xref: /dragonfly/sys/dev/netif/igb/if_igb.c (revision f26349bc)
1 /*
2  * Copyright (c) 2001-2011, Intel Corporation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  *  1. Redistributions of source code must retain the above copyright notice,
9  *     this list of conditions and the following disclaimer.
10  *
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  3. Neither the name of the Intel Corporation nor the names of its
16  *     contributors may be used to endorse or promote products derived from
17  *     this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include "opt_ifpoll.h"
33 #include "opt_igb.h"
34 
35 #include <sys/param.h>
36 #include <sys/bus.h>
37 #include <sys/endian.h>
38 #include <sys/interrupt.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/proc.h>
43 #include <sys/rman.h>
44 #include <sys/serialize.h>
45 #include <sys/serialize2.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50 
51 #include <net/bpf.h>
52 #include <net/ethernet.h>
53 #include <net/if.h>
54 #include <net/if_arp.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/ifq_var.h>
58 #include <net/toeplitz.h>
59 #include <net/toeplitz2.h>
60 #include <net/vlan/if_vlan_var.h>
61 #include <net/vlan/if_vlan_ether.h>
62 #include <net/if_poll.h>
63 
64 #include <netinet/in_systm.h>
65 #include <netinet/in.h>
66 #include <netinet/ip.h>
67 
68 #include <bus/pci/pcivar.h>
69 #include <bus/pci/pcireg.h>
70 
71 #include <dev/netif/ig_hal/e1000_api.h>
72 #include <dev/netif/ig_hal/e1000_82575.h>
73 #include <dev/netif/igb/if_igb.h>
74 
75 #ifdef IGB_RSS_DEBUG
76 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...) \
77 do { \
78 	if (sc->rss_debug >= lvl) \
79 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
80 } while (0)
81 #else	/* !IGB_RSS_DEBUG */
82 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
83 #endif	/* IGB_RSS_DEBUG */
84 
85 #define IGB_NAME	"Intel(R) PRO/1000 "
86 #define IGB_DEVICE(id)	\
87 	{ IGB_VENDOR_ID, E1000_DEV_ID_##id, IGB_NAME #id }
88 #define IGB_DEVICE_NULL	{ 0, 0, NULL }
89 
90 static struct igb_device {
91 	uint16_t	vid;
92 	uint16_t	did;
93 	const char	*desc;
94 } igb_devices[] = {
95 	IGB_DEVICE(82575EB_COPPER),
96 	IGB_DEVICE(82575EB_FIBER_SERDES),
97 	IGB_DEVICE(82575GB_QUAD_COPPER),
98 	IGB_DEVICE(82576),
99 	IGB_DEVICE(82576_NS),
100 	IGB_DEVICE(82576_NS_SERDES),
101 	IGB_DEVICE(82576_FIBER),
102 	IGB_DEVICE(82576_SERDES),
103 	IGB_DEVICE(82576_SERDES_QUAD),
104 	IGB_DEVICE(82576_QUAD_COPPER),
105 	IGB_DEVICE(82576_QUAD_COPPER_ET2),
106 	IGB_DEVICE(82576_VF),
107 	IGB_DEVICE(82580_COPPER),
108 	IGB_DEVICE(82580_FIBER),
109 	IGB_DEVICE(82580_SERDES),
110 	IGB_DEVICE(82580_SGMII),
111 	IGB_DEVICE(82580_COPPER_DUAL),
112 	IGB_DEVICE(82580_QUAD_FIBER),
113 	IGB_DEVICE(DH89XXCC_SERDES),
114 	IGB_DEVICE(DH89XXCC_SGMII),
115 	IGB_DEVICE(DH89XXCC_SFP),
116 	IGB_DEVICE(DH89XXCC_BACKPLANE),
117 	IGB_DEVICE(I350_COPPER),
118 	IGB_DEVICE(I350_FIBER),
119 	IGB_DEVICE(I350_SERDES),
120 	IGB_DEVICE(I350_SGMII),
121 	IGB_DEVICE(I350_VF),
122 	IGB_DEVICE(I210_COPPER),
123 	IGB_DEVICE(I210_COPPER_IT),
124 	IGB_DEVICE(I210_COPPER_OEM1),
125 	IGB_DEVICE(I210_COPPER_FLASHLESS),
126 	IGB_DEVICE(I210_SERDES_FLASHLESS),
127 	IGB_DEVICE(I210_FIBER),
128 	IGB_DEVICE(I210_SERDES),
129 	IGB_DEVICE(I210_SGMII),
130 	IGB_DEVICE(I211_COPPER),
131 	IGB_DEVICE(I354_BACKPLANE_1GBPS),
132 	IGB_DEVICE(I354_SGMII),
133 
134 	/* required last entry */
135 	IGB_DEVICE_NULL
136 };
137 
138 static int	igb_probe(device_t);
139 static int	igb_attach(device_t);
140 static int	igb_detach(device_t);
141 static int	igb_shutdown(device_t);
142 static int	igb_suspend(device_t);
143 static int	igb_resume(device_t);
144 
145 static boolean_t igb_is_valid_ether_addr(const uint8_t *);
146 static void	igb_setup_ifp(struct igb_softc *);
147 static boolean_t igb_txcsum_ctx(struct igb_tx_ring *, struct mbuf *);
148 static int	igb_tso_pullup(struct igb_tx_ring *, struct mbuf **);
149 static void	igb_tso_ctx(struct igb_tx_ring *, struct mbuf *, uint32_t *);
150 static void	igb_add_sysctl(struct igb_softc *);
151 static int	igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
152 static int	igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS);
153 static int	igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
154 static int	igb_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
155 static int	igb_sysctl_rx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
156 static void	igb_set_ring_inuse(struct igb_softc *, boolean_t);
157 static int	igb_get_rxring_inuse(const struct igb_softc *, boolean_t);
158 static int	igb_get_txring_inuse(const struct igb_softc *, boolean_t);
159 static void	igb_set_timer_cpuid(struct igb_softc *, boolean_t);
160 #ifdef IFPOLL_ENABLE
161 static int	igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
162 static int	igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
163 #endif
164 
165 static void	igb_vf_init_stats(struct igb_softc *);
166 static void	igb_reset(struct igb_softc *);
167 static void	igb_update_stats_counters(struct igb_softc *);
168 static void	igb_update_vf_stats_counters(struct igb_softc *);
169 static void	igb_update_link_status(struct igb_softc *);
170 static void	igb_init_tx_unit(struct igb_softc *);
171 static void	igb_init_rx_unit(struct igb_softc *);
172 
173 static void	igb_set_vlan(struct igb_softc *);
174 static void	igb_set_multi(struct igb_softc *);
175 static void	igb_set_promisc(struct igb_softc *);
176 static void	igb_disable_promisc(struct igb_softc *);
177 
178 static int	igb_alloc_rings(struct igb_softc *);
179 static void	igb_free_rings(struct igb_softc *);
180 static int	igb_create_tx_ring(struct igb_tx_ring *);
181 static int	igb_create_rx_ring(struct igb_rx_ring *);
182 static void	igb_free_tx_ring(struct igb_tx_ring *);
183 static void	igb_free_rx_ring(struct igb_rx_ring *);
184 static void	igb_destroy_tx_ring(struct igb_tx_ring *, int);
185 static void	igb_destroy_rx_ring(struct igb_rx_ring *, int);
186 static void	igb_init_tx_ring(struct igb_tx_ring *);
187 static int	igb_init_rx_ring(struct igb_rx_ring *);
188 static int	igb_newbuf(struct igb_rx_ring *, int, boolean_t);
189 static int	igb_encap(struct igb_tx_ring *, struct mbuf **, int *, int *);
190 static void	igb_rx_refresh(struct igb_rx_ring *, int);
191 static void	igb_setup_serializer(struct igb_softc *);
192 
193 static void	igb_stop(struct igb_softc *);
194 static void	igb_init(void *);
195 static int	igb_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
196 static void	igb_media_status(struct ifnet *, struct ifmediareq *);
197 static int	igb_media_change(struct ifnet *);
198 static void	igb_timer(void *);
199 static void	igb_watchdog(struct ifaltq_subque *);
200 static void	igb_start(struct ifnet *, struct ifaltq_subque *);
201 #ifdef IFPOLL_ENABLE
202 static void	igb_npoll(struct ifnet *, struct ifpoll_info *);
203 static void	igb_npoll_rx(struct ifnet *, void *, int);
204 static void	igb_npoll_tx(struct ifnet *, void *, int);
205 static void	igb_npoll_status(struct ifnet *);
206 #endif
207 static void	igb_serialize(struct ifnet *, enum ifnet_serialize);
208 static void	igb_deserialize(struct ifnet *, enum ifnet_serialize);
209 static int	igb_tryserialize(struct ifnet *, enum ifnet_serialize);
210 #ifdef INVARIANTS
211 static void	igb_serialize_assert(struct ifnet *, enum ifnet_serialize,
212 		    boolean_t);
213 #endif
214 
215 static void	igb_intr(void *);
216 static void	igb_intr_shared(void *);
217 static void	igb_rxeof(struct igb_rx_ring *, int);
218 static void	igb_txeof(struct igb_tx_ring *);
219 static void	igb_set_eitr(struct igb_softc *, int, int);
220 static void	igb_enable_intr(struct igb_softc *);
221 static void	igb_disable_intr(struct igb_softc *);
222 static void	igb_init_unshared_intr(struct igb_softc *);
223 static void	igb_init_intr(struct igb_softc *);
224 static int	igb_setup_intr(struct igb_softc *);
225 static void	igb_set_txintr_mask(struct igb_tx_ring *, int *, int);
226 static void	igb_set_rxintr_mask(struct igb_rx_ring *, int *, int);
227 static void	igb_set_intr_mask(struct igb_softc *);
228 static int	igb_alloc_intr(struct igb_softc *);
229 static void	igb_free_intr(struct igb_softc *);
230 static void	igb_teardown_intr(struct igb_softc *);
231 static void	igb_msix_try_alloc(struct igb_softc *);
232 static void	igb_msix_rx_conf(struct igb_softc *, int, int *, int);
233 static void	igb_msix_tx_conf(struct igb_softc *, int, int *, int);
234 static void	igb_msix_free(struct igb_softc *, boolean_t);
235 static int	igb_msix_setup(struct igb_softc *);
236 static void	igb_msix_teardown(struct igb_softc *, int);
237 static void	igb_msix_rx(void *);
238 static void	igb_msix_tx(void *);
239 static void	igb_msix_status(void *);
240 static void	igb_msix_rxtx(void *);
241 
242 /* Management and WOL Support */
243 static void	igb_get_mgmt(struct igb_softc *);
244 static void	igb_rel_mgmt(struct igb_softc *);
245 static void	igb_get_hw_control(struct igb_softc *);
246 static void	igb_rel_hw_control(struct igb_softc *);
247 static void	igb_enable_wol(device_t);
248 
249 static device_method_t igb_methods[] = {
250 	/* Device interface */
251 	DEVMETHOD(device_probe,		igb_probe),
252 	DEVMETHOD(device_attach,	igb_attach),
253 	DEVMETHOD(device_detach,	igb_detach),
254 	DEVMETHOD(device_shutdown,	igb_shutdown),
255 	DEVMETHOD(device_suspend,	igb_suspend),
256 	DEVMETHOD(device_resume,	igb_resume),
257 	DEVMETHOD_END
258 };
259 
260 static driver_t igb_driver = {
261 	"igb",
262 	igb_methods,
263 	sizeof(struct igb_softc),
264 };
265 
266 static devclass_t igb_devclass;
267 
268 DECLARE_DUMMY_MODULE(if_igb);
269 MODULE_DEPEND(igb, ig_hal, 1, 1, 1);
270 DRIVER_MODULE(if_igb, pci, igb_driver, igb_devclass, NULL, NULL);
271 
272 static int	igb_rxd = IGB_DEFAULT_RXD;
273 static int	igb_txd = IGB_DEFAULT_TXD;
274 static int	igb_rxr = 0;
275 static int	igb_txr = 0;
276 static int	igb_msi_enable = 1;
277 static int	igb_msix_enable = 1;
278 static int	igb_eee_disabled = 1;	/* Energy Efficient Ethernet */
279 static int	igb_fc_setting = e1000_fc_full;
280 
281 /*
282  * DMA Coalescing, only for i350 - default to off,
283  * this feature is for power savings
284  */
285 static int	igb_dma_coalesce = 0;
286 
287 TUNABLE_INT("hw.igb.rxd", &igb_rxd);
288 TUNABLE_INT("hw.igb.txd", &igb_txd);
289 TUNABLE_INT("hw.igb.rxr", &igb_rxr);
290 TUNABLE_INT("hw.igb.txr", &igb_txr);
291 TUNABLE_INT("hw.igb.msi.enable", &igb_msi_enable);
292 TUNABLE_INT("hw.igb.msix.enable", &igb_msix_enable);
293 TUNABLE_INT("hw.igb.fc_setting", &igb_fc_setting);
294 
295 /* i350 specific */
296 TUNABLE_INT("hw.igb.eee_disabled", &igb_eee_disabled);
297 TUNABLE_INT("hw.igb.dma_coalesce", &igb_dma_coalesce);
298 
299 static __inline void
300 igb_rxcsum(uint32_t staterr, struct mbuf *mp)
301 {
302 	/* Ignore Checksum bit is set */
303 	if (staterr & E1000_RXD_STAT_IXSM)
304 		return;
305 
306 	if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
307 	    E1000_RXD_STAT_IPCS)
308 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
309 
310 	if (staterr & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
311 		if ((staterr & E1000_RXDEXT_STATERR_TCPE) == 0) {
312 			mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
313 			    CSUM_PSEUDO_HDR | CSUM_FRAG_NOT_CHECKED;
314 			mp->m_pkthdr.csum_data = htons(0xffff);
315 		}
316 	}
317 }
318 
319 static __inline struct pktinfo *
320 igb_rssinfo(struct mbuf *m, struct pktinfo *pi,
321     uint32_t hash, uint32_t hashtype, uint32_t staterr)
322 {
323 	switch (hashtype) {
324 	case E1000_RXDADV_RSSTYPE_IPV4_TCP:
325 		pi->pi_netisr = NETISR_IP;
326 		pi->pi_flags = 0;
327 		pi->pi_l3proto = IPPROTO_TCP;
328 		break;
329 
330 	case E1000_RXDADV_RSSTYPE_IPV4:
331 		if (staterr & E1000_RXD_STAT_IXSM)
332 			return NULL;
333 
334 		if ((staterr &
335 		     (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
336 		    E1000_RXD_STAT_TCPCS) {
337 			pi->pi_netisr = NETISR_IP;
338 			pi->pi_flags = 0;
339 			pi->pi_l3proto = IPPROTO_UDP;
340 			break;
341 		}
342 		/* FALL THROUGH */
343 	default:
344 		return NULL;
345 	}
346 
347 	m->m_flags |= M_HASH;
348 	m->m_pkthdr.hash = toeplitz_hash(hash);
349 	return pi;
350 }
351 
352 static int
353 igb_probe(device_t dev)
354 {
355 	const struct igb_device *d;
356 	uint16_t vid, did;
357 
358 	vid = pci_get_vendor(dev);
359 	did = pci_get_device(dev);
360 
361 	for (d = igb_devices; d->desc != NULL; ++d) {
362 		if (vid == d->vid && did == d->did) {
363 			device_set_desc(dev, d->desc);
364 			return 0;
365 		}
366 	}
367 	return ENXIO;
368 }
369 
370 static int
371 igb_attach(device_t dev)
372 {
373 	struct igb_softc *sc = device_get_softc(dev);
374 	uint16_t eeprom_data;
375 	int error = 0, ring_max;
376 #ifdef IFPOLL_ENABLE
377 	int offset, offset_def;
378 #endif
379 
380 #ifdef notyet
381 	/* SYSCTL stuff */
382 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
383 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
384 	    OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
385 	    igb_sysctl_nvm_info, "I", "NVM Information");
386 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
387 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
388 	    OID_AUTO, "flow_control", CTLTYPE_INT|CTLFLAG_RW,
389 	    adapter, 0, igb_set_flowcntl, "I", "Flow Control");
390 #endif
391 
392 	callout_init_mp(&sc->timer);
393 	lwkt_serialize_init(&sc->main_serialize);
394 
395 	if_initname(&sc->arpcom.ac_if, device_get_name(dev),
396 	    device_get_unit(dev));
397 	sc->dev = sc->osdep.dev = dev;
398 
399 	/*
400 	 * Determine hardware and mac type
401 	 */
402 	sc->hw.vendor_id = pci_get_vendor(dev);
403 	sc->hw.device_id = pci_get_device(dev);
404 	sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
405 	sc->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
406 	sc->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
407 
408 	if (e1000_set_mac_type(&sc->hw))
409 		return ENXIO;
410 
411 	/* Are we a VF device? */
412 	if (sc->hw.mac.type == e1000_vfadapt ||
413 	    sc->hw.mac.type == e1000_vfadapt_i350)
414 		sc->vf_ifp = 1;
415 	else
416 		sc->vf_ifp = 0;
417 
418 	/*
419 	 * Configure total supported RX/TX ring count
420 	 */
421 	switch (sc->hw.mac.type) {
422 	case e1000_82575:
423 		ring_max = IGB_MAX_RING_82575;
424 		break;
425 
426 	case e1000_82576:
427 		ring_max = IGB_MAX_RING_82576;
428 		break;
429 
430 	case e1000_82580:
431 		ring_max = IGB_MAX_RING_82580;
432 		break;
433 
434 	case e1000_i350:
435 		ring_max = IGB_MAX_RING_I350;
436 		break;
437 
438 	case e1000_i354:
439 		ring_max = IGB_MAX_RING_I354;
440 		break;
441 
442 	case e1000_i210:
443 		ring_max = IGB_MAX_RING_I210;
444 		break;
445 
446 	case e1000_i211:
447 		ring_max = IGB_MAX_RING_I211;
448 		break;
449 
450 	default:
451 		ring_max = IGB_MIN_RING;
452 		break;
453 	}
454 
455 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr", igb_rxr);
456 	sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, ring_max);
457 #ifdef IGB_RSS_DEBUG
458 	sc->rx_ring_cnt = device_getenv_int(dev, "rxr_debug", sc->rx_ring_cnt);
459 #endif
460 	sc->rx_ring_inuse = sc->rx_ring_cnt;
461 
462 	sc->tx_ring_cnt = device_getenv_int(dev, "txr", igb_txr);
463 	sc->tx_ring_cnt = if_ring_count2(sc->tx_ring_cnt, ring_max);
464 #ifdef IGB_TSS_DEBUG
465 	sc->tx_ring_cnt = device_getenv_int(dev, "txr_debug", sc->tx_ring_cnt);
466 #endif
467 	sc->tx_ring_inuse = sc->tx_ring_cnt;
468 
469 	/* Enable bus mastering */
470 	pci_enable_busmaster(dev);
471 
472 	/*
473 	 * Allocate IO memory
474 	 */
475 	sc->mem_rid = PCIR_BAR(0);
476 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
477 	    RF_ACTIVE);
478 	if (sc->mem_res == NULL) {
479 		device_printf(dev, "Unable to allocate bus resource: memory\n");
480 		error = ENXIO;
481 		goto failed;
482 	}
483 	sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->mem_res);
484 	sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->mem_res);
485 
486 	sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
487 
488 	/* Save PCI command register for Shared Code */
489 	sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
490 	sc->hw.back = &sc->osdep;
491 
492 	/* Do Shared Code initialization */
493 	if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
494 		device_printf(dev, "Setup of Shared code failed\n");
495 		error = ENXIO;
496 		goto failed;
497 	}
498 
499 	e1000_get_bus_info(&sc->hw);
500 
501 	sc->hw.mac.autoneg = DO_AUTO_NEG;
502 	sc->hw.phy.autoneg_wait_to_complete = FALSE;
503 	sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
504 
505 	/* Copper options */
506 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
507 		sc->hw.phy.mdix = AUTO_ALL_MODES;
508 		sc->hw.phy.disable_polarity_correction = FALSE;
509 		sc->hw.phy.ms_type = IGB_MASTER_SLAVE;
510 	}
511 
512 	/* Set the frame limits assuming  standard ethernet sized frames. */
513 	sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
514 
515 	/* Allocate RX/TX rings */
516 	error = igb_alloc_rings(sc);
517 	if (error)
518 		goto failed;
519 
520 #ifdef IFPOLL_ENABLE
521 	/*
522 	 * NPOLLING RX CPU offset
523 	 */
524 	if (sc->rx_ring_cnt == ncpus2) {
525 		offset = 0;
526 	} else {
527 		offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
528 		offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
529 		if (offset >= ncpus2 ||
530 		    offset % sc->rx_ring_cnt != 0) {
531 			device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
532 			    offset, offset_def);
533 			offset = offset_def;
534 		}
535 	}
536 	sc->rx_npoll_off = offset;
537 
538 	/*
539 	 * NPOLLING TX CPU offset
540 	 */
541 	if (sc->tx_ring_cnt == ncpus2) {
542 		offset = 0;
543 	} else {
544 		offset_def = (sc->tx_ring_cnt * device_get_unit(dev)) % ncpus2;
545 		offset = device_getenv_int(dev, "npoll.txoff", offset_def);
546 		if (offset >= ncpus2 ||
547 		    offset % sc->tx_ring_cnt != 0) {
548 			device_printf(dev, "invalid npoll.txoff %d, use %d\n",
549 			    offset, offset_def);
550 			offset = offset_def;
551 		}
552 	}
553 	sc->tx_npoll_off = offset;
554 #endif
555 
556 	/* Allocate interrupt */
557 	error = igb_alloc_intr(sc);
558 	if (error)
559 		goto failed;
560 
561 	/* Setup serializers */
562 	igb_setup_serializer(sc);
563 
564 	/* Allocate the appropriate stats memory */
565 	if (sc->vf_ifp) {
566 		sc->stats = kmalloc(sizeof(struct e1000_vf_stats), M_DEVBUF,
567 		    M_WAITOK | M_ZERO);
568 		igb_vf_init_stats(sc);
569 	} else {
570 		sc->stats = kmalloc(sizeof(struct e1000_hw_stats), M_DEVBUF,
571 		    M_WAITOK | M_ZERO);
572 	}
573 
574 	/* Allocate multicast array memory. */
575 	sc->mta = kmalloc(ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
576 	    M_DEVBUF, M_WAITOK);
577 
578 	/* Some adapter-specific advanced features */
579 	if (sc->hw.mac.type >= e1000_i350) {
580 #ifdef notyet
581 		igb_set_sysctl_value(adapter, "dma_coalesce",
582 		    "configure dma coalesce",
583 		    &adapter->dma_coalesce, igb_dma_coalesce);
584 		igb_set_sysctl_value(adapter, "eee_disabled",
585 		    "enable Energy Efficient Ethernet",
586 		    &adapter->hw.dev_spec._82575.eee_disable,
587 		    igb_eee_disabled);
588 #else
589 		sc->dma_coalesce = igb_dma_coalesce;
590 		sc->hw.dev_spec._82575.eee_disable = igb_eee_disabled;
591 #endif
592 		if (sc->hw.phy.media_type == e1000_media_type_copper) {
593                         if (sc->hw.mac.type == e1000_i354)
594 				e1000_set_eee_i354(&sc->hw);
595 			else
596 				e1000_set_eee_i350(&sc->hw);
597 		}
598 	}
599 
600 	/*
601 	 * Start from a known state, this is important in reading the nvm and
602 	 * mac from that.
603 	 */
604 	e1000_reset_hw(&sc->hw);
605 
606 	/* Make sure we have a good EEPROM before we read from it */
607 	if (sc->hw.mac.type != e1000_i210 && sc->hw.mac.type != e1000_i211 &&
608 	    e1000_validate_nvm_checksum(&sc->hw) < 0) {
609 		/*
610 		 * Some PCI-E parts fail the first check due to
611 		 * the link being in sleep state, call it again,
612 		 * if it fails a second time its a real issue.
613 		 */
614 		if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
615 			device_printf(dev,
616 			    "The EEPROM Checksum Is Not Valid\n");
617 			error = EIO;
618 			goto failed;
619 		}
620 	}
621 
622 	/* Copy the permanent MAC address out of the EEPROM */
623 	if (e1000_read_mac_addr(&sc->hw) < 0) {
624 		device_printf(dev, "EEPROM read error while reading MAC"
625 		    " address\n");
626 		error = EIO;
627 		goto failed;
628 	}
629 	if (!igb_is_valid_ether_addr(sc->hw.mac.addr)) {
630 		device_printf(dev, "Invalid MAC address\n");
631 		error = EIO;
632 		goto failed;
633 	}
634 
635 	/* Setup OS specific network interface */
636 	igb_setup_ifp(sc);
637 
638 	/* Add sysctl tree, must after igb_setup_ifp() */
639 	igb_add_sysctl(sc);
640 
641 	/* Now get a good starting state */
642 	igb_reset(sc);
643 
644 	/* Initialize statistics */
645 	igb_update_stats_counters(sc);
646 
647 	sc->hw.mac.get_link_status = 1;
648 	igb_update_link_status(sc);
649 
650 	/* Indicate SOL/IDER usage */
651 	if (e1000_check_reset_block(&sc->hw)) {
652 		device_printf(dev,
653 		    "PHY reset is blocked due to SOL/IDER session.\n");
654 	}
655 
656 	/* Determine if we have to control management hardware */
657 	if (e1000_enable_mng_pass_thru(&sc->hw))
658 		sc->flags |= IGB_FLAG_HAS_MGMT;
659 
660 	/*
661 	 * Setup Wake-on-Lan
662 	 */
663 	/* APME bit in EEPROM is mapped to WUC.APME */
664 	eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC) & E1000_WUC_APME;
665 	if (eeprom_data)
666 		sc->wol = E1000_WUFC_MAG;
667 	/* XXX disable WOL */
668 	sc->wol = 0;
669 
670 #ifdef notyet
671 	/* Register for VLAN events */
672 	adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
673 	     igb_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
674 	adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
675 	     igb_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
676 #endif
677 
678 #ifdef notyet
679 	igb_add_hw_stats(adapter);
680 #endif
681 
682 	/*
683 	 * Disable interrupt to prevent spurious interrupts (line based
684 	 * interrupt, MSI or even MSI-X), which had been observed on
685 	 * several types of LOMs, from being handled.
686 	 */
687 	igb_disable_intr(sc);
688 
689 	error = igb_setup_intr(sc);
690 	if (error) {
691 		ether_ifdetach(&sc->arpcom.ac_if);
692 		goto failed;
693 	}
694 	return 0;
695 
696 failed:
697 	igb_detach(dev);
698 	return error;
699 }
700 
701 static int
702 igb_detach(device_t dev)
703 {
704 	struct igb_softc *sc = device_get_softc(dev);
705 
706 	if (device_is_attached(dev)) {
707 		struct ifnet *ifp = &sc->arpcom.ac_if;
708 
709 		ifnet_serialize_all(ifp);
710 
711 		igb_stop(sc);
712 
713 		e1000_phy_hw_reset(&sc->hw);
714 
715 		/* Give control back to firmware */
716 		igb_rel_mgmt(sc);
717 		igb_rel_hw_control(sc);
718 
719 		if (sc->wol) {
720 			E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
721 			E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
722 			igb_enable_wol(dev);
723 		}
724 
725 		igb_teardown_intr(sc);
726 
727 		ifnet_deserialize_all(ifp);
728 
729 		ether_ifdetach(ifp);
730 	} else if (sc->mem_res != NULL) {
731 		igb_rel_hw_control(sc);
732 	}
733 	bus_generic_detach(dev);
734 
735 	igb_free_intr(sc);
736 
737 	if (sc->msix_mem_res != NULL) {
738 		bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_mem_rid,
739 		    sc->msix_mem_res);
740 	}
741 	if (sc->mem_res != NULL) {
742 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid,
743 		    sc->mem_res);
744 	}
745 
746 	igb_free_rings(sc);
747 
748 	if (sc->mta != NULL)
749 		kfree(sc->mta, M_DEVBUF);
750 	if (sc->stats != NULL)
751 		kfree(sc->stats, M_DEVBUF);
752 	if (sc->serializes != NULL)
753 		kfree(sc->serializes, M_DEVBUF);
754 
755 	return 0;
756 }
757 
758 static int
759 igb_shutdown(device_t dev)
760 {
761 	return igb_suspend(dev);
762 }
763 
764 static int
765 igb_suspend(device_t dev)
766 {
767 	struct igb_softc *sc = device_get_softc(dev);
768 	struct ifnet *ifp = &sc->arpcom.ac_if;
769 
770 	ifnet_serialize_all(ifp);
771 
772 	igb_stop(sc);
773 
774 	igb_rel_mgmt(sc);
775 	igb_rel_hw_control(sc);
776 
777 	if (sc->wol) {
778 		E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
779 		E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
780 		igb_enable_wol(dev);
781 	}
782 
783 	ifnet_deserialize_all(ifp);
784 
785 	return bus_generic_suspend(dev);
786 }
787 
788 static int
789 igb_resume(device_t dev)
790 {
791 	struct igb_softc *sc = device_get_softc(dev);
792 	struct ifnet *ifp = &sc->arpcom.ac_if;
793 	int i;
794 
795 	ifnet_serialize_all(ifp);
796 
797 	igb_init(sc);
798 	igb_get_mgmt(sc);
799 
800 	for (i = 0; i < sc->tx_ring_inuse; ++i)
801 		ifsq_devstart_sched(sc->tx_rings[i].ifsq);
802 
803 	ifnet_deserialize_all(ifp);
804 
805 	return bus_generic_resume(dev);
806 }
807 
808 static int
809 igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
810 {
811 	struct igb_softc *sc = ifp->if_softc;
812 	struct ifreq *ifr = (struct ifreq *)data;
813 	int max_frame_size, mask, reinit;
814 	int error = 0;
815 
816 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
817 
818 	switch (command) {
819 	case SIOCSIFMTU:
820 		max_frame_size = 9234;
821 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
822 		    ETHER_CRC_LEN) {
823 			error = EINVAL;
824 			break;
825 		}
826 
827 		ifp->if_mtu = ifr->ifr_mtu;
828 		sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
829 		    ETHER_CRC_LEN;
830 
831 		if (ifp->if_flags & IFF_RUNNING)
832 			igb_init(sc);
833 		break;
834 
835 	case SIOCSIFFLAGS:
836 		if (ifp->if_flags & IFF_UP) {
837 			if (ifp->if_flags & IFF_RUNNING) {
838 				if ((ifp->if_flags ^ sc->if_flags) &
839 				    (IFF_PROMISC | IFF_ALLMULTI)) {
840 					igb_disable_promisc(sc);
841 					igb_set_promisc(sc);
842 				}
843 			} else {
844 				igb_init(sc);
845 			}
846 		} else if (ifp->if_flags & IFF_RUNNING) {
847 			igb_stop(sc);
848 		}
849 		sc->if_flags = ifp->if_flags;
850 		break;
851 
852 	case SIOCADDMULTI:
853 	case SIOCDELMULTI:
854 		if (ifp->if_flags & IFF_RUNNING) {
855 			igb_disable_intr(sc);
856 			igb_set_multi(sc);
857 #ifdef IFPOLL_ENABLE
858 			if (!(ifp->if_flags & IFF_NPOLLING))
859 #endif
860 				igb_enable_intr(sc);
861 		}
862 		break;
863 
864 	case SIOCSIFMEDIA:
865 		/* Check SOL/IDER usage */
866 		if (e1000_check_reset_block(&sc->hw)) {
867 			if_printf(ifp, "Media change is "
868 			    "blocked due to SOL/IDER session.\n");
869 			break;
870 		}
871 		/* FALL THROUGH */
872 
873 	case SIOCGIFMEDIA:
874 		error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
875 		break;
876 
877 	case SIOCSIFCAP:
878 		reinit = 0;
879 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
880 		if (mask & IFCAP_RXCSUM) {
881 			ifp->if_capenable ^= IFCAP_RXCSUM;
882 			reinit = 1;
883 		}
884 		if (mask & IFCAP_VLAN_HWTAGGING) {
885 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
886 			reinit = 1;
887 		}
888 		if (mask & IFCAP_TXCSUM) {
889 			ifp->if_capenable ^= IFCAP_TXCSUM;
890 			if (ifp->if_capenable & IFCAP_TXCSUM)
891 				ifp->if_hwassist |= IGB_CSUM_FEATURES;
892 			else
893 				ifp->if_hwassist &= ~IGB_CSUM_FEATURES;
894 		}
895 		if (mask & IFCAP_TSO) {
896 			ifp->if_capenable ^= IFCAP_TSO;
897 			if (ifp->if_capenable & IFCAP_TSO)
898 				ifp->if_hwassist |= CSUM_TSO;
899 			else
900 				ifp->if_hwassist &= ~CSUM_TSO;
901 		}
902 		if (mask & IFCAP_RSS)
903 			ifp->if_capenable ^= IFCAP_RSS;
904 		if (reinit && (ifp->if_flags & IFF_RUNNING))
905 			igb_init(sc);
906 		break;
907 
908 	default:
909 		error = ether_ioctl(ifp, command, data);
910 		break;
911 	}
912 	return error;
913 }
914 
915 static void
916 igb_init(void *xsc)
917 {
918 	struct igb_softc *sc = xsc;
919 	struct ifnet *ifp = &sc->arpcom.ac_if;
920 	boolean_t polling;
921 	int i;
922 
923 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
924 
925 	igb_stop(sc);
926 
927 	/* Get the latest mac address, User can use a LAA */
928 	bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
929 
930 	/* Put the address into the Receive Address Array */
931 	e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
932 
933 	igb_reset(sc);
934 	igb_update_link_status(sc);
935 
936 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
937 
938 	/* Configure for OS presence */
939 	igb_get_mgmt(sc);
940 
941 	polling = FALSE;
942 #ifdef IFPOLL_ENABLE
943 	if (ifp->if_flags & IFF_NPOLLING)
944 		polling = TRUE;
945 #endif
946 
947 	/* Configured used RX/TX rings */
948 	igb_set_ring_inuse(sc, polling);
949 	ifq_set_subq_mask(&ifp->if_snd, sc->tx_ring_inuse - 1);
950 
951 	/* Initialize interrupt */
952 	igb_init_intr(sc);
953 
954 	/* Prepare transmit descriptors and buffers */
955 	for (i = 0; i < sc->tx_ring_inuse; ++i)
956 		igb_init_tx_ring(&sc->tx_rings[i]);
957 	igb_init_tx_unit(sc);
958 
959 	/* Setup Multicast table */
960 	igb_set_multi(sc);
961 
962 #if 0
963 	/*
964 	 * Figure out the desired mbuf pool
965 	 * for doing jumbo/packetsplit
966 	 */
967 	if (adapter->max_frame_size <= 2048)
968 		adapter->rx_mbuf_sz = MCLBYTES;
969 	else if (adapter->max_frame_size <= 4096)
970 		adapter->rx_mbuf_sz = MJUMPAGESIZE;
971 	else
972 		adapter->rx_mbuf_sz = MJUM9BYTES;
973 #endif
974 
975 	/* Prepare receive descriptors and buffers */
976 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
977 		int error;
978 
979 		error = igb_init_rx_ring(&sc->rx_rings[i]);
980 		if (error) {
981 			if_printf(ifp, "Could not setup receive structures\n");
982 			igb_stop(sc);
983 			return;
984 		}
985 	}
986 	igb_init_rx_unit(sc);
987 
988 	/* Enable VLAN support */
989 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
990 		igb_set_vlan(sc);
991 
992 	/* Don't lose promiscuous settings */
993 	igb_set_promisc(sc);
994 
995 	ifp->if_flags |= IFF_RUNNING;
996 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
997 		ifsq_clr_oactive(sc->tx_rings[i].ifsq);
998 		ifsq_watchdog_start(&sc->tx_rings[i].tx_watchdog);
999 	}
1000 
1001 	igb_set_timer_cpuid(sc, polling);
1002 	callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
1003 	e1000_clear_hw_cntrs_base_generic(&sc->hw);
1004 
1005 	/* This clears any pending interrupts */
1006 	E1000_READ_REG(&sc->hw, E1000_ICR);
1007 
1008 	/*
1009 	 * Only enable interrupts if we are not polling, make sure
1010 	 * they are off otherwise.
1011 	 */
1012 	if (polling) {
1013 		igb_disable_intr(sc);
1014 	} else {
1015 		igb_enable_intr(sc);
1016 		E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
1017 	}
1018 
1019 	/* Set Energy Efficient Ethernet */
1020 	if (sc->hw.phy.media_type == e1000_media_type_copper) {
1021 		if (sc->hw.mac.type == e1000_i354)
1022 			e1000_set_eee_i354(&sc->hw);
1023 		else
1024 			e1000_set_eee_i350(&sc->hw);
1025 	}
1026 }
1027 
1028 static void
1029 igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1030 {
1031 	struct igb_softc *sc = ifp->if_softc;
1032 
1033 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1034 
1035 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1036 		sc->hw.mac.get_link_status = 1;
1037 	igb_update_link_status(sc);
1038 
1039 	ifmr->ifm_status = IFM_AVALID;
1040 	ifmr->ifm_active = IFM_ETHER;
1041 
1042 	if (!sc->link_active)
1043 		return;
1044 
1045 	ifmr->ifm_status |= IFM_ACTIVE;
1046 
1047 	switch (sc->link_speed) {
1048 	case 10:
1049 		ifmr->ifm_active |= IFM_10_T;
1050 		break;
1051 
1052 	case 100:
1053 		/*
1054 		 * Support for 100Mb SFP - these are Fiber
1055 		 * but the media type appears as serdes
1056 		 */
1057 		if (sc->hw.phy.media_type == e1000_media_type_internal_serdes)
1058 			ifmr->ifm_active |= IFM_100_FX;
1059 		else
1060 			ifmr->ifm_active |= IFM_100_TX;
1061 		break;
1062 
1063 	case 1000:
1064 		ifmr->ifm_active |= IFM_1000_T;
1065 		break;
1066 	}
1067 
1068 	if (sc->link_duplex == FULL_DUPLEX)
1069 		ifmr->ifm_active |= IFM_FDX;
1070 	else
1071 		ifmr->ifm_active |= IFM_HDX;
1072 }
1073 
1074 static int
1075 igb_media_change(struct ifnet *ifp)
1076 {
1077 	struct igb_softc *sc = ifp->if_softc;
1078 	struct ifmedia *ifm = &sc->media;
1079 
1080 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1081 
1082 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1083 		return EINVAL;
1084 
1085 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1086 	case IFM_AUTO:
1087 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1088 		sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1089 		break;
1090 
1091 	case IFM_1000_LX:
1092 	case IFM_1000_SX:
1093 	case IFM_1000_T:
1094 		sc->hw.mac.autoneg = DO_AUTO_NEG;
1095 		sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1096 		break;
1097 
1098 	case IFM_100_TX:
1099 		sc->hw.mac.autoneg = FALSE;
1100 		sc->hw.phy.autoneg_advertised = 0;
1101 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1102 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1103 		else
1104 			sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1105 		break;
1106 
1107 	case IFM_10_T:
1108 		sc->hw.mac.autoneg = FALSE;
1109 		sc->hw.phy.autoneg_advertised = 0;
1110 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1111 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1112 		else
1113 			sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1114 		break;
1115 
1116 	default:
1117 		if_printf(ifp, "Unsupported media type\n");
1118 		break;
1119 	}
1120 
1121 	igb_init(sc);
1122 
1123 	return 0;
1124 }
1125 
1126 static void
1127 igb_set_promisc(struct igb_softc *sc)
1128 {
1129 	struct ifnet *ifp = &sc->arpcom.ac_if;
1130 	struct e1000_hw *hw = &sc->hw;
1131 	uint32_t reg;
1132 
1133 	if (sc->vf_ifp) {
1134 		e1000_promisc_set_vf(hw, e1000_promisc_enabled);
1135 		return;
1136 	}
1137 
1138 	reg = E1000_READ_REG(hw, E1000_RCTL);
1139 	if (ifp->if_flags & IFF_PROMISC) {
1140 		reg |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1141 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
1142 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1143 		reg |= E1000_RCTL_MPE;
1144 		reg &= ~E1000_RCTL_UPE;
1145 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
1146 	}
1147 }
1148 
1149 static void
1150 igb_disable_promisc(struct igb_softc *sc)
1151 {
1152 	struct e1000_hw *hw = &sc->hw;
1153 	struct ifnet *ifp = &sc->arpcom.ac_if;
1154 	uint32_t reg;
1155 	int mcnt = 0;
1156 
1157 	if (sc->vf_ifp) {
1158 		e1000_promisc_set_vf(hw, e1000_promisc_disabled);
1159 		return;
1160 	}
1161 	reg = E1000_READ_REG(hw, E1000_RCTL);
1162 	reg &= ~E1000_RCTL_UPE;
1163 	if (ifp->if_flags & IFF_ALLMULTI) {
1164 		mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1165 	} else {
1166 		struct  ifmultiaddr *ifma;
1167 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1168 			if (ifma->ifma_addr->sa_family != AF_LINK)
1169 				continue;
1170 			if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1171 				break;
1172 			mcnt++;
1173 		}
1174 	}
1175 	/* Don't disable if in MAX groups */
1176 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1177 		reg &= ~E1000_RCTL_MPE;
1178 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
1179 }
1180 
1181 static void
1182 igb_set_multi(struct igb_softc *sc)
1183 {
1184 	struct ifnet *ifp = &sc->arpcom.ac_if;
1185 	struct ifmultiaddr *ifma;
1186 	uint32_t reg_rctl = 0;
1187 	uint8_t *mta;
1188 	int mcnt = 0;
1189 
1190 	mta = sc->mta;
1191 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1192 
1193 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1194 		if (ifma->ifma_addr->sa_family != AF_LINK)
1195 			continue;
1196 
1197 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1198 			break;
1199 
1200 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1201 		    &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
1202 		mcnt++;
1203 	}
1204 
1205 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1206 		reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1207 		reg_rctl |= E1000_RCTL_MPE;
1208 		E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1209 	} else {
1210 		e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1211 	}
1212 }
1213 
1214 static void
1215 igb_timer(void *xsc)
1216 {
1217 	struct igb_softc *sc = xsc;
1218 
1219 	lwkt_serialize_enter(&sc->main_serialize);
1220 
1221 	igb_update_link_status(sc);
1222 	igb_update_stats_counters(sc);
1223 
1224 	callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
1225 
1226 	lwkt_serialize_exit(&sc->main_serialize);
1227 }
1228 
1229 static void
1230 igb_update_link_status(struct igb_softc *sc)
1231 {
1232 	struct ifnet *ifp = &sc->arpcom.ac_if;
1233 	struct e1000_hw *hw = &sc->hw;
1234 	uint32_t link_check, thstat, ctrl;
1235 
1236 	link_check = thstat = ctrl = 0;
1237 
1238 	/* Get the cached link value or read for real */
1239 	switch (hw->phy.media_type) {
1240 	case e1000_media_type_copper:
1241 		if (hw->mac.get_link_status) {
1242 			/* Do the work to read phy */
1243 			e1000_check_for_link(hw);
1244 			link_check = !hw->mac.get_link_status;
1245 		} else {
1246 			link_check = TRUE;
1247 		}
1248 		break;
1249 
1250 	case e1000_media_type_fiber:
1251 		e1000_check_for_link(hw);
1252 		link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1253 		break;
1254 
1255 	case e1000_media_type_internal_serdes:
1256 		e1000_check_for_link(hw);
1257 		link_check = hw->mac.serdes_has_link;
1258 		break;
1259 
1260 	/* VF device is type_unknown */
1261 	case e1000_media_type_unknown:
1262 		e1000_check_for_link(hw);
1263 		link_check = !hw->mac.get_link_status;
1264 		/* Fall thru */
1265 	default:
1266 		break;
1267 	}
1268 
1269 	/* Check for thermal downshift or shutdown */
1270 	if (hw->mac.type == e1000_i350) {
1271 		thstat = E1000_READ_REG(hw, E1000_THSTAT);
1272 		ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1273 	}
1274 
1275 	/* Now we check if a transition has happened */
1276 	if (link_check && sc->link_active == 0) {
1277 		e1000_get_speed_and_duplex(hw,
1278 		    &sc->link_speed, &sc->link_duplex);
1279 		if (bootverbose) {
1280 			const char *flowctl;
1281 
1282 			/* Get the flow control for display */
1283 			switch (hw->fc.current_mode) {
1284 			case e1000_fc_rx_pause:
1285 				flowctl = "RX";
1286 				break;
1287 
1288 			case e1000_fc_tx_pause:
1289 				flowctl = "TX";
1290 				break;
1291 
1292 			case e1000_fc_full:
1293 				flowctl = "Full";
1294 				break;
1295 
1296 			default:
1297 				flowctl = "None";
1298 				break;
1299 			}
1300 
1301 			if_printf(ifp, "Link is up %d Mbps %s, "
1302 			    "Flow control: %s\n",
1303 			    sc->link_speed,
1304 			    sc->link_duplex == FULL_DUPLEX ?
1305 			    "Full Duplex" : "Half Duplex",
1306 			    flowctl);
1307 		}
1308 		sc->link_active = 1;
1309 
1310 		ifp->if_baudrate = sc->link_speed * 1000000;
1311 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1312 		    (thstat & E1000_THSTAT_LINK_THROTTLE))
1313 			if_printf(ifp, "Link: thermal downshift\n");
1314 		/* Delay Link Up for Phy update */
1315 		if ((hw->mac.type == e1000_i210 ||
1316 		     hw->mac.type == e1000_i211) &&
1317 		    hw->phy.id == I210_I_PHY_ID)
1318 			msec_delay(IGB_I210_LINK_DELAY);
1319 		/* This can sleep */
1320 		ifp->if_link_state = LINK_STATE_UP;
1321 		if_link_state_change(ifp);
1322 	} else if (!link_check && sc->link_active == 1) {
1323 		ifp->if_baudrate = sc->link_speed = 0;
1324 		sc->link_duplex = 0;
1325 		if (bootverbose)
1326 			if_printf(ifp, "Link is Down\n");
1327 		if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1328 		    (thstat & E1000_THSTAT_PWR_DOWN))
1329 			if_printf(ifp, "Link: thermal shutdown\n");
1330 		sc->link_active = 0;
1331 		/* This can sleep */
1332 		ifp->if_link_state = LINK_STATE_DOWN;
1333 		if_link_state_change(ifp);
1334 	}
1335 }
1336 
1337 static void
1338 igb_stop(struct igb_softc *sc)
1339 {
1340 	struct ifnet *ifp = &sc->arpcom.ac_if;
1341 	int i;
1342 
1343 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1344 
1345 	igb_disable_intr(sc);
1346 
1347 	callout_stop(&sc->timer);
1348 
1349 	ifp->if_flags &= ~IFF_RUNNING;
1350 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1351 		ifsq_clr_oactive(sc->tx_rings[i].ifsq);
1352 		ifsq_watchdog_stop(&sc->tx_rings[i].tx_watchdog);
1353 		sc->tx_rings[i].tx_flags &= ~IGB_TXFLAG_ENABLED;
1354 	}
1355 
1356 	e1000_reset_hw(&sc->hw);
1357 	E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1358 
1359 	e1000_led_off(&sc->hw);
1360 	e1000_cleanup_led(&sc->hw);
1361 
1362 	for (i = 0; i < sc->tx_ring_cnt; ++i)
1363 		igb_free_tx_ring(&sc->tx_rings[i]);
1364 	for (i = 0; i < sc->rx_ring_cnt; ++i)
1365 		igb_free_rx_ring(&sc->rx_rings[i]);
1366 }
1367 
1368 static void
1369 igb_reset(struct igb_softc *sc)
1370 {
1371 	struct ifnet *ifp = &sc->arpcom.ac_if;
1372 	struct e1000_hw *hw = &sc->hw;
1373 	struct e1000_fc_info *fc = &hw->fc;
1374 	uint32_t pba = 0;
1375 	uint16_t hwm;
1376 
1377 	/* Let the firmware know the OS is in control */
1378 	igb_get_hw_control(sc);
1379 
1380 	/*
1381 	 * Packet Buffer Allocation (PBA)
1382 	 * Writing PBA sets the receive portion of the buffer
1383 	 * the remainder is used for the transmit buffer.
1384 	 */
1385 	switch (hw->mac.type) {
1386 	case e1000_82575:
1387 		pba = E1000_PBA_32K;
1388 		break;
1389 
1390 	case e1000_82576:
1391 	case e1000_vfadapt:
1392 		pba = E1000_READ_REG(hw, E1000_RXPBS);
1393 		pba &= E1000_RXPBS_SIZE_MASK_82576;
1394 		break;
1395 
1396 	case e1000_82580:
1397 	case e1000_i350:
1398 	case e1000_i354:
1399 	case e1000_vfadapt_i350:
1400 		pba = E1000_READ_REG(hw, E1000_RXPBS);
1401 		pba = e1000_rxpbs_adjust_82580(pba);
1402 		break;
1403 
1404 	case e1000_i210:
1405 	case e1000_i211:
1406 		pba = E1000_PBA_34K;
1407 		break;
1408 
1409 	default:
1410 		break;
1411 	}
1412 
1413 	/* Special needs in case of Jumbo frames */
1414 	if (hw->mac.type == e1000_82575 && ifp->if_mtu > ETHERMTU) {
1415 		uint32_t tx_space, min_tx, min_rx;
1416 
1417 		pba = E1000_READ_REG(hw, E1000_PBA);
1418 		tx_space = pba >> 16;
1419 		pba &= 0xffff;
1420 
1421 		min_tx = (sc->max_frame_size +
1422 		    sizeof(struct e1000_tx_desc) - ETHER_CRC_LEN) * 2;
1423 		min_tx = roundup2(min_tx, 1024);
1424 		min_tx >>= 10;
1425 		min_rx = sc->max_frame_size;
1426 		min_rx = roundup2(min_rx, 1024);
1427 		min_rx >>= 10;
1428 		if (tx_space < min_tx && (min_tx - tx_space) < pba) {
1429 			pba = pba - (min_tx - tx_space);
1430 			/*
1431 			 * if short on rx space, rx wins
1432 			 * and must trump tx adjustment
1433 			 */
1434 			if (pba < min_rx)
1435 				pba = min_rx;
1436 		}
1437 		E1000_WRITE_REG(hw, E1000_PBA, pba);
1438 	}
1439 
1440 	/*
1441 	 * These parameters control the automatic generation (Tx) and
1442 	 * response (Rx) to Ethernet PAUSE frames.
1443 	 * - High water mark should allow for at least two frames to be
1444 	 *   received after sending an XOFF.
1445 	 * - Low water mark works best when it is very near the high water mark.
1446 	 *   This allows the receiver to restart by sending XON when it has
1447 	 *   drained a bit.
1448 	 */
1449 	hwm = min(((pba << 10) * 9 / 10),
1450 	    ((pba << 10) - 2 * sc->max_frame_size));
1451 
1452 	if (hw->mac.type < e1000_82576) {
1453 		fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1454 		fc->low_water = fc->high_water - 8;
1455 	} else {
1456 		fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1457 		fc->low_water = fc->high_water - 16;
1458 	}
1459 	fc->pause_time = IGB_FC_PAUSE_TIME;
1460 	fc->send_xon = TRUE;
1461 	fc->requested_mode = e1000_fc_default;
1462 
1463 	/* Issue a global reset */
1464 	e1000_reset_hw(hw);
1465 	E1000_WRITE_REG(hw, E1000_WUC, 0);
1466 
1467 	if (e1000_init_hw(hw) < 0)
1468 		if_printf(ifp, "Hardware Initialization Failed\n");
1469 
1470 	/* Setup DMA Coalescing */
1471 	if (hw->mac.type > e1000_82580 && hw->mac.type != e1000_i211) {
1472 		uint32_t dmac;
1473 		uint32_t reg;
1474 
1475 		if (sc->dma_coalesce == 0) {
1476 			/*
1477 			 * Disabled
1478 			 */
1479 			reg = E1000_READ_REG(hw, E1000_DMACR);
1480 			reg &= ~E1000_DMACR_DMAC_EN;
1481 			E1000_WRITE_REG(hw, E1000_DMACR, reg);
1482 			goto reset_out;
1483 		}
1484 
1485 		/* Set starting thresholds */
1486 		E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
1487 		E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
1488 
1489 		hwm = 64 * pba - sc->max_frame_size / 16;
1490 		if (hwm < 64 * (pba - 6))
1491 			hwm = 64 * (pba - 6);
1492 		reg = E1000_READ_REG(hw, E1000_FCRTC);
1493 		reg &= ~E1000_FCRTC_RTH_COAL_MASK;
1494 		reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
1495 		    & E1000_FCRTC_RTH_COAL_MASK);
1496 		E1000_WRITE_REG(hw, E1000_FCRTC, reg);
1497 
1498 		dmac = pba - sc->max_frame_size / 512;
1499 		if (dmac < pba - 10)
1500 			dmac = pba - 10;
1501 		reg = E1000_READ_REG(hw, E1000_DMACR);
1502 		reg &= ~E1000_DMACR_DMACTHR_MASK;
1503 		reg = ((dmac << E1000_DMACR_DMACTHR_SHIFT)
1504 		    & E1000_DMACR_DMACTHR_MASK);
1505 		/* Transition to L0x or L1 if available.. */
1506 		reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1507 		/* timer = value in sc->dma_coalesce in 32usec intervals */
1508 		reg |= (sc->dma_coalesce >> 5);
1509 		E1000_WRITE_REG(hw, E1000_DMACR, reg);
1510 
1511 		/* Set the interval before transition */
1512 		reg = E1000_READ_REG(hw, E1000_DMCTLX);
1513 		reg |= 0x80000004;
1514 		E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
1515 
1516 		/* Free space in tx packet buffer to wake from DMA coal */
1517 		E1000_WRITE_REG(hw, E1000_DMCTXTH,
1518 		    (20480 - (2 * sc->max_frame_size)) >> 6);
1519 
1520 		/* Make low power state decision controlled by DMA coal */
1521 		reg = E1000_READ_REG(hw, E1000_PCIEMISC);
1522 		reg &= ~E1000_PCIEMISC_LX_DECISION;
1523 		E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
1524 		if_printf(ifp, "DMA Coalescing enabled\n");
1525 	} else if (hw->mac.type == e1000_82580) {
1526 		uint32_t reg = E1000_READ_REG(hw, E1000_PCIEMISC);
1527 
1528 		E1000_WRITE_REG(hw, E1000_DMACR, 0);
1529 		E1000_WRITE_REG(hw, E1000_PCIEMISC,
1530 		    reg & ~E1000_PCIEMISC_LX_DECISION);
1531 	}
1532 
1533 reset_out:
1534 	E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1535 	e1000_get_phy_info(hw);
1536 	e1000_check_for_link(hw);
1537 }
1538 
1539 static void
1540 igb_setup_ifp(struct igb_softc *sc)
1541 {
1542 	struct ifnet *ifp = &sc->arpcom.ac_if;
1543 	int i;
1544 
1545 	ifp->if_softc = sc;
1546 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1547 	ifp->if_init = igb_init;
1548 	ifp->if_ioctl = igb_ioctl;
1549 	ifp->if_start = igb_start;
1550 	ifp->if_serialize = igb_serialize;
1551 	ifp->if_deserialize = igb_deserialize;
1552 	ifp->if_tryserialize = igb_tryserialize;
1553 #ifdef INVARIANTS
1554 	ifp->if_serialize_assert = igb_serialize_assert;
1555 #endif
1556 #ifdef IFPOLL_ENABLE
1557 	ifp->if_npoll = igb_npoll;
1558 #endif
1559 
1560 	ifq_set_maxlen(&ifp->if_snd, sc->tx_rings[0].num_tx_desc - 1);
1561 	ifq_set_ready(&ifp->if_snd);
1562 	ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt);
1563 
1564 	ifp->if_mapsubq = ifq_mapsubq_mask;
1565 	ifq_set_subq_mask(&ifp->if_snd, 0);
1566 
1567 	ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1568 
1569 	ifp->if_capabilities =
1570 	    IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_TSO;
1571 	if (IGB_ENABLE_HWRSS(sc))
1572 		ifp->if_capabilities |= IFCAP_RSS;
1573 	ifp->if_capenable = ifp->if_capabilities;
1574 	ifp->if_hwassist = IGB_CSUM_FEATURES | CSUM_TSO;
1575 
1576 	/*
1577 	 * Tell the upper layer(s) we support long frames
1578 	 */
1579 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1580 
1581 	/* Setup TX rings and subqueues */
1582 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1583 		struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
1584 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1585 
1586 		ifsq_set_cpuid(ifsq, txr->tx_intr_cpuid);
1587 		ifsq_set_priv(ifsq, txr);
1588 		ifsq_set_hw_serialize(ifsq, &txr->tx_serialize);
1589 		txr->ifsq = ifsq;
1590 
1591 		ifsq_watchdog_init(&txr->tx_watchdog, ifsq, igb_watchdog);
1592 	}
1593 
1594 	/*
1595 	 * Specify the media types supported by this adapter and register
1596 	 * callbacks to update media and link information
1597 	 */
1598 	ifmedia_init(&sc->media, IFM_IMASK, igb_media_change, igb_media_status);
1599 	if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1600 	    sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1601 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1602 		    0, NULL);
1603 		ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1604 	} else {
1605 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1606 		ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1607 		    0, NULL);
1608 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1609 		ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1610 		    0, NULL);
1611 		if (sc->hw.phy.type != e1000_phy_ife) {
1612 			ifmedia_add(&sc->media,
1613 			    IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1614 			ifmedia_add(&sc->media,
1615 			    IFM_ETHER | IFM_1000_T, 0, NULL);
1616 		}
1617 	}
1618 	ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1619 	ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1620 }
1621 
1622 static void
1623 igb_add_sysctl(struct igb_softc *sc)
1624 {
1625 	struct sysctl_ctx_list *ctx;
1626 	struct sysctl_oid *tree;
1627 	char node[32];
1628 	int i;
1629 
1630 	ctx = device_get_sysctl_ctx(sc->dev);
1631 	tree = device_get_sysctl_tree(sc->dev);
1632 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1633 	    OID_AUTO, "rxr", CTLFLAG_RD, &sc->rx_ring_cnt, 0, "# of RX rings");
1634 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1635 	    OID_AUTO, "rxr_inuse", CTLFLAG_RD, &sc->rx_ring_inuse, 0,
1636 	    "# of RX rings used");
1637 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1638 	    OID_AUTO, "txr", CTLFLAG_RD, &sc->tx_ring_cnt, 0, "# of TX rings");
1639 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1640 	    OID_AUTO, "txr_inuse", CTLFLAG_RD, &sc->tx_ring_inuse, 0,
1641 	    "# of TX rings used");
1642 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1643 	    OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_rings[0].num_rx_desc, 0,
1644 	    "# of RX descs");
1645 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1646 	    OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_rings[0].num_tx_desc, 0,
1647 	    "# of TX descs");
1648 
1649 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
1650 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1651 		    OID_AUTO, "intr_rate", CTLTYPE_INT | CTLFLAG_RW,
1652 		    sc, 0, igb_sysctl_intr_rate, "I", "interrupt rate");
1653 	} else {
1654 		for (i = 0; i < sc->msix_cnt; ++i) {
1655 			struct igb_msix_data *msix = &sc->msix_data[i];
1656 
1657 			ksnprintf(node, sizeof(node), "msix%d_rate", i);
1658 			SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1659 			    OID_AUTO, node, CTLTYPE_INT | CTLFLAG_RW,
1660 			    msix, 0, igb_sysctl_msix_rate, "I",
1661 			    msix->msix_rate_desc);
1662 		}
1663 	}
1664 
1665 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1666 	    OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1667 	    sc, 0, igb_sysctl_tx_intr_nsegs, "I",
1668 	    "# of segments per TX interrupt");
1669 
1670 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1671 	    OID_AUTO, "tx_wreg_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1672 	    sc, 0, igb_sysctl_tx_wreg_nsegs, "I",
1673 	    "# of segments sent before write to hardware register");
1674 
1675 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1676 	    OID_AUTO, "rx_wreg_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1677 	    sc, 0, igb_sysctl_rx_wreg_nsegs, "I",
1678 	    "# of segments received before write to hardware register");
1679 
1680 #ifdef IFPOLL_ENABLE
1681 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1682 	    OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
1683 	    sc, 0, igb_sysctl_npoll_rxoff, "I", "NPOLLING RX cpu offset");
1684 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1685 	    OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
1686 	    sc, 0, igb_sysctl_npoll_txoff, "I", "NPOLLING TX cpu offset");
1687 #endif
1688 
1689 #ifdef IGB_RSS_DEBUG
1690 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1691 	    OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug, 0,
1692 	    "RSS debug level");
1693 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1694 		ksnprintf(node, sizeof(node), "rx%d_pkt", i);
1695 		SYSCTL_ADD_ULONG(ctx,
1696 		    SYSCTL_CHILDREN(tree), OID_AUTO, node,
1697 		    CTLFLAG_RW, &sc->rx_rings[i].rx_packets, "RXed packets");
1698 	}
1699 #endif
1700 #ifdef IGB_TSS_DEBUG
1701 	for  (i = 0; i < sc->tx_ring_cnt; ++i) {
1702 		ksnprintf(node, sizeof(node), "tx%d_pkt", i);
1703 		SYSCTL_ADD_ULONG(ctx,
1704 		    SYSCTL_CHILDREN(tree), OID_AUTO, node,
1705 		    CTLFLAG_RW, &sc->tx_rings[i].tx_packets, "TXed packets");
1706 	}
1707 #endif
1708 }
1709 
1710 static int
1711 igb_alloc_rings(struct igb_softc *sc)
1712 {
1713 	int error, i;
1714 
1715 	/*
1716 	 * Create top level busdma tag
1717 	 */
1718 	error = bus_dma_tag_create(NULL, 1, 0,
1719 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1720 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1721 	    &sc->parent_tag);
1722 	if (error) {
1723 		device_printf(sc->dev, "could not create top level DMA tag\n");
1724 		return error;
1725 	}
1726 
1727 	/*
1728 	 * Allocate TX descriptor rings and buffers
1729 	 */
1730 	sc->tx_rings = kmalloc_cachealign(
1731 	    sizeof(struct igb_tx_ring) * sc->tx_ring_cnt,
1732 	    M_DEVBUF, M_WAITOK | M_ZERO);
1733 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1734 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1735 
1736 		/* Set up some basics */
1737 		txr->sc = sc;
1738 		txr->me = i;
1739 		lwkt_serialize_init(&txr->tx_serialize);
1740 
1741 		error = igb_create_tx_ring(txr);
1742 		if (error)
1743 			return error;
1744 	}
1745 
1746 	/*
1747 	 * Allocate RX descriptor rings and buffers
1748 	 */
1749 	sc->rx_rings = kmalloc_cachealign(
1750 	    sizeof(struct igb_rx_ring) * sc->rx_ring_cnt,
1751 	    M_DEVBUF, M_WAITOK | M_ZERO);
1752 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
1753 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
1754 
1755 		/* Set up some basics */
1756 		rxr->sc = sc;
1757 		rxr->me = i;
1758 		lwkt_serialize_init(&rxr->rx_serialize);
1759 
1760 		error = igb_create_rx_ring(rxr);
1761 		if (error)
1762 			return error;
1763 	}
1764 
1765 	return 0;
1766 }
1767 
1768 static void
1769 igb_free_rings(struct igb_softc *sc)
1770 {
1771 	int i;
1772 
1773 	if (sc->tx_rings != NULL) {
1774 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
1775 			struct igb_tx_ring *txr = &sc->tx_rings[i];
1776 
1777 			igb_destroy_tx_ring(txr, txr->num_tx_desc);
1778 		}
1779 		kfree(sc->tx_rings, M_DEVBUF);
1780 	}
1781 
1782 	if (sc->rx_rings != NULL) {
1783 		for (i = 0; i < sc->rx_ring_cnt; ++i) {
1784 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
1785 
1786 			igb_destroy_rx_ring(rxr, rxr->num_rx_desc);
1787 		}
1788 		kfree(sc->rx_rings, M_DEVBUF);
1789 	}
1790 }
1791 
1792 static int
1793 igb_create_tx_ring(struct igb_tx_ring *txr)
1794 {
1795 	int tsize, error, i, ntxd;
1796 
1797 	/*
1798 	 * Validate number of transmit descriptors. It must not exceed
1799 	 * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
1800 	 */
1801 	ntxd = device_getenv_int(txr->sc->dev, "txd", igb_txd);
1802 	if ((ntxd * sizeof(struct e1000_tx_desc)) % IGB_DBA_ALIGN != 0 ||
1803 	    ntxd > IGB_MAX_TXD || ntxd < IGB_MIN_TXD) {
1804 		device_printf(txr->sc->dev,
1805 		    "Using %d TX descriptors instead of %d!\n",
1806 		    IGB_DEFAULT_TXD, ntxd);
1807 		txr->num_tx_desc = IGB_DEFAULT_TXD;
1808 	} else {
1809 		txr->num_tx_desc = ntxd;
1810 	}
1811 
1812 	/*
1813 	 * Allocate TX descriptor ring
1814 	 */
1815 	tsize = roundup2(txr->num_tx_desc * sizeof(union e1000_adv_tx_desc),
1816 	    IGB_DBA_ALIGN);
1817 	txr->txdma.dma_vaddr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1818 	    IGB_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1819 	    &txr->txdma.dma_tag, &txr->txdma.dma_map, &txr->txdma.dma_paddr);
1820 	if (txr->txdma.dma_vaddr == NULL) {
1821 		device_printf(txr->sc->dev,
1822 		    "Unable to allocate TX Descriptor memory\n");
1823 		return ENOMEM;
1824 	}
1825 	txr->tx_base = txr->txdma.dma_vaddr;
1826 	bzero(txr->tx_base, tsize);
1827 
1828 	tsize = __VM_CACHELINE_ALIGN(
1829 	    sizeof(struct igb_tx_buf) * txr->num_tx_desc);
1830 	txr->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
1831 
1832 	/*
1833 	 * Allocate TX head write-back buffer
1834 	 */
1835 	txr->tx_hdr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1836 	    __VM_CACHELINE_SIZE, __VM_CACHELINE_SIZE, BUS_DMA_WAITOK,
1837 	    &txr->tx_hdr_dtag, &txr->tx_hdr_dmap, &txr->tx_hdr_paddr);
1838 	if (txr->tx_hdr == NULL) {
1839 		device_printf(txr->sc->dev,
1840 		    "Unable to allocate TX head write-back buffer\n");
1841 		return ENOMEM;
1842 	}
1843 
1844 	/*
1845 	 * Create DMA tag for TX buffers
1846 	 */
1847 	error = bus_dma_tag_create(txr->sc->parent_tag,
1848 	    1, 0,		/* alignment, bounds */
1849 	    BUS_SPACE_MAXADDR,	/* lowaddr */
1850 	    BUS_SPACE_MAXADDR,	/* highaddr */
1851 	    NULL, NULL,		/* filter, filterarg */
1852 	    IGB_TSO_SIZE,	/* maxsize */
1853 	    IGB_MAX_SCATTER,	/* nsegments */
1854 	    PAGE_SIZE,		/* maxsegsize */
1855 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1856 	    BUS_DMA_ONEBPAGE,	/* flags */
1857 	    &txr->tx_tag);
1858 	if (error) {
1859 		device_printf(txr->sc->dev, "Unable to allocate TX DMA tag\n");
1860 		kfree(txr->tx_buf, M_DEVBUF);
1861 		txr->tx_buf = NULL;
1862 		return error;
1863 	}
1864 
1865 	/*
1866 	 * Create DMA maps for TX buffers
1867 	 */
1868 	for (i = 0; i < txr->num_tx_desc; ++i) {
1869 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1870 
1871 		error = bus_dmamap_create(txr->tx_tag,
1872 		    BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE, &txbuf->map);
1873 		if (error) {
1874 			device_printf(txr->sc->dev,
1875 			    "Unable to create TX DMA map\n");
1876 			igb_destroy_tx_ring(txr, i);
1877 			return error;
1878 		}
1879 	}
1880 
1881 	if (txr->sc->hw.mac.type == e1000_82575)
1882 		txr->tx_flags |= IGB_TXFLAG_TSO_IPLEN0;
1883 
1884 	/*
1885 	 * Initialize various watermark
1886 	 */
1887 	txr->spare_desc = IGB_TX_SPARE;
1888 	txr->intr_nsegs = txr->num_tx_desc / 16;
1889 	txr->wreg_nsegs = IGB_DEF_TXWREG_NSEGS;
1890 	txr->oact_hi_desc = txr->num_tx_desc / 2;
1891 	txr->oact_lo_desc = txr->num_tx_desc / 8;
1892 	if (txr->oact_lo_desc > IGB_TX_OACTIVE_MAX)
1893 		txr->oact_lo_desc = IGB_TX_OACTIVE_MAX;
1894 	if (txr->oact_lo_desc < txr->spare_desc + IGB_TX_RESERVED)
1895 		txr->oact_lo_desc = txr->spare_desc + IGB_TX_RESERVED;
1896 
1897 	return 0;
1898 }
1899 
1900 static void
1901 igb_free_tx_ring(struct igb_tx_ring *txr)
1902 {
1903 	int i;
1904 
1905 	for (i = 0; i < txr->num_tx_desc; ++i) {
1906 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1907 
1908 		if (txbuf->m_head != NULL) {
1909 			bus_dmamap_unload(txr->tx_tag, txbuf->map);
1910 			m_freem(txbuf->m_head);
1911 			txbuf->m_head = NULL;
1912 		}
1913 	}
1914 }
1915 
1916 static void
1917 igb_destroy_tx_ring(struct igb_tx_ring *txr, int ndesc)
1918 {
1919 	int i;
1920 
1921 	if (txr->txdma.dma_vaddr != NULL) {
1922 		bus_dmamap_unload(txr->txdma.dma_tag, txr->txdma.dma_map);
1923 		bus_dmamem_free(txr->txdma.dma_tag, txr->txdma.dma_vaddr,
1924 		    txr->txdma.dma_map);
1925 		bus_dma_tag_destroy(txr->txdma.dma_tag);
1926 		txr->txdma.dma_vaddr = NULL;
1927 	}
1928 
1929 	if (txr->tx_hdr != NULL) {
1930 		bus_dmamap_unload(txr->tx_hdr_dtag, txr->tx_hdr_dmap);
1931 		bus_dmamem_free(txr->tx_hdr_dtag, txr->tx_hdr,
1932 		    txr->tx_hdr_dmap);
1933 		bus_dma_tag_destroy(txr->tx_hdr_dtag);
1934 		txr->tx_hdr = NULL;
1935 	}
1936 
1937 	if (txr->tx_buf == NULL)
1938 		return;
1939 
1940 	for (i = 0; i < ndesc; ++i) {
1941 		struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1942 
1943 		KKASSERT(txbuf->m_head == NULL);
1944 		bus_dmamap_destroy(txr->tx_tag, txbuf->map);
1945 	}
1946 	bus_dma_tag_destroy(txr->tx_tag);
1947 
1948 	kfree(txr->tx_buf, M_DEVBUF);
1949 	txr->tx_buf = NULL;
1950 }
1951 
1952 static void
1953 igb_init_tx_ring(struct igb_tx_ring *txr)
1954 {
1955 	/* Clear the old descriptor contents */
1956 	bzero(txr->tx_base,
1957 	    sizeof(union e1000_adv_tx_desc) * txr->num_tx_desc);
1958 
1959 	/* Clear TX head write-back buffer */
1960 	*(txr->tx_hdr) = 0;
1961 
1962 	/* Reset indices */
1963 	txr->next_avail_desc = 0;
1964 	txr->next_to_clean = 0;
1965 	txr->tx_nsegs = 0;
1966 
1967 	/* Set number of descriptors available */
1968 	txr->tx_avail = txr->num_tx_desc;
1969 
1970 	/* Enable this TX ring */
1971 	txr->tx_flags |= IGB_TXFLAG_ENABLED;
1972 }
1973 
1974 static void
1975 igb_init_tx_unit(struct igb_softc *sc)
1976 {
1977 	struct e1000_hw *hw = &sc->hw;
1978 	uint32_t tctl;
1979 	int i;
1980 
1981 	/* Setup the Tx Descriptor Rings */
1982 	for (i = 0; i < sc->tx_ring_inuse; ++i) {
1983 		struct igb_tx_ring *txr = &sc->tx_rings[i];
1984 		uint64_t bus_addr = txr->txdma.dma_paddr;
1985 		uint64_t hdr_paddr = txr->tx_hdr_paddr;
1986 		uint32_t txdctl = 0;
1987 		uint32_t dca_txctrl;
1988 
1989 		E1000_WRITE_REG(hw, E1000_TDLEN(i),
1990 		    txr->num_tx_desc * sizeof(struct e1000_tx_desc));
1991 		E1000_WRITE_REG(hw, E1000_TDBAH(i),
1992 		    (uint32_t)(bus_addr >> 32));
1993 		E1000_WRITE_REG(hw, E1000_TDBAL(i),
1994 		    (uint32_t)bus_addr);
1995 
1996 		/* Setup the HW Tx Head and Tail descriptor pointers */
1997 		E1000_WRITE_REG(hw, E1000_TDT(i), 0);
1998 		E1000_WRITE_REG(hw, E1000_TDH(i), 0);
1999 
2000 		dca_txctrl = E1000_READ_REG(hw, E1000_DCA_TXCTRL(i));
2001 		dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
2002 		E1000_WRITE_REG(hw, E1000_DCA_TXCTRL(i), dca_txctrl);
2003 
2004 		/*
2005 		 * Don't set WB_on_EITR:
2006 		 * - 82575 does not have it
2007 		 * - It almost has no effect on 82576, see:
2008 		 *   82576 specification update errata #26
2009 		 * - It causes unnecessary bus traffic
2010 		 */
2011 		E1000_WRITE_REG(hw, E1000_TDWBAH(i),
2012 		    (uint32_t)(hdr_paddr >> 32));
2013 		E1000_WRITE_REG(hw, E1000_TDWBAL(i),
2014 		    ((uint32_t)hdr_paddr) | E1000_TX_HEAD_WB_ENABLE);
2015 
2016 		/*
2017 		 * WTHRESH is ignored by the hardware, since header
2018 		 * write back mode is used.
2019 		 */
2020 		txdctl |= IGB_TX_PTHRESH;
2021 		txdctl |= IGB_TX_HTHRESH << 8;
2022 		txdctl |= IGB_TX_WTHRESH << 16;
2023 		txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2024 		E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
2025 	}
2026 
2027 	if (sc->vf_ifp)
2028 		return;
2029 
2030 	e1000_config_collision_dist(hw);
2031 
2032 	/* Program the Transmit Control Register */
2033 	tctl = E1000_READ_REG(hw, E1000_TCTL);
2034 	tctl &= ~E1000_TCTL_CT;
2035 	tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2036 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
2037 
2038 	/* This write will effectively turn on the transmit unit. */
2039 	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
2040 }
2041 
2042 static boolean_t
2043 igb_txcsum_ctx(struct igb_tx_ring *txr, struct mbuf *mp)
2044 {
2045 	struct e1000_adv_tx_context_desc *TXD;
2046 	uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
2047 	int ehdrlen, ctxd, ip_hlen = 0;
2048 	boolean_t offload = TRUE;
2049 
2050 	if ((mp->m_pkthdr.csum_flags & IGB_CSUM_FEATURES) == 0)
2051 		offload = FALSE;
2052 
2053 	vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
2054 
2055 	ctxd = txr->next_avail_desc;
2056 	TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
2057 
2058 	/*
2059 	 * In advanced descriptors the vlan tag must
2060 	 * be placed into the context descriptor, thus
2061 	 * we need to be here just for that setup.
2062 	 */
2063 	if (mp->m_flags & M_VLANTAG) {
2064 		uint16_t vlantag;
2065 
2066 		vlantag = htole16(mp->m_pkthdr.ether_vlantag);
2067 		vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
2068 	} else if (!offload) {
2069 		return FALSE;
2070 	}
2071 
2072 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2073 	KASSERT(ehdrlen > 0, ("invalid ether hlen"));
2074 
2075 	/* Set the ether header length */
2076 	vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
2077 	if (mp->m_pkthdr.csum_flags & CSUM_IP) {
2078 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
2079 		ip_hlen = mp->m_pkthdr.csum_iphlen;
2080 		KASSERT(ip_hlen > 0, ("invalid ip hlen"));
2081 	}
2082 	vlan_macip_lens |= ip_hlen;
2083 
2084 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
2085 	if (mp->m_pkthdr.csum_flags & CSUM_TCP)
2086 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
2087 	else if (mp->m_pkthdr.csum_flags & CSUM_UDP)
2088 		type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
2089 
2090 	/*
2091 	 * 82575 needs the TX context index added; the queue
2092 	 * index is used as TX context index here.
2093 	 */
2094 	if (txr->sc->hw.mac.type == e1000_82575)
2095 		mss_l4len_idx = txr->me << 4;
2096 
2097 	/* Now copy bits into descriptor */
2098 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
2099 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
2100 	TXD->seqnum_seed = htole32(0);
2101 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
2102 
2103 	/* We've consumed the first desc, adjust counters */
2104 	if (++ctxd == txr->num_tx_desc)
2105 		ctxd = 0;
2106 	txr->next_avail_desc = ctxd;
2107 	--txr->tx_avail;
2108 
2109 	return offload;
2110 }
2111 
2112 static void
2113 igb_txeof(struct igb_tx_ring *txr)
2114 {
2115 	struct ifnet *ifp = &txr->sc->arpcom.ac_if;
2116 	int first, hdr, avail;
2117 
2118 	if (txr->tx_avail == txr->num_tx_desc)
2119 		return;
2120 
2121 	first = txr->next_to_clean;
2122 	hdr = *(txr->tx_hdr);
2123 
2124 	if (first == hdr)
2125 		return;
2126 
2127 	avail = txr->tx_avail;
2128 	while (first != hdr) {
2129 		struct igb_tx_buf *txbuf = &txr->tx_buf[first];
2130 
2131 		++avail;
2132 		if (txbuf->m_head) {
2133 			bus_dmamap_unload(txr->tx_tag, txbuf->map);
2134 			m_freem(txbuf->m_head);
2135 			txbuf->m_head = NULL;
2136 			IFNET_STAT_INC(ifp, opackets, 1);
2137 		}
2138 		if (++first == txr->num_tx_desc)
2139 			first = 0;
2140 	}
2141 	txr->next_to_clean = first;
2142 	txr->tx_avail = avail;
2143 
2144 	/*
2145 	 * If we have a minimum free, clear OACTIVE
2146 	 * to tell the stack that it is OK to send packets.
2147 	 */
2148 	if (IGB_IS_NOT_OACTIVE(txr)) {
2149 		ifsq_clr_oactive(txr->ifsq);
2150 
2151 		/*
2152 		 * We have enough TX descriptors, turn off
2153 		 * the watchdog.  We allow small amount of
2154 		 * packets (roughly intr_nsegs) pending on
2155 		 * the transmit ring.
2156 		 */
2157 		txr->tx_watchdog.wd_timer = 0;
2158 	}
2159 }
2160 
2161 static int
2162 igb_create_rx_ring(struct igb_rx_ring *rxr)
2163 {
2164 	int rsize, i, error, nrxd;
2165 
2166 	/*
2167 	 * Validate number of receive descriptors. It must not exceed
2168 	 * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
2169 	 */
2170 	nrxd = device_getenv_int(rxr->sc->dev, "rxd", igb_rxd);
2171 	if ((nrxd * sizeof(struct e1000_rx_desc)) % IGB_DBA_ALIGN != 0 ||
2172 	    nrxd > IGB_MAX_RXD || nrxd < IGB_MIN_RXD) {
2173 		device_printf(rxr->sc->dev,
2174 		    "Using %d RX descriptors instead of %d!\n",
2175 		    IGB_DEFAULT_RXD, nrxd);
2176 		rxr->num_rx_desc = IGB_DEFAULT_RXD;
2177 	} else {
2178 		rxr->num_rx_desc = nrxd;
2179 	}
2180 
2181 	/*
2182 	 * Allocate RX descriptor ring
2183 	 */
2184 	rsize = roundup2(rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc),
2185 	    IGB_DBA_ALIGN);
2186 	rxr->rxdma.dma_vaddr = bus_dmamem_coherent_any(rxr->sc->parent_tag,
2187 	    IGB_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2188 	    &rxr->rxdma.dma_tag, &rxr->rxdma.dma_map,
2189 	    &rxr->rxdma.dma_paddr);
2190 	if (rxr->rxdma.dma_vaddr == NULL) {
2191 		device_printf(rxr->sc->dev,
2192 		    "Unable to allocate RxDescriptor memory\n");
2193 		return ENOMEM;
2194 	}
2195 	rxr->rx_base = rxr->rxdma.dma_vaddr;
2196 	bzero(rxr->rx_base, rsize);
2197 
2198 	rsize = __VM_CACHELINE_ALIGN(
2199 	    sizeof(struct igb_rx_buf) * rxr->num_rx_desc);
2200 	rxr->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2201 
2202 	/*
2203 	 * Create DMA tag for RX buffers
2204 	 */
2205 	error = bus_dma_tag_create(rxr->sc->parent_tag,
2206 	    1, 0,		/* alignment, bounds */
2207 	    BUS_SPACE_MAXADDR,	/* lowaddr */
2208 	    BUS_SPACE_MAXADDR,	/* highaddr */
2209 	    NULL, NULL,		/* filter, filterarg */
2210 	    MCLBYTES,		/* maxsize */
2211 	    1,			/* nsegments */
2212 	    MCLBYTES,		/* maxsegsize */
2213 	    BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2214 	    &rxr->rx_tag);
2215 	if (error) {
2216 		device_printf(rxr->sc->dev,
2217 		    "Unable to create RX payload DMA tag\n");
2218 		kfree(rxr->rx_buf, M_DEVBUF);
2219 		rxr->rx_buf = NULL;
2220 		return error;
2221 	}
2222 
2223 	/*
2224 	 * Create spare DMA map for RX buffers
2225 	 */
2226 	error = bus_dmamap_create(rxr->rx_tag, BUS_DMA_WAITOK,
2227 	    &rxr->rx_sparemap);
2228 	if (error) {
2229 		device_printf(rxr->sc->dev,
2230 		    "Unable to create spare RX DMA maps\n");
2231 		bus_dma_tag_destroy(rxr->rx_tag);
2232 		kfree(rxr->rx_buf, M_DEVBUF);
2233 		rxr->rx_buf = NULL;
2234 		return error;
2235 	}
2236 
2237 	/*
2238 	 * Create DMA maps for RX buffers
2239 	 */
2240 	for (i = 0; i < rxr->num_rx_desc; i++) {
2241 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2242 
2243 		error = bus_dmamap_create(rxr->rx_tag,
2244 		    BUS_DMA_WAITOK, &rxbuf->map);
2245 		if (error) {
2246 			device_printf(rxr->sc->dev,
2247 			    "Unable to create RX DMA maps\n");
2248 			igb_destroy_rx_ring(rxr, i);
2249 			return error;
2250 		}
2251 	}
2252 
2253 	/*
2254 	 * Initialize various watermark
2255 	 */
2256 	rxr->wreg_nsegs = IGB_DEF_RXWREG_NSEGS;
2257 
2258 	return 0;
2259 }
2260 
2261 static void
2262 igb_free_rx_ring(struct igb_rx_ring *rxr)
2263 {
2264 	int i;
2265 
2266 	for (i = 0; i < rxr->num_rx_desc; ++i) {
2267 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2268 
2269 		if (rxbuf->m_head != NULL) {
2270 			bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2271 			m_freem(rxbuf->m_head);
2272 			rxbuf->m_head = NULL;
2273 		}
2274 	}
2275 
2276 	if (rxr->fmp != NULL)
2277 		m_freem(rxr->fmp);
2278 	rxr->fmp = NULL;
2279 	rxr->lmp = NULL;
2280 }
2281 
2282 static void
2283 igb_destroy_rx_ring(struct igb_rx_ring *rxr, int ndesc)
2284 {
2285 	int i;
2286 
2287 	if (rxr->rxdma.dma_vaddr != NULL) {
2288 		bus_dmamap_unload(rxr->rxdma.dma_tag, rxr->rxdma.dma_map);
2289 		bus_dmamem_free(rxr->rxdma.dma_tag, rxr->rxdma.dma_vaddr,
2290 		    rxr->rxdma.dma_map);
2291 		bus_dma_tag_destroy(rxr->rxdma.dma_tag);
2292 		rxr->rxdma.dma_vaddr = NULL;
2293 	}
2294 
2295 	if (rxr->rx_buf == NULL)
2296 		return;
2297 
2298 	for (i = 0; i < ndesc; ++i) {
2299 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2300 
2301 		KKASSERT(rxbuf->m_head == NULL);
2302 		bus_dmamap_destroy(rxr->rx_tag, rxbuf->map);
2303 	}
2304 	bus_dmamap_destroy(rxr->rx_tag, rxr->rx_sparemap);
2305 	bus_dma_tag_destroy(rxr->rx_tag);
2306 
2307 	kfree(rxr->rx_buf, M_DEVBUF);
2308 	rxr->rx_buf = NULL;
2309 }
2310 
2311 static void
2312 igb_setup_rxdesc(union e1000_adv_rx_desc *rxd, const struct igb_rx_buf *rxbuf)
2313 {
2314 	rxd->read.pkt_addr = htole64(rxbuf->paddr);
2315 	rxd->wb.upper.status_error = 0;
2316 }
2317 
2318 static int
2319 igb_newbuf(struct igb_rx_ring *rxr, int i, boolean_t wait)
2320 {
2321 	struct mbuf *m;
2322 	bus_dma_segment_t seg;
2323 	bus_dmamap_t map;
2324 	struct igb_rx_buf *rxbuf;
2325 	int error, nseg;
2326 
2327 	m = m_getcl(wait ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2328 	if (m == NULL) {
2329 		if (wait) {
2330 			if_printf(&rxr->sc->arpcom.ac_if,
2331 			    "Unable to allocate RX mbuf\n");
2332 		}
2333 		return ENOBUFS;
2334 	}
2335 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2336 
2337 	if (rxr->sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2338 		m_adj(m, ETHER_ALIGN);
2339 
2340 	error = bus_dmamap_load_mbuf_segment(rxr->rx_tag,
2341 	    rxr->rx_sparemap, m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
2342 	if (error) {
2343 		m_freem(m);
2344 		if (wait) {
2345 			if_printf(&rxr->sc->arpcom.ac_if,
2346 			    "Unable to load RX mbuf\n");
2347 		}
2348 		return error;
2349 	}
2350 
2351 	rxbuf = &rxr->rx_buf[i];
2352 	if (rxbuf->m_head != NULL)
2353 		bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2354 
2355 	map = rxbuf->map;
2356 	rxbuf->map = rxr->rx_sparemap;
2357 	rxr->rx_sparemap = map;
2358 
2359 	rxbuf->m_head = m;
2360 	rxbuf->paddr = seg.ds_addr;
2361 
2362 	igb_setup_rxdesc(&rxr->rx_base[i], rxbuf);
2363 	return 0;
2364 }
2365 
2366 static int
2367 igb_init_rx_ring(struct igb_rx_ring *rxr)
2368 {
2369 	int i;
2370 
2371 	/* Clear the ring contents */
2372 	bzero(rxr->rx_base,
2373 	    rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc));
2374 
2375 	/* Now replenish the ring mbufs */
2376 	for (i = 0; i < rxr->num_rx_desc; ++i) {
2377 		int error;
2378 
2379 		error = igb_newbuf(rxr, i, TRUE);
2380 		if (error)
2381 			return error;
2382 	}
2383 
2384 	/* Setup our descriptor indices */
2385 	rxr->next_to_check = 0;
2386 
2387 	rxr->fmp = NULL;
2388 	rxr->lmp = NULL;
2389 	rxr->discard = FALSE;
2390 
2391 	return 0;
2392 }
2393 
2394 static void
2395 igb_init_rx_unit(struct igb_softc *sc)
2396 {
2397 	struct ifnet *ifp = &sc->arpcom.ac_if;
2398 	struct e1000_hw *hw = &sc->hw;
2399 	uint32_t rctl, rxcsum, srrctl = 0;
2400 	int i;
2401 
2402 	/*
2403 	 * Make sure receives are disabled while setting
2404 	 * up the descriptor ring
2405 	 */
2406 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2407 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2408 
2409 #if 0
2410 	/*
2411 	** Set up for header split
2412 	*/
2413 	if (igb_header_split) {
2414 		/* Use a standard mbuf for the header */
2415 		srrctl |= IGB_HDR_BUF << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2416 		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2417 	} else
2418 #endif
2419 		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2420 
2421 	/*
2422 	** Set up for jumbo frames
2423 	*/
2424 	if (ifp->if_mtu > ETHERMTU) {
2425 		rctl |= E1000_RCTL_LPE;
2426 #if 0
2427 		if (adapter->rx_mbuf_sz == MJUMPAGESIZE) {
2428 			srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2429 			rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
2430 		} else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) {
2431 			srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2432 			rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
2433 		}
2434 		/* Set maximum packet len */
2435 		psize = adapter->max_frame_size;
2436 		/* are we on a vlan? */
2437 		if (adapter->ifp->if_vlantrunk != NULL)
2438 			psize += VLAN_TAG_SIZE;
2439 		E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
2440 #else
2441 		srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2442 		rctl |= E1000_RCTL_SZ_2048;
2443 #endif
2444 	} else {
2445 		rctl &= ~E1000_RCTL_LPE;
2446 		srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2447 		rctl |= E1000_RCTL_SZ_2048;
2448 	}
2449 
2450 	/* Setup the Base and Length of the Rx Descriptor Rings */
2451 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2452 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
2453 		uint64_t bus_addr = rxr->rxdma.dma_paddr;
2454 		uint32_t rxdctl;
2455 
2456 		E1000_WRITE_REG(hw, E1000_RDLEN(i),
2457 		    rxr->num_rx_desc * sizeof(struct e1000_rx_desc));
2458 		E1000_WRITE_REG(hw, E1000_RDBAH(i),
2459 		    (uint32_t)(bus_addr >> 32));
2460 		E1000_WRITE_REG(hw, E1000_RDBAL(i),
2461 		    (uint32_t)bus_addr);
2462 		E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2463 		/* Enable this Queue */
2464 		rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2465 		rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2466 		rxdctl &= 0xFFF00000;
2467 		rxdctl |= IGB_RX_PTHRESH;
2468 		rxdctl |= IGB_RX_HTHRESH << 8;
2469 		/*
2470 		 * Don't set WTHRESH to a value above 1 on 82576, see:
2471 		 * 82576 specification update errata #26
2472 		 */
2473 		rxdctl |= IGB_RX_WTHRESH << 16;
2474 		E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2475 	}
2476 
2477 	rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2478 	rxcsum &= ~(E1000_RXCSUM_PCSS_MASK | E1000_RXCSUM_IPPCSE);
2479 
2480 	/*
2481 	 * Receive Checksum Offload for TCP and UDP
2482 	 *
2483 	 * Checksum offloading is also enabled if multiple receive
2484 	 * queue is to be supported, since we need it to figure out
2485 	 * fragments.
2486 	 */
2487 	if ((ifp->if_capenable & IFCAP_RXCSUM) || IGB_ENABLE_HWRSS(sc)) {
2488 		/*
2489 		 * NOTE:
2490 		 * PCSD must be enabled to enable multiple
2491 		 * receive queues.
2492 		 */
2493 		rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2494 		    E1000_RXCSUM_PCSD;
2495 	} else {
2496 		rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2497 		    E1000_RXCSUM_PCSD);
2498 	}
2499 	E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2500 
2501 	if (IGB_ENABLE_HWRSS(sc)) {
2502 		uint8_t key[IGB_NRSSRK * IGB_RSSRK_SIZE];
2503 		uint32_t reta_shift;
2504 		int j, r;
2505 
2506 		/*
2507 		 * NOTE:
2508 		 * When we reach here, RSS has already been disabled
2509 		 * in igb_stop(), so we could safely configure RSS key
2510 		 * and redirect table.
2511 		 */
2512 
2513 		/*
2514 		 * Configure RSS key
2515 		 */
2516 		toeplitz_get_key(key, sizeof(key));
2517 		for (i = 0; i < IGB_NRSSRK; ++i) {
2518 			uint32_t rssrk;
2519 
2520 			rssrk = IGB_RSSRK_VAL(key, i);
2521 			IGB_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2522 
2523 			E1000_WRITE_REG(hw, E1000_RSSRK(i), rssrk);
2524 		}
2525 
2526 		/*
2527 		 * Configure RSS redirect table in following fashion:
2528 	 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2529 		 */
2530 		reta_shift = IGB_RETA_SHIFT;
2531 		if (hw->mac.type == e1000_82575)
2532 			reta_shift = IGB_RETA_SHIFT_82575;
2533 
2534 		r = 0;
2535 		for (j = 0; j < IGB_NRETA; ++j) {
2536 			uint32_t reta = 0;
2537 
2538 			for (i = 0; i < IGB_RETA_SIZE; ++i) {
2539 				uint32_t q;
2540 
2541 				q = (r % sc->rx_ring_inuse) << reta_shift;
2542 				reta |= q << (8 * i);
2543 				++r;
2544 			}
2545 			IGB_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2546 			E1000_WRITE_REG(hw, E1000_RETA(j), reta);
2547 		}
2548 
2549 		/*
2550 		 * Enable multiple receive queues.
2551 		 * Enable IPv4 RSS standard hash functions.
2552 		 * Disable RSS interrupt on 82575
2553 		 */
2554 		E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2555 				E1000_MRQC_ENABLE_RSS_4Q |
2556 				E1000_MRQC_RSS_FIELD_IPV4_TCP |
2557 				E1000_MRQC_RSS_FIELD_IPV4);
2558 	}
2559 
2560 	/* Setup the Receive Control Register */
2561 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2562 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2563 	    E1000_RCTL_RDMTS_HALF |
2564 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2565 	/* Strip CRC bytes. */
2566 	rctl |= E1000_RCTL_SECRC;
2567 	/* Make sure VLAN Filters are off */
2568 	rctl &= ~E1000_RCTL_VFE;
2569 	/* Don't store bad packets */
2570 	rctl &= ~E1000_RCTL_SBP;
2571 
2572 	/* Enable Receives */
2573 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2574 
2575 	/*
2576 	 * Setup the HW Rx Head and Tail Descriptor Pointers
2577 	 *   - needs to be after enable
2578 	 */
2579 	for (i = 0; i < sc->rx_ring_inuse; ++i) {
2580 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
2581 
2582 		E1000_WRITE_REG(hw, E1000_RDH(i), rxr->next_to_check);
2583 		E1000_WRITE_REG(hw, E1000_RDT(i), rxr->num_rx_desc - 1);
2584 	}
2585 }
2586 
2587 static void
2588 igb_rx_refresh(struct igb_rx_ring *rxr, int i)
2589 {
2590 	if (--i < 0)
2591 		i = rxr->num_rx_desc - 1;
2592 	E1000_WRITE_REG(&rxr->sc->hw, E1000_RDT(rxr->me), i);
2593 }
2594 
2595 static void
2596 igb_rxeof(struct igb_rx_ring *rxr, int count)
2597 {
2598 	struct ifnet *ifp = &rxr->sc->arpcom.ac_if;
2599 	union e1000_adv_rx_desc	*cur;
2600 	uint32_t staterr;
2601 	int i, ncoll = 0, cpuid = mycpuid;
2602 
2603 	i = rxr->next_to_check;
2604 	cur = &rxr->rx_base[i];
2605 	staterr = le32toh(cur->wb.upper.status_error);
2606 
2607 	if ((staterr & E1000_RXD_STAT_DD) == 0)
2608 		return;
2609 
2610 	while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2611 		struct pktinfo *pi = NULL, pi0;
2612 		struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2613 		struct mbuf *m = NULL;
2614 		boolean_t eop;
2615 
2616 		eop = (staterr & E1000_RXD_STAT_EOP) ? TRUE : FALSE;
2617 		if (eop)
2618 			--count;
2619 
2620 		++ncoll;
2621 		if ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) == 0 &&
2622 		    !rxr->discard) {
2623 			struct mbuf *mp = rxbuf->m_head;
2624 			uint32_t hash, hashtype;
2625 			uint16_t vlan;
2626 			int len;
2627 
2628 			len = le16toh(cur->wb.upper.length);
2629 			if ((rxr->sc->hw.mac.type == e1000_i350 ||
2630 			     rxr->sc->hw.mac.type == e1000_i354) &&
2631 			    (staterr & E1000_RXDEXT_STATERR_LB))
2632 				vlan = be16toh(cur->wb.upper.vlan);
2633 			else
2634 				vlan = le16toh(cur->wb.upper.vlan);
2635 
2636 			hash = le32toh(cur->wb.lower.hi_dword.rss);
2637 			hashtype = le32toh(cur->wb.lower.lo_dword.data) &
2638 			    E1000_RXDADV_RSSTYPE_MASK;
2639 
2640 			IGB_RSS_DPRINTF(rxr->sc, 10,
2641 			    "ring%d, hash 0x%08x, hashtype %u\n",
2642 			    rxr->me, hash, hashtype);
2643 
2644 			bus_dmamap_sync(rxr->rx_tag, rxbuf->map,
2645 			    BUS_DMASYNC_POSTREAD);
2646 
2647 			if (igb_newbuf(rxr, i, FALSE) != 0) {
2648 				IFNET_STAT_INC(ifp, iqdrops, 1);
2649 				goto discard;
2650 			}
2651 
2652 			mp->m_len = len;
2653 			if (rxr->fmp == NULL) {
2654 				mp->m_pkthdr.len = len;
2655 				rxr->fmp = mp;
2656 				rxr->lmp = mp;
2657 			} else {
2658 				rxr->lmp->m_next = mp;
2659 				rxr->lmp = rxr->lmp->m_next;
2660 				rxr->fmp->m_pkthdr.len += len;
2661 			}
2662 
2663 			if (eop) {
2664 				m = rxr->fmp;
2665 				rxr->fmp = NULL;
2666 				rxr->lmp = NULL;
2667 
2668 				m->m_pkthdr.rcvif = ifp;
2669 				IFNET_STAT_INC(ifp, ipackets, 1);
2670 
2671 				if (ifp->if_capenable & IFCAP_RXCSUM)
2672 					igb_rxcsum(staterr, m);
2673 
2674 				if (staterr & E1000_RXD_STAT_VP) {
2675 					m->m_pkthdr.ether_vlantag = vlan;
2676 					m->m_flags |= M_VLANTAG;
2677 				}
2678 
2679 				if (ifp->if_capenable & IFCAP_RSS) {
2680 					pi = igb_rssinfo(m, &pi0,
2681 					    hash, hashtype, staterr);
2682 				}
2683 #ifdef IGB_RSS_DEBUG
2684 				rxr->rx_packets++;
2685 #endif
2686 			}
2687 		} else {
2688 			IFNET_STAT_INC(ifp, ierrors, 1);
2689 discard:
2690 			igb_setup_rxdesc(cur, rxbuf);
2691 			if (!eop)
2692 				rxr->discard = TRUE;
2693 			else
2694 				rxr->discard = FALSE;
2695 			if (rxr->fmp != NULL) {
2696 				m_freem(rxr->fmp);
2697 				rxr->fmp = NULL;
2698 				rxr->lmp = NULL;
2699 			}
2700 			m = NULL;
2701 		}
2702 
2703 		if (m != NULL)
2704 			ifp->if_input(ifp, m, pi, cpuid);
2705 
2706 		/* Advance our pointers to the next descriptor. */
2707 		if (++i == rxr->num_rx_desc)
2708 			i = 0;
2709 
2710 		if (ncoll >= rxr->wreg_nsegs) {
2711 			igb_rx_refresh(rxr, i);
2712 			ncoll = 0;
2713 		}
2714 
2715 		cur = &rxr->rx_base[i];
2716 		staterr = le32toh(cur->wb.upper.status_error);
2717 	}
2718 	rxr->next_to_check = i;
2719 
2720 	if (ncoll > 0)
2721 		igb_rx_refresh(rxr, i);
2722 }
2723 
2724 
2725 static void
2726 igb_set_vlan(struct igb_softc *sc)
2727 {
2728 	struct e1000_hw *hw = &sc->hw;
2729 	uint32_t reg;
2730 #if 0
2731 	struct ifnet *ifp = sc->arpcom.ac_if;
2732 #endif
2733 
2734 	if (sc->vf_ifp) {
2735 		e1000_rlpml_set_vf(hw, sc->max_frame_size + VLAN_TAG_SIZE);
2736 		return;
2737 	}
2738 
2739 	reg = E1000_READ_REG(hw, E1000_CTRL);
2740 	reg |= E1000_CTRL_VME;
2741 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
2742 
2743 #if 0
2744 	/* Enable the Filter Table */
2745 	if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
2746 		reg = E1000_READ_REG(hw, E1000_RCTL);
2747 		reg &= ~E1000_RCTL_CFIEN;
2748 		reg |= E1000_RCTL_VFE;
2749 		E1000_WRITE_REG(hw, E1000_RCTL, reg);
2750 	}
2751 #endif
2752 
2753 	/* Update the frame size */
2754 	E1000_WRITE_REG(&sc->hw, E1000_RLPML,
2755 	    sc->max_frame_size + VLAN_TAG_SIZE);
2756 
2757 #if 0
2758 	/* Don't bother with table if no vlans */
2759 	if ((adapter->num_vlans == 0) ||
2760 	    ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0))
2761 		return;
2762 	/*
2763 	** A soft reset zero's out the VFTA, so
2764 	** we need to repopulate it now.
2765 	*/
2766 	for (int i = 0; i < IGB_VFTA_SIZE; i++)
2767 		if (adapter->shadow_vfta[i] != 0) {
2768 			if (adapter->vf_ifp)
2769 				e1000_vfta_set_vf(hw,
2770 				    adapter->shadow_vfta[i], TRUE);
2771 			else
2772 				E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
2773 				 i, adapter->shadow_vfta[i]);
2774 		}
2775 #endif
2776 }
2777 
2778 static void
2779 igb_enable_intr(struct igb_softc *sc)
2780 {
2781 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2782 		lwkt_serialize_handler_enable(&sc->main_serialize);
2783 	} else {
2784 		int i;
2785 
2786 		for (i = 0; i < sc->msix_cnt; ++i) {
2787 			lwkt_serialize_handler_enable(
2788 			    sc->msix_data[i].msix_serialize);
2789 		}
2790 	}
2791 
2792 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2793 		if (sc->intr_type == PCI_INTR_TYPE_MSIX)
2794 			E1000_WRITE_REG(&sc->hw, E1000_EIAC, sc->intr_mask);
2795 		else
2796 			E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2797 		E1000_WRITE_REG(&sc->hw, E1000_EIAM, sc->intr_mask);
2798 		E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
2799 		E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
2800 	} else {
2801 		E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
2802 	}
2803 	E1000_WRITE_FLUSH(&sc->hw);
2804 }
2805 
2806 static void
2807 igb_disable_intr(struct igb_softc *sc)
2808 {
2809 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2810 		E1000_WRITE_REG(&sc->hw, E1000_EIMC, 0xffffffff);
2811 		E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2812 	}
2813 	E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2814 	E1000_WRITE_FLUSH(&sc->hw);
2815 
2816 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2817 		lwkt_serialize_handler_disable(&sc->main_serialize);
2818 	} else {
2819 		int i;
2820 
2821 		for (i = 0; i < sc->msix_cnt; ++i) {
2822 			lwkt_serialize_handler_disable(
2823 			    sc->msix_data[i].msix_serialize);
2824 		}
2825 	}
2826 }
2827 
2828 /*
2829  * Bit of a misnomer, what this really means is
2830  * to enable OS management of the system... aka
2831  * to disable special hardware management features
2832  */
2833 static void
2834 igb_get_mgmt(struct igb_softc *sc)
2835 {
2836 	if (sc->flags & IGB_FLAG_HAS_MGMT) {
2837 		int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2838 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2839 
2840 		/* disable hardware interception of ARP */
2841 		manc &= ~E1000_MANC_ARP_EN;
2842 
2843 		/* enable receiving management packets to the host */
2844 		manc |= E1000_MANC_EN_MNG2HOST;
2845 		manc2h |= 1 << 5; /* Mng Port 623 */
2846 		manc2h |= 1 << 6; /* Mng Port 664 */
2847 		E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
2848 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2849 	}
2850 }
2851 
2852 /*
2853  * Give control back to hardware management controller
2854  * if there is one.
2855  */
2856 static void
2857 igb_rel_mgmt(struct igb_softc *sc)
2858 {
2859 	if (sc->flags & IGB_FLAG_HAS_MGMT) {
2860 		int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2861 
2862 		/* Re-enable hardware interception of ARP */
2863 		manc |= E1000_MANC_ARP_EN;
2864 		manc &= ~E1000_MANC_EN_MNG2HOST;
2865 
2866 		E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2867 	}
2868 }
2869 
2870 /*
2871  * Sets CTRL_EXT:DRV_LOAD bit.
2872  *
2873  * For ASF and Pass Through versions of f/w this means that
2874  * the driver is loaded.
2875  */
2876 static void
2877 igb_get_hw_control(struct igb_softc *sc)
2878 {
2879 	uint32_t ctrl_ext;
2880 
2881 	if (sc->vf_ifp)
2882 		return;
2883 
2884 	/* Let firmware know the driver has taken over */
2885 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2886 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2887 	    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2888 }
2889 
2890 /*
2891  * Resets CTRL_EXT:DRV_LOAD bit.
2892  *
2893  * For ASF and Pass Through versions of f/w this means that the
2894  * driver is no longer loaded.
2895  */
2896 static void
2897 igb_rel_hw_control(struct igb_softc *sc)
2898 {
2899 	uint32_t ctrl_ext;
2900 
2901 	if (sc->vf_ifp)
2902 		return;
2903 
2904 	/* Let firmware taken over control of h/w */
2905 	ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2906 	E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2907 	    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2908 }
2909 
2910 static boolean_t
2911 igb_is_valid_ether_addr(const uint8_t *addr)
2912 {
2913 	uint8_t zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
2914 
2915 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
2916 		return FALSE;
2917 	return TRUE;
2918 }
2919 
2920 /*
2921  * Enable PCI Wake On Lan capability
2922  */
2923 static void
2924 igb_enable_wol(device_t dev)
2925 {
2926 	uint16_t cap, status;
2927 	uint8_t id;
2928 
2929 	/* First find the capabilities pointer*/
2930 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
2931 
2932 	/* Read the PM Capabilities */
2933 	id = pci_read_config(dev, cap, 1);
2934 	if (id != PCIY_PMG)     /* Something wrong */
2935 		return;
2936 
2937 	/*
2938 	 * OK, we have the power capabilities,
2939 	 * so now get the status register
2940 	 */
2941 	cap += PCIR_POWER_STATUS;
2942 	status = pci_read_config(dev, cap, 2);
2943 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2944 	pci_write_config(dev, cap, status, 2);
2945 }
2946 
2947 static void
2948 igb_update_stats_counters(struct igb_softc *sc)
2949 {
2950 	struct e1000_hw *hw = &sc->hw;
2951 	struct e1000_hw_stats *stats;
2952 	struct ifnet *ifp = &sc->arpcom.ac_if;
2953 
2954 	/*
2955 	 * The virtual function adapter has only a
2956 	 * small controlled set of stats, do only
2957 	 * those and return.
2958 	 */
2959 	if (sc->vf_ifp) {
2960 		igb_update_vf_stats_counters(sc);
2961 		return;
2962 	}
2963 	stats = sc->stats;
2964 
2965 	if (sc->hw.phy.media_type == e1000_media_type_copper ||
2966 	    (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
2967 		stats->symerrs +=
2968 		    E1000_READ_REG(hw,E1000_SYMERRS);
2969 		stats->sec += E1000_READ_REG(hw, E1000_SEC);
2970 	}
2971 
2972 	stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
2973 	stats->mpc += E1000_READ_REG(hw, E1000_MPC);
2974 	stats->scc += E1000_READ_REG(hw, E1000_SCC);
2975 	stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
2976 
2977 	stats->mcc += E1000_READ_REG(hw, E1000_MCC);
2978 	stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
2979 	stats->colc += E1000_READ_REG(hw, E1000_COLC);
2980 	stats->dc += E1000_READ_REG(hw, E1000_DC);
2981 	stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
2982 	stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
2983 	stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
2984 
2985 	/*
2986 	 * For watchdog management we need to know if we have been
2987 	 * paused during the last interval, so capture that here.
2988 	 */
2989 	sc->pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
2990 	stats->xoffrxc += sc->pause_frames;
2991 	stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
2992 	stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
2993 	stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
2994 	stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
2995 	stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
2996 	stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
2997 	stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
2998 	stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
2999 	stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
3000 	stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
3001 	stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
3002 	stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
3003 
3004 	/* For the 64-bit byte counters the low dword must be read first. */
3005 	/* Both registers clear on the read of the high dword */
3006 
3007 	stats->gorc += E1000_READ_REG(hw, E1000_GORCL) +
3008 	    ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
3009 	stats->gotc += E1000_READ_REG(hw, E1000_GOTCL) +
3010 	    ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
3011 
3012 	stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
3013 	stats->ruc += E1000_READ_REG(hw, E1000_RUC);
3014 	stats->rfc += E1000_READ_REG(hw, E1000_RFC);
3015 	stats->roc += E1000_READ_REG(hw, E1000_ROC);
3016 	stats->rjc += E1000_READ_REG(hw, E1000_RJC);
3017 
3018 	stats->tor += E1000_READ_REG(hw, E1000_TORH);
3019 	stats->tot += E1000_READ_REG(hw, E1000_TOTH);
3020 
3021 	stats->tpr += E1000_READ_REG(hw, E1000_TPR);
3022 	stats->tpt += E1000_READ_REG(hw, E1000_TPT);
3023 	stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
3024 	stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
3025 	stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
3026 	stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
3027 	stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
3028 	stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
3029 	stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
3030 	stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
3031 
3032 	/* Interrupt Counts */
3033 
3034 	stats->iac += E1000_READ_REG(hw, E1000_IAC);
3035 	stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
3036 	stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
3037 	stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
3038 	stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
3039 	stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
3040 	stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
3041 	stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
3042 	stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
3043 
3044 	/* Host to Card Statistics */
3045 
3046 	stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
3047 	stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
3048 	stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
3049 	stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
3050 	stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
3051 	stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
3052 	stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
3053 	stats->hgorc += (E1000_READ_REG(hw, E1000_HGORCL) +
3054 	    ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32));
3055 	stats->hgotc += (E1000_READ_REG(hw, E1000_HGOTCL) +
3056 	    ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32));
3057 	stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
3058 	stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
3059 	stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
3060 
3061 	stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
3062 	stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
3063 	stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
3064 	stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
3065 	stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
3066 	stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
3067 
3068 	IFNET_STAT_SET(ifp, collisions, stats->colc);
3069 
3070 	/* Rx Errors */
3071 	IFNET_STAT_SET(ifp, ierrors,
3072 	    stats->rxerrc + stats->crcerrs + stats->algnerrc +
3073 	    stats->ruc + stats->roc + stats->mpc + stats->cexterr);
3074 
3075 	/* Tx Errors */
3076 	IFNET_STAT_SET(ifp, oerrors,
3077 	    stats->ecol + stats->latecol + sc->watchdog_events);
3078 
3079 	/* Driver specific counters */
3080 	sc->device_control = E1000_READ_REG(hw, E1000_CTRL);
3081 	sc->rx_control = E1000_READ_REG(hw, E1000_RCTL);
3082 	sc->int_mask = E1000_READ_REG(hw, E1000_IMS);
3083 	sc->eint_mask = E1000_READ_REG(hw, E1000_EIMS);
3084 	sc->packet_buf_alloc_tx =
3085 	    ((E1000_READ_REG(hw, E1000_PBA) & 0xffff0000) >> 16);
3086 	sc->packet_buf_alloc_rx =
3087 	    (E1000_READ_REG(hw, E1000_PBA) & 0xffff);
3088 }
3089 
3090 static void
3091 igb_vf_init_stats(struct igb_softc *sc)
3092 {
3093 	struct e1000_hw *hw = &sc->hw;
3094 	struct e1000_vf_stats *stats;
3095 
3096 	stats = sc->stats;
3097 	stats->last_gprc = E1000_READ_REG(hw, E1000_VFGPRC);
3098 	stats->last_gorc = E1000_READ_REG(hw, E1000_VFGORC);
3099 	stats->last_gptc = E1000_READ_REG(hw, E1000_VFGPTC);
3100 	stats->last_gotc = E1000_READ_REG(hw, E1000_VFGOTC);
3101 	stats->last_mprc = E1000_READ_REG(hw, E1000_VFMPRC);
3102 }
3103 
3104 static void
3105 igb_update_vf_stats_counters(struct igb_softc *sc)
3106 {
3107 	struct e1000_hw *hw = &sc->hw;
3108 	struct e1000_vf_stats *stats;
3109 
3110 	if (sc->link_speed == 0)
3111 		return;
3112 
3113 	stats = sc->stats;
3114 	UPDATE_VF_REG(E1000_VFGPRC, stats->last_gprc, stats->gprc);
3115 	UPDATE_VF_REG(E1000_VFGORC, stats->last_gorc, stats->gorc);
3116 	UPDATE_VF_REG(E1000_VFGPTC, stats->last_gptc, stats->gptc);
3117 	UPDATE_VF_REG(E1000_VFGOTC, stats->last_gotc, stats->gotc);
3118 	UPDATE_VF_REG(E1000_VFMPRC, stats->last_mprc, stats->mprc);
3119 }
3120 
3121 #ifdef IFPOLL_ENABLE
3122 
3123 static void
3124 igb_npoll_status(struct ifnet *ifp)
3125 {
3126 	struct igb_softc *sc = ifp->if_softc;
3127 	uint32_t reg_icr;
3128 
3129 	ASSERT_SERIALIZED(&sc->main_serialize);
3130 
3131 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3132 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3133 		sc->hw.mac.get_link_status = 1;
3134 		igb_update_link_status(sc);
3135 	}
3136 }
3137 
3138 static void
3139 igb_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
3140 {
3141 	struct igb_tx_ring *txr = arg;
3142 
3143 	ASSERT_SERIALIZED(&txr->tx_serialize);
3144 
3145 	igb_txeof(txr);
3146 	if (!ifsq_is_empty(txr->ifsq))
3147 		ifsq_devstart(txr->ifsq);
3148 }
3149 
3150 static void
3151 igb_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
3152 {
3153 	struct igb_rx_ring *rxr = arg;
3154 
3155 	ASSERT_SERIALIZED(&rxr->rx_serialize);
3156 
3157 	igb_rxeof(rxr, cycle);
3158 }
3159 
3160 static void
3161 igb_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3162 {
3163 	struct igb_softc *sc = ifp->if_softc;
3164 	int i, txr_cnt, rxr_cnt;
3165 
3166 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3167 
3168 	if (info) {
3169 		int off;
3170 
3171 		info->ifpi_status.status_func = igb_npoll_status;
3172 		info->ifpi_status.serializer = &sc->main_serialize;
3173 
3174 		txr_cnt = igb_get_txring_inuse(sc, TRUE);
3175 		off = sc->tx_npoll_off;
3176 		for (i = 0; i < txr_cnt; ++i) {
3177 			struct igb_tx_ring *txr = &sc->tx_rings[i];
3178 			int idx = i + off;
3179 
3180 			KKASSERT(idx < ncpus2);
3181 			info->ifpi_tx[idx].poll_func = igb_npoll_tx;
3182 			info->ifpi_tx[idx].arg = txr;
3183 			info->ifpi_tx[idx].serializer = &txr->tx_serialize;
3184 			ifsq_set_cpuid(txr->ifsq, idx);
3185 		}
3186 
3187 		rxr_cnt = igb_get_rxring_inuse(sc, TRUE);
3188 		off = sc->rx_npoll_off;
3189 		for (i = 0; i < rxr_cnt; ++i) {
3190 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
3191 			int idx = i + off;
3192 
3193 			KKASSERT(idx < ncpus2);
3194 			info->ifpi_rx[idx].poll_func = igb_npoll_rx;
3195 			info->ifpi_rx[idx].arg = rxr;
3196 			info->ifpi_rx[idx].serializer = &rxr->rx_serialize;
3197 		}
3198 
3199 		if (ifp->if_flags & IFF_RUNNING) {
3200 			if (rxr_cnt == sc->rx_ring_inuse &&
3201 			    txr_cnt == sc->tx_ring_inuse) {
3202 				igb_set_timer_cpuid(sc, TRUE);
3203 				igb_disable_intr(sc);
3204 			} else {
3205 				igb_init(sc);
3206 			}
3207 		}
3208 	} else {
3209 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
3210 			struct igb_tx_ring *txr = &sc->tx_rings[i];
3211 
3212 			ifsq_set_cpuid(txr->ifsq, txr->tx_intr_cpuid);
3213 		}
3214 
3215 		if (ifp->if_flags & IFF_RUNNING) {
3216 			txr_cnt = igb_get_txring_inuse(sc, FALSE);
3217 			rxr_cnt = igb_get_rxring_inuse(sc, FALSE);
3218 
3219 			if (rxr_cnt == sc->rx_ring_inuse &&
3220 			    txr_cnt == sc->tx_ring_inuse) {
3221 				igb_set_timer_cpuid(sc, FALSE);
3222 				igb_enable_intr(sc);
3223 			} else {
3224 				igb_init(sc);
3225 			}
3226 		}
3227 	}
3228 }
3229 
3230 #endif /* IFPOLL_ENABLE */
3231 
3232 static void
3233 igb_intr(void *xsc)
3234 {
3235 	struct igb_softc *sc = xsc;
3236 	struct ifnet *ifp = &sc->arpcom.ac_if;
3237 	uint32_t eicr;
3238 
3239 	ASSERT_SERIALIZED(&sc->main_serialize);
3240 
3241 	eicr = E1000_READ_REG(&sc->hw, E1000_EICR);
3242 
3243 	if (eicr == 0)
3244 		return;
3245 
3246 	if (ifp->if_flags & IFF_RUNNING) {
3247 		struct igb_tx_ring *txr = &sc->tx_rings[0];
3248 		int i;
3249 
3250 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3251 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
3252 
3253 			if (eicr & rxr->rx_intr_mask) {
3254 				lwkt_serialize_enter(&rxr->rx_serialize);
3255 				igb_rxeof(rxr, -1);
3256 				lwkt_serialize_exit(&rxr->rx_serialize);
3257 			}
3258 		}
3259 
3260 		if (eicr & txr->tx_intr_mask) {
3261 			lwkt_serialize_enter(&txr->tx_serialize);
3262 			igb_txeof(txr);
3263 			if (!ifsq_is_empty(txr->ifsq))
3264 				ifsq_devstart(txr->ifsq);
3265 			lwkt_serialize_exit(&txr->tx_serialize);
3266 		}
3267 	}
3268 
3269 	if (eicr & E1000_EICR_OTHER) {
3270 		uint32_t icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3271 
3272 		/* Link status change */
3273 		if (icr & E1000_ICR_LSC) {
3274 			sc->hw.mac.get_link_status = 1;
3275 			igb_update_link_status(sc);
3276 		}
3277 	}
3278 
3279 	/*
3280 	 * Reading EICR has the side effect to clear interrupt mask,
3281 	 * so all interrupts need to be enabled here.
3282 	 */
3283 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
3284 }
3285 
3286 static void
3287 igb_intr_shared(void *xsc)
3288 {
3289 	struct igb_softc *sc = xsc;
3290 	struct ifnet *ifp = &sc->arpcom.ac_if;
3291 	uint32_t reg_icr;
3292 
3293 	ASSERT_SERIALIZED(&sc->main_serialize);
3294 
3295 	reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3296 
3297 	/* Hot eject?  */
3298 	if (reg_icr == 0xffffffff)
3299 		return;
3300 
3301 	/* Definitely not our interrupt.  */
3302 	if (reg_icr == 0x0)
3303 		return;
3304 
3305 	if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0)
3306 		return;
3307 
3308 	if (ifp->if_flags & IFF_RUNNING) {
3309 		if (reg_icr &
3310 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
3311 			int i;
3312 
3313 			for (i = 0; i < sc->rx_ring_inuse; ++i) {
3314 				struct igb_rx_ring *rxr = &sc->rx_rings[i];
3315 
3316 				lwkt_serialize_enter(&rxr->rx_serialize);
3317 				igb_rxeof(rxr, -1);
3318 				lwkt_serialize_exit(&rxr->rx_serialize);
3319 			}
3320 		}
3321 
3322 		if (reg_icr & E1000_ICR_TXDW) {
3323 			struct igb_tx_ring *txr = &sc->tx_rings[0];
3324 
3325 			lwkt_serialize_enter(&txr->tx_serialize);
3326 			igb_txeof(txr);
3327 			if (!ifsq_is_empty(txr->ifsq))
3328 				ifsq_devstart(txr->ifsq);
3329 			lwkt_serialize_exit(&txr->tx_serialize);
3330 		}
3331 	}
3332 
3333 	/* Link status change */
3334 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3335 		sc->hw.mac.get_link_status = 1;
3336 		igb_update_link_status(sc);
3337 	}
3338 
3339 	if (reg_icr & E1000_ICR_RXO)
3340 		sc->rx_overruns++;
3341 }
3342 
3343 static int
3344 igb_encap(struct igb_tx_ring *txr, struct mbuf **m_headp,
3345     int *segs_used, int *idx)
3346 {
3347 	bus_dma_segment_t segs[IGB_MAX_SCATTER];
3348 	bus_dmamap_t map;
3349 	struct igb_tx_buf *tx_buf, *tx_buf_mapped;
3350 	union e1000_adv_tx_desc	*txd = NULL;
3351 	struct mbuf *m_head = *m_headp;
3352 	uint32_t olinfo_status = 0, cmd_type_len = 0, cmd_rs = 0;
3353 	int maxsegs, nsegs, i, j, error;
3354 	uint32_t hdrlen = 0;
3355 
3356 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3357 		error = igb_tso_pullup(txr, m_headp);
3358 		if (error)
3359 			return error;
3360 		m_head = *m_headp;
3361 	}
3362 
3363 	/* Set basic descriptor constants */
3364 	cmd_type_len |= E1000_ADVTXD_DTYP_DATA;
3365 	cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
3366 	if (m_head->m_flags & M_VLANTAG)
3367 		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3368 
3369 	/*
3370 	 * Map the packet for DMA.
3371 	 */
3372 	tx_buf = &txr->tx_buf[txr->next_avail_desc];
3373 	tx_buf_mapped = tx_buf;
3374 	map = tx_buf->map;
3375 
3376 	maxsegs = txr->tx_avail - IGB_TX_RESERVED;
3377 	KASSERT(maxsegs >= txr->spare_desc, ("not enough spare TX desc\n"));
3378 	if (maxsegs > IGB_MAX_SCATTER)
3379 		maxsegs = IGB_MAX_SCATTER;
3380 
3381 	error = bus_dmamap_load_mbuf_defrag(txr->tx_tag, map, m_headp,
3382 	    segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3383 	if (error) {
3384 		if (error == ENOBUFS)
3385 			txr->sc->mbuf_defrag_failed++;
3386 		else
3387 			txr->sc->no_tx_dma_setup++;
3388 
3389 		m_freem(*m_headp);
3390 		*m_headp = NULL;
3391 		return error;
3392 	}
3393 	bus_dmamap_sync(txr->tx_tag, map, BUS_DMASYNC_PREWRITE);
3394 
3395 	m_head = *m_headp;
3396 
3397 	/*
3398 	 * Set up the TX context descriptor, if any hardware offloading is
3399 	 * needed.  This includes CSUM, VLAN, and TSO.  It will consume one
3400 	 * TX descriptor.
3401 	 *
3402 	 * Unlike these chips' predecessors (em/emx), TX context descriptor
3403 	 * will _not_ interfere TX data fetching pipelining.
3404 	 */
3405 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3406 		igb_tso_ctx(txr, m_head, &hdrlen);
3407 		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3408 		olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3409 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3410 		txr->tx_nsegs++;
3411 		(*segs_used)++;
3412 	} else if (igb_txcsum_ctx(txr, m_head)) {
3413 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3414 			olinfo_status |= (E1000_TXD_POPTS_IXSM << 8);
3415 		if (m_head->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_TCP))
3416 			olinfo_status |= (E1000_TXD_POPTS_TXSM << 8);
3417 		txr->tx_nsegs++;
3418 		(*segs_used)++;
3419 	}
3420 
3421 	*segs_used += nsegs;
3422 	txr->tx_nsegs += nsegs;
3423 	if (txr->tx_nsegs >= txr->intr_nsegs) {
3424 		/*
3425 		 * Report Status (RS) is turned on every intr_nsegs
3426 		 * descriptors (roughly).
3427 		 */
3428 		txr->tx_nsegs = 0;
3429 		cmd_rs = E1000_ADVTXD_DCMD_RS;
3430 	}
3431 
3432 	/* Calculate payload length */
3433 	olinfo_status |= ((m_head->m_pkthdr.len - hdrlen)
3434 	    << E1000_ADVTXD_PAYLEN_SHIFT);
3435 
3436 	/*
3437 	 * 82575 needs the TX context index added; the queue
3438 	 * index is used as TX context index here.
3439 	 */
3440 	if (txr->sc->hw.mac.type == e1000_82575)
3441 		olinfo_status |= txr->me << 4;
3442 
3443 	/* Set up our transmit descriptors */
3444 	i = txr->next_avail_desc;
3445 	for (j = 0; j < nsegs; j++) {
3446 		bus_size_t seg_len;
3447 		bus_addr_t seg_addr;
3448 
3449 		tx_buf = &txr->tx_buf[i];
3450 		txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
3451 		seg_addr = segs[j].ds_addr;
3452 		seg_len = segs[j].ds_len;
3453 
3454 		txd->read.buffer_addr = htole64(seg_addr);
3455 		txd->read.cmd_type_len = htole32(cmd_type_len | seg_len);
3456 		txd->read.olinfo_status = htole32(olinfo_status);
3457 		if (++i == txr->num_tx_desc)
3458 			i = 0;
3459 		tx_buf->m_head = NULL;
3460 	}
3461 
3462 	KASSERT(txr->tx_avail > nsegs, ("invalid avail TX desc\n"));
3463 	txr->next_avail_desc = i;
3464 	txr->tx_avail -= nsegs;
3465 
3466 	tx_buf->m_head = m_head;
3467 	tx_buf_mapped->map = tx_buf->map;
3468 	tx_buf->map = map;
3469 
3470 	/*
3471 	 * Last Descriptor of Packet needs End Of Packet (EOP)
3472 	 */
3473 	txd->read.cmd_type_len |= htole32(E1000_ADVTXD_DCMD_EOP | cmd_rs);
3474 
3475 	/*
3476 	 * Defer TDT updating, until enough descrptors are setup
3477 	 */
3478 	*idx = i;
3479 #ifdef IGB_TSS_DEBUG
3480 	++txr->tx_packets;
3481 #endif
3482 
3483 	return 0;
3484 }
3485 
3486 static void
3487 igb_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3488 {
3489 	struct igb_softc *sc = ifp->if_softc;
3490 	struct igb_tx_ring *txr = ifsq_get_priv(ifsq);
3491 	struct mbuf *m_head;
3492 	int idx = -1, nsegs = 0;
3493 
3494 	KKASSERT(txr->ifsq == ifsq);
3495 	ASSERT_SERIALIZED(&txr->tx_serialize);
3496 
3497 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
3498 		return;
3499 
3500 	if (!sc->link_active || (txr->tx_flags & IGB_TXFLAG_ENABLED) == 0) {
3501 		ifsq_purge(ifsq);
3502 		return;
3503 	}
3504 
3505 	if (!IGB_IS_NOT_OACTIVE(txr))
3506 		igb_txeof(txr);
3507 
3508 	while (!ifsq_is_empty(ifsq)) {
3509 		if (IGB_IS_OACTIVE(txr)) {
3510 			ifsq_set_oactive(ifsq);
3511 			/* Set watchdog on */
3512 			txr->tx_watchdog.wd_timer = 5;
3513 			break;
3514 		}
3515 
3516 		m_head = ifsq_dequeue(ifsq);
3517 		if (m_head == NULL)
3518 			break;
3519 
3520 		if (igb_encap(txr, &m_head, &nsegs, &idx)) {
3521 			IFNET_STAT_INC(ifp, oerrors, 1);
3522 			continue;
3523 		}
3524 
3525 		if (nsegs >= txr->wreg_nsegs) {
3526 			E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3527 			idx = -1;
3528 			nsegs = 0;
3529 		}
3530 
3531 		/* Send a copy of the frame to the BPF listener */
3532 		ETHER_BPF_MTAP(ifp, m_head);
3533 	}
3534 	if (idx >= 0)
3535 		E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3536 }
3537 
3538 static void
3539 igb_watchdog(struct ifaltq_subque *ifsq)
3540 {
3541 	struct igb_tx_ring *txr = ifsq_get_priv(ifsq);
3542 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
3543 	struct igb_softc *sc = ifp->if_softc;
3544 	int i;
3545 
3546 	KKASSERT(txr->ifsq == ifsq);
3547 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3548 
3549 	/*
3550 	 * If flow control has paused us since last checking
3551 	 * it invalidates the watchdog timing, so dont run it.
3552 	 */
3553 	if (sc->pause_frames) {
3554 		sc->pause_frames = 0;
3555 		txr->tx_watchdog.wd_timer = 5;
3556 		return;
3557 	}
3558 
3559 	if_printf(ifp, "Watchdog timeout -- resetting\n");
3560 	if_printf(ifp, "Queue(%d) tdh = %d, hw tdt = %d\n", txr->me,
3561 	    E1000_READ_REG(&sc->hw, E1000_TDH(txr->me)),
3562 	    E1000_READ_REG(&sc->hw, E1000_TDT(txr->me)));
3563 	if_printf(ifp, "TX(%d) desc avail = %d, "
3564 	    "Next TX to Clean = %d\n",
3565 	    txr->me, txr->tx_avail, txr->next_to_clean);
3566 
3567 	IFNET_STAT_INC(ifp, oerrors, 1);
3568 	sc->watchdog_events++;
3569 
3570 	igb_init(sc);
3571 	for (i = 0; i < sc->tx_ring_inuse; ++i)
3572 		ifsq_devstart_sched(sc->tx_rings[i].ifsq);
3573 }
3574 
3575 static void
3576 igb_set_eitr(struct igb_softc *sc, int idx, int rate)
3577 {
3578 	uint32_t eitr = 0;
3579 
3580 	if (rate > 0) {
3581 		if (sc->hw.mac.type == e1000_82575) {
3582 			eitr = 1000000000 / 256 / rate;
3583 			/*
3584 			 * NOTE:
3585 			 * Document is wrong on the 2 bits left shift
3586 			 */
3587 		} else {
3588 			eitr = 1000000 / rate;
3589 			eitr <<= IGB_EITR_INTVL_SHIFT;
3590 		}
3591 
3592 		if (eitr == 0) {
3593 			/* Don't disable it */
3594 			eitr = 1 << IGB_EITR_INTVL_SHIFT;
3595 		} else if (eitr > IGB_EITR_INTVL_MASK) {
3596 			/* Don't allow it to be too large */
3597 			eitr = IGB_EITR_INTVL_MASK;
3598 		}
3599 	}
3600 	if (sc->hw.mac.type == e1000_82575)
3601 		eitr |= eitr << 16;
3602 	else
3603 		eitr |= E1000_EITR_CNT_IGNR;
3604 	E1000_WRITE_REG(&sc->hw, E1000_EITR(idx), eitr);
3605 }
3606 
3607 static int
3608 igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3609 {
3610 	struct igb_softc *sc = (void *)arg1;
3611 	struct ifnet *ifp = &sc->arpcom.ac_if;
3612 	int error, intr_rate;
3613 
3614 	intr_rate = sc->intr_rate;
3615 	error = sysctl_handle_int(oidp, &intr_rate, 0, req);
3616 	if (error || req->newptr == NULL)
3617 		return error;
3618 	if (intr_rate < 0)
3619 		return EINVAL;
3620 
3621 	ifnet_serialize_all(ifp);
3622 
3623 	sc->intr_rate = intr_rate;
3624 	if (ifp->if_flags & IFF_RUNNING)
3625 		igb_set_eitr(sc, 0, sc->intr_rate);
3626 
3627 	if (bootverbose)
3628 		if_printf(ifp, "interrupt rate set to %d/sec\n", sc->intr_rate);
3629 
3630 	ifnet_deserialize_all(ifp);
3631 
3632 	return 0;
3633 }
3634 
3635 static int
3636 igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS)
3637 {
3638 	struct igb_msix_data *msix = (void *)arg1;
3639 	struct igb_softc *sc = msix->msix_sc;
3640 	struct ifnet *ifp = &sc->arpcom.ac_if;
3641 	int error, msix_rate;
3642 
3643 	msix_rate = msix->msix_rate;
3644 	error = sysctl_handle_int(oidp, &msix_rate, 0, req);
3645 	if (error || req->newptr == NULL)
3646 		return error;
3647 	if (msix_rate < 0)
3648 		return EINVAL;
3649 
3650 	lwkt_serialize_enter(msix->msix_serialize);
3651 
3652 	msix->msix_rate = msix_rate;
3653 	if (ifp->if_flags & IFF_RUNNING)
3654 		igb_set_eitr(sc, msix->msix_vector, msix->msix_rate);
3655 
3656 	if (bootverbose) {
3657 		if_printf(ifp, "%s set to %d/sec\n", msix->msix_rate_desc,
3658 		    msix->msix_rate);
3659 	}
3660 
3661 	lwkt_serialize_exit(msix->msix_serialize);
3662 
3663 	return 0;
3664 }
3665 
3666 static int
3667 igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3668 {
3669 	struct igb_softc *sc = (void *)arg1;
3670 	struct ifnet *ifp = &sc->arpcom.ac_if;
3671 	struct igb_tx_ring *txr = &sc->tx_rings[0];
3672 	int error, nsegs;
3673 
3674 	nsegs = txr->intr_nsegs;
3675 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3676 	if (error || req->newptr == NULL)
3677 		return error;
3678 	if (nsegs <= 0)
3679 		return EINVAL;
3680 
3681 	ifnet_serialize_all(ifp);
3682 
3683 	if (nsegs >= txr->num_tx_desc - txr->oact_lo_desc ||
3684 	    nsegs >= txr->oact_hi_desc - IGB_MAX_SCATTER) {
3685 		error = EINVAL;
3686 	} else {
3687 		int i;
3688 
3689 		error = 0;
3690 		for (i = 0; i < sc->tx_ring_cnt; ++i)
3691 			sc->tx_rings[i].intr_nsegs = nsegs;
3692 	}
3693 
3694 	ifnet_deserialize_all(ifp);
3695 
3696 	return error;
3697 }
3698 
3699 static int
3700 igb_sysctl_rx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3701 {
3702 	struct igb_softc *sc = (void *)arg1;
3703 	struct ifnet *ifp = &sc->arpcom.ac_if;
3704 	int error, nsegs, i;
3705 
3706 	nsegs = sc->rx_rings[0].wreg_nsegs;
3707 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3708 	if (error || req->newptr == NULL)
3709 		return error;
3710 
3711 	ifnet_serialize_all(ifp);
3712 	for (i = 0; i < sc->rx_ring_cnt; ++i)
3713 		sc->rx_rings[i].wreg_nsegs =nsegs;
3714 	ifnet_deserialize_all(ifp);
3715 
3716 	return 0;
3717 }
3718 
3719 static int
3720 igb_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3721 {
3722 	struct igb_softc *sc = (void *)arg1;
3723 	struct ifnet *ifp = &sc->arpcom.ac_if;
3724 	int error, nsegs, i;
3725 
3726 	nsegs = sc->tx_rings[0].wreg_nsegs;
3727 	error = sysctl_handle_int(oidp, &nsegs, 0, req);
3728 	if (error || req->newptr == NULL)
3729 		return error;
3730 
3731 	ifnet_serialize_all(ifp);
3732 	for (i = 0; i < sc->tx_ring_cnt; ++i)
3733 		sc->tx_rings[i].wreg_nsegs =nsegs;
3734 	ifnet_deserialize_all(ifp);
3735 
3736 	return 0;
3737 }
3738 
3739 #ifdef IFPOLL_ENABLE
3740 
3741 static int
3742 igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3743 {
3744 	struct igb_softc *sc = (void *)arg1;
3745 	struct ifnet *ifp = &sc->arpcom.ac_if;
3746 	int error, off;
3747 
3748 	off = sc->rx_npoll_off;
3749 	error = sysctl_handle_int(oidp, &off, 0, req);
3750 	if (error || req->newptr == NULL)
3751 		return error;
3752 	if (off < 0)
3753 		return EINVAL;
3754 
3755 	ifnet_serialize_all(ifp);
3756 	if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3757 		error = EINVAL;
3758 	} else {
3759 		error = 0;
3760 		sc->rx_npoll_off = off;
3761 	}
3762 	ifnet_deserialize_all(ifp);
3763 
3764 	return error;
3765 }
3766 
3767 static int
3768 igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3769 {
3770 	struct igb_softc *sc = (void *)arg1;
3771 	struct ifnet *ifp = &sc->arpcom.ac_if;
3772 	int error, off;
3773 
3774 	off = sc->tx_npoll_off;
3775 	error = sysctl_handle_int(oidp, &off, 0, req);
3776 	if (error || req->newptr == NULL)
3777 		return error;
3778 	if (off < 0)
3779 		return EINVAL;
3780 
3781 	ifnet_serialize_all(ifp);
3782 	if (off >= ncpus2 || off % sc->tx_ring_cnt != 0) {
3783 		error = EINVAL;
3784 	} else {
3785 		error = 0;
3786 		sc->tx_npoll_off = off;
3787 	}
3788 	ifnet_deserialize_all(ifp);
3789 
3790 	return error;
3791 }
3792 
3793 #endif	/* IFPOLL_ENABLE */
3794 
3795 static void
3796 igb_init_intr(struct igb_softc *sc)
3797 {
3798 	igb_set_intr_mask(sc);
3799 
3800 	if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0)
3801 		igb_init_unshared_intr(sc);
3802 
3803 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
3804 		igb_set_eitr(sc, 0, sc->intr_rate);
3805 	} else {
3806 		int i;
3807 
3808 		for (i = 0; i < sc->msix_cnt; ++i)
3809 			igb_set_eitr(sc, i, sc->msix_data[i].msix_rate);
3810 	}
3811 }
3812 
3813 static void
3814 igb_init_unshared_intr(struct igb_softc *sc)
3815 {
3816 	struct e1000_hw *hw = &sc->hw;
3817 	const struct igb_rx_ring *rxr;
3818 	const struct igb_tx_ring *txr;
3819 	uint32_t ivar, index;
3820 	int i;
3821 
3822 	/*
3823 	 * Enable extended mode
3824 	 */
3825 	if (sc->hw.mac.type != e1000_82575) {
3826 		uint32_t gpie;
3827 		int ivar_max;
3828 
3829 		gpie = E1000_GPIE_NSICR;
3830 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3831 			gpie |= E1000_GPIE_MSIX_MODE |
3832 			    E1000_GPIE_EIAME |
3833 			    E1000_GPIE_PBA;
3834 		}
3835 		E1000_WRITE_REG(hw, E1000_GPIE, gpie);
3836 
3837 		/*
3838 		 * Clear IVARs
3839 		 */
3840 		switch (sc->hw.mac.type) {
3841 		case e1000_82576:
3842 			ivar_max = IGB_MAX_IVAR_82576;
3843 			break;
3844 
3845 		case e1000_82580:
3846 			ivar_max = IGB_MAX_IVAR_82580;
3847 			break;
3848 
3849 		case e1000_i350:
3850 			ivar_max = IGB_MAX_IVAR_I350;
3851 			break;
3852 
3853 		case e1000_i354:
3854 			ivar_max = IGB_MAX_IVAR_I354;
3855 			break;
3856 
3857 		case e1000_vfadapt:
3858 		case e1000_vfadapt_i350:
3859 			ivar_max = IGB_MAX_IVAR_VF;
3860 			break;
3861 
3862 		case e1000_i210:
3863 			ivar_max = IGB_MAX_IVAR_I210;
3864 			break;
3865 
3866 		case e1000_i211:
3867 			ivar_max = IGB_MAX_IVAR_I211;
3868 			break;
3869 
3870 		default:
3871 			panic("unknown mac type %d\n", sc->hw.mac.type);
3872 		}
3873 		for (i = 0; i < ivar_max; ++i)
3874 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, 0);
3875 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, 0);
3876 	} else {
3877 		uint32_t tmp;
3878 
3879 		KASSERT(sc->intr_type != PCI_INTR_TYPE_MSIX,
3880 		    ("82575 w/ MSI-X"));
3881 		tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
3882 		tmp |= E1000_CTRL_EXT_IRCA;
3883 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
3884 	}
3885 
3886 	/*
3887 	 * Map TX/RX interrupts to EICR
3888 	 */
3889 	switch (sc->hw.mac.type) {
3890 	case e1000_82580:
3891 	case e1000_i350:
3892 	case e1000_i354:
3893 	case e1000_vfadapt:
3894 	case e1000_vfadapt_i350:
3895 	case e1000_i210:
3896 	case e1000_i211:
3897 		/* RX entries */
3898 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3899 			rxr = &sc->rx_rings[i];
3900 
3901 			index = i >> 1;
3902 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3903 
3904 			if (i & 1) {
3905 				ivar &= 0xff00ffff;
3906 				ivar |=
3907 				(rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3908 			} else {
3909 				ivar &= 0xffffff00;
3910 				ivar |=
3911 				(rxr->rx_intr_bit | E1000_IVAR_VALID);
3912 			}
3913 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3914 		}
3915 		/* TX entries */
3916 		for (i = 0; i < sc->tx_ring_inuse; ++i) {
3917 			txr = &sc->tx_rings[i];
3918 
3919 			index = i >> 1;
3920 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3921 
3922 			if (i & 1) {
3923 				ivar &= 0x00ffffff;
3924 				ivar |=
3925 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3926 			} else {
3927 				ivar &= 0xffff00ff;
3928 				ivar |=
3929 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3930 			}
3931 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3932 		}
3933 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3934 			ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3935 			E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3936 		}
3937 		break;
3938 
3939 	case e1000_82576:
3940 		/* RX entries */
3941 		for (i = 0; i < sc->rx_ring_inuse; ++i) {
3942 			rxr = &sc->rx_rings[i];
3943 
3944 			index = i & 0x7; /* Each IVAR has two entries */
3945 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3946 
3947 			if (i < 8) {
3948 				ivar &= 0xffffff00;
3949 				ivar |=
3950 				(rxr->rx_intr_bit | E1000_IVAR_VALID);
3951 			} else {
3952 				ivar &= 0xff00ffff;
3953 				ivar |=
3954 				(rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3955 			}
3956 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3957 		}
3958 		/* TX entries */
3959 		for (i = 0; i < sc->tx_ring_inuse; ++i) {
3960 			txr = &sc->tx_rings[i];
3961 
3962 			index = i & 0x7; /* Each IVAR has two entries */
3963 			ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3964 
3965 			if (i < 8) {
3966 				ivar &= 0xffff00ff;
3967 				ivar |=
3968 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3969 			} else {
3970 				ivar &= 0x00ffffff;
3971 				ivar |=
3972 				(txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3973 			}
3974 			E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3975 		}
3976 		if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3977 			ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3978 			E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3979 		}
3980 		break;
3981 
3982 	case e1000_82575:
3983 		/*
3984 		 * Enable necessary interrupt bits.
3985 		 *
3986 		 * The name of the register is confusing; in addition to
3987 		 * configuring the first vector of MSI-X, it also configures
3988 		 * which bits of EICR could be set by the hardware even when
3989 		 * MSI or line interrupt is used; it thus controls interrupt
3990 		 * generation.  It MUST be configured explicitly; the default
3991 		 * value mentioned in the datasheet is wrong: RX queue0 and
3992 		 * TX queue0 are NOT enabled by default.
3993 		 */
3994 		E1000_WRITE_REG(&sc->hw, E1000_MSIXBM(0), sc->intr_mask);
3995 		break;
3996 
3997 	default:
3998 		panic("unknown mac type %d\n", sc->hw.mac.type);
3999 	}
4000 }
4001 
4002 static int
4003 igb_setup_intr(struct igb_softc *sc)
4004 {
4005 	int error;
4006 
4007 	if (sc->intr_type == PCI_INTR_TYPE_MSIX)
4008 		return igb_msix_setup(sc);
4009 
4010 	error = bus_setup_intr(sc->dev, sc->intr_res, INTR_MPSAFE,
4011 	    (sc->flags & IGB_FLAG_SHARED_INTR) ? igb_intr_shared : igb_intr,
4012 	    sc, &sc->intr_tag, &sc->main_serialize);
4013 	if (error) {
4014 		device_printf(sc->dev, "Failed to register interrupt handler");
4015 		return error;
4016 	}
4017 	return 0;
4018 }
4019 
4020 static void
4021 igb_set_txintr_mask(struct igb_tx_ring *txr, int *intr_bit0, int intr_bitmax)
4022 {
4023 	if (txr->sc->hw.mac.type == e1000_82575) {
4024 		txr->tx_intr_bit = 0;	/* unused */
4025 		switch (txr->me) {
4026 		case 0:
4027 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE0;
4028 			break;
4029 		case 1:
4030 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE1;
4031 			break;
4032 		case 2:
4033 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE2;
4034 			break;
4035 		case 3:
4036 			txr->tx_intr_mask = E1000_EICR_TX_QUEUE3;
4037 			break;
4038 		default:
4039 			panic("unsupported # of TX ring, %d\n", txr->me);
4040 		}
4041 	} else {
4042 		int intr_bit = *intr_bit0;
4043 
4044 		txr->tx_intr_bit = intr_bit % intr_bitmax;
4045 		txr->tx_intr_mask = 1 << txr->tx_intr_bit;
4046 
4047 		*intr_bit0 = intr_bit + 1;
4048 	}
4049 }
4050 
4051 static void
4052 igb_set_rxintr_mask(struct igb_rx_ring *rxr, int *intr_bit0, int intr_bitmax)
4053 {
4054 	if (rxr->sc->hw.mac.type == e1000_82575) {
4055 		rxr->rx_intr_bit = 0;	/* unused */
4056 		switch (rxr->me) {
4057 		case 0:
4058 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE0;
4059 			break;
4060 		case 1:
4061 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE1;
4062 			break;
4063 		case 2:
4064 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE2;
4065 			break;
4066 		case 3:
4067 			rxr->rx_intr_mask = E1000_EICR_RX_QUEUE3;
4068 			break;
4069 		default:
4070 			panic("unsupported # of RX ring, %d\n", rxr->me);
4071 		}
4072 	} else {
4073 		int intr_bit = *intr_bit0;
4074 
4075 		rxr->rx_intr_bit = intr_bit % intr_bitmax;
4076 		rxr->rx_intr_mask = 1 << rxr->rx_intr_bit;
4077 
4078 		*intr_bit0 = intr_bit + 1;
4079 	}
4080 }
4081 
4082 static void
4083 igb_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
4084 {
4085 	struct igb_softc *sc = ifp->if_softc;
4086 
4087 	ifnet_serialize_array_enter(sc->serializes, sc->serialize_cnt, slz);
4088 }
4089 
4090 static void
4091 igb_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4092 {
4093 	struct igb_softc *sc = ifp->if_softc;
4094 
4095 	ifnet_serialize_array_exit(sc->serializes, sc->serialize_cnt, slz);
4096 }
4097 
4098 static int
4099 igb_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4100 {
4101 	struct igb_softc *sc = ifp->if_softc;
4102 
4103 	return ifnet_serialize_array_try(sc->serializes, sc->serialize_cnt,
4104 	    slz);
4105 }
4106 
4107 #ifdef INVARIANTS
4108 
4109 static void
4110 igb_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
4111     boolean_t serialized)
4112 {
4113 	struct igb_softc *sc = ifp->if_softc;
4114 
4115 	ifnet_serialize_array_assert(sc->serializes, sc->serialize_cnt,
4116 	    slz, serialized);
4117 }
4118 
4119 #endif	/* INVARIANTS */
4120 
4121 static void
4122 igb_set_intr_mask(struct igb_softc *sc)
4123 {
4124 	int i;
4125 
4126 	sc->intr_mask = sc->sts_intr_mask;
4127 	for (i = 0; i < sc->rx_ring_inuse; ++i)
4128 		sc->intr_mask |= sc->rx_rings[i].rx_intr_mask;
4129 	for (i = 0; i < sc->tx_ring_inuse; ++i)
4130 		sc->intr_mask |= sc->tx_rings[i].tx_intr_mask;
4131 	if (bootverbose) {
4132 		if_printf(&sc->arpcom.ac_if, "intr mask 0x%08x\n",
4133 		    sc->intr_mask);
4134 	}
4135 }
4136 
4137 static int
4138 igb_alloc_intr(struct igb_softc *sc)
4139 {
4140 	int i, intr_bit, intr_bitmax;
4141 	u_int intr_flags;
4142 
4143 	igb_msix_try_alloc(sc);
4144 	if (sc->intr_type == PCI_INTR_TYPE_MSIX)
4145 		goto done;
4146 
4147 	/*
4148 	 * Allocate MSI/legacy interrupt resource
4149 	 */
4150 	sc->intr_type = pci_alloc_1intr(sc->dev, igb_msi_enable,
4151 	    &sc->intr_rid, &intr_flags);
4152 
4153 	if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
4154 		int unshared;
4155 
4156 		unshared = device_getenv_int(sc->dev, "irq.unshared", 0);
4157 		if (!unshared) {
4158 			sc->flags |= IGB_FLAG_SHARED_INTR;
4159 			if (bootverbose)
4160 				device_printf(sc->dev, "IRQ shared\n");
4161 		} else {
4162 			intr_flags &= ~RF_SHAREABLE;
4163 			if (bootverbose)
4164 				device_printf(sc->dev, "IRQ unshared\n");
4165 		}
4166 	}
4167 
4168 	sc->intr_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4169 	    &sc->intr_rid, intr_flags);
4170 	if (sc->intr_res == NULL) {
4171 		device_printf(sc->dev, "Unable to allocate bus resource: "
4172 		    "interrupt\n");
4173 		return ENXIO;
4174 	}
4175 
4176 	for (i = 0; i < sc->tx_ring_cnt; ++i)
4177 		sc->tx_rings[i].tx_intr_cpuid = rman_get_cpuid(sc->intr_res);
4178 
4179 	/*
4180 	 * Setup MSI/legacy interrupt mask
4181 	 */
4182 	switch (sc->hw.mac.type) {
4183 	case e1000_82575:
4184 		intr_bitmax = IGB_MAX_TXRXINT_82575;
4185 		break;
4186 
4187 	case e1000_82576:
4188 		intr_bitmax = IGB_MAX_TXRXINT_82576;
4189 		break;
4190 
4191 	case e1000_82580:
4192 		intr_bitmax = IGB_MAX_TXRXINT_82580;
4193 		break;
4194 
4195 	case e1000_i350:
4196 		intr_bitmax = IGB_MAX_TXRXINT_I350;
4197 		break;
4198 
4199 	case e1000_i354:
4200 		intr_bitmax = IGB_MAX_TXRXINT_I354;
4201 		break;
4202 
4203 	case e1000_i210:
4204 		intr_bitmax = IGB_MAX_TXRXINT_I210;
4205 		break;
4206 
4207 	case e1000_i211:
4208 		intr_bitmax = IGB_MAX_TXRXINT_I211;
4209 		break;
4210 
4211 	default:
4212 		intr_bitmax = IGB_MIN_TXRXINT;
4213 		break;
4214 	}
4215 	intr_bit = 0;
4216 	for (i = 0; i < sc->tx_ring_cnt; ++i)
4217 		igb_set_txintr_mask(&sc->tx_rings[i], &intr_bit, intr_bitmax);
4218 	for (i = 0; i < sc->rx_ring_cnt; ++i)
4219 		igb_set_rxintr_mask(&sc->rx_rings[i], &intr_bit, intr_bitmax);
4220 	sc->sts_intr_bit = 0;
4221 	sc->sts_intr_mask = E1000_EICR_OTHER;
4222 
4223 	/* Initialize interrupt rate */
4224 	sc->intr_rate = IGB_INTR_RATE;
4225 done:
4226 	igb_set_ring_inuse(sc, FALSE);
4227 	igb_set_intr_mask(sc);
4228 	return 0;
4229 }
4230 
4231 static void
4232 igb_free_intr(struct igb_softc *sc)
4233 {
4234 	if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
4235 		if (sc->intr_res != NULL) {
4236 			bus_release_resource(sc->dev, SYS_RES_IRQ, sc->intr_rid,
4237 			    sc->intr_res);
4238 		}
4239 		if (sc->intr_type == PCI_INTR_TYPE_MSI)
4240 			pci_release_msi(sc->dev);
4241 	} else {
4242 		igb_msix_free(sc, TRUE);
4243 	}
4244 }
4245 
4246 static void
4247 igb_teardown_intr(struct igb_softc *sc)
4248 {
4249 	if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4250 		bus_teardown_intr(sc->dev, sc->intr_res, sc->intr_tag);
4251 	else
4252 		igb_msix_teardown(sc, sc->msix_cnt);
4253 }
4254 
4255 static void
4256 igb_msix_try_alloc(struct igb_softc *sc)
4257 {
4258 	int msix_enable, msix_cnt, msix_cnt2, alloc_cnt;
4259 	int i, x, error;
4260 	int offset, offset_def;
4261 	struct igb_msix_data *msix;
4262 	boolean_t aggregate, setup = FALSE;
4263 
4264 	/*
4265 	 * Don't enable MSI-X on 82575, see:
4266 	 * 82575 specification update errata #25
4267 	 */
4268 	if (sc->hw.mac.type == e1000_82575)
4269 		return;
4270 
4271 	/* Don't enable MSI-X on VF */
4272 	if (sc->vf_ifp)
4273 		return;
4274 
4275 	msix_enable = device_getenv_int(sc->dev, "msix.enable",
4276 	    igb_msix_enable);
4277 	if (!msix_enable)
4278 		return;
4279 
4280 	msix_cnt = pci_msix_count(sc->dev);
4281 #ifdef IGB_MSIX_DEBUG
4282 	msix_cnt = device_getenv_int(sc->dev, "msix.count", msix_cnt);
4283 #endif
4284 	if (msix_cnt <= 1) {
4285 		/* One MSI-X model does not make sense */
4286 		return;
4287 	}
4288 
4289 	i = 0;
4290 	while ((1 << (i + 1)) <= msix_cnt)
4291 		++i;
4292 	msix_cnt2 = 1 << i;
4293 
4294 	if (bootverbose) {
4295 		device_printf(sc->dev, "MSI-X count %d/%d\n",
4296 		    msix_cnt2, msix_cnt);
4297 	}
4298 
4299 	KKASSERT(msix_cnt2 <= msix_cnt);
4300 	if (msix_cnt == msix_cnt2) {
4301 		/* We need at least one MSI-X for link status */
4302 		msix_cnt2 >>= 1;
4303 		if (msix_cnt2 <= 1) {
4304 			/* One MSI-X for RX/TX does not make sense */
4305 			device_printf(sc->dev, "not enough MSI-X for TX/RX, "
4306 			    "MSI-X count %d/%d\n", msix_cnt2, msix_cnt);
4307 			return;
4308 		}
4309 		KKASSERT(msix_cnt > msix_cnt2);
4310 
4311 		if (bootverbose) {
4312 			device_printf(sc->dev, "MSI-X count fixup %d/%d\n",
4313 			    msix_cnt2, msix_cnt);
4314 		}
4315 	}
4316 
4317 	sc->rx_ring_msix = sc->rx_ring_cnt;
4318 	if (sc->rx_ring_msix > msix_cnt2)
4319 		sc->rx_ring_msix = msix_cnt2;
4320 
4321 	sc->tx_ring_msix = sc->tx_ring_cnt;
4322 	if (sc->tx_ring_msix > msix_cnt2)
4323 		sc->tx_ring_msix = msix_cnt2;
4324 
4325 	if (msix_cnt >= sc->tx_ring_msix + sc->rx_ring_msix + 1) {
4326 		/*
4327 		 * Independent TX/RX MSI-X
4328 		 */
4329 		aggregate = FALSE;
4330 		if (bootverbose)
4331 			device_printf(sc->dev, "independent TX/RX MSI-X\n");
4332 		alloc_cnt = sc->tx_ring_msix + sc->rx_ring_msix;
4333 	} else {
4334 		/*
4335 		 * Aggregate TX/RX MSI-X
4336 		 */
4337 		aggregate = TRUE;
4338 		if (bootverbose)
4339 			device_printf(sc->dev, "aggregate TX/RX MSI-X\n");
4340 		alloc_cnt = msix_cnt2;
4341 		if (alloc_cnt > ncpus2)
4342 			alloc_cnt = ncpus2;
4343 		if (sc->rx_ring_msix > alloc_cnt)
4344 			sc->rx_ring_msix = alloc_cnt;
4345 		if (sc->tx_ring_msix > alloc_cnt)
4346 			sc->tx_ring_msix = alloc_cnt;
4347 	}
4348 	++alloc_cnt;	/* For link status */
4349 
4350 	if (bootverbose) {
4351 		device_printf(sc->dev, "MSI-X alloc %d, "
4352 		    "RX ring %d, TX ring %d\n", alloc_cnt,
4353 		    sc->rx_ring_msix, sc->tx_ring_msix);
4354 	}
4355 
4356 	sc->msix_mem_rid = PCIR_BAR(IGB_MSIX_BAR);
4357 	sc->msix_mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4358 	    &sc->msix_mem_rid, RF_ACTIVE);
4359 	if (sc->msix_mem_res == NULL) {
4360 		sc->msix_mem_rid = PCIR_BAR(IGB_MSIX_BAR_ALT);
4361 		sc->msix_mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4362 		    &sc->msix_mem_rid, RF_ACTIVE);
4363 		if (sc->msix_mem_res == NULL) {
4364 			device_printf(sc->dev, "Unable to map MSI-X table\n");
4365 			return;
4366 		}
4367 	}
4368 
4369 	sc->msix_cnt = alloc_cnt;
4370 	sc->msix_data = kmalloc_cachealign(
4371 	    sizeof(struct igb_msix_data) * sc->msix_cnt,
4372 	    M_DEVBUF, M_WAITOK | M_ZERO);
4373 	for (x = 0; x < sc->msix_cnt; ++x) {
4374 		msix = &sc->msix_data[x];
4375 
4376 		lwkt_serialize_init(&msix->msix_serialize0);
4377 		msix->msix_sc = sc;
4378 		msix->msix_rid = -1;
4379 		msix->msix_vector = x;
4380 		msix->msix_mask = 1 << msix->msix_vector;
4381 		msix->msix_rate = IGB_INTR_RATE;
4382 	}
4383 
4384 	x = 0;
4385 	if (!aggregate) {
4386 		/*
4387 		 * RX rings
4388 		 */
4389 		if (sc->rx_ring_msix == ncpus2) {
4390 			offset = 0;
4391 		} else {
4392 			offset_def = (sc->rx_ring_msix *
4393 			    device_get_unit(sc->dev)) % ncpus2;
4394 
4395 			offset = device_getenv_int(sc->dev,
4396 			    "msix.rxoff", offset_def);
4397 			if (offset >= ncpus2 ||
4398 			    offset % sc->rx_ring_msix != 0) {
4399 				device_printf(sc->dev,
4400 				    "invalid msix.rxoff %d, use %d\n",
4401 				    offset, offset_def);
4402 				offset = offset_def;
4403 			}
4404 		}
4405 		igb_msix_rx_conf(sc, 0, &x, offset);
4406 
4407 		/*
4408 		 * TX rings
4409 		 */
4410 		if (sc->tx_ring_msix == ncpus2) {
4411 			offset = 0;
4412 		} else {
4413 			offset_def = (sc->tx_ring_msix *
4414 			    device_get_unit(sc->dev)) % ncpus2;
4415 
4416 			offset = device_getenv_int(sc->dev,
4417 			    "msix.txoff", offset_def);
4418 			if (offset >= ncpus2 ||
4419 			    offset % sc->tx_ring_msix != 0) {
4420 				device_printf(sc->dev,
4421 				    "invalid msix.txoff %d, use %d\n",
4422 				    offset, offset_def);
4423 				offset = offset_def;
4424 			}
4425 		}
4426 		igb_msix_tx_conf(sc, 0, &x, offset);
4427 	} else {
4428 		int ring_agg, ring_max;
4429 
4430 		ring_agg = sc->rx_ring_msix;
4431 		if (ring_agg > sc->tx_ring_msix)
4432 			ring_agg = sc->tx_ring_msix;
4433 
4434 		ring_max = sc->rx_ring_msix;
4435 		if (ring_max < sc->tx_ring_msix)
4436 			ring_max = sc->tx_ring_msix;
4437 
4438 		if (ring_max == ncpus2) {
4439 			offset = 0;
4440 		} else {
4441 			offset_def = (ring_max * device_get_unit(sc->dev)) %
4442 			    ncpus2;
4443 
4444 			offset = device_getenv_int(sc->dev, "msix.off",
4445 			    offset_def);
4446 			if (offset >= ncpus2 || offset % ring_max != 0) {
4447 				device_printf(sc->dev,
4448 				    "invalid msix.off %d, use %d\n",
4449 				    offset, offset_def);
4450 				offset = offset_def;
4451 			}
4452 		}
4453 
4454 		for (i = 0; i < ring_agg; ++i) {
4455 			struct igb_tx_ring *txr = &sc->tx_rings[i];
4456 			struct igb_rx_ring *rxr = &sc->rx_rings[i];
4457 
4458 			KKASSERT(x < sc->msix_cnt);
4459 			msix = &sc->msix_data[x++];
4460 
4461 			txr->tx_intr_bit = msix->msix_vector;
4462 			txr->tx_intr_mask = msix->msix_mask;
4463 			rxr->rx_intr_bit = msix->msix_vector;
4464 			rxr->rx_intr_mask = msix->msix_mask;
4465 
4466 			msix->msix_serialize = &msix->msix_serialize0;
4467 			msix->msix_func = igb_msix_rxtx;
4468 			msix->msix_arg = msix;
4469 			msix->msix_rx = rxr;
4470 			msix->msix_tx = txr;
4471 
4472 			msix->msix_cpuid = i + offset;
4473 			KKASSERT(msix->msix_cpuid < ncpus2);
4474 			txr->tx_intr_cpuid = msix->msix_cpuid;
4475 
4476 			ksnprintf(msix->msix_desc, sizeof(msix->msix_desc),
4477 			    "%s rxtx%d", device_get_nameunit(sc->dev), i);
4478 			msix->msix_rate = IGB_MSIX_RX_RATE;
4479 			ksnprintf(msix->msix_rate_desc,
4480 			    sizeof(msix->msix_rate_desc),
4481 			    "RXTX%d interrupt rate", i);
4482 		}
4483 
4484 		if (ring_agg != ring_max) {
4485 			if (ring_max == sc->tx_ring_msix)
4486 				igb_msix_tx_conf(sc, i, &x, offset);
4487 			else
4488 				igb_msix_rx_conf(sc, i, &x, offset);
4489 		}
4490 	}
4491 
4492 	/*
4493 	 * Link status
4494 	 */
4495 	KKASSERT(x < sc->msix_cnt);
4496 	msix = &sc->msix_data[x++];
4497 	sc->sts_intr_bit = msix->msix_vector;
4498 	sc->sts_intr_mask = msix->msix_mask;
4499 
4500 	msix->msix_serialize = &sc->main_serialize;
4501 	msix->msix_func = igb_msix_status;
4502 	msix->msix_arg = sc;
4503 	msix->msix_cpuid = 0;
4504 	ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s sts",
4505 	    device_get_nameunit(sc->dev));
4506 	ksnprintf(msix->msix_rate_desc, sizeof(msix->msix_rate_desc),
4507 	    "status interrupt rate");
4508 
4509 	KKASSERT(x == sc->msix_cnt);
4510 
4511 	error = pci_setup_msix(sc->dev);
4512 	if (error) {
4513 		device_printf(sc->dev, "Setup MSI-X failed\n");
4514 		goto back;
4515 	}
4516 	setup = TRUE;
4517 
4518 	for (i = 0; i < sc->msix_cnt; ++i) {
4519 		msix = &sc->msix_data[i];
4520 
4521 		error = pci_alloc_msix_vector(sc->dev, msix->msix_vector,
4522 		    &msix->msix_rid, msix->msix_cpuid);
4523 		if (error) {
4524 			device_printf(sc->dev,
4525 			    "Unable to allocate MSI-X %d on cpu%d\n",
4526 			    msix->msix_vector, msix->msix_cpuid);
4527 			goto back;
4528 		}
4529 
4530 		msix->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4531 		    &msix->msix_rid, RF_ACTIVE);
4532 		if (msix->msix_res == NULL) {
4533 			device_printf(sc->dev,
4534 			    "Unable to allocate MSI-X %d resource\n",
4535 			    msix->msix_vector);
4536 			error = ENOMEM;
4537 			goto back;
4538 		}
4539 	}
4540 
4541 	pci_enable_msix(sc->dev);
4542 	sc->intr_type = PCI_INTR_TYPE_MSIX;
4543 back:
4544 	if (error)
4545 		igb_msix_free(sc, setup);
4546 }
4547 
4548 static void
4549 igb_msix_free(struct igb_softc *sc, boolean_t setup)
4550 {
4551 	int i;
4552 
4553 	KKASSERT(sc->msix_cnt > 1);
4554 
4555 	for (i = 0; i < sc->msix_cnt; ++i) {
4556 		struct igb_msix_data *msix = &sc->msix_data[i];
4557 
4558 		if (msix->msix_res != NULL) {
4559 			bus_release_resource(sc->dev, SYS_RES_IRQ,
4560 			    msix->msix_rid, msix->msix_res);
4561 		}
4562 		if (msix->msix_rid >= 0)
4563 			pci_release_msix_vector(sc->dev, msix->msix_rid);
4564 	}
4565 	if (setup)
4566 		pci_teardown_msix(sc->dev);
4567 
4568 	sc->msix_cnt = 0;
4569 	kfree(sc->msix_data, M_DEVBUF);
4570 	sc->msix_data = NULL;
4571 }
4572 
4573 static int
4574 igb_msix_setup(struct igb_softc *sc)
4575 {
4576 	int i;
4577 
4578 	for (i = 0; i < sc->msix_cnt; ++i) {
4579 		struct igb_msix_data *msix = &sc->msix_data[i];
4580 		int error;
4581 
4582 		error = bus_setup_intr_descr(sc->dev, msix->msix_res,
4583 		    INTR_MPSAFE, msix->msix_func, msix->msix_arg,
4584 		    &msix->msix_handle, msix->msix_serialize, msix->msix_desc);
4585 		if (error) {
4586 			device_printf(sc->dev, "could not set up %s "
4587 			    "interrupt handler.\n", msix->msix_desc);
4588 			igb_msix_teardown(sc, i);
4589 			return error;
4590 		}
4591 	}
4592 	return 0;
4593 }
4594 
4595 static void
4596 igb_msix_teardown(struct igb_softc *sc, int msix_cnt)
4597 {
4598 	int i;
4599 
4600 	for (i = 0; i < msix_cnt; ++i) {
4601 		struct igb_msix_data *msix = &sc->msix_data[i];
4602 
4603 		bus_teardown_intr(sc->dev, msix->msix_res, msix->msix_handle);
4604 	}
4605 }
4606 
4607 static void
4608 igb_msix_rx(void *arg)
4609 {
4610 	struct igb_rx_ring *rxr = arg;
4611 
4612 	ASSERT_SERIALIZED(&rxr->rx_serialize);
4613 	igb_rxeof(rxr, -1);
4614 
4615 	E1000_WRITE_REG(&rxr->sc->hw, E1000_EIMS, rxr->rx_intr_mask);
4616 }
4617 
4618 static void
4619 igb_msix_tx(void *arg)
4620 {
4621 	struct igb_tx_ring *txr = arg;
4622 
4623 	ASSERT_SERIALIZED(&txr->tx_serialize);
4624 
4625 	igb_txeof(txr);
4626 	if (!ifsq_is_empty(txr->ifsq))
4627 		ifsq_devstart(txr->ifsq);
4628 
4629 	E1000_WRITE_REG(&txr->sc->hw, E1000_EIMS, txr->tx_intr_mask);
4630 }
4631 
4632 static void
4633 igb_msix_status(void *arg)
4634 {
4635 	struct igb_softc *sc = arg;
4636 	uint32_t icr;
4637 
4638 	ASSERT_SERIALIZED(&sc->main_serialize);
4639 
4640 	icr = E1000_READ_REG(&sc->hw, E1000_ICR);
4641 	if (icr & E1000_ICR_LSC) {
4642 		sc->hw.mac.get_link_status = 1;
4643 		igb_update_link_status(sc);
4644 	}
4645 
4646 	E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->sts_intr_mask);
4647 }
4648 
4649 static void
4650 igb_set_ring_inuse(struct igb_softc *sc, boolean_t polling)
4651 {
4652 	sc->rx_ring_inuse = igb_get_rxring_inuse(sc, polling);
4653 	sc->tx_ring_inuse = igb_get_txring_inuse(sc, polling);
4654 	if (bootverbose) {
4655 		if_printf(&sc->arpcom.ac_if, "RX rings %d/%d, TX rings %d/%d\n",
4656 		    sc->rx_ring_inuse, sc->rx_ring_cnt,
4657 		    sc->tx_ring_inuse, sc->tx_ring_cnt);
4658 	}
4659 }
4660 
4661 static int
4662 igb_get_rxring_inuse(const struct igb_softc *sc, boolean_t polling)
4663 {
4664 	if (!IGB_ENABLE_HWRSS(sc))
4665 		return 1;
4666 
4667 	if (polling)
4668 		return sc->rx_ring_cnt;
4669 	else if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4670 		return IGB_MIN_RING_RSS;
4671 	else
4672 		return sc->rx_ring_msix;
4673 }
4674 
4675 static int
4676 igb_get_txring_inuse(const struct igb_softc *sc, boolean_t polling)
4677 {
4678 	if (!IGB_ENABLE_HWTSS(sc))
4679 		return 1;
4680 
4681 	if (polling)
4682 		return sc->tx_ring_cnt;
4683 	else if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4684 		return IGB_MIN_RING;
4685 	else
4686 		return sc->tx_ring_msix;
4687 }
4688 
4689 static int
4690 igb_tso_pullup(struct igb_tx_ring *txr, struct mbuf **mp)
4691 {
4692 	int hoff, iphlen, thoff;
4693 	struct mbuf *m;
4694 
4695 	m = *mp;
4696 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4697 
4698 	iphlen = m->m_pkthdr.csum_iphlen;
4699 	thoff = m->m_pkthdr.csum_thlen;
4700 	hoff = m->m_pkthdr.csum_lhlen;
4701 
4702 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4703 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4704 	KASSERT(hoff > 0, ("invalid ether hlen"));
4705 
4706 	if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
4707 		m = m_pullup(m, hoff + iphlen + thoff);
4708 		if (m == NULL) {
4709 			*mp = NULL;
4710 			return ENOBUFS;
4711 		}
4712 		*mp = m;
4713 	}
4714 	if (txr->tx_flags & IGB_TXFLAG_TSO_IPLEN0) {
4715 		struct ip *ip;
4716 
4717 		ip = mtodoff(m, struct ip *, hoff);
4718 		ip->ip_len = 0;
4719 	}
4720 
4721 	return 0;
4722 }
4723 
4724 static void
4725 igb_tso_ctx(struct igb_tx_ring *txr, struct mbuf *m, uint32_t *hlen)
4726 {
4727 	struct e1000_adv_tx_context_desc *TXD;
4728 	uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
4729 	int hoff, ctxd, iphlen, thoff;
4730 
4731 	iphlen = m->m_pkthdr.csum_iphlen;
4732 	thoff = m->m_pkthdr.csum_thlen;
4733 	hoff = m->m_pkthdr.csum_lhlen;
4734 
4735 	vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
4736 
4737 	ctxd = txr->next_avail_desc;
4738 	TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
4739 
4740 	if (m->m_flags & M_VLANTAG) {
4741 		uint16_t vlantag;
4742 
4743 		vlantag = htole16(m->m_pkthdr.ether_vlantag);
4744 		vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
4745 	}
4746 
4747 	vlan_macip_lens |= (hoff << E1000_ADVTXD_MACLEN_SHIFT);
4748 	vlan_macip_lens |= iphlen;
4749 
4750 	type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4751 	type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
4752 	type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
4753 
4754 	mss_l4len_idx |= (m->m_pkthdr.tso_segsz << E1000_ADVTXD_MSS_SHIFT);
4755 	mss_l4len_idx |= (thoff << E1000_ADVTXD_L4LEN_SHIFT);
4756 
4757 	/*
4758 	 * 82575 needs the TX context index added; the queue
4759 	 * index is used as TX context index here.
4760 	 */
4761 	if (txr->sc->hw.mac.type == e1000_82575)
4762 		mss_l4len_idx |= txr->me << 4;
4763 
4764 	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
4765 	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
4766 	TXD->seqnum_seed = htole32(0);
4767 	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
4768 
4769 	/* We've consumed the first desc, adjust counters */
4770 	if (++ctxd == txr->num_tx_desc)
4771 		ctxd = 0;
4772 	txr->next_avail_desc = ctxd;
4773 	--txr->tx_avail;
4774 
4775 	*hlen = hoff + iphlen + thoff;
4776 }
4777 
4778 static void
4779 igb_setup_serializer(struct igb_softc *sc)
4780 {
4781 	const struct igb_msix_data *msix;
4782 	int i, j;
4783 
4784 	/*
4785 	 * Allocate serializer array
4786 	 */
4787 
4788 	/* Main + TX + RX */
4789 	sc->serialize_cnt = 1 + sc->tx_ring_cnt + sc->rx_ring_cnt;
4790 
4791 	/* Aggregate TX/RX MSI-X */
4792 	for (i = 0; i < sc->msix_cnt; ++i) {
4793 		msix = &sc->msix_data[i];
4794 		if (msix->msix_serialize == &msix->msix_serialize0)
4795 			sc->serialize_cnt++;
4796 	}
4797 
4798 	sc->serializes =
4799 	    kmalloc(sc->serialize_cnt * sizeof(struct lwkt_serialize *),
4800 	        M_DEVBUF, M_WAITOK | M_ZERO);
4801 
4802 	/*
4803 	 * Setup serializers
4804 	 *
4805 	 * NOTE: Order is critical
4806 	 */
4807 
4808 	i = 0;
4809 
4810 	KKASSERT(i < sc->serialize_cnt);
4811 	sc->serializes[i++] = &sc->main_serialize;
4812 
4813 	for (j = 0; j < sc->msix_cnt; ++j) {
4814 		msix = &sc->msix_data[j];
4815 		if (msix->msix_serialize == &msix->msix_serialize0) {
4816 			KKASSERT(i < sc->serialize_cnt);
4817 			sc->serializes[i++] = msix->msix_serialize;
4818 		}
4819 	}
4820 
4821 	for (j = 0; j < sc->tx_ring_cnt; ++j) {
4822 		KKASSERT(i < sc->serialize_cnt);
4823 		sc->serializes[i++] = &sc->tx_rings[j].tx_serialize;
4824 	}
4825 
4826 	for (j = 0; j < sc->rx_ring_cnt; ++j) {
4827 		KKASSERT(i < sc->serialize_cnt);
4828 		sc->serializes[i++] = &sc->rx_rings[j].rx_serialize;
4829 	}
4830 
4831 	KKASSERT(i == sc->serialize_cnt);
4832 }
4833 
4834 static void
4835 igb_msix_rx_conf(struct igb_softc *sc, int i, int *x0, int offset)
4836 {
4837 	int x = *x0;
4838 
4839 	for (; i < sc->rx_ring_msix; ++i) {
4840 		struct igb_rx_ring *rxr = &sc->rx_rings[i];
4841 		struct igb_msix_data *msix;
4842 
4843 		KKASSERT(x < sc->msix_cnt);
4844 		msix = &sc->msix_data[x++];
4845 
4846 		rxr->rx_intr_bit = msix->msix_vector;
4847 		rxr->rx_intr_mask = msix->msix_mask;
4848 
4849 		msix->msix_serialize = &rxr->rx_serialize;
4850 		msix->msix_func = igb_msix_rx;
4851 		msix->msix_arg = rxr;
4852 
4853 		msix->msix_cpuid = i + offset;
4854 		KKASSERT(msix->msix_cpuid < ncpus2);
4855 
4856 		ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s rx%d",
4857 		    device_get_nameunit(sc->dev), i);
4858 
4859 		msix->msix_rate = IGB_MSIX_RX_RATE;
4860 		ksnprintf(msix->msix_rate_desc, sizeof(msix->msix_rate_desc),
4861 		    "RX%d interrupt rate", i);
4862 	}
4863 	*x0 = x;
4864 }
4865 
4866 static void
4867 igb_msix_tx_conf(struct igb_softc *sc, int i, int *x0, int offset)
4868 {
4869 	int x = *x0;
4870 
4871 	for (; i < sc->tx_ring_msix; ++i) {
4872 		struct igb_tx_ring *txr = &sc->tx_rings[i];
4873 		struct igb_msix_data *msix;
4874 
4875 		KKASSERT(x < sc->msix_cnt);
4876 		msix = &sc->msix_data[x++];
4877 
4878 		txr->tx_intr_bit = msix->msix_vector;
4879 		txr->tx_intr_mask = msix->msix_mask;
4880 
4881 		msix->msix_serialize = &txr->tx_serialize;
4882 		msix->msix_func = igb_msix_tx;
4883 		msix->msix_arg = txr;
4884 
4885 		msix->msix_cpuid = i + offset;
4886 		KKASSERT(msix->msix_cpuid < ncpus2);
4887 		txr->tx_intr_cpuid = msix->msix_cpuid;
4888 
4889 		ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s tx%d",
4890 		    device_get_nameunit(sc->dev), i);
4891 
4892 		msix->msix_rate = IGB_MSIX_TX_RATE;
4893 		ksnprintf(msix->msix_rate_desc, sizeof(msix->msix_rate_desc),
4894 		    "TX%d interrupt rate", i);
4895 	}
4896 	*x0 = x;
4897 }
4898 
4899 static void
4900 igb_msix_rxtx(void *arg)
4901 {
4902 	struct igb_msix_data *msix = arg;
4903 	struct igb_rx_ring *rxr = msix->msix_rx;
4904 	struct igb_tx_ring *txr = msix->msix_tx;
4905 
4906 	ASSERT_SERIALIZED(&msix->msix_serialize0);
4907 
4908 	lwkt_serialize_enter(&rxr->rx_serialize);
4909 	igb_rxeof(rxr, -1);
4910 	lwkt_serialize_exit(&rxr->rx_serialize);
4911 
4912 	lwkt_serialize_enter(&txr->tx_serialize);
4913 	igb_txeof(txr);
4914 	if (!ifsq_is_empty(txr->ifsq))
4915 		ifsq_devstart(txr->ifsq);
4916 	lwkt_serialize_exit(&txr->tx_serialize);
4917 
4918 	E1000_WRITE_REG(&msix->msix_sc->hw, E1000_EIMS, msix->msix_mask);
4919 }
4920 
4921 static void
4922 igb_set_timer_cpuid(struct igb_softc *sc, boolean_t polling)
4923 {
4924 	if (polling || sc->intr_type == PCI_INTR_TYPE_MSIX)
4925 		sc->timer_cpuid = 0; /* XXX fixed */
4926 	else
4927 		sc->timer_cpuid = rman_get_cpuid(sc->intr_res);
4928 }
4929