		msix->msix_rid = -1;
4060 		msix->msix_vector = x;
4061 		msix->msix_mask = 1 << msix->msix_vector;
4062 		msix->msix_rate = IGB_INTR_RATE;
4063 	}
4064 
4065 	x = 0;
4066 	if (!aggregate) {
4067 		int offset, offset_def;
4068 
4069 		if (sc->rx_ring_msix == ncpus2) {
4070 			offset = 0;
4071 		} else {
4072 			offset_def = (sc->rx_ring_msix *
4073 			    device_get_unit(sc->dev)) % ncpus2;
4074 
4075 			offset = device_getenv_int(sc->dev,
4076 			    "msix.rxoff", offset_def);
4077 			if (offset >= ncpus2 ||
4078 			    offset % sc->rx_ring_msix != 0) {
4079 				device_printf(sc->dev,
4080 				    "invalid msix.rxoff %d, use %d\n",
4081 				    offset, offset_def);
4082 				offset = offset_def;
4083 			}
4084 		}
4085 
4086 		/* RX rings */
4087 		for (i = 0; i < sc->rx_ring_msix; ++i) {
4088 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
4089 
4090 			KKASSERT(x < sc->msix_cnt);
4091 			msix = &sc->msix_data[x++];
4092 			rxr->rx_intr_bit = msix->msix_vector;
4093 			rxr->rx_intr_mask = msix->msix_mask;
4094 
4095 			msix->msix_serialize = &rxr->rx_serialize;
4096 			msix->msix_func = igb_msix_rx;
4097 			msix->msix_arg = rxr;
4098 			msix->msix_cpuid = i + offset;
4099 			KKASSERT(msix->msix_cpuid < ncpus2);
4100 			ksnprintf(msix->msix_desc, sizeof(msix->msix_desc),
4101 			    "%s rx%d", device_get_nameunit(sc->dev), i);
4102 			msix->msix_rate = IGB_MSIX_RX_RATE;
4103 			ksnprintf(msix->msix_rate_desc,
4104 			    sizeof(msix->msix_rate_desc),
4105 			    "RX%d interrupt rate", i);
4106 		}
4107 
4108 		offset_def = device_get_unit(sc->dev) % ncpus2;
4109 		offset = device_getenv_int(sc->dev, "msix.txoff", offset_def);
4110 		if (offset >= ncpus2) {
4111 			device_printf(sc->dev, "invalid msix.txoff %d, "
4112 			    "use %d\n", offset, offset_def);
4113 			offset = offset_def;
4114 		}
4115 
4116 		/* TX rings */
4117 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
4118 			struct igb_tx_ring *txr = &sc->tx_rings[i];
4119 
4120 			KKASSERT(x < sc->msix_cnt);
4121 			msix = &sc->msix_data[x++];
4122 			txr->tx_intr_bit = msix->msix_vector;
4123 			txr->tx_intr_mask = msix->msix_mask;
4124 
4125 			msix->msix_serialize = &txr->tx_serialize;
4126 			msix->msix_func = igb_msix_tx;
4127 			msix->msix_arg = txr;
4128 			msix->msix_cpuid = i + offset;
4129 			sc->msix_tx_cpuid = msix->msix_cpuid; /* XXX */
4130 			KKASSERT(msix->msix_cpuid < ncpus2);
4131 			ksnprintf(msix->msix_desc, sizeof(msix->msix_desc),
4132 			    "%s tx%d", device_get_nameunit(sc->dev), i);
4133 			msix->msix_rate = IGB_MSIX_TX_RATE;
4134 			ksnprintf(msix->msix_rate_desc,
4135 			    sizeof(msix->msix_rate_desc),
4136 			    "TX%d interrupt rate", i);
4137 		}
4138 	} else {
4139 		/* TODO */
4140 		error = EOPNOTSUPP;
4141 		goto back;
4142 	}
4143 
4144 	/*
4145 	 * Link status
4146 	 */
4147 	KKASSERT(x < sc->msix_cnt);
4148 	msix = &sc->msix_data[x++];
4149 	sc->sts_intr_bit = msix->msix_vector;
4150 	sc->sts_intr_mask = msix->msix_mask;
4151 
4152 	msix->msix_serialize = &sc->main_serialize;
4153 	msix->msix_func = igb_msix_status;
4154 	msix->msix_arg = sc;
4155 	msix->msix_cpuid = 0; /* TODO tunable */
4156 	ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s sts",
4157 	    device_get_nameunit(sc->dev));
4158 	ksnprintf(msix->msix_rate_desc, sizeof(msix->msix_rate_desc),
4159 	    "status interrupt rate");
4160 
4161 	KKASSERT(x == sc->msix_cnt);
4162 
4163 	error = pci_setup_msix(sc->dev);
4164 	if (error) {
4165 		device_printf(sc->dev, "Setup MSI-X failed\n");
4166 		goto back;
4167 	}
4168 	setup = TRUE;
4169 
4170 	for (i = 0; i < sc->msix_cnt; ++i) {
4171 		msix = &sc->msix_data[i];
4172 
4173 		error = pci_alloc_msix_vector(sc->dev, msix->msix_vector,
4174 		    &msix->msix_rid, msix->msix_cpuid);
4175 		if (error) {
4176 			device_printf(sc->dev,
4177 			    "Unable to allocate MSI-X %d on cpu%d\n",
4178 			    msix->msix_vector, msix->msix_cpuid);
4179 			goto back;
4180 		}
4181 
4182 		msix->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4183 		    &msix->msix_rid, RF_ACTIVE);
4184 		if (msix->msix_res == NULL) {
4185 			device_printf(sc->dev,
4186 			    "Unable to allocate MSI-X %d resource\n",
4187 			    msix->msix_vector);
4188 			error = ENOMEM;
4189 			goto back;
4190 		}
4191 	}
4192 
4193 	pci_enable_msix(sc->dev);
4194 	sc->intr_type = PCI_INTR_TYPE_MSIX;
4195 back:
4196 	if (error)
4197 		igb_msix_free(sc, setup);
4198 }
4199 
4200 static void
4201 igb_msix_free(struct igb_softc *sc, boolean_t setup)
4202 {
4203 	int i;
4204 
4205 	KKASSERT(sc->msix_cnt > 1);
4206 
4207 	for (i = 0; i < sc->msix_cnt; ++i) {
4208 		struct igb_msix_data *msix = &sc->msix_data[i];
4209 
4210 		if (msix->msix_res != NULL) {
4211 			bus_release_resource(sc->dev, SYS_RES_IRQ,
4212 			    msix->msix_rid, msix->msix_res);
4213 		}
4214 		if (msix->msix_rid >= 0)
4215 			pci_release_msix_vector(sc->dev, msix->msix_rid);
4216 	}
4217 	if (setup)
4218 		pci_teardown_msix(sc->dev);
4219 
4220 	sc->msix_cnt = 0;
4221 	kfree(sc->msix_data, M_DEVBUF);
4222 	sc->msix_data = NULL;
4223 }
4224 
4225 static int
4226 igb_msix_setup(struct igb_softc *sc)
4227 {
4228 	struct ifnet *ifp = &sc->arpcom.ac_if;
4229 	int i;
4230 
4231 	for (i = 0; i < sc->msix_cnt; ++i) {
4232 		struct igb_msix_data *msix = &sc->msix_data[i];
4233 		int error;
4234 
4235 		error = bus_setup_intr_descr(sc->dev, msix->msix_res,
4236 		    INTR_MPSAFE, msix->msix_func, msix->msix_arg,
4237 		    &msix->msix_handle, msix->msix_serialize, msix->msix_desc);
4238 		if (error) {
4239 			device_printf(sc->dev, "could not set up %s "
4240 			    "interrupt handler.\n", msix->msix_desc);
4241 			igb_msix_teardown(sc, i);
4242 			return error;
4243 		}
4244 	}
4245 	ifp->if_cpuid = sc->msix_tx_cpuid;
4246 
4247 	return 0;
4248 }
4249 
4250 static void
4251 igb_msix_teardown(struct igb_softc *sc, int msix_cnt)
4252 {
4253 	int i;
4254 
4255 	for (i = 0; i < msix_cnt; ++i) {
4256 		struct igb_msix_data *msix = &sc->msix_data[i];
4257 
4258 		bus_teardown_intr(sc->dev, msix->msix_res, msix->msix_handle);
4259 	}
4260 }
4261 
4262 static void
4263 igb_msix_rx(void *arg)
4264 {
4265 	struct igb_rx_ring *rxr = arg;
4266 
4267 	ASSERT_SERIALIZED(&rxr->rx_serialize);
4268 	igb_rxeof(rxr, -1);
4269 
4270 	E1000_WRITE_REG(&rxr->sc->hw, E1000_EIMS, rxr->rx_intr_mask);
4271 }
4272 
4273 static void
4274 igb_msix_tx(void *arg)
4275 {
4276 	struct igb_tx_ring *txr = arg;
4277 	struct ifnet *ifp = &txr->sc->arpcom.ac_if;
4278 
4279 	ASSERT_SERIALIZED(&txr->tx_serialize);
4280 
4281 	igb_txeof(txr);
4282 	if (!ifq_is_empty(&ifp->if_snd))
4283 		if_devstart(ifp);
4284 
4285 	E1000_WRITE_REG(&txr->sc->hw, E1000_EIMS, txr->tx_intr_mask);
4286 }
4287 
4288 static void
4289 igb_msix_status(void *arg)
4290 {
4291 	struct igb_softc *sc = arg;
4292 	uint32_t icr;
4293 
4294 	ASSERT_SERIALIZED(&sc->main_serialize);
4295 
4296 	icr = E1000_READ_REG(&sc->hw, E1000_ICR);
4297 	if (icr & E1000_ICR_LSC) {
4298 		sc->hw.mac.get_link_status = 1;
4299 		igb_update_link_status(sc);
4300 	}
4301 
4302 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->sts_intr_mask);
4303 }
4304 
4305 static void
4306 igb_set_ring_inuse(struct igb_softc *sc, boolean_t polling)
4307 {
4308 	if (!IGB_ENABLE_HWRSS(sc))
4309 		return;
4310 
4311 	if (polling)
4312 		sc->rx_ring_inuse = sc->rx_ring_cnt;
4313 	else if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4314 		sc->rx_ring_inuse = IGB_MIN_RING_RSS;
4315 	else
4316 		sc->rx_ring_inuse = sc->rx_ring_msix;
4317 	if (bootverbose) {
4318 		if_printf(&sc->arpcom.ac_if, "RX rings %d/%d\n",
4319 		    sc->rx_ring_inuse, sc->rx_ring_cnt);
4320 	}
4321 }
4322 
4323 static int
4324 igb_tso_pullup(struct igb_tx_ring *txr, struct mbuf **mp)
4325 {
4326 	int hoff, iphlen, thoff;
4327 	struct mbuf *m;
4328 
4329 	m = *mp;
4330 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4331 
4332 	iphlen = m->m_pkthdr.csum_iphlen;
4333 	thoff = m->m_pkthdr.csum_thlen;
4334 	hoff = m->m_pkthdr.csum_lhlen;
4335 
4336 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4337 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4338 	KASSERT(hoff > 0, ("invalid ether hlen"));
4339 
4340 	if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
4341 		m = m_pullup(m, hoff + iphlen + thoff);
4342 		if (m == NULL) {
4343 			*mp = NULL;
4344 			return ENOBUFS;
4345 		}
4346 		*mp = m;
4347 	}
4348 	if (txr->sc->flags & IGB_FLAG_TSO_IPLEN0) {
4349 		struct ip *ip;
4350 
4351 		ip = mtodoff(m, struct ip *, hoff);
4352 		ip->ip_len = 0;
4353 	}
4354 
4355 	return 0;
4356 }
4357 
4358 static void
4359 igb_tso_ctx(struct igb_tx_ring *txr, struct mbuf *m, uint32_t *hlen)
4360 {
4361 	struct e1000_adv_tx_context_desc *TXD;
4362 	uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
4363 	int hoff, ctxd, iphlen, thoff;
4364 
4365 	iphlen = m->m_pkthdr.csum_iphlen;
4366 	thoff = m->m_pkthdr.csum_thlen;
4367 	hoff = m->m_pkthdr.csum_lhlen;
4368 
4369 	vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
4370 
4371 	ctxd = txr->next_avail_desc;
4372 	TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
4373 
4374 	if (m->m_flags & M_VLANTAG) {
4375 		uint16_t vlantag;
4376 
4377 		vlantag = htole16(m->m_pkthdr.ether_vlantag);
4378 		vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
4379 	}
4380 
4381 	vlan_macip_lens |= (hoff << E1000_ADVTXD_MACLEN_SHIFT);
4382 	vlan_macip_lens |= iphlen;
4383 
4384 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4385 	type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
4386 	type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
4387 
4388 	mss_l4len_idx |= (m->m_pkthdr.tso_segsz << E1000_ADVTXD_MSS_SHIFT);
4389 	mss_l4len_idx |= (thoff << E1000_ADVTXD_L4LEN_SHIFT);
4390 	/* 82575 needs the queue index added */
4391 	if (txr->sc->hw.mac.type == e1000_82575)
4392 		mss_l4len_idx |= txr->me << 4;
4393 
4394 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
4395 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
4396 	TXD->seqnum_seed = htole32(0);
4397 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
4398 
4399 	/* We've consumed the first desc, adjust counters */
4400 	if (++ctxd == txr->num_tx_desc)
4401 		ctxd = 0;
4402 	txr->next_avail_desc = ctxd;
4403 	--txr->tx_avail;
4404 
4405 	*hlen = hoff + iphlen + thoff;
4406 }
4407