xref: /dragonfly/sys/dev/netif/igb/if_igb.c (revision e8c03636)
1 /*
2  * Copyright (c) 2001-2011, Intel Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  *  1. Redistributions of source code must retain the above copyright notice,
9  *     this list of conditions and the following disclaimer.
10  *
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  3. Neither the name of the Intel Corporation nor the names of its
16  *     contributors may be used to endorse or promote products derived from
17  *     this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include "opt_ifpoll.h"
33 #include "opt_igb.h"
34 
35 #include <sys/param.h>
36 #include <sys/bus.h>
37 #include <sys/endian.h>
38 #include <sys/interrupt.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/proc.h>
43 #include <sys/rman.h>
44 #include <sys/serialize.h>
45 #include <sys/serialize2.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50 
51 #include <net/bpf.h>
52 #include <net/ethernet.h>
53 #include <net/if.h>
54 #include <net/if_arp.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/ifq_var.h>
58 #include <net/toeplitz.h>
59 #include <net/toeplitz2.h>
60 #include <net/vlan/if_vlan_var.h>
61 #include <net/vlan/if_vlan_ether.h>
62 #include <net/if_poll.h>
63 
64 #include <netinet/in_systm.h>
65 #include <netinet/in.h>
66 #include <netinet/ip.h>
67 #include <netinet/tcp.h>
68 #include <netinet/udp.h>
69 
70 #include <bus/pci/pcivar.h>
71 #include <bus/pci/pcireg.h>
72 
73 #include <dev/netif/ig_hal/e1000_api.h>
74 #include <dev/netif/ig_hal/e1000_82575.h>
75 #include <dev/netif/igb/if_igb.h>
76 
77 #ifdef IGB_RSS_DEBUG
78 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...) \
79 do { \
80 	if (sc->rss_debug >= lvl) \
81 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
82 } while (0)
83 #else	/* !IGB_RSS_DEBUG */
84 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
85 #endif	/* IGB_RSS_DEBUG */
86 
87 #define IGB_NAME	"Intel(R) PRO/1000 "
88 #define IGB_DEVICE(id)	\
89 	{ IGB_VENDOR_ID, E1000_DEV_ID_##id, IGB_NAME #id }
90 #define IGB_DEVICE_NULL	{ 0, 0, NULL }
91 
92 static struct igb_device {
93 	uint16_t	vid;
94 	uint16_t	did;
95 	const char	*desc;
96 } igb_devices[] = {
97 	IGB_DEVICE(82575EB_COPPER),
98 	IGB_DEVICE(82575EB_FIBER_SERDES),
99 	IGB_DEVICE(82575GB_QUAD_COPPER),
100 	IGB_DEVICE(82576),
101 	IGB_DEVICE(82576_NS),
102 	IGB_DEVICE(82576_NS_SERDES),
103 	IGB_DEVICE(82576_FIBER),
104 	IGB_DEVICE(82576_SERDES),
105 	IGB_DEVICE(82576_SERDES_QUAD),
106 	IGB_DEVICE(82576_QUAD_COPPER),
107 	IGB_DEVICE(82576_QUAD_COPPER_ET2),
108 	IGB_DEVICE(82576_VF),
109 	IGB_DEVICE(82580_COPPER),
110 	IGB_DEVICE(82580_FIBER),
111 	IGB_DEVICE(82580_SERDES),
112 	IGB_DEVICE(82580_SGMII),
113 	IGB_DEVICE(82580_COPPER_DUAL),
114 	IGB_DEVICE(82580_QUAD_FIBER),
115 	IGB_DEVICE(DH89XXCC_SERDES),
116 	IGB_DEVICE(DH89XXCC_SGMII),
117 	IGB_DEVICE(DH89XXCC_SFP),
118 	IGB_DEVICE(DH89XXCC_BACKPLANE),
119 	IGB_DEVICE(I350_COPPER),
120 	IGB_DEVICE(I350_FIBER),
121 	IGB_DEVICE(I350_SERDES),
122 	IGB_DEVICE(I350_SGMII),
123 	IGB_DEVICE(I350_VF),
124 	IGB_DEVICE(I210_COPPER),
125 	IGB_DEVICE(I210_COPPER_IT),
126 	IGB_DEVICE(I210_COPPER_OEM1),
127 	IGB_DEVICE(I210_FIBER),
128 	IGB_DEVICE(I210_SERDES),
129 	IGB_DEVICE(I210_SGMII),
130 	IGB_DEVICE(I211_COPPER),
131 
132 	/* required last entry */
133 	IGB_DEVICE_NULL
134 };
135 
136 static int	igb_probe(device_t);
137 static int	igb_attach(device_t);
138 static int	igb_detach(device_t);
139 static int	igb_shutdown(device_t);
140 static int	igb_suspend(device_t);
141 static int	igb_resume(device_t);
142 
143 static boolean_t igb_is_valid_ether_addr(const uint8_t *);
144 static void	igb_setup_ifp(struct igb_softc *);
145 static boolean_t igb_txcsum_ctx(struct igb_tx_ring *, struct mbuf *);
146 static int	igb_tso_pullup(struct igb_tx_ring *, struct mbuf **);
147 static void	igb_tso_ctx(struct igb_tx_ring *, struct mbuf *, uint32_t *);
148 static void	igb_add_sysctl(struct igb_softc *);
149 static int	igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
150 static int	igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS);
151 static int	igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
152 static int	igb_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
153 static int	igb_sysctl_rx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
154 static void	igb_set_ring_inuse(struct igb_softc *, boolean_t);
155 static int	igb_get_rxring_inuse(const struct igb_softc *, boolean_t);
156 static int	igb_get_txring_inuse(const struct igb_softc *, boolean_t);
157 static void	igb_set_timer_cpuid(struct igb_softc *, boolean_t);
158 #ifdef IFPOLL_ENABLE
159 static int	igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
160 static int	igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
161 #endif
162 
163 static void	igb_vf_init_stats(struct igb_softc *);
164 static void	igb_reset(struct igb_softc *);
165 static void	igb_update_stats_counters(struct igb_softc *);
166 static void	igb_update_vf_stats_counters(struct igb_softc *);
167 static void	igb_update_link_status(struct igb_softc *);
168 static void	igb_init_tx_unit(struct igb_softc *);
169 static void	igb_init_rx_unit(struct igb_softc *);
170 
171 static void	igb_set_vlan(struct igb_softc *);
172 static void	igb_set_multi(struct igb_softc *);
173 static void	igb_set_promisc(struct igb_softc *);
174 static void	igb_disable_promisc(struct igb_softc *);
175 
176 static int	igb_alloc_rings(struct igb_softc *);
177 static void	igb_free_rings(struct igb_softc *);
178 static int	igb_create_tx_ring(struct igb_tx_ring *);
179 static int	igb_create_rx_ring(struct igb_rx_ring *);
180 static void	igb_free_tx_ring(struct igb_tx_ring *);
181 static void	igb_free_rx_ring(struct igb_rx_ring *);
182 static void	igb_destroy_tx_ring(struct igb_tx_ring *, int);
183 static void	igb_destroy_rx_ring(struct igb_rx_ring *, int);
184 static void	igb_init_tx_ring(struct igb_tx_ring *);
185 static int	igb_init_rx_ring(struct igb_rx_ring *);
186 static int	igb_newbuf(struct igb_rx_ring *, int, boolean_t);
187 static int	igb_encap(struct igb_tx_ring *, struct mbuf **, int *, int *);
188 static void	igb_rx_refresh(struct igb_rx_ring *, int);
189 static void	igb_setup_serializer(struct igb_softc *);
190 
191 static void	igb_stop(struct igb_softc *);
192 static void	igb_init(void *);
193 static int	igb_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
194 static void	igb_media_status(struct ifnet *, struct ifmediareq *);
195 static int	igb_media_change(struct ifnet *);
196 static void	igb_timer(void *);
197 static void	igb_watchdog(struct ifaltq_subque *);
198 static void	igb_start(struct ifnet *, struct ifaltq_subque *);
199 #ifdef IFPOLL_ENABLE
200 static void	igb_npoll(struct ifnet *, struct ifpoll_info *);
201 static void	igb_npoll_rx(struct ifnet *, void *, int);
202 static void	igb_npoll_tx(struct ifnet *, void *, int);
203 static void	igb_npoll_status(struct ifnet *);
204 #endif
205 static void	igb_serialize(struct ifnet *, enum ifnet_serialize);
206 static void	igb_deserialize(struct ifnet *, enum ifnet_serialize);
207 static int	igb_tryserialize(struct ifnet *, enum ifnet_serialize);
208 #ifdef INVARIANTS
209 static void	igb_serialize_assert(struct ifnet *, enum ifnet_serialize,
210 		    boolean_t);
211 #endif
212 
213 static void	igb_intr(void *);
214 static void	igb_intr_shared(void *);
215 static void	igb_rxeof(struct igb_rx_ring *, int);
216 static void	igb_txeof(struct igb_tx_ring *);
217 static void	igb_set_eitr(struct igb_softc *, int, int);
218 static void	igb_enable_intr(struct igb_softc *);
219 static void	igb_disable_intr(struct igb_softc *);
220 static void	igb_init_unshared_intr(struct igb_softc *);
221 static void	igb_init_intr(struct igb_softc *);
222 static int	igb_setup_intr(struct igb_softc *);
223 static void	igb_set_txintr_mask(struct igb_tx_ring *, int *, int);
224 static void	igb_set_rxintr_mask(struct igb_rx_ring *, int *, int);
225 static void	igb_set_intr_mask(struct igb_softc *);
226 static int	igb_alloc_intr(struct igb_softc *);
227 static void	igb_free_intr(struct igb_softc *);
228 static void	igb_teardown_intr(struct igb_softc *);
229 static void	igb_msix_try_alloc(struct igb_softc *);
230 static void	igb_msix_rx_conf(struct igb_softc *, int, int *, int);
231 static void	igb_msix_tx_conf(struct igb_softc *, int, int *, int);
232 static void	igb_msix_free(struct igb_softc *, boolean_t);
233 static int	igb_msix_setup(struct igb_softc *);
234 static void	igb_msix_teardown(struct igb_softc *, int);
235 static void	igb_msix_rx(void *);
236 static void	igb_msix_tx(void *);
237 static void	igb_msix_status(void *);
238 static void	igb_msix_rxtx(void *);
239 
240 /* Management and WOL Support */
241 static void	igb_get_mgmt(struct igb_softc *);
242 static void	igb_rel_mgmt(struct igb_softc *);
243 static void	igb_get_hw_control(struct igb_softc *);
244 static void	igb_rel_hw_control(struct igb_softc *);
245 static void	igb_enable_wol(device_t);
246 
247 static device_method_t igb_methods[] = {
248 	/* Device interface */
249 	DEVMETHOD(device_probe,		igb_probe),
250 	DEVMETHOD(device_attach,	igb_attach),
251 	DEVMETHOD(device_detach,	igb_detach),
252 	DEVMETHOD(device_shutdown,	igb_shutdown),
253 	DEVMETHOD(device_suspend,	igb_suspend),
254 	DEVMETHOD(device_resume,	igb_resume),
255 	DEVMETHOD_END
256 };
257 
258 static driver_t igb_driver = {
259 	"igb",
260 	igb_methods,
261 	sizeof(struct igb_softc),
262 };
263 
264 static devclass_t igb_devclass;
265 
266 DECLARE_DUMMY_MODULE(if_igb);
267 MODULE_DEPEND(igb, ig_hal, 1, 1, 1);
268 DRIVER_MODULE(if_igb, pci, igb_driver, igb_devclass, NULL, NULL);
269 
270 static int	igb_rxd = IGB_DEFAULT_RXD;
271 static int	igb_txd = IGB_DEFAULT_TXD;
272 static int	igb_rxr = 0;
273 static int	igb_txr = 0;
274 static int	igb_msi_enable = 1;
275 static int	igb_msix_enable = 1;
276 static int	igb_eee_disabled = 1;	/* Energy Efficient Ethernet */
277 static int	igb_fc_setting = e1000_fc_full;
278 
279 /*
280  * DMA Coalescing, only for i350 - default to off,
281  * this feature is for power savings
282  */
283 static int	igb_dma_coalesce = 0;
284 
285 TUNABLE_INT("hw.igb.rxd", &igb_rxd);
286 TUNABLE_INT("hw.igb.txd", &igb_txd);
287 TUNABLE_INT("hw.igb.rxr", &igb_rxr);
288 TUNABLE_INT("hw.igb.txr", &igb_txr);
289 TUNABLE_INT("hw.igb.msi.enable", &igb_msi_enable);
290 TUNABLE_INT("hw.igb.msix.enable", &igb_msix_enable);
291 TUNABLE_INT("hw.igb.fc_setting", &igb_fc_setting);
292 
293 /* i350 specific */
294 TUNABLE_INT("hw.igb.eee_disabled", &igb_eee_disabled);
295 TUNABLE_INT("hw.igb.dma_coalesce", &igb_dma_coalesce);
296 
297 static __inline void
298 igb_rxcsum(uint32_t staterr, struct mbuf *mp)
299 {
300 	/* Ignore Checksum bit is set */
301 	if (staterr & E1000_RXD_STAT_IXSM)
302 		return;
303 
304 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
305 	    E1000_RXD_STAT_IPCS)
306 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
307 
308 	if (staterr & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
309 		if ((staterr & E1000_RXDEXT_STATERR_TCPE) == 0) {
310 			mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
311 			    CSUM_PSEUDO_HDR | CSUM_FRAG_NOT_CHECKED;
312 			mp->m_pkthdr.csum_data = htons(0xffff);
313 		}
314 	}
315 }
316 
317 static __inline struct pktinfo *
318 igb_rssinfo(struct mbuf *m, struct pktinfo *pi,
319     uint32_t hash, uint32_t hashtype, uint32_t staterr)
320 {
321 	switch (hashtype) {
322 	case E1000_RXDADV_RSSTYPE_IPV4_TCP:
323 		pi->pi_netisr = NETISR_IP;
324 		pi->pi_flags = 0;
325 		pi->pi_l3proto = IPPROTO_TCP;
326 		break;
327 
328 	case E1000_RXDADV_RSSTYPE_IPV4:
329 		if (staterr & E1000_RXD_STAT_IXSM)
330 			return NULL;
331 
332 		if ((staterr &
333 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
334 		    E1000_RXD_STAT_TCPCS) {
335 			pi->pi_netisr = NETISR_IP;
336 			pi->pi_flags = 0;
337 			pi->pi_l3proto = IPPROTO_UDP;
338 			break;
339 		}
340 		/* FALL THROUGH */
341 	default:
342 		return NULL;
343 	}
344 
345 	m->m_flags |= M_HASH;
346 	m->m_pkthdr.hash = toeplitz_hash(hash);
347 	return pi;
348 }
349 
350 static int
351 igb_probe(device_t dev)
352 {
353 	const struct igb_device *d;
354 	uint16_t vid, did;
355 
356 	vid = pci_get_vendor(dev);
357 	did = pci_get_device(dev);
358 
359 	for (d = igb_devices; d->desc != NULL; ++d) {
360 		if (vid == d->vid && did == d->did) {
361 			device_set_desc(dev, d->desc);
362 			return 0;
363 		}
364 	}
365 	return ENXIO;
366 }
367 
368 static int
369 igb_attach(device_t dev)
370 {
371 	struct igb_softc *sc = device_get_softc(dev);
372 	uint16_t eeprom_data;
373 	int error = 0, ring_max;
374 #ifdef IFPOLL_ENABLE
375 	int offset, offset_def;
376 #endif
377 
378 #ifdef notyet
379 	/* SYSCTL stuff */
380 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
381 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
382 	    OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
383 	    igb_sysctl_nvm_info, "I", "NVM Information");
384 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
385 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
386 	    OID_AUTO, "flow_control", CTLTYPE_INT|CTLFLAG_RW,
387 	    adapter, 0, igb_set_flowcntl, "I", "Flow Control");
388 #endif
389 
390 	callout_init_mp(&sc->timer);
391 	lwkt_serialize_init(&sc->main_serialize);
392 
393 	if_initname(&sc->arpcom.ac_if, device_get_name(dev),
394 	    device_get_unit(dev));
395 	sc->dev = sc->osdep.dev = dev;
396 
397 	/*
398 	 * Determine hardware and mac type
399 	 */
400 	sc->hw.vendor_id = pci_get_vendor(dev);
401 	sc->hw.device_id = pci_get_device(dev);
402 	sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
403 	sc->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
404 	sc->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
405 
406 	if (e1000_set_mac_type(&sc->hw))
407 		return ENXIO;
408 
409 	/* Are we a VF device? */
410 	if (sc->hw.mac.type == e1000_vfadapt ||
411 	    sc->hw.mac.type == e1000_vfadapt_i350)
412 		sc->vf_ifp = 1;
413 	else
414 		sc->vf_ifp = 0;
415 
416 	/*
417 	 * Configure total supported RX/TX ring count
418 	 */
419 	switch (sc->hw.mac.type) {
420 	case e1000_82575:
421 		ring_max = IGB_MAX_RING_82575;
422 		break;
423 
424 	case e1000_82576:
425 		ring_max = IGB_MAX_RING_82576;
426 		break;
427 
428 	case e1000_82580:
429 		ring_max = IGB_MAX_RING_82580;
430 		break;
431 
432 	case e1000_i350:
433 		ring_max = IGB_MAX_RING_I350;
434 		break;
435 
436 	case e1000_i210:
437 		ring_max = IGB_MAX_RING_I210;
438 		break;
439 
440 	case e1000_i211:
441 		ring_max = IGB_MAX_RING_I211;
442 		break;
443 
444 	default:
445 		ring_max = IGB_MIN_RING;
446 		break;
447 	}
448 
449 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr", igb_rxr);
450 	sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, ring_max);
451 #ifdef IGB_RSS_DEBUG
452 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr_debug", sc->rx_ring_cnt);
453 #endif
454 	sc->rx_ring_inuse = sc->rx_ring_cnt;
455 
456 	sc->tx_ring_cnt = device_getenv_int(dev, "txr", igb_txr);
457 	sc->tx_ring_cnt = if_ring_count2(sc->tx_ring_cnt, ring_max);
458 #ifdef IGB_TSS_DEBUG
459 	sc->tx_ring_cnt = device_getenv_int(dev, "txr_debug", sc->tx_ring_cnt);
460 #endif
461 	sc->tx_ring_inuse = sc->tx_ring_cnt;
462 
463 	/* Enable bus mastering */
464 	pci_enable_busmaster(dev);
465 
466 	/*
467 	 * Allocate IO memory
468 	 */
469 	sc->mem_rid = PCIR_BAR(0);
470 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
471 	    RF_ACTIVE);
472 	if (sc->mem_res == NULL) {
473 		device_printf(dev, "Unable to allocate bus resource: memory\n");
474 		error = ENXIO;
475 		goto failed;
476 	}
477 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->mem_res);
478 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->mem_res);
479 
480 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
481 
482 	/* Save PCI command register for Shared Code */
483 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
484 	sc->hw.back = &sc->osdep;
485 
486 	/* Do Shared Code initialization */
487 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
488 		device_printf(dev, "Setup of Shared code failed\n");
489 		error = ENXIO;
490 		goto failed;
491 	}
492 
493 	e1000_get_bus_info(&sc->hw);
494 
495 	sc->hw.mac.autoneg = DO_AUTO_NEG;
496 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
497 	sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
498 
499 	/* Copper options */
500 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
501 		sc->hw.phy.mdix = AUTO_ALL_MODES;
502 		sc->hw.phy.disable_polarity_correction = FALSE;
503 		sc->hw.phy.ms_type = IGB_MASTER_SLAVE;
504 	}
505 
506 	/* Set the frame limits assuming  standard ethernet sized frames. */
507 	sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
508 
509 	/* Allocate RX/TX rings */
510 	error = igb_alloc_rings(sc);
511 	if (error)
512 		goto failed;
513 
514 #ifdef IFPOLL_ENABLE
515 	/*
516 	 * NPOLLING RX CPU offset
517 	 */
518 	if (sc->rx_ring_cnt == ncpus2) {
519 		offset = 0;
520 	} else {
521 		offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
522 		offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
523 		if (offset >= ncpus2 ||
524 		    offset % sc->rx_ring_cnt != 0) {
525 			device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
526 			    offset, offset_def);
527 			offset = offset_def;
528 		}
529 	}
530 	sc->rx_npoll_off = offset;
531 
532 	/*
533 	 * NPOLLING TX CPU offset
534 	 */
535 	if (sc->tx_ring_cnt == ncpus2) {
536 		offset = 0;
537 	} else {
538 		offset_def = (sc->tx_ring_cnt * device_get_unit(dev)) % ncpus2;
539 		offset = device_getenv_int(dev, "npoll.txoff", offset_def);
540 		if (offset >= ncpus2 ||
541 		    offset % sc->tx_ring_cnt != 0) {
542 			device_printf(dev, "invalid npoll.txoff %d, use %d\n",
543 			    offset, offset_def);
544 			offset = offset_def;
545 		}
546 	}
547 	sc->tx_npoll_off = offset;
548 #endif
549 
550 	/* Allocate interrupt */
551 	error = igb_alloc_intr(sc);
552 	if (error)
553 		goto failed;
554 
555 	/* Setup serializers */
556 	igb_setup_serializer(sc);
557 
558 	/* Allocate the appropriate stats memory */
559 	if (sc->vf_ifp) {
560 		sc->stats = kmalloc(sizeof(struct e1000_vf_stats), M_DEVBUF,
561 		    M_WAITOK | M_ZERO);
562 		igb_vf_init_stats(sc);
563 	} else {
564 		sc->stats = kmalloc(sizeof(struct e1000_hw_stats), M_DEVBUF,
565 		    M_WAITOK | M_ZERO);
566 	}
567 
568 	/* Allocate multicast array memory. */
569 	sc->mta = kmalloc(ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
570 	    M_DEVBUF, M_WAITOK);
571 
572 	/* Some adapter-specific advanced features */
573 	if (sc->hw.mac.type >= e1000_i350) {
574 #ifdef notyet
575 		igb_set_sysctl_value(adapter, "dma_coalesce",
576 		    "configure dma coalesce",
577 		    &adapter->dma_coalesce, igb_dma_coalesce);
578 		igb_set_sysctl_value(adapter, "eee_disabled",
579 		    "enable Energy Efficient Ethernet",
580 		    &adapter->hw.dev_spec._82575.eee_disable,
581 		    igb_eee_disabled);
582 #else
583 		sc->dma_coalesce = igb_dma_coalesce;
584 		sc->hw.dev_spec._82575.eee_disable = igb_eee_disabled;
585 #endif
586 		if (sc->hw.phy.media_type == e1000_media_type_copper)
587 			e1000_set_eee_i350(&sc->hw);
588 	}
589 
590 	/*
591 	 * Start from a known state, this is important in reading the nvm and
592 	 * mac from that.
593 	 */
594 	e1000_reset_hw(&sc->hw);
595 
596 	/* Make sure we have a good EEPROM before we read from it */
597 	if (sc->hw.mac.type != e1000_i210 && sc->hw.mac.type != e1000_i211 &&
598 	    e1000_validate_nvm_checksum(&sc->hw) < 0) {
599 		/*
600 		 * Some PCI-E parts fail the first check due to
601 		 * the link being in sleep state, call it again,
602 		 * if it fails a second time its a real issue.
603 		 */
604 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
605 			device_printf(dev,
606 			    "The EEPROM Checksum Is Not Valid\n");
607 			error = EIO;
608 			goto failed;
609 		}
610 	}
611 
612 	/* Copy the permanent MAC address out of the EEPROM */
613 	if (e1000_read_mac_addr(&sc->hw) < 0) {
614 		device_printf(dev, "EEPROM read error while reading MAC"
615 		    " address\n");
616 		error = EIO;
617 		goto failed;
618 	}
619 	if (!igb_is_valid_ether_addr(sc->hw.mac.addr)) {
620 		device_printf(dev, "Invalid MAC address\n");
621 		error = EIO;
622 		goto failed;
623 	}
624 
625 	/* Setup OS specific network interface */
626 	igb_setup_ifp(sc);
627 
628 	/* Add sysctl tree, must after igb_setup_ifp() */
629 	igb_add_sysctl(sc);
630 
631 	/* Now get a good starting state */
632 	igb_reset(sc);
633 
634 	/* Initialize statistics */
635 	igb_update_stats_counters(sc);
636 
637 	sc->hw.mac.get_link_status = 1;
638 	igb_update_link_status(sc);
639 
640 	/* Indicate SOL/IDER usage */
641 	if (e1000_check_reset_block(&sc->hw)) {
642 		device_printf(dev,
643 		    "PHY reset is blocked due to SOL/IDER session.\n");
644 	}
645 
646 	/* Determine if we have to control management hardware */
647 	if (e1000_enable_mng_pass_thru(&sc->hw))
648 		sc->flags |= IGB_FLAG_HAS_MGMT;
649 
650 	/*
651 	 * Setup Wake-on-Lan
652 	 */
653 	/* APME bit in EEPROM is mapped to WUC.APME */
654 	eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC) & E1000_WUC_APME;
655 	if (eeprom_data)
656 		sc->wol = E1000_WUFC_MAG;
657 	/* XXX disable WOL */
658 	sc->wol = 0;
659 
660 #ifdef notyet
661 	/* Register for VLAN events */
662 	adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
663 	     igb_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
664 	adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
665 	     igb_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
666 #endif
667 
668 #ifdef notyet
669 	igb_add_hw_stats(adapter);
670 #endif
671 
672 	/*
673 	 * Disable interrupt to prevent spurious interrupts (line based
674 	 * interrupt, MSI or even MSI-X), which had been observed on
675 	 * several types of LOMs, from being handled.
676 	 */
677 	igb_disable_intr(sc);
678 
679 	error = igb_setup_intr(sc);
680 	if (error) {
681 		ether_ifdetach(&sc->arpcom.ac_if);
682 		goto failed;
683 	}
684 	return 0;
685 
686 failed:
687 	igb_detach(dev);
688 	return error;
689 }
690 
691 static int
692 igb_detach(device_t dev)
693 {
694 	struct igb_softc *sc = device_get_softc(dev);
695 
696 	if (device_is_attached(dev)) {
697 		struct ifnet *ifp = &sc->arpcom.ac_if;
698 
699 		ifnet_serialize_all(ifp);
700 
701 		igb_stop(sc);
702 
703 		e1000_phy_hw_reset(&sc->hw);
704 
705 		/* Give control back to firmware */
706 		igb_rel_mgmt(sc);
707 		igb_rel_hw_control(sc);
708 
709 		if (sc->wol) {
710 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
711 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
712 			igb_enable_wol(dev);
713 		}
714 
715 		igb_teardown_intr(sc);
716 
717 		ifnet_deserialize_all(ifp);
718 
719 		ether_ifdetach(ifp);
720 	} else if (sc->mem_res != NULL) {
721 		igb_rel_hw_control(sc);
722 	}
723 	bus_generic_detach(dev);
724 
725 	if (sc->sysctl_tree != NULL)
726 		sysctl_ctx_free(&sc->sysctl_ctx);
727 
728 	igb_free_intr(sc);
729 
730 	if (sc->msix_mem_res != NULL) {
731 		bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_mem_rid,
732 		    sc->msix_mem_res);
733 	}
734 	if (sc->mem_res != NULL) {
735 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid,
736 		    sc->mem_res);
737 	}
738 
739 	igb_free_rings(sc);
740 
741 	if (sc->mta != NULL)
742 		kfree(sc->mta, M_DEVBUF);
743 	if (sc->stats != NULL)
744 		kfree(sc->stats, M_DEVBUF);
745 	if (sc->serializes != NULL)
746 		kfree(sc->serializes, M_DEVBUF);
747 
748 	return 0;
749 }
750 
751 static int
752 igb_shutdown(device_t dev)
753 {
754 	return igb_suspend(dev);
755 }
756 
757 static int
758 igb_suspend(device_t dev)
759 {
760 	struct igb_softc *sc = device_get_softc(dev);
761 	struct ifnet *ifp = &sc->arpcom.ac_if;
762 
763 	ifnet_serialize_all(ifp);
764 
765 	igb_stop(sc);
766 
767 	igb_rel_mgmt(sc);
768 	igb_rel_hw_control(sc);
769 
770 	if (sc->wol) {
771 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
772 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
773 		igb_enable_wol(dev);
774 	}
775 
776 	ifnet_deserialize_all(ifp);
777 
778 	return bus_generic_suspend(dev);
779 }
780 
781 static int
782 igb_resume(device_t dev)
783 {
784 	struct igb_softc *sc = device_get_softc(dev);
785 	struct ifnet *ifp = &sc->arpcom.ac_if;
786 	int i;
787 
788 	ifnet_serialize_all(ifp);
789 
790 	igb_init(sc);
791 	igb_get_mgmt(sc);
792 
793 	for (i = 0; i < sc->tx_ring_inuse; ++i)
794 		ifsq_devstart_sched(sc->tx_rings[i].ifsq);
795 
796 	ifnet_deserialize_all(ifp);
797 
798 	return bus_generic_resume(dev);
799 }
800 
801 static int
802 igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
803 {
804 	struct igb_softc *sc = ifp->if_softc;
805 	struct ifreq *ifr = (struct ifreq *)data;
806 	int max_frame_size, mask, reinit;
807 	int error = 0;
808 
809 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
810 
811 	switch (command) {
812 	case SIOCSIFMTU:
813 		max_frame_size = 9234;
814 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
815 		    ETHER_CRC_LEN) {
816 			error = EINVAL;
817 			break;
818 		}
819 
820 		ifp->if_mtu = ifr->ifr_mtu;
821 		sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
822 		    ETHER_CRC_LEN;
823 
824 		if (ifp->if_flags & IFF_RUNNING)
825 			igb_init(sc);
826 		break;
827 
828 	case SIOCSIFFLAGS:
829 		if (ifp->if_flags & IFF_UP) {
830 			if (ifp->if_flags & IFF_RUNNING) {
831 				if ((ifp->if_flags ^ sc->if_flags) &
832 				    (IFF_PROMISC | IFF_ALLMULTI)) {
833 					igb_disable_promisc(sc);
834 					igb_set_promisc(sc);
835 				}
836 			} else {
837 				igb_init(sc);
838 			}
839 		} else if (ifp->if_flags & IFF_RUNNING) {
840 			igb_stop(sc);
841 		}
842 		sc->if_flags = ifp->if_flags;
843 		break;
844 
845 	case SIOCADDMULTI:
846 	case SIOCDELMULTI:
847 		if (ifp->if_flags & IFF_RUNNING) {
848 			igb_disable_intr(sc);
849 			igb_set_multi(sc);
850 #ifdef IFPOLL_ENABLE
851 			if (!(ifp->if_flags & IFF_NPOLLING))
852 #endif
853 				igb_enable_intr(sc);
854 		}
855 		break;
856 
857 	case SIOCSIFMEDIA:
858 		/* Check SOL/IDER usage */
859 		if (e1000_check_reset_block(&sc->hw)) {
860 			if_printf(ifp, "Media change is "
861 			    "blocked due to SOL/IDER session.\n");
862 			break;
863 		}
864 		/* FALL THROUGH */
865 
866 	case SIOCGIFMEDIA:
867 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
868 		break;
869 
870 	case SIOCSIFCAP:
871 		reinit = 0;
872 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
873 		if (mask & IFCAP_RXCSUM) {
874 			ifp->if_capenable ^= IFCAP_RXCSUM;
875 			reinit = 1;
876 		}
877 		if (mask & IFCAP_VLAN_HWTAGGING) {
878 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
879 			reinit = 1;
880 		}
881 		if (mask & IFCAP_TXCSUM) {
882 			ifp->if_capenable ^= IFCAP_TXCSUM;
883 			if (ifp->if_capenable & IFCAP_TXCSUM)
884 				ifp->if_hwassist |= IGB_CSUM_FEATURES;
885 			else
886 				ifp->if_hwassist &= ~IGB_CSUM_FEATURES;
887 		}
888 		if (mask & IFCAP_TSO) {
889 			ifp->if_capenable ^= IFCAP_TSO;
890 			if (ifp->if_capenable & IFCAP_TSO)
891 				ifp->if_hwassist |= CSUM_TSO;
892 			else
893 				ifp->if_hwassist &= ~CSUM_TSO;
894 		}
895 		if (mask & IFCAP_RSS)
896 			ifp->if_capenable ^= IFCAP_RSS;
897 		if (reinit && (ifp->if_flags & IFF_RUNNING))
898 			igb_init(sc);
899 		break;
900 
901 	default:
902 		error = ether_ioctl(ifp, command, data);
903 		break;
904 	}
905 	return error;
906 }
907 
908 static void
909 igb_init(void *xsc)
910 {
911 	struct igb_softc *sc = xsc;
912 	struct ifnet *ifp = &sc->arpcom.ac_if;
913 	boolean_t polling;
914 	int i;
915 
916 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
917 
918 	igb_stop(sc);
919 
920 	/* Get the latest mac address, User can use a LAA */
921 	bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
922 
923 	/* Put the address into the Receive Address Array */
924 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
925 
926 	igb_reset(sc);
927 	igb_update_link_status(sc);
928 
929 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
930 
931 	/* Configure for OS presence */
932 	igb_get_mgmt(sc);
933 
934 	polling = FALSE;
935 #ifdef IFPOLL_ENABLE
936 	if (ifp->if_flags & IFF_NPOLLING)
937 		polling = TRUE;
938 #endif
939 
940 	/* Configured used RX/TX rings */
941 	igb_set_ring_inuse(sc, polling);
942 	ifq_set_subq_mask(&ifp->if_snd, sc->tx_ring_inuse - 1);
943 
944 	/* Initialize interrupt */
945 	igb_init_intr(sc);
946 
947 	/* Prepare transmit descriptors and buffers */
948 	for (i = 0; i < sc->tx_ring_inuse; ++i)
949 		igb_init_tx_ring(&sc->tx_rings[i]);
950 	igb_init_tx_unit(sc);
951 
952 	/* Setup Multicast table */
953 	igb_set_multi(sc);
954 
955 #if 0
956 	/*
957 	 * Figure out the desired mbuf pool
958 	 * for doing jumbo/packetsplit
959 	 */
960 	if (adapter->max_frame_size <= 2048)
961 		adapter->rx_mbuf_sz = MCLBYTES;
962 	else if (adapter->max_frame_size <= 4096)
963 		adapter->rx_mbuf_sz = MJUMPAGESIZE;
964 	else
965 		adapter->rx_mbuf_sz = MJUM9BYTES;
966 #endif
967 
968 	/* Prepare receive descriptors and buffers */
969 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
970 		int error;
971 
972 		error = igb_init_rx_ring(&sc->rx_rings[i]);
973 		if (error) {
974 			if_printf(ifp, "Could not setup receive structures\n");
975 			igb_stop(sc);
976 			return;
977 		}
978 	}
979 	igb_init_rx_unit(sc);
980 
981 	/* Enable VLAN support */
982 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
983 		igb_set_vlan(sc);
984 
985 	/* Don't lose promiscuous settings */
986 	igb_set_promisc(sc);
987 
988 	ifp->if_flags |= IFF_RUNNING;
989 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
990 		ifsq_clr_oactive(sc->tx_rings[i].ifsq);
991 		ifsq_watchdog_start(&sc->tx_rings[i].tx_watchdog);
992 	}
993 
994 	igb_set_timer_cpuid(sc, polling);
995 	callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
996 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
997 
998 	/* This clears any pending interrupts */
999 	E1000_READ_REG(&sc->hw, E1000_ICR);
1000 
1001 	/*
1002 	 * Only enable interrupts if we are not polling, make sure
1003 	 * they are off otherwise.
1004 	 */
1005 	if (polling) {
1006 		igb_disable_intr(sc);
1007 	} else {
1008 		igb_enable_intr(sc);
1009 		E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
1010 	}
1011 
1012 	/* Set Energy Efficient Ethernet */
1013 	if (sc->hw.phy.media_type == e1000_media_type_copper)
1014 		e1000_set_eee_i350(&sc->hw);
1015 }
1016 
1017 static void
1018 igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1019 {
1020 	struct igb_softc *sc = ifp->if_softc;
1021 
1022 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1023 
1024 	igb_update_link_status(sc);
1025 
1026 	ifmr->ifm_status = IFM_AVALID;
1027 	ifmr->ifm_active = IFM_ETHER;
1028 
1029 	if (!sc->link_active)
1030 		return;
1031 
1032 	ifmr->ifm_status |= IFM_ACTIVE;
1033 
1034 	switch (sc->link_speed) {
1035 	case 10:
1036 		ifmr->ifm_active |= IFM_10_T;
1037 		break;
1038 
1039 	case 100:
1040 		/*
1041 		 * Support for 100Mb SFP - these are Fiber
1042 		 * but the media type appears as serdes
1043 		 */
1044 		if (sc->hw.phy.media_type == e1000_media_type_internal_serdes)
1045 			ifmr->ifm_active |= IFM_100_FX;
1046 		else
1047 			ifmr->ifm_active |= IFM_100_TX;
1048 		break;
1049 
1050 	case 1000:
1051 		ifmr->ifm_active |= IFM_1000_T;
1052 		break;
1053 	}
1054 
1055 	if (sc->link_duplex == FULL_DUPLEX)
1056 		ifmr->ifm_active |= IFM_FDX;
1057 	else
1058 		ifmr->ifm_active |= IFM_HDX;
1059 }
1060 
1061 static int
1062 igb_media_change(struct ifnet *ifp)
1063 {
1064 	struct igb_softc *sc = ifp->if_softc;
1065 	struct ifmedia *ifm = &sc->media;
1066 
1067 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1068 
1069 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1070 		return EINVAL;
1071 
1072 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1073 	case IFM_AUTO:
1074 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1075 		sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1076 		break;
1077 
1078 	case IFM_1000_LX:
1079 	case IFM_1000_SX:
1080 	case IFM_1000_T:
1081 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1082 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1083 		break;
1084 
1085 	case IFM_100_TX:
1086 		sc->hw.mac.autoneg = FALSE;
1087 		sc->hw.phy.autoneg_advertised = 0;
1088 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1089 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1090 		else
1091 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1092 		break;
1093 
1094 	case IFM_10_T:
1095 		sc->hw.mac.autoneg = FALSE;
1096 		sc->hw.phy.autoneg_advertised = 0;
1097 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1098 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1099 		else
1100 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1101 		break;
1102 
1103 	default:
1104 		if_printf(ifp, "Unsupported media type\n");
1105 		break;
1106 	}
1107 
1108 	igb_init(sc);
1109 
1110 	return 0;
1111 }
1112 
1113 static void
1114 igb_set_promisc(struct igb_softc *sc)
1115 {
1116 	struct ifnet *ifp = &sc->arpcom.ac_if;
1117 	struct e1000_hw *hw = &sc->hw;
1118 	uint32_t reg;
1119 
1120 	if (sc->vf_ifp) {
1121 		e1000_promisc_set_vf(hw, e1000_promisc_enabled);
1122 		return;
1123 	}
1124 
1125 	reg = E1000_READ_REG(hw, E1000_RCTL);
1126 	if (ifp->if_flags & IFF_PROMISC) {
1127 		reg |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1128 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
1129 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1130 		reg |= E1000_RCTL_MPE;
1131 		reg &= ~E1000_RCTL_UPE;
1132 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
1133 	}
1134 }
1135 
1136 static void
1137 igb_disable_promisc(struct igb_softc *sc)
1138 {
1139 	struct e1000_hw *hw = &sc->hw;
1140 	uint32_t reg;
1141 
1142 	if (sc->vf_ifp) {
1143 		e1000_promisc_set_vf(hw, e1000_promisc_disabled);
1144 		return;
1145 	}
1146 	reg = E1000_READ_REG(hw, E1000_RCTL);
1147 	reg &= ~E1000_RCTL_UPE;
1148 	reg &= ~E1000_RCTL_MPE;
1149 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
1150 }
1151 
1152 static void
1153 igb_set_multi(struct igb_softc *sc)
1154 {
1155 	struct ifnet *ifp = &sc->arpcom.ac_if;
1156 	struct ifmultiaddr *ifma;
1157 	uint32_t reg_rctl = 0;
1158 	uint8_t *mta;
1159 	int mcnt = 0;
1160 
1161 	mta = sc->mta;
1162 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1163 
1164 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1165 		if (ifma->ifma_addr->sa_family != AF_LINK)
1166 			continue;
1167 
1168 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1169 			break;
1170 
1171 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1172 		    &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
1173 		mcnt++;
1174 	}
1175 
1176 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1177 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1178 		reg_rctl |= E1000_RCTL_MPE;
1179 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1180 	} else {
1181 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1182 	}
1183 }
1184 
1185 static void
1186 igb_timer(void *xsc)
1187 {
1188 	struct igb_softc *sc = xsc;
1189 
1190 	lwkt_serialize_enter(&sc->main_serialize);
1191 
1192 	igb_update_link_status(sc);
1193 	igb_update_stats_counters(sc);
1194 
1195 	callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
1196 
1197 	lwkt_serialize_exit(&sc->main_serialize);
1198 }
1199 
1200 static void
1201 igb_update_link_status(struct igb_softc *sc)
1202 {
1203 	struct ifnet *ifp = &sc->arpcom.ac_if;
1204 	struct e1000_hw *hw = &sc->hw;
1205 	uint32_t link_check, thstat, ctrl;
1206 
1207 	link_check = thstat = ctrl = 0;
1208 
1209 	/* Get the cached link value or read for real */
1210 	switch (hw->phy.media_type) {
1211 	case e1000_media_type_copper:
1212 		if (hw->mac.get_link_status) {
1213 			/* Do the work to read phy */
1214 			e1000_check_for_link(hw);
1215 			link_check = !hw->mac.get_link_status;
1216 		} else {
1217 			link_check = TRUE;
1218 		}
1219 		break;
1220 
1221 	case e1000_media_type_fiber:
1222 		e1000_check_for_link(hw);
1223 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1224 		break;
1225 
1226 	case e1000_media_type_internal_serdes:
1227 		e1000_check_for_link(hw);
1228 		link_check = hw->mac.serdes_has_link;
1229 		break;
1230 
1231 	/* VF device is type_unknown */
1232 	case e1000_media_type_unknown:
1233 		e1000_check_for_link(hw);
1234 		link_check = !hw->mac.get_link_status;
1235 		/* Fall thru */
1236 	default:
1237 		break;
1238 	}
1239 
1240 	/* Check for thermal downshift or shutdown */
1241 	if (hw->mac.type == e1000_i350) {
1242 		thstat = E1000_READ_REG(hw, E1000_THSTAT);
1243 		ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1244 	}
1245 
1246 	/* Now we check if a transition has happened */
1247 	if (link_check && sc->link_active == 0) {
1248 		e1000_get_speed_and_duplex(hw,
1249 		    &sc->link_speed, &sc->link_duplex);
1250 		if (bootverbose) {
1251 			const char *flowctl;
1252 
1253 			/* Get the flow control for display */
1254 			switch (hw->fc.current_mode) {
1255 			case e1000_fc_rx_pause:
1256 				flowctl = "RX";
1257 				break;
1258 
1259 			case e1000_fc_tx_pause:
1260 				flowctl = "TX";
1261 				break;
1262 
1263 			case e1000_fc_full:
1264 				flowctl = "Full";
1265 				break;
1266 
1267 			default:
1268 				flowctl = "None";
1269 				break;
1270 			}
1271 
1272 			if_printf(ifp, "Link is up %d Mbps %s, "
1273 			    "Flow control: %s\n",
1274 			    sc->link_speed,
1275 			    sc->link_duplex == FULL_DUPLEX ?
1276 			    "Full Duplex" : "Half Duplex",
1277 			    flowctl);
1278 		}
1279 		sc->link_active = 1;
1280 
1281 		ifp->if_baudrate = sc->link_speed * 1000000;
1282 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1283 		    (thstat & E1000_THSTAT_LINK_THROTTLE))
1284 			if_printf(ifp, "Link: thermal downshift\n");
1285 		/* This can sleep */
1286 		ifp->if_link_state = LINK_STATE_UP;
1287 		if_link_state_change(ifp);
1288 	} else if (!link_check && sc->link_active == 1) {
1289 		ifp->if_baudrate = sc->link_speed = 0;
1290 		sc->link_duplex = 0;
1291 		if (bootverbose)
1292 			if_printf(ifp, "Link is Down\n");
1293 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1294 		    (thstat & E1000_THSTAT_PWR_DOWN))
1295 			if_printf(ifp, "Link: thermal shutdown\n");
1296 		sc->link_active = 0;
1297 		/* This can sleep */
1298 		ifp->if_link_state = LINK_STATE_DOWN;
1299 		if_link_state_change(ifp);
1300 	}
1301 }
1302 
1303 static void
1304 igb_stop(struct igb_softc *sc)
1305 {
1306 	struct ifnet *ifp = &sc->arpcom.ac_if;
1307 	int i;
1308 
1309 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1310 
1311 	igb_disable_intr(sc);
1312 
1313 	callout_stop(&sc->timer);
1314 
1315 	ifp->if_flags &= ~IFF_RUNNING;
1316 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1317 		ifsq_clr_oactive(sc->tx_rings[i].ifsq);
1318 		ifsq_watchdog_stop(&sc->tx_rings[i].tx_watchdog);
1319 		sc->tx_rings[i].tx_flags &= ~IGB_TXFLAG_ENABLED;
1320 	}
1321 
1322 	e1000_reset_hw(&sc->hw);
1323 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1324 
1325 	e1000_led_off(&sc->hw);
1326 	e1000_cleanup_led(&sc->hw);
1327 
1328 	for (i = 0; i < sc->tx_ring_cnt; ++i)
1329 		igb_free_tx_ring(&sc->tx_rings[i]);
1330 	for (i = 0; i < sc->rx_ring_cnt; ++i)
1331 		igb_free_rx_ring(&sc->rx_rings[i]);
1332 }
1333 
1334 static void
1335 igb_reset(struct igb_softc *sc)
1336 {
1337 	struct ifnet *ifp = &sc->arpcom.ac_if;
1338 	struct e1000_hw *hw = &sc->hw;
1339 	struct e1000_fc_info *fc = &hw->fc;
1340 	uint32_t pba = 0;
1341 	uint16_t hwm;
1342 
1343 	/* Let the firmware know the OS is in control */
1344 	igb_get_hw_control(sc);
1345 
1346 	/*
1347 	 * Packet Buffer Allocation (PBA)
1348 	 * Writing PBA sets the receive portion of the buffer
1349 	 * the remainder is used for the transmit buffer.
1350 	 */
1351 	switch (hw->mac.type) {
1352 	case e1000_82575:
1353 		pba = E1000_PBA_32K;
1354 		break;
1355 
1356 	case e1000_82576:
1357 	case e1000_vfadapt:
1358 		pba = E1000_READ_REG(hw, E1000_RXPBS);
1359 		pba &= E1000_RXPBS_SIZE_MASK_82576;
1360 		break;
1361 
1362 	case e1000_82580:
1363 	case e1000_i350:
1364 	case e1000_vfadapt_i350:
1365 		pba = E1000_READ_REG(hw, E1000_RXPBS);
1366 		pba = e1000_rxpbs_adjust_82580(pba);
1367 		break;
1368 
1369 	case e1000_i210:
1370 	case e1000_i211:
1371 		pba = E1000_PBA_34K;
1372 		break;
1373 
1374 	default:
1375 		break;
1376 	}
1377 
1378 	/* Special needs in case of Jumbo frames */
1379 	if (hw->mac.type == e1000_82575 && ifp->if_mtu > ETHERMTU) {
1380 		uint32_t tx_space, min_tx, min_rx;
1381 
1382 		pba = E1000_READ_REG(hw, E1000_PBA);
1383 		tx_space = pba >> 16;
1384 		pba &= 0xffff;
1385 
1386 		min_tx = (sc->max_frame_size +
1387 		    sizeof(struct e1000_tx_desc) - ETHER_CRC_LEN) * 2;
1388 		min_tx = roundup2(min_tx, 1024);
1389 		min_tx >>= 10;
1390 		min_rx = sc->max_frame_size;
1391 		min_rx = roundup2(min_rx, 1024);
1392 		min_rx >>= 10;
1393 		if (tx_space < min_tx && (min_tx - tx_space) < pba) {
1394 			pba = pba - (min_tx - tx_space);
1395 			/*
1396 			 * if short on rx space, rx wins
1397 			 * and must trump tx adjustment
1398 			 */
1399 			if (pba < min_rx)
1400 				pba = min_rx;
1401 		}
1402 		E1000_WRITE_REG(hw, E1000_PBA, pba);
1403 	}
1404 
1405 	/*
1406 	 * These parameters control the automatic generation (Tx) and
1407 	 * response (Rx) to Ethernet PAUSE frames.
1408 	 * - High water mark should allow for at least two frames to be
1409 	 *   received after sending an XOFF.
1410 	 * - Low water mark works best when it is very near the high water mark.
1411 	 *   This allows the receiver to restart by sending XON when it has
1412 	 *   drained a bit.
1413 	 */
1414 	hwm = min(((pba << 10) * 9 / 10),
1415 	    ((pba << 10) - 2 * sc->max_frame_size));
1416 
1417 	if (hw->mac.type < e1000_82576) {
1418 		fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1419 		fc->low_water = fc->high_water - 8;
1420 	} else {
1421 		fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1422 		fc->low_water = fc->high_water - 16;
1423 	}
1424 	fc->pause_time = IGB_FC_PAUSE_TIME;
1425 	fc->send_xon = TRUE;
1426 	fc->requested_mode = e1000_fc_default;
1427 
1428 	/* Issue a global reset */
1429 	e1000_reset_hw(hw);
1430 	E1000_WRITE_REG(hw, E1000_WUC, 0);
1431 
1432 	if (e1000_init_hw(hw) < 0)
1433 		if_printf(ifp, "Hardware Initialization Failed\n");
1434 
1435 	/* Setup DMA Coalescing */
1436 	if (hw->mac.type > e1000_82580 && hw->mac.type != e1000_i211) {
1437 		uint32_t dmac;
1438 		uint32_t reg;
1439 
1440 		if (sc->dma_coalesce == 0) {
1441 			/*
1442 			 * Disabled
1443 			 */
1444 			reg = E1000_READ_REG(hw, E1000_DMACR);
1445 			reg &= ~E1000_DMACR_DMAC_EN;
1446 			E1000_WRITE_REG(hw, E1000_DMACR, reg);
1447 			goto reset_out;
1448 		}
1449 
1450 		/* Set starting thresholds */
1451 		E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
1452 		E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
1453 
1454 		hwm = 64 * pba - sc->max_frame_size / 16;
1455 		if (hwm < 64 * (pba - 6))
1456 			hwm = 64 * (pba - 6);
1457 		reg = E1000_READ_REG(hw, E1000_FCRTC);
1458 		reg &= ~E1000_FCRTC_RTH_COAL_MASK;
1459 		reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
1460 		    & E1000_FCRTC_RTH_COAL_MASK);
1461 		E1000_WRITE_REG(hw, E1000_FCRTC, reg);
1462 
1463 		dmac = pba - sc->max_frame_size / 512;
1464 		if (dmac < pba - 10)
1465 			dmac = pba - 10;
1466 		reg = E1000_READ_REG(hw, E1000_DMACR);
1467 		reg &= ~E1000_DMACR_DMACTHR_MASK;
1468 		reg = ((dmac << E1000_DMACR_DMACTHR_SHIFT)
1469 		    & E1000_DMACR_DMACTHR_MASK);
1470 		/* Transition to L0x or L1 if available.. */
1471 		reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1472 		/* timer = value in sc->dma_coalesce in 32usec intervals */
1473 		reg |= (sc->dma_coalesce >> 5);
1474 		E1000_WRITE_REG(hw, E1000_DMACR, reg);
1475 
1476 		/* Set the interval before transition */
1477 		reg = E1000_READ_REG(hw, E1000_DMCTLX);
1478 		reg |= 0x80000004;
1479 		E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
1480 
1481 		/* Free space in tx packet buffer to wake from DMA coal */
1482 		E1000_WRITE_REG(hw, E1000_DMCTXTH,
1483 		    (20480 - (2 * sc->max_frame_size)) >> 6);
1484 
1485 		/* Make low power state decision controlled by DMA coal */
1486 		reg = E1000_READ_REG(hw, E1000_PCIEMISC);
1487 		reg &= ~E1000_PCIEMISC_LX_DECISION;
1488 		E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
1489 		if_printf(ifp, "DMA Coalescing enabled\n");
1490 	} else if (hw->mac.type == e1000_82580) {
1491 		uint32_t reg = E1000_READ_REG(hw, E1000_PCIEMISC);
1492 
1493 		E1000_WRITE_REG(hw, E1000_DMACR, 0);
1494 		E1000_WRITE_REG(hw, E1000_PCIEMISC,
1495 		    reg & ~E1000_PCIEMISC_LX_DECISION);
1496 	}
1497 
1498 reset_out:
1499 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1500 	e1000_get_phy_info(hw);
1501 	e1000_check_for_link(hw);
1502 }
1503 
1504 static void
1505 igb_setup_ifp(struct igb_softc *sc)
1506 {
1507 	struct ifnet *ifp = &sc->arpcom.ac_if;
1508 	int i;
1509 
1510 	ifp->if_softc = sc;
1511 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1512 	ifp->if_init = igb_init;
1513 	ifp->if_ioctl = igb_ioctl;
1514 	ifp->if_start = igb_start;
1515 	ifp->if_serialize = igb_serialize;
1516 	ifp->if_deserialize = igb_deserialize;
1517 	ifp->if_tryserialize = igb_tryserialize;
1518 #ifdef INVARIANTS
1519 	ifp->if_serialize_assert = igb_serialize_assert;
1520 #endif
1521 #ifdef IFPOLL_ENABLE
1522 	ifp->if_npoll = igb_npoll;
1523 #endif
1524 
1525 	ifq_set_maxlen(&ifp->if_snd, sc->tx_rings[0].num_tx_desc - 1);
1526 	ifq_set_ready(&ifp->if_snd);
1527 	ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt);
1528 
1529 	ifp->if_mapsubq = ifq_mapsubq_mask;
1530 	ifq_set_subq_mask(&ifp->if_snd, 0);
1531 
1532 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1533 
1534 	ifp->if_capabilities =
1535 	    IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_TSO;
1536 	if (IGB_ENABLE_HWRSS(sc))
1537 		ifp->if_capabilities |= IFCAP_RSS;
1538 	ifp->if_capenable = ifp->if_capabilities;
1539 	ifp->if_hwassist = IGB_CSUM_FEATURES | CSUM_TSO;
1540 
1541 	/*
1542 	 * Tell the upper layer(s) we support long frames
1543 	 */
1544 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1545 
1546 	/* Setup TX rings and subqueues */
1547 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1548 		struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
1549 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1550 
1551 		ifsq_set_cpuid(ifsq, txr->tx_intr_cpuid);
1552 		ifsq_set_priv(ifsq, txr);
1553 		ifsq_set_hw_serialize(ifsq, &txr->tx_serialize);
1554 		txr->ifsq = ifsq;
1555 
1556 		ifsq_watchdog_init(&txr->tx_watchdog, ifsq, igb_watchdog);
1557 	}
1558 
1559 	/*
1560 	 * Specify the media types supported by this adapter and register
1561 	 * callbacks to update media and link information
1562 	 */
1563 	ifmedia_init(&sc->media, IFM_IMASK, igb_media_change, igb_media_status);
1564 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1565 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1566 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1567 		    0, NULL);
1568 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1569 	} else {
1570 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1571 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1572 		    0, NULL);
1573 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1574 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1575 		    0, NULL);
1576 		if (sc->hw.phy.type != e1000_phy_ife) {
1577 			ifmedia_add(&sc->media,
1578 			    IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1579 			ifmedia_add(&sc->media,
1580 			    IFM_ETHER | IFM_1000_T, 0, NULL);
1581 		}
1582 	}
1583 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1584 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1585 }
1586 
1587 static void
1588 igb_add_sysctl(struct igb_softc *sc)
1589 {
1590 	char node[32];
1591 	int i;
1592 
1593 	sysctl_ctx_init(&sc->sysctl_ctx);
1594 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1595 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
1596 	    device_get_nameunit(sc->dev), CTLFLAG_RD, 0, "");
1597 	if (sc->sysctl_tree == NULL) {
1598 		device_printf(sc->dev, "can't add sysctl node\n");
1599 		return;
1600 	}
1601 
1602 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1603 	    OID_AUTO, "rxr", CTLFLAG_RD, &sc->rx_ring_cnt, 0, "# of RX rings");
1604 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1605 	    OID_AUTO, "rxr_inuse", CTLFLAG_RD, &sc->rx_ring_inuse, 0,
1606 	    "# of RX rings used");
1607 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1608 	    OID_AUTO, "txr", CTLFLAG_RD, &sc->tx_ring_cnt, 0, "# of TX rings");
1609 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1610 	    OID_AUTO, "txr_inuse", CTLFLAG_RD, &sc->tx_ring_inuse, 0,
1611 	    "# of TX rings used");
1612 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1613 	    OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_rings[0].num_rx_desc, 0,
1614 	    "# of RX descs");
1615 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1616 	    OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_rings[0].num_tx_desc, 0,
1617 	    "# of TX descs");
1618 
1619 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
1620 		SYSCTL_ADD_PROC(&sc->sysctl_ctx,
1621 		    SYSCTL_CHILDREN(sc->sysctl_tree),
1622 		    OID_AUTO, "intr_rate", CTLTYPE_INT | CTLFLAG_RW,
1623 		    sc, 0, igb_sysctl_intr_rate, "I", "interrupt rate");
1624 	} else {
1625 		for (i = 0; i < sc->msix_cnt; ++i) {
1626 			struct igb_msix_data *msix = &sc->msix_data[i];
1627 
1628 			ksnprintf(node, sizeof(node), "msix%d_rate", i);
1629 			SYSCTL_ADD_PROC(&sc->sysctl_ctx,
1630 			    SYSCTL_CHILDREN(sc->sysctl_tree),
1631 			    OID_AUTO, node, CTLTYPE_INT | CTLFLAG_RW,
1632 			    msix, 0, igb_sysctl_msix_rate, "I",
1633 			    msix->msix_rate_desc);
1634 		}
1635 	}
1636 
1637 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1638 	    OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1639 	    sc, 0, igb_sysctl_tx_intr_nsegs, "I",
1640 	    "# of segments per TX interrupt");
1641 
1642 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1643 	    OID_AUTO, "tx_wreg_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1644 	    sc, 0, igb_sysctl_tx_wreg_nsegs, "I",
1645 	    "# of segments sent before write to hardware register");
1646 
1647 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1648 	    OID_AUTO, "rx_wreg_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1649 	    sc, 0, igb_sysctl_rx_wreg_nsegs, "I",
1650 	    "# of segments received before write to hardware register");
1651 
1652 #ifdef IFPOLL_ENABLE
1653 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1654 	    OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
1655 	    sc, 0, igb_sysctl_npoll_rxoff, "I", "NPOLLING RX cpu offset");
1656 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1657 	    OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
1658 	    sc, 0, igb_sysctl_npoll_txoff, "I", "NPOLLING TX cpu offset");
1659 #endif
1660 
1661 #ifdef IGB_RSS_DEBUG
1662 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1663 	    OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug, 0,
1664 	    "RSS debug level");
1665 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1666 		ksnprintf(node, sizeof(node), "rx%d_pkt", i);
1667 		SYSCTL_ADD_ULONG(&sc->sysctl_ctx,
1668 		    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, node,
1669 		    CTLFLAG_RW, &sc->rx_rings[i].rx_packets, "RXed packets");
1670 	}
1671 #endif
1672 #ifdef IGB_TSS_DEBUG
1673 	for  (i = 0; i < sc->tx_ring_cnt; ++i) {
1674 		ksnprintf(node, sizeof(node), "tx%d_pkt", i);
1675 		SYSCTL_ADD_ULONG(&sc->sysctl_ctx,
1676 		    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, node,
1677 		    CTLFLAG_RW, &sc->tx_rings[i].tx_packets, "TXed packets");
1678 	}
1679 #endif
1680 }
1681 
1682 static int
1683 igb_alloc_rings(struct igb_softc *sc)
1684 {
1685 	int error, i;
1686 
1687 	/*
1688 	 * Create top level busdma tag
1689 	 */
1690 	error = bus_dma_tag_create(NULL, 1, 0,
1691 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1692 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1693 	    &sc->parent_tag);
1694 	if (error) {
1695 		device_printf(sc->dev, "could not create top level DMA tag\n");
1696 		return error;
1697 	}
1698 
1699 	/*
1700 	 * Allocate TX descriptor rings and buffers
1701 	 */
1702 	sc->tx_rings = kmalloc_cachealign(
1703 	    sizeof(struct igb_tx_ring) * sc->tx_ring_cnt,
1704 	    M_DEVBUF, M_WAITOK | M_ZERO);
1705 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1706 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1707 
1708 		/* Set up some basics */
1709 		txr->sc = sc;
1710 		txr->me = i;
1711 		lwkt_serialize_init(&txr->tx_serialize);
1712 
1713 		error = igb_create_tx_ring(txr);
1714 		if (error)
1715 			return error;
1716 	}
1717 
1718 	/*
1719 	 * Allocate RX descriptor rings and buffers
1720 	 */
1721 	sc->rx_rings = kmalloc_cachealign(
1722 	    sizeof(struct igb_rx_ring) * sc->rx_ring_cnt,
1723 	    M_DEVBUF, M_WAITOK | M_ZERO);
1724 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1725 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
1726 
1727 		/* Set up some basics */
1728 		rxr->sc = sc;
1729 		rxr->me = i;
1730 		lwkt_serialize_init(&rxr->rx_serialize);
1731 
1732 		error = igb_create_rx_ring(rxr);
1733 		if (error)
1734 			return error;
1735 	}
1736 
1737 	return 0;
1738 }
1739 
1740 static void
1741 igb_free_rings(struct igb_softc *sc)
1742 {
1743 	int i;
1744 
1745 	if (sc->tx_rings != NULL) {
1746 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
1747 			struct igb_tx_ring *txr = &sc->tx_rings[i];
1748 
1749 			igb_destroy_tx_ring(txr, txr->num_tx_desc);
1750 		}
1751 		kfree(sc->tx_rings, M_DEVBUF);
1752 	}
1753 
1754 	if (sc->rx_rings != NULL) {
1755 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
1756 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
1757 
1758 			igb_destroy_rx_ring(rxr, rxr->num_rx_desc);
1759 		}
1760 		kfree(sc->rx_rings, M_DEVBUF);
1761 	}
1762 }
1763 
1764 static int
1765 igb_create_tx_ring(struct igb_tx_ring *txr)
1766 {
1767 	int tsize, error, i, ntxd;
1768 
1769 	/*
1770 	 * Validate number of transmit descriptors. It must not exceed
1771 	 * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
1772 	 */
1773 	ntxd = device_getenv_int(txr->sc->dev, "txd", igb_txd);
1774 	if ((ntxd * sizeof(struct e1000_tx_desc)) % IGB_DBA_ALIGN != 0 ||
1775 	    ntxd > IGB_MAX_TXD || ntxd < IGB_MIN_TXD) {
1776 		device_printf(txr->sc->dev,
1777 		    "Using %d TX descriptors instead of %d!\n",
1778 		    IGB_DEFAULT_TXD, ntxd);
1779 		txr->num_tx_desc = IGB_DEFAULT_TXD;
1780 	} else {
1781 		txr->num_tx_desc = ntxd;
1782 	}
1783 
1784 	/*
1785 	 * Allocate TX descriptor ring
1786 	 */
1787 	tsize = roundup2(txr->num_tx_desc * sizeof(union e1000_adv_tx_desc),
1788 	    IGB_DBA_ALIGN);
1789 	txr->txdma.dma_vaddr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1790 	    IGB_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1791 	    &txr->txdma.dma_tag, &txr->txdma.dma_map, &txr->txdma.dma_paddr);
1792 	if (txr->txdma.dma_vaddr == NULL) {
1793 		device_printf(txr->sc->dev,
1794 		    "Unable to allocate TX Descriptor memory\n");
1795 		return ENOMEM;
1796 	}
1797 	txr->tx_base = txr->txdma.dma_vaddr;
1798 	bzero(txr->tx_base, tsize);
1799 
1800 	tsize = __VM_CACHELINE_ALIGN(
1801 	    sizeof(struct igb_tx_buf) * txr->num_tx_desc);
1802 	txr->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
1803 
1804 	/*
1805 	 * Allocate TX head write-back buffer
1806 	 */
1807 	txr->tx_hdr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1808 	    __VM_CACHELINE_SIZE, __VM_CACHELINE_SIZE, BUS_DMA_WAITOK,
1809 	    &txr->tx_hdr_dtag, &txr->tx_hdr_dmap, &txr->tx_hdr_paddr);
1810 	if (txr->tx_hdr == NULL) {
1811 		device_printf(txr->sc->dev,
1812 		    "Unable to allocate TX head write-back buffer\n");
1813 		return ENOMEM;
1814 	}
1815 
1816 	/*
1817 	 * Create DMA tag for TX buffers
1818 	 */
1819 	error = bus_dma_tag_create(txr->sc->parent_tag,
1820 	    1, 0,		/* alignment, bounds */
1821 	    BUS_SPACE_MAXADDR,	/* lowaddr */
1822 	    BUS_SPACE_MAXADDR,	/* highaddr */
1823 	    NULL, NULL,		/* filter, filterarg */
1824 	    IGB_TSO_SIZE,	/* maxsize */
1825 	    IGB_MAX_SCATTER,	/* nsegments */
1826 	    PAGE_SIZE,		/* maxsegsize */
1827 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1828 	    BUS_DMA_ONEBPAGE,	/* flags */
1829 	    &txr->tx_tag);
1830 	if (error) {
1831 		device_printf(txr->sc->dev, "Unable to allocate TX DMA tag\n");
1832 		kfree(txr->tx_buf, M_DEVBUF);
1833 		txr->tx_buf = NULL;
1834 		return error;
1835 	}
1836 
1837 	/*
1838 	 * Create DMA maps for TX buffers
1839 	 */
1840 	for (i = 0; i < txr->num_tx_desc; ++i) {
1841 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1842 
1843 		error = bus_dmamap_create(txr->tx_tag,
1844 		    BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE, &txbuf->map);
1845 		if (error) {
1846 			device_printf(txr->sc->dev,
1847 			    "Unable to create TX DMA map\n");
1848 			igb_destroy_tx_ring(txr, i);
1849 			return error;
1850 		}
1851 	}
1852 
1853 	if (txr->sc->hw.mac.type == e1000_82575)
1854 		txr->tx_flags |= IGB_TXFLAG_TSO_IPLEN0;
1855 
1856 	/*
1857 	 * Initialize various watermark
1858 	 */
1859 	txr->spare_desc = IGB_TX_SPARE;
1860 	txr->intr_nsegs = txr->num_tx_desc / 16;
1861 	txr->wreg_nsegs = IGB_DEF_TXWREG_NSEGS;
1862 	txr->oact_hi_desc = txr->num_tx_desc / 2;
1863 	txr->oact_lo_desc = txr->num_tx_desc / 8;
1864 	if (txr->oact_lo_desc > IGB_TX_OACTIVE_MAX)
1865 		txr->oact_lo_desc = IGB_TX_OACTIVE_MAX;
1866 	if (txr->oact_lo_desc < txr->spare_desc + IGB_TX_RESERVED)
1867 		txr->oact_lo_desc = txr->spare_desc + IGB_TX_RESERVED;
1868 
1869 	return 0;
1870 }
1871 
1872 static void
1873 igb_free_tx_ring(struct igb_tx_ring *txr)
1874 {
1875 	int i;
1876 
1877 	for (i = 0; i < txr->num_tx_desc; ++i) {
1878 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1879 
1880 		if (txbuf->m_head != NULL) {
1881 			bus_dmamap_unload(txr->tx_tag, txbuf->map);
1882 			m_freem(txbuf->m_head);
1883 			txbuf->m_head = NULL;
1884 		}
1885 	}
1886 }
1887 
1888 static void
1889 igb_destroy_tx_ring(struct igb_tx_ring *txr, int ndesc)
1890 {
1891 	int i;
1892 
1893 	if (txr->txdma.dma_vaddr != NULL) {
1894 		bus_dmamap_unload(txr->txdma.dma_tag, txr->txdma.dma_map);
1895 		bus_dmamem_free(txr->txdma.dma_tag, txr->txdma.dma_vaddr,
1896 		    txr->txdma.dma_map);
1897 		bus_dma_tag_destroy(txr->txdma.dma_tag);
1898 		txr->txdma.dma_vaddr = NULL;
1899 	}
1900 
1901 	if (txr->tx_hdr != NULL) {
1902 		bus_dmamap_unload(txr->tx_hdr_dtag, txr->tx_hdr_dmap);
1903 		bus_dmamem_free(txr->tx_hdr_dtag, txr->tx_hdr,
1904 		    txr->tx_hdr_dmap);
1905 		bus_dma_tag_destroy(txr->tx_hdr_dtag);
1906 		txr->tx_hdr = NULL;
1907 	}
1908 
1909 	if (txr->tx_buf == NULL)
1910 		return;
1911 
1912 	for (i = 0; i < ndesc; ++i) {
1913 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1914 
1915 		KKASSERT(txbuf->m_head == NULL);
1916 		bus_dmamap_destroy(txr->tx_tag, txbuf->map);
1917 	}
1918 	bus_dma_tag_destroy(txr->tx_tag);
1919 
1920 	kfree(txr->tx_buf, M_DEVBUF);
1921 	txr->tx_buf = NULL;
1922 }
1923 
1924 static void
1925 igb_init_tx_ring(struct igb_tx_ring *txr)
1926 {
1927 	/* Clear the old descriptor contents */
1928 	bzero(txr->tx_base,
1929 	    sizeof(union e1000_adv_tx_desc) * txr->num_tx_desc);
1930 
1931 	/* Clear TX head write-back buffer */
1932 	*(txr->tx_hdr) = 0;
1933 
1934 	/* Reset indices */
1935 	txr->next_avail_desc = 0;
1936 	txr->next_to_clean = 0;
1937 	txr->tx_nsegs = 0;
1938 
1939 	/* Set number of descriptors available */
1940 	txr->tx_avail = txr->num_tx_desc;
1941 
1942 	/* Enable this TX ring */
1943 	txr->tx_flags |= IGB_TXFLAG_ENABLED;
1944 }
1945 
1946 static void
1947 igb_init_tx_unit(struct igb_softc *sc)
1948 {
1949 	struct e1000_hw *hw = &sc->hw;
1950 	uint32_t tctl;
1951 	int i;
1952 
1953 	/* Setup the Tx Descriptor Rings */
1954 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
1955 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1956 		uint64_t bus_addr = txr->txdma.dma_paddr;
1957 		uint64_t hdr_paddr = txr->tx_hdr_paddr;
1958 		uint32_t txdctl = 0;
1959 		uint32_t dca_txctrl;
1960 
1961 		E1000_WRITE_REG(hw, E1000_TDLEN(i),
1962 		    txr->num_tx_desc * sizeof(struct e1000_tx_desc));
1963 		E1000_WRITE_REG(hw, E1000_TDBAH(i),
1964 		    (uint32_t)(bus_addr >> 32));
1965 		E1000_WRITE_REG(hw, E1000_TDBAL(i),
1966 		    (uint32_t)bus_addr);
1967 
1968 		/* Setup the HW Tx Head and Tail descriptor pointers */
1969 		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
1970 		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
1971 
1972 		dca_txctrl = E1000_READ_REG(hw, E1000_DCA_TXCTRL(i));
1973 		dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1974 		E1000_WRITE_REG(hw, E1000_DCA_TXCTRL(i), dca_txctrl);
1975 
1976 		/*
1977 		 * Don't set WB_on_EITR:
1978 		 * - 82575 does not have it
1979 		 * - It almost has no effect on 82576, see:
1980 		 *   82576 specification update errata #26
1981 		 * - It causes unnecessary bus traffic
1982 		 */
1983 		E1000_WRITE_REG(hw, E1000_TDWBAH(i),
1984 		    (uint32_t)(hdr_paddr >> 32));
1985 		E1000_WRITE_REG(hw, E1000_TDWBAL(i),
1986 		    ((uint32_t)hdr_paddr) | E1000_TX_HEAD_WB_ENABLE);
1987 
1988 		/*
1989 		 * WTHRESH is ignored by the hardware, since header
1990 		 * write back mode is used.
1991 		 */
1992 		txdctl |= IGB_TX_PTHRESH;
1993 		txdctl |= IGB_TX_HTHRESH << 8;
1994 		txdctl |= IGB_TX_WTHRESH << 16;
1995 		txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1996 		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
1997 	}
1998 
1999 	if (sc->vf_ifp)
2000 		return;
2001 
2002 	e1000_config_collision_dist(hw);
2003 
2004 	/* Program the Transmit Control Register */
2005 	tctl = E1000_READ_REG(hw, E1000_TCTL);
2006 	tctl &= ~E1000_TCTL_CT;
2007 	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2008 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
2009 
2010 	/* This write will effectively turn on the transmit unit. */
2011 	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
2012 }
2013 
2014 static boolean_t
2015 igb_txcsum_ctx(struct igb_tx_ring *txr, struct mbuf *mp)
2016 {
2017 	struct e1000_adv_tx_context_desc *TXD;
2018 	uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
2019 	int ehdrlen, ctxd, ip_hlen = 0;
2020 	boolean_t offload = TRUE;
2021 
2022 	if ((mp->m_pkthdr.csum_flags & IGB_CSUM_FEATURES) == 0)
2023 		offload = FALSE;
2024 
2025 	vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
2026 
2027 	ctxd = txr->next_avail_desc;
2028 	TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
2029 
2030 	/*
2031 	 * In advanced descriptors the vlan tag must
2032 	 * be placed into the context descriptor, thus
2033 	 * we need to be here just for that setup.
2034 	 */
2035 	if (mp->m_flags & M_VLANTAG) {
2036 		uint16_t vlantag;
2037 
2038 		vlantag = htole16(mp->m_pkthdr.ether_vlantag);
2039 		vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
2040 	} else if (!offload) {
2041 		return FALSE;
2042 	}
2043 
2044 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2045 	KASSERT(ehdrlen > 0, ("invalid ether hlen"));
2046 
2047 	/* Set the ether header length */
2048 	vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
2049 	if (mp->m_pkthdr.csum_flags & CSUM_IP) {
2050 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
2051 		ip_hlen = mp->m_pkthdr.csum_iphlen;
2052 		KASSERT(ip_hlen > 0, ("invalid ip hlen"));
2053 	}
2054 	vlan_macip_lens |= ip_hlen;
2055 
2056 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
2057 	if (mp->m_pkthdr.csum_flags & CSUM_TCP)
2058 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
2059 	else if (mp->m_pkthdr.csum_flags & CSUM_UDP)
2060 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
2061 
2062 	/*
2063 	 * 82575 needs the TX context index added; the queue
2064 	 * index is used as TX context index here.
2065 	 */
2066 	if (txr->sc->hw.mac.type == e1000_82575)
2067 		mss_l4len_idx = txr->me << 4;
2068 
2069 	/* Now copy bits into descriptor */
2070 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
2071 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
2072 	TXD->seqnum_seed = htole32(0);
2073 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
2074 
2075 	/* We've consumed the first desc, adjust counters */
2076 	if (++ctxd == txr->num_tx_desc)
2077 		ctxd = 0;
2078 	txr->next_avail_desc = ctxd;
2079 	--txr->tx_avail;
2080 
2081 	return offload;
2082 }
2083 
2084 static void
2085 igb_txeof(struct igb_tx_ring *txr)
2086 {
2087 	struct ifnet *ifp = &txr->sc->arpcom.ac_if;
2088 	int first, hdr, avail;
2089 
2090 	if (txr->tx_avail == txr->num_tx_desc)
2091 		return;
2092 
2093 	first = txr->next_to_clean;
2094 	hdr = *(txr->tx_hdr);
2095 
2096 	if (first == hdr)
2097 		return;
2098 
2099 	avail = txr->tx_avail;
2100 	while (first != hdr) {
2101 		struct igb_tx_buf *txbuf = &txr->tx_buf[first];
2102 
2103 		++avail;
2104 		if (txbuf->m_head) {
2105 			bus_dmamap_unload(txr->tx_tag, txbuf->map);
2106 			m_freem(txbuf->m_head);
2107 			txbuf->m_head = NULL;
2108 			IFNET_STAT_INC(ifp, opackets, 1);
2109 		}
2110 		if (++first == txr->num_tx_desc)
2111 			first = 0;
2112 	}
2113 	txr->next_to_clean = first;
2114 	txr->tx_avail = avail;
2115 
2116 	/*
2117 	 * If we have a minimum free, clear OACTIVE
2118 	 * to tell the stack that it is OK to send packets.
2119 	 */
2120 	if (IGB_IS_NOT_OACTIVE(txr)) {
2121 		ifsq_clr_oactive(txr->ifsq);
2122 
2123 		/*
2124 		 * We have enough TX descriptors, turn off
2125 		 * the watchdog.  We allow small amount of
2126 		 * packets (roughly intr_nsegs) pending on
2127 		 * the transmit ring.
2128 		 */
2129 		txr->tx_watchdog.wd_timer = 0;
2130 	}
2131 }
2132 
2133 static int
2134 igb_create_rx_ring(struct igb_rx_ring *rxr)
2135 {
2136 	int rsize, i, error, nrxd;
2137 
2138 	/*
2139 	 * Validate number of receive descriptors. It must not exceed
2140 	 * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
2141 	 */
2142 	nrxd = device_getenv_int(rxr->sc->dev, "rxd", igb_rxd);
2143 	if ((nrxd * sizeof(struct e1000_rx_desc)) % IGB_DBA_ALIGN != 0 ||
2144 	    nrxd > IGB_MAX_RXD || nrxd < IGB_MIN_RXD) {
2145 		device_printf(rxr->sc->dev,
2146 		    "Using %d RX descriptors instead of %d!\n",
2147 		    IGB_DEFAULT_RXD, nrxd);
2148 		rxr->num_rx_desc = IGB_DEFAULT_RXD;
2149 	} else {
2150 		rxr->num_rx_desc = nrxd;
2151 	}
2152 
2153 	/*
2154 	 * Allocate RX descriptor ring
2155 	 */
2156 	rsize = roundup2(rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc),
2157 	    IGB_DBA_ALIGN);
2158 	rxr->rxdma.dma_vaddr = bus_dmamem_coherent_any(rxr->sc->parent_tag,
2159 	    IGB_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2160 	    &rxr->rxdma.dma_tag, &rxr->rxdma.dma_map,
2161 	    &rxr->rxdma.dma_paddr);
2162 	if (rxr->rxdma.dma_vaddr == NULL) {
2163 		device_printf(rxr->sc->dev,
2164 		    "Unable to allocate RxDescriptor memory\n");
2165 		return ENOMEM;
2166 	}
2167 	rxr->rx_base = rxr->rxdma.dma_vaddr;
2168 	bzero(rxr->rx_base, rsize);
2169 
2170 	rsize = __VM_CACHELINE_ALIGN(
2171 	    sizeof(struct igb_rx_buf) * rxr->num_rx_desc);
2172 	rxr->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2173 
2174 	/*
2175 	 * Create DMA tag for RX buffers
2176 	 */
2177 	error = bus_dma_tag_create(rxr->sc->parent_tag,
2178 	    1, 0,		/* alignment, bounds */
2179 	    BUS_SPACE_MAXADDR,	/* lowaddr */
2180 	    BUS_SPACE_MAXADDR,	/* highaddr */
2181 	    NULL, NULL,		/* filter, filterarg */
2182 	    MCLBYTES,		/* maxsize */
2183 	    1,			/* nsegments */
2184 	    MCLBYTES,		/* maxsegsize */
2185 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2186 	    &rxr->rx_tag);
2187 	if (error) {
2188 		device_printf(rxr->sc->dev,
2189 		    "Unable to create RX payload DMA tag\n");
2190 		kfree(rxr->rx_buf, M_DEVBUF);
2191 		rxr->rx_buf = NULL;
2192 		return error;
2193 	}
2194 
2195 	/*
2196 	 * Create spare DMA map for RX buffers
2197 	 */
2198 	error = bus_dmamap_create(rxr->rx_tag, BUS_DMA_WAITOK,
2199 	    &rxr->rx_sparemap);
2200 	if (error) {
2201 		device_printf(rxr->sc->dev,
2202 		    "Unable to create spare RX DMA maps\n");
2203 		bus_dma_tag_destroy(rxr->rx_tag);
2204 		kfree(rxr->rx_buf, M_DEVBUF);
2205 		rxr->rx_buf = NULL;
2206 		return error;
2207 	}
2208 
2209 	/*
2210 	 * Create DMA maps for RX buffers
2211 	 */
2212 	for (i = 0; i < rxr->num_rx_desc; i++) {
2213 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2214 
2215 		error = bus_dmamap_create(rxr->rx_tag,
2216 		    BUS_DMA_WAITOK, &rxbuf->map);
2217 		if (error) {
2218 			device_printf(rxr->sc->dev,
2219 			    "Unable to create RX DMA maps\n");
2220 			igb_destroy_rx_ring(rxr, i);
2221 			return error;
2222 		}
2223 	}
2224 
2225 	/*
2226 	 * Initialize various watermark
2227 	 */
2228 	rxr->wreg_nsegs = IGB_DEF_RXWREG_NSEGS;
2229 
2230 	return 0;
2231 }
2232 
2233 static void
2234 igb_free_rx_ring(struct igb_rx_ring *rxr)
2235 {
2236 	int i;
2237 
2238 	for (i = 0; i < rxr->num_rx_desc; ++i) {
2239 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2240 
2241 		if (rxbuf->m_head != NULL) {
2242 			bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2243 			m_freem(rxbuf->m_head);
2244 			rxbuf->m_head = NULL;
2245 		}
2246 	}
2247 
2248 	if (rxr->fmp != NULL)
2249 		m_freem(rxr->fmp);
2250 	rxr->fmp = NULL;
2251 	rxr->lmp = NULL;
2252 }
2253 
2254 static void
2255 igb_destroy_rx_ring(struct igb_rx_ring *rxr, int ndesc)
2256 {
2257 	int i;
2258 
2259 	if (rxr->rxdma.dma_vaddr != NULL) {
2260 		bus_dmamap_unload(rxr->rxdma.dma_tag, rxr->rxdma.dma_map);
2261 		bus_dmamem_free(rxr->rxdma.dma_tag, rxr->rxdma.dma_vaddr,
2262 		    rxr->rxdma.dma_map);
2263 		bus_dma_tag_destroy(rxr->rxdma.dma_tag);
2264 		rxr->rxdma.dma_vaddr = NULL;
2265 	}
2266 
2267 	if (rxr->rx_buf == NULL)
2268 		return;
2269 
2270 	for (i = 0; i < ndesc; ++i) {
2271 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2272 
2273 		KKASSERT(rxbuf->m_head == NULL);
2274 		bus_dmamap_destroy(rxr->rx_tag, rxbuf->map);
2275 	}
2276 	bus_dmamap_destroy(rxr->rx_tag, rxr->rx_sparemap);
2277 	bus_dma_tag_destroy(rxr->rx_tag);
2278 
2279 	kfree(rxr->rx_buf, M_DEVBUF);
2280 	rxr->rx_buf = NULL;
2281 }
2282 
2283 static void
2284 igb_setup_rxdesc(union e1000_adv_rx_desc *rxd, const struct igb_rx_buf *rxbuf)
2285 {
2286 	rxd->read.pkt_addr = htole64(rxbuf->paddr);
2287 	rxd->wb.upper.status_error = 0;
2288 }
2289 
2290 static int
2291 igb_newbuf(struct igb_rx_ring *rxr, int i, boolean_t wait)
2292 {
2293 	struct mbuf *m;
2294 	bus_dma_segment_t seg;
2295 	bus_dmamap_t map;
2296 	struct igb_rx_buf *rxbuf;
2297 	int error, nseg;
2298 
2299 	m = m_getcl(wait ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2300 	if (m == NULL) {
2301 		if (wait) {
2302 			if_printf(&rxr->sc->arpcom.ac_if,
2303 			    "Unable to allocate RX mbuf\n");
2304 		}
2305 		return ENOBUFS;
2306 	}
2307 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2308 
2309 	if (rxr->sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2310 		m_adj(m, ETHER_ALIGN);
2311 
2312 	error = bus_dmamap_load_mbuf_segment(rxr->rx_tag,
2313 	    rxr->rx_sparemap, m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
2314 	if (error) {
2315 		m_freem(m);
2316 		if (wait) {
2317 			if_printf(&rxr->sc->arpcom.ac_if,
2318 			    "Unable to load RX mbuf\n");
2319 		}
2320 		return error;
2321 	}
2322 
2323 	rxbuf = &rxr->rx_buf[i];
2324 	if (rxbuf->m_head != NULL)
2325 		bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2326 
2327 	map = rxbuf->map;
2328 	rxbuf->map = rxr->rx_sparemap;
2329 	rxr->rx_sparemap = map;
2330 
2331 	rxbuf->m_head = m;
2332 	rxbuf->paddr = seg.ds_addr;
2333 
2334 	igb_setup_rxdesc(&rxr->rx_base[i], rxbuf);
2335 	return 0;
2336 }
2337 
2338 static int
2339 igb_init_rx_ring(struct igb_rx_ring *rxr)
2340 {
2341 	int i;
2342 
2343 	/* Clear the ring contents */
2344 	bzero(rxr->rx_base,
2345 	    rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc));
2346 
2347 	/* Now replenish the ring mbufs */
2348 	for (i = 0; i < rxr->num_rx_desc; ++i) {
2349 		int error;
2350 
2351 		error = igb_newbuf(rxr, i, TRUE);
2352 		if (error)
2353 			return error;
2354 	}
2355 
2356 	/* Setup our descriptor indices */
2357 	rxr->next_to_check = 0;
2358 
2359 	rxr->fmp = NULL;
2360 	rxr->lmp = NULL;
2361 	rxr->discard = FALSE;
2362 
2363 	return 0;
2364 }
2365 
2366 static void
2367 igb_init_rx_unit(struct igb_softc *sc)
2368 {
2369 	struct ifnet *ifp = &sc->arpcom.ac_if;
2370 	struct e1000_hw *hw = &sc->hw;
2371 	uint32_t rctl, rxcsum, srrctl = 0;
2372 	int i;
2373 
2374 	/*
2375 	 * Make sure receives are disabled while setting
2376 	 * up the descriptor ring
2377 	 */
2378 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2379 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2380 
2381 #if 0
2382 	/*
2383 	** Set up for header split
2384 	*/
2385 	if (igb_header_split) {
2386 		/* Use a standard mbuf for the header */
2387 		srrctl |= IGB_HDR_BUF << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2388 		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2389 	} else
2390 #endif
2391 		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2392 
2393 	/*
2394 	** Set up for jumbo frames
2395 	*/
2396 	if (ifp->if_mtu > ETHERMTU) {
2397 		rctl |= E1000_RCTL_LPE;
2398 #if 0
2399 		if (adapter->rx_mbuf_sz == MJUMPAGESIZE) {
2400 			srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2401 			rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
2402 		} else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) {
2403 			srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2404 			rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
2405 		}
2406 		/* Set maximum packet len */
2407 		psize = adapter->max_frame_size;
2408 		/* are we on a vlan? */
2409 		if (adapter->ifp->if_vlantrunk != NULL)
2410 			psize += VLAN_TAG_SIZE;
2411 		E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
2412 #else
2413 		srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2414 		rctl |= E1000_RCTL_SZ_2048;
2415 #endif
2416 	} else {
2417 		rctl &= ~E1000_RCTL_LPE;
2418 		srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2419 		rctl |= E1000_RCTL_SZ_2048;
2420 	}
2421 
2422 	/* Setup the Base and Length of the Rx Descriptor Rings */
2423 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2424 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
2425 		uint64_t bus_addr = rxr->rxdma.dma_paddr;
2426 		uint32_t rxdctl;
2427 
2428 		E1000_WRITE_REG(hw, E1000_RDLEN(i),
2429 		    rxr->num_rx_desc * sizeof(struct e1000_rx_desc));
2430 		E1000_WRITE_REG(hw, E1000_RDBAH(i),
2431 		    (uint32_t)(bus_addr >> 32));
2432 		E1000_WRITE_REG(hw, E1000_RDBAL(i),
2433 		    (uint32_t)bus_addr);
2434 		E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2435 		/* Enable this Queue */
2436 		rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2437 		rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2438 		rxdctl &= 0xFFF00000;
2439 		rxdctl |= IGB_RX_PTHRESH;
2440 		rxdctl |= IGB_RX_HTHRESH << 8;
2441 		/*
2442 		 * Don't set WTHRESH to a value above 1 on 82576, see:
2443 		 * 82576 specification update errata #26
2444 		 */
2445 		rxdctl |= IGB_RX_WTHRESH << 16;
2446 		E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2447 	}
2448 
2449 	rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2450 	rxcsum &= ~(E1000_RXCSUM_PCSS_MASK | E1000_RXCSUM_IPPCSE);
2451 
2452 	/*
2453 	 * Receive Checksum Offload for TCP and UDP
2454 	 *
2455 	 * Checksum offloading is also enabled if multiple receive
2456 	 * queue is to be supported, since we need it to figure out
2457 	 * fragments.
2458 	 */
2459 	if ((ifp->if_capenable & IFCAP_RXCSUM) || IGB_ENABLE_HWRSS(sc)) {
2460 		/*
2461 		 * NOTE:
2462 		 * PCSD must be enabled to enable multiple
2463 		 * receive queues.
2464 		 */
2465 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2466 		    E1000_RXCSUM_PCSD;
2467 	} else {
2468 		rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2469 		    E1000_RXCSUM_PCSD);
2470 	}
2471 	E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2472 
2473 	if (IGB_ENABLE_HWRSS(sc)) {
2474 		uint8_t key[IGB_NRSSRK * IGB_RSSRK_SIZE];
2475 		uint32_t reta_shift;
2476 		int j, r;
2477 
2478 		/*
2479 		 * NOTE:
2480 		 * When we reach here, RSS has already been disabled
2481 		 * in igb_stop(), so we could safely configure RSS key
2482 		 * and redirect table.
2483 		 */
2484 
2485 		/*
2486 		 * Configure RSS key
2487 		 */
2488 		toeplitz_get_key(key, sizeof(key));
2489 		for (i = 0; i < IGB_NRSSRK; ++i) {
2490 			uint32_t rssrk;
2491 
2492 			rssrk = IGB_RSSRK_VAL(key, i);
2493 			IGB_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2494 
2495 			E1000_WRITE_REG(hw, E1000_RSSRK(i), rssrk);
2496 		}
2497 
2498 		/*
2499 		 * Configure RSS redirect table in following fashion:
2500 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2501 		 */
2502 		reta_shift = IGB_RETA_SHIFT;
2503 		if (hw->mac.type == e1000_82575)
2504 			reta_shift = IGB_RETA_SHIFT_82575;
2505 
2506 		r = 0;
2507 		for (j = 0; j < IGB_NRETA; ++j) {
2508 			uint32_t reta = 0;
2509 
2510 			for (i = 0; i < IGB_RETA_SIZE; ++i) {
2511 				uint32_t q;
2512 
2513 				q = (r % sc->rx_ring_inuse) << reta_shift;
2514 				reta |= q << (8 * i);
2515 				++r;
2516 			}
2517 			IGB_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2518 			E1000_WRITE_REG(hw, E1000_RETA(j), reta);
2519 		}
2520 
2521 		/*
2522 		 * Enable multiple receive queues.
2523 		 * Enable IPv4 RSS standard hash functions.
2524 		 * Disable RSS interrupt on 82575
2525 		 */
2526 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2527 				E1000_MRQC_ENABLE_RSS_4Q |
2528 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2529 				E1000_MRQC_RSS_FIELD_IPV4);
2530 	}
2531 
2532 	/* Setup the Receive Control Register */
2533 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2534 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2535 	    E1000_RCTL_RDMTS_HALF |
2536 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2537 	/* Strip CRC bytes. */
2538 	rctl |= E1000_RCTL_SECRC;
2539 	/* Make sure VLAN Filters are off */
2540 	rctl &= ~E1000_RCTL_VFE;
2541 	/* Don't store bad packets */
2542 	rctl &= ~E1000_RCTL_SBP;
2543 
2544 	/* Enable Receives */
2545 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2546 
2547 	/*
2548 	 * Setup the HW Rx Head and Tail Descriptor Pointers
2549 	 *   - needs to be after enable
2550 	 */
2551 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2552 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
2553 
2554 		E1000_WRITE_REG(hw, E1000_RDH(i), rxr->next_to_check);
2555 		E1000_WRITE_REG(hw, E1000_RDT(i), rxr->num_rx_desc - 1);
2556 	}
2557 }
2558 
2559 static void
2560 igb_rx_refresh(struct igb_rx_ring *rxr, int i)
2561 {
2562 	if (--i < 0)
2563 		i = rxr->num_rx_desc - 1;
2564 	E1000_WRITE_REG(&rxr->sc->hw, E1000_RDT(rxr->me), i);
2565 }
2566 
2567 static void
2568 igb_rxeof(struct igb_rx_ring *rxr, int count)
2569 {
2570 	struct ifnet *ifp = &rxr->sc->arpcom.ac_if;
2571 	union e1000_adv_rx_desc	*cur;
2572 	uint32_t staterr;
2573 	int i, ncoll = 0;
2574 
2575 	i = rxr->next_to_check;
2576 	cur = &rxr->rx_base[i];
2577 	staterr = le32toh(cur->wb.upper.status_error);
2578 
2579 	if ((staterr & E1000_RXD_STAT_DD) == 0)
2580 		return;
2581 
2582 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2583 		struct pktinfo *pi = NULL, pi0;
2584 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2585 		struct mbuf *m = NULL;
2586 		boolean_t eop;
2587 
2588 		eop = (staterr & E1000_RXD_STAT_EOP) ? TRUE : FALSE;
2589 		if (eop)
2590 			--count;
2591 
2592 		++ncoll;
2593 		if ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) == 0 &&
2594 		    !rxr->discard) {
2595 			struct mbuf *mp = rxbuf->m_head;
2596 			uint32_t hash, hashtype;
2597 			uint16_t vlan;
2598 			int len;
2599 
2600 			len = le16toh(cur->wb.upper.length);
2601 			if (rxr->sc->hw.mac.type == e1000_i350 &&
2602 			    (staterr & E1000_RXDEXT_STATERR_LB))
2603 				vlan = be16toh(cur->wb.upper.vlan);
2604 			else
2605 				vlan = le16toh(cur->wb.upper.vlan);
2606 
2607 			hash = le32toh(cur->wb.lower.hi_dword.rss);
2608 			hashtype = le32toh(cur->wb.lower.lo_dword.data) &
2609 			    E1000_RXDADV_RSSTYPE_MASK;
2610 
2611 			IGB_RSS_DPRINTF(rxr->sc, 10,
2612 			    "ring%d, hash 0x%08x, hashtype %u\n",
2613 			    rxr->me, hash, hashtype);
2614 
2615 			bus_dmamap_sync(rxr->rx_tag, rxbuf->map,
2616 			    BUS_DMASYNC_POSTREAD);
2617 
2618 			if (igb_newbuf(rxr, i, FALSE) != 0) {
2619 				IFNET_STAT_INC(ifp, iqdrops, 1);
2620 				goto discard;
2621 			}
2622 
2623 			mp->m_len = len;
2624 			if (rxr->fmp == NULL) {
2625 				mp->m_pkthdr.len = len;
2626 				rxr->fmp = mp;
2627 				rxr->lmp = mp;
2628 			} else {
2629 				rxr->lmp->m_next = mp;
2630 				rxr->lmp = rxr->lmp->m_next;
2631 				rxr->fmp->m_pkthdr.len += len;
2632 			}
2633 
2634 			if (eop) {
2635 				m = rxr->fmp;
2636 				rxr->fmp = NULL;
2637 				rxr->lmp = NULL;
2638 
2639 				m->m_pkthdr.rcvif = ifp;
2640 				IFNET_STAT_INC(ifp, ipackets, 1);
2641 
2642 				if (ifp->if_capenable & IFCAP_RXCSUM)
2643 					igb_rxcsum(staterr, m);
2644 
2645 				if (staterr & E1000_RXD_STAT_VP) {
2646 					m->m_pkthdr.ether_vlantag = vlan;
2647 					m->m_flags |= M_VLANTAG;
2648 				}
2649 
2650 				if (ifp->if_capenable & IFCAP_RSS) {
2651 					pi = igb_rssinfo(m, &pi0,
2652 					    hash, hashtype, staterr);
2653 				}
2654 #ifdef IGB_RSS_DEBUG
2655 				rxr->rx_packets++;
2656 #endif
2657 			}
2658 		} else {
2659 			IFNET_STAT_INC(ifp, ierrors, 1);
2660 discard:
2661 			igb_setup_rxdesc(cur, rxbuf);
2662 			if (!eop)
2663 				rxr->discard = TRUE;
2664 			else
2665 				rxr->discard = FALSE;
2666 			if (rxr->fmp != NULL) {
2667 				m_freem(rxr->fmp);
2668 				rxr->fmp = NULL;
2669 				rxr->lmp = NULL;
2670 			}
2671 			m = NULL;
2672 		}
2673 
2674 		if (m != NULL)
2675 			ether_input_pkt(ifp, m, pi);
2676 
2677 		/* Advance our pointers to the next descriptor. */
2678 		if (++i == rxr->num_rx_desc)
2679 			i = 0;
2680 
2681 		if (ncoll >= rxr->wreg_nsegs) {
2682 			igb_rx_refresh(rxr, i);
2683 			ncoll = 0;
2684 		}
2685 
2686 		cur = &rxr->rx_base[i];
2687 		staterr = le32toh(cur->wb.upper.status_error);
2688 	}
2689 	rxr->next_to_check = i;
2690 
2691 	if (ncoll > 0)
2692 		igb_rx_refresh(rxr, i);
2693 }
2694 
2695 
2696 static void
2697 igb_set_vlan(struct igb_softc *sc)
2698 {
2699 	struct e1000_hw *hw = &sc->hw;
2700 	uint32_t reg;
2701 #if 0
2702 	struct ifnet *ifp = sc->arpcom.ac_if;
2703 #endif
2704 
2705 	if (sc->vf_ifp) {
2706 		e1000_rlpml_set_vf(hw, sc->max_frame_size + VLAN_TAG_SIZE);
2707 		return;
2708 	}
2709 
2710 	reg = E1000_READ_REG(hw, E1000_CTRL);
2711 	reg |= E1000_CTRL_VME;
2712 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
2713 
2714 #if 0
2715 	/* Enable the Filter Table */
2716 	if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
2717 		reg = E1000_READ_REG(hw, E1000_RCTL);
2718 		reg &= ~E1000_RCTL_CFIEN;
2719 		reg |= E1000_RCTL_VFE;
2720 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
2721 	}
2722 #endif
2723 
2724 	/* Update the frame size */
2725 	E1000_WRITE_REG(&sc->hw, E1000_RLPML,
2726 	    sc->max_frame_size + VLAN_TAG_SIZE);
2727 
2728 #if 0
2729 	/* Don't bother with table if no vlans */
2730 	if ((adapter->num_vlans == 0) ||
2731 	    ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0))
2732 		return;
2733 	/*
2734 	** A soft reset zero's out the VFTA, so
2735 	** we need to repopulate it now.
2736 	*/
2737 	for (int i = 0; i < IGB_VFTA_SIZE; i++)
2738 		if (adapter->shadow_vfta[i] != 0) {
2739 			if (adapter->vf_ifp)
2740 				e1000_vfta_set_vf(hw,
2741 				    adapter->shadow_vfta[i], TRUE);
2742 			else
2743 				E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
2744 				 i, adapter->shadow_vfta[i]);
2745 		}
2746 #endif
2747 }
2748 
2749 static void
2750 igb_enable_intr(struct igb_softc *sc)
2751 {
2752 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2753 		lwkt_serialize_handler_enable(&sc->main_serialize);
2754 	} else {
2755 		int i;
2756 
2757 		for (i = 0; i < sc->msix_cnt; ++i) {
2758 			lwkt_serialize_handler_enable(
2759 			    sc->msix_data[i].msix_serialize);
2760 		}
2761 	}
2762 
2763 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2764 		if (sc->intr_type == PCI_INTR_TYPE_MSIX)
2765 			E1000_WRITE_REG(&sc->hw, E1000_EIAC, sc->intr_mask);
2766 		else
2767 			E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2768 		E1000_WRITE_REG(&sc->hw, E1000_EIAM, sc->intr_mask);
2769 		E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
2770 		E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
2771 	} else {
2772 		E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
2773 	}
2774 	E1000_WRITE_FLUSH(&sc->hw);
2775 }
2776 
2777 static void
2778 igb_disable_intr(struct igb_softc *sc)
2779 {
2780 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2781 		E1000_WRITE_REG(&sc->hw, E1000_EIMC, 0xffffffff);
2782 		E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2783 	}
2784 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2785 	E1000_WRITE_FLUSH(&sc->hw);
2786 
2787 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2788 		lwkt_serialize_handler_disable(&sc->main_serialize);
2789 	} else {
2790 		int i;
2791 
2792 		for (i = 0; i < sc->msix_cnt; ++i) {
2793 			lwkt_serialize_handler_disable(
2794 			    sc->msix_data[i].msix_serialize);
2795 		}
2796 	}
2797 }
2798 
2799 /*
2800  * Bit of a misnomer, what this really means is
2801  * to enable OS management of the system... aka
2802  * to disable special hardware management features
2803  */
2804 static void
2805 igb_get_mgmt(struct igb_softc *sc)
2806 {
2807 	if (sc->flags & IGB_FLAG_HAS_MGMT) {
2808 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2809 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2810 
2811 		/* disable hardware interception of ARP */
2812 		manc &= ~E1000_MANC_ARP_EN;
2813 
2814 		/* enable receiving management packets to the host */
2815 		manc |= E1000_MANC_EN_MNG2HOST;
2816 		manc2h |= 1 << 5; /* Mng Port 623 */
2817 		manc2h |= 1 << 6; /* Mng Port 664 */
2818 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
2819 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2820 	}
2821 }
2822 
2823 /*
2824  * Give control back to hardware management controller
2825  * if there is one.
2826  */
2827 static void
2828 igb_rel_mgmt(struct igb_softc *sc)
2829 {
2830 	if (sc->flags & IGB_FLAG_HAS_MGMT) {
2831 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2832 
2833 		/* Re-enable hardware interception of ARP */
2834 		manc |= E1000_MANC_ARP_EN;
2835 		manc &= ~E1000_MANC_EN_MNG2HOST;
2836 
2837 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2838 	}
2839 }
2840 
2841 /*
2842  * Sets CTRL_EXT:DRV_LOAD bit.
2843  *
2844  * For ASF and Pass Through versions of f/w this means that
2845  * the driver is loaded.
2846  */
2847 static void
2848 igb_get_hw_control(struct igb_softc *sc)
2849 {
2850 	uint32_t ctrl_ext;
2851 
2852 	if (sc->vf_ifp)
2853 		return;
2854 
2855 	/* Let firmware know the driver has taken over */
2856 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2857 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2858 	    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2859 }
2860 
2861 /*
2862  * Resets CTRL_EXT:DRV_LOAD bit.
2863  *
2864  * For ASF and Pass Through versions of f/w this means that the
2865  * driver is no longer loaded.
2866  */
2867 static void
2868 igb_rel_hw_control(struct igb_softc *sc)
2869 {
2870 	uint32_t ctrl_ext;
2871 
2872 	if (sc->vf_ifp)
2873 		return;
2874 
2875 	/* Let firmware taken over control of h/w */
2876 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2877 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2878 	    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2879 }
2880 
2881 static int
2882 igb_is_valid_ether_addr(const uint8_t *addr)
2883 {
2884 	uint8_t zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
2885 
2886 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
2887 		return FALSE;
2888 	return TRUE;
2889 }
2890 
2891 /*
2892  * Enable PCI Wake On Lan capability
2893  */
2894 static void
2895 igb_enable_wol(device_t dev)
2896 {
2897 	uint16_t cap, status;
2898 	uint8_t id;
2899 
2900 	/* First find the capabilities pointer*/
2901 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
2902 
2903 	/* Read the PM Capabilities */
2904 	id = pci_read_config(dev, cap, 1);
2905 	if (id != PCIY_PMG)     /* Something wrong */
2906 		return;
2907 
2908 	/*
2909 	 * OK, we have the power capabilities,
2910 	 * so now get the status register
2911 	 */
2912 	cap += PCIR_POWER_STATUS;
2913 	status = pci_read_config(dev, cap, 2);
2914 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2915 	pci_write_config(dev, cap, status, 2);
2916 }
2917 
2918 static void
2919 igb_update_stats_counters(struct igb_softc *sc)
2920 {
2921 	struct e1000_hw *hw = &sc->hw;
2922 	struct e1000_hw_stats *stats;
2923 	struct ifnet *ifp = &sc->arpcom.ac_if;
2924 
2925 	/*
2926 	 * The virtual function adapter has only a
2927 	 * small controlled set of stats, do only
2928 	 * those and return.
2929 	 */
2930 	if (sc->vf_ifp) {
2931 		igb_update_vf_stats_counters(sc);
2932 		return;
2933 	}
2934 	stats = sc->stats;
2935 
2936 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
2937 	    (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
2938 		stats->symerrs +=
2939 		    E1000_READ_REG(hw,E1000_SYMERRS);
2940 		stats->sec += E1000_READ_REG(hw, E1000_SEC);
2941 	}
2942 
2943 	stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
2944 	stats->mpc += E1000_READ_REG(hw, E1000_MPC);
2945 	stats->scc += E1000_READ_REG(hw, E1000_SCC);
2946 	stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
2947 
2948 	stats->mcc += E1000_READ_REG(hw, E1000_MCC);
2949 	stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
2950 	stats->colc += E1000_READ_REG(hw, E1000_COLC);
2951 	stats->dc += E1000_READ_REG(hw, E1000_DC);
2952 	stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
2953 	stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
2954 	stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
2955 
2956 	/*
2957 	 * For watchdog management we need to know if we have been
2958 	 * paused during the last interval, so capture that here.
2959 	 */
2960 	sc->pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
2961 	stats->xoffrxc += sc->pause_frames;
2962 	stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
2963 	stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
2964 	stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
2965 	stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
2966 	stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
2967 	stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
2968 	stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
2969 	stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
2970 	stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
2971 	stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
2972 	stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
2973 	stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
2974 
2975 	/* For the 64-bit byte counters the low dword must be read first. */
2976 	/* Both registers clear on the read of the high dword */
2977 
2978 	stats->gorc += E1000_READ_REG(hw, E1000_GORCL) +
2979 	    ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
2980 	stats->gotc += E1000_READ_REG(hw, E1000_GOTCL) +
2981 	    ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
2982 
2983 	stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
2984 	stats->ruc += E1000_READ_REG(hw, E1000_RUC);
2985 	stats->rfc += E1000_READ_REG(hw, E1000_RFC);
2986 	stats->roc += E1000_READ_REG(hw, E1000_ROC);
2987 	stats->rjc += E1000_READ_REG(hw, E1000_RJC);
2988 
2989 	stats->tor += E1000_READ_REG(hw, E1000_TORH);
2990 	stats->tot += E1000_READ_REG(hw, E1000_TOTH);
2991 
2992 	stats->tpr += E1000_READ_REG(hw, E1000_TPR);
2993 	stats->tpt += E1000_READ_REG(hw, E1000_TPT);
2994 	stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
2995 	stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
2996 	stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
2997 	stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
2998 	stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
2999 	stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
3000 	stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
3001 	stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
3002 
3003 	/* Interrupt Counts */
3004 
3005 	stats->iac += E1000_READ_REG(hw, E1000_IAC);
3006 	stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
3007 	stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
3008 	stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
3009 	stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
3010 	stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
3011 	stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
3012 	stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
3013 	stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
3014 
3015 	/* Host to Card Statistics */
3016 
3017 	stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
3018 	stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
3019 	stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
3020 	stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
3021 	stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
3022 	stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
3023 	stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
3024 	stats->hgorc += (E1000_READ_REG(hw, E1000_HGORCL) +
3025 	    ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32));
3026 	stats->hgotc += (E1000_READ_REG(hw, E1000_HGOTCL) +
3027 	    ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32));
3028 	stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
3029 	stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
3030 	stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
3031 
3032 	stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
3033 	stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
3034 	stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
3035 	stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
3036 	stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
3037 	stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
3038 
3039 	IFNET_STAT_SET(ifp, collisions, stats->colc);
3040 
3041 	/* Rx Errors */
3042 	IFNET_STAT_SET(ifp, ierrors,
3043 	    stats->rxerrc + stats->crcerrs + stats->algnerrc +
3044 	    stats->ruc + stats->roc + stats->mpc + stats->cexterr);
3045 
3046 	/* Tx Errors */
3047 	IFNET_STAT_SET(ifp, oerrors,
3048 	    stats->ecol + stats->latecol + sc->watchdog_events);
3049 
3050 	/* Driver specific counters */
3051 	sc->device_control = E1000_READ_REG(hw, E1000_CTRL);
3052 	sc->rx_control = E1000_READ_REG(hw, E1000_RCTL);
3053 	sc->int_mask = E1000_READ_REG(hw, E1000_IMS);
3054 	sc->eint_mask = E1000_READ_REG(hw, E1000_EIMS);
3055 	sc->packet_buf_alloc_tx =
3056 	    ((E1000_READ_REG(hw, E1000_PBA) & 0xffff0000) >> 16);
3057 	sc->packet_buf_alloc_rx =
3058 	    (E1000_READ_REG(hw, E1000_PBA) & 0xffff);
3059 }
3060 
3061 static void
3062 igb_vf_init_stats(struct igb_softc *sc)
3063 {
3064 	struct e1000_hw *hw = &sc->hw;
3065 	struct e1000_vf_stats *stats;
3066 
3067 	stats = sc->stats;
3068 	stats->last_gprc = E1000_READ_REG(hw, E1000_VFGPRC);
3069 	stats->last_gorc = E1000_READ_REG(hw, E1000_VFGORC);
3070 	stats->last_gptc = E1000_READ_REG(hw, E1000_VFGPTC);
3071 	stats->last_gotc = E1000_READ_REG(hw, E1000_VFGOTC);
3072 	stats->last_mprc = E1000_READ_REG(hw, E1000_VFMPRC);
3073 }
3074 
3075 static void
3076 igb_update_vf_stats_counters(struct igb_softc *sc)
3077 {
3078 	struct e1000_hw *hw = &sc->hw;
3079 	struct e1000_vf_stats *stats;
3080 
3081 	if (sc->link_speed == 0)
3082 		return;
3083 
3084 	stats = sc->stats;
3085 	UPDATE_VF_REG(E1000_VFGPRC, stats->last_gprc, stats->gprc);
3086 	UPDATE_VF_REG(E1000_VFGORC, stats->last_gorc, stats->gorc);
3087 	UPDATE_VF_REG(E1000_VFGPTC, stats->last_gptc, stats->gptc);
3088 	UPDATE_VF_REG(E1000_VFGOTC, stats->last_gotc, stats->gotc);
3089 	UPDATE_VF_REG(E1000_VFMPRC, stats->last_mprc, stats->mprc);
3090 }
3091 
3092 #ifdef IFPOLL_ENABLE
3093 
3094 static void
3095 igb_npoll_status(struct ifnet *ifp)
3096 {
3097 	struct igb_softc *sc = ifp->if_softc;
3098 	uint32_t reg_icr;
3099 
3100 	ASSERT_SERIALIZED(&sc->main_serialize);
3101 
3102 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3103 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3104 		sc->hw.mac.get_link_status = 1;
3105 		igb_update_link_status(sc);
3106 	}
3107 }
3108 
3109 static void
3110 igb_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
3111 {
3112 	struct igb_tx_ring *txr = arg;
3113 
3114 	ASSERT_SERIALIZED(&txr->tx_serialize);
3115 
3116 	igb_txeof(txr);
3117 	if (!ifsq_is_empty(txr->ifsq))
3118 		ifsq_devstart(txr->ifsq);
3119 }
3120 
3121 static void
3122 igb_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
3123 {
3124 	struct igb_rx_ring *rxr = arg;
3125 
3126 	ASSERT_SERIALIZED(&rxr->rx_serialize);
3127 
3128 	igb_rxeof(rxr, cycle);
3129 }
3130 
3131 static void
3132 igb_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3133 {
3134 	struct igb_softc *sc = ifp->if_softc;
3135 	int i, txr_cnt, rxr_cnt;
3136 
3137 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3138 
3139 	if (info) {
3140 		int off;
3141 
3142 		info->ifpi_status.status_func = igb_npoll_status;
3143 		info->ifpi_status.serializer = &sc->main_serialize;
3144 
3145 		txr_cnt = igb_get_txring_inuse(sc, TRUE);
3146 		off = sc->tx_npoll_off;
3147 		for (i = 0; i < txr_cnt; ++i) {
3148 			struct igb_tx_ring *txr = &sc->tx_rings[i];
3149 			int idx = i + off;
3150 
3151 			KKASSERT(idx < ncpus2);
3152 			info->ifpi_tx[idx].poll_func = igb_npoll_tx;
3153 			info->ifpi_tx[idx].arg = txr;
3154 			info->ifpi_tx[idx].serializer = &txr->tx_serialize;
3155 			ifsq_set_cpuid(txr->ifsq, idx);
3156 		}
3157 
3158 		rxr_cnt = igb_get_rxring_inuse(sc, TRUE);
3159 		off = sc->rx_npoll_off;
3160 		for (i = 0; i < rxr_cnt; ++i) {
3161 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
3162 			int idx = i + off;
3163 
3164 			KKASSERT(idx < ncpus2);
3165 			info->ifpi_rx[idx].poll_func = igb_npoll_rx;
3166 			info->ifpi_rx[idx].arg = rxr;
3167 			info->ifpi_rx[idx].serializer = &rxr->rx_serialize;
3168 		}
3169 
3170 		if (ifp->if_flags & IFF_RUNNING) {
3171 			if (rxr_cnt == sc->rx_ring_inuse &&
3172 			    txr_cnt == sc->tx_ring_inuse) {
3173 				igb_set_timer_cpuid(sc, TRUE);
3174 				igb_disable_intr(sc);
3175 			} else {
3176 				igb_init(sc);
3177 			}
3178 		}
3179 	} else {
3180 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
3181 			struct igb_tx_ring *txr = &sc->tx_rings[i];
3182 
3183 			ifsq_set_cpuid(txr->ifsq, txr->tx_intr_cpuid);
3184 		}
3185 
3186 		if (ifp->if_flags & IFF_RUNNING) {
3187 			txr_cnt = igb_get_txring_inuse(sc, FALSE);
3188 			rxr_cnt = igb_get_rxring_inuse(sc, FALSE);
3189 
3190 			if (rxr_cnt == sc->rx_ring_inuse &&
3191 			    txr_cnt == sc->tx_ring_inuse) {
3192 				igb_set_timer_cpuid(sc, FALSE);
3193 				igb_enable_intr(sc);
3194 			} else {
3195 				igb_init(sc);
3196 			}
3197 		}
3198 	}
3199 }
3200 
3201 #endif /* IFPOLL_ENABLE */
3202 
3203 static void
3204 igb_intr(void *xsc)
3205 {
3206 	struct igb_softc *sc = xsc;
3207 	struct ifnet *ifp = &sc->arpcom.ac_if;
3208 	uint32_t eicr;
3209 
3210 	ASSERT_SERIALIZED(&sc->main_serialize);
3211 
3212 	eicr = E1000_READ_REG(&sc->hw, E1000_EICR);
3213 
3214 	if (eicr == 0)
3215 		return;
3216 
3217 	if (ifp->if_flags & IFF_RUNNING) {
3218 		struct igb_tx_ring *txr = &sc->tx_rings[0];
3219 		int i;
3220 
3221 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3222 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
3223 
3224 			if (eicr & rxr->rx_intr_mask) {
3225 				lwkt_serialize_enter(&rxr->rx_serialize);
3226 				igb_rxeof(rxr, -1);
3227 				lwkt_serialize_exit(&rxr->rx_serialize);
3228 			}
3229 		}
3230 
3231 		if (eicr & txr->tx_intr_mask) {
3232 			lwkt_serialize_enter(&txr->tx_serialize);
3233 			igb_txeof(txr);
3234 			if (!ifsq_is_empty(txr->ifsq))
3235 				ifsq_devstart(txr->ifsq);
3236 			lwkt_serialize_exit(&txr->tx_serialize);
3237 		}
3238 	}
3239 
3240 	if (eicr & E1000_EICR_OTHER) {
3241 		uint32_t icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3242 
3243 		/* Link status change */
3244 		if (icr & E1000_ICR_LSC) {
3245 			sc->hw.mac.get_link_status = 1;
3246 			igb_update_link_status(sc);
3247 		}
3248 	}
3249 
3250 	/*
3251 	 * Reading EICR has the side effect to clear interrupt mask,
3252 	 * so all interrupts need to be enabled here.
3253 	 */
3254 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
3255 }
3256 
3257 static void
3258 igb_intr_shared(void *xsc)
3259 {
3260 	struct igb_softc *sc = xsc;
3261 	struct ifnet *ifp = &sc->arpcom.ac_if;
3262 	uint32_t reg_icr;
3263 
3264 	ASSERT_SERIALIZED(&sc->main_serialize);
3265 
3266 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3267 
3268 	/* Hot eject?  */
3269 	if (reg_icr == 0xffffffff)
3270 		return;
3271 
3272 	/* Definitely not our interrupt.  */
3273 	if (reg_icr == 0x0)
3274 		return;
3275 
3276 	if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0)
3277 		return;
3278 
3279 	if (ifp->if_flags & IFF_RUNNING) {
3280 		if (reg_icr &
3281 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
3282 			int i;
3283 
3284 			for (i = 0; i < sc->rx_ring_inuse; ++i) {
3285 				struct igb_rx_ring *rxr = &sc->rx_rings[i];
3286 
3287 				lwkt_serialize_enter(&rxr->rx_serialize);
3288 				igb_rxeof(rxr, -1);
3289 				lwkt_serialize_exit(&rxr->rx_serialize);
3290 			}
3291 		}
3292 
3293 		if (reg_icr & E1000_ICR_TXDW) {
3294 			struct igb_tx_ring *txr = &sc->tx_rings[0];
3295 
3296 			lwkt_serialize_enter(&txr->tx_serialize);
3297 			igb_txeof(txr);
3298 			if (!ifsq_is_empty(txr->ifsq))
3299 				ifsq_devstart(txr->ifsq);
3300 			lwkt_serialize_exit(&txr->tx_serialize);
3301 		}
3302 	}
3303 
3304 	/* Link status change */
3305 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3306 		sc->hw.mac.get_link_status = 1;
3307 		igb_update_link_status(sc);
3308 	}
3309 
3310 	if (reg_icr & E1000_ICR_RXO)
3311 		sc->rx_overruns++;
3312 }
3313 
3314 static int
3315 igb_encap(struct igb_tx_ring *txr, struct mbuf **m_headp,
3316     int *segs_used, int *idx)
3317 {
3318 	bus_dma_segment_t segs[IGB_MAX_SCATTER];
3319 	bus_dmamap_t map;
3320 	struct igb_tx_buf *tx_buf, *tx_buf_mapped;
3321 	union e1000_adv_tx_desc	*txd = NULL;
3322 	struct mbuf *m_head = *m_headp;
3323 	uint32_t olinfo_status = 0, cmd_type_len = 0, cmd_rs = 0;
3324 	int maxsegs, nsegs, i, j, error;
3325 	uint32_t hdrlen = 0;
3326 
3327 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3328 		error = igb_tso_pullup(txr, m_headp);
3329 		if (error)
3330 			return error;
3331 		m_head = *m_headp;
3332 	}
3333 
3334 	/* Set basic descriptor constants */
3335 	cmd_type_len |= E1000_ADVTXD_DTYP_DATA;
3336 	cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
3337 	if (m_head->m_flags & M_VLANTAG)
3338 		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3339 
3340 	/*
3341 	 * Map the packet for DMA.
3342 	 */
3343 	tx_buf = &txr->tx_buf[txr->next_avail_desc];
3344 	tx_buf_mapped = tx_buf;
3345 	map = tx_buf->map;
3346 
3347 	maxsegs = txr->tx_avail - IGB_TX_RESERVED;
3348 	KASSERT(maxsegs >= txr->spare_desc, ("not enough spare TX desc\n"));
3349 	if (maxsegs > IGB_MAX_SCATTER)
3350 		maxsegs = IGB_MAX_SCATTER;
3351 
3352 	error = bus_dmamap_load_mbuf_defrag(txr->tx_tag, map, m_headp,
3353 	    segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3354 	if (error) {
3355 		if (error == ENOBUFS)
3356 			txr->sc->mbuf_defrag_failed++;
3357 		else
3358 			txr->sc->no_tx_dma_setup++;
3359 
3360 		m_freem(*m_headp);
3361 		*m_headp = NULL;
3362 		return error;
3363 	}
3364 	bus_dmamap_sync(txr->tx_tag, map, BUS_DMASYNC_PREWRITE);
3365 
3366 	m_head = *m_headp;
3367 
3368 	/*
3369 	 * Set up the TX context descriptor, if any hardware offloading is
3370 	 * needed.  This includes CSUM, VLAN, and TSO.  It will consume one
3371 	 * TX descriptor.
3372 	 *
3373 	 * Unlike these chips' predecessors (em/emx), TX context descriptor
3374 	 * will _not_ interfere TX data fetching pipelining.
3375 	 */
3376 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3377 		igb_tso_ctx(txr, m_head, &hdrlen);
3378 		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3379 		olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3380 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3381 		txr->tx_nsegs++;
3382 		(*segs_used)++;
3383 	} else if (igb_txcsum_ctx(txr, m_head)) {
3384 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3385 			olinfo_status |= (E1000_TXD_POPTS_IXSM << 8);
3386 		if (m_head->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_TCP))
3387 			olinfo_status |= (E1000_TXD_POPTS_TXSM << 8);
3388 		txr->tx_nsegs++;
3389 		(*segs_used)++;
3390 	}
3391 
3392 	*segs_used += nsegs;
3393 	txr->tx_nsegs += nsegs;
3394 	if (txr->tx_nsegs >= txr->intr_nsegs) {
3395 		/*
3396 		 * Report Status (RS) is turned on every intr_nsegs
3397 		 * descriptors (roughly).
3398 		 */
3399 		txr->tx_nsegs = 0;
3400 		cmd_rs = E1000_ADVTXD_DCMD_RS;
3401 	}
3402 
3403 	/* Calculate payload length */
3404 	olinfo_status |= ((m_head->m_pkthdr.len - hdrlen)
3405 	    << E1000_ADVTXD_PAYLEN_SHIFT);
3406 
3407 	/*
3408 	 * 82575 needs the TX context index added; the queue
3409 	 * index is used as TX context index here.
3410 	 */
3411 	if (txr->sc->hw.mac.type == e1000_82575)
3412 		olinfo_status |= txr->me << 4;
3413 
3414 	/* Set up our transmit descriptors */
3415 	i = txr->next_avail_desc;
3416 	for (j = 0; j < nsegs; j++) {
3417 		bus_size_t seg_len;
3418 		bus_addr_t seg_addr;
3419 
3420 		tx_buf = &txr->tx_buf[i];
3421 		txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
3422 		seg_addr = segs[j].ds_addr;
3423 		seg_len = segs[j].ds_len;
3424 
3425 		txd->read.buffer_addr = htole64(seg_addr);
3426 		txd->read.cmd_type_len = htole32(cmd_type_len | seg_len);
3427 		txd->read.olinfo_status = htole32(olinfo_status);
3428 		if (++i == txr->num_tx_desc)
3429 			i = 0;
3430 		tx_buf->m_head = NULL;
3431 	}
3432 
3433 	KASSERT(txr->tx_avail > nsegs, ("invalid avail TX desc\n"));
3434 	txr->next_avail_desc = i;
3435 	txr->tx_avail -= nsegs;
3436 
3437 	tx_buf->m_head = m_head;
3438 	tx_buf_mapped->map = tx_buf->map;
3439 	tx_buf->map = map;
3440 
3441 	/*
3442 	 * Last Descriptor of Packet needs End Of Packet (EOP)
3443 	 */
3444 	txd->read.cmd_type_len |= htole32(E1000_ADVTXD_DCMD_EOP | cmd_rs);
3445 
3446 	/*
3447 	 * Defer TDT updating, until enough descrptors are setup
3448 	 */
3449 	*idx = i;
3450 #ifdef IGB_TSS_DEBUG
3451 	++txr->tx_packets;
3452 #endif
3453 
3454 	return 0;
3455 }
3456 
3457 static void
3458 igb_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3459 {
3460 	struct igb_softc *sc = ifp->if_softc;
3461 	struct igb_tx_ring *txr = ifsq_get_priv(ifsq);
3462 	struct mbuf *m_head;
3463 	int idx = -1, nsegs = 0;
3464 
3465 	KKASSERT(txr->ifsq == ifsq);
3466 	ASSERT_SERIALIZED(&txr->tx_serialize);
3467 
3468 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
3469 		return;
3470 
3471 	if (!sc->link_active || (txr->tx_flags & IGB_TXFLAG_ENABLED) == 0) {
3472 		ifsq_purge(ifsq);
3473 		return;
3474 	}
3475 
3476 	if (!IGB_IS_NOT_OACTIVE(txr))
3477 		igb_txeof(txr);
3478 
3479 	while (!ifsq_is_empty(ifsq)) {
3480 		if (IGB_IS_OACTIVE(txr)) {
3481 			ifsq_set_oactive(ifsq);
3482 			/* Set watchdog on */
3483 			txr->tx_watchdog.wd_timer = 5;
3484 			break;
3485 		}
3486 
3487 		m_head = ifsq_dequeue(ifsq);
3488 		if (m_head == NULL)
3489 			break;
3490 
3491 		if (igb_encap(txr, &m_head, &nsegs, &idx)) {
3492 			IFNET_STAT_INC(ifp, oerrors, 1);
3493 			continue;
3494 		}
3495 
3496 		if (nsegs >= txr->wreg_nsegs) {
3497 			E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3498 			idx = -1;
3499 			nsegs = 0;
3500 		}
3501 
3502 		/* Send a copy of the frame to the BPF listener */
3503 		ETHER_BPF_MTAP(ifp, m_head);
3504 	}
3505 	if (idx >= 0)
3506 		E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3507 }
3508 
3509 static void
3510 igb_watchdog(struct ifaltq_subque *ifsq)
3511 {
3512 	struct igb_tx_ring *txr = ifsq_get_priv(ifsq);
3513 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
3514 	struct igb_softc *sc = ifp->if_softc;
3515 	int i;
3516 
3517 	KKASSERT(txr->ifsq == ifsq);
3518 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3519 
3520 	/*
3521 	 * If flow control has paused us since last checking
3522 	 * it invalidates the watchdog timing, so dont run it.
3523 	 */
3524 	if (sc->pause_frames) {
3525 		sc->pause_frames = 0;
3526 		txr->tx_watchdog.wd_timer = 5;
3527 		return;
3528 	}
3529 
3530 	if_printf(ifp, "Watchdog timeout -- resetting\n");
3531 	if_printf(ifp, "Queue(%d) tdh = %d, hw tdt = %d\n", txr->me,
3532 	    E1000_READ_REG(&sc->hw, E1000_TDH(txr->me)),
3533 	    E1000_READ_REG(&sc->hw, E1000_TDT(txr->me)));
3534 	if_printf(ifp, "TX(%d) desc avail = %d, "
3535 	    "Next TX to Clean = %d\n",
3536 	    txr->me, txr->tx_avail, txr->next_to_clean);
3537 
3538 	IFNET_STAT_INC(ifp, oerrors, 1);
3539 	sc->watchdog_events++;
3540 
3541 	igb_init(sc);
3542 	for (i = 0; i < sc->tx_ring_inuse; ++i)
3543 		ifsq_devstart_sched(sc->tx_rings[i].ifsq);
3544 }
3545 
3546 static void
3547 igb_set_eitr(struct igb_softc *sc, int idx, int rate)
3548 {
3549 	uint32_t eitr = 0;
3550 
3551 	if (rate > 0) {
3552 		if (sc->hw.mac.type == e1000_82575) {
3553 			eitr = 1000000000 / 256 / rate;
3554 			/*
3555 			 * NOTE:
3556 			 * Document is wrong on the 2 bits left shift
3557 			 */
3558 		} else {
3559 			eitr = 1000000 / rate;
3560 			eitr <<= IGB_EITR_INTVL_SHIFT;
3561 		}
3562 
3563 		if (eitr == 0) {
3564 			/* Don't disable it */
3565 			eitr = 1 << IGB_EITR_INTVL_SHIFT;
3566 		} else if (eitr > IGB_EITR_INTVL_MASK) {
3567 			/* Don't allow it to be too large */
3568 			eitr = IGB_EITR_INTVL_MASK;
3569 		}
3570 	}
3571 	if (sc->hw.mac.type == e1000_82575)
3572 		eitr |= eitr << 16;
3573 	else
3574 		eitr |= E1000_EITR_CNT_IGNR;
3575 	E1000_WRITE_REG(&sc->hw, E1000_EITR(idx), eitr);
3576 }
3577 
3578 static int
3579 igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3580 {
3581 	struct igb_softc *sc = (void *)arg1;
3582 	struct ifnet *ifp = &sc->arpcom.ac_if;
3583 	int error, intr_rate;
3584 
3585 	intr_rate = sc->intr_rate;
3586 	error = sysctl_handle_int(oidp, &intr_rate, 0, req);
3587 	if (error || req->newptr == NULL)
3588 		return error;
3589 	if (intr_rate < 0)
3590 		return EINVAL;
3591 
3592 	ifnet_serialize_all(ifp);
3593 
3594 	sc->intr_rate = intr_rate;
3595 	if (ifp->if_flags & IFF_RUNNING)
3596 		igb_set_eitr(sc, 0, sc->intr_rate);
3597 
3598 	if (bootverbose)
3599 		if_printf(ifp, "interrupt rate set to %d/sec\n", sc->intr_rate);
3600 
3601 	ifnet_deserialize_all(ifp);
3602 
3603 	return 0;
3604 }
3605 
3606 static int
3607 igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS)
3608 {
3609 	struct igb_msix_data *msix = (void *)arg1;
3610 	struct igb_softc *sc = msix->msix_sc;
3611 	struct ifnet *ifp = &sc->arpcom.ac_if;
3612 	int error, msix_rate;
3613 
3614 	msix_rate = msix->msix_rate;
3615 	error = sysctl_handle_int(oidp, &msix_rate, 0, req);
3616 	if (error || req->newptr == NULL)
3617 		return error;
3618 	if (msix_rate < 0)
3619 		return EINVAL;
3620 
3621 	lwkt_serialize_enter(msix->msix_serialize);
3622 
3623 	msix->msix_rate = msix_rate;
3624 	if (ifp->if_flags & IFF_RUNNING)
3625 		igb_set_eitr(sc, msix->msix_vector, msix->msix_rate);
3626 
3627 	if (bootverbose) {
3628 		if_printf(ifp, "%s set to %d/sec\n", msix->msix_rate_desc,
3629 		    msix->msix_rate);
3630 	}
3631 
3632 	lwkt_serialize_exit(msix->msix_serialize);
3633 
3634 	return 0;
3635 }
3636 
3637 static int
3638 igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3639 {
3640 	struct igb_softc *sc = (void *)arg1;
3641 	struct ifnet *ifp = &sc->arpcom.ac_if;
3642 	struct igb_tx_ring *txr = &sc->tx_rings[0];
3643 	int error, nsegs;
3644 
3645 	nsegs = txr->intr_nsegs;
3646 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3647 	if (error || req->newptr == NULL)
3648 		return error;
3649 	if (nsegs <= 0)
3650 		return EINVAL;
3651 
3652 	ifnet_serialize_all(ifp);
3653 
3654 	if (nsegs >= txr->num_tx_desc - txr->oact_lo_desc ||
3655 	    nsegs >= txr->oact_hi_desc - IGB_MAX_SCATTER) {
3656 		error = EINVAL;
3657 	} else {
3658 		int i;
3659 
3660 		error = 0;
3661 		for (i = 0; i < sc->tx_ring_cnt; ++i)
3662 			sc->tx_rings[i].intr_nsegs = nsegs;
3663 	}
3664 
3665 	ifnet_deserialize_all(ifp);
3666 
3667 	return error;
3668 }
3669 
3670 static int
3671 igb_sysctl_rx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3672 {
3673 	struct igb_softc *sc = (void *)arg1;
3674 	struct ifnet *ifp = &sc->arpcom.ac_if;
3675 	int error, nsegs, i;
3676 
3677 	nsegs = sc->rx_rings[0].wreg_nsegs;
3678 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3679 	if (error || req->newptr == NULL)
3680 		return error;
3681 
3682 	ifnet_serialize_all(ifp);
3683 	for (i = 0; i < sc->rx_ring_cnt; ++i)
3684 		sc->rx_rings[i].wreg_nsegs =nsegs;
3685 	ifnet_deserialize_all(ifp);
3686 
3687 	return 0;
3688 }
3689 
3690 static int
3691 igb_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3692 {
3693 	struct igb_softc *sc = (void *)arg1;
3694 	struct ifnet *ifp = &sc->arpcom.ac_if;
3695 	int error, nsegs, i;
3696 
3697 	nsegs = sc->tx_rings[0].wreg_nsegs;
3698 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3699 	if (error || req->newptr == NULL)
3700 		return error;
3701 
3702 	ifnet_serialize_all(ifp);
3703 	for (i = 0; i < sc->tx_ring_cnt; ++i)
3704 		sc->tx_rings[i].wreg_nsegs =nsegs;
3705 	ifnet_deserialize_all(ifp);
3706 
3707 	return 0;
3708 }
3709 
3710 #ifdef IFPOLL_ENABLE
3711 
3712 static int
3713 igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3714 {
3715 	struct igb_softc *sc = (void *)arg1;
3716 	struct ifnet *ifp = &sc->arpcom.ac_if;
3717 	int error, off;
3718 
3719 	off = sc->rx_npoll_off;
3720 	error = sysctl_handle_int(oidp, &off, 0, req);
3721 	if (error || req->newptr == NULL)
3722 		return error;
3723 	if (off < 0)
3724 		return EINVAL;
3725 
3726 	ifnet_serialize_all(ifp);
3727 	if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3728 		error = EINVAL;
3729 	} else {
3730 		error = 0;
3731 		sc->rx_npoll_off = off;
3732 	}
3733 	ifnet_deserialize_all(ifp);
3734 
3735 	return error;
3736 }
3737 
3738 static int
3739 igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3740 {
3741 	struct igb_softc *sc = (void *)arg1;
3742 	struct ifnet *ifp = &sc->arpcom.ac_if;
3743 	int error, off;
3744 
3745 	off = sc->tx_npoll_off;
3746 	error = sysctl_handle_int(oidp, &off, 0, req);
3747 	if (error || req->newptr == NULL)
3748 		return error;
3749 	if (off < 0)
3750 		return EINVAL;
3751 
3752 	ifnet_serialize_all(ifp);
3753 	if (off >= ncpus2 || off % sc->tx_ring_cnt != 0) {
3754 		error = EINVAL;
3755 	} else {
3756 		error = 0;
3757 		sc->tx_npoll_off = off;
3758 	}
3759 	ifnet_deserialize_all(ifp);
3760 
3761 	return error;
3762 }
3763 
3764 #endif	/* IFPOLL_ENABLE */
3765 
3766 static void
3767 igb_init_intr(struct igb_softc *sc)
3768 {
3769 	igb_set_intr_mask(sc);
3770 
3771 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0)
3772 		igb_init_unshared_intr(sc);
3773 
3774 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
3775 		igb_set_eitr(sc, 0, sc->intr_rate);
3776 	} else {
3777 		int i;
3778 
3779 		for (i = 0; i < sc->msix_cnt; ++i)
3780 			igb_set_eitr(sc, i, sc->msix_data[i].msix_rate);
3781 	}
3782 }
3783 
3784 static void
3785 igb_init_unshared_intr(struct igb_softc *sc)
3786 {
3787 	struct e1000_hw *hw = &sc->hw;
3788 	const struct igb_rx_ring *rxr;
3789 	const struct igb_tx_ring *txr;
3790 	uint32_t ivar, index;
3791 	int i;
3792 
3793 	/*
3794 	 * Enable extended mode
3795 	 */
3796 	if (sc->hw.mac.type != e1000_82575) {
3797 		uint32_t gpie;
3798 		int ivar_max;
3799 
3800 		gpie = E1000_GPIE_NSICR;
3801 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3802 			gpie |= E1000_GPIE_MSIX_MODE |
3803 			    E1000_GPIE_EIAME |
3804 			    E1000_GPIE_PBA;
3805 		}
3806 		E1000_WRITE_REG(hw, E1000_GPIE, gpie);
3807 
3808 		/*
3809 		 * Clear IVARs
3810 		 */
3811 		switch (sc->hw.mac.type) {
3812 		case e1000_82576:
3813 			ivar_max = IGB_MAX_IVAR_82576;
3814 			break;
3815 
3816 		case e1000_82580:
3817 			ivar_max = IGB_MAX_IVAR_82580;
3818 			break;
3819 
3820 		case e1000_i350:
3821 			ivar_max = IGB_MAX_IVAR_I350;
3822 			break;
3823 
3824 		case e1000_vfadapt:
3825 		case e1000_vfadapt_i350:
3826 			ivar_max = IGB_MAX_IVAR_VF;
3827 			break;
3828 
3829 		case e1000_i210:
3830 			ivar_max = IGB_MAX_IVAR_I210;
3831 			break;
3832 
3833 		case e1000_i211:
3834 			ivar_max = IGB_MAX_IVAR_I211;
3835 			break;
3836 
3837 		default:
3838 			panic("unknown mac type %d\n", sc->hw.mac.type);
3839 		}
3840 		for (i = 0; i < ivar_max; ++i)
3841 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, 0);
3842 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, 0);
3843 	} else {
3844 		uint32_t tmp;
3845 
3846 		KASSERT(sc->intr_type != PCI_INTR_TYPE_MSIX,
3847 		    ("82575 w/ MSI-X"));
3848 		tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
3849 		tmp |= E1000_CTRL_EXT_IRCA;
3850 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
3851 	}
3852 
3853 	/*
3854 	 * Map TX/RX interrupts to EICR
3855 	 */
3856 	switch (sc->hw.mac.type) {
3857 	case e1000_82580:
3858 	case e1000_i350:
3859 	case e1000_vfadapt:
3860 	case e1000_vfadapt_i350:
3861 	case e1000_i210:
3862 	case e1000_i211:
3863 		/* RX entries */
3864 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3865 			rxr = &sc->rx_rings[i];
3866 
3867 			index = i >> 1;
3868 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3869 
3870 			if (i & 1) {
3871 				ivar &= 0xff00ffff;
3872 				ivar |=
3873 				(rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3874 			} else {
3875 				ivar &= 0xffffff00;
3876 				ivar |=
3877 				(rxr->rx_intr_bit | E1000_IVAR_VALID);
3878 			}
3879 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3880 		}
3881 		/* TX entries */
3882 		for (i = 0; i < sc->tx_ring_inuse; ++i) {
3883 			txr = &sc->tx_rings[i];
3884 
3885 			index = i >> 1;
3886 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3887 
3888 			if (i & 1) {
3889 				ivar &= 0x00ffffff;
3890 				ivar |=
3891 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3892 			} else {
3893 				ivar &= 0xffff00ff;
3894 				ivar |=
3895 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3896 			}
3897 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3898 		}
3899 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3900 			ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3901 			E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3902 		}
3903 		break;
3904 
3905 	case e1000_82576:
3906 		/* RX entries */
3907 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3908 			rxr = &sc->rx_rings[i];
3909 
3910 			index = i & 0x7; /* Each IVAR has two entries */
3911 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3912 
3913 			if (i < 8) {
3914 				ivar &= 0xffffff00;
3915 				ivar |=
3916 				(rxr->rx_intr_bit | E1000_IVAR_VALID);
3917 			} else {
3918 				ivar &= 0xff00ffff;
3919 				ivar |=
3920 				(rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3921 			}
3922 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3923 		}
3924 		/* TX entries */
3925 		for (i = 0; i < sc->tx_ring_inuse; ++i) {
3926 			txr = &sc->tx_rings[i];
3927 
3928 			index = i & 0x7; /* Each IVAR has two entries */
3929 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3930 
3931 			if (i < 8) {
3932 				ivar &= 0xffff00ff;
3933 				ivar |=
3934 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3935 			} else {
3936 				ivar &= 0x00ffffff;
3937 				ivar |=
3938 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3939 			}
3940 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3941 		}
3942 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3943 			ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3944 			E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3945 		}
3946 		break;
3947 
3948 	case e1000_82575:
3949 		/*
3950 		 * Enable necessary interrupt bits.
3951 		 *
3952 		 * The name of the register is confusing; in addition to
3953 		 * configuring the first vector of MSI-X, it also configures
3954 		 * which bits of EICR could be set by the hardware even when
3955 		 * MSI or line interrupt is used; it thus controls interrupt
3956 		 * generation.  It MUST be configured explicitly; the default
3957 		 * value mentioned in the datasheet is wrong: RX queue0 and
3958 		 * TX queue0 are NOT enabled by default.
3959 		 */
3960 		E1000_WRITE_REG(&sc->hw, E1000_MSIXBM(0), sc->intr_mask);
3961 		break;
3962 
3963 	default:
3964 		panic("unknown mac type %d\n", sc->hw.mac.type);
3965 	}
3966 }
3967 
3968 static int
3969 igb_setup_intr(struct igb_softc *sc)
3970 {
3971 	int error;
3972 
3973 	if (sc->intr_type == PCI_INTR_TYPE_MSIX)
3974 		return igb_msix_setup(sc);
3975 
3976 	error = bus_setup_intr(sc->dev, sc->intr_res, INTR_MPSAFE,
3977 	    (sc->flags & IGB_FLAG_SHARED_INTR) ? igb_intr_shared : igb_intr,
3978 	    sc, &sc->intr_tag, &sc->main_serialize);
3979 	if (error) {
3980 		device_printf(sc->dev, "Failed to register interrupt handler");
3981 		return error;
3982 	}
3983 	return 0;
3984 }
3985 
3986 static void
3987 igb_set_txintr_mask(struct igb_tx_ring *txr, int *intr_bit0, int intr_bitmax)
3988 {
3989 	if (txr->sc->hw.mac.type == e1000_82575) {
3990 		txr->tx_intr_bit = 0;	/* unused */
3991 		switch (txr->me) {
3992 		case 0:
3993 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE0;
3994 			break;
3995 		case 1:
3996 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE1;
3997 			break;
3998 		case 2:
3999 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE2;
4000 			break;
4001 		case 3:
4002 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE3;
4003 			break;
4004 		default:
4005 			panic("unsupported # of TX ring, %d\n", txr->me);
4006 		}
4007 	} else {
4008 		int intr_bit = *intr_bit0;
4009 
4010 		txr->tx_intr_bit = intr_bit % intr_bitmax;
4011 		txr->tx_intr_mask = 1 << txr->tx_intr_bit;
4012 
4013 		*intr_bit0 = intr_bit + 1;
4014 	}
4015 }
4016 
4017 static void
4018 igb_set_rxintr_mask(struct igb_rx_ring *rxr, int *intr_bit0, int intr_bitmax)
4019 {
4020 	if (rxr->sc->hw.mac.type == e1000_82575) {
4021 		rxr->rx_intr_bit = 0;	/* unused */
4022 		switch (rxr->me) {
4023 		case 0:
4024 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE0;
4025 			break;
4026 		case 1:
4027 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE1;
4028 			break;
4029 		case 2:
4030 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE2;
4031 			break;
4032 		case 3:
4033 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE3;
4034 			break;
4035 		default:
4036 			panic("unsupported # of RX ring, %d\n", rxr->me);
4037 		}
4038 	} else {
4039 		int intr_bit = *intr_bit0;
4040 
4041 		rxr->rx_intr_bit = intr_bit % intr_bitmax;
4042 		rxr->rx_intr_mask = 1 << rxr->rx_intr_bit;
4043 
4044 		*intr_bit0 = intr_bit + 1;
4045 	}
4046 }
4047 
4048 static void
4049 igb_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
4050 {
4051 	struct igb_softc *sc = ifp->if_softc;
4052 
4053 	ifnet_serialize_array_enter(sc->serializes, sc->serialize_cnt, slz);
4054 }
4055 
4056 static void
4057 igb_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4058 {
4059 	struct igb_softc *sc = ifp->if_softc;
4060 
4061 	ifnet_serialize_array_exit(sc->serializes, sc->serialize_cnt, slz);
4062 }
4063 
4064 static int
4065 igb_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4066 {
4067 	struct igb_softc *sc = ifp->if_softc;
4068 
4069 	return ifnet_serialize_array_try(sc->serializes, sc->serialize_cnt,
4070 	    slz);
4071 }
4072 
4073 #ifdef INVARIANTS
4074 
4075 static void
4076 igb_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
4077     boolean_t serialized)
4078 {
4079 	struct igb_softc *sc = ifp->if_softc;
4080 
4081 	ifnet_serialize_array_assert(sc->serializes, sc->serialize_cnt,
4082 	    slz, serialized);
4083 }
4084 
4085 #endif	/* INVARIANTS */
4086 
4087 static void
4088 igb_set_intr_mask(struct igb_softc *sc)
4089 {
4090 	int i;
4091 
4092 	sc->intr_mask = sc->sts_intr_mask;
4093 	for (i = 0; i < sc->rx_ring_inuse; ++i)
4094 		sc->intr_mask |= sc->rx_rings[i].rx_intr_mask;
4095 	for (i = 0; i < sc->tx_ring_inuse; ++i)
4096 		sc->intr_mask |= sc->tx_rings[i].tx_intr_mask;
4097 	if (bootverbose) {
4098 		if_printf(&sc->arpcom.ac_if, "intr mask 0x%08x\n",
4099 		    sc->intr_mask);
4100 	}
4101 }
4102 
4103 static int
4104 igb_alloc_intr(struct igb_softc *sc)
4105 {
4106 	int i, intr_bit, intr_bitmax;
4107 	u_int intr_flags;
4108 
4109 	igb_msix_try_alloc(sc);
4110 	if (sc->intr_type == PCI_INTR_TYPE_MSIX)
4111 		goto done;
4112 
4113 	/*
4114 	 * Allocate MSI/legacy interrupt resource
4115 	 */
4116 	sc->intr_type = pci_alloc_1intr(sc->dev, igb_msi_enable,
4117 	    &sc->intr_rid, &intr_flags);
4118 
4119 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
4120 		int unshared;
4121 
4122 		unshared = device_getenv_int(sc->dev, "irq.unshared", 0);
4123 		if (!unshared) {
4124 			sc->flags |= IGB_FLAG_SHARED_INTR;
4125 			if (bootverbose)
4126 				device_printf(sc->dev, "IRQ shared\n");
4127 		} else {
4128 			intr_flags &= ~RF_SHAREABLE;
4129 			if (bootverbose)
4130 				device_printf(sc->dev, "IRQ unshared\n");
4131 		}
4132 	}
4133 
4134 	sc->intr_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4135 	    &sc->intr_rid, intr_flags);
4136 	if (sc->intr_res == NULL) {
4137 		device_printf(sc->dev, "Unable to allocate bus resource: "
4138 		    "interrupt\n");
4139 		return ENXIO;
4140 	}
4141 
4142 	for (i = 0; i < sc->tx_ring_cnt; ++i)
4143 		sc->tx_rings[i].tx_intr_cpuid = rman_get_cpuid(sc->intr_res);
4144 
4145 	/*
4146 	 * Setup MSI/legacy interrupt mask
4147 	 */
4148 	switch (sc->hw.mac.type) {
4149 	case e1000_82575:
4150 		intr_bitmax = IGB_MAX_TXRXINT_82575;
4151 		break;
4152 
4153 	case e1000_82576:
4154 		intr_bitmax = IGB_MAX_TXRXINT_82576;
4155 		break;
4156 
4157 	case e1000_82580:
4158 		intr_bitmax = IGB_MAX_TXRXINT_82580;
4159 		break;
4160 
4161 	case e1000_i350:
4162 		intr_bitmax = IGB_MAX_TXRXINT_I350;
4163 		break;
4164 
4165 	case e1000_i210:
4166 		intr_bitmax = IGB_MAX_TXRXINT_I210;
4167 		break;
4168 
4169 	case e1000_i211:
4170 		intr_bitmax = IGB_MAX_TXRXINT_I211;
4171 		break;
4172 
4173 	default:
4174 		intr_bitmax = IGB_MIN_TXRXINT;
4175 		break;
4176 	}
4177 	intr_bit = 0;
4178 	for (i = 0; i < sc->tx_ring_cnt; ++i)
4179 		igb_set_txintr_mask(&sc->tx_rings[i], &intr_bit, intr_bitmax);
4180 	for (i = 0; i < sc->rx_ring_cnt; ++i)
4181 		igb_set_rxintr_mask(&sc->rx_rings[i], &intr_bit, intr_bitmax);
4182 	sc->sts_intr_bit = 0;
4183 	sc->sts_intr_mask = E1000_EICR_OTHER;
4184 
4185 	/* Initialize interrupt rate */
4186 	sc->intr_rate = IGB_INTR_RATE;
4187 done:
4188 	igb_set_ring_inuse(sc, FALSE);
4189 	igb_set_intr_mask(sc);
4190 	return 0;
4191 }
4192 
4193 static void
4194 igb_free_intr(struct igb_softc *sc)
4195 {
4196 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
4197 		if (sc->intr_res != NULL) {
4198 			bus_release_resource(sc->dev, SYS_RES_IRQ, sc->intr_rid,
4199 			    sc->intr_res);
4200 		}
4201 		if (sc->intr_type == PCI_INTR_TYPE_MSI)
4202 			pci_release_msi(sc->dev);
4203 	} else {
4204 		igb_msix_free(sc, TRUE);
4205 	}
4206 }
4207 
4208 static void
4209 igb_teardown_intr(struct igb_softc *sc)
4210 {
4211 	if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4212 		bus_teardown_intr(sc->dev, sc->intr_res, sc->intr_tag);
4213 	else
4214 		igb_msix_teardown(sc, sc->msix_cnt);
4215 }
4216 
4217 static void
4218 igb_msix_try_alloc(struct igb_softc *sc)
4219 {
4220 	int msix_enable, msix_cnt, msix_cnt2, alloc_cnt;
4221 	int i, x, error;
4222 	int offset, offset_def;
4223 	struct igb_msix_data *msix;
4224 	boolean_t aggregate, setup = FALSE;
4225 
4226 	/*
4227 	 * Don't enable MSI-X on 82575, see:
4228 	 * 82575 specification update errata #25
4229 	 */
4230 	if (sc->hw.mac.type == e1000_82575)
4231 		return;
4232 
4233 	/* Don't enable MSI-X on VF */
4234 	if (sc->vf_ifp)
4235 		return;
4236 
4237 	msix_enable = device_getenv_int(sc->dev, "msix.enable",
4238 	    igb_msix_enable);
4239 	if (!msix_enable)
4240 		return;
4241 
4242 	msix_cnt = pci_msix_count(sc->dev);
4243 #ifdef IGB_MSIX_DEBUG
4244 	msix_cnt = device_getenv_int(sc->dev, "msix.count", msix_cnt);
4245 #endif
4246 	if (msix_cnt <= 1) {
4247 		/* One MSI-X model does not make sense */
4248 		return;
4249 	}
4250 
4251 	i = 0;
4252 	while ((1 << (i + 1)) <= msix_cnt)
4253 		++i;
4254 	msix_cnt2 = 1 << i;
4255 
4256 	if (bootverbose) {
4257 		device_printf(sc->dev, "MSI-X count %d/%d\n",
4258 		    msix_cnt2, msix_cnt);
4259 	}
4260 
4261 	KKASSERT(msix_cnt2 <= msix_cnt);
4262 	if (msix_cnt == msix_cnt2) {
4263 		/* We need at least one MSI-X for link status */
4264 		msix_cnt2 >>= 1;
4265 		if (msix_cnt2 <= 1) {
4266 			/* One MSI-X for RX/TX does not make sense */
4267 			device_printf(sc->dev, "not enough MSI-X for TX/RX, "
4268 			    "MSI-X count %d/%d\n", msix_cnt2, msix_cnt);
4269 			return;
4270 		}
4271 		KKASSERT(msix_cnt > msix_cnt2);
4272 
4273 		if (bootverbose) {
4274 			device_printf(sc->dev, "MSI-X count fixup %d/%d\n",
4275 			    msix_cnt2, msix_cnt);
4276 		}
4277 	}
4278 
4279 	sc->rx_ring_msix = sc->rx_ring_cnt;
4280 	if (sc->rx_ring_msix > msix_cnt2)
4281 		sc->rx_ring_msix = msix_cnt2;
4282 
4283 	sc->tx_ring_msix = sc->tx_ring_cnt;
4284 	if (sc->tx_ring_msix > msix_cnt2)
4285 		sc->tx_ring_msix = msix_cnt2;
4286 
4287 	if (msix_cnt >= sc->tx_ring_msix + sc->rx_ring_msix + 1) {
4288 		/*
4289 		 * Independent TX/RX MSI-X
4290 		 */
4291 		aggregate = FALSE;
4292 		if (bootverbose)
4293 			device_printf(sc->dev, "independent TX/RX MSI-X\n");
4294 		alloc_cnt = sc->tx_ring_msix + sc->rx_ring_msix;
4295 	} else {
4296 		/*
4297 		 * Aggregate TX/RX MSI-X
4298 		 */
4299 		aggregate = TRUE;
4300 		if (bootverbose)
4301 			device_printf(sc->dev, "aggregate TX/RX MSI-X\n");
4302 		alloc_cnt = msix_cnt2;
4303 		if (alloc_cnt > ncpus2)
4304 			alloc_cnt = ncpus2;
4305 		if (sc->rx_ring_msix > alloc_cnt)
4306 			sc->rx_ring_msix = alloc_cnt;
4307 		if (sc->tx_ring_msix > alloc_cnt)
4308 			sc->tx_ring_msix = alloc_cnt;
4309 	}
4310 	++alloc_cnt;	/* For link status */
4311 
4312 	if (bootverbose) {
4313 		device_printf(sc->dev, "MSI-X alloc %d, "
4314 		    "RX ring %d, TX ring %d\n", alloc_cnt,
4315 		    sc->rx_ring_msix, sc->tx_ring_msix);
4316 	}
4317 
4318 	sc->msix_mem_rid = PCIR_BAR(IGB_MSIX_BAR);
4319 	sc->msix_mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4320 	    &sc->msix_mem_rid, RF_ACTIVE);
4321 	if (sc->msix_mem_res == NULL) {
4322 		device_printf(sc->dev, "Unable to map MSI-X table\n");
4323 		return;
4324 	}
4325 
4326 	sc->msix_cnt = alloc_cnt;
4327 	sc->msix_data = kmalloc_cachealign(
4328 	    sizeof(struct igb_msix_data) * sc->msix_cnt,
4329 	    M_DEVBUF, M_WAITOK | M_ZERO);
4330 	for (x = 0; x < sc->msix_cnt; ++x) {
4331 		msix = &sc->msix_data[x];
4332 
4333 		lwkt_serialize_init(&msix->msix_serialize0);
4334 		msix->msix_sc = sc;
4335 		msix->msix_rid = -1;
4336 		msix->msix_vector = x;
4337 		msix->msix_mask = 1 << msix->msix_vector;
4338 		msix->msix_rate = IGB_INTR_RATE;
4339 	}
4340 
4341 	x = 0;
4342 	if (!aggregate) {
4343 		/*
4344 		 * RX rings
4345 		 */
4346 		if (sc->rx_ring_msix == ncpus2) {
4347 			offset = 0;
4348 		} else {
4349 			offset_def = (sc->rx_ring_msix *
4350 			    device_get_unit(sc->dev)) % ncpus2;
4351 
4352 			offset = device_getenv_int(sc->dev,
4353 			    "msix.rxoff", offset_def);
4354 			if (offset >= ncpus2 ||
4355 			    offset % sc->rx_ring_msix != 0) {
4356 				device_printf(sc->dev,
4357 				    "invalid msix.rxoff %d, use %d\n",
4358 				    offset, offset_def);
4359 				offset = offset_def;
4360 			}
4361 		}
4362 		igb_msix_rx_conf(sc, 0, &x, offset);
4363 
4364 		/*
4365 		 * TX rings
4366 		 */
4367 		if (sc->tx_ring_msix == ncpus2) {
4368 			offset = 0;
4369 		} else {
4370 			offset_def = (sc->tx_ring_msix *
4371 			    device_get_unit(sc->dev)) % ncpus2;
4372 
4373 			offset = device_getenv_int(sc->dev,
4374 			    "msix.txoff", offset_def);
4375 			if (offset >= ncpus2 ||
4376 			    offset % sc->tx_ring_msix != 0) {
4377 				device_printf(sc->dev,
4378 				    "invalid msix.txoff %d, use %d\n",
4379 				    offset, offset_def);
4380 				offset = offset_def;
4381 			}
4382 		}
4383 		igb_msix_tx_conf(sc, 0, &x, offset);
4384 	} else {
4385 		int ring_agg, ring_max;
4386 
4387 		ring_agg = sc->rx_ring_msix;
4388 		if (ring_agg > sc->tx_ring_msix)
4389 			ring_agg = sc->tx_ring_msix;
4390 
4391 		ring_max = sc->rx_ring_msix;
4392 		if (ring_max < sc->tx_ring_msix)
4393 			ring_max = sc->tx_ring_msix;
4394 
4395 		if (ring_max == ncpus2) {
4396 			offset = 0;
4397 		} else {
4398 			offset_def = (ring_max * device_get_unit(sc->dev)) %
4399 			    ncpus2;
4400 
4401 			offset = device_getenv_int(sc->dev, "msix.off",
4402 			    offset_def);
4403 			if (offset >= ncpus2 || offset % ring_max != 0) {
4404 				device_printf(sc->dev,
4405 				    "invalid msix.off %d, use %d\n",
4406 				    offset, offset_def);
4407 				offset = offset_def;
4408 			}
4409 		}
4410 
4411 		for (i = 0; i < ring_agg; ++i) {
4412 			struct igb_tx_ring *txr = &sc->tx_rings[i];
4413 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
4414 
4415 			KKASSERT(x < sc->msix_cnt);
4416 			msix = &sc->msix_data[x++];
4417 
4418 			txr->tx_intr_bit = msix->msix_vector;
4419 			txr->tx_intr_mask = msix->msix_mask;
4420 			rxr->rx_intr_bit = msix->msix_vector;
4421 			rxr->rx_intr_mask = msix->msix_mask;
4422 
4423 			msix->msix_serialize = &msix->msix_serialize0;
4424 			msix->msix_func = igb_msix_rxtx;
4425 			msix->msix_arg = msix;
4426 			msix->msix_rx = rxr;
4427 			msix->msix_tx = txr;
4428 
4429 			msix->msix_cpuid = i + offset;
4430 			KKASSERT(msix->msix_cpuid < ncpus2);
4431 			txr->tx_intr_cpuid = msix->msix_cpuid;
4432 
4433 			ksnprintf(msix->msix_desc, sizeof(msix->msix_desc),
4434 			    "%s rxtx%d", device_get_nameunit(sc->dev), i);
4435 			msix->msix_rate = IGB_MSIX_RX_RATE;
4436 			ksnprintf(msix->msix_rate_desc,
4437 			    sizeof(msix->msix_rate_desc),
4438 			    "RXTX%d interrupt rate", i);
4439 		}
4440 
4441 		if (ring_agg != ring_max) {
4442 			if (ring_max == sc->tx_ring_msix)
4443 				igb_msix_tx_conf(sc, i, &x, offset);
4444 			else
4445 				igb_msix_rx_conf(sc, i, &x, offset);
4446 		}
4447 	}
4448 
4449 	/*
4450 	 * Link status
4451 	 */
4452 	KKASSERT(x < sc->msix_cnt);
4453 	msix = &sc->msix_data[x++];
4454 	sc->sts_intr_bit = msix->msix_vector;
4455 	sc->sts_intr_mask = msix->msix_mask;
4456 
4457 	msix->msix_serialize = &sc->main_serialize;
4458 	msix->msix_func = igb_msix_status;
4459 	msix->msix_arg = sc;
4460 	msix->msix_cpuid = 0;
4461 	ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s sts",
4462 	    device_get_nameunit(sc->dev));
4463 	ksnprintf(msix->msix_rate_desc, sizeof(msix->msix_rate_desc),
4464 	    "status interrupt rate");
4465 
4466 	KKASSERT(x == sc->msix_cnt);
4467 
4468 	error = pci_setup_msix(sc->dev);
4469 	if (error) {
4470 		device_printf(sc->dev, "Setup MSI-X failed\n");
4471 		goto back;
4472 	}
4473 	setup = TRUE;
4474 
4475 	for (i = 0; i < sc->msix_cnt; ++i) {
4476 		msix = &sc->msix_data[i];
4477 
4478 		error = pci_alloc_msix_vector(sc->dev, msix->msix_vector,
4479 		    &msix->msix_rid, msix->msix_cpuid);
4480 		if (error) {
4481 			device_printf(sc->dev,
4482 			    "Unable to allocate MSI-X %d on cpu%d\n",
4483 			    msix->msix_vector, msix->msix_cpuid);
4484 			goto back;
4485 		}
4486 
4487 		msix->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4488 		    &msix->msix_rid, RF_ACTIVE);
4489 		if (msix->msix_res == NULL) {
4490 			device_printf(sc->dev,
4491 			    "Unable to allocate MSI-X %d resource\n",
4492 			    msix->msix_vector);
4493 			error = ENOMEM;
4494 			goto back;
4495 		}
4496 	}
4497 
4498 	pci_enable_msix(sc->dev);
4499 	sc->intr_type = PCI_INTR_TYPE_MSIX;
4500 back:
4501 	if (error)
4502 		igb_msix_free(sc, setup);
4503 }
4504 
4505 static void
4506 igb_msix_free(struct igb_softc *sc, boolean_t setup)
4507 {
4508 	int i;
4509 
4510 	KKASSERT(sc->msix_cnt > 1);
4511 
4512 	for (i = 0; i < sc->msix_cnt; ++i) {
4513 		struct igb_msix_data *msix = &sc->msix_data[i];
4514 
4515 		if (msix->msix_res != NULL) {
4516 			bus_release_resource(sc->dev, SYS_RES_IRQ,
4517 			    msix->msix_rid, msix->msix_res);
4518 		}
4519 		if (msix->msix_rid >= 0)
4520 			pci_release_msix_vector(sc->dev, msix->msix_rid);
4521 	}
4522 	if (setup)
4523 		pci_teardown_msix(sc->dev);
4524 
4525 	sc->msix_cnt = 0;
4526 	kfree(sc->msix_data, M_DEVBUF);
4527 	sc->msix_data = NULL;
4528 }
4529 
4530 static int
4531 igb_msix_setup(struct igb_softc *sc)
4532 {
4533 	int i;
4534 
4535 	for (i = 0; i < sc->msix_cnt; ++i) {
4536 		struct igb_msix_data *msix = &sc->msix_data[i];
4537 		int error;
4538 
4539 		error = bus_setup_intr_descr(sc->dev, msix->msix_res,
4540 		    INTR_MPSAFE, msix->msix_func, msix->msix_arg,
4541 		    &msix->msix_handle, msix->msix_serialize, msix->msix_desc);
4542 		if (error) {
4543 			device_printf(sc->dev, "could not set up %s "
4544 			    "interrupt handler.\n", msix->msix_desc);
4545 			igb_msix_teardown(sc, i);
4546 			return error;
4547 		}
4548 	}
4549 	return 0;
4550 }
4551 
4552 static void
4553 igb_msix_teardown(struct igb_softc *sc, int msix_cnt)
4554 {
4555 	int i;
4556 
4557 	for (i = 0; i < msix_cnt; ++i) {
4558 		struct igb_msix_data *msix = &sc->msix_data[i];
4559 
4560 		bus_teardown_intr(sc->dev, msix->msix_res, msix->msix_handle);
4561 	}
4562 }
4563 
4564 static void
4565 igb_msix_rx(void *arg)
4566 {
4567 	struct igb_rx_ring *rxr = arg;
4568 
4569 	ASSERT_SERIALIZED(&rxr->rx_serialize);
4570 	igb_rxeof(rxr, -1);
4571 
4572 	E1000_WRITE_REG(&rxr->sc->hw, E1000_EIMS, rxr->rx_intr_mask);
4573 }
4574 
4575 static void
4576 igb_msix_tx(void *arg)
4577 {
4578 	struct igb_tx_ring *txr = arg;
4579 
4580 	ASSERT_SERIALIZED(&txr->tx_serialize);
4581 
4582 	igb_txeof(txr);
4583 	if (!ifsq_is_empty(txr->ifsq))
4584 		ifsq_devstart(txr->ifsq);
4585 
4586 	E1000_WRITE_REG(&txr->sc->hw, E1000_EIMS, txr->tx_intr_mask);
4587 }
4588 
4589 static void
4590 igb_msix_status(void *arg)
4591 {
4592 	struct igb_softc *sc = arg;
4593 	uint32_t icr;
4594 
4595 	ASSERT_SERIALIZED(&sc->main_serialize);
4596 
4597 	icr = E1000_READ_REG(&sc->hw, E1000_ICR);
4598 	if (icr & E1000_ICR_LSC) {
4599 		sc->hw.mac.get_link_status = 1;
4600 		igb_update_link_status(sc);
4601 	}
4602 
4603 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->sts_intr_mask);
4604 }
4605 
4606 static void
4607 igb_set_ring_inuse(struct igb_softc *sc, boolean_t polling)
4608 {
4609 	sc->rx_ring_inuse = igb_get_rxring_inuse(sc, polling);
4610 	sc->tx_ring_inuse = igb_get_txring_inuse(sc, polling);
4611 	if (bootverbose) {
4612 		if_printf(&sc->arpcom.ac_if, "RX rings %d/%d, TX rings %d/%d\n",
4613 		    sc->rx_ring_inuse, sc->rx_ring_cnt,
4614 		    sc->tx_ring_inuse, sc->tx_ring_cnt);
4615 	}
4616 }
4617 
4618 static int
4619 igb_get_rxring_inuse(const struct igb_softc *sc, boolean_t polling)
4620 {
4621 	if (!IGB_ENABLE_HWRSS(sc))
4622 		return 1;
4623 
4624 	if (polling)
4625 		return sc->rx_ring_cnt;
4626 	else if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4627 		return IGB_MIN_RING_RSS;
4628 	else
4629 		return sc->rx_ring_msix;
4630 }
4631 
4632 static int
4633 igb_get_txring_inuse(const struct igb_softc *sc, boolean_t polling)
4634 {
4635 	if (!IGB_ENABLE_HWTSS(sc))
4636 		return 1;
4637 
4638 	if (polling)
4639 		return sc->tx_ring_cnt;
4640 	else if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4641 		return IGB_MIN_RING;
4642 	else
4643 		return sc->tx_ring_msix;
4644 }
4645 
4646 static int
4647 igb_tso_pullup(struct igb_tx_ring *txr, struct mbuf **mp)
4648 {
4649 	int hoff, iphlen, thoff;
4650 	struct mbuf *m;
4651 
4652 	m = *mp;
4653 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4654 
4655 	iphlen = m->m_pkthdr.csum_iphlen;
4656 	thoff = m->m_pkthdr.csum_thlen;
4657 	hoff = m->m_pkthdr.csum_lhlen;
4658 
4659 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4660 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4661 	KASSERT(hoff > 0, ("invalid ether hlen"));
4662 
4663 	if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
4664 		m = m_pullup(m, hoff + iphlen + thoff);
4665 		if (m == NULL) {
4666 			*mp = NULL;
4667 			return ENOBUFS;
4668 		}
4669 		*mp = m;
4670 	}
4671 	if (txr->tx_flags & IGB_TXFLAG_TSO_IPLEN0) {
4672 		struct ip *ip;
4673 
4674 		ip = mtodoff(m, struct ip *, hoff);
4675 		ip->ip_len = 0;
4676 	}
4677 
4678 	return 0;
4679 }
4680 
4681 static void
4682 igb_tso_ctx(struct igb_tx_ring *txr, struct mbuf *m, uint32_t *hlen)
4683 {
4684 	struct e1000_adv_tx_context_desc *TXD;
4685 	uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
4686 	int hoff, ctxd, iphlen, thoff;
4687 
4688 	iphlen = m->m_pkthdr.csum_iphlen;
4689 	thoff = m->m_pkthdr.csum_thlen;
4690 	hoff = m->m_pkthdr.csum_lhlen;
4691 
4692 	vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
4693 
4694 	ctxd = txr->next_avail_desc;
4695 	TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
4696 
4697 	if (m->m_flags & M_VLANTAG) {
4698 		uint16_t vlantag;
4699 
4700 		vlantag = htole16(m->m_pkthdr.ether_vlantag);
4701 		vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
4702 	}
4703 
4704 	vlan_macip_lens |= (hoff << E1000_ADVTXD_MACLEN_SHIFT);
4705 	vlan_macip_lens |= iphlen;
4706 
4707 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4708 	type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
4709 	type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
4710 
4711 	mss_l4len_idx |= (m->m_pkthdr.tso_segsz << E1000_ADVTXD_MSS_SHIFT);
4712 	mss_l4len_idx |= (thoff << E1000_ADVTXD_L4LEN_SHIFT);
4713 
4714 	/*
4715 	 * 82575 needs the TX context index added; the queue
4716 	 * index is used as TX context index here.
4717 	 */
4718 	if (txr->sc->hw.mac.type == e1000_82575)
4719 		mss_l4len_idx |= txr->me << 4;
4720 
4721 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
4722 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
4723 	TXD->seqnum_seed = htole32(0);
4724 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
4725 
4726 	/* We've consumed the first desc, adjust counters */
4727 	if (++ctxd == txr->num_tx_desc)
4728 		ctxd = 0;
4729 	txr->next_avail_desc = ctxd;
4730 	--txr->tx_avail;
4731 
4732 	*hlen = hoff + iphlen + thoff;
4733 }
4734 
4735 static void
4736 igb_setup_serializer(struct igb_softc *sc)
4737 {
4738 	const struct igb_msix_data *msix;
4739 	int i, j;
4740 
4741 	/*
4742 	 * Allocate serializer array
4743 	 */
4744 
4745 	/* Main + TX + RX */
4746 	sc->serialize_cnt = 1 + sc->tx_ring_cnt + sc->rx_ring_cnt;
4747 
4748 	/* Aggregate TX/RX MSI-X */
4749 	for (i = 0; i < sc->msix_cnt; ++i) {
4750 		msix = &sc->msix_data[i];
4751 		if (msix->msix_serialize == &msix->msix_serialize0)
4752 			sc->serialize_cnt++;
4753 	}
4754 
4755 	sc->serializes =
4756 	    kmalloc(sc->serialize_cnt * sizeof(struct lwkt_serialize *),
4757 	        M_DEVBUF, M_WAITOK | M_ZERO);
4758 
4759 	/*
4760 	 * Setup serializers
4761 	 *
4762 	 * NOTE: Order is critical
4763 	 */
4764 
4765 	i = 0;
4766 
4767 	KKASSERT(i < sc->serialize_cnt);
4768 	sc->serializes[i++] = &sc->main_serialize;
4769 
4770 	for (j = 0; j < sc->msix_cnt; ++j) {
4771 		msix = &sc->msix_data[j];
4772 		if (msix->msix_serialize == &msix->msix_serialize0) {
4773 			KKASSERT(i < sc->serialize_cnt);
4774 			sc->serializes[i++] = msix->msix_serialize;
4775 		}
4776 	}
4777 
4778 	for (j = 0; j < sc->tx_ring_cnt; ++j) {
4779 		KKASSERT(i < sc->serialize_cnt);
4780 		sc->serializes[i++] = &sc->tx_rings[j].tx_serialize;
4781 	}
4782 
4783 	for (j = 0; j < sc->rx_ring_cnt; ++j) {
4784 		KKASSERT(i < sc->serialize_cnt);
4785 		sc->serializes[i++] = &sc->rx_rings[j].rx_serialize;
4786 	}
4787 
4788 	KKASSERT(i == sc->serialize_cnt);
4789 }
4790 
4791 static void
4792 igb_msix_rx_conf(struct igb_softc *sc, int i, int *x0, int offset)
4793 {
4794 	int x = *x0;
4795 
4796 	for (; i < sc->rx_ring_msix; ++i) {
4797 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
4798 		struct igb_msix_data *msix;
4799 
4800 		KKASSERT(x < sc->msix_cnt);
4801 		msix = &sc->msix_data[x++];
4802 
4803 		rxr->rx_intr_bit = msix->msix_vector;
4804 		rxr->rx_intr_mask = msix->msix_mask;
4805 
4806 		msix->msix_serialize = &rxr->rx_serialize;
4807 		msix->msix_func = igb_msix_rx;
4808 		msix->msix_arg = rxr;
4809 
4810 		msix->msix_cpuid = i + offset;
4811 		KKASSERT(msix->msix_cpuid < ncpus2);
4812 
4813 		ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s rx%d",
4814 		    device_get_nameunit(sc->dev), i);
4815 
4816 		msix->msix_rate = IGB_MSIX_RX_RATE;
4817 		ksnprintf(msix->msix_rate_desc, sizeof(msix->msix_rate_desc),
4818 		    "RX%d interrupt rate", i);
4819 	}
4820 	*x0 = x;
4821 }
4822 
4823 static void
4824 igb_msix_tx_conf(struct igb_softc *sc, int i, int *x0, int offset)
4825 {
4826 	int x = *x0;
4827 
4828 	for (; i < sc->tx_ring_msix; ++i) {
4829 		struct igb_tx_ring *txr = &sc->tx_rings[i];
4830 		struct igb_msix_data *msix;
4831 
4832 		KKASSERT(x < sc->msix_cnt);
4833 		msix = &sc->msix_data[x++];
4834 
4835 		txr->tx_intr_bit = msix->msix_vector;
4836 		txr->tx_intr_mask = msix->msix_mask;
4837 
4838 		msix->msix_serialize = &txr->tx_serialize;
4839 		msix->msix_func = igb_msix_tx;
4840 		msix->msix_arg = txr;
4841 
4842 		msix->msix_cpuid = i + offset;
4843 		KKASSERT(msix->msix_cpuid < ncpus2);
4844 		txr->tx_intr_cpuid = msix->msix_cpuid;
4845 
4846 		ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s tx%d",
4847 		    device_get_nameunit(sc->dev), i);
4848 
4849 		msix->msix_rate = IGB_MSIX_TX_RATE;
4850 		ksnprintf(msix->msix_rate_desc, sizeof(msix->msix_rate_desc),
4851 		    "TX%d interrupt rate", i);
4852 	}
4853 	*x0 = x;
4854 }
4855 
4856 static void
4857 igb_msix_rxtx(void *arg)
4858 {
4859 	struct igb_msix_data *msix = arg;
4860 	struct igb_rx_ring *rxr = msix->msix_rx;
4861 	struct igb_tx_ring *txr = msix->msix_tx;
4862 
4863 	ASSERT_SERIALIZED(&msix->msix_serialize0);
4864 
4865 	lwkt_serialize_enter(&rxr->rx_serialize);
4866 	igb_rxeof(rxr, -1);
4867 	lwkt_serialize_exit(&rxr->rx_serialize);
4868 
4869 	lwkt_serialize_enter(&txr->tx_serialize);
4870 	igb_txeof(txr);
4871 	if (!ifsq_is_empty(txr->ifsq))
4872 		ifsq_devstart(txr->ifsq);
4873 	lwkt_serialize_exit(&txr->tx_serialize);
4874 
4875 	E1000_WRITE_REG(&msix->msix_sc->hw, E1000_EIMS, msix->msix_mask);
4876 }
4877 
4878 static void
4879 igb_set_timer_cpuid(struct igb_softc *sc, boolean_t polling)
4880 {
4881 	if (polling || sc->intr_type == PCI_INTR_TYPE_MSIX)
4882 		sc->timer_cpuid = 0; /* XXX fixed */
4883 	else
4884 		sc->timer_cpuid = rman_get_cpuid(sc->intr_res);
4885 }
4886