xref: /dragonfly/sys/dev/netif/igb/if_igb.c (revision ef3ac1d1)
1 /*
2  * Copyright (c) 2001-2011, Intel Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  *  1. Redistributions of source code must retain the above copyright notice,
9  *     this list of conditions and the following disclaimer.
10  *
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  3. Neither the name of the Intel Corporation nor the names of its
16  *     contributors may be used to endorse or promote products derived from
17  *     this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include "opt_ifpoll.h"
33 #include "opt_igb.h"
34 
35 #include <sys/param.h>
36 #include <sys/bus.h>
37 #include <sys/endian.h>
38 #include <sys/interrupt.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/proc.h>
43 #include <sys/rman.h>
44 #include <sys/serialize.h>
45 #include <sys/serialize2.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50 
51 #include <net/bpf.h>
52 #include <net/ethernet.h>
53 #include <net/if.h>
54 #include <net/if_arp.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/ifq_var.h>
58 #include <net/toeplitz.h>
59 #include <net/toeplitz2.h>
60 #include <net/vlan/if_vlan_var.h>
61 #include <net/vlan/if_vlan_ether.h>
62 #include <net/if_poll.h>
63 
64 #include <netinet/in_systm.h>
65 #include <netinet/in.h>
66 #include <netinet/ip.h>
67 
68 #include <bus/pci/pcivar.h>
69 #include <bus/pci/pcireg.h>
70 
71 #include <dev/netif/ig_hal/e1000_api.h>
72 #include <dev/netif/ig_hal/e1000_82575.h>
73 #include <dev/netif/igb/if_igb.h>
74 
75 #ifdef IGB_RSS_DEBUG
76 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...) \
77 do { \
78 	if (sc->rss_debug >= lvl) \
79 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
80 } while (0)
81 #else	/* !IGB_RSS_DEBUG */
82 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
83 #endif	/* IGB_RSS_DEBUG */
84 
85 #define IGB_NAME	"Intel(R) PRO/1000 "
86 #define IGB_DEVICE(id)	\
87 	{ IGB_VENDOR_ID, E1000_DEV_ID_##id, IGB_NAME #id }
88 #define IGB_DEVICE_NULL	{ 0, 0, NULL }
89 
90 static struct igb_device {
91 	uint16_t	vid;
92 	uint16_t	did;
93 	const char	*desc;
94 } igb_devices[] = {
95 	IGB_DEVICE(82575EB_COPPER),
96 	IGB_DEVICE(82575EB_FIBER_SERDES),
97 	IGB_DEVICE(82575GB_QUAD_COPPER),
98 	IGB_DEVICE(82576),
99 	IGB_DEVICE(82576_NS),
100 	IGB_DEVICE(82576_NS_SERDES),
101 	IGB_DEVICE(82576_FIBER),
102 	IGB_DEVICE(82576_SERDES),
103 	IGB_DEVICE(82576_SERDES_QUAD),
104 	IGB_DEVICE(82576_QUAD_COPPER),
105 	IGB_DEVICE(82576_QUAD_COPPER_ET2),
106 	IGB_DEVICE(82576_VF),
107 	IGB_DEVICE(82580_COPPER),
108 	IGB_DEVICE(82580_FIBER),
109 	IGB_DEVICE(82580_SERDES),
110 	IGB_DEVICE(82580_SGMII),
111 	IGB_DEVICE(82580_COPPER_DUAL),
112 	IGB_DEVICE(82580_QUAD_FIBER),
113 	IGB_DEVICE(DH89XXCC_SERDES),
114 	IGB_DEVICE(DH89XXCC_SGMII),
115 	IGB_DEVICE(DH89XXCC_SFP),
116 	IGB_DEVICE(DH89XXCC_BACKPLANE),
117 	IGB_DEVICE(I350_COPPER),
118 	IGB_DEVICE(I350_FIBER),
119 	IGB_DEVICE(I350_SERDES),
120 	IGB_DEVICE(I350_SGMII),
121 	IGB_DEVICE(I350_VF),
122 	IGB_DEVICE(I210_COPPER),
123 	IGB_DEVICE(I210_COPPER_IT),
124 	IGB_DEVICE(I210_COPPER_OEM1),
125 	IGB_DEVICE(I210_COPPER_FLASHLESS),
126 	IGB_DEVICE(I210_SERDES_FLASHLESS),
127 	IGB_DEVICE(I210_FIBER),
128 	IGB_DEVICE(I210_SERDES),
129 	IGB_DEVICE(I210_SGMII),
130 	IGB_DEVICE(I211_COPPER),
131 	IGB_DEVICE(I354_BACKPLANE_1GBPS),
132 	IGB_DEVICE(I354_SGMII),
133 
134 	/* required last entry */
135 	IGB_DEVICE_NULL
136 };
137 
138 static int	igb_probe(device_t);
139 static int	igb_attach(device_t);
140 static int	igb_detach(device_t);
141 static int	igb_shutdown(device_t);
142 static int	igb_suspend(device_t);
143 static int	igb_resume(device_t);
144 
145 static boolean_t igb_is_valid_ether_addr(const uint8_t *);
146 static void	igb_setup_ifp(struct igb_softc *);
147 static boolean_t igb_txcsum_ctx(struct igb_tx_ring *, struct mbuf *);
148 static int	igb_tso_pullup(struct igb_tx_ring *, struct mbuf **);
149 static void	igb_tso_ctx(struct igb_tx_ring *, struct mbuf *, uint32_t *);
150 static void	igb_add_sysctl(struct igb_softc *);
151 static int	igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
152 static int	igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS);
153 static int	igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
154 static int	igb_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
155 static int	igb_sysctl_rx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
156 static void	igb_set_ring_inuse(struct igb_softc *, boolean_t);
157 static int	igb_get_rxring_inuse(const struct igb_softc *, boolean_t);
158 static int	igb_get_txring_inuse(const struct igb_softc *, boolean_t);
159 static void	igb_set_timer_cpuid(struct igb_softc *, boolean_t);
160 #ifdef IFPOLL_ENABLE
161 static int	igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
162 static int	igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
163 #endif
164 
165 static void	igb_vf_init_stats(struct igb_softc *);
166 static void	igb_reset(struct igb_softc *);
167 static void	igb_update_stats_counters(struct igb_softc *);
168 static void	igb_update_vf_stats_counters(struct igb_softc *);
169 static void	igb_update_link_status(struct igb_softc *);
170 static void	igb_init_tx_unit(struct igb_softc *);
171 static void	igb_init_rx_unit(struct igb_softc *);
172 
173 static void	igb_set_vlan(struct igb_softc *);
174 static void	igb_set_multi(struct igb_softc *);
175 static void	igb_set_promisc(struct igb_softc *);
176 static void	igb_disable_promisc(struct igb_softc *);
177 
178 static int	igb_alloc_rings(struct igb_softc *);
179 static void	igb_free_rings(struct igb_softc *);
180 static int	igb_create_tx_ring(struct igb_tx_ring *);
181 static int	igb_create_rx_ring(struct igb_rx_ring *);
182 static void	igb_free_tx_ring(struct igb_tx_ring *);
183 static void	igb_free_rx_ring(struct igb_rx_ring *);
184 static void	igb_destroy_tx_ring(struct igb_tx_ring *, int);
185 static void	igb_destroy_rx_ring(struct igb_rx_ring *, int);
186 static void	igb_init_tx_ring(struct igb_tx_ring *);
187 static int	igb_init_rx_ring(struct igb_rx_ring *);
188 static int	igb_newbuf(struct igb_rx_ring *, int, boolean_t);
189 static int	igb_encap(struct igb_tx_ring *, struct mbuf **, int *, int *);
190 static void	igb_rx_refresh(struct igb_rx_ring *, int);
191 static void	igb_setup_serializer(struct igb_softc *);
192 
193 static void	igb_stop(struct igb_softc *);
194 static void	igb_init(void *);
195 static int	igb_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
196 static void	igb_media_status(struct ifnet *, struct ifmediareq *);
197 static int	igb_media_change(struct ifnet *);
198 static void	igb_timer(void *);
199 static void	igb_watchdog(struct ifaltq_subque *);
200 static void	igb_start(struct ifnet *, struct ifaltq_subque *);
201 #ifdef IFPOLL_ENABLE
202 static void	igb_npoll(struct ifnet *, struct ifpoll_info *);
203 static void	igb_npoll_rx(struct ifnet *, void *, int);
204 static void	igb_npoll_tx(struct ifnet *, void *, int);
205 static void	igb_npoll_status(struct ifnet *);
206 #endif
207 static void	igb_serialize(struct ifnet *, enum ifnet_serialize);
208 static void	igb_deserialize(struct ifnet *, enum ifnet_serialize);
209 static int	igb_tryserialize(struct ifnet *, enum ifnet_serialize);
210 #ifdef INVARIANTS
211 static void	igb_serialize_assert(struct ifnet *, enum ifnet_serialize,
212 		    boolean_t);
213 #endif
214 
215 static void	igb_intr(void *);
216 static void	igb_intr_shared(void *);
217 static void	igb_rxeof(struct igb_rx_ring *, int);
218 static void	igb_txeof(struct igb_tx_ring *);
219 static void	igb_set_eitr(struct igb_softc *, int, int);
220 static void	igb_enable_intr(struct igb_softc *);
221 static void	igb_disable_intr(struct igb_softc *);
222 static void	igb_init_unshared_intr(struct igb_softc *);
223 static void	igb_init_intr(struct igb_softc *);
224 static int	igb_setup_intr(struct igb_softc *);
225 static void	igb_set_txintr_mask(struct igb_tx_ring *, int *, int);
226 static void	igb_set_rxintr_mask(struct igb_rx_ring *, int *, int);
227 static void	igb_set_intr_mask(struct igb_softc *);
228 static int	igb_alloc_intr(struct igb_softc *);
229 static void	igb_free_intr(struct igb_softc *);
230 static void	igb_teardown_intr(struct igb_softc *);
231 static void	igb_msix_try_alloc(struct igb_softc *);
232 static void	igb_msix_rx_conf(struct igb_softc *, int, int *, int);
233 static void	igb_msix_tx_conf(struct igb_softc *, int, int *, int);
234 static void	igb_msix_free(struct igb_softc *, boolean_t);
235 static int	igb_msix_setup(struct igb_softc *);
236 static void	igb_msix_teardown(struct igb_softc *, int);
237 static void	igb_msix_rx(void *);
238 static void	igb_msix_tx(void *);
239 static void	igb_msix_status(void *);
240 static void	igb_msix_rxtx(void *);
241 
242 /* Management and WOL Support */
243 static void	igb_get_mgmt(struct igb_softc *);
244 static void	igb_rel_mgmt(struct igb_softc *);
245 static void	igb_get_hw_control(struct igb_softc *);
246 static void	igb_rel_hw_control(struct igb_softc *);
247 static void	igb_enable_wol(device_t);
248 
249 static device_method_t igb_methods[] = {
250 	/* Device interface */
251 	DEVMETHOD(device_probe,		igb_probe),
252 	DEVMETHOD(device_attach,	igb_attach),
253 	DEVMETHOD(device_detach,	igb_detach),
254 	DEVMETHOD(device_shutdown,	igb_shutdown),
255 	DEVMETHOD(device_suspend,	igb_suspend),
256 	DEVMETHOD(device_resume,	igb_resume),
257 	DEVMETHOD_END
258 };
259 
260 static driver_t igb_driver = {
261 	"igb",
262 	igb_methods,
263 	sizeof(struct igb_softc),
264 };
265 
266 static devclass_t igb_devclass;
267 
268 DECLARE_DUMMY_MODULE(if_igb);
269 MODULE_DEPEND(igb, ig_hal, 1, 1, 1);
270 DRIVER_MODULE(if_igb, pci, igb_driver, igb_devclass, NULL, NULL);
271 
272 static int	igb_rxd = IGB_DEFAULT_RXD;
273 static int	igb_txd = IGB_DEFAULT_TXD;
274 static int	igb_rxr = 0;
275 static int	igb_txr = 0;
276 static int	igb_msi_enable = 1;
277 static int	igb_msix_enable = 1;
278 static int	igb_eee_disabled = 1;	/* Energy Efficient Ethernet */
279 static int	igb_fc_setting = e1000_fc_full;
280 
281 /*
282  * DMA Coalescing, only for i350 - default to off,
283  * this feature is for power savings
284  */
285 static int	igb_dma_coalesce = 0;
286 
287 TUNABLE_INT("hw.igb.rxd", &igb_rxd);
288 TUNABLE_INT("hw.igb.txd", &igb_txd);
289 TUNABLE_INT("hw.igb.rxr", &igb_rxr);
290 TUNABLE_INT("hw.igb.txr", &igb_txr);
291 TUNABLE_INT("hw.igb.msi.enable", &igb_msi_enable);
292 TUNABLE_INT("hw.igb.msix.enable", &igb_msix_enable);
293 TUNABLE_INT("hw.igb.fc_setting", &igb_fc_setting);
294 
295 /* i350 specific */
296 TUNABLE_INT("hw.igb.eee_disabled", &igb_eee_disabled);
297 TUNABLE_INT("hw.igb.dma_coalesce", &igb_dma_coalesce);
298 
299 static __inline void
300 igb_rxcsum(uint32_t staterr, struct mbuf *mp)
301 {
302 	/* Ignore Checksum bit is set */
303 	if (staterr & E1000_RXD_STAT_IXSM)
304 		return;
305 
306 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
307 	    E1000_RXD_STAT_IPCS)
308 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
309 
310 	if (staterr & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
311 		if ((staterr & E1000_RXDEXT_STATERR_TCPE) == 0) {
312 			mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
313 			    CSUM_PSEUDO_HDR | CSUM_FRAG_NOT_CHECKED;
314 			mp->m_pkthdr.csum_data = htons(0xffff);
315 		}
316 	}
317 }
318 
319 static __inline struct pktinfo *
320 igb_rssinfo(struct mbuf *m, struct pktinfo *pi,
321     uint32_t hash, uint32_t hashtype, uint32_t staterr)
322 {
323 	switch (hashtype) {
324 	case E1000_RXDADV_RSSTYPE_IPV4_TCP:
325 		pi->pi_netisr = NETISR_IP;
326 		pi->pi_flags = 0;
327 		pi->pi_l3proto = IPPROTO_TCP;
328 		break;
329 
330 	case E1000_RXDADV_RSSTYPE_IPV4:
331 		if (staterr & E1000_RXD_STAT_IXSM)
332 			return NULL;
333 
334 		if ((staterr &
335 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
336 		    E1000_RXD_STAT_TCPCS) {
337 			pi->pi_netisr = NETISR_IP;
338 			pi->pi_flags = 0;
339 			pi->pi_l3proto = IPPROTO_UDP;
340 			break;
341 		}
342 		/* FALL THROUGH */
343 	default:
344 		return NULL;
345 	}
346 
347 	m->m_flags |= M_HASH;
348 	m->m_pkthdr.hash = toeplitz_hash(hash);
349 	return pi;
350 }
351 
352 static int
353 igb_probe(device_t dev)
354 {
355 	const struct igb_device *d;
356 	uint16_t vid, did;
357 
358 	vid = pci_get_vendor(dev);
359 	did = pci_get_device(dev);
360 
361 	for (d = igb_devices; d->desc != NULL; ++d) {
362 		if (vid == d->vid && did == d->did) {
363 			device_set_desc(dev, d->desc);
364 			return 0;
365 		}
366 	}
367 	return ENXIO;
368 }
369 
370 static int
371 igb_attach(device_t dev)
372 {
373 	struct igb_softc *sc = device_get_softc(dev);
374 	uint16_t eeprom_data;
375 	int error = 0, ring_max;
376 #ifdef IFPOLL_ENABLE
377 	int offset, offset_def;
378 #endif
379 
380 #ifdef notyet
381 	/* SYSCTL stuff */
382 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
383 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
384 	    OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
385 	    igb_sysctl_nvm_info, "I", "NVM Information");
386 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
387 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
388 	    OID_AUTO, "flow_control", CTLTYPE_INT|CTLFLAG_RW,
389 	    adapter, 0, igb_set_flowcntl, "I", "Flow Control");
390 #endif
391 
392 	callout_init_mp(&sc->timer);
393 	lwkt_serialize_init(&sc->main_serialize);
394 
395 	if_initname(&sc->arpcom.ac_if, device_get_name(dev),
396 	    device_get_unit(dev));
397 	sc->dev = sc->osdep.dev = dev;
398 
399 	/*
400 	 * Determine hardware and mac type
401 	 */
402 	sc->hw.vendor_id = pci_get_vendor(dev);
403 	sc->hw.device_id = pci_get_device(dev);
404 	sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
405 	sc->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
406 	sc->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
407 
408 	if (e1000_set_mac_type(&sc->hw))
409 		return ENXIO;
410 
411 	/* Are we a VF device? */
412 	if (sc->hw.mac.type == e1000_vfadapt ||
413 	    sc->hw.mac.type == e1000_vfadapt_i350)
414 		sc->vf_ifp = 1;
415 	else
416 		sc->vf_ifp = 0;
417 
418 	/*
419 	 * Configure total supported RX/TX ring count
420 	 */
421 	switch (sc->hw.mac.type) {
422 	case e1000_82575:
423 		ring_max = IGB_MAX_RING_82575;
424 		break;
425 
426 	case e1000_82576:
427 		ring_max = IGB_MAX_RING_82576;
428 		break;
429 
430 	case e1000_82580:
431 		ring_max = IGB_MAX_RING_82580;
432 		break;
433 
434 	case e1000_i350:
435 		ring_max = IGB_MAX_RING_I350;
436 		break;
437 
438 	case e1000_i354:
439 		ring_max = IGB_MAX_RING_I354;
440 		break;
441 
442 	case e1000_i210:
443 		ring_max = IGB_MAX_RING_I210;
444 		break;
445 
446 	case e1000_i211:
447 		ring_max = IGB_MAX_RING_I211;
448 		break;
449 
450 	default:
451 		ring_max = IGB_MIN_RING;
452 		break;
453 	}
454 
455 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr", igb_rxr);
456 	sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, ring_max);
457 #ifdef IGB_RSS_DEBUG
458 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr_debug", sc->rx_ring_cnt);
459 #endif
460 	sc->rx_ring_inuse = sc->rx_ring_cnt;
461 
462 	sc->tx_ring_cnt = device_getenv_int(dev, "txr", igb_txr);
463 	sc->tx_ring_cnt = if_ring_count2(sc->tx_ring_cnt, ring_max);
464 #ifdef IGB_TSS_DEBUG
465 	sc->tx_ring_cnt = device_getenv_int(dev, "txr_debug", sc->tx_ring_cnt);
466 #endif
467 	sc->tx_ring_inuse = sc->tx_ring_cnt;
468 
469 	/* Enable bus mastering */
470 	pci_enable_busmaster(dev);
471 
472 	/*
473 	 * Allocate IO memory
474 	 */
475 	sc->mem_rid = PCIR_BAR(0);
476 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
477 	    RF_ACTIVE);
478 	if (sc->mem_res == NULL) {
479 		device_printf(dev, "Unable to allocate bus resource: memory\n");
480 		error = ENXIO;
481 		goto failed;
482 	}
483 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->mem_res);
484 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->mem_res);
485 
486 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
487 
488 	/* Save PCI command register for Shared Code */
489 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
490 	sc->hw.back = &sc->osdep;
491 
492 	/* Do Shared Code initialization */
493 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
494 		device_printf(dev, "Setup of Shared code failed\n");
495 		error = ENXIO;
496 		goto failed;
497 	}
498 
499 	e1000_get_bus_info(&sc->hw);
500 
501 	sc->hw.mac.autoneg = DO_AUTO_NEG;
502 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
503 	sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
504 
505 	/* Copper options */
506 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
507 		sc->hw.phy.mdix = AUTO_ALL_MODES;
508 		sc->hw.phy.disable_polarity_correction = FALSE;
509 		sc->hw.phy.ms_type = IGB_MASTER_SLAVE;
510 	}
511 
512 	/* Set the frame limits assuming  standard ethernet sized frames. */
513 	sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
514 
515 	/* Allocate RX/TX rings */
516 	error = igb_alloc_rings(sc);
517 	if (error)
518 		goto failed;
519 
520 #ifdef IFPOLL_ENABLE
521 	/*
522 	 * NPOLLING RX CPU offset
523 	 */
524 	if (sc->rx_ring_cnt == ncpus2) {
525 		offset = 0;
526 	} else {
527 		offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
528 		offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
529 		if (offset >= ncpus2 ||
530 		    offset % sc->rx_ring_cnt != 0) {
531 			device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
532 			    offset, offset_def);
533 			offset = offset_def;
534 		}
535 	}
536 	sc->rx_npoll_off = offset;
537 
538 	/*
539 	 * NPOLLING TX CPU offset
540 	 */
541 	if (sc->tx_ring_cnt == ncpus2) {
542 		offset = 0;
543 	} else {
544 		offset_def = (sc->tx_ring_cnt * device_get_unit(dev)) % ncpus2;
545 		offset = device_getenv_int(dev, "npoll.txoff", offset_def);
546 		if (offset >= ncpus2 ||
547 		    offset % sc->tx_ring_cnt != 0) {
548 			device_printf(dev, "invalid npoll.txoff %d, use %d\n",
549 			    offset, offset_def);
550 			offset = offset_def;
551 		}
552 	}
553 	sc->tx_npoll_off = offset;
554 #endif
555 
556 	/* Allocate interrupt */
557 	error = igb_alloc_intr(sc);
558 	if (error)
559 		goto failed;
560 
561 	/* Setup serializers */
562 	igb_setup_serializer(sc);
563 
564 	/* Allocate the appropriate stats memory */
565 	if (sc->vf_ifp) {
566 		sc->stats = kmalloc(sizeof(struct e1000_vf_stats), M_DEVBUF,
567 		    M_WAITOK | M_ZERO);
568 		igb_vf_init_stats(sc);
569 	} else {
570 		sc->stats = kmalloc(sizeof(struct e1000_hw_stats), M_DEVBUF,
571 		    M_WAITOK | M_ZERO);
572 	}
573 
574 	/* Allocate multicast array memory. */
575 	sc->mta = kmalloc(ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
576 	    M_DEVBUF, M_WAITOK);
577 
578 	/* Some adapter-specific advanced features */
579 	if (sc->hw.mac.type >= e1000_i350) {
580 #ifdef notyet
581 		igb_set_sysctl_value(adapter, "dma_coalesce",
582 		    "configure dma coalesce",
583 		    &adapter->dma_coalesce, igb_dma_coalesce);
584 		igb_set_sysctl_value(adapter, "eee_disabled",
585 		    "enable Energy Efficient Ethernet",
586 		    &adapter->hw.dev_spec._82575.eee_disable,
587 		    igb_eee_disabled);
588 #else
589 		sc->dma_coalesce = igb_dma_coalesce;
590 		sc->hw.dev_spec._82575.eee_disable = igb_eee_disabled;
591 #endif
592 		if (sc->hw.phy.media_type == e1000_media_type_copper) {
593                         if (sc->hw.mac.type == e1000_i354)
594 				e1000_set_eee_i354(&sc->hw);
595 			else
596 				e1000_set_eee_i350(&sc->hw);
597 		}
598 	}
599 
600 	/*
601 	 * Start from a known state, this is important in reading the nvm and
602 	 * mac from that.
603 	 */
604 	e1000_reset_hw(&sc->hw);
605 
606 	/* Make sure we have a good EEPROM before we read from it */
607 	if (sc->hw.mac.type != e1000_i210 && sc->hw.mac.type != e1000_i211 &&
608 	    e1000_validate_nvm_checksum(&sc->hw) < 0) {
609 		/*
610 		 * Some PCI-E parts fail the first check due to
611 		 * the link being in sleep state, call it again,
612 		 * if it fails a second time its a real issue.
613 		 */
614 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
615 			device_printf(dev,
616 			    "The EEPROM Checksum Is Not Valid\n");
617 			error = EIO;
618 			goto failed;
619 		}
620 	}
621 
622 	/* Copy the permanent MAC address out of the EEPROM */
623 	if (e1000_read_mac_addr(&sc->hw) < 0) {
624 		device_printf(dev, "EEPROM read error while reading MAC"
625 		    " address\n");
626 		error = EIO;
627 		goto failed;
628 	}
629 	if (!igb_is_valid_ether_addr(sc->hw.mac.addr)) {
630 		device_printf(dev, "Invalid MAC address\n");
631 		error = EIO;
632 		goto failed;
633 	}
634 
635 	/* Setup OS specific network interface */
636 	igb_setup_ifp(sc);
637 
638 	/* Add sysctl tree, must after igb_setup_ifp() */
639 	igb_add_sysctl(sc);
640 
641 	/* Now get a good starting state */
642 	igb_reset(sc);
643 
644 	/* Initialize statistics */
645 	igb_update_stats_counters(sc);
646 
647 	sc->hw.mac.get_link_status = 1;
648 	igb_update_link_status(sc);
649 
650 	/* Indicate SOL/IDER usage */
651 	if (e1000_check_reset_block(&sc->hw)) {
652 		device_printf(dev,
653 		    "PHY reset is blocked due to SOL/IDER session.\n");
654 	}
655 
656 	/* Determine if we have to control management hardware */
657 	if (e1000_enable_mng_pass_thru(&sc->hw))
658 		sc->flags |= IGB_FLAG_HAS_MGMT;
659 
660 	/*
661 	 * Setup Wake-on-Lan
662 	 */
663 	/* APME bit in EEPROM is mapped to WUC.APME */
664 	eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC) & E1000_WUC_APME;
665 	if (eeprom_data)
666 		sc->wol = E1000_WUFC_MAG;
667 	/* XXX disable WOL */
668 	sc->wol = 0;
669 
670 #ifdef notyet
671 	/* Register for VLAN events */
672 	adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
673 	     igb_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
674 	adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
675 	     igb_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
676 #endif
677 
678 #ifdef notyet
679 	igb_add_hw_stats(adapter);
680 #endif
681 
682 	/*
683 	 * Disable interrupt to prevent spurious interrupts (line based
684 	 * interrupt, MSI or even MSI-X), which had been observed on
685 	 * several types of LOMs, from being handled.
686 	 */
687 	igb_disable_intr(sc);
688 
689 	error = igb_setup_intr(sc);
690 	if (error) {
691 		ether_ifdetach(&sc->arpcom.ac_if);
692 		goto failed;
693 	}
694 	return 0;
695 
696 failed:
697 	igb_detach(dev);
698 	return error;
699 }
700 
701 static int
702 igb_detach(device_t dev)
703 {
704 	struct igb_softc *sc = device_get_softc(dev);
705 
706 	if (device_is_attached(dev)) {
707 		struct ifnet *ifp = &sc->arpcom.ac_if;
708 
709 		ifnet_serialize_all(ifp);
710 
711 		igb_stop(sc);
712 
713 		e1000_phy_hw_reset(&sc->hw);
714 
715 		/* Give control back to firmware */
716 		igb_rel_mgmt(sc);
717 		igb_rel_hw_control(sc);
718 
719 		if (sc->wol) {
720 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
721 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
722 			igb_enable_wol(dev);
723 		}
724 
725 		igb_teardown_intr(sc);
726 
727 		ifnet_deserialize_all(ifp);
728 
729 		ether_ifdetach(ifp);
730 	} else if (sc->mem_res != NULL) {
731 		igb_rel_hw_control(sc);
732 	}
733 	bus_generic_detach(dev);
734 
735 	if (sc->sysctl_tree != NULL)
736 		sysctl_ctx_free(&sc->sysctl_ctx);
737 
738 	igb_free_intr(sc);
739 
740 	if (sc->msix_mem_res != NULL) {
741 		bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_mem_rid,
742 		    sc->msix_mem_res);
743 	}
744 	if (sc->mem_res != NULL) {
745 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid,
746 		    sc->mem_res);
747 	}
748 
749 	igb_free_rings(sc);
750 
751 	if (sc->mta != NULL)
752 		kfree(sc->mta, M_DEVBUF);
753 	if (sc->stats != NULL)
754 		kfree(sc->stats, M_DEVBUF);
755 	if (sc->serializes != NULL)
756 		kfree(sc->serializes, M_DEVBUF);
757 
758 	return 0;
759 }
760 
761 static int
762 igb_shutdown(device_t dev)
763 {
764 	return igb_suspend(dev);
765 }
766 
767 static int
768 igb_suspend(device_t dev)
769 {
770 	struct igb_softc *sc = device_get_softc(dev);
771 	struct ifnet *ifp = &sc->arpcom.ac_if;
772 
773 	ifnet_serialize_all(ifp);
774 
775 	igb_stop(sc);
776 
777 	igb_rel_mgmt(sc);
778 	igb_rel_hw_control(sc);
779 
780 	if (sc->wol) {
781 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
782 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
783 		igb_enable_wol(dev);
784 	}
785 
786 	ifnet_deserialize_all(ifp);
787 
788 	return bus_generic_suspend(dev);
789 }
790 
791 static int
792 igb_resume(device_t dev)
793 {
794 	struct igb_softc *sc = device_get_softc(dev);
795 	struct ifnet *ifp = &sc->arpcom.ac_if;
796 	int i;
797 
798 	ifnet_serialize_all(ifp);
799 
800 	igb_init(sc);
801 	igb_get_mgmt(sc);
802 
803 	for (i = 0; i < sc->tx_ring_inuse; ++i)
804 		ifsq_devstart_sched(sc->tx_rings[i].ifsq);
805 
806 	ifnet_deserialize_all(ifp);
807 
808 	return bus_generic_resume(dev);
809 }
810 
811 static int
812 igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
813 {
814 	struct igb_softc *sc = ifp->if_softc;
815 	struct ifreq *ifr = (struct ifreq *)data;
816 	int max_frame_size, mask, reinit;
817 	int error = 0;
818 
819 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
820 
821 	switch (command) {
822 	case SIOCSIFMTU:
823 		max_frame_size = 9234;
824 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
825 		    ETHER_CRC_LEN) {
826 			error = EINVAL;
827 			break;
828 		}
829 
830 		ifp->if_mtu = ifr->ifr_mtu;
831 		sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
832 		    ETHER_CRC_LEN;
833 
834 		if (ifp->if_flags & IFF_RUNNING)
835 			igb_init(sc);
836 		break;
837 
838 	case SIOCSIFFLAGS:
839 		if (ifp->if_flags & IFF_UP) {
840 			if (ifp->if_flags & IFF_RUNNING) {
841 				if ((ifp->if_flags ^ sc->if_flags) &
842 				    (IFF_PROMISC | IFF_ALLMULTI)) {
843 					igb_disable_promisc(sc);
844 					igb_set_promisc(sc);
845 				}
846 			} else {
847 				igb_init(sc);
848 			}
849 		} else if (ifp->if_flags & IFF_RUNNING) {
850 			igb_stop(sc);
851 		}
852 		sc->if_flags = ifp->if_flags;
853 		break;
854 
855 	case SIOCADDMULTI:
856 	case SIOCDELMULTI:
857 		if (ifp->if_flags & IFF_RUNNING) {
858 			igb_disable_intr(sc);
859 			igb_set_multi(sc);
860 #ifdef IFPOLL_ENABLE
861 			if (!(ifp->if_flags & IFF_NPOLLING))
862 #endif
863 				igb_enable_intr(sc);
864 		}
865 		break;
866 
867 	case SIOCSIFMEDIA:
868 		/* Check SOL/IDER usage */
869 		if (e1000_check_reset_block(&sc->hw)) {
870 			if_printf(ifp, "Media change is "
871 			    "blocked due to SOL/IDER session.\n");
872 			break;
873 		}
874 		/* FALL THROUGH */
875 
876 	case SIOCGIFMEDIA:
877 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
878 		break;
879 
880 	case SIOCSIFCAP:
881 		reinit = 0;
882 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
883 		if (mask & IFCAP_RXCSUM) {
884 			ifp->if_capenable ^= IFCAP_RXCSUM;
885 			reinit = 1;
886 		}
887 		if (mask & IFCAP_VLAN_HWTAGGING) {
888 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
889 			reinit = 1;
890 		}
891 		if (mask & IFCAP_TXCSUM) {
892 			ifp->if_capenable ^= IFCAP_TXCSUM;
893 			if (ifp->if_capenable & IFCAP_TXCSUM)
894 				ifp->if_hwassist |= IGB_CSUM_FEATURES;
895 			else
896 				ifp->if_hwassist &= ~IGB_CSUM_FEATURES;
897 		}
898 		if (mask & IFCAP_TSO) {
899 			ifp->if_capenable ^= IFCAP_TSO;
900 			if (ifp->if_capenable & IFCAP_TSO)
901 				ifp->if_hwassist |= CSUM_TSO;
902 			else
903 				ifp->if_hwassist &= ~CSUM_TSO;
904 		}
905 		if (mask & IFCAP_RSS)
906 			ifp->if_capenable ^= IFCAP_RSS;
907 		if (reinit && (ifp->if_flags & IFF_RUNNING))
908 			igb_init(sc);
909 		break;
910 
911 	default:
912 		error = ether_ioctl(ifp, command, data);
913 		break;
914 	}
915 	return error;
916 }
917 
918 static void
919 igb_init(void *xsc)
920 {
921 	struct igb_softc *sc = xsc;
922 	struct ifnet *ifp = &sc->arpcom.ac_if;
923 	boolean_t polling;
924 	int i;
925 
926 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
927 
928 	igb_stop(sc);
929 
930 	/* Get the latest mac address, User can use a LAA */
931 	bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
932 
933 	/* Put the address into the Receive Address Array */
934 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
935 
936 	igb_reset(sc);
937 	igb_update_link_status(sc);
938 
939 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
940 
941 	/* Configure for OS presence */
942 	igb_get_mgmt(sc);
943 
944 	polling = FALSE;
945 #ifdef IFPOLL_ENABLE
946 	if (ifp->if_flags & IFF_NPOLLING)
947 		polling = TRUE;
948 #endif
949 
950 	/* Configured used RX/TX rings */
951 	igb_set_ring_inuse(sc, polling);
952 	ifq_set_subq_mask(&ifp->if_snd, sc->tx_ring_inuse - 1);
953 
954 	/* Initialize interrupt */
955 	igb_init_intr(sc);
956 
957 	/* Prepare transmit descriptors and buffers */
958 	for (i = 0; i < sc->tx_ring_inuse; ++i)
959 		igb_init_tx_ring(&sc->tx_rings[i]);
960 	igb_init_tx_unit(sc);
961 
962 	/* Setup Multicast table */
963 	igb_set_multi(sc);
964 
965 #if 0
966 	/*
967 	 * Figure out the desired mbuf pool
968 	 * for doing jumbo/packetsplit
969 	 */
970 	if (adapter->max_frame_size <= 2048)
971 		adapter->rx_mbuf_sz = MCLBYTES;
972 	else if (adapter->max_frame_size <= 4096)
973 		adapter->rx_mbuf_sz = MJUMPAGESIZE;
974 	else
975 		adapter->rx_mbuf_sz = MJUM9BYTES;
976 #endif
977 
978 	/* Prepare receive descriptors and buffers */
979 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
980 		int error;
981 
982 		error = igb_init_rx_ring(&sc->rx_rings[i]);
983 		if (error) {
984 			if_printf(ifp, "Could not setup receive structures\n");
985 			igb_stop(sc);
986 			return;
987 		}
988 	}
989 	igb_init_rx_unit(sc);
990 
991 	/* Enable VLAN support */
992 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
993 		igb_set_vlan(sc);
994 
995 	/* Don't lose promiscuous settings */
996 	igb_set_promisc(sc);
997 
998 	ifp->if_flags |= IFF_RUNNING;
999 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
1000 		ifsq_clr_oactive(sc->tx_rings[i].ifsq);
1001 		ifsq_watchdog_start(&sc->tx_rings[i].tx_watchdog);
1002 	}
1003 
1004 	igb_set_timer_cpuid(sc, polling);
1005 	callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
1006 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1007 
1008 	/* This clears any pending interrupts */
1009 	E1000_READ_REG(&sc->hw, E1000_ICR);
1010 
1011 	/*
1012 	 * Only enable interrupts if we are not polling, make sure
1013 	 * they are off otherwise.
1014 	 */
1015 	if (polling) {
1016 		igb_disable_intr(sc);
1017 	} else {
1018 		igb_enable_intr(sc);
1019 		E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
1020 	}
1021 
1022 	/* Set Energy Efficient Ethernet */
1023 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
1024 		if (sc->hw.mac.type == e1000_i354)
1025 			e1000_set_eee_i354(&sc->hw);
1026 		else
1027 			e1000_set_eee_i350(&sc->hw);
1028 	}
1029 }
1030 
1031 static void
1032 igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1033 {
1034 	struct igb_softc *sc = ifp->if_softc;
1035 
1036 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1037 
1038 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1039 		sc->hw.mac.get_link_status = 1;
1040 	igb_update_link_status(sc);
1041 
1042 	ifmr->ifm_status = IFM_AVALID;
1043 	ifmr->ifm_active = IFM_ETHER;
1044 
1045 	if (!sc->link_active)
1046 		return;
1047 
1048 	ifmr->ifm_status |= IFM_ACTIVE;
1049 
1050 	switch (sc->link_speed) {
1051 	case 10:
1052 		ifmr->ifm_active |= IFM_10_T;
1053 		break;
1054 
1055 	case 100:
1056 		/*
1057 		 * Support for 100Mb SFP - these are Fiber
1058 		 * but the media type appears as serdes
1059 		 */
1060 		if (sc->hw.phy.media_type == e1000_media_type_internal_serdes)
1061 			ifmr->ifm_active |= IFM_100_FX;
1062 		else
1063 			ifmr->ifm_active |= IFM_100_TX;
1064 		break;
1065 
1066 	case 1000:
1067 		ifmr->ifm_active |= IFM_1000_T;
1068 		break;
1069 	}
1070 
1071 	if (sc->link_duplex == FULL_DUPLEX)
1072 		ifmr->ifm_active |= IFM_FDX;
1073 	else
1074 		ifmr->ifm_active |= IFM_HDX;
1075 }
1076 
1077 static int
1078 igb_media_change(struct ifnet *ifp)
1079 {
1080 	struct igb_softc *sc = ifp->if_softc;
1081 	struct ifmedia *ifm = &sc->media;
1082 
1083 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1084 
1085 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1086 		return EINVAL;
1087 
1088 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1089 	case IFM_AUTO:
1090 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1091 		sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1092 		break;
1093 
1094 	case IFM_1000_LX:
1095 	case IFM_1000_SX:
1096 	case IFM_1000_T:
1097 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1098 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1099 		break;
1100 
1101 	case IFM_100_TX:
1102 		sc->hw.mac.autoneg = FALSE;
1103 		sc->hw.phy.autoneg_advertised = 0;
1104 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1105 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1106 		else
1107 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1108 		break;
1109 
1110 	case IFM_10_T:
1111 		sc->hw.mac.autoneg = FALSE;
1112 		sc->hw.phy.autoneg_advertised = 0;
1113 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1114 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1115 		else
1116 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1117 		break;
1118 
1119 	default:
1120 		if_printf(ifp, "Unsupported media type\n");
1121 		break;
1122 	}
1123 
1124 	igb_init(sc);
1125 
1126 	return 0;
1127 }
1128 
1129 static void
1130 igb_set_promisc(struct igb_softc *sc)
1131 {
1132 	struct ifnet *ifp = &sc->arpcom.ac_if;
1133 	struct e1000_hw *hw = &sc->hw;
1134 	uint32_t reg;
1135 
1136 	if (sc->vf_ifp) {
1137 		e1000_promisc_set_vf(hw, e1000_promisc_enabled);
1138 		return;
1139 	}
1140 
1141 	reg = E1000_READ_REG(hw, E1000_RCTL);
1142 	if (ifp->if_flags & IFF_PROMISC) {
1143 		reg |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1144 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
1145 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1146 		reg |= E1000_RCTL_MPE;
1147 		reg &= ~E1000_RCTL_UPE;
1148 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
1149 	}
1150 }
1151 
1152 static void
1153 igb_disable_promisc(struct igb_softc *sc)
1154 {
1155 	struct e1000_hw *hw = &sc->hw;
1156 	struct ifnet *ifp = &sc->arpcom.ac_if;
1157 	uint32_t reg;
1158 	int mcnt = 0;
1159 
1160 	if (sc->vf_ifp) {
1161 		e1000_promisc_set_vf(hw, e1000_promisc_disabled);
1162 		return;
1163 	}
1164 	reg = E1000_READ_REG(hw, E1000_RCTL);
1165 	reg &= ~E1000_RCTL_UPE;
1166 	if (ifp->if_flags & IFF_ALLMULTI) {
1167 		mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1168 	} else {
1169 		struct  ifmultiaddr *ifma;
1170 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1171 			if (ifma->ifma_addr->sa_family != AF_LINK)
1172 				continue;
1173 			if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1174 				break;
1175 			mcnt++;
1176 		}
1177 	}
1178 	/* Don't disable if in MAX groups */
1179 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1180 		reg &= ~E1000_RCTL_MPE;
1181 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
1182 }
1183 
1184 static void
1185 igb_set_multi(struct igb_softc *sc)
1186 {
1187 	struct ifnet *ifp = &sc->arpcom.ac_if;
1188 	struct ifmultiaddr *ifma;
1189 	uint32_t reg_rctl = 0;
1190 	uint8_t *mta;
1191 	int mcnt = 0;
1192 
1193 	mta = sc->mta;
1194 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1195 
1196 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1197 		if (ifma->ifma_addr->sa_family != AF_LINK)
1198 			continue;
1199 
1200 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1201 			break;
1202 
1203 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1204 		    &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
1205 		mcnt++;
1206 	}
1207 
1208 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1209 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1210 		reg_rctl |= E1000_RCTL_MPE;
1211 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1212 	} else {
1213 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1214 	}
1215 }
1216 
1217 static void
1218 igb_timer(void *xsc)
1219 {
1220 	struct igb_softc *sc = xsc;
1221 
1222 	lwkt_serialize_enter(&sc->main_serialize);
1223 
1224 	igb_update_link_status(sc);
1225 	igb_update_stats_counters(sc);
1226 
1227 	callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
1228 
1229 	lwkt_serialize_exit(&sc->main_serialize);
1230 }
1231 
1232 static void
1233 igb_update_link_status(struct igb_softc *sc)
1234 {
1235 	struct ifnet *ifp = &sc->arpcom.ac_if;
1236 	struct e1000_hw *hw = &sc->hw;
1237 	uint32_t link_check, thstat, ctrl;
1238 
1239 	link_check = thstat = ctrl = 0;
1240 
1241 	/* Get the cached link value or read for real */
1242 	switch (hw->phy.media_type) {
1243 	case e1000_media_type_copper:
1244 		if (hw->mac.get_link_status) {
1245 			/* Do the work to read phy */
1246 			e1000_check_for_link(hw);
1247 			link_check = !hw->mac.get_link_status;
1248 		} else {
1249 			link_check = TRUE;
1250 		}
1251 		break;
1252 
1253 	case e1000_media_type_fiber:
1254 		e1000_check_for_link(hw);
1255 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1256 		break;
1257 
1258 	case e1000_media_type_internal_serdes:
1259 		e1000_check_for_link(hw);
1260 		link_check = hw->mac.serdes_has_link;
1261 		break;
1262 
1263 	/* VF device is type_unknown */
1264 	case e1000_media_type_unknown:
1265 		e1000_check_for_link(hw);
1266 		link_check = !hw->mac.get_link_status;
1267 		/* Fall thru */
1268 	default:
1269 		break;
1270 	}
1271 
1272 	/* Check for thermal downshift or shutdown */
1273 	if (hw->mac.type == e1000_i350) {
1274 		thstat = E1000_READ_REG(hw, E1000_THSTAT);
1275 		ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1276 	}
1277 
1278 	/* Now we check if a transition has happened */
1279 	if (link_check && sc->link_active == 0) {
1280 		e1000_get_speed_and_duplex(hw,
1281 		    &sc->link_speed, &sc->link_duplex);
1282 		if (bootverbose) {
1283 			const char *flowctl;
1284 
1285 			/* Get the flow control for display */
1286 			switch (hw->fc.current_mode) {
1287 			case e1000_fc_rx_pause:
1288 				flowctl = "RX";
1289 				break;
1290 
1291 			case e1000_fc_tx_pause:
1292 				flowctl = "TX";
1293 				break;
1294 
1295 			case e1000_fc_full:
1296 				flowctl = "Full";
1297 				break;
1298 
1299 			default:
1300 				flowctl = "None";
1301 				break;
1302 			}
1303 
1304 			if_printf(ifp, "Link is up %d Mbps %s, "
1305 			    "Flow control: %s\n",
1306 			    sc->link_speed,
1307 			    sc->link_duplex == FULL_DUPLEX ?
1308 			    "Full Duplex" : "Half Duplex",
1309 			    flowctl);
1310 		}
1311 		sc->link_active = 1;
1312 
1313 		ifp->if_baudrate = sc->link_speed * 1000000;
1314 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1315 		    (thstat & E1000_THSTAT_LINK_THROTTLE))
1316 			if_printf(ifp, "Link: thermal downshift\n");
1317 		/* Delay Link Up for Phy update */
1318 		if ((hw->mac.type == e1000_i210 ||
1319 		     hw->mac.type == e1000_i211) &&
1320 		    hw->phy.id == I210_I_PHY_ID)
1321 			msec_delay(IGB_I210_LINK_DELAY);
1322 		/* This can sleep */
1323 		ifp->if_link_state = LINK_STATE_UP;
1324 		if_link_state_change(ifp);
1325 	} else if (!link_check && sc->link_active == 1) {
1326 		ifp->if_baudrate = sc->link_speed = 0;
1327 		sc->link_duplex = 0;
1328 		if (bootverbose)
1329 			if_printf(ifp, "Link is Down\n");
1330 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1331 		    (thstat & E1000_THSTAT_PWR_DOWN))
1332 			if_printf(ifp, "Link: thermal shutdown\n");
1333 		sc->link_active = 0;
1334 		/* This can sleep */
1335 		ifp->if_link_state = LINK_STATE_DOWN;
1336 		if_link_state_change(ifp);
1337 	}
1338 }
1339 
1340 static void
1341 igb_stop(struct igb_softc *sc)
1342 {
1343 	struct ifnet *ifp = &sc->arpcom.ac_if;
1344 	int i;
1345 
1346 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1347 
1348 	igb_disable_intr(sc);
1349 
1350 	callout_stop(&sc->timer);
1351 
1352 	ifp->if_flags &= ~IFF_RUNNING;
1353 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1354 		ifsq_clr_oactive(sc->tx_rings[i].ifsq);
1355 		ifsq_watchdog_stop(&sc->tx_rings[i].tx_watchdog);
1356 		sc->tx_rings[i].tx_flags &= ~IGB_TXFLAG_ENABLED;
1357 	}
1358 
1359 	e1000_reset_hw(&sc->hw);
1360 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1361 
1362 	e1000_led_off(&sc->hw);
1363 	e1000_cleanup_led(&sc->hw);
1364 
1365 	for (i = 0; i < sc->tx_ring_cnt; ++i)
1366 		igb_free_tx_ring(&sc->tx_rings[i]);
1367 	for (i = 0; i < sc->rx_ring_cnt; ++i)
1368 		igb_free_rx_ring(&sc->rx_rings[i]);
1369 }
1370 
1371 static void
1372 igb_reset(struct igb_softc *sc)
1373 {
1374 	struct ifnet *ifp = &sc->arpcom.ac_if;
1375 	struct e1000_hw *hw = &sc->hw;
1376 	struct e1000_fc_info *fc = &hw->fc;
1377 	uint32_t pba = 0;
1378 	uint16_t hwm;
1379 
1380 	/* Let the firmware know the OS is in control */
1381 	igb_get_hw_control(sc);
1382 
1383 	/*
1384 	 * Packet Buffer Allocation (PBA)
1385 	 * Writing PBA sets the receive portion of the buffer
1386 	 * the remainder is used for the transmit buffer.
1387 	 */
1388 	switch (hw->mac.type) {
1389 	case e1000_82575:
1390 		pba = E1000_PBA_32K;
1391 		break;
1392 
1393 	case e1000_82576:
1394 	case e1000_vfadapt:
1395 		pba = E1000_READ_REG(hw, E1000_RXPBS);
1396 		pba &= E1000_RXPBS_SIZE_MASK_82576;
1397 		break;
1398 
1399 	case e1000_82580:
1400 	case e1000_i350:
1401 	case e1000_i354:
1402 	case e1000_vfadapt_i350:
1403 		pba = E1000_READ_REG(hw, E1000_RXPBS);
1404 		pba = e1000_rxpbs_adjust_82580(pba);
1405 		break;
1406 
1407 	case e1000_i210:
1408 	case e1000_i211:
1409 		pba = E1000_PBA_34K;
1410 		break;
1411 
1412 	default:
1413 		break;
1414 	}
1415 
1416 	/* Special needs in case of Jumbo frames */
1417 	if (hw->mac.type == e1000_82575 && ifp->if_mtu > ETHERMTU) {
1418 		uint32_t tx_space, min_tx, min_rx;
1419 
1420 		pba = E1000_READ_REG(hw, E1000_PBA);
1421 		tx_space = pba >> 16;
1422 		pba &= 0xffff;
1423 
1424 		min_tx = (sc->max_frame_size +
1425 		    sizeof(struct e1000_tx_desc) - ETHER_CRC_LEN) * 2;
1426 		min_tx = roundup2(min_tx, 1024);
1427 		min_tx >>= 10;
1428 		min_rx = sc->max_frame_size;
1429 		min_rx = roundup2(min_rx, 1024);
1430 		min_rx >>= 10;
1431 		if (tx_space < min_tx && (min_tx - tx_space) < pba) {
1432 			pba = pba - (min_tx - tx_space);
1433 			/*
1434 			 * if short on rx space, rx wins
1435 			 * and must trump tx adjustment
1436 			 */
1437 			if (pba < min_rx)
1438 				pba = min_rx;
1439 		}
1440 		E1000_WRITE_REG(hw, E1000_PBA, pba);
1441 	}
1442 
1443 	/*
1444 	 * These parameters control the automatic generation (Tx) and
1445 	 * response (Rx) to Ethernet PAUSE frames.
1446 	 * - High water mark should allow for at least two frames to be
1447 	 *   received after sending an XOFF.
1448 	 * - Low water mark works best when it is very near the high water mark.
1449 	 *   This allows the receiver to restart by sending XON when it has
1450 	 *   drained a bit.
1451 	 */
1452 	hwm = min(((pba << 10) * 9 / 10),
1453 	    ((pba << 10) - 2 * sc->max_frame_size));
1454 
1455 	if (hw->mac.type < e1000_82576) {
1456 		fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1457 		fc->low_water = fc->high_water - 8;
1458 	} else {
1459 		fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1460 		fc->low_water = fc->high_water - 16;
1461 	}
1462 	fc->pause_time = IGB_FC_PAUSE_TIME;
1463 	fc->send_xon = TRUE;
1464 	fc->requested_mode = e1000_fc_default;
1465 
1466 	/* Issue a global reset */
1467 	e1000_reset_hw(hw);
1468 	E1000_WRITE_REG(hw, E1000_WUC, 0);
1469 
1470 	if (e1000_init_hw(hw) < 0)
1471 		if_printf(ifp, "Hardware Initialization Failed\n");
1472 
1473 	/* Setup DMA Coalescing */
1474 	if (hw->mac.type > e1000_82580 && hw->mac.type != e1000_i211) {
1475 		uint32_t dmac;
1476 		uint32_t reg;
1477 
1478 		if (sc->dma_coalesce == 0) {
1479 			/*
1480 			 * Disabled
1481 			 */
1482 			reg = E1000_READ_REG(hw, E1000_DMACR);
1483 			reg &= ~E1000_DMACR_DMAC_EN;
1484 			E1000_WRITE_REG(hw, E1000_DMACR, reg);
1485 			goto reset_out;
1486 		}
1487 
1488 		/* Set starting thresholds */
1489 		E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
1490 		E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
1491 
1492 		hwm = 64 * pba - sc->max_frame_size / 16;
1493 		if (hwm < 64 * (pba - 6))
1494 			hwm = 64 * (pba - 6);
1495 		reg = E1000_READ_REG(hw, E1000_FCRTC);
1496 		reg &= ~E1000_FCRTC_RTH_COAL_MASK;
1497 		reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
1498 		    & E1000_FCRTC_RTH_COAL_MASK);
1499 		E1000_WRITE_REG(hw, E1000_FCRTC, reg);
1500 
1501 		dmac = pba - sc->max_frame_size / 512;
1502 		if (dmac < pba - 10)
1503 			dmac = pba - 10;
1504 		reg = E1000_READ_REG(hw, E1000_DMACR);
1505 		reg &= ~E1000_DMACR_DMACTHR_MASK;
1506 		reg = ((dmac << E1000_DMACR_DMACTHR_SHIFT)
1507 		    & E1000_DMACR_DMACTHR_MASK);
1508 		/* Transition to L0x or L1 if available.. */
1509 		reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1510 		/* timer = value in sc->dma_coalesce in 32usec intervals */
1511 		reg |= (sc->dma_coalesce >> 5);
1512 		E1000_WRITE_REG(hw, E1000_DMACR, reg);
1513 
1514 		/* Set the interval before transition */
1515 		reg = E1000_READ_REG(hw, E1000_DMCTLX);
1516 		reg |= 0x80000004;
1517 		E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
1518 
1519 		/* Free space in tx packet buffer to wake from DMA coal */
1520 		E1000_WRITE_REG(hw, E1000_DMCTXTH,
1521 		    (20480 - (2 * sc->max_frame_size)) >> 6);
1522 
1523 		/* Make low power state decision controlled by DMA coal */
1524 		reg = E1000_READ_REG(hw, E1000_PCIEMISC);
1525 		reg &= ~E1000_PCIEMISC_LX_DECISION;
1526 		E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
1527 		if_printf(ifp, "DMA Coalescing enabled\n");
1528 	} else if (hw->mac.type == e1000_82580) {
1529 		uint32_t reg = E1000_READ_REG(hw, E1000_PCIEMISC);
1530 
1531 		E1000_WRITE_REG(hw, E1000_DMACR, 0);
1532 		E1000_WRITE_REG(hw, E1000_PCIEMISC,
1533 		    reg & ~E1000_PCIEMISC_LX_DECISION);
1534 	}
1535 
1536 reset_out:
1537 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1538 	e1000_get_phy_info(hw);
1539 	e1000_check_for_link(hw);
1540 }
1541 
1542 static void
1543 igb_setup_ifp(struct igb_softc *sc)
1544 {
1545 	struct ifnet *ifp = &sc->arpcom.ac_if;
1546 	int i;
1547 
1548 	ifp->if_softc = sc;
1549 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1550 	ifp->if_init = igb_init;
1551 	ifp->if_ioctl = igb_ioctl;
1552 	ifp->if_start = igb_start;
1553 	ifp->if_serialize = igb_serialize;
1554 	ifp->if_deserialize = igb_deserialize;
1555 	ifp->if_tryserialize = igb_tryserialize;
1556 #ifdef INVARIANTS
1557 	ifp->if_serialize_assert = igb_serialize_assert;
1558 #endif
1559 #ifdef IFPOLL_ENABLE
1560 	ifp->if_npoll = igb_npoll;
1561 #endif
1562 
1563 	ifq_set_maxlen(&ifp->if_snd, sc->tx_rings[0].num_tx_desc - 1);
1564 	ifq_set_ready(&ifp->if_snd);
1565 	ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt);
1566 
1567 	ifp->if_mapsubq = ifq_mapsubq_mask;
1568 	ifq_set_subq_mask(&ifp->if_snd, 0);
1569 
1570 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1571 
1572 	ifp->if_capabilities =
1573 	    IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_TSO;
1574 	if (IGB_ENABLE_HWRSS(sc))
1575 		ifp->if_capabilities |= IFCAP_RSS;
1576 	ifp->if_capenable = ifp->if_capabilities;
1577 	ifp->if_hwassist = IGB_CSUM_FEATURES | CSUM_TSO;
1578 
1579 	/*
1580 	 * Tell the upper layer(s) we support long frames
1581 	 */
1582 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1583 
1584 	/* Setup TX rings and subqueues */
1585 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1586 		struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
1587 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1588 
1589 		ifsq_set_cpuid(ifsq, txr->tx_intr_cpuid);
1590 		ifsq_set_priv(ifsq, txr);
1591 		ifsq_set_hw_serialize(ifsq, &txr->tx_serialize);
1592 		txr->ifsq = ifsq;
1593 
1594 		ifsq_watchdog_init(&txr->tx_watchdog, ifsq, igb_watchdog);
1595 	}
1596 
1597 	/*
1598 	 * Specify the media types supported by this adapter and register
1599 	 * callbacks to update media and link information
1600 	 */
1601 	ifmedia_init(&sc->media, IFM_IMASK, igb_media_change, igb_media_status);
1602 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1603 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1604 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1605 		    0, NULL);
1606 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1607 	} else {
1608 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1609 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1610 		    0, NULL);
1611 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1612 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1613 		    0, NULL);
1614 		if (sc->hw.phy.type != e1000_phy_ife) {
1615 			ifmedia_add(&sc->media,
1616 			    IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1617 			ifmedia_add(&sc->media,
1618 			    IFM_ETHER | IFM_1000_T, 0, NULL);
1619 		}
1620 	}
1621 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1622 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1623 }
1624 
1625 static void
1626 igb_add_sysctl(struct igb_softc *sc)
1627 {
1628 	char node[32];
1629 	int i;
1630 
1631 	sysctl_ctx_init(&sc->sysctl_ctx);
1632 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1633 	    SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
1634 	    device_get_nameunit(sc->dev), CTLFLAG_RD, 0, "");
1635 	if (sc->sysctl_tree == NULL) {
1636 		device_printf(sc->dev, "can't add sysctl node\n");
1637 		return;
1638 	}
1639 
1640 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1641 	    OID_AUTO, "rxr", CTLFLAG_RD, &sc->rx_ring_cnt, 0, "# of RX rings");
1642 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1643 	    OID_AUTO, "rxr_inuse", CTLFLAG_RD, &sc->rx_ring_inuse, 0,
1644 	    "# of RX rings used");
1645 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1646 	    OID_AUTO, "txr", CTLFLAG_RD, &sc->tx_ring_cnt, 0, "# of TX rings");
1647 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1648 	    OID_AUTO, "txr_inuse", CTLFLAG_RD, &sc->tx_ring_inuse, 0,
1649 	    "# of TX rings used");
1650 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1651 	    OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_rings[0].num_rx_desc, 0,
1652 	    "# of RX descs");
1653 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1654 	    OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_rings[0].num_tx_desc, 0,
1655 	    "# of TX descs");
1656 
1657 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
1658 		SYSCTL_ADD_PROC(&sc->sysctl_ctx,
1659 		    SYSCTL_CHILDREN(sc->sysctl_tree),
1660 		    OID_AUTO, "intr_rate", CTLTYPE_INT | CTLFLAG_RW,
1661 		    sc, 0, igb_sysctl_intr_rate, "I", "interrupt rate");
1662 	} else {
1663 		for (i = 0; i < sc->msix_cnt; ++i) {
1664 			struct igb_msix_data *msix = &sc->msix_data[i];
1665 
1666 			ksnprintf(node, sizeof(node), "msix%d_rate", i);
1667 			SYSCTL_ADD_PROC(&sc->sysctl_ctx,
1668 			    SYSCTL_CHILDREN(sc->sysctl_tree),
1669 			    OID_AUTO, node, CTLTYPE_INT | CTLFLAG_RW,
1670 			    msix, 0, igb_sysctl_msix_rate, "I",
1671 			    msix->msix_rate_desc);
1672 		}
1673 	}
1674 
1675 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1676 	    OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1677 	    sc, 0, igb_sysctl_tx_intr_nsegs, "I",
1678 	    "# of segments per TX interrupt");
1679 
1680 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1681 	    OID_AUTO, "tx_wreg_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1682 	    sc, 0, igb_sysctl_tx_wreg_nsegs, "I",
1683 	    "# of segments sent before write to hardware register");
1684 
1685 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1686 	    OID_AUTO, "rx_wreg_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1687 	    sc, 0, igb_sysctl_rx_wreg_nsegs, "I",
1688 	    "# of segments received before write to hardware register");
1689 
1690 #ifdef IFPOLL_ENABLE
1691 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1692 	    OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
1693 	    sc, 0, igb_sysctl_npoll_rxoff, "I", "NPOLLING RX cpu offset");
1694 	SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1695 	    OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
1696 	    sc, 0, igb_sysctl_npoll_txoff, "I", "NPOLLING TX cpu offset");
1697 #endif
1698 
1699 #ifdef IGB_RSS_DEBUG
1700 	SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1701 	    OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug, 0,
1702 	    "RSS debug level");
1703 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1704 		ksnprintf(node, sizeof(node), "rx%d_pkt", i);
1705 		SYSCTL_ADD_ULONG(&sc->sysctl_ctx,
1706 		    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, node,
1707 		    CTLFLAG_RW, &sc->rx_rings[i].rx_packets, "RXed packets");
1708 	}
1709 #endif
1710 #ifdef IGB_TSS_DEBUG
1711 	for  (i = 0; i < sc->tx_ring_cnt; ++i) {
1712 		ksnprintf(node, sizeof(node), "tx%d_pkt", i);
1713 		SYSCTL_ADD_ULONG(&sc->sysctl_ctx,
1714 		    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, node,
1715 		    CTLFLAG_RW, &sc->tx_rings[i].tx_packets, "TXed packets");
1716 	}
1717 #endif
1718 }
1719 
1720 static int
1721 igb_alloc_rings(struct igb_softc *sc)
1722 {
1723 	int error, i;
1724 
1725 	/*
1726 	 * Create top level busdma tag
1727 	 */
1728 	error = bus_dma_tag_create(NULL, 1, 0,
1729 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1730 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1731 	    &sc->parent_tag);
1732 	if (error) {
1733 		device_printf(sc->dev, "could not create top level DMA tag\n");
1734 		return error;
1735 	}
1736 
1737 	/*
1738 	 * Allocate TX descriptor rings and buffers
1739 	 */
1740 	sc->tx_rings = kmalloc_cachealign(
1741 	    sizeof(struct igb_tx_ring) * sc->tx_ring_cnt,
1742 	    M_DEVBUF, M_WAITOK | M_ZERO);
1743 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1744 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1745 
1746 		/* Set up some basics */
1747 		txr->sc = sc;
1748 		txr->me = i;
1749 		lwkt_serialize_init(&txr->tx_serialize);
1750 
1751 		error = igb_create_tx_ring(txr);
1752 		if (error)
1753 			return error;
1754 	}
1755 
1756 	/*
1757 	 * Allocate RX descriptor rings and buffers
1758 	 */
1759 	sc->rx_rings = kmalloc_cachealign(
1760 	    sizeof(struct igb_rx_ring) * sc->rx_ring_cnt,
1761 	    M_DEVBUF, M_WAITOK | M_ZERO);
1762 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1763 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
1764 
1765 		/* Set up some basics */
1766 		rxr->sc = sc;
1767 		rxr->me = i;
1768 		lwkt_serialize_init(&rxr->rx_serialize);
1769 
1770 		error = igb_create_rx_ring(rxr);
1771 		if (error)
1772 			return error;
1773 	}
1774 
1775 	return 0;
1776 }
1777 
1778 static void
1779 igb_free_rings(struct igb_softc *sc)
1780 {
1781 	int i;
1782 
1783 	if (sc->tx_rings != NULL) {
1784 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
1785 			struct igb_tx_ring *txr = &sc->tx_rings[i];
1786 
1787 			igb_destroy_tx_ring(txr, txr->num_tx_desc);
1788 		}
1789 		kfree(sc->tx_rings, M_DEVBUF);
1790 	}
1791 
1792 	if (sc->rx_rings != NULL) {
1793 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
1794 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
1795 
1796 			igb_destroy_rx_ring(rxr, rxr->num_rx_desc);
1797 		}
1798 		kfree(sc->rx_rings, M_DEVBUF);
1799 	}
1800 }
1801 
1802 static int
1803 igb_create_tx_ring(struct igb_tx_ring *txr)
1804 {
1805 	int tsize, error, i, ntxd;
1806 
1807 	/*
1808 	 * Validate number of transmit descriptors. It must not exceed
1809 	 * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
1810 	 */
1811 	ntxd = device_getenv_int(txr->sc->dev, "txd", igb_txd);
1812 	if ((ntxd * sizeof(struct e1000_tx_desc)) % IGB_DBA_ALIGN != 0 ||
1813 	    ntxd > IGB_MAX_TXD || ntxd < IGB_MIN_TXD) {
1814 		device_printf(txr->sc->dev,
1815 		    "Using %d TX descriptors instead of %d!\n",
1816 		    IGB_DEFAULT_TXD, ntxd);
1817 		txr->num_tx_desc = IGB_DEFAULT_TXD;
1818 	} else {
1819 		txr->num_tx_desc = ntxd;
1820 	}
1821 
1822 	/*
1823 	 * Allocate TX descriptor ring
1824 	 */
1825 	tsize = roundup2(txr->num_tx_desc * sizeof(union e1000_adv_tx_desc),
1826 	    IGB_DBA_ALIGN);
1827 	txr->txdma.dma_vaddr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1828 	    IGB_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1829 	    &txr->txdma.dma_tag, &txr->txdma.dma_map, &txr->txdma.dma_paddr);
1830 	if (txr->txdma.dma_vaddr == NULL) {
1831 		device_printf(txr->sc->dev,
1832 		    "Unable to allocate TX Descriptor memory\n");
1833 		return ENOMEM;
1834 	}
1835 	txr->tx_base = txr->txdma.dma_vaddr;
1836 	bzero(txr->tx_base, tsize);
1837 
1838 	tsize = __VM_CACHELINE_ALIGN(
1839 	    sizeof(struct igb_tx_buf) * txr->num_tx_desc);
1840 	txr->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
1841 
1842 	/*
1843 	 * Allocate TX head write-back buffer
1844 	 */
1845 	txr->tx_hdr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1846 	    __VM_CACHELINE_SIZE, __VM_CACHELINE_SIZE, BUS_DMA_WAITOK,
1847 	    &txr->tx_hdr_dtag, &txr->tx_hdr_dmap, &txr->tx_hdr_paddr);
1848 	if (txr->tx_hdr == NULL) {
1849 		device_printf(txr->sc->dev,
1850 		    "Unable to allocate TX head write-back buffer\n");
1851 		return ENOMEM;
1852 	}
1853 
1854 	/*
1855 	 * Create DMA tag for TX buffers
1856 	 */
1857 	error = bus_dma_tag_create(txr->sc->parent_tag,
1858 	    1, 0,		/* alignment, bounds */
1859 	    BUS_SPACE_MAXADDR,	/* lowaddr */
1860 	    BUS_SPACE_MAXADDR,	/* highaddr */
1861 	    NULL, NULL,		/* filter, filterarg */
1862 	    IGB_TSO_SIZE,	/* maxsize */
1863 	    IGB_MAX_SCATTER,	/* nsegments */
1864 	    PAGE_SIZE,		/* maxsegsize */
1865 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1866 	    BUS_DMA_ONEBPAGE,	/* flags */
1867 	    &txr->tx_tag);
1868 	if (error) {
1869 		device_printf(txr->sc->dev, "Unable to allocate TX DMA tag\n");
1870 		kfree(txr->tx_buf, M_DEVBUF);
1871 		txr->tx_buf = NULL;
1872 		return error;
1873 	}
1874 
1875 	/*
1876 	 * Create DMA maps for TX buffers
1877 	 */
1878 	for (i = 0; i < txr->num_tx_desc; ++i) {
1879 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1880 
1881 		error = bus_dmamap_create(txr->tx_tag,
1882 		    BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE, &txbuf->map);
1883 		if (error) {
1884 			device_printf(txr->sc->dev,
1885 			    "Unable to create TX DMA map\n");
1886 			igb_destroy_tx_ring(txr, i);
1887 			return error;
1888 		}
1889 	}
1890 
1891 	if (txr->sc->hw.mac.type == e1000_82575)
1892 		txr->tx_flags |= IGB_TXFLAG_TSO_IPLEN0;
1893 
1894 	/*
1895 	 * Initialize various watermark
1896 	 */
1897 	txr->spare_desc = IGB_TX_SPARE;
1898 	txr->intr_nsegs = txr->num_tx_desc / 16;
1899 	txr->wreg_nsegs = IGB_DEF_TXWREG_NSEGS;
1900 	txr->oact_hi_desc = txr->num_tx_desc / 2;
1901 	txr->oact_lo_desc = txr->num_tx_desc / 8;
1902 	if (txr->oact_lo_desc > IGB_TX_OACTIVE_MAX)
1903 		txr->oact_lo_desc = IGB_TX_OACTIVE_MAX;
1904 	if (txr->oact_lo_desc < txr->spare_desc + IGB_TX_RESERVED)
1905 		txr->oact_lo_desc = txr->spare_desc + IGB_TX_RESERVED;
1906 
1907 	return 0;
1908 }
1909 
1910 static void
1911 igb_free_tx_ring(struct igb_tx_ring *txr)
1912 {
1913 	int i;
1914 
1915 	for (i = 0; i < txr->num_tx_desc; ++i) {
1916 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1917 
1918 		if (txbuf->m_head != NULL) {
1919 			bus_dmamap_unload(txr->tx_tag, txbuf->map);
1920 			m_freem(txbuf->m_head);
1921 			txbuf->m_head = NULL;
1922 		}
1923 	}
1924 }
1925 
1926 static void
1927 igb_destroy_tx_ring(struct igb_tx_ring *txr, int ndesc)
1928 {
1929 	int i;
1930 
1931 	if (txr->txdma.dma_vaddr != NULL) {
1932 		bus_dmamap_unload(txr->txdma.dma_tag, txr->txdma.dma_map);
1933 		bus_dmamem_free(txr->txdma.dma_tag, txr->txdma.dma_vaddr,
1934 		    txr->txdma.dma_map);
1935 		bus_dma_tag_destroy(txr->txdma.dma_tag);
1936 		txr->txdma.dma_vaddr = NULL;
1937 	}
1938 
1939 	if (txr->tx_hdr != NULL) {
1940 		bus_dmamap_unload(txr->tx_hdr_dtag, txr->tx_hdr_dmap);
1941 		bus_dmamem_free(txr->tx_hdr_dtag, txr->tx_hdr,
1942 		    txr->tx_hdr_dmap);
1943 		bus_dma_tag_destroy(txr->tx_hdr_dtag);
1944 		txr->tx_hdr = NULL;
1945 	}
1946 
1947 	if (txr->tx_buf == NULL)
1948 		return;
1949 
1950 	for (i = 0; i < ndesc; ++i) {
1951 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1952 
1953 		KKASSERT(txbuf->m_head == NULL);
1954 		bus_dmamap_destroy(txr->tx_tag, txbuf->map);
1955 	}
1956 	bus_dma_tag_destroy(txr->tx_tag);
1957 
1958 	kfree(txr->tx_buf, M_DEVBUF);
1959 	txr->tx_buf = NULL;
1960 }
1961 
1962 static void
1963 igb_init_tx_ring(struct igb_tx_ring *txr)
1964 {
1965 	/* Clear the old descriptor contents */
1966 	bzero(txr->tx_base,
1967 	    sizeof(union e1000_adv_tx_desc) * txr->num_tx_desc);
1968 
1969 	/* Clear TX head write-back buffer */
1970 	*(txr->tx_hdr) = 0;
1971 
1972 	/* Reset indices */
1973 	txr->next_avail_desc = 0;
1974 	txr->next_to_clean = 0;
1975 	txr->tx_nsegs = 0;
1976 
1977 	/* Set number of descriptors available */
1978 	txr->tx_avail = txr->num_tx_desc;
1979 
1980 	/* Enable this TX ring */
1981 	txr->tx_flags |= IGB_TXFLAG_ENABLED;
1982 }
1983 
1984 static void
1985 igb_init_tx_unit(struct igb_softc *sc)
1986 {
1987 	struct e1000_hw *hw = &sc->hw;
1988 	uint32_t tctl;
1989 	int i;
1990 
1991 	/* Setup the Tx Descriptor Rings */
1992 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
1993 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1994 		uint64_t bus_addr = txr->txdma.dma_paddr;
1995 		uint64_t hdr_paddr = txr->tx_hdr_paddr;
1996 		uint32_t txdctl = 0;
1997 		uint32_t dca_txctrl;
1998 
1999 		E1000_WRITE_REG(hw, E1000_TDLEN(i),
2000 		    txr->num_tx_desc * sizeof(struct e1000_tx_desc));
2001 		E1000_WRITE_REG(hw, E1000_TDBAH(i),
2002 		    (uint32_t)(bus_addr >> 32));
2003 		E1000_WRITE_REG(hw, E1000_TDBAL(i),
2004 		    (uint32_t)bus_addr);
2005 
2006 		/* Setup the HW Tx Head and Tail descriptor pointers */
2007 		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
2008 		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
2009 
2010 		dca_txctrl = E1000_READ_REG(hw, E1000_DCA_TXCTRL(i));
2011 		dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
2012 		E1000_WRITE_REG(hw, E1000_DCA_TXCTRL(i), dca_txctrl);
2013 
2014 		/*
2015 		 * Don't set WB_on_EITR:
2016 		 * - 82575 does not have it
2017 		 * - It almost has no effect on 82576, see:
2018 		 *   82576 specification update errata #26
2019 		 * - It causes unnecessary bus traffic
2020 		 */
2021 		E1000_WRITE_REG(hw, E1000_TDWBAH(i),
2022 		    (uint32_t)(hdr_paddr >> 32));
2023 		E1000_WRITE_REG(hw, E1000_TDWBAL(i),
2024 		    ((uint32_t)hdr_paddr) | E1000_TX_HEAD_WB_ENABLE);
2025 
2026 		/*
2027 		 * WTHRESH is ignored by the hardware, since header
2028 		 * write back mode is used.
2029 		 */
2030 		txdctl |= IGB_TX_PTHRESH;
2031 		txdctl |= IGB_TX_HTHRESH << 8;
2032 		txdctl |= IGB_TX_WTHRESH << 16;
2033 		txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2034 		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
2035 	}
2036 
2037 	if (sc->vf_ifp)
2038 		return;
2039 
2040 	e1000_config_collision_dist(hw);
2041 
2042 	/* Program the Transmit Control Register */
2043 	tctl = E1000_READ_REG(hw, E1000_TCTL);
2044 	tctl &= ~E1000_TCTL_CT;
2045 	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2046 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
2047 
2048 	/* This write will effectively turn on the transmit unit. */
2049 	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
2050 }
2051 
2052 static boolean_t
2053 igb_txcsum_ctx(struct igb_tx_ring *txr, struct mbuf *mp)
2054 {
2055 	struct e1000_adv_tx_context_desc *TXD;
2056 	uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
2057 	int ehdrlen, ctxd, ip_hlen = 0;
2058 	boolean_t offload = TRUE;
2059 
2060 	if ((mp->m_pkthdr.csum_flags & IGB_CSUM_FEATURES) == 0)
2061 		offload = FALSE;
2062 
2063 	vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
2064 
2065 	ctxd = txr->next_avail_desc;
2066 	TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
2067 
2068 	/*
2069 	 * In advanced descriptors the vlan tag must
2070 	 * be placed into the context descriptor, thus
2071 	 * we need to be here just for that setup.
2072 	 */
2073 	if (mp->m_flags & M_VLANTAG) {
2074 		uint16_t vlantag;
2075 
2076 		vlantag = htole16(mp->m_pkthdr.ether_vlantag);
2077 		vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
2078 	} else if (!offload) {
2079 		return FALSE;
2080 	}
2081 
2082 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2083 	KASSERT(ehdrlen > 0, ("invalid ether hlen"));
2084 
2085 	/* Set the ether header length */
2086 	vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
2087 	if (mp->m_pkthdr.csum_flags & CSUM_IP) {
2088 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
2089 		ip_hlen = mp->m_pkthdr.csum_iphlen;
2090 		KASSERT(ip_hlen > 0, ("invalid ip hlen"));
2091 	}
2092 	vlan_macip_lens |= ip_hlen;
2093 
2094 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
2095 	if (mp->m_pkthdr.csum_flags & CSUM_TCP)
2096 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
2097 	else if (mp->m_pkthdr.csum_flags & CSUM_UDP)
2098 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
2099 
2100 	/*
2101 	 * 82575 needs the TX context index added; the queue
2102 	 * index is used as TX context index here.
2103 	 */
2104 	if (txr->sc->hw.mac.type == e1000_82575)
2105 		mss_l4len_idx = txr->me << 4;
2106 
2107 	/* Now copy bits into descriptor */
2108 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
2109 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
2110 	TXD->seqnum_seed = htole32(0);
2111 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
2112 
2113 	/* We've consumed the first desc, adjust counters */
2114 	if (++ctxd == txr->num_tx_desc)
2115 		ctxd = 0;
2116 	txr->next_avail_desc = ctxd;
2117 	--txr->tx_avail;
2118 
2119 	return offload;
2120 }
2121 
2122 static void
2123 igb_txeof(struct igb_tx_ring *txr)
2124 {
2125 	struct ifnet *ifp = &txr->sc->arpcom.ac_if;
2126 	int first, hdr, avail;
2127 
2128 	if (txr->tx_avail == txr->num_tx_desc)
2129 		return;
2130 
2131 	first = txr->next_to_clean;
2132 	hdr = *(txr->tx_hdr);
2133 
2134 	if (first == hdr)
2135 		return;
2136 
2137 	avail = txr->tx_avail;
2138 	while (first != hdr) {
2139 		struct igb_tx_buf *txbuf = &txr->tx_buf[first];
2140 
2141 		++avail;
2142 		if (txbuf->m_head) {
2143 			bus_dmamap_unload(txr->tx_tag, txbuf->map);
2144 			m_freem(txbuf->m_head);
2145 			txbuf->m_head = NULL;
2146 			IFNET_STAT_INC(ifp, opackets, 1);
2147 		}
2148 		if (++first == txr->num_tx_desc)
2149 			first = 0;
2150 	}
2151 	txr->next_to_clean = first;
2152 	txr->tx_avail = avail;
2153 
2154 	/*
2155 	 * If we have a minimum free, clear OACTIVE
2156 	 * to tell the stack that it is OK to send packets.
2157 	 */
2158 	if (IGB_IS_NOT_OACTIVE(txr)) {
2159 		ifsq_clr_oactive(txr->ifsq);
2160 
2161 		/*
2162 		 * We have enough TX descriptors, turn off
2163 		 * the watchdog.  We allow small amount of
2164 		 * packets (roughly intr_nsegs) pending on
2165 		 * the transmit ring.
2166 		 */
2167 		txr->tx_watchdog.wd_timer = 0;
2168 	}
2169 }
2170 
2171 static int
2172 igb_create_rx_ring(struct igb_rx_ring *rxr)
2173 {
2174 	int rsize, i, error, nrxd;
2175 
2176 	/*
2177 	 * Validate number of receive descriptors. It must not exceed
2178 	 * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
2179 	 */
2180 	nrxd = device_getenv_int(rxr->sc->dev, "rxd", igb_rxd);
2181 	if ((nrxd * sizeof(struct e1000_rx_desc)) % IGB_DBA_ALIGN != 0 ||
2182 	    nrxd > IGB_MAX_RXD || nrxd < IGB_MIN_RXD) {
2183 		device_printf(rxr->sc->dev,
2184 		    "Using %d RX descriptors instead of %d!\n",
2185 		    IGB_DEFAULT_RXD, nrxd);
2186 		rxr->num_rx_desc = IGB_DEFAULT_RXD;
2187 	} else {
2188 		rxr->num_rx_desc = nrxd;
2189 	}
2190 
2191 	/*
2192 	 * Allocate RX descriptor ring
2193 	 */
2194 	rsize = roundup2(rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc),
2195 	    IGB_DBA_ALIGN);
2196 	rxr->rxdma.dma_vaddr = bus_dmamem_coherent_any(rxr->sc->parent_tag,
2197 	    IGB_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2198 	    &rxr->rxdma.dma_tag, &rxr->rxdma.dma_map,
2199 	    &rxr->rxdma.dma_paddr);
2200 	if (rxr->rxdma.dma_vaddr == NULL) {
2201 		device_printf(rxr->sc->dev,
2202 		    "Unable to allocate RxDescriptor memory\n");
2203 		return ENOMEM;
2204 	}
2205 	rxr->rx_base = rxr->rxdma.dma_vaddr;
2206 	bzero(rxr->rx_base, rsize);
2207 
2208 	rsize = __VM_CACHELINE_ALIGN(
2209 	    sizeof(struct igb_rx_buf) * rxr->num_rx_desc);
2210 	rxr->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2211 
2212 	/*
2213 	 * Create DMA tag for RX buffers
2214 	 */
2215 	error = bus_dma_tag_create(rxr->sc->parent_tag,
2216 	    1, 0,		/* alignment, bounds */
2217 	    BUS_SPACE_MAXADDR,	/* lowaddr */
2218 	    BUS_SPACE_MAXADDR,	/* highaddr */
2219 	    NULL, NULL,		/* filter, filterarg */
2220 	    MCLBYTES,		/* maxsize */
2221 	    1,			/* nsegments */
2222 	    MCLBYTES,		/* maxsegsize */
2223 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2224 	    &rxr->rx_tag);
2225 	if (error) {
2226 		device_printf(rxr->sc->dev,
2227 		    "Unable to create RX payload DMA tag\n");
2228 		kfree(rxr->rx_buf, M_DEVBUF);
2229 		rxr->rx_buf = NULL;
2230 		return error;
2231 	}
2232 
2233 	/*
2234 	 * Create spare DMA map for RX buffers
2235 	 */
2236 	error = bus_dmamap_create(rxr->rx_tag, BUS_DMA_WAITOK,
2237 	    &rxr->rx_sparemap);
2238 	if (error) {
2239 		device_printf(rxr->sc->dev,
2240 		    "Unable to create spare RX DMA maps\n");
2241 		bus_dma_tag_destroy(rxr->rx_tag);
2242 		kfree(rxr->rx_buf, M_DEVBUF);
2243 		rxr->rx_buf = NULL;
2244 		return error;
2245 	}
2246 
2247 	/*
2248 	 * Create DMA maps for RX buffers
2249 	 */
2250 	for (i = 0; i < rxr->num_rx_desc; i++) {
2251 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2252 
2253 		error = bus_dmamap_create(rxr->rx_tag,
2254 		    BUS_DMA_WAITOK, &rxbuf->map);
2255 		if (error) {
2256 			device_printf(rxr->sc->dev,
2257 			    "Unable to create RX DMA maps\n");
2258 			igb_destroy_rx_ring(rxr, i);
2259 			return error;
2260 		}
2261 	}
2262 
2263 	/*
2264 	 * Initialize various watermark
2265 	 */
2266 	rxr->wreg_nsegs = IGB_DEF_RXWREG_NSEGS;
2267 
2268 	return 0;
2269 }
2270 
2271 static void
2272 igb_free_rx_ring(struct igb_rx_ring *rxr)
2273 {
2274 	int i;
2275 
2276 	for (i = 0; i < rxr->num_rx_desc; ++i) {
2277 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2278 
2279 		if (rxbuf->m_head != NULL) {
2280 			bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2281 			m_freem(rxbuf->m_head);
2282 			rxbuf->m_head = NULL;
2283 		}
2284 	}
2285 
2286 	if (rxr->fmp != NULL)
2287 		m_freem(rxr->fmp);
2288 	rxr->fmp = NULL;
2289 	rxr->lmp = NULL;
2290 }
2291 
2292 static void
2293 igb_destroy_rx_ring(struct igb_rx_ring *rxr, int ndesc)
2294 {
2295 	int i;
2296 
2297 	if (rxr->rxdma.dma_vaddr != NULL) {
2298 		bus_dmamap_unload(rxr->rxdma.dma_tag, rxr->rxdma.dma_map);
2299 		bus_dmamem_free(rxr->rxdma.dma_tag, rxr->rxdma.dma_vaddr,
2300 		    rxr->rxdma.dma_map);
2301 		bus_dma_tag_destroy(rxr->rxdma.dma_tag);
2302 		rxr->rxdma.dma_vaddr = NULL;
2303 	}
2304 
2305 	if (rxr->rx_buf == NULL)
2306 		return;
2307 
2308 	for (i = 0; i < ndesc; ++i) {
2309 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2310 
2311 		KKASSERT(rxbuf->m_head == NULL);
2312 		bus_dmamap_destroy(rxr->rx_tag, rxbuf->map);
2313 	}
2314 	bus_dmamap_destroy(rxr->rx_tag, rxr->rx_sparemap);
2315 	bus_dma_tag_destroy(rxr->rx_tag);
2316 
2317 	kfree(rxr->rx_buf, M_DEVBUF);
2318 	rxr->rx_buf = NULL;
2319 }
2320 
2321 static void
2322 igb_setup_rxdesc(union e1000_adv_rx_desc *rxd, const struct igb_rx_buf *rxbuf)
2323 {
2324 	rxd->read.pkt_addr = htole64(rxbuf->paddr);
2325 	rxd->wb.upper.status_error = 0;
2326 }
2327 
2328 static int
2329 igb_newbuf(struct igb_rx_ring *rxr, int i, boolean_t wait)
2330 {
2331 	struct mbuf *m;
2332 	bus_dma_segment_t seg;
2333 	bus_dmamap_t map;
2334 	struct igb_rx_buf *rxbuf;
2335 	int error, nseg;
2336 
2337 	m = m_getcl(wait ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2338 	if (m == NULL) {
2339 		if (wait) {
2340 			if_printf(&rxr->sc->arpcom.ac_if,
2341 			    "Unable to allocate RX mbuf\n");
2342 		}
2343 		return ENOBUFS;
2344 	}
2345 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2346 
2347 	if (rxr->sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2348 		m_adj(m, ETHER_ALIGN);
2349 
2350 	error = bus_dmamap_load_mbuf_segment(rxr->rx_tag,
2351 	    rxr->rx_sparemap, m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
2352 	if (error) {
2353 		m_freem(m);
2354 		if (wait) {
2355 			if_printf(&rxr->sc->arpcom.ac_if,
2356 			    "Unable to load RX mbuf\n");
2357 		}
2358 		return error;
2359 	}
2360 
2361 	rxbuf = &rxr->rx_buf[i];
2362 	if (rxbuf->m_head != NULL)
2363 		bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2364 
2365 	map = rxbuf->map;
2366 	rxbuf->map = rxr->rx_sparemap;
2367 	rxr->rx_sparemap = map;
2368 
2369 	rxbuf->m_head = m;
2370 	rxbuf->paddr = seg.ds_addr;
2371 
2372 	igb_setup_rxdesc(&rxr->rx_base[i], rxbuf);
2373 	return 0;
2374 }
2375 
2376 static int
2377 igb_init_rx_ring(struct igb_rx_ring *rxr)
2378 {
2379 	int i;
2380 
2381 	/* Clear the ring contents */
2382 	bzero(rxr->rx_base,
2383 	    rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc));
2384 
2385 	/* Now replenish the ring mbufs */
2386 	for (i = 0; i < rxr->num_rx_desc; ++i) {
2387 		int error;
2388 
2389 		error = igb_newbuf(rxr, i, TRUE);
2390 		if (error)
2391 			return error;
2392 	}
2393 
2394 	/* Setup our descriptor indices */
2395 	rxr->next_to_check = 0;
2396 
2397 	rxr->fmp = NULL;
2398 	rxr->lmp = NULL;
2399 	rxr->discard = FALSE;
2400 
2401 	return 0;
2402 }
2403 
2404 static void
2405 igb_init_rx_unit(struct igb_softc *sc)
2406 {
2407 	struct ifnet *ifp = &sc->arpcom.ac_if;
2408 	struct e1000_hw *hw = &sc->hw;
2409 	uint32_t rctl, rxcsum, srrctl = 0;
2410 	int i;
2411 
2412 	/*
2413 	 * Make sure receives are disabled while setting
2414 	 * up the descriptor ring
2415 	 */
2416 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2417 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2418 
2419 #if 0
2420 	/*
2421 	** Set up for header split
2422 	*/
2423 	if (igb_header_split) {
2424 		/* Use a standard mbuf for the header */
2425 		srrctl |= IGB_HDR_BUF << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2426 		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2427 	} else
2428 #endif
2429 		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2430 
2431 	/*
2432 	** Set up for jumbo frames
2433 	*/
2434 	if (ifp->if_mtu > ETHERMTU) {
2435 		rctl |= E1000_RCTL_LPE;
2436 #if 0
2437 		if (adapter->rx_mbuf_sz == MJUMPAGESIZE) {
2438 			srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2439 			rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
2440 		} else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) {
2441 			srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2442 			rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
2443 		}
2444 		/* Set maximum packet len */
2445 		psize = adapter->max_frame_size;
2446 		/* are we on a vlan? */
2447 		if (adapter->ifp->if_vlantrunk != NULL)
2448 			psize += VLAN_TAG_SIZE;
2449 		E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
2450 #else
2451 		srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2452 		rctl |= E1000_RCTL_SZ_2048;
2453 #endif
2454 	} else {
2455 		rctl &= ~E1000_RCTL_LPE;
2456 		srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2457 		rctl |= E1000_RCTL_SZ_2048;
2458 	}
2459 
2460 	/* Setup the Base and Length of the Rx Descriptor Rings */
2461 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2462 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
2463 		uint64_t bus_addr = rxr->rxdma.dma_paddr;
2464 		uint32_t rxdctl;
2465 
2466 		E1000_WRITE_REG(hw, E1000_RDLEN(i),
2467 		    rxr->num_rx_desc * sizeof(struct e1000_rx_desc));
2468 		E1000_WRITE_REG(hw, E1000_RDBAH(i),
2469 		    (uint32_t)(bus_addr >> 32));
2470 		E1000_WRITE_REG(hw, E1000_RDBAL(i),
2471 		    (uint32_t)bus_addr);
2472 		E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2473 		/* Enable this Queue */
2474 		rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2475 		rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2476 		rxdctl &= 0xFFF00000;
2477 		rxdctl |= IGB_RX_PTHRESH;
2478 		rxdctl |= IGB_RX_HTHRESH << 8;
2479 		/*
2480 		 * Don't set WTHRESH to a value above 1 on 82576, see:
2481 		 * 82576 specification update errata #26
2482 		 */
2483 		rxdctl |= IGB_RX_WTHRESH << 16;
2484 		E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2485 	}
2486 
2487 	rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2488 	rxcsum &= ~(E1000_RXCSUM_PCSS_MASK | E1000_RXCSUM_IPPCSE);
2489 
2490 	/*
2491 	 * Receive Checksum Offload for TCP and UDP
2492 	 *
2493 	 * Checksum offloading is also enabled if multiple receive
2494 	 * queue is to be supported, since we need it to figure out
2495 	 * fragments.
2496 	 */
2497 	if ((ifp->if_capenable & IFCAP_RXCSUM) || IGB_ENABLE_HWRSS(sc)) {
2498 		/*
2499 		 * NOTE:
2500 		 * PCSD must be enabled to enable multiple
2501 		 * receive queues.
2502 		 */
2503 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2504 		    E1000_RXCSUM_PCSD;
2505 	} else {
2506 		rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2507 		    E1000_RXCSUM_PCSD);
2508 	}
2509 	E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2510 
2511 	if (IGB_ENABLE_HWRSS(sc)) {
2512 		uint8_t key[IGB_NRSSRK * IGB_RSSRK_SIZE];
2513 		uint32_t reta_shift;
2514 		int j, r;
2515 
2516 		/*
2517 		 * NOTE:
2518 		 * When we reach here, RSS has already been disabled
2519 		 * in igb_stop(), so we could safely configure RSS key
2520 		 * and redirect table.
2521 		 */
2522 
2523 		/*
2524 		 * Configure RSS key
2525 		 */
2526 		toeplitz_get_key(key, sizeof(key));
2527 		for (i = 0; i < IGB_NRSSRK; ++i) {
2528 			uint32_t rssrk;
2529 
2530 			rssrk = IGB_RSSRK_VAL(key, i);
2531 			IGB_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2532 
2533 			E1000_WRITE_REG(hw, E1000_RSSRK(i), rssrk);
2534 		}
2535 
2536 		/*
2537 		 * Configure RSS redirect table in following fashion:
2538 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2539 		 */
2540 		reta_shift = IGB_RETA_SHIFT;
2541 		if (hw->mac.type == e1000_82575)
2542 			reta_shift = IGB_RETA_SHIFT_82575;
2543 
2544 		r = 0;
2545 		for (j = 0; j < IGB_NRETA; ++j) {
2546 			uint32_t reta = 0;
2547 
2548 			for (i = 0; i < IGB_RETA_SIZE; ++i) {
2549 				uint32_t q;
2550 
2551 				q = (r % sc->rx_ring_inuse) << reta_shift;
2552 				reta |= q << (8 * i);
2553 				++r;
2554 			}
2555 			IGB_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2556 			E1000_WRITE_REG(hw, E1000_RETA(j), reta);
2557 		}
2558 
2559 		/*
2560 		 * Enable multiple receive queues.
2561 		 * Enable IPv4 RSS standard hash functions.
2562 		 * Disable RSS interrupt on 82575
2563 		 */
2564 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2565 				E1000_MRQC_ENABLE_RSS_4Q |
2566 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2567 				E1000_MRQC_RSS_FIELD_IPV4);
2568 	}
2569 
2570 	/* Setup the Receive Control Register */
2571 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2572 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2573 	    E1000_RCTL_RDMTS_HALF |
2574 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2575 	/* Strip CRC bytes. */
2576 	rctl |= E1000_RCTL_SECRC;
2577 	/* Make sure VLAN Filters are off */
2578 	rctl &= ~E1000_RCTL_VFE;
2579 	/* Don't store bad packets */
2580 	rctl &= ~E1000_RCTL_SBP;
2581 
2582 	/* Enable Receives */
2583 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2584 
2585 	/*
2586 	 * Setup the HW Rx Head and Tail Descriptor Pointers
2587 	 *   - needs to be after enable
2588 	 */
2589 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2590 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
2591 
2592 		E1000_WRITE_REG(hw, E1000_RDH(i), rxr->next_to_check);
2593 		E1000_WRITE_REG(hw, E1000_RDT(i), rxr->num_rx_desc - 1);
2594 	}
2595 }
2596 
2597 static void
2598 igb_rx_refresh(struct igb_rx_ring *rxr, int i)
2599 {
2600 	if (--i < 0)
2601 		i = rxr->num_rx_desc - 1;
2602 	E1000_WRITE_REG(&rxr->sc->hw, E1000_RDT(rxr->me), i);
2603 }
2604 
2605 static void
2606 igb_rxeof(struct igb_rx_ring *rxr, int count)
2607 {
2608 	struct ifnet *ifp = &rxr->sc->arpcom.ac_if;
2609 	union e1000_adv_rx_desc	*cur;
2610 	uint32_t staterr;
2611 	int i, ncoll = 0, cpuid = mycpuid;
2612 
2613 	i = rxr->next_to_check;
2614 	cur = &rxr->rx_base[i];
2615 	staterr = le32toh(cur->wb.upper.status_error);
2616 
2617 	if ((staterr & E1000_RXD_STAT_DD) == 0)
2618 		return;
2619 
2620 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2621 		struct pktinfo *pi = NULL, pi0;
2622 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2623 		struct mbuf *m = NULL;
2624 		boolean_t eop;
2625 
2626 		eop = (staterr & E1000_RXD_STAT_EOP) ? TRUE : FALSE;
2627 		if (eop)
2628 			--count;
2629 
2630 		++ncoll;
2631 		if ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) == 0 &&
2632 		    !rxr->discard) {
2633 			struct mbuf *mp = rxbuf->m_head;
2634 			uint32_t hash, hashtype;
2635 			uint16_t vlan;
2636 			int len;
2637 
2638 			len = le16toh(cur->wb.upper.length);
2639 			if ((rxr->sc->hw.mac.type == e1000_i350 ||
2640 			     rxr->sc->hw.mac.type == e1000_i354) &&
2641 			    (staterr & E1000_RXDEXT_STATERR_LB))
2642 				vlan = be16toh(cur->wb.upper.vlan);
2643 			else
2644 				vlan = le16toh(cur->wb.upper.vlan);
2645 
2646 			hash = le32toh(cur->wb.lower.hi_dword.rss);
2647 			hashtype = le32toh(cur->wb.lower.lo_dword.data) &
2648 			    E1000_RXDADV_RSSTYPE_MASK;
2649 
2650 			IGB_RSS_DPRINTF(rxr->sc, 10,
2651 			    "ring%d, hash 0x%08x, hashtype %u\n",
2652 			    rxr->me, hash, hashtype);
2653 
2654 			bus_dmamap_sync(rxr->rx_tag, rxbuf->map,
2655 			    BUS_DMASYNC_POSTREAD);
2656 
2657 			if (igb_newbuf(rxr, i, FALSE) != 0) {
2658 				IFNET_STAT_INC(ifp, iqdrops, 1);
2659 				goto discard;
2660 			}
2661 
2662 			mp->m_len = len;
2663 			if (rxr->fmp == NULL) {
2664 				mp->m_pkthdr.len = len;
2665 				rxr->fmp = mp;
2666 				rxr->lmp = mp;
2667 			} else {
2668 				rxr->lmp->m_next = mp;
2669 				rxr->lmp = rxr->lmp->m_next;
2670 				rxr->fmp->m_pkthdr.len += len;
2671 			}
2672 
2673 			if (eop) {
2674 				m = rxr->fmp;
2675 				rxr->fmp = NULL;
2676 				rxr->lmp = NULL;
2677 
2678 				m->m_pkthdr.rcvif = ifp;
2679 				IFNET_STAT_INC(ifp, ipackets, 1);
2680 
2681 				if (ifp->if_capenable & IFCAP_RXCSUM)
2682 					igb_rxcsum(staterr, m);
2683 
2684 				if (staterr & E1000_RXD_STAT_VP) {
2685 					m->m_pkthdr.ether_vlantag = vlan;
2686 					m->m_flags |= M_VLANTAG;
2687 				}
2688 
2689 				if (ifp->if_capenable & IFCAP_RSS) {
2690 					pi = igb_rssinfo(m, &pi0,
2691 					    hash, hashtype, staterr);
2692 				}
2693 #ifdef IGB_RSS_DEBUG
2694 				rxr->rx_packets++;
2695 #endif
2696 			}
2697 		} else {
2698 			IFNET_STAT_INC(ifp, ierrors, 1);
2699 discard:
2700 			igb_setup_rxdesc(cur, rxbuf);
2701 			if (!eop)
2702 				rxr->discard = TRUE;
2703 			else
2704 				rxr->discard = FALSE;
2705 			if (rxr->fmp != NULL) {
2706 				m_freem(rxr->fmp);
2707 				rxr->fmp = NULL;
2708 				rxr->lmp = NULL;
2709 			}
2710 			m = NULL;
2711 		}
2712 
2713 		if (m != NULL)
2714 			ifp->if_input(ifp, m, pi, cpuid);
2715 
2716 		/* Advance our pointers to the next descriptor. */
2717 		if (++i == rxr->num_rx_desc)
2718 			i = 0;
2719 
2720 		if (ncoll >= rxr->wreg_nsegs) {
2721 			igb_rx_refresh(rxr, i);
2722 			ncoll = 0;
2723 		}
2724 
2725 		cur = &rxr->rx_base[i];
2726 		staterr = le32toh(cur->wb.upper.status_error);
2727 	}
2728 	rxr->next_to_check = i;
2729 
2730 	if (ncoll > 0)
2731 		igb_rx_refresh(rxr, i);
2732 }
2733 
2734 
2735 static void
2736 igb_set_vlan(struct igb_softc *sc)
2737 {
2738 	struct e1000_hw *hw = &sc->hw;
2739 	uint32_t reg;
2740 #if 0
2741 	struct ifnet *ifp = sc->arpcom.ac_if;
2742 #endif
2743 
2744 	if (sc->vf_ifp) {
2745 		e1000_rlpml_set_vf(hw, sc->max_frame_size + VLAN_TAG_SIZE);
2746 		return;
2747 	}
2748 
2749 	reg = E1000_READ_REG(hw, E1000_CTRL);
2750 	reg |= E1000_CTRL_VME;
2751 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
2752 
2753 #if 0
2754 	/* Enable the Filter Table */
2755 	if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
2756 		reg = E1000_READ_REG(hw, E1000_RCTL);
2757 		reg &= ~E1000_RCTL_CFIEN;
2758 		reg |= E1000_RCTL_VFE;
2759 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
2760 	}
2761 #endif
2762 
2763 	/* Update the frame size */
2764 	E1000_WRITE_REG(&sc->hw, E1000_RLPML,
2765 	    sc->max_frame_size + VLAN_TAG_SIZE);
2766 
2767 #if 0
2768 	/* Don't bother with table if no vlans */
2769 	if ((adapter->num_vlans == 0) ||
2770 	    ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0))
2771 		return;
2772 	/*
2773 	** A soft reset zero's out the VFTA, so
2774 	** we need to repopulate it now.
2775 	*/
2776 	for (int i = 0; i < IGB_VFTA_SIZE; i++)
2777 		if (adapter->shadow_vfta[i] != 0) {
2778 			if (adapter->vf_ifp)
2779 				e1000_vfta_set_vf(hw,
2780 				    adapter->shadow_vfta[i], TRUE);
2781 			else
2782 				E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
2783 				 i, adapter->shadow_vfta[i]);
2784 		}
2785 #endif
2786 }
2787 
2788 static void
2789 igb_enable_intr(struct igb_softc *sc)
2790 {
2791 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2792 		lwkt_serialize_handler_enable(&sc->main_serialize);
2793 	} else {
2794 		int i;
2795 
2796 		for (i = 0; i < sc->msix_cnt; ++i) {
2797 			lwkt_serialize_handler_enable(
2798 			    sc->msix_data[i].msix_serialize);
2799 		}
2800 	}
2801 
2802 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2803 		if (sc->intr_type == PCI_INTR_TYPE_MSIX)
2804 			E1000_WRITE_REG(&sc->hw, E1000_EIAC, sc->intr_mask);
2805 		else
2806 			E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2807 		E1000_WRITE_REG(&sc->hw, E1000_EIAM, sc->intr_mask);
2808 		E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
2809 		E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
2810 	} else {
2811 		E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
2812 	}
2813 	E1000_WRITE_FLUSH(&sc->hw);
2814 }
2815 
2816 static void
2817 igb_disable_intr(struct igb_softc *sc)
2818 {
2819 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2820 		E1000_WRITE_REG(&sc->hw, E1000_EIMC, 0xffffffff);
2821 		E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2822 	}
2823 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2824 	E1000_WRITE_FLUSH(&sc->hw);
2825 
2826 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2827 		lwkt_serialize_handler_disable(&sc->main_serialize);
2828 	} else {
2829 		int i;
2830 
2831 		for (i = 0; i < sc->msix_cnt; ++i) {
2832 			lwkt_serialize_handler_disable(
2833 			    sc->msix_data[i].msix_serialize);
2834 		}
2835 	}
2836 }
2837 
2838 /*
2839  * Bit of a misnomer, what this really means is
2840  * to enable OS management of the system... aka
2841  * to disable special hardware management features
2842  */
2843 static void
2844 igb_get_mgmt(struct igb_softc *sc)
2845 {
2846 	if (sc->flags & IGB_FLAG_HAS_MGMT) {
2847 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2848 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2849 
2850 		/* disable hardware interception of ARP */
2851 		manc &= ~E1000_MANC_ARP_EN;
2852 
2853 		/* enable receiving management packets to the host */
2854 		manc |= E1000_MANC_EN_MNG2HOST;
2855 		manc2h |= 1 << 5; /* Mng Port 623 */
2856 		manc2h |= 1 << 6; /* Mng Port 664 */
2857 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
2858 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2859 	}
2860 }
2861 
2862 /*
2863  * Give control back to hardware management controller
2864  * if there is one.
2865  */
2866 static void
2867 igb_rel_mgmt(struct igb_softc *sc)
2868 {
2869 	if (sc->flags & IGB_FLAG_HAS_MGMT) {
2870 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2871 
2872 		/* Re-enable hardware interception of ARP */
2873 		manc |= E1000_MANC_ARP_EN;
2874 		manc &= ~E1000_MANC_EN_MNG2HOST;
2875 
2876 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2877 	}
2878 }
2879 
2880 /*
2881  * Sets CTRL_EXT:DRV_LOAD bit.
2882  *
2883  * For ASF and Pass Through versions of f/w this means that
2884  * the driver is loaded.
2885  */
2886 static void
2887 igb_get_hw_control(struct igb_softc *sc)
2888 {
2889 	uint32_t ctrl_ext;
2890 
2891 	if (sc->vf_ifp)
2892 		return;
2893 
2894 	/* Let firmware know the driver has taken over */
2895 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2896 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2897 	    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2898 }
2899 
2900 /*
2901  * Resets CTRL_EXT:DRV_LOAD bit.
2902  *
2903  * For ASF and Pass Through versions of f/w this means that the
2904  * driver is no longer loaded.
2905  */
2906 static void
2907 igb_rel_hw_control(struct igb_softc *sc)
2908 {
2909 	uint32_t ctrl_ext;
2910 
2911 	if (sc->vf_ifp)
2912 		return;
2913 
2914 	/* Let firmware taken over control of h/w */
2915 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2916 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2917 	    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2918 }
2919 
2920 static boolean_t
2921 igb_is_valid_ether_addr(const uint8_t *addr)
2922 {
2923 	uint8_t zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
2924 
2925 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
2926 		return FALSE;
2927 	return TRUE;
2928 }
2929 
2930 /*
2931  * Enable PCI Wake On Lan capability
2932  */
2933 static void
2934 igb_enable_wol(device_t dev)
2935 {
2936 	uint16_t cap, status;
2937 	uint8_t id;
2938 
2939 	/* First find the capabilities pointer*/
2940 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
2941 
2942 	/* Read the PM Capabilities */
2943 	id = pci_read_config(dev, cap, 1);
2944 	if (id != PCIY_PMG)     /* Something wrong */
2945 		return;
2946 
2947 	/*
2948 	 * OK, we have the power capabilities,
2949 	 * so now get the status register
2950 	 */
2951 	cap += PCIR_POWER_STATUS;
2952 	status = pci_read_config(dev, cap, 2);
2953 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2954 	pci_write_config(dev, cap, status, 2);
2955 }
2956 
2957 static void
2958 igb_update_stats_counters(struct igb_softc *sc)
2959 {
2960 	struct e1000_hw *hw = &sc->hw;
2961 	struct e1000_hw_stats *stats;
2962 	struct ifnet *ifp = &sc->arpcom.ac_if;
2963 
2964 	/*
2965 	 * The virtual function adapter has only a
2966 	 * small controlled set of stats, do only
2967 	 * those and return.
2968 	 */
2969 	if (sc->vf_ifp) {
2970 		igb_update_vf_stats_counters(sc);
2971 		return;
2972 	}
2973 	stats = sc->stats;
2974 
2975 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
2976 	    (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
2977 		stats->symerrs +=
2978 		    E1000_READ_REG(hw,E1000_SYMERRS);
2979 		stats->sec += E1000_READ_REG(hw, E1000_SEC);
2980 	}
2981 
2982 	stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
2983 	stats->mpc += E1000_READ_REG(hw, E1000_MPC);
2984 	stats->scc += E1000_READ_REG(hw, E1000_SCC);
2985 	stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
2986 
2987 	stats->mcc += E1000_READ_REG(hw, E1000_MCC);
2988 	stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
2989 	stats->colc += E1000_READ_REG(hw, E1000_COLC);
2990 	stats->dc += E1000_READ_REG(hw, E1000_DC);
2991 	stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
2992 	stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
2993 	stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
2994 
2995 	/*
2996 	 * For watchdog management we need to know if we have been
2997 	 * paused during the last interval, so capture that here.
2998 	 */
2999 	sc->pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
3000 	stats->xoffrxc += sc->pause_frames;
3001 	stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
3002 	stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
3003 	stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
3004 	stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
3005 	stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
3006 	stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
3007 	stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
3008 	stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
3009 	stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
3010 	stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
3011 	stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
3012 	stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
3013 
3014 	/* For the 64-bit byte counters the low dword must be read first. */
3015 	/* Both registers clear on the read of the high dword */
3016 
3017 	stats->gorc += E1000_READ_REG(hw, E1000_GORCL) +
3018 	    ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
3019 	stats->gotc += E1000_READ_REG(hw, E1000_GOTCL) +
3020 	    ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
3021 
3022 	stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
3023 	stats->ruc += E1000_READ_REG(hw, E1000_RUC);
3024 	stats->rfc += E1000_READ_REG(hw, E1000_RFC);
3025 	stats->roc += E1000_READ_REG(hw, E1000_ROC);
3026 	stats->rjc += E1000_READ_REG(hw, E1000_RJC);
3027 
3028 	stats->tor += E1000_READ_REG(hw, E1000_TORH);
3029 	stats->tot += E1000_READ_REG(hw, E1000_TOTH);
3030 
3031 	stats->tpr += E1000_READ_REG(hw, E1000_TPR);
3032 	stats->tpt += E1000_READ_REG(hw, E1000_TPT);
3033 	stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
3034 	stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
3035 	stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
3036 	stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
3037 	stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
3038 	stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
3039 	stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
3040 	stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
3041 
3042 	/* Interrupt Counts */
3043 
3044 	stats->iac += E1000_READ_REG(hw, E1000_IAC);
3045 	stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
3046 	stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
3047 	stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
3048 	stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
3049 	stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
3050 	stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
3051 	stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
3052 	stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
3053 
3054 	/* Host to Card Statistics */
3055 
3056 	stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
3057 	stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
3058 	stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
3059 	stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
3060 	stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
3061 	stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
3062 	stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
3063 	stats->hgorc += (E1000_READ_REG(hw, E1000_HGORCL) +
3064 	    ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32));
3065 	stats->hgotc += (E1000_READ_REG(hw, E1000_HGOTCL) +
3066 	    ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32));
3067 	stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
3068 	stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
3069 	stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
3070 
3071 	stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
3072 	stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
3073 	stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
3074 	stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
3075 	stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
3076 	stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
3077 
3078 	IFNET_STAT_SET(ifp, collisions, stats->colc);
3079 
3080 	/* Rx Errors */
3081 	IFNET_STAT_SET(ifp, ierrors,
3082 	    stats->rxerrc + stats->crcerrs + stats->algnerrc +
3083 	    stats->ruc + stats->roc + stats->mpc + stats->cexterr);
3084 
3085 	/* Tx Errors */
3086 	IFNET_STAT_SET(ifp, oerrors,
3087 	    stats->ecol + stats->latecol + sc->watchdog_events);
3088 
3089 	/* Driver specific counters */
3090 	sc->device_control = E1000_READ_REG(hw, E1000_CTRL);
3091 	sc->rx_control = E1000_READ_REG(hw, E1000_RCTL);
3092 	sc->int_mask = E1000_READ_REG(hw, E1000_IMS);
3093 	sc->eint_mask = E1000_READ_REG(hw, E1000_EIMS);
3094 	sc->packet_buf_alloc_tx =
3095 	    ((E1000_READ_REG(hw, E1000_PBA) & 0xffff0000) >> 16);
3096 	sc->packet_buf_alloc_rx =
3097 	    (E1000_READ_REG(hw, E1000_PBA) & 0xffff);
3098 }
3099 
3100 static void
3101 igb_vf_init_stats(struct igb_softc *sc)
3102 {
3103 	struct e1000_hw *hw = &sc->hw;
3104 	struct e1000_vf_stats *stats;
3105 
3106 	stats = sc->stats;
3107 	stats->last_gprc = E1000_READ_REG(hw, E1000_VFGPRC);
3108 	stats->last_gorc = E1000_READ_REG(hw, E1000_VFGORC);
3109 	stats->last_gptc = E1000_READ_REG(hw, E1000_VFGPTC);
3110 	stats->last_gotc = E1000_READ_REG(hw, E1000_VFGOTC);
3111 	stats->last_mprc = E1000_READ_REG(hw, E1000_VFMPRC);
3112 }
3113 
3114 static void
3115 igb_update_vf_stats_counters(struct igb_softc *sc)
3116 {
3117 	struct e1000_hw *hw = &sc->hw;
3118 	struct e1000_vf_stats *stats;
3119 
3120 	if (sc->link_speed == 0)
3121 		return;
3122 
3123 	stats = sc->stats;
3124 	UPDATE_VF_REG(E1000_VFGPRC, stats->last_gprc, stats->gprc);
3125 	UPDATE_VF_REG(E1000_VFGORC, stats->last_gorc, stats->gorc);
3126 	UPDATE_VF_REG(E1000_VFGPTC, stats->last_gptc, stats->gptc);
3127 	UPDATE_VF_REG(E1000_VFGOTC, stats->last_gotc, stats->gotc);
3128 	UPDATE_VF_REG(E1000_VFMPRC, stats->last_mprc, stats->mprc);
3129 }
3130 
3131 #ifdef IFPOLL_ENABLE
3132 
3133 static void
3134 igb_npoll_status(struct ifnet *ifp)
3135 {
3136 	struct igb_softc *sc = ifp->if_softc;
3137 	uint32_t reg_icr;
3138 
3139 	ASSERT_SERIALIZED(&sc->main_serialize);
3140 
3141 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3142 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3143 		sc->hw.mac.get_link_status = 1;
3144 		igb_update_link_status(sc);
3145 	}
3146 }
3147 
3148 static void
3149 igb_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
3150 {
3151 	struct igb_tx_ring *txr = arg;
3152 
3153 	ASSERT_SERIALIZED(&txr->tx_serialize);
3154 
3155 	igb_txeof(txr);
3156 	if (!ifsq_is_empty(txr->ifsq))
3157 		ifsq_devstart(txr->ifsq);
3158 }
3159 
3160 static void
3161 igb_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
3162 {
3163 	struct igb_rx_ring *rxr = arg;
3164 
3165 	ASSERT_SERIALIZED(&rxr->rx_serialize);
3166 
3167 	igb_rxeof(rxr, cycle);
3168 }
3169 
3170 static void
3171 igb_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3172 {
3173 	struct igb_softc *sc = ifp->if_softc;
3174 	int i, txr_cnt, rxr_cnt;
3175 
3176 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3177 
3178 	if (info) {
3179 		int off;
3180 
3181 		info->ifpi_status.status_func = igb_npoll_status;
3182 		info->ifpi_status.serializer = &sc->main_serialize;
3183 
3184 		txr_cnt = igb_get_txring_inuse(sc, TRUE);
3185 		off = sc->tx_npoll_off;
3186 		for (i = 0; i < txr_cnt; ++i) {
3187 			struct igb_tx_ring *txr = &sc->tx_rings[i];
3188 			int idx = i + off;
3189 
3190 			KKASSERT(idx < ncpus2);
3191 			info->ifpi_tx[idx].poll_func = igb_npoll_tx;
3192 			info->ifpi_tx[idx].arg = txr;
3193 			info->ifpi_tx[idx].serializer = &txr->tx_serialize;
3194 			ifsq_set_cpuid(txr->ifsq, idx);
3195 		}
3196 
3197 		rxr_cnt = igb_get_rxring_inuse(sc, TRUE);
3198 		off = sc->rx_npoll_off;
3199 		for (i = 0; i < rxr_cnt; ++i) {
3200 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
3201 			int idx = i + off;
3202 
3203 			KKASSERT(idx < ncpus2);
3204 			info->ifpi_rx[idx].poll_func = igb_npoll_rx;
3205 			info->ifpi_rx[idx].arg = rxr;
3206 			info->ifpi_rx[idx].serializer = &rxr->rx_serialize;
3207 		}
3208 
3209 		if (ifp->if_flags & IFF_RUNNING) {
3210 			if (rxr_cnt == sc->rx_ring_inuse &&
3211 			    txr_cnt == sc->tx_ring_inuse) {
3212 				igb_set_timer_cpuid(sc, TRUE);
3213 				igb_disable_intr(sc);
3214 			} else {
3215 				igb_init(sc);
3216 			}
3217 		}
3218 	} else {
3219 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
3220 			struct igb_tx_ring *txr = &sc->tx_rings[i];
3221 
3222 			ifsq_set_cpuid(txr->ifsq, txr->tx_intr_cpuid);
3223 		}
3224 
3225 		if (ifp->if_flags & IFF_RUNNING) {
3226 			txr_cnt = igb_get_txring_inuse(sc, FALSE);
3227 			rxr_cnt = igb_get_rxring_inuse(sc, FALSE);
3228 
3229 			if (rxr_cnt == sc->rx_ring_inuse &&
3230 			    txr_cnt == sc->tx_ring_inuse) {
3231 				igb_set_timer_cpuid(sc, FALSE);
3232 				igb_enable_intr(sc);
3233 			} else {
3234 				igb_init(sc);
3235 			}
3236 		}
3237 	}
3238 }
3239 
3240 #endif /* IFPOLL_ENABLE */
3241 
3242 static void
3243 igb_intr(void *xsc)
3244 {
3245 	struct igb_softc *sc = xsc;
3246 	struct ifnet *ifp = &sc->arpcom.ac_if;
3247 	uint32_t eicr;
3248 
3249 	ASSERT_SERIALIZED(&sc->main_serialize);
3250 
3251 	eicr = E1000_READ_REG(&sc->hw, E1000_EICR);
3252 
3253 	if (eicr == 0)
3254 		return;
3255 
3256 	if (ifp->if_flags & IFF_RUNNING) {
3257 		struct igb_tx_ring *txr = &sc->tx_rings[0];
3258 		int i;
3259 
3260 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3261 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
3262 
3263 			if (eicr & rxr->rx_intr_mask) {
3264 				lwkt_serialize_enter(&rxr->rx_serialize);
3265 				igb_rxeof(rxr, -1);
3266 				lwkt_serialize_exit(&rxr->rx_serialize);
3267 			}
3268 		}
3269 
3270 		if (eicr & txr->tx_intr_mask) {
3271 			lwkt_serialize_enter(&txr->tx_serialize);
3272 			igb_txeof(txr);
3273 			if (!ifsq_is_empty(txr->ifsq))
3274 				ifsq_devstart(txr->ifsq);
3275 			lwkt_serialize_exit(&txr->tx_serialize);
3276 		}
3277 	}
3278 
3279 	if (eicr & E1000_EICR_OTHER) {
3280 		uint32_t icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3281 
3282 		/* Link status change */
3283 		if (icr & E1000_ICR_LSC) {
3284 			sc->hw.mac.get_link_status = 1;
3285 			igb_update_link_status(sc);
3286 		}
3287 	}
3288 
3289 	/*
3290 	 * Reading EICR has the side effect to clear interrupt mask,
3291 	 * so all interrupts need to be enabled here.
3292 	 */
3293 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
3294 }
3295 
3296 static void
3297 igb_intr_shared(void *xsc)
3298 {
3299 	struct igb_softc *sc = xsc;
3300 	struct ifnet *ifp = &sc->arpcom.ac_if;
3301 	uint32_t reg_icr;
3302 
3303 	ASSERT_SERIALIZED(&sc->main_serialize);
3304 
3305 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3306 
3307 	/* Hot eject?  */
3308 	if (reg_icr == 0xffffffff)
3309 		return;
3310 
3311 	/* Definitely not our interrupt.  */
3312 	if (reg_icr == 0x0)
3313 		return;
3314 
3315 	if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0)
3316 		return;
3317 
3318 	if (ifp->if_flags & IFF_RUNNING) {
3319 		if (reg_icr &
3320 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
3321 			int i;
3322 
3323 			for (i = 0; i < sc->rx_ring_inuse; ++i) {
3324 				struct igb_rx_ring *rxr = &sc->rx_rings[i];
3325 
3326 				lwkt_serialize_enter(&rxr->rx_serialize);
3327 				igb_rxeof(rxr, -1);
3328 				lwkt_serialize_exit(&rxr->rx_serialize);
3329 			}
3330 		}
3331 
3332 		if (reg_icr & E1000_ICR_TXDW) {
3333 			struct igb_tx_ring *txr = &sc->tx_rings[0];
3334 
3335 			lwkt_serialize_enter(&txr->tx_serialize);
3336 			igb_txeof(txr);
3337 			if (!ifsq_is_empty(txr->ifsq))
3338 				ifsq_devstart(txr->ifsq);
3339 			lwkt_serialize_exit(&txr->tx_serialize);
3340 		}
3341 	}
3342 
3343 	/* Link status change */
3344 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3345 		sc->hw.mac.get_link_status = 1;
3346 		igb_update_link_status(sc);
3347 	}
3348 
3349 	if (reg_icr & E1000_ICR_RXO)
3350 		sc->rx_overruns++;
3351 }
3352 
3353 static int
3354 igb_encap(struct igb_tx_ring *txr, struct mbuf **m_headp,
3355     int *segs_used, int *idx)
3356 {
3357 	bus_dma_segment_t segs[IGB_MAX_SCATTER];
3358 	bus_dmamap_t map;
3359 	struct igb_tx_buf *tx_buf, *tx_buf_mapped;
3360 	union e1000_adv_tx_desc	*txd = NULL;
3361 	struct mbuf *m_head = *m_headp;
3362 	uint32_t olinfo_status = 0, cmd_type_len = 0, cmd_rs = 0;
3363 	int maxsegs, nsegs, i, j, error;
3364 	uint32_t hdrlen = 0;
3365 
3366 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3367 		error = igb_tso_pullup(txr, m_headp);
3368 		if (error)
3369 			return error;
3370 		m_head = *m_headp;
3371 	}
3372 
3373 	/* Set basic descriptor constants */
3374 	cmd_type_len |= E1000_ADVTXD_DTYP_DATA;
3375 	cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
3376 	if (m_head->m_flags & M_VLANTAG)
3377 		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3378 
3379 	/*
3380 	 * Map the packet for DMA.
3381 	 */
3382 	tx_buf = &txr->tx_buf[txr->next_avail_desc];
3383 	tx_buf_mapped = tx_buf;
3384 	map = tx_buf->map;
3385 
3386 	maxsegs = txr->tx_avail - IGB_TX_RESERVED;
3387 	KASSERT(maxsegs >= txr->spare_desc, ("not enough spare TX desc\n"));
3388 	if (maxsegs > IGB_MAX_SCATTER)
3389 		maxsegs = IGB_MAX_SCATTER;
3390 
3391 	error = bus_dmamap_load_mbuf_defrag(txr->tx_tag, map, m_headp,
3392 	    segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3393 	if (error) {
3394 		if (error == ENOBUFS)
3395 			txr->sc->mbuf_defrag_failed++;
3396 		else
3397 			txr->sc->no_tx_dma_setup++;
3398 
3399 		m_freem(*m_headp);
3400 		*m_headp = NULL;
3401 		return error;
3402 	}
3403 	bus_dmamap_sync(txr->tx_tag, map, BUS_DMASYNC_PREWRITE);
3404 
3405 	m_head = *m_headp;
3406 
3407 	/*
3408 	 * Set up the TX context descriptor, if any hardware offloading is
3409 	 * needed.  This includes CSUM, VLAN, and TSO.  It will consume one
3410 	 * TX descriptor.
3411 	 *
3412 	 * Unlike these chips' predecessors (em/emx), TX context descriptor
3413 	 * will _not_ interfere TX data fetching pipelining.
3414 	 */
3415 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3416 		igb_tso_ctx(txr, m_head, &hdrlen);
3417 		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3418 		olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3419 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3420 		txr->tx_nsegs++;
3421 		(*segs_used)++;
3422 	} else if (igb_txcsum_ctx(txr, m_head)) {
3423 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3424 			olinfo_status |= (E1000_TXD_POPTS_IXSM << 8);
3425 		if (m_head->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_TCP))
3426 			olinfo_status |= (E1000_TXD_POPTS_TXSM << 8);
3427 		txr->tx_nsegs++;
3428 		(*segs_used)++;
3429 	}
3430 
3431 	*segs_used += nsegs;
3432 	txr->tx_nsegs += nsegs;
3433 	if (txr->tx_nsegs >= txr->intr_nsegs) {
3434 		/*
3435 		 * Report Status (RS) is turned on every intr_nsegs
3436 		 * descriptors (roughly).
3437 		 */
3438 		txr->tx_nsegs = 0;
3439 		cmd_rs = E1000_ADVTXD_DCMD_RS;
3440 	}
3441 
3442 	/* Calculate payload length */
3443 	olinfo_status |= ((m_head->m_pkthdr.len - hdrlen)
3444 	    << E1000_ADVTXD_PAYLEN_SHIFT);
3445 
3446 	/*
3447 	 * 82575 needs the TX context index added; the queue
3448 	 * index is used as TX context index here.
3449 	 */
3450 	if (txr->sc->hw.mac.type == e1000_82575)
3451 		olinfo_status |= txr->me << 4;
3452 
3453 	/* Set up our transmit descriptors */
3454 	i = txr->next_avail_desc;
3455 	for (j = 0; j < nsegs; j++) {
3456 		bus_size_t seg_len;
3457 		bus_addr_t seg_addr;
3458 
3459 		tx_buf = &txr->tx_buf[i];
3460 		txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
3461 		seg_addr = segs[j].ds_addr;
3462 		seg_len = segs[j].ds_len;
3463 
3464 		txd->read.buffer_addr = htole64(seg_addr);
3465 		txd->read.cmd_type_len = htole32(cmd_type_len | seg_len);
3466 		txd->read.olinfo_status = htole32(olinfo_status);
3467 		if (++i == txr->num_tx_desc)
3468 			i = 0;
3469 		tx_buf->m_head = NULL;
3470 	}
3471 
3472 	KASSERT(txr->tx_avail > nsegs, ("invalid avail TX desc\n"));
3473 	txr->next_avail_desc = i;
3474 	txr->tx_avail -= nsegs;
3475 
3476 	tx_buf->m_head = m_head;
3477 	tx_buf_mapped->map = tx_buf->map;
3478 	tx_buf->map = map;
3479 
3480 	/*
3481 	 * Last Descriptor of Packet needs End Of Packet (EOP)
3482 	 */
3483 	txd->read.cmd_type_len |= htole32(E1000_ADVTXD_DCMD_EOP | cmd_rs);
3484 
3485 	/*
3486 	 * Defer TDT updating, until enough descrptors are setup
3487 	 */
3488 	*idx = i;
3489 #ifdef IGB_TSS_DEBUG
3490 	++txr->tx_packets;
3491 #endif
3492 
3493 	return 0;
3494 }
3495 
3496 static void
3497 igb_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3498 {
3499 	struct igb_softc *sc = ifp->if_softc;
3500 	struct igb_tx_ring *txr = ifsq_get_priv(ifsq);
3501 	struct mbuf *m_head;
3502 	int idx = -1, nsegs = 0;
3503 
3504 	KKASSERT(txr->ifsq == ifsq);
3505 	ASSERT_SERIALIZED(&txr->tx_serialize);
3506 
3507 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
3508 		return;
3509 
3510 	if (!sc->link_active || (txr->tx_flags & IGB_TXFLAG_ENABLED) == 0) {
3511 		ifsq_purge(ifsq);
3512 		return;
3513 	}
3514 
3515 	if (!IGB_IS_NOT_OACTIVE(txr))
3516 		igb_txeof(txr);
3517 
3518 	while (!ifsq_is_empty(ifsq)) {
3519 		if (IGB_IS_OACTIVE(txr)) {
3520 			ifsq_set_oactive(ifsq);
3521 			/* Set watchdog on */
3522 			txr->tx_watchdog.wd_timer = 5;
3523 			break;
3524 		}
3525 
3526 		m_head = ifsq_dequeue(ifsq);
3527 		if (m_head == NULL)
3528 			break;
3529 
3530 		if (igb_encap(txr, &m_head, &nsegs, &idx)) {
3531 			IFNET_STAT_INC(ifp, oerrors, 1);
3532 			continue;
3533 		}
3534 
3535 		if (nsegs >= txr->wreg_nsegs) {
3536 			E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3537 			idx = -1;
3538 			nsegs = 0;
3539 		}
3540 
3541 		/* Send a copy of the frame to the BPF listener */
3542 		ETHER_BPF_MTAP(ifp, m_head);
3543 	}
3544 	if (idx >= 0)
3545 		E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3546 }
3547 
3548 static void
3549 igb_watchdog(struct ifaltq_subque *ifsq)
3550 {
3551 	struct igb_tx_ring *txr = ifsq_get_priv(ifsq);
3552 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
3553 	struct igb_softc *sc = ifp->if_softc;
3554 	int i;
3555 
3556 	KKASSERT(txr->ifsq == ifsq);
3557 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3558 
3559 	/*
3560 	 * If flow control has paused us since last checking
3561 	 * it invalidates the watchdog timing, so dont run it.
3562 	 */
3563 	if (sc->pause_frames) {
3564 		sc->pause_frames = 0;
3565 		txr->tx_watchdog.wd_timer = 5;
3566 		return;
3567 	}
3568 
3569 	if_printf(ifp, "Watchdog timeout -- resetting\n");
3570 	if_printf(ifp, "Queue(%d) tdh = %d, hw tdt = %d\n", txr->me,
3571 	    E1000_READ_REG(&sc->hw, E1000_TDH(txr->me)),
3572 	    E1000_READ_REG(&sc->hw, E1000_TDT(txr->me)));
3573 	if_printf(ifp, "TX(%d) desc avail = %d, "
3574 	    "Next TX to Clean = %d\n",
3575 	    txr->me, txr->tx_avail, txr->next_to_clean);
3576 
3577 	IFNET_STAT_INC(ifp, oerrors, 1);
3578 	sc->watchdog_events++;
3579 
3580 	igb_init(sc);
3581 	for (i = 0; i < sc->tx_ring_inuse; ++i)
3582 		ifsq_devstart_sched(sc->tx_rings[i].ifsq);
3583 }
3584 
3585 static void
3586 igb_set_eitr(struct igb_softc *sc, int idx, int rate)
3587 {
3588 	uint32_t eitr = 0;
3589 
3590 	if (rate > 0) {
3591 		if (sc->hw.mac.type == e1000_82575) {
3592 			eitr = 1000000000 / 256 / rate;
3593 			/*
3594 			 * NOTE:
3595 			 * Document is wrong on the 2 bits left shift
3596 			 */
3597 		} else {
3598 			eitr = 1000000 / rate;
3599 			eitr <<= IGB_EITR_INTVL_SHIFT;
3600 		}
3601 
3602 		if (eitr == 0) {
3603 			/* Don't disable it */
3604 			eitr = 1 << IGB_EITR_INTVL_SHIFT;
3605 		} else if (eitr > IGB_EITR_INTVL_MASK) {
3606 			/* Don't allow it to be too large */
3607 			eitr = IGB_EITR_INTVL_MASK;
3608 		}
3609 	}
3610 	if (sc->hw.mac.type == e1000_82575)
3611 		eitr |= eitr << 16;
3612 	else
3613 		eitr |= E1000_EITR_CNT_IGNR;
3614 	E1000_WRITE_REG(&sc->hw, E1000_EITR(idx), eitr);
3615 }
3616 
3617 static int
3618 igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3619 {
3620 	struct igb_softc *sc = (void *)arg1;
3621 	struct ifnet *ifp = &sc->arpcom.ac_if;
3622 	int error, intr_rate;
3623 
3624 	intr_rate = sc->intr_rate;
3625 	error = sysctl_handle_int(oidp, &intr_rate, 0, req);
3626 	if (error || req->newptr == NULL)
3627 		return error;
3628 	if (intr_rate < 0)
3629 		return EINVAL;
3630 
3631 	ifnet_serialize_all(ifp);
3632 
3633 	sc->intr_rate = intr_rate;
3634 	if (ifp->if_flags & IFF_RUNNING)
3635 		igb_set_eitr(sc, 0, sc->intr_rate);
3636 
3637 	if (bootverbose)
3638 		if_printf(ifp, "interrupt rate set to %d/sec\n", sc->intr_rate);
3639 
3640 	ifnet_deserialize_all(ifp);
3641 
3642 	return 0;
3643 }
3644 
3645 static int
3646 igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS)
3647 {
3648 	struct igb_msix_data *msix = (void *)arg1;
3649 	struct igb_softc *sc = msix->msix_sc;
3650 	struct ifnet *ifp = &sc->arpcom.ac_if;
3651 	int error, msix_rate;
3652 
3653 	msix_rate = msix->msix_rate;
3654 	error = sysctl_handle_int(oidp, &msix_rate, 0, req);
3655 	if (error || req->newptr == NULL)
3656 		return error;
3657 	if (msix_rate < 0)
3658 		return EINVAL;
3659 
3660 	lwkt_serialize_enter(msix->msix_serialize);
3661 
3662 	msix->msix_rate = msix_rate;
3663 	if (ifp->if_flags & IFF_RUNNING)
3664 		igb_set_eitr(sc, msix->msix_vector, msix->msix_rate);
3665 
3666 	if (bootverbose) {
3667 		if_printf(ifp, "%s set to %d/sec\n", msix->msix_rate_desc,
3668 		    msix->msix_rate);
3669 	}
3670 
3671 	lwkt_serialize_exit(msix->msix_serialize);
3672 
3673 	return 0;
3674 }
3675 
3676 static int
3677 igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3678 {
3679 	struct igb_softc *sc = (void *)arg1;
3680 	struct ifnet *ifp = &sc->arpcom.ac_if;
3681 	struct igb_tx_ring *txr = &sc->tx_rings[0];
3682 	int error, nsegs;
3683 
3684 	nsegs = txr->intr_nsegs;
3685 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3686 	if (error || req->newptr == NULL)
3687 		return error;
3688 	if (nsegs <= 0)
3689 		return EINVAL;
3690 
3691 	ifnet_serialize_all(ifp);
3692 
3693 	if (nsegs >= txr->num_tx_desc - txr->oact_lo_desc ||
3694 	    nsegs >= txr->oact_hi_desc - IGB_MAX_SCATTER) {
3695 		error = EINVAL;
3696 	} else {
3697 		int i;
3698 
3699 		error = 0;
3700 		for (i = 0; i < sc->tx_ring_cnt; ++i)
3701 			sc->tx_rings[i].intr_nsegs = nsegs;
3702 	}
3703 
3704 	ifnet_deserialize_all(ifp);
3705 
3706 	return error;
3707 }
3708 
3709 static int
3710 igb_sysctl_rx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3711 {
3712 	struct igb_softc *sc = (void *)arg1;
3713 	struct ifnet *ifp = &sc->arpcom.ac_if;
3714 	int error, nsegs, i;
3715 
3716 	nsegs = sc->rx_rings[0].wreg_nsegs;
3717 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3718 	if (error || req->newptr == NULL)
3719 		return error;
3720 
3721 	ifnet_serialize_all(ifp);
3722 	for (i = 0; i < sc->rx_ring_cnt; ++i)
3723 		sc->rx_rings[i].wreg_nsegs =nsegs;
3724 	ifnet_deserialize_all(ifp);
3725 
3726 	return 0;
3727 }
3728 
3729 static int
3730 igb_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3731 {
3732 	struct igb_softc *sc = (void *)arg1;
3733 	struct ifnet *ifp = &sc->arpcom.ac_if;
3734 	int error, nsegs, i;
3735 
3736 	nsegs = sc->tx_rings[0].wreg_nsegs;
3737 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3738 	if (error || req->newptr == NULL)
3739 		return error;
3740 
3741 	ifnet_serialize_all(ifp);
3742 	for (i = 0; i < sc->tx_ring_cnt; ++i)
3743 		sc->tx_rings[i].wreg_nsegs =nsegs;
3744 	ifnet_deserialize_all(ifp);
3745 
3746 	return 0;
3747 }
3748 
3749 #ifdef IFPOLL_ENABLE
3750 
3751 static int
3752 igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3753 {
3754 	struct igb_softc *sc = (void *)arg1;
3755 	struct ifnet *ifp = &sc->arpcom.ac_if;
3756 	int error, off;
3757 
3758 	off = sc->rx_npoll_off;
3759 	error = sysctl_handle_int(oidp, &off, 0, req);
3760 	if (error || req->newptr == NULL)
3761 		return error;
3762 	if (off < 0)
3763 		return EINVAL;
3764 
3765 	ifnet_serialize_all(ifp);
3766 	if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3767 		error = EINVAL;
3768 	} else {
3769 		error = 0;
3770 		sc->rx_npoll_off = off;
3771 	}
3772 	ifnet_deserialize_all(ifp);
3773 
3774 	return error;
3775 }
3776 
3777 static int
3778 igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3779 {
3780 	struct igb_softc *sc = (void *)arg1;
3781 	struct ifnet *ifp = &sc->arpcom.ac_if;
3782 	int error, off;
3783 
3784 	off = sc->tx_npoll_off;
3785 	error = sysctl_handle_int(oidp, &off, 0, req);
3786 	if (error || req->newptr == NULL)
3787 		return error;
3788 	if (off < 0)
3789 		return EINVAL;
3790 
3791 	ifnet_serialize_all(ifp);
3792 	if (off >= ncpus2 || off % sc->tx_ring_cnt != 0) {
3793 		error = EINVAL;
3794 	} else {
3795 		error = 0;
3796 		sc->tx_npoll_off = off;
3797 	}
3798 	ifnet_deserialize_all(ifp);
3799 
3800 	return error;
3801 }
3802 
3803 #endif	/* IFPOLL_ENABLE */
3804 
3805 static void
3806 igb_init_intr(struct igb_softc *sc)
3807 {
3808 	igb_set_intr_mask(sc);
3809 
3810 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0)
3811 		igb_init_unshared_intr(sc);
3812 
3813 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
3814 		igb_set_eitr(sc, 0, sc->intr_rate);
3815 	} else {
3816 		int i;
3817 
3818 		for (i = 0; i < sc->msix_cnt; ++i)
3819 			igb_set_eitr(sc, i, sc->msix_data[i].msix_rate);
3820 	}
3821 }
3822 
3823 static void
3824 igb_init_unshared_intr(struct igb_softc *sc)
3825 {
3826 	struct e1000_hw *hw = &sc->hw;
3827 	const struct igb_rx_ring *rxr;
3828 	const struct igb_tx_ring *txr;
3829 	uint32_t ivar, index;
3830 	int i;
3831 
3832 	/*
3833 	 * Enable extended mode
3834 	 */
3835 	if (sc->hw.mac.type != e1000_82575) {
3836 		uint32_t gpie;
3837 		int ivar_max;
3838 
3839 		gpie = E1000_GPIE_NSICR;
3840 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3841 			gpie |= E1000_GPIE_MSIX_MODE |
3842 			    E1000_GPIE_EIAME |
3843 			    E1000_GPIE_PBA;
3844 		}
3845 		E1000_WRITE_REG(hw, E1000_GPIE, gpie);
3846 
3847 		/*
3848 		 * Clear IVARs
3849 		 */
3850 		switch (sc->hw.mac.type) {
3851 		case e1000_82576:
3852 			ivar_max = IGB_MAX_IVAR_82576;
3853 			break;
3854 
3855 		case e1000_82580:
3856 			ivar_max = IGB_MAX_IVAR_82580;
3857 			break;
3858 
3859 		case e1000_i350:
3860 			ivar_max = IGB_MAX_IVAR_I350;
3861 			break;
3862 
3863 		case e1000_i354:
3864 			ivar_max = IGB_MAX_IVAR_I354;
3865 			break;
3866 
3867 		case e1000_vfadapt:
3868 		case e1000_vfadapt_i350:
3869 			ivar_max = IGB_MAX_IVAR_VF;
3870 			break;
3871 
3872 		case e1000_i210:
3873 			ivar_max = IGB_MAX_IVAR_I210;
3874 			break;
3875 
3876 		case e1000_i211:
3877 			ivar_max = IGB_MAX_IVAR_I211;
3878 			break;
3879 
3880 		default:
3881 			panic("unknown mac type %d\n", sc->hw.mac.type);
3882 		}
3883 		for (i = 0; i < ivar_max; ++i)
3884 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, 0);
3885 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, 0);
3886 	} else {
3887 		uint32_t tmp;
3888 
3889 		KASSERT(sc->intr_type != PCI_INTR_TYPE_MSIX,
3890 		    ("82575 w/ MSI-X"));
3891 		tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
3892 		tmp |= E1000_CTRL_EXT_IRCA;
3893 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
3894 	}
3895 
3896 	/*
3897 	 * Map TX/RX interrupts to EICR
3898 	 */
3899 	switch (sc->hw.mac.type) {
3900 	case e1000_82580:
3901 	case e1000_i350:
3902 	case e1000_i354:
3903 	case e1000_vfadapt:
3904 	case e1000_vfadapt_i350:
3905 	case e1000_i210:
3906 	case e1000_i211:
3907 		/* RX entries */
3908 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3909 			rxr = &sc->rx_rings[i];
3910 
3911 			index = i >> 1;
3912 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3913 
3914 			if (i & 1) {
3915 				ivar &= 0xff00ffff;
3916 				ivar |=
3917 				(rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3918 			} else {
3919 				ivar &= 0xffffff00;
3920 				ivar |=
3921 				(rxr->rx_intr_bit | E1000_IVAR_VALID);
3922 			}
3923 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3924 		}
3925 		/* TX entries */
3926 		for (i = 0; i < sc->tx_ring_inuse; ++i) {
3927 			txr = &sc->tx_rings[i];
3928 
3929 			index = i >> 1;
3930 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3931 
3932 			if (i & 1) {
3933 				ivar &= 0x00ffffff;
3934 				ivar |=
3935 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3936 			} else {
3937 				ivar &= 0xffff00ff;
3938 				ivar |=
3939 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3940 			}
3941 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3942 		}
3943 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3944 			ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3945 			E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3946 		}
3947 		break;
3948 
3949 	case e1000_82576:
3950 		/* RX entries */
3951 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3952 			rxr = &sc->rx_rings[i];
3953 
3954 			index = i & 0x7; /* Each IVAR has two entries */
3955 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3956 
3957 			if (i < 8) {
3958 				ivar &= 0xffffff00;
3959 				ivar |=
3960 				(rxr->rx_intr_bit | E1000_IVAR_VALID);
3961 			} else {
3962 				ivar &= 0xff00ffff;
3963 				ivar |=
3964 				(rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3965 			}
3966 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3967 		}
3968 		/* TX entries */
3969 		for (i = 0; i < sc->tx_ring_inuse; ++i) {
3970 			txr = &sc->tx_rings[i];
3971 
3972 			index = i & 0x7; /* Each IVAR has two entries */
3973 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3974 
3975 			if (i < 8) {
3976 				ivar &= 0xffff00ff;
3977 				ivar |=
3978 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3979 			} else {
3980 				ivar &= 0x00ffffff;
3981 				ivar |=
3982 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3983 			}
3984 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3985 		}
3986 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3987 			ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3988 			E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3989 		}
3990 		break;
3991 
3992 	case e1000_82575:
3993 		/*
3994 		 * Enable necessary interrupt bits.
3995 		 *
3996 		 * The name of the register is confusing; in addition to
3997 		 * configuring the first vector of MSI-X, it also configures
3998 		 * which bits of EICR could be set by the hardware even when
3999 		 * MSI or line interrupt is used; it thus controls interrupt
4000 		 * generation.  It MUST be configured explicitly; the default
4001 		 * value mentioned in the datasheet is wrong: RX queue0 and
4002 		 * TX queue0 are NOT enabled by default.
4003 		 */
4004 		E1000_WRITE_REG(&sc->hw, E1000_MSIXBM(0), sc->intr_mask);
4005 		break;
4006 
4007 	default:
4008 		panic("unknown mac type %d\n", sc->hw.mac.type);
4009 	}
4010 }
4011 
4012 static int
4013 igb_setup_intr(struct igb_softc *sc)
4014 {
4015 	int error;
4016 
4017 	if (sc->intr_type == PCI_INTR_TYPE_MSIX)
4018 		return igb_msix_setup(sc);
4019 
4020 	error = bus_setup_intr(sc->dev, sc->intr_res, INTR_MPSAFE,
4021 	    (sc->flags & IGB_FLAG_SHARED_INTR) ? igb_intr_shared : igb_intr,
4022 	    sc, &sc->intr_tag, &sc->main_serialize);
4023 	if (error) {
4024 		device_printf(sc->dev, "Failed to register interrupt handler");
4025 		return error;
4026 	}
4027 	return 0;
4028 }
4029 
4030 static void
4031 igb_set_txintr_mask(struct igb_tx_ring *txr, int *intr_bit0, int intr_bitmax)
4032 {
4033 	if (txr->sc->hw.mac.type == e1000_82575) {
4034 		txr->tx_intr_bit = 0;	/* unused */
4035 		switch (txr->me) {
4036 		case 0:
4037 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE0;
4038 			break;
4039 		case 1:
4040 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE1;
4041 			break;
4042 		case 2:
4043 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE2;
4044 			break;
4045 		case 3:
4046 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE3;
4047 			break;
4048 		default:
4049 			panic("unsupported # of TX ring, %d\n", txr->me);
4050 		}
4051 	} else {
4052 		int intr_bit = *intr_bit0;
4053 
4054 		txr->tx_intr_bit = intr_bit % intr_bitmax;
4055 		txr->tx_intr_mask = 1 << txr->tx_intr_bit;
4056 
4057 		*intr_bit0 = intr_bit + 1;
4058 	}
4059 }
4060 
4061 static void
4062 igb_set_rxintr_mask(struct igb_rx_ring *rxr, int *intr_bit0, int intr_bitmax)
4063 {
4064 	if (rxr->sc->hw.mac.type == e1000_82575) {
4065 		rxr->rx_intr_bit = 0;	/* unused */
4066 		switch (rxr->me) {
4067 		case 0:
4068 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE0;
4069 			break;
4070 		case 1:
4071 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE1;
4072 			break;
4073 		case 2:
4074 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE2;
4075 			break;
4076 		case 3:
4077 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE3;
4078 			break;
4079 		default:
4080 			panic("unsupported # of RX ring, %d\n", rxr->me);
4081 		}
4082 	} else {
4083 		int intr_bit = *intr_bit0;
4084 
4085 		rxr->rx_intr_bit = intr_bit % intr_bitmax;
4086 		rxr->rx_intr_mask = 1 << rxr->rx_intr_bit;
4087 
4088 		*intr_bit0 = intr_bit + 1;
4089 	}
4090 }
4091 
4092 static void
4093 igb_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
4094 {
4095 	struct igb_softc *sc = ifp->if_softc;
4096 
4097 	ifnet_serialize_array_enter(sc->serializes, sc->serialize_cnt, slz);
4098 }
4099 
4100 static void
4101 igb_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4102 {
4103 	struct igb_softc *sc = ifp->if_softc;
4104 
4105 	ifnet_serialize_array_exit(sc->serializes, sc->serialize_cnt, slz);
4106 }
4107 
4108 static int
4109 igb_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4110 {
4111 	struct igb_softc *sc = ifp->if_softc;
4112 
4113 	return ifnet_serialize_array_try(sc->serializes, sc->serialize_cnt,
4114 	    slz);
4115 }
4116 
4117 #ifdef INVARIANTS
4118 
4119 static void
4120 igb_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
4121     boolean_t serialized)
4122 {
4123 	struct igb_softc *sc = ifp->if_softc;
4124 
4125 	ifnet_serialize_array_assert(sc->serializes, sc->serialize_cnt,
4126 	    slz, serialized);
4127 }
4128 
4129 #endif	/* INVARIANTS */
4130 
4131 static void
4132 igb_set_intr_mask(struct igb_softc *sc)
4133 {
4134 	int i;
4135 
4136 	sc->intr_mask = sc->sts_intr_mask;
4137 	for (i = 0; i < sc->rx_ring_inuse; ++i)
4138 		sc->intr_mask |= sc->rx_rings[i].rx_intr_mask;
4139 	for (i = 0; i < sc->tx_ring_inuse; ++i)
4140 		sc->intr_mask |= sc->tx_rings[i].tx_intr_mask;
4141 	if (bootverbose) {
4142 		if_printf(&sc->arpcom.ac_if, "intr mask 0x%08x\n",
4143 		    sc->intr_mask);
4144 	}
4145 }
4146 
4147 static int
4148 igb_alloc_intr(struct igb_softc *sc)
4149 {
4150 	int i, intr_bit, intr_bitmax;
4151 	u_int intr_flags;
4152 
4153 	igb_msix_try_alloc(sc);
4154 	if (sc->intr_type == PCI_INTR_TYPE_MSIX)
4155 		goto done;
4156 
4157 	/*
4158 	 * Allocate MSI/legacy interrupt resource
4159 	 */
4160 	sc->intr_type = pci_alloc_1intr(sc->dev, igb_msi_enable,
4161 	    &sc->intr_rid, &intr_flags);
4162 
4163 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
4164 		int unshared;
4165 
4166 		unshared = device_getenv_int(sc->dev, "irq.unshared", 0);
4167 		if (!unshared) {
4168 			sc->flags |= IGB_FLAG_SHARED_INTR;
4169 			if (bootverbose)
4170 				device_printf(sc->dev, "IRQ shared\n");
4171 		} else {
4172 			intr_flags &= ~RF_SHAREABLE;
4173 			if (bootverbose)
4174 				device_printf(sc->dev, "IRQ unshared\n");
4175 		}
4176 	}
4177 
4178 	sc->intr_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4179 	    &sc->intr_rid, intr_flags);
4180 	if (sc->intr_res == NULL) {
4181 		device_printf(sc->dev, "Unable to allocate bus resource: "
4182 		    "interrupt\n");
4183 		return ENXIO;
4184 	}
4185 
4186 	for (i = 0; i < sc->tx_ring_cnt; ++i)
4187 		sc->tx_rings[i].tx_intr_cpuid = rman_get_cpuid(sc->intr_res);
4188 
4189 	/*
4190 	 * Setup MSI/legacy interrupt mask
4191 	 */
4192 	switch (sc->hw.mac.type) {
4193 	case e1000_82575:
4194 		intr_bitmax = IGB_MAX_TXRXINT_82575;
4195 		break;
4196 
4197 	case e1000_82576:
4198 		intr_bitmax = IGB_MAX_TXRXINT_82576;
4199 		break;
4200 
4201 	case e1000_82580:
4202 		intr_bitmax = IGB_MAX_TXRXINT_82580;
4203 		break;
4204 
4205 	case e1000_i350:
4206 		intr_bitmax = IGB_MAX_TXRXINT_I350;
4207 		break;
4208 
4209 	case e1000_i354:
4210 		intr_bitmax = IGB_MAX_TXRXINT_I354;
4211 		break;
4212 
4213 	case e1000_i210:
4214 		intr_bitmax = IGB_MAX_TXRXINT_I210;
4215 		break;
4216 
4217 	case e1000_i211:
4218 		intr_bitmax = IGB_MAX_TXRXINT_I211;
4219 		break;
4220 
4221 	default:
4222 		intr_bitmax = IGB_MIN_TXRXINT;
4223 		break;
4224 	}
4225 	intr_bit = 0;
4226 	for (i = 0; i < sc->tx_ring_cnt; ++i)
4227 		igb_set_txintr_mask(&sc->tx_rings[i], &intr_bit, intr_bitmax);
4228 	for (i = 0; i < sc->rx_ring_cnt; ++i)
4229 		igb_set_rxintr_mask(&sc->rx_rings[i], &intr_bit, intr_bitmax);
4230 	sc->sts_intr_bit = 0;
4231 	sc->sts_intr_mask = E1000_EICR_OTHER;
4232 
4233 	/* Initialize interrupt rate */
4234 	sc->intr_rate = IGB_INTR_RATE;
4235 done:
4236 	igb_set_ring_inuse(sc, FALSE);
4237 	igb_set_intr_mask(sc);
4238 	return 0;
4239 }
4240 
4241 static void
4242 igb_free_intr(struct igb_softc *sc)
4243 {
4244 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
4245 		if (sc->intr_res != NULL) {
4246 			bus_release_resource(sc->dev, SYS_RES_IRQ, sc->intr_rid,
4247 			    sc->intr_res);
4248 		}
4249 		if (sc->intr_type == PCI_INTR_TYPE_MSI)
4250 			pci_release_msi(sc->dev);
4251 	} else {
4252 		igb_msix_free(sc, TRUE);
4253 	}
4254 }
4255 
4256 static void
4257 igb_teardown_intr(struct igb_softc *sc)
4258 {
4259 	if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4260 		bus_teardown_intr(sc->dev, sc->intr_res, sc->intr_tag);
4261 	else
4262 		igb_msix_teardown(sc, sc->msix_cnt);
4263 }
4264 
4265 static void
4266 igb_msix_try_alloc(struct igb_softc *sc)
4267 {
4268 	int msix_enable, msix_cnt, msix_cnt2, alloc_cnt;
4269 	int i, x, error;
4270 	int offset, offset_def;
4271 	struct igb_msix_data *msix;
4272 	boolean_t aggregate, setup = FALSE;
4273 
4274 	/*
4275 	 * Don't enable MSI-X on 82575, see:
4276 	 * 82575 specification update errata #25
4277 	 */
4278 	if (sc->hw.mac.type == e1000_82575)
4279 		return;
4280 
4281 	/* Don't enable MSI-X on VF */
4282 	if (sc->vf_ifp)
4283 		return;
4284 
4285 	msix_enable = device_getenv_int(sc->dev, "msix.enable",
4286 	    igb_msix_enable);
4287 	if (!msix_enable)
4288 		return;
4289 
4290 	msix_cnt = pci_msix_count(sc->dev);
4291 #ifdef IGB_MSIX_DEBUG
4292 	msix_cnt = device_getenv_int(sc->dev, "msix.count", msix_cnt);
4293 #endif
4294 	if (msix_cnt <= 1) {
4295 		/* One MSI-X model does not make sense */
4296 		return;
4297 	}
4298 
4299 	i = 0;
4300 	while ((1 << (i + 1)) <= msix_cnt)
4301 		++i;
4302 	msix_cnt2 = 1 << i;
4303 
4304 	if (bootverbose) {
4305 		device_printf(sc->dev, "MSI-X count %d/%d\n",
4306 		    msix_cnt2, msix_cnt);
4307 	}
4308 
4309 	KKASSERT(msix_cnt2 <= msix_cnt);
4310 	if (msix_cnt == msix_cnt2) {
4311 		/* We need at least one MSI-X for link status */
4312 		msix_cnt2 >>= 1;
4313 		if (msix_cnt2 <= 1) {
4314 			/* One MSI-X for RX/TX does not make sense */
4315 			device_printf(sc->dev, "not enough MSI-X for TX/RX, "
4316 			    "MSI-X count %d/%d\n", msix_cnt2, msix_cnt);
4317 			return;
4318 		}
4319 		KKASSERT(msix_cnt > msix_cnt2);
4320 
4321 		if (bootverbose) {
4322 			device_printf(sc->dev, "MSI-X count fixup %d/%d\n",
4323 			    msix_cnt2, msix_cnt);
4324 		}
4325 	}
4326 
4327 	sc->rx_ring_msix = sc->rx_ring_cnt;
4328 	if (sc->rx_ring_msix > msix_cnt2)
4329 		sc->rx_ring_msix = msix_cnt2;
4330 
4331 	sc->tx_ring_msix = sc->tx_ring_cnt;
4332 	if (sc->tx_ring_msix > msix_cnt2)
4333 		sc->tx_ring_msix = msix_cnt2;
4334 
4335 	if (msix_cnt >= sc->tx_ring_msix + sc->rx_ring_msix + 1) {
4336 		/*
4337 		 * Independent TX/RX MSI-X
4338 		 */
4339 		aggregate = FALSE;
4340 		if (bootverbose)
4341 			device_printf(sc->dev, "independent TX/RX MSI-X\n");
4342 		alloc_cnt = sc->tx_ring_msix + sc->rx_ring_msix;
4343 	} else {
4344 		/*
4345 		 * Aggregate TX/RX MSI-X
4346 		 */
4347 		aggregate = TRUE;
4348 		if (bootverbose)
4349 			device_printf(sc->dev, "aggregate TX/RX MSI-X\n");
4350 		alloc_cnt = msix_cnt2;
4351 		if (alloc_cnt > ncpus2)
4352 			alloc_cnt = ncpus2;
4353 		if (sc->rx_ring_msix > alloc_cnt)
4354 			sc->rx_ring_msix = alloc_cnt;
4355 		if (sc->tx_ring_msix > alloc_cnt)
4356 			sc->tx_ring_msix = alloc_cnt;
4357 	}
4358 	++alloc_cnt;	/* For link status */
4359 
4360 	if (bootverbose) {
4361 		device_printf(sc->dev, "MSI-X alloc %d, "
4362 		    "RX ring %d, TX ring %d\n", alloc_cnt,
4363 		    sc->rx_ring_msix, sc->tx_ring_msix);
4364 	}
4365 
4366 	sc->msix_mem_rid = PCIR_BAR(IGB_MSIX_BAR);
4367 	sc->msix_mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4368 	    &sc->msix_mem_rid, RF_ACTIVE);
4369 	if (sc->msix_mem_res == NULL) {
4370 		sc->msix_mem_rid = PCIR_BAR(IGB_MSIX_BAR_ALT);
4371 		sc->msix_mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4372 		    &sc->msix_mem_rid, RF_ACTIVE);
4373 		if (sc->msix_mem_res == NULL) {
4374 			device_printf(sc->dev, "Unable to map MSI-X table\n");
4375 			return;
4376 		}
4377 	}
4378 
4379 	sc->msix_cnt = alloc_cnt;
4380 	sc->msix_data = kmalloc_cachealign(
4381 	    sizeof(struct igb_msix_data) * sc->msix_cnt,
4382 	    M_DEVBUF, M_WAITOK | M_ZERO);
4383 	for (x = 0; x < sc->msix_cnt; ++x) {
4384 		msix = &sc->msix_data[x];
4385 
4386 		lwkt_serialize_init(&msix->msix_serialize0);
4387 		msix->msix_sc = sc;
4388 		msix->msix_rid = -1;
4389 		msix->msix_vector = x;
4390 		msix->msix_mask = 1 << msix->msix_vector;
4391 		msix->msix_rate = IGB_INTR_RATE;
4392 	}
4393 
4394 	x = 0;
4395 	if (!aggregate) {
4396 		/*
4397 		 * RX rings
4398 		 */
4399 		if (sc->rx_ring_msix == ncpus2) {
4400 			offset = 0;
4401 		} else {
4402 			offset_def = (sc->rx_ring_msix *
4403 			    device_get_unit(sc->dev)) % ncpus2;
4404 
4405 			offset = device_getenv_int(sc->dev,
4406 			    "msix.rxoff", offset_def);
4407 			if (offset >= ncpus2 ||
4408 			    offset % sc->rx_ring_msix != 0) {
4409 				device_printf(sc->dev,
4410 				    "invalid msix.rxoff %d, use %d\n",
4411 				    offset, offset_def);
4412 				offset = offset_def;
4413 			}
4414 		}
4415 		igb_msix_rx_conf(sc, 0, &x, offset);
4416 
4417 		/*
4418 		 * TX rings
4419 		 */
4420 		if (sc->tx_ring_msix == ncpus2) {
4421 			offset = 0;
4422 		} else {
4423 			offset_def = (sc->tx_ring_msix *
4424 			    device_get_unit(sc->dev)) % ncpus2;
4425 
4426 			offset = device_getenv_int(sc->dev,
4427 			    "msix.txoff", offset_def);
4428 			if (offset >= ncpus2 ||
4429 			    offset % sc->tx_ring_msix != 0) {
4430 				device_printf(sc->dev,
4431 				    "invalid msix.txoff %d, use %d\n",
4432 				    offset, offset_def);
4433 				offset = offset_def;
4434 			}
4435 		}
4436 		igb_msix_tx_conf(sc, 0, &x, offset);
4437 	} else {
4438 		int ring_agg, ring_max;
4439 
4440 		ring_agg = sc->rx_ring_msix;
4441 		if (ring_agg > sc->tx_ring_msix)
4442 			ring_agg = sc->tx_ring_msix;
4443 
4444 		ring_max = sc->rx_ring_msix;
4445 		if (ring_max < sc->tx_ring_msix)
4446 			ring_max = sc->tx_ring_msix;
4447 
4448 		if (ring_max == ncpus2) {
4449 			offset = 0;
4450 		} else {
4451 			offset_def = (ring_max * device_get_unit(sc->dev)) %
4452 			    ncpus2;
4453 
4454 			offset = device_getenv_int(sc->dev, "msix.off",
4455 			    offset_def);
4456 			if (offset >= ncpus2 || offset % ring_max != 0) {
4457 				device_printf(sc->dev,
4458 				    "invalid msix.off %d, use %d\n",
4459 				    offset, offset_def);
4460 				offset = offset_def;
4461 			}
4462 		}
4463 
4464 		for (i = 0; i < ring_agg; ++i) {
4465 			struct igb_tx_ring *txr = &sc->tx_rings[i];
4466 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
4467 
4468 			KKASSERT(x < sc->msix_cnt);
4469 			msix = &sc->msix_data[x++];
4470 
4471 			txr->tx_intr_bit = msix->msix_vector;
4472 			txr->tx_intr_mask = msix->msix_mask;
4473 			rxr->rx_intr_bit = msix->msix_vector;
4474 			rxr->rx_intr_mask = msix->msix_mask;
4475 
4476 			msix->msix_serialize = &msix->msix_serialize0;
4477 			msix->msix_func = igb_msix_rxtx;
4478 			msix->msix_arg = msix;
4479 			msix->msix_rx = rxr;
4480 			msix->msix_tx = txr;
4481 
4482 			msix->msix_cpuid = i + offset;
4483 			KKASSERT(msix->msix_cpuid < ncpus2);
4484 			txr->tx_intr_cpuid = msix->msix_cpuid;
4485 
4486 			ksnprintf(msix->msix_desc, sizeof(msix->msix_desc),
4487 			    "%s rxtx%d", device_get_nameunit(sc->dev), i);
4488 			msix->msix_rate = IGB_MSIX_RX_RATE;
4489 			ksnprintf(msix->msix_rate_desc,
4490 			    sizeof(msix->msix_rate_desc),
4491 			    "RXTX%d interrupt rate", i);
4492 		}
4493 
4494 		if (ring_agg != ring_max) {
4495 			if (ring_max == sc->tx_ring_msix)
4496 				igb_msix_tx_conf(sc, i, &x, offset);
4497 			else
4498 				igb_msix_rx_conf(sc, i, &x, offset);
4499 		}
4500 	}
4501 
4502 	/*
4503 	 * Link status
4504 	 */
4505 	KKASSERT(x < sc->msix_cnt);
4506 	msix = &sc->msix_data[x++];
4507 	sc->sts_intr_bit = msix->msix_vector;
4508 	sc->sts_intr_mask = msix->msix_mask;
4509 
4510 	msix->msix_serialize = &sc->main_serialize;
4511 	msix->msix_func = igb_msix_status;
4512 	msix->msix_arg = sc;
4513 	msix->msix_cpuid = 0;
4514 	ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s sts",
4515 	    device_get_nameunit(sc->dev));
4516 	ksnprintf(msix->msix_rate_desc, sizeof(msix->msix_rate_desc),
4517 	    "status interrupt rate");
4518 
4519 	KKASSERT(x == sc->msix_cnt);
4520 
4521 	error = pci_setup_msix(sc->dev);
4522 	if (error) {
4523 		device_printf(sc->dev, "Setup MSI-X failed\n");
4524 		goto back;
4525 	}
4526 	setup = TRUE;
4527 
4528 	for (i = 0; i < sc->msix_cnt; ++i) {
4529 		msix = &sc->msix_data[i];
4530 
4531 		error = pci_alloc_msix_vector(sc->dev, msix->msix_vector,
4532 		    &msix->msix_rid, msix->msix_cpuid);
4533 		if (error) {
4534 			device_printf(sc->dev,
4535 			    "Unable to allocate MSI-X %d on cpu%d\n",
4536 			    msix->msix_vector, msix->msix_cpuid);
4537 			goto back;
4538 		}
4539 
4540 		msix->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4541 		    &msix->msix_rid, RF_ACTIVE);
4542 		if (msix->msix_res == NULL) {
4543 			device_printf(sc->dev,
4544 			    "Unable to allocate MSI-X %d resource\n",
4545 			    msix->msix_vector);
4546 			error = ENOMEM;
4547 			goto back;
4548 		}
4549 	}
4550 
4551 	pci_enable_msix(sc->dev);
4552 	sc->intr_type = PCI_INTR_TYPE_MSIX;
4553 back:
4554 	if (error)
4555 		igb_msix_free(sc, setup);
4556 }
4557 
4558 static void
4559 igb_msix_free(struct igb_softc *sc, boolean_t setup)
4560 {
4561 	int i;
4562 
4563 	KKASSERT(sc->msix_cnt > 1);
4564 
4565 	for (i = 0; i < sc->msix_cnt; ++i) {
4566 		struct igb_msix_data *msix = &sc->msix_data[i];
4567 
4568 		if (msix->msix_res != NULL) {
4569 			bus_release_resource(sc->dev, SYS_RES_IRQ,
4570 			    msix->msix_rid, msix->msix_res);
4571 		}
4572 		if (msix->msix_rid >= 0)
4573 			pci_release_msix_vector(sc->dev, msix->msix_rid);
4574 	}
4575 	if (setup)
4576 		pci_teardown_msix(sc->dev);
4577 
4578 	sc->msix_cnt = 0;
4579 	kfree(sc->msix_data, M_DEVBUF);
4580 	sc->msix_data = NULL;
4581 }
4582 
4583 static int
4584 igb_msix_setup(struct igb_softc *sc)
4585 {
4586 	int i;
4587 
4588 	for (i = 0; i < sc->msix_cnt; ++i) {
4589 		struct igb_msix_data *msix = &sc->msix_data[i];
4590 		int error;
4591 
4592 		error = bus_setup_intr_descr(sc->dev, msix->msix_res,
4593 		    INTR_MPSAFE, msix->msix_func, msix->msix_arg,
4594 		    &msix->msix_handle, msix->msix_serialize, msix->msix_desc);
4595 		if (error) {
4596 			device_printf(sc->dev, "could not set up %s "
4597 			    "interrupt handler.\n", msix->msix_desc);
4598 			igb_msix_teardown(sc, i);
4599 			return error;
4600 		}
4601 	}
4602 	return 0;
4603 }
4604 
4605 static void
4606 igb_msix_teardown(struct igb_softc *sc, int msix_cnt)
4607 {
4608 	int i;
4609 
4610 	for (i = 0; i < msix_cnt; ++i) {
4611 		struct igb_msix_data *msix = &sc->msix_data[i];
4612 
4613 		bus_teardown_intr(sc->dev, msix->msix_res, msix->msix_handle);
4614 	}
4615 }
4616 
4617 static void
4618 igb_msix_rx(void *arg)
4619 {
4620 	struct igb_rx_ring *rxr = arg;
4621 
4622 	ASSERT_SERIALIZED(&rxr->rx_serialize);
4623 	igb_rxeof(rxr, -1);
4624 
4625 	E1000_WRITE_REG(&rxr->sc->hw, E1000_EIMS, rxr->rx_intr_mask);
4626 }
4627 
4628 static void
4629 igb_msix_tx(void *arg)
4630 {
4631 	struct igb_tx_ring *txr = arg;
4632 
4633 	ASSERT_SERIALIZED(&txr->tx_serialize);
4634 
4635 	igb_txeof(txr);
4636 	if (!ifsq_is_empty(txr->ifsq))
4637 		ifsq_devstart(txr->ifsq);
4638 
4639 	E1000_WRITE_REG(&txr->sc->hw, E1000_EIMS, txr->tx_intr_mask);
4640 }
4641 
4642 static void
4643 igb_msix_status(void *arg)
4644 {
4645 	struct igb_softc *sc = arg;
4646 	uint32_t icr;
4647 
4648 	ASSERT_SERIALIZED(&sc->main_serialize);
4649 
4650 	icr = E1000_READ_REG(&sc->hw, E1000_ICR);
4651 	if (icr & E1000_ICR_LSC) {
4652 		sc->hw.mac.get_link_status = 1;
4653 		igb_update_link_status(sc);
4654 	}
4655 
4656 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->sts_intr_mask);
4657 }
4658 
4659 static void
4660 igb_set_ring_inuse(struct igb_softc *sc, boolean_t polling)
4661 {
4662 	sc->rx_ring_inuse = igb_get_rxring_inuse(sc, polling);
4663 	sc->tx_ring_inuse = igb_get_txring_inuse(sc, polling);
4664 	if (bootverbose) {
4665 		if_printf(&sc->arpcom.ac_if, "RX rings %d/%d, TX rings %d/%d\n",
4666 		    sc->rx_ring_inuse, sc->rx_ring_cnt,
4667 		    sc->tx_ring_inuse, sc->tx_ring_cnt);
4668 	}
4669 }
4670 
4671 static int
4672 igb_get_rxring_inuse(const struct igb_softc *sc, boolean_t polling)
4673 {
4674 	if (!IGB_ENABLE_HWRSS(sc))
4675 		return 1;
4676 
4677 	if (polling)
4678 		return sc->rx_ring_cnt;
4679 	else if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4680 		return IGB_MIN_RING_RSS;
4681 	else
4682 		return sc->rx_ring_msix;
4683 }
4684 
4685 static int
4686 igb_get_txring_inuse(const struct igb_softc *sc, boolean_t polling)
4687 {
4688 	if (!IGB_ENABLE_HWTSS(sc))
4689 		return 1;
4690 
4691 	if (polling)
4692 		return sc->tx_ring_cnt;
4693 	else if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4694 		return IGB_MIN_RING;
4695 	else
4696 		return sc->tx_ring_msix;
4697 }
4698 
4699 static int
4700 igb_tso_pullup(struct igb_tx_ring *txr, struct mbuf **mp)
4701 {
4702 	int hoff, iphlen, thoff;
4703 	struct mbuf *m;
4704 
4705 	m = *mp;
4706 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4707 
4708 	iphlen = m->m_pkthdr.csum_iphlen;
4709 	thoff = m->m_pkthdr.csum_thlen;
4710 	hoff = m->m_pkthdr.csum_lhlen;
4711 
4712 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4713 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4714 	KASSERT(hoff > 0, ("invalid ether hlen"));
4715 
4716 	if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
4717 		m = m_pullup(m, hoff + iphlen + thoff);
4718 		if (m == NULL) {
4719 			*mp = NULL;
4720 			return ENOBUFS;
4721 		}
4722 		*mp = m;
4723 	}
4724 	if (txr->tx_flags & IGB_TXFLAG_TSO_IPLEN0) {
4725 		struct ip *ip;
4726 
4727 		ip = mtodoff(m, struct ip *, hoff);
4728 		ip->ip_len = 0;
4729 	}
4730 
4731 	return 0;
4732 }
4733 
4734 static void
4735 igb_tso_ctx(struct igb_tx_ring *txr, struct mbuf *m, uint32_t *hlen)
4736 {
4737 	struct e1000_adv_tx_context_desc *TXD;
4738 	uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
4739 	int hoff, ctxd, iphlen, thoff;
4740 
4741 	iphlen = m->m_pkthdr.csum_iphlen;
4742 	thoff = m->m_pkthdr.csum_thlen;
4743 	hoff = m->m_pkthdr.csum_lhlen;
4744 
4745 	vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
4746 
4747 	ctxd = txr->next_avail_desc;
4748 	TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
4749 
4750 	if (m->m_flags & M_VLANTAG) {
4751 		uint16_t vlantag;
4752 
4753 		vlantag = htole16(m->m_pkthdr.ether_vlantag);
4754 		vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
4755 	}
4756 
4757 	vlan_macip_lens |= (hoff << E1000_ADVTXD_MACLEN_SHIFT);
4758 	vlan_macip_lens |= iphlen;
4759 
4760 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4761 	type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
4762 	type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
4763 
4764 	mss_l4len_idx |= (m->m_pkthdr.tso_segsz << E1000_ADVTXD_MSS_SHIFT);
4765 	mss_l4len_idx |= (thoff << E1000_ADVTXD_L4LEN_SHIFT);
4766 
4767 	/*
4768 	 * 82575 needs the TX context index added; the queue
4769 	 * index is used as TX context index here.
4770 	 */
4771 	if (txr->sc->hw.mac.type == e1000_82575)
4772 		mss_l4len_idx |= txr->me << 4;
4773 
4774 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
4775 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
4776 	TXD->seqnum_seed = htole32(0);
4777 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
4778 
4779 	/* We've consumed the first desc, adjust counters */
4780 	if (++ctxd == txr->num_tx_desc)
4781 		ctxd = 0;
4782 	txr->next_avail_desc = ctxd;
4783 	--txr->tx_avail;
4784 
4785 	*hlen = hoff + iphlen + thoff;
4786 }
4787 
4788 static void
4789 igb_setup_serializer(struct igb_softc *sc)
4790 {
4791 	const struct igb_msix_data *msix;
4792 	int i, j;
4793 
4794 	/*
4795 	 * Allocate serializer array
4796 	 */
4797 
4798 	/* Main + TX + RX */
4799 	sc->serialize_cnt = 1 + sc->tx_ring_cnt + sc->rx_ring_cnt;
4800 
4801 	/* Aggregate TX/RX MSI-X */
4802 	for (i = 0; i < sc->msix_cnt; ++i) {
4803 		msix = &sc->msix_data[i];
4804 		if (msix->msix_serialize == &msix->msix_serialize0)
4805 			sc->serialize_cnt++;
4806 	}
4807 
4808 	sc->serializes =
4809 	    kmalloc(sc->serialize_cnt * sizeof(struct lwkt_serialize *),
4810 	        M_DEVBUF, M_WAITOK | M_ZERO);
4811 
4812 	/*
4813 	 * Setup serializers
4814 	 *
4815 	 * NOTE: Order is critical
4816 	 */
4817 
4818 	i = 0;
4819 
4820 	KKASSERT(i < sc->serialize_cnt);
4821 	sc->serializes[i++] = &sc->main_serialize;
4822 
4823 	for (j = 0; j < sc->msix_cnt; ++j) {
4824 		msix = &sc->msix_data[j];
4825 		if (msix->msix_serialize == &msix->msix_serialize0) {
4826 			KKASSERT(i < sc->serialize_cnt);
4827 			sc->serializes[i++] = msix->msix_serialize;
4828 		}
4829 	}
4830 
4831 	for (j = 0; j < sc->tx_ring_cnt; ++j) {
4832 		KKASSERT(i < sc->serialize_cnt);
4833 		sc->serializes[i++] = &sc->tx_rings[j].tx_serialize;
4834 	}
4835 
4836 	for (j = 0; j < sc->rx_ring_cnt; ++j) {
4837 		KKASSERT(i < sc->serialize_cnt);
4838 		sc->serializes[i++] = &sc->rx_rings[j].rx_serialize;
4839 	}
4840 
4841 	KKASSERT(i == sc->serialize_cnt);
4842 }
4843 
4844 static void
4845 igb_msix_rx_conf(struct igb_softc *sc, int i, int *x0, int offset)
4846 {
4847 	int x = *x0;
4848 
4849 	for (; i < sc->rx_ring_msix; ++i) {
4850 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
4851 		struct igb_msix_data *msix;
4852 
4853 		KKASSERT(x < sc->msix_cnt);
4854 		msix = &sc->msix_data[x++];
4855 
4856 		rxr->rx_intr_bit = msix->msix_vector;
4857 		rxr->rx_intr_mask = msix->msix_mask;
4858 
4859 		msix->msix_serialize = &rxr->rx_serialize;
4860 		msix->msix_func = igb_msix_rx;
4861 		msix->msix_arg = rxr;
4862 
4863 		msix->msix_cpuid = i + offset;
4864 		KKASSERT(msix->msix_cpuid < ncpus2);
4865 
4866 		ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s rx%d",
4867 		    device_get_nameunit(sc->dev), i);
4868 
4869 		msix->msix_rate = IGB_MSIX_RX_RATE;
4870 		ksnprintf(msix->msix_rate_desc, sizeof(msix->msix_rate_desc),
4871 		    "RX%d interrupt rate", i);
4872 	}
4873 	*x0 = x;
4874 }
4875 
4876 static void
4877 igb_msix_tx_conf(struct igb_softc *sc, int i, int *x0, int offset)
4878 {
4879 	int x = *x0;
4880 
4881 	for (; i < sc->tx_ring_msix; ++i) {
4882 		struct igb_tx_ring *txr = &sc->tx_rings[i];
4883 		struct igb_msix_data *msix;
4884 
4885 		KKASSERT(x < sc->msix_cnt);
4886 		msix = &sc->msix_data[x++];
4887 
4888 		txr->tx_intr_bit = msix->msix_vector;
4889 		txr->tx_intr_mask = msix->msix_mask;
4890 
4891 		msix->msix_serialize = &txr->tx_serialize;
4892 		msix->msix_func = igb_msix_tx;
4893 		msix->msix_arg = txr;
4894 
4895 		msix->msix_cpuid = i + offset;
4896 		KKASSERT(msix->msix_cpuid < ncpus2);
4897 		txr->tx_intr_cpuid = msix->msix_cpuid;
4898 
4899 		ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s tx%d",
4900 		    device_get_nameunit(sc->dev), i);
4901 
4902 		msix->msix_rate = IGB_MSIX_TX_RATE;
4903 		ksnprintf(msix->msix_rate_desc, sizeof(msix->msix_rate_desc),
4904 		    "TX%d interrupt rate", i);
4905 	}
4906 	*x0 = x;
4907 }
4908 
4909 static void
4910 igb_msix_rxtx(void *arg)
4911 {
4912 	struct igb_msix_data *msix = arg;
4913 	struct igb_rx_ring *rxr = msix->msix_rx;
4914 	struct igb_tx_ring *txr = msix->msix_tx;
4915 
4916 	ASSERT_SERIALIZED(&msix->msix_serialize0);
4917 
4918 	lwkt_serialize_enter(&rxr->rx_serialize);
4919 	igb_rxeof(rxr, -1);
4920 	lwkt_serialize_exit(&rxr->rx_serialize);
4921 
4922 	lwkt_serialize_enter(&txr->tx_serialize);
4923 	igb_txeof(txr);
4924 	if (!ifsq_is_empty(txr->ifsq))
4925 		ifsq_devstart(txr->ifsq);
4926 	lwkt_serialize_exit(&txr->tx_serialize);
4927 
4928 	E1000_WRITE_REG(&msix->msix_sc->hw, E1000_EIMS, msix->msix_mask);
4929 }
4930 
4931 static void
4932 igb_set_timer_cpuid(struct igb_softc *sc, boolean_t polling)
4933 {
4934 	if (polling || sc->intr_type == PCI_INTR_TYPE_MSIX)
4935 		sc->timer_cpuid = 0; /* XXX fixed */
4936 	else
4937 		sc->timer_cpuid = rman_get_cpuid(sc->intr_res);
4938 }
4939