xref: /dragonfly/sys/dev/netif/iwi/if_iwi.c (revision 82730a9c)
1 /*-
2  * Copyright (c) 2004, 2005
3  *      Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
4  * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting
5  * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/dev/iwi/if_iwi.c,v 1.72 2009/07/10 15:28:33 rpaulo Exp $
30  */
31 
32 /*-
33  * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver
34  * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
35  */
36 
37 #include <sys/param.h>
38 #include <sys/sysctl.h>
39 #include <sys/sockio.h>
40 #include <sys/mbuf.h>
41 #include <sys/kernel.h>
42 #include <sys/socket.h>
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/module.h>
48 #include <sys/bus.h>
49 #include <sys/endian.h>
50 #include <sys/proc.h>
51 #include <sys/mount.h>
52 #include <sys/namei.h>
53 #include <sys/linker.h>
54 #include <sys/firmware.h>
55 #include <sys/taskqueue.h>
56 #include <sys/devfs.h>
57 
58 #include <sys/resource.h>
59 #include <sys/rman.h>
60 
61 #include <bus/pci/pcireg.h>
62 #include <bus/pci/pcivar.h>
63 
64 #include <net/bpf.h>
65 #include <net/if.h>
66 #include <net/if_arp.h>
67 #include <net/ethernet.h>
68 #include <net/if_dl.h>
69 #include <net/if_media.h>
70 #include <net/if_types.h>
71 #include <net/ifq_var.h>
72 
73 #include <netproto/802_11/ieee80211_var.h>
74 #include <netproto/802_11/ieee80211_radiotap.h>
75 #include <netproto/802_11/ieee80211_input.h>
76 #include <netproto/802_11/ieee80211_regdomain.h>
77 
78 #include <netinet/in.h>
79 #include <netinet/in_systm.h>
80 #include <netinet/in_var.h>
81 #include <netinet/ip.h>
82 #include <netinet/if_ether.h>
83 
84 #include <dev/netif/iwi/if_iwireg.h>
85 #include <dev/netif/iwi/if_iwivar.h>
86 
87 #define IWI_DEBUG
88 #ifdef IWI_DEBUG
89 #define DPRINTF(x)	do { if (iwi_debug > 0) kprintf x; } while (0)
90 #define DPRINTFN(n, x)	do { if (iwi_debug >= (n)) kprintf x; } while (0)
91 int iwi_debug = 0;
92 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level");
93 
94 static const char *iwi_fw_states[] = {
95 	"IDLE", 		/* IWI_FW_IDLE */
96 	"LOADING",		/* IWI_FW_LOADING */
97 	"ASSOCIATING",		/* IWI_FW_ASSOCIATING */
98 	"DISASSOCIATING",	/* IWI_FW_DISASSOCIATING */
99 	"SCANNING",		/* IWI_FW_SCANNING */
100 };
101 #else
102 #define DPRINTF(x)
103 #define DPRINTFN(n, x)
104 #endif
105 
106 MODULE_DEPEND(iwi, pci,  1, 1, 1);
107 MODULE_DEPEND(iwi, wlan, 1, 1, 1);
108 MODULE_DEPEND(iwi, firmware, 1, 1, 1);
109 
110 enum {
111 	IWI_LED_TX,
112 	IWI_LED_RX,
113 	IWI_LED_POLL,
114 };
115 
116 struct iwi_ident {
117 	uint16_t	vendor;
118 	uint16_t	device;
119 	const char	*name;
120 };
121 
122 static const struct iwi_ident iwi_ident_table[] = {
123 	{ 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" },
124 	{ 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" },
125 	{ 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" },
126 	{ 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" },
127 
128 	{ 0, 0, NULL }
129 };
130 
131 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *,
132 		    const char name[IFNAMSIZ], int unit,
133 		    enum ieee80211_opmode opmode, int flags,
134 		    const uint8_t bssid[IEEE80211_ADDR_LEN],
135 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
136 static void	iwi_vap_delete(struct ieee80211vap *);
137 static void	iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
138 static int	iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *,
139 		    int);
140 static void	iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
141 static void	iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
142 static int	iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *,
143 		    int, bus_addr_t, bus_addr_t);
144 static void	iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
145 static void	iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
146 static int	iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *,
147 		    int);
148 static void	iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
149 static void	iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
150 static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *,
151 		    const uint8_t [IEEE80211_ADDR_LEN]);
152 static void	iwi_node_free(struct ieee80211_node *);
153 static void	iwi_media_status(struct ifnet *, struct ifmediareq *);
154 static int	iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
155 static void	iwi_wme_init(struct iwi_softc *);
156 static int	iwi_wme_setparams(struct iwi_softc *, struct ieee80211com *);
157 static void	iwi_update_wme_task(void *, int);
158 static int	iwi_wme_update(struct ieee80211com *);
159 static uint16_t	iwi_read_prom_word(struct iwi_softc *, uint8_t);
160 static void	iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int,
161 		    struct iwi_frame *);
162 static void	iwi_notification_intr(struct iwi_softc *, struct iwi_notif *);
163 static void	iwi_rx_intr(struct iwi_softc *);
164 static void	iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *);
165 static void	iwi_intr(void *);
166 static int	iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t);
167 static void	iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int);
168 static int	iwi_tx_start(struct ifnet *, struct mbuf *,
169 		    struct ieee80211_node *, int);
170 static int	iwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
171 		    const struct ieee80211_bpf_params *);
172 static void	iwi_start_locked(struct ifnet *);
173 static void	iwi_start(struct ifnet *, struct ifaltq_subque *);
174 static void	iwi_watchdog(void *);
175 static int	iwi_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *ucred);
176 static void	iwi_stop_master(struct iwi_softc *);
177 static int	iwi_reset(struct iwi_softc *);
178 static int	iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *);
179 static int	iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *);
180 static void	iwi_release_fw_dma(struct iwi_softc *sc);
181 static int	iwi_config(struct iwi_softc *);
182 static int	iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode);
183 static void	iwi_put_firmware(struct iwi_softc *);
184 static int	iwi_scanchan(struct iwi_softc *, unsigned long, int);
185 static void	iwi_scan_start(struct ieee80211com *);
186 static void	iwi_scan_end(struct ieee80211com *);
187 static void	iwi_set_channel(struct ieee80211com *);
188 static void	iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell);
189 static void	iwi_scan_mindwell(struct ieee80211_scan_state *);
190 static int	iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *);
191 static void	iwi_disassoc_task(void *, int);
192 static int	iwi_disassociate(struct iwi_softc *, int quiet);
193 static void	iwi_init_locked(struct iwi_softc *);
194 static void	iwi_init(void *);
195 static int	iwi_init_fw_dma(struct iwi_softc *, int);
196 static void	iwi_stop_locked(void *);
197 static void	iwi_stop(struct iwi_softc *);
198 static void	iwi_restart_task(void *, int);
199 static int	iwi_getrfkill(struct iwi_softc *);
200 static void	iwi_radio_on_task(void *, int);
201 static void	iwi_radio_off_task(void *, int);
202 static void	iwi_sysctlattach(struct iwi_softc *);
203 static void	iwi_led_event(struct iwi_softc *, int);
204 static void	iwi_ledattach(struct iwi_softc *);
205 
206 static int iwi_probe(device_t);
207 static int iwi_attach(device_t);
208 static int iwi_detach(device_t);
209 static int iwi_shutdown(device_t);
210 static int iwi_suspend(device_t);
211 static int iwi_resume(device_t);
212 
213 static device_method_t iwi_methods[] = {
214 	/* Device interface */
215 	DEVMETHOD(device_probe,		iwi_probe),
216 	DEVMETHOD(device_attach,	iwi_attach),
217 	DEVMETHOD(device_detach,	iwi_detach),
218 	DEVMETHOD(device_shutdown,	iwi_shutdown),
219 	DEVMETHOD(device_suspend,	iwi_suspend),
220 	DEVMETHOD(device_resume,	iwi_resume),
221 
222 	DEVMETHOD_END
223 };
224 
225 static driver_t iwi_driver = {
226 	"iwi",
227 	iwi_methods,
228 	sizeof (struct iwi_softc)
229 };
230 
231 static devclass_t iwi_devclass;
232 
233 DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, NULL, NULL);
234 
235 static __inline uint8_t
236 MEM_READ_1(struct iwi_softc *sc, uint32_t addr)
237 {
238 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
239 	return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA);
240 }
241 
242 static __inline uint32_t
243 MEM_READ_4(struct iwi_softc *sc, uint32_t addr)
244 {
245 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
246 	return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA);
247 }
248 
249 static int
250 iwi_probe(device_t dev)
251 {
252 	const struct iwi_ident *ident;
253 
254 	wlan_serialize_enter();
255 	for (ident = iwi_ident_table; ident->name != NULL; ident++) {
256 		if (pci_get_vendor(dev) == ident->vendor &&
257 		    pci_get_device(dev) == ident->device) {
258 			device_set_desc(dev, ident->name);
259 			wlan_serialize_exit();
260 			return 0;
261 		}
262 	}
263 	wlan_serialize_exit();
264 	return ENXIO;
265 }
266 
267 /* Base Address Register */
268 #define IWI_PCI_BAR0	0x10
269 
270 static int
271 iwi_attach(device_t dev)
272 {
273 	struct iwi_softc *sc = device_get_softc(dev);
274 	struct ifnet *ifp;
275 	struct ieee80211com *ic;
276 	uint16_t val;
277 	int i, error;
278 	uint8_t bands;
279 	uint8_t macaddr[IEEE80211_ADDR_LEN];
280 
281 	wlan_serialize_enter();
282 
283 	sc->sc_dev = dev;
284 
285 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
286 	if (ifp == NULL) {
287 		device_printf(dev, "can not if_alloc()\n");
288 		wlan_serialize_exit();
289 		return ENXIO;
290 	}
291 	ic = ifp->if_l2com;
292 
293 	devfs_clone_bitmap_init(&sc->sc_unr);
294 
295 	TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on_task, sc);
296 	TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off_task, sc);
297 	TASK_INIT(&sc->sc_restarttask, 0, iwi_restart_task, sc);
298 	TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc_task, sc);
299 	TASK_INIT(&sc->sc_wmetask, 0, iwi_update_wme_task, sc);
300 
301 	callout_init(&sc->sc_wdtimer_callout);
302 	callout_init(&sc->sc_rftimer_callout);
303 
304 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
305 		device_printf(dev, "chip is in D%d power mode "
306 		    "-- setting to D0\n", pci_get_powerstate(dev));
307 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
308 	}
309 
310 	pci_write_config(dev, 0x41, 0, 1);
311 
312 	/* enable bus-mastering */
313 	pci_enable_busmaster(dev);
314 
315 	sc->mem_rid = IWI_PCI_BAR0;
316 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
317 	    RF_ACTIVE);
318 	if (sc->mem == NULL) {
319 		device_printf(dev, "could not allocate memory resource\n");
320 		goto fail;
321 	}
322 
323 	sc->sc_st = rman_get_bustag(sc->mem);
324 	sc->sc_sh = rman_get_bushandle(sc->mem);
325 
326 	sc->irq_rid = 0;
327 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
328 	    RF_ACTIVE | RF_SHAREABLE);
329 	if (sc->irq == NULL) {
330 		device_printf(dev, "could not allocate interrupt resource\n");
331 		goto fail;
332 	}
333 
334 	if (iwi_reset(sc) != 0) {
335 		device_printf(dev, "could not reset adapter\n");
336 		goto fail;
337 	}
338 
339 	/*
340 	 * Allocate rings.
341 	 */
342 	if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) {
343 		device_printf(dev, "could not allocate Cmd ring\n");
344 		goto fail;
345 	}
346 
347 	for (i = 0; i < 4; i++) {
348 		error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT,
349 		    IWI_CSR_TX1_RIDX + i * 4,
350 		    IWI_CSR_TX1_WIDX + i * 4);
351 		if (error != 0) {
352 			device_printf(dev, "could not allocate Tx ring %d\n",
353 				i+i);
354 			goto fail;
355 		}
356 	}
357 
358 	if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) {
359 		device_printf(dev, "could not allocate Rx ring\n");
360 		goto fail;
361 	}
362 
363 	iwi_wme_init(sc);
364 
365 	ifp->if_softc = sc;
366 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
367 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
368 	ifp->if_init = iwi_init;
369 	ifp->if_ioctl = iwi_ioctl;
370 	ifp->if_start = iwi_start;
371 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
372 #ifdef notyet
373 	ifq_set_ready(&ifp->if_snd);
374 #endif
375 
376 	ic->ic_ifp = ifp;
377 	ic->ic_opmode = IEEE80211_M_STA;
378 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
379 
380 	/* set device capabilities */
381 	ic->ic_caps =
382 	      IEEE80211_C_STA		/* station mode supported */
383 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
384 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
385 	    | IEEE80211_C_PMGT		/* power save supported */
386 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
387 	    | IEEE80211_C_WPA		/* 802.11i */
388 	    | IEEE80211_C_WME		/* 802.11e */
389 #if 0
390 	    | IEEE80211_C_BGSCAN	/* capable of bg scanning */
391 #endif
392 	    ;
393 
394 	/* read MAC address from EEPROM */
395 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0);
396 	macaddr[0] = val & 0xff;
397 	macaddr[1] = val >> 8;
398 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1);
399 	macaddr[2] = val & 0xff;
400 	macaddr[3] = val >> 8;
401 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2);
402 	macaddr[4] = val & 0xff;
403 	macaddr[5] = val >> 8;
404 
405 	bands = 0;
406 	setbit(&bands, IEEE80211_MODE_11B);
407 	setbit(&bands, IEEE80211_MODE_11G);
408 	if (pci_get_device(dev) >= 0x4223)
409 		setbit(&bands, IEEE80211_MODE_11A);
410 	ieee80211_init_channels(ic, NULL, &bands);
411 
412 	ieee80211_ifattach(ic, macaddr);
413 	/* override default methods */
414 	ic->ic_node_alloc = iwi_node_alloc;
415 	sc->sc_node_free = ic->ic_node_free;
416 	ic->ic_node_free = iwi_node_free;
417 	ic->ic_raw_xmit = iwi_raw_xmit;
418 	ic->ic_scan_start = iwi_scan_start;
419 	ic->ic_scan_end = iwi_scan_end;
420 	ic->ic_set_channel = iwi_set_channel;
421 	ic->ic_scan_curchan = iwi_scan_curchan;
422 	ic->ic_scan_mindwell = iwi_scan_mindwell;
423 	ic->ic_wme.wme_update = iwi_wme_update;
424 
425 	ic->ic_vap_create = iwi_vap_create;
426 	ic->ic_vap_delete = iwi_vap_delete;
427 
428 	ieee80211_radiotap_attach(ic,
429 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
430 		IWI_TX_RADIOTAP_PRESENT,
431 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
432 		IWI_RX_RADIOTAP_PRESENT);
433 
434 	iwi_sysctlattach(sc);
435 	iwi_ledattach(sc);
436 
437 	/*
438 	 * Hook our interrupt after all initialization is complete.
439 	 */
440 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
441 	    iwi_intr, sc, &sc->sc_ih, &wlan_global_serializer);
442 	if (error != 0) {
443 		device_printf(dev, "could not set up interrupt\n");
444 		goto fail;
445 	}
446 
447 	if (bootverbose)
448 		ieee80211_announce(ic);
449 
450 	wlan_serialize_exit();
451 	return 0;
452 fail:
453 	/* XXX fix */
454 	wlan_serialize_exit();
455 	iwi_detach(dev);
456 	return ENXIO;
457 }
458 
459 static int
460 iwi_detach(device_t dev)
461 {
462 	struct iwi_softc *sc = device_get_softc(dev);
463 	struct ifnet *ifp = sc->sc_ifp;
464 	struct ieee80211com *ic = ifp->if_l2com;
465 
466 	wlan_serialize_enter();
467 
468 	/* NB: do early to drain any pending tasks */
469 	ieee80211_draintask(ic, &sc->sc_radiontask);
470 	ieee80211_draintask(ic, &sc->sc_radiofftask);
471 	ieee80211_draintask(ic, &sc->sc_restarttask);
472 	ieee80211_draintask(ic, &sc->sc_disassoctask);
473 
474 	iwi_stop(sc);
475 
476 	ieee80211_ifdetach(ic);
477 
478 	iwi_put_firmware(sc);
479 	iwi_release_fw_dma(sc);
480 
481 	iwi_free_cmd_ring(sc, &sc->cmdq);
482 	iwi_free_tx_ring(sc, &sc->txq[0]);
483 	iwi_free_tx_ring(sc, &sc->txq[1]);
484 	iwi_free_tx_ring(sc, &sc->txq[2]);
485 	iwi_free_tx_ring(sc, &sc->txq[3]);
486 	iwi_free_rx_ring(sc, &sc->rxq);
487 
488 	bus_teardown_intr(dev, sc->irq, sc->sc_ih);
489 	bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
490 
491 	bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
492 
493 	devfs_clone_bitmap_uninit(&sc->sc_unr);
494 
495 	if (sc->sc_sysctl_tree != NULL)
496 		sysctl_ctx_free(&sc->sc_sysctl_ctx);
497 
498 	if_free(ifp);
499 
500 	wlan_serialize_exit();
501 	return 0;
502 }
503 
504 static struct ieee80211vap *
505 iwi_vap_create(struct ieee80211com *ic,
506 	const char name[IFNAMSIZ], int unit,
507 	enum ieee80211_opmode opmode, int flags,
508 	const uint8_t bssid[IEEE80211_ADDR_LEN],
509 	const uint8_t mac[IEEE80211_ADDR_LEN])
510 {
511 	struct ifnet *ifp = ic->ic_ifp;
512 	struct iwi_softc *sc = ifp->if_softc;
513 	struct iwi_vap *ivp;
514 	struct ieee80211vap *vap;
515 	int i;
516 
517 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
518 		return NULL;
519 	/*
520 	 * Get firmware image (and possibly dma memory) on mode change.
521 	 */
522 	if (iwi_get_firmware(sc, opmode))
523 		return NULL;
524 	/* allocate DMA memory for mapping firmware image */
525 	i = sc->fw_fw.size;
526 	if (sc->fw_boot.size > i)
527 		i = sc->fw_boot.size;
528 	/* XXX do we dma the ucode as well ? */
529 	if (sc->fw_uc.size > i)
530 		i = sc->fw_uc.size;
531 	if (iwi_init_fw_dma(sc, i))
532 		return NULL;
533 
534 	ivp = (struct iwi_vap *) kmalloc(sizeof(struct iwi_vap),
535 	    M_80211_VAP, M_WAITOK | M_ZERO);
536 	if (ivp == NULL)
537 		return NULL;
538 	vap = &ivp->iwi_vap;
539 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
540 	/* override the default, the setting comes from the linux driver */
541 	vap->iv_bmissthreshold = 24;
542 	/* override with driver methods */
543 	ivp->iwi_newstate = vap->iv_newstate;
544 	vap->iv_newstate = iwi_newstate;
545 
546 	/* complete setup */
547 	ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status);
548 	ic->ic_opmode = opmode;
549 	return vap;
550 }
551 
552 static void
553 iwi_vap_delete(struct ieee80211vap *vap)
554 {
555 	struct iwi_vap *ivp = IWI_VAP(vap);
556 
557 	ieee80211_vap_detach(vap);
558 	kfree(ivp, M_80211_VAP);
559 }
560 
561 static void
562 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
563 {
564 	if (error != 0)
565 		return;
566 
567 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
568 
569 	*(bus_addr_t *)arg = segs[0].ds_addr;
570 }
571 
572 static int
573 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count)
574 {
575 	int error;
576 
577 	ring->count = count;
578 	ring->queued = 0;
579 	ring->cur = ring->next = 0;
580 
581 	error = bus_dma_tag_create(NULL, 4, 0,
582 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
583 	    count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE,
584 	    0 , &ring->desc_dmat);
585 	if (error != 0) {
586 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
587 		goto fail;
588 	}
589 
590 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
591 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
592 	if (error != 0) {
593 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
594 		goto fail;
595 	}
596 
597 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
598 	    count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
599 	if (error != 0) {
600 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
601 		goto fail;
602 	}
603 
604 	return 0;
605 
606 fail:	iwi_free_cmd_ring(sc, ring);
607 	return error;
608 }
609 
610 static void
611 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
612 {
613 	ring->queued = 0;
614 	ring->cur = ring->next = 0;
615 }
616 
617 static void
618 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
619 {
620 	if (ring->desc != NULL) {
621 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
622 		    BUS_DMASYNC_POSTWRITE);
623 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
624 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
625 	}
626 
627 	if (ring->desc_dmat != NULL)
628 		bus_dma_tag_destroy(ring->desc_dmat);
629 }
630 
631 static int
632 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count,
633     bus_addr_t csr_ridx, bus_addr_t csr_widx)
634 {
635 	int i, error;
636 
637 	ring->count = count;
638 	ring->queued = 0;
639 	ring->cur = ring->next = 0;
640 	ring->csr_ridx = csr_ridx;
641 	ring->csr_widx = csr_widx;
642 
643 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
644 	    BUS_SPACE_MAXADDR, NULL, NULL, count * IWI_TX_DESC_SIZE, 1,
645 	    count * IWI_TX_DESC_SIZE, 0, &ring->desc_dmat);
646 	if (error != 0) {
647 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
648 		goto fail;
649 	}
650 
651 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
652 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
653 	if (error != 0) {
654 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
655 		goto fail;
656 	}
657 
658 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
659 	    count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
660 	if (error != 0) {
661 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
662 		goto fail;
663 	}
664 
665 	ring->data = kmalloc(count * sizeof (struct iwi_tx_data), M_DEVBUF,
666 	    M_WAITOK | M_ZERO);
667 
668 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
669 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IWI_MAX_NSEG,
670 	    MCLBYTES, 0, &ring->data_dmat);
671 	if (error != 0) {
672 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
673 		goto fail;
674 	}
675 
676 	for (i = 0; i < count; i++) {
677 		error = bus_dmamap_create(ring->data_dmat, 0,
678 		    &ring->data[i].map);
679 		if (error != 0) {
680 			device_printf(sc->sc_dev, "could not create DMA map\n");
681 			goto fail;
682 		}
683 	}
684 
685 	return 0;
686 
687 fail:	iwi_free_tx_ring(sc, ring);
688 	return error;
689 }
690 
691 static void
692 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
693 {
694 	struct iwi_tx_data *data;
695 	int i;
696 
697 	for (i = 0; i < ring->count; i++) {
698 		data = &ring->data[i];
699 
700 		if (data->m != NULL) {
701 			bus_dmamap_sync(ring->data_dmat, data->map,
702 			    BUS_DMASYNC_POSTWRITE);
703 			bus_dmamap_unload(ring->data_dmat, data->map);
704 			m_freem(data->m);
705 			data->m = NULL;
706 		}
707 
708 		if (data->ni != NULL) {
709 			ieee80211_free_node(data->ni);
710 			data->ni = NULL;
711 		}
712 	}
713 
714 	ring->queued = 0;
715 	ring->cur = ring->next = 0;
716 }
717 
718 static void
719 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
720 {
721 	struct iwi_tx_data *data;
722 	int i;
723 
724 	if (ring->desc != NULL) {
725 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
726 		    BUS_DMASYNC_POSTWRITE);
727 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
728 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
729 	}
730 
731 	if (ring->desc_dmat != NULL)
732 		bus_dma_tag_destroy(ring->desc_dmat);
733 
734 	if (ring->data != NULL) {
735 		for (i = 0; i < ring->count; i++) {
736 			data = &ring->data[i];
737 
738 			if (data->m != NULL) {
739 				bus_dmamap_sync(ring->data_dmat, data->map,
740 				    BUS_DMASYNC_POSTWRITE);
741 				bus_dmamap_unload(ring->data_dmat, data->map);
742 				m_freem(data->m);
743 			}
744 
745 			if (data->ni != NULL)
746 				ieee80211_free_node(data->ni);
747 
748 			if (data->map != NULL)
749 				bus_dmamap_destroy(ring->data_dmat, data->map);
750 		}
751 
752 		kfree(ring->data, M_DEVBUF);
753 	}
754 
755 	if (ring->data_dmat != NULL)
756 		bus_dma_tag_destroy(ring->data_dmat);
757 }
758 
759 static int
760 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count)
761 {
762 	struct iwi_rx_data *data;
763 	int i, error;
764 
765 	ring->count = count;
766 	ring->cur = 0;
767 
768 	ring->data = kmalloc(count * sizeof (struct iwi_rx_data), M_DEVBUF,
769 	    M_WAITOK | M_ZERO);
770 
771 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
772 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES,
773 	    0, &ring->data_dmat);
774 	if (error != 0) {
775 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
776 		goto fail;
777 	}
778 
779 	for (i = 0; i < count; i++) {
780 		data = &ring->data[i];
781 
782 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
783 		if (error != 0) {
784 			device_printf(sc->sc_dev, "could not create DMA map\n");
785 			goto fail;
786 		}
787 
788 		data->m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
789 		if (data->m == NULL) {
790 			device_printf(sc->sc_dev,
791 			    "could not allocate rx mbuf\n");
792 			error = ENOMEM;
793 			goto fail;
794 		}
795 
796 		error = bus_dmamap_load(ring->data_dmat, data->map,
797 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
798 		    &data->physaddr, 0);
799 		if (error != 0) {
800 			device_printf(sc->sc_dev,
801 			    "could not load rx buf DMA map");
802 			goto fail;
803 		}
804 
805 		data->reg = IWI_CSR_RX_BASE + i * 4;
806 	}
807 
808 	return 0;
809 
810 fail:	iwi_free_rx_ring(sc, ring);
811 	return error;
812 }
813 
814 static void
815 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
816 {
817 	ring->cur = 0;
818 }
819 
820 static void
821 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
822 {
823 	struct iwi_rx_data *data;
824 	int i;
825 
826 	if (ring->data != NULL) {
827 		for (i = 0; i < ring->count; i++) {
828 			data = &ring->data[i];
829 
830 			if (data->m != NULL) {
831 				bus_dmamap_sync(ring->data_dmat, data->map,
832 				    BUS_DMASYNC_POSTREAD);
833 				bus_dmamap_unload(ring->data_dmat, data->map);
834 				m_freem(data->m);
835 			}
836 
837 			if (data->map != NULL)
838 				bus_dmamap_destroy(ring->data_dmat, data->map);
839 		}
840 
841 		kfree(ring->data, M_DEVBUF);
842 	}
843 
844 	if (ring->data_dmat != NULL)
845 		bus_dma_tag_destroy(ring->data_dmat);
846 }
847 
848 static int
849 iwi_shutdown(device_t dev)
850 {
851 	struct iwi_softc *sc = device_get_softc(dev);
852 
853 	wlan_serialize_enter();
854 	iwi_stop(sc);
855 	iwi_put_firmware(sc);		/* ??? XXX */
856 	wlan_serialize_exit();
857 
858 	return 0;
859 }
860 
861 static int
862 iwi_suspend(device_t dev)
863 {
864 	struct iwi_softc *sc = device_get_softc(dev);
865 
866 	wlan_serialize_enter();
867 	iwi_stop(sc);
868 	wlan_serialize_exit();
869 
870 	return 0;
871 }
872 
873 static int
874 iwi_resume(device_t dev)
875 {
876 	struct iwi_softc *sc = device_get_softc(dev);
877 	struct ifnet *ifp = sc->sc_ifp;
878 
879 	wlan_serialize_enter();
880 	pci_write_config(dev, 0x41, 0, 1);
881 
882 	if (ifp->if_flags & IFF_UP)
883 		iwi_init(sc);
884 
885 	wlan_serialize_exit();
886 	return 0;
887 }
888 
889 static struct ieee80211_node *
890 iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
891 {
892 	struct iwi_node *in;
893 
894 	in = kmalloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
895 	if (in == NULL)
896 		return NULL;
897 	/* XXX assign sta table entry for adhoc */
898 	in->in_station = -1;
899 
900 	return &in->in_node;
901 }
902 
903 static void
904 iwi_node_free(struct ieee80211_node *ni)
905 {
906 	struct ieee80211com *ic = ni->ni_ic;
907 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
908 	struct iwi_node *in = (struct iwi_node *)ni;
909 	char ethstr[ETHER_ADDRSTRLEN + 1];
910 
911 	if (in->in_station != -1) {
912 		DPRINTF(("%s mac %s station %u\n", __func__,
913 			kether_ntoa(ni->ni_macaddr, ethstr), in->in_station));
914 		devfs_clone_bitmap_put(&sc->sc_unr, in->in_station);
915 	}
916 
917 	sc->sc_node_free(ni);
918 }
919 
920 /*
921  * Convert h/w rate code to IEEE rate code.
922  */
923 static int
924 iwi_cvtrate(int iwirate)
925 {
926 	switch (iwirate) {
927 	case IWI_RATE_DS1:	return 2;
928 	case IWI_RATE_DS2:	return 4;
929 	case IWI_RATE_DS5:	return 11;
930 	case IWI_RATE_DS11:	return 22;
931 	case IWI_RATE_OFDM6:	return 12;
932 	case IWI_RATE_OFDM9:	return 18;
933 	case IWI_RATE_OFDM12:	return 24;
934 	case IWI_RATE_OFDM18:	return 36;
935 	case IWI_RATE_OFDM24:	return 48;
936 	case IWI_RATE_OFDM36:	return 72;
937 	case IWI_RATE_OFDM48:	return 96;
938 	case IWI_RATE_OFDM54:	return 108;
939 	}
940 	return 0;
941 }
942 
943 /*
944  * The firmware automatically adapts the transmit speed.  We report its current
945  * value here.
946  */
947 static void
948 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
949 {
950 	struct ieee80211vap *vap = ifp->if_softc;
951 	struct ieee80211com *ic = vap->iv_ic;
952 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
953 
954 	/* read current transmission rate from adapter */
955 	vap->iv_bss->ni_txrate =
956 	    iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE));
957 	ieee80211_media_status(ifp, imr);
958 }
959 
960 static int
961 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
962 {
963 	struct iwi_vap *ivp = IWI_VAP(vap);
964 	struct ieee80211com *ic = vap->iv_ic;
965 	struct ifnet *ifp = ic->ic_ifp;
966 	struct iwi_softc *sc = ifp->if_softc;
967 
968 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
969 		ieee80211_state_name[vap->iv_state],
970 		ieee80211_state_name[nstate], sc->flags));
971 
972 	switch (nstate) {
973 	case IEEE80211_S_INIT:
974 		/*
975 		 * NB: don't try to do this if iwi_stop_master has
976 		 *     shutdown the firmware and disabled interrupts.
977 		 */
978 		if (vap->iv_state == IEEE80211_S_RUN &&
979 		    (sc->flags & IWI_FLAG_FW_INITED))
980 			iwi_disassociate(sc, 0);
981 		break;
982 	case IEEE80211_S_AUTH:
983 		iwi_auth_and_assoc(sc, vap);
984 		break;
985 	case IEEE80211_S_RUN:
986 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
987 		    vap->iv_state == IEEE80211_S_SCAN) {
988 			/*
989 			 * XXX when joining an ibss network we are called
990 			 * with a SCAN -> RUN transition on scan complete.
991 			 * Use that to call iwi_auth_and_assoc.  On completing
992 			 * the join we are then called again with an
993 			 * AUTH -> RUN transition and we want to do nothing.
994 			 * This is all totally bogus and needs to be redone.
995 			 */
996 			iwi_auth_and_assoc(sc, vap);
997 		}
998 		break;
999 	case IEEE80211_S_ASSOC:
1000 		/*
1001 		 * If we are transitioning from AUTH then just wait
1002 		 * for the ASSOC status to come back from the firmware.
1003 		 * Otherwise we need to issue the association request.
1004 		 */
1005 		if (vap->iv_state == IEEE80211_S_AUTH)
1006 			break;
1007 		iwi_auth_and_assoc(sc, vap);
1008 		break;
1009 	default:
1010 		break;
1011 	}
1012 
1013 	return ivp->iwi_newstate(vap, nstate, arg);
1014 }
1015 
1016 /*
1017  * WME parameters coming from IEEE 802.11e specification.  These values are
1018  * already declared in ieee80211_proto.c, but they are static so they can't
1019  * be reused here.
1020  */
1021 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = {
1022 	{ 0, 3, 5,  7,   0 },	/* WME_AC_BE */
1023 	{ 0, 3, 5, 10,   0 },	/* WME_AC_BK */
1024 	{ 0, 2, 4,  5, 188 },	/* WME_AC_VI */
1025 	{ 0, 2, 3,  4, 102 }	/* WME_AC_VO */
1026 };
1027 
1028 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = {
1029 	{ 0, 3, 4,  6,   0 },	/* WME_AC_BE */
1030 	{ 0, 3, 4, 10,   0 },	/* WME_AC_BK */
1031 	{ 0, 2, 3,  4,  94 },	/* WME_AC_VI */
1032 	{ 0, 2, 2,  3,  47 }	/* WME_AC_VO */
1033 };
1034 #define IWI_EXP2(v)	htole16((1 << (v)) - 1)
1035 #define IWI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
1036 
1037 static void
1038 iwi_wme_init(struct iwi_softc *sc)
1039 {
1040 	const struct wmeParams *wmep;
1041 	int ac;
1042 
1043 	memset(sc->wme, 0, sizeof sc->wme);
1044 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1045 		/* set WME values for CCK modulation */
1046 		wmep = &iwi_wme_cck_params[ac];
1047 		sc->wme[1].aifsn[ac] = wmep->wmep_aifsn;
1048 		sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1049 		sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1050 		sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1051 		sc->wme[1].acm[ac]   = wmep->wmep_acm;
1052 
1053 		/* set WME values for OFDM modulation */
1054 		wmep = &iwi_wme_ofdm_params[ac];
1055 		sc->wme[2].aifsn[ac] = wmep->wmep_aifsn;
1056 		sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1057 		sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1058 		sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1059 		sc->wme[2].acm[ac]   = wmep->wmep_acm;
1060 	}
1061 }
1062 
1063 static int
1064 iwi_wme_setparams(struct iwi_softc *sc, struct ieee80211com *ic)
1065 {
1066 	const struct wmeParams *wmep;
1067 	int ac;
1068 
1069 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1070 		/* set WME values for current operating mode */
1071 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
1072 		sc->wme[0].aifsn[ac] = wmep->wmep_aifsn;
1073 		sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1074 		sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1075 		sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1076 		sc->wme[0].acm[ac]   = wmep->wmep_acm;
1077 	}
1078 
1079 	DPRINTF(("Setting WME parameters\n"));
1080 	return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme);
1081 }
1082 #undef IWI_USEC
1083 #undef IWI_EXP2
1084 
1085 static void
1086 iwi_update_wme_task(void *arg, int npending)
1087 {
1088 	struct ieee80211com *ic = arg;
1089 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
1090 
1091 	wlan_serialize_enter();
1092 	(void) iwi_wme_setparams(sc, ic);
1093 	wlan_serialize_exit();
1094 }
1095 
1096 static int
1097 iwi_wme_update(struct ieee80211com *ic)
1098 {
1099 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
1100 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1101 
1102 	/*
1103 	 * We may be called to update the WME parameters in
1104 	 * the adapter at various places.  If we're already
1105 	 * associated then initiate the request immediately;
1106 	 * otherwise we assume the params will get sent down
1107 	 * to the adapter as part of the work iwi_auth_and_assoc
1108 	 * does.
1109 	 */
1110 	if (vap->iv_state == IEEE80211_S_RUN)
1111 		ieee80211_runtask(ic, &sc->sc_wmetask);
1112 	return (0);
1113 }
1114 
1115 static int
1116 iwi_wme_setie(struct iwi_softc *sc)
1117 {
1118 	struct ieee80211_wme_info wme;
1119 
1120 	memset(&wme, 0, sizeof wme);
1121 	wme.wme_id = IEEE80211_ELEMID_VENDOR;
1122 	wme.wme_len = sizeof (struct ieee80211_wme_info) - 2;
1123 	wme.wme_oui[0] = 0x00;
1124 	wme.wme_oui[1] = 0x50;
1125 	wme.wme_oui[2] = 0xf2;
1126 	wme.wme_type = WME_OUI_TYPE;
1127 	wme.wme_subtype = WME_INFO_OUI_SUBTYPE;
1128 	wme.wme_version = WME_VERSION;
1129 	wme.wme_info = 0;
1130 
1131 	DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len));
1132 	return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme);
1133 }
1134 
1135 /*
1136  * Read 16 bits at address 'addr' from the serial EEPROM.
1137  */
1138 static uint16_t
1139 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr)
1140 {
1141 	uint32_t tmp;
1142 	uint16_t val;
1143 	int n;
1144 
1145 	/* clock C once before the first command */
1146 	IWI_EEPROM_CTL(sc, 0);
1147 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1148 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1149 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1150 
1151 	/* write start bit (1) */
1152 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1153 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1154 
1155 	/* write READ opcode (10) */
1156 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1157 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1158 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1159 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1160 
1161 	/* write address A7-A0 */
1162 	for (n = 7; n >= 0; n--) {
1163 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1164 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D));
1165 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1166 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C);
1167 	}
1168 
1169 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1170 
1171 	/* read data Q15-Q0 */
1172 	val = 0;
1173 	for (n = 15; n >= 0; n--) {
1174 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1175 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1176 		tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL);
1177 		val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n;
1178 	}
1179 
1180 	IWI_EEPROM_CTL(sc, 0);
1181 
1182 	/* clear Chip Select and clock C */
1183 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1184 	IWI_EEPROM_CTL(sc, 0);
1185 	IWI_EEPROM_CTL(sc, IWI_EEPROM_C);
1186 
1187 	return val;
1188 }
1189 
1190 static void
1191 iwi_setcurchan(struct iwi_softc *sc, int chan)
1192 {
1193 	struct ifnet *ifp = sc->sc_ifp;
1194 	struct ieee80211com *ic = ifp->if_l2com;
1195 
1196 	sc->curchan = chan;
1197 	ieee80211_radiotap_chan_change(ic);
1198 }
1199 
1200 static void
1201 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i,
1202     struct iwi_frame *frame)
1203 {
1204 	struct ifnet *ifp = sc->sc_ifp;
1205 	struct ieee80211com *ic = ifp->if_l2com;
1206 	struct mbuf *mnew, *m;
1207 	struct ieee80211_node *ni;
1208 	int type, error, framelen;
1209 	int8_t rssi, nf;
1210 
1211 	framelen = le16toh(frame->len);
1212 	if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) {
1213 		/*
1214 		 * XXX >MCLBYTES is bogus as it means the h/w dma'd
1215 		 *     out of bounds; need to figure out how to limit
1216 		 *     frame size in the firmware
1217 		 */
1218 		/* XXX stat */
1219 		DPRINTFN(1,
1220 		    ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1221 		    le16toh(frame->len), frame->chan, frame->rssi,
1222 		    frame->rssi_dbm));
1223 		return;
1224 	}
1225 
1226 	DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1227 	    le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm));
1228 
1229 	if (frame->chan != sc->curchan)
1230 		iwi_setcurchan(sc, frame->chan);
1231 
1232 	/*
1233 	 * Try to allocate a new mbuf for this ring element and load it before
1234 	 * processing the current mbuf. If the ring element cannot be loaded,
1235 	 * drop the received packet and reuse the old mbuf. In the unlikely
1236 	 * case that the old mbuf can't be reloaded either, explicitly panic.
1237 	 */
1238 	mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1239 	if (mnew == NULL) {
1240 		IFNET_STAT_INC(ifp, ierrors, 1);
1241 		return;
1242 	}
1243 
1244 	bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1245 
1246 	error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1247 	    mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr,
1248 	    0);
1249 	if (error != 0) {
1250 		m_freem(mnew);
1251 
1252 		/* try to reload the old mbuf */
1253 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1254 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
1255 		    &data->physaddr, 0);
1256 		if (error != 0) {
1257 			/* very unlikely that it will fail... */
1258 			panic("%s: could not load old rx mbuf",
1259 			    device_get_name(sc->sc_dev));
1260 		}
1261 		IFNET_STAT_INC(ifp, ierrors, 1);
1262 		return;
1263 	}
1264 
1265 	/*
1266 	 * New mbuf successfully loaded, update Rx ring and continue
1267 	 * processing.
1268 	 */
1269 	m = data->m;
1270 	data->m = mnew;
1271 	CSR_WRITE_4(sc, data->reg, data->physaddr);
1272 
1273 	/* finalize mbuf */
1274 	m->m_pkthdr.rcvif = ifp;
1275 	m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) +
1276 	    sizeof (struct iwi_frame) + framelen;
1277 
1278 	m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame));
1279 
1280 	rssi = frame->rssi_dbm;
1281 	nf = -95;
1282 	if (ieee80211_radiotap_active(ic)) {
1283 		struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap;
1284 
1285 		tap->wr_flags = 0;
1286 		tap->wr_antsignal = rssi;
1287 		tap->wr_antnoise = nf;
1288 		tap->wr_rate = iwi_cvtrate(frame->rate);
1289 		tap->wr_antenna = frame->antenna;
1290 	}
1291 
1292 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1293 	if (ni != NULL) {
1294 		type = ieee80211_input(ni, m, rssi, nf);
1295 		ieee80211_free_node(ni);
1296 	} else
1297 		type = ieee80211_input_all(ic, m, rssi, nf);
1298 
1299 	if (sc->sc_softled) {
1300 		/*
1301 		 * Blink for any data frame.  Otherwise do a
1302 		 * heartbeat-style blink when idle.  The latter
1303 		 * is mainly for station mode where we depend on
1304 		 * periodic beacon frames to trigger the poll event.
1305 		 */
1306 		if (type == IEEE80211_FC0_TYPE_DATA) {
1307 			sc->sc_rxrate = frame->rate;
1308 			iwi_led_event(sc, IWI_LED_RX);
1309 		} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
1310 			iwi_led_event(sc, IWI_LED_POLL);
1311 	}
1312 }
1313 
1314 /*
1315  * Check for an association response frame to see if QoS
1316  * has been negotiated.  We parse just enough to figure
1317  * out if we're supposed to use QoS.  The proper solution
1318  * is to pass the frame up so ieee80211_input can do the
1319  * work but that's made hard by how things currently are
1320  * done in the driver.
1321  */
1322 static void
1323 iwi_checkforqos(struct ieee80211vap *vap,
1324 	const struct ieee80211_frame *wh, int len)
1325 {
1326 #define	SUBTYPE(wh)	((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
1327 	const uint8_t *frm, *efrm, *wme;
1328 	struct ieee80211_node *ni;
1329 	uint16_t capinfo, associd;
1330 
1331 	/* NB: +8 for capinfo, status, associd, and first ie */
1332 	if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) ||
1333 	    SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP)
1334 		return;
1335 	/*
1336 	 * asresp frame format
1337 	 *	[2] capability information
1338 	 *	[2] status
1339 	 *	[2] association ID
1340 	 *	[tlv] supported rates
1341 	 *	[tlv] extended supported rates
1342 	 *	[tlv] WME
1343 	 */
1344 	frm = (const uint8_t *)&wh[1];
1345 	efrm = ((const uint8_t *) wh) + len;
1346 
1347 	capinfo = le16toh(*(const uint16_t *)frm);
1348 	frm += 2;
1349 	frm += 2;
1350 	associd = le16toh(*(const uint16_t *)frm);
1351 	frm += 2;
1352 
1353 	wme = NULL;
1354 	while (frm < efrm) {
1355 		IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1], return);
1356 		switch (*frm) {
1357 		case IEEE80211_ELEMID_VENDOR:
1358 			if (iswmeoui(frm))
1359 				wme = frm;
1360 			break;
1361 		}
1362 		frm += frm[1] + 2;
1363 	}
1364 
1365 	ni = vap->iv_bss;
1366 	ni->ni_capinfo = capinfo;
1367 	ni->ni_associd = associd;
1368 	if (wme != NULL)
1369 		ni->ni_flags |= IEEE80211_NODE_QOS;
1370 	else
1371 		ni->ni_flags &= ~IEEE80211_NODE_QOS;
1372 #undef SUBTYPE
1373 }
1374 
1375 /*
1376  * Task queue callbacks for iwi_notification_intr used to avoid LOR's.
1377  */
1378 
1379 static void
1380 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif)
1381 {
1382 	struct ifnet *ifp = sc->sc_ifp;
1383 	struct ieee80211com *ic = ifp->if_l2com;
1384 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1385 	struct iwi_notif_scan_channel *chan;
1386 	struct iwi_notif_scan_complete *scan;
1387 	struct iwi_notif_authentication *auth;
1388 	struct iwi_notif_association *assoc;
1389 	struct iwi_notif_beacon_state *beacon;
1390 
1391 	switch (notif->type) {
1392 	case IWI_NOTIF_TYPE_SCAN_CHANNEL:
1393 		chan = (struct iwi_notif_scan_channel *)(notif + 1);
1394 
1395 		DPRINTFN(3, ("Scan of channel %u complete (%u)\n",
1396 		    ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan));
1397 
1398 		/* Reset the timer, the scan is still going */
1399 		sc->sc_state_timer = 3;
1400 		break;
1401 
1402 	case IWI_NOTIF_TYPE_SCAN_COMPLETE:
1403 		scan = (struct iwi_notif_scan_complete *)(notif + 1);
1404 
1405 		DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan,
1406 		    scan->status));
1407 
1408 		IWI_STATE_END(sc, IWI_FW_SCANNING);
1409 
1410 		if (scan->status == IWI_SCAN_COMPLETED) {
1411 			/* NB: don't need to defer, net80211 does it for us */
1412 			ieee80211_scan_next(vap);
1413 		}
1414 		break;
1415 
1416 	case IWI_NOTIF_TYPE_AUTHENTICATION:
1417 		auth = (struct iwi_notif_authentication *)(notif + 1);
1418 		switch (auth->state) {
1419 		case IWI_AUTH_SUCCESS:
1420 			DPRINTFN(2, ("Authentication succeeeded\n"));
1421 			ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1);
1422 			break;
1423 		case IWI_AUTH_FAIL:
1424 			/*
1425 			 * These are delivered as an unsolicited deauth
1426 			 * (e.g. due to inactivity) or in response to an
1427 			 * associate request.
1428 			 */
1429 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1430 			if (vap->iv_state != IEEE80211_S_RUN) {
1431 				DPRINTFN(2, ("Authentication failed\n"));
1432 				vap->iv_stats.is_rx_auth_fail++;
1433 				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1434 			} else {
1435 				DPRINTFN(2, ("Deauthenticated\n"));
1436 				vap->iv_stats.is_rx_deauth++;
1437 			}
1438 			ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1439 			break;
1440 		case IWI_AUTH_SENT_1:
1441 		case IWI_AUTH_RECV_2:
1442 		case IWI_AUTH_SEQ1_PASS:
1443 			break;
1444 		case IWI_AUTH_SEQ1_FAIL:
1445 			DPRINTFN(2, ("Initial authentication handshake failed; "
1446 				"you probably need shared key\n"));
1447 			vap->iv_stats.is_rx_auth_fail++;
1448 			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1449 			/* XXX retry shared key when in auto */
1450 			break;
1451 		default:
1452 			device_printf(sc->sc_dev,
1453 			    "unknown authentication state %u\n", auth->state);
1454 			break;
1455 		}
1456 		break;
1457 
1458 	case IWI_NOTIF_TYPE_ASSOCIATION:
1459 		assoc = (struct iwi_notif_association *)(notif + 1);
1460 		switch (assoc->state) {
1461 		case IWI_AUTH_SUCCESS:
1462 			/* re-association, do nothing */
1463 			break;
1464 		case IWI_ASSOC_SUCCESS:
1465 			DPRINTFN(2, ("Association succeeded\n"));
1466 			sc->flags |= IWI_FLAG_ASSOCIATED;
1467 			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1468 			iwi_checkforqos(vap,
1469 			    (const struct ieee80211_frame *)(assoc+1),
1470 			    le16toh(notif->len) - sizeof(*assoc));
1471 			ieee80211_new_state(vap, IEEE80211_S_RUN, -1);
1472 			break;
1473 		case IWI_ASSOC_INIT:
1474 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1475 			switch (sc->fw_state) {
1476 			case IWI_FW_ASSOCIATING:
1477 				DPRINTFN(2, ("Association failed\n"));
1478 				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1479 				ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1480 				break;
1481 
1482 			case IWI_FW_DISASSOCIATING:
1483 				DPRINTFN(2, ("Dissassociated\n"));
1484 				IWI_STATE_END(sc, IWI_FW_DISASSOCIATING);
1485 				vap->iv_stats.is_rx_disassoc++;
1486 				ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1487 				break;
1488 			}
1489 			break;
1490 		default:
1491 			device_printf(sc->sc_dev,
1492 			    "unknown association state %u\n", assoc->state);
1493 			break;
1494 		}
1495 		break;
1496 
1497 	case IWI_NOTIF_TYPE_BEACON:
1498 		/* XXX check struct length */
1499 		beacon = (struct iwi_notif_beacon_state *)(notif + 1);
1500 
1501 		DPRINTFN(5, ("Beacon state (%u, %u)\n",
1502 		    beacon->state, le32toh(beacon->number)));
1503 
1504 		if (beacon->state == IWI_BEACON_MISS) {
1505 			/*
1506 			 * The firmware notifies us of every beacon miss
1507 			 * so we need to track the count against the
1508 			 * configured threshold before notifying the
1509 			 * 802.11 layer.
1510 			 * XXX try to roam, drop assoc only on much higher count
1511 			 */
1512 			if (le32toh(beacon->number) >= vap->iv_bmissthreshold) {
1513 				DPRINTF(("Beacon miss: %u >= %u\n",
1514 				    le32toh(beacon->number),
1515 				    vap->iv_bmissthreshold));
1516 				vap->iv_stats.is_beacon_miss++;
1517 				/*
1518 				 * It's pointless to notify the 802.11 layer
1519 				 * as it'll try to send a probe request (which
1520 				 * we'll discard) and then timeout and drop us
1521 				 * into scan state.  Instead tell the firmware
1522 				 * to disassociate and then on completion we'll
1523 				 * kick the state machine to scan.
1524 				 */
1525 				ieee80211_runtask(ic, &sc->sc_disassoctask);
1526 			}
1527 		}
1528 		break;
1529 
1530 	case IWI_NOTIF_TYPE_CALIBRATION:
1531 	case IWI_NOTIF_TYPE_NOISE:
1532 	case IWI_NOTIF_TYPE_LINK_QUALITY:
1533 		DPRINTFN(5, ("Notification (%u)\n", notif->type));
1534 		break;
1535 
1536 	default:
1537 		DPRINTF(("unknown notification type %u flags 0x%x len %u\n",
1538 		    notif->type, notif->flags, le16toh(notif->len)));
1539 		break;
1540 	}
1541 }
1542 
1543 static void
1544 iwi_rx_intr(struct iwi_softc *sc)
1545 {
1546 	struct iwi_rx_data *data;
1547 	struct iwi_hdr *hdr;
1548 	uint32_t hw;
1549 
1550 	hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX);
1551 
1552 	for (; sc->rxq.cur != hw;) {
1553 		data = &sc->rxq.data[sc->rxq.cur];
1554 
1555 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1556 		    BUS_DMASYNC_POSTREAD);
1557 
1558 		hdr = mtod(data->m, struct iwi_hdr *);
1559 
1560 		switch (hdr->type) {
1561 		case IWI_HDR_TYPE_FRAME:
1562 			iwi_frame_intr(sc, data, sc->rxq.cur,
1563 			    (struct iwi_frame *)(hdr + 1));
1564 			break;
1565 
1566 		case IWI_HDR_TYPE_NOTIF:
1567 			iwi_notification_intr(sc,
1568 			    (struct iwi_notif *)(hdr + 1));
1569 			break;
1570 
1571 		default:
1572 			device_printf(sc->sc_dev, "unknown hdr type %u\n",
1573 			    hdr->type);
1574 		}
1575 
1576 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1577 
1578 		sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT;
1579 	}
1580 
1581 	/* tell the firmware what we have processed */
1582 	hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1;
1583 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw);
1584 }
1585 
1586 static void
1587 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq)
1588 {
1589 	struct ifnet *ifp = sc->sc_ifp;
1590 	struct iwi_tx_data *data;
1591 	uint32_t hw;
1592 
1593 	hw = CSR_READ_4(sc, txq->csr_ridx);
1594 
1595 	for (; txq->next != hw;) {
1596 		data = &txq->data[txq->next];
1597 
1598 		bus_dmamap_sync(txq->data_dmat, data->map,
1599 		    BUS_DMASYNC_POSTWRITE);
1600 		bus_dmamap_unload(txq->data_dmat, data->map);
1601 		if (data->m->m_flags & M_TXCB)
1602 			ieee80211_process_callback(data->ni, data->m, 0/*XXX*/);
1603 		m_freem(data->m);
1604 		data->m = NULL;
1605 		ieee80211_free_node(data->ni);
1606 		data->ni = NULL;
1607 
1608 		DPRINTFN(15, ("tx done idx=%u\n", txq->next));
1609 
1610 		IFNET_STAT_INC(ifp, opackets, 1);
1611 
1612 		txq->queued--;
1613 		txq->next = (txq->next + 1) % IWI_TX_RING_COUNT;
1614 	}
1615 
1616 	sc->sc_tx_timer = 0;
1617 	ifq_clr_oactive(&ifp->if_snd);
1618 
1619 	if (sc->sc_softled)
1620 		iwi_led_event(sc, IWI_LED_TX);
1621 
1622 	iwi_start_locked(ifp);
1623 }
1624 
1625 static void
1626 iwi_fatal_error_intr(struct iwi_softc *sc)
1627 {
1628 	struct ifnet *ifp = sc->sc_ifp;
1629 	struct ieee80211com *ic = ifp->if_l2com;
1630 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1631 
1632 	device_printf(sc->sc_dev, "firmware error\n");
1633 	if (vap != NULL)
1634 		ieee80211_cancel_scan(vap);
1635 	ieee80211_runtask(ic, &sc->sc_restarttask);
1636 
1637 	sc->flags &= ~IWI_FLAG_BUSY;
1638 	sc->sc_busy_timer = 0;
1639 	wakeup(sc);
1640 }
1641 
1642 static void
1643 iwi_radio_off_intr(struct iwi_softc *sc)
1644 {
1645 	struct ifnet *ifp = sc->sc_ifp;
1646 	struct ieee80211com *ic = ifp->if_l2com;
1647 
1648 	ieee80211_runtask(ic, &sc->sc_radiofftask);
1649 }
1650 
1651 static void
1652 iwi_intr(void *arg)
1653 {
1654 	struct iwi_softc *sc = arg;
1655 	uint32_t r;
1656 
1657 	if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) {
1658 		return;
1659 	}
1660 
1661 	/* acknowledge interrupts */
1662 	CSR_WRITE_4(sc, IWI_CSR_INTR, r);
1663 
1664 	if (r & IWI_INTR_FATAL_ERROR) {
1665 		iwi_fatal_error_intr(sc);
1666 		return;
1667 	}
1668 
1669 	if (r & IWI_INTR_FW_INITED) {
1670 		if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR)))
1671 			wakeup(sc);
1672 	}
1673 
1674 	if (r & IWI_INTR_RADIO_OFF)
1675 		iwi_radio_off_intr(sc);
1676 
1677 	if (r & IWI_INTR_CMD_DONE) {
1678 		sc->flags &= ~IWI_FLAG_BUSY;
1679 		sc->sc_busy_timer = 0;
1680 		wakeup(sc);
1681 	}
1682 
1683 	if (r & IWI_INTR_TX1_DONE)
1684 		iwi_tx_intr(sc, &sc->txq[0]);
1685 
1686 	if (r & IWI_INTR_TX2_DONE)
1687 		iwi_tx_intr(sc, &sc->txq[1]);
1688 
1689 	if (r & IWI_INTR_TX3_DONE)
1690 		iwi_tx_intr(sc, &sc->txq[2]);
1691 
1692 	if (r & IWI_INTR_TX4_DONE)
1693 		iwi_tx_intr(sc, &sc->txq[3]);
1694 
1695 	if (r & IWI_INTR_RX_DONE)
1696 		iwi_rx_intr(sc);
1697 
1698 	if (r & IWI_INTR_PARITY_ERROR) {
1699 		/* XXX rate-limit */
1700 		device_printf(sc->sc_dev, "parity error\n");
1701 	}
1702 }
1703 
1704 static int
1705 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len)
1706 {
1707 	struct iwi_cmd_desc *desc;
1708 
1709 	if (sc->flags & IWI_FLAG_BUSY) {
1710 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
1711 			__func__, type);
1712 		return EAGAIN;
1713 	}
1714 
1715 	sc->flags |= IWI_FLAG_BUSY;
1716 	sc->sc_busy_timer = 2;
1717 
1718 	desc = &sc->cmdq.desc[sc->cmdq.cur];
1719 
1720 	desc->hdr.type = IWI_HDR_TYPE_COMMAND;
1721 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1722 	desc->type = type;
1723 	desc->len = len;
1724 	memcpy(desc->data, data, len);
1725 
1726 	bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map,
1727 	    BUS_DMASYNC_PREWRITE);
1728 
1729 	DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur,
1730 	    type, len));
1731 
1732 	sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT;
1733 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
1734 
1735 	return zsleep(sc, &wlan_global_serializer, 0, "iwicmd", hz);
1736 }
1737 
1738 static void
1739 iwi_write_ibssnode(struct iwi_softc *sc,
1740 	const u_int8_t addr[IEEE80211_ADDR_LEN], int entry)
1741 {
1742 	struct iwi_ibssnode node;
1743 	char ethstr[ETHER_ADDRSTRLEN + 1];
1744 
1745 	/* write node information into NIC memory */
1746 	memset(&node, 0, sizeof node);
1747 	IEEE80211_ADDR_COPY(node.bssid, addr);
1748 
1749 	DPRINTF(("%s mac %s station %u\n", __func__, kether_ntoa(node.bssid, ethstr), entry));
1750 
1751 	CSR_WRITE_REGION_1(sc,
1752 	    IWI_CSR_NODE_BASE + entry * sizeof node,
1753 	    (uint8_t *)&node, sizeof node);
1754 }
1755 
1756 static int
1757 iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni,
1758     int ac)
1759 {
1760 	struct iwi_softc *sc = ifp->if_softc;
1761 	struct ieee80211vap *vap = ni->ni_vap;
1762 	struct ieee80211com *ic = ni->ni_ic;
1763 	struct iwi_node *in = (struct iwi_node *)ni;
1764 	const struct ieee80211_frame *wh;
1765 	struct ieee80211_key *k;
1766 	const struct chanAccParams *cap;
1767 	struct iwi_tx_ring *txq = &sc->txq[ac];
1768 	struct iwi_tx_data *data;
1769 	struct iwi_tx_desc *desc;
1770 	struct mbuf *mnew;
1771 	bus_dma_segment_t segs[IWI_MAX_NSEG];
1772 	int error, nsegs, hdrlen, i;
1773 	int ismcast, flags, xflags, staid;
1774 
1775 	wh = mtod(m0, const struct ieee80211_frame *);
1776 	/* NB: only data frames use this path */
1777 	hdrlen = ieee80211_hdrsize(wh);
1778 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1779 	flags = xflags = 0;
1780 
1781 	if (!ismcast)
1782 		flags |= IWI_DATA_FLAG_NEED_ACK;
1783 	if (vap->iv_flags & IEEE80211_F_SHPREAMBLE)
1784 		flags |= IWI_DATA_FLAG_SHPREAMBLE;
1785 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1786 		xflags |= IWI_DATA_XFLAG_QOS;
1787 		cap = &ic->ic_wme.wme_chanParams;
1788 		if (!cap->cap_wmeParams[ac].wmep_noackPolicy)
1789 			flags &= ~IWI_DATA_FLAG_NEED_ACK;
1790 	}
1791 
1792 	/*
1793 	 * This is only used in IBSS mode where the firmware expect an index
1794 	 * in a h/w table instead of a destination address.
1795 	 */
1796 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
1797 		if (!ismcast) {
1798 			if (in->in_station == -1) {
1799 				in->in_station = devfs_clone_bitmap_get(&sc->sc_unr,
1800 					IWI_MAX_IBSSNODE-1);
1801 				if (in->in_station == -1) {
1802 					/* h/w table is full */
1803 					m_freem(m0);
1804 					ieee80211_free_node(ni);
1805 					IFNET_STAT_INC(ifp, oerrors, 1);
1806 					return 0;
1807 				}
1808 				iwi_write_ibssnode(sc,
1809 					ni->ni_macaddr, in->in_station);
1810 			}
1811 			staid = in->in_station;
1812 		} else {
1813 			/*
1814 			 * Multicast addresses have no associated node
1815 			 * so there will be no station entry.  We reserve
1816 			 * entry 0 for one mcast address and use that.
1817 			 * If there are many being used this will be
1818 			 * expensive and we'll need to do a better job
1819 			 * but for now this handles the broadcast case.
1820 			 */
1821 			if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) {
1822 				IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1);
1823 				iwi_write_ibssnode(sc, sc->sc_mcast, 0);
1824 			}
1825 			staid = 0;
1826 		}
1827 	} else
1828 		staid = 0;
1829 
1830 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1831 		k = ieee80211_crypto_encap(ni, m0);
1832 		if (k == NULL) {
1833 			m_freem(m0);
1834 			return ENOBUFS;
1835 		}
1836 
1837 		/* packet header may have moved, reset our local pointer */
1838 		wh = mtod(m0, struct ieee80211_frame *);
1839 	}
1840 
1841 	if (ieee80211_radiotap_active_vap(vap)) {
1842 		struct iwi_tx_radiotap_header *tap = &sc->sc_txtap;
1843 
1844 		tap->wt_flags = 0;
1845 
1846 		ieee80211_radiotap_tx(vap, m0);
1847 	}
1848 
1849 	data = &txq->data[txq->cur];
1850 	desc = &txq->desc[txq->cur];
1851 
1852 	/* save and trim IEEE802.11 header */
1853 	m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh);
1854 	m_adj(m0, hdrlen);
1855 
1856 	error = bus_dmamap_load_mbuf_segment(txq->data_dmat, data->map,
1857 	    m0, segs, 1, &nsegs, BUS_DMA_NOWAIT);
1858 	if (error != 0 && error != EFBIG) {
1859 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1860 		    error);
1861 		m_freem(m0);
1862 		return error;
1863 	}
1864 	if (error != 0) {
1865 		mnew = m_defrag(m0, MB_DONTWAIT);
1866 		if (mnew == NULL) {
1867 			device_printf(sc->sc_dev,
1868 			    "could not defragment mbuf\n");
1869 			m_freem(m0);
1870 			return ENOBUFS;
1871 		}
1872 		m0 = mnew;
1873 
1874 		error = bus_dmamap_load_mbuf_segment(txq->data_dmat,
1875 		    data->map, m0, segs, 1, &nsegs, BUS_DMA_NOWAIT);
1876 		if (error != 0) {
1877 			device_printf(sc->sc_dev,
1878 			    "could not map mbuf (error %d)\n", error);
1879 			m_freem(m0);
1880 			return error;
1881 		}
1882 	}
1883 
1884 	data->m = m0;
1885 	data->ni = ni;
1886 
1887 	desc->hdr.type = IWI_HDR_TYPE_DATA;
1888 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1889 	desc->station = staid;
1890 	desc->cmd = IWI_DATA_CMD_TX;
1891 	desc->len = htole16(m0->m_pkthdr.len);
1892 	desc->flags = flags;
1893 	desc->xflags = xflags;
1894 
1895 #if 0
1896 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1897 		desc->wep_txkey = vap->iv_def_txkey;
1898 	else
1899 #endif
1900 		desc->flags |= IWI_DATA_FLAG_NO_WEP;
1901 
1902 	desc->nseg = htole32(nsegs);
1903 	for (i = 0; i < nsegs; i++) {
1904 		desc->seg_addr[i] = htole32(segs[i].ds_addr);
1905 		desc->seg_len[i]  = htole16(segs[i].ds_len);
1906 	}
1907 
1908 	bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1909 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1910 
1911 	DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n",
1912 	    ac, txq->cur, le16toh(desc->len), nsegs));
1913 
1914 	txq->queued++;
1915 	txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT;
1916 	CSR_WRITE_4(sc, txq->csr_widx, txq->cur);
1917 
1918 	return 0;
1919 }
1920 
1921 static int
1922 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1923 	const struct ieee80211_bpf_params *params)
1924 {
1925 	/* no support; just discard */
1926 	m_freem(m);
1927 	ieee80211_free_node(ni);
1928 	return 0;
1929 }
1930 
1931 static void
1932 iwi_start_locked(struct ifnet *ifp)
1933 {
1934 	struct iwi_softc *sc = ifp->if_softc;
1935 	struct mbuf *m;
1936 	struct ieee80211_node *ni;
1937 	int ac;
1938 
1939 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1940 		return;
1941 
1942 	for (;;) {
1943 		m = ifq_dequeue(&ifp->if_snd);
1944 		if (m == NULL)
1945 			break;
1946 		ac = M_WME_GETAC(m);
1947 		if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) {
1948 			/* there is no place left in this ring; tail drop */
1949 			/* XXX tail drop */
1950 			ifq_prepend(&ifp->if_snd, m);
1951 			ifq_set_oactive(&ifp->if_snd);
1952 			break;
1953 		}
1954 
1955 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1956 		if (iwi_tx_start(ifp, m, ni, ac) != 0) {
1957 			ieee80211_free_node(ni);
1958 			IFNET_STAT_INC(ifp, oerrors, 1);
1959 			break;
1960 		}
1961 
1962 		sc->sc_tx_timer = 5;
1963 	}
1964 }
1965 
1966 static void
1967 iwi_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1968 {
1969 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1970 	iwi_start_locked(ifp);
1971 }
1972 
1973 static void
1974 iwi_watchdog(void *arg)
1975 {
1976 	struct iwi_softc *sc = arg;
1977 	struct ifnet *ifp = sc->sc_ifp;
1978 	struct ieee80211com *ic = ifp->if_l2com;
1979 
1980 	wlan_serialize_enter();
1981 	if (sc->sc_tx_timer > 0) {
1982 		if (--sc->sc_tx_timer == 0) {
1983 			if_printf(ifp, "device timeout\n");
1984 			IFNET_STAT_INC(ifp, oerrors, 1);
1985 			wlan_serialize_exit();
1986 			ieee80211_runtask(ic, &sc->sc_restarttask);
1987 			wlan_serialize_enter();
1988 		}
1989 	}
1990 	if (sc->sc_state_timer > 0) {
1991 		if (--sc->sc_state_timer == 0) {
1992 			if_printf(ifp, "firmware stuck in state %d, resetting\n",
1993 			    sc->fw_state);
1994 			if (sc->fw_state == IWI_FW_SCANNING) {
1995 				struct ieee80211com *ic = ifp->if_l2com;
1996 				ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps));
1997 			}
1998 			wlan_serialize_exit();
1999 			ieee80211_runtask(ic, &sc->sc_restarttask);
2000 			wlan_serialize_enter();
2001 			sc->sc_state_timer = 3;
2002 		}
2003 	}
2004 	if (sc->sc_busy_timer > 0) {
2005 		if (--sc->sc_busy_timer == 0) {
2006 			if_printf(ifp, "firmware command timeout, resetting\n");
2007 			wlan_serialize_exit();
2008 			ieee80211_runtask(ic, &sc->sc_restarttask);
2009 			wlan_serialize_enter();
2010 		}
2011 	}
2012 	callout_reset(&sc->sc_wdtimer_callout, hz, iwi_watchdog, sc);
2013 	wlan_serialize_exit();
2014 }
2015 
2016 static int
2017 iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *ucred)
2018 {
2019 	struct iwi_softc *sc = ifp->if_softc;
2020 	struct ieee80211com *ic = ifp->if_l2com;
2021 	struct ifreq *ifr = (struct ifreq *) data;
2022 	int error = 0, startall = 0;
2023 
2024 	switch (cmd) {
2025 	case SIOCSIFFLAGS:
2026 		if (ifp->if_flags & IFF_UP) {
2027 			if (!(ifp->if_flags & IFF_RUNNING)) {
2028 				iwi_init_locked(sc);
2029 				startall = 1;
2030 			}
2031 		} else {
2032 			if (ifp->if_flags & IFF_RUNNING)
2033 				iwi_stop_locked(sc);
2034 		}
2035 		if (startall)
2036 			ieee80211_start_all(ic);
2037 		break;
2038 	case SIOCGIFMEDIA:
2039 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2040 		break;
2041 	case SIOCGIFADDR:
2042 		error = ether_ioctl(ifp, cmd, data);
2043 		break;
2044 	default:
2045 		error = EINVAL;
2046 		break;
2047 	}
2048 	return error;
2049 }
2050 
2051 static void
2052 iwi_stop_master(struct iwi_softc *sc)
2053 {
2054 	uint32_t tmp;
2055 	int ntries;
2056 
2057 	/* disable interrupts */
2058 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
2059 
2060 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER);
2061 	for (ntries = 0; ntries < 5; ntries++) {
2062 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2063 			break;
2064 		DELAY(10);
2065 	}
2066 	if (ntries == 5)
2067 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2068 
2069 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2070 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET);
2071 
2072 	sc->flags &= ~IWI_FLAG_FW_INITED;
2073 }
2074 
2075 static int
2076 iwi_reset(struct iwi_softc *sc)
2077 {
2078 	uint32_t tmp;
2079 	int i, ntries;
2080 
2081 	iwi_stop_master(sc);
2082 
2083 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2084 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2085 
2086 	CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST);
2087 
2088 	/* wait for clock stabilization */
2089 	for (ntries = 0; ntries < 1000; ntries++) {
2090 		if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY)
2091 			break;
2092 		DELAY(200);
2093 	}
2094 	if (ntries == 1000) {
2095 		device_printf(sc->sc_dev,
2096 		    "timeout waiting for clock stabilization\n");
2097 		return EIO;
2098 	}
2099 
2100 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2101 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET);
2102 
2103 	DELAY(10);
2104 
2105 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2106 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2107 
2108 	/* clear NIC memory */
2109 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0);
2110 	for (i = 0; i < 0xc000; i++)
2111 		CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2112 
2113 	return 0;
2114 }
2115 
2116 static const struct iwi_firmware_ohdr *
2117 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw)
2118 {
2119 	const struct firmware *fp = fw->fp;
2120 	const struct iwi_firmware_ohdr *hdr;
2121 
2122 	if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) {
2123 		device_printf(sc->sc_dev, "image '%s' too small\n", fp->name);
2124 		return NULL;
2125 	}
2126 	hdr = (const struct iwi_firmware_ohdr *)fp->data;
2127 	if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) ||
2128 	    (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) {
2129 		device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n",
2130 		    fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)),
2131 		    IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR,
2132 		    IWI_FW_REQ_MINOR);
2133 		return NULL;
2134 	}
2135 	fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr);
2136 	fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr);
2137 	fw->name = fp->name;
2138 	return hdr;
2139 }
2140 
2141 static const struct iwi_firmware_ohdr *
2142 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw)
2143 {
2144 	const struct iwi_firmware_ohdr *hdr;
2145 
2146 	hdr = iwi_setup_ofw(sc, fw);
2147 	if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) {
2148 		device_printf(sc->sc_dev, "%s is not a ucode image\n",
2149 		    fw->name);
2150 		hdr = NULL;
2151 	}
2152 	return hdr;
2153 }
2154 
2155 static void
2156 iwi_getfw(struct iwi_fw *fw, const char *fwname,
2157 	  struct iwi_fw *uc, const char *ucname)
2158 {
2159 	wlan_assert_serialized();
2160 	wlan_serialize_exit();
2161 	if (fw->fp == NULL)
2162 		fw->fp = firmware_get(fwname);
2163 
2164 	/* NB: pre-3.0 ucode is packaged separately */
2165 	if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300)
2166 		uc->fp = firmware_get(ucname);
2167 	wlan_serialize_enter();
2168 }
2169 
2170 /*
2171  * Get the required firmware images if not already loaded.
2172  * Note that we hold firmware images so long as the device
2173  * is marked up in case we need to reload them on device init.
2174  * This is necessary because we re-init the device sometimes
2175  * from a context where we cannot read from the filesystem
2176  * (e.g. from the taskqueue thread when rfkill is re-enabled).
2177  * XXX return 0 on success, 1 on error.
2178  *
2179  * NB: the order of get'ing and put'ing images here is
2180  * intentional to support handling firmware images bundled
2181  * by operating mode and/or all together in one file with
2182  * the boot firmware as "master".
2183  */
2184 static int
2185 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode)
2186 {
2187 	const struct iwi_firmware_hdr *hdr;
2188 	const struct firmware *fp;
2189 
2190 	wlan_serialize_enter();
2191 
2192 	/* invalidate cached firmware on mode change */
2193 	if (sc->fw_mode != opmode)
2194 		iwi_put_firmware(sc);
2195 
2196 	switch (opmode) {
2197 	case IEEE80211_M_STA:
2198 		iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss");
2199 		break;
2200 	case IEEE80211_M_IBSS:
2201 		iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss");
2202 		break;
2203 	case IEEE80211_M_MONITOR:
2204 		iwi_getfw(&sc->fw_fw, "iwi_monitor",
2205 			  &sc->fw_uc, "iwi_ucode_monitor");
2206 		break;
2207 	default:
2208 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
2209 		wlan_serialize_exit();
2210 		return EINVAL;
2211 	}
2212 	fp = sc->fw_fw.fp;
2213 	if (fp == NULL) {
2214 		device_printf(sc->sc_dev, "could not load firmware\n");
2215 		goto bad;
2216 	}
2217 	if (fp->version < 300) {
2218 		/*
2219 		 * Firmware prior to 3.0 was packaged as separate
2220 		 * boot, firmware, and ucode images.  Verify the
2221 		 * ucode image was read in, retrieve the boot image
2222 		 * if needed, and check version stamps for consistency.
2223 		 * The version stamps in the data are also checked
2224 		 * above; this is a bit paranoid but is a cheap
2225 		 * safeguard against mis-packaging.
2226 		 */
2227 		if (sc->fw_uc.fp == NULL) {
2228 			device_printf(sc->sc_dev, "could not load ucode\n");
2229 			goto bad;
2230 		}
2231 		if (sc->fw_boot.fp == NULL) {
2232 			sc->fw_boot.fp = firmware_get("iwi_boot");
2233 			if (sc->fw_boot.fp == NULL) {
2234 				device_printf(sc->sc_dev,
2235 					"could not load boot firmware\n");
2236 				goto bad;
2237 			}
2238 		}
2239 		if (sc->fw_boot.fp->version != sc->fw_fw.fp->version ||
2240 		    sc->fw_boot.fp->version != sc->fw_uc.fp->version) {
2241 			device_printf(sc->sc_dev,
2242 			    "firmware version mismatch: "
2243 			    "'%s' is %d, '%s' is %d, '%s' is %d\n",
2244 			    sc->fw_boot.fp->name, sc->fw_boot.fp->version,
2245 			    sc->fw_uc.fp->name, sc->fw_uc.fp->version,
2246 			    sc->fw_fw.fp->name, sc->fw_fw.fp->version
2247 			);
2248 			goto bad;
2249 		}
2250 		/*
2251 		 * Check and setup each image.
2252 		 */
2253 		if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL ||
2254 		    iwi_setup_ofw(sc, &sc->fw_boot) == NULL ||
2255 		    iwi_setup_ofw(sc, &sc->fw_fw) == NULL)
2256 			goto bad;
2257 	} else {
2258 		/*
2259 		 * Check and setup combined image.
2260 		 */
2261 		if (fp->datasize < sizeof(struct iwi_firmware_hdr)) {
2262 			device_printf(sc->sc_dev, "image '%s' too small\n",
2263 			    fp->name);
2264 			goto bad;
2265 		}
2266 		hdr = (const struct iwi_firmware_hdr *)fp->data;
2267 		if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize)
2268 				+ le32toh(hdr->fsize)) {
2269 			device_printf(sc->sc_dev, "image '%s' too small (2)\n",
2270 			    fp->name);
2271 			goto bad;
2272 		}
2273 		sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr);
2274 		sc->fw_boot.size = le32toh(hdr->bsize);
2275 		sc->fw_boot.name = fp->name;
2276 		sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size;
2277 		sc->fw_uc.size = le32toh(hdr->usize);
2278 		sc->fw_uc.name = fp->name;
2279 		sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size;
2280 		sc->fw_fw.size = le32toh(hdr->fsize);
2281 		sc->fw_fw.name = fp->name;
2282 	}
2283 #if 0
2284 	device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n",
2285 		sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size);
2286 #endif
2287 
2288 	sc->fw_mode = opmode;
2289 	wlan_serialize_exit();
2290 	return 0;
2291 bad:
2292 	iwi_put_firmware(sc);
2293 	wlan_serialize_exit();
2294 	return 1;
2295 }
2296 
2297 static void
2298 iwi_put_fw(struct iwi_fw *fw)
2299 {
2300 	wlan_assert_serialized();
2301 	wlan_serialize_exit();
2302 	if (fw->fp != NULL) {
2303 		firmware_put(fw->fp, FIRMWARE_UNLOAD);
2304 		fw->fp = NULL;
2305 	}
2306 	wlan_serialize_enter();
2307 	fw->data = NULL;
2308 	fw->size = 0;
2309 	fw->name = NULL;
2310 }
2311 
2312 /*
2313  * Release any cached firmware images.
2314  */
2315 static void
2316 iwi_put_firmware(struct iwi_softc *sc)
2317 {
2318 	iwi_put_fw(&sc->fw_uc);
2319 	iwi_put_fw(&sc->fw_fw);
2320 	iwi_put_fw(&sc->fw_boot);
2321 }
2322 
2323 static int
2324 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw)
2325 {
2326 	uint32_t tmp;
2327 	const uint16_t *w;
2328 	const char *uc = fw->data;
2329 	size_t size = fw->size;
2330 	int i, ntries, error;
2331 
2332 	error = 0;
2333 	CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
2334 	    IWI_RST_STOP_MASTER);
2335 	for (ntries = 0; ntries < 5; ntries++) {
2336 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2337 			break;
2338 		DELAY(10);
2339 	}
2340 	if (ntries == 5) {
2341 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2342 		error = EIO;
2343 		goto fail;
2344 	}
2345 
2346 	MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
2347 	DELAY(5000);
2348 
2349 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2350 	tmp &= ~IWI_RST_PRINCETON_RESET;
2351 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2352 
2353 	DELAY(5000);
2354 	MEM_WRITE_4(sc, 0x3000e0, 0);
2355 	DELAY(1000);
2356 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1);
2357 	DELAY(1000);
2358 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0);
2359 	DELAY(1000);
2360 	MEM_WRITE_1(sc, 0x200000, 0x00);
2361 	MEM_WRITE_1(sc, 0x200000, 0x40);
2362 	DELAY(1000);
2363 
2364 	/* write microcode into adapter memory */
2365 	for (w = (const uint16_t *)uc; size > 0; w++, size -= 2)
2366 		MEM_WRITE_2(sc, 0x200010, htole16(*w));
2367 
2368 	MEM_WRITE_1(sc, 0x200000, 0x00);
2369 	MEM_WRITE_1(sc, 0x200000, 0x80);
2370 
2371 	/* wait until we get an answer */
2372 	for (ntries = 0; ntries < 100; ntries++) {
2373 		if (MEM_READ_1(sc, 0x200000) & 1)
2374 			break;
2375 		DELAY(100);
2376 	}
2377 	if (ntries == 100) {
2378 		device_printf(sc->sc_dev,
2379 		    "timeout waiting for ucode to initialize\n");
2380 		error = EIO;
2381 		goto fail;
2382 	}
2383 
2384 	/* read the answer or the firmware will not initialize properly */
2385 	for (i = 0; i < 7; i++)
2386 		MEM_READ_4(sc, 0x200004);
2387 
2388 	MEM_WRITE_1(sc, 0x200000, 0x00);
2389 
2390 fail:
2391 	return error;
2392 }
2393 
2394 /* macro to handle unaligned little endian data in firmware image */
2395 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
2396 
2397 static int
2398 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw)
2399 {
2400 	u_char *p, *end;
2401 	uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp;
2402 	int ntries, error;
2403 
2404 	/* copy firmware image to DMA memory */
2405 	memcpy(sc->fw_virtaddr, fw->data, fw->size);
2406 
2407 	/* make sure the adapter will get up-to-date values */
2408 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE);
2409 
2410 	/* tell the adapter where the command blocks are stored */
2411 	MEM_WRITE_4(sc, 0x3000a0, 0x27000);
2412 
2413 	/*
2414 	 * Store command blocks into adapter's internal memory using register
2415 	 * indirections. The adapter will read the firmware image through DMA
2416 	 * using information stored in command blocks.
2417 	 */
2418 	src = sc->fw_physaddr;
2419 	p = sc->fw_virtaddr;
2420 	end = p + fw->size;
2421 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000);
2422 
2423 	while (p < end) {
2424 		dst = GETLE32(p); p += 4; src += 4;
2425 		len = GETLE32(p); p += 4; src += 4;
2426 		p += len;
2427 
2428 		while (len > 0) {
2429 			mlen = min(len, IWI_CB_MAXDATALEN);
2430 
2431 			ctl = IWI_CB_DEFAULT_CTL | mlen;
2432 			sum = ctl ^ src ^ dst;
2433 
2434 			/* write a command block */
2435 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl);
2436 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src);
2437 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst);
2438 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum);
2439 
2440 			src += mlen;
2441 			dst += mlen;
2442 			len -= mlen;
2443 		}
2444 	}
2445 
2446 	/* write a fictive final command block (sentinel) */
2447 	sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR);
2448 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2449 
2450 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2451 	tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER);
2452 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2453 
2454 	/* tell the adapter to start processing command blocks */
2455 	MEM_WRITE_4(sc, 0x3000a4, 0x540100);
2456 
2457 	/* wait until the adapter reaches the sentinel */
2458 	for (ntries = 0; ntries < 400; ntries++) {
2459 		if (MEM_READ_4(sc, 0x3000d0) >= sentinel)
2460 			break;
2461 		DELAY(100);
2462 	}
2463 	/* sync dma, just in case */
2464 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE);
2465 	if (ntries == 400) {
2466 		device_printf(sc->sc_dev,
2467 		    "timeout processing command blocks for %s firmware\n",
2468 		    fw->name);
2469 		return EIO;
2470 	}
2471 
2472 	/* we're done with command blocks processing */
2473 	MEM_WRITE_4(sc, 0x3000a4, 0x540c00);
2474 
2475 	/* allow interrupts so we know when the firmware is ready */
2476 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK);
2477 
2478 	/* tell the adapter to initialize the firmware */
2479 	CSR_WRITE_4(sc, IWI_CSR_RST, 0);
2480 
2481 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2482 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY);
2483 
2484 	/* wait at most one second for firmware initialization to complete */
2485 	error = zsleep(sc, &wlan_global_serializer, 0, "iwiinit", hz);
2486 	if (error != 0) {
2487 		device_printf(sc->sc_dev, "timeout waiting for firmware "
2488 			    "initialization to complete\n");
2489 	}
2490 
2491 	return error;
2492 }
2493 
2494 static int
2495 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap)
2496 {
2497 	uint32_t data;
2498 
2499 	if (vap->iv_flags & IEEE80211_F_PMGTON) {
2500 		/* XXX set more fine-grained operation */
2501 		data = htole32(IWI_POWER_MODE_MAX);
2502 	} else
2503 		data = htole32(IWI_POWER_MODE_CAM);
2504 
2505 	DPRINTF(("Setting power mode to %u\n", le32toh(data)));
2506 	return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data);
2507 }
2508 
2509 static int
2510 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap)
2511 {
2512 	struct iwi_wep_key wepkey;
2513 	struct ieee80211_key *wk;
2514 	int error, i;
2515 
2516 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2517 		wk = &vap->iv_nw_keys[i];
2518 
2519 		wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY;
2520 		wepkey.idx = i;
2521 		wepkey.len = wk->wk_keylen;
2522 		memset(wepkey.key, 0, sizeof wepkey.key);
2523 		memcpy(wepkey.key, wk->wk_key, wk->wk_keylen);
2524 		DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx,
2525 		    wepkey.len));
2526 		error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey,
2527 		    sizeof wepkey);
2528 		if (error != 0)
2529 			return error;
2530 	}
2531 	return 0;
2532 }
2533 
2534 static int
2535 iwi_config(struct iwi_softc *sc)
2536 {
2537 	struct ifnet *ifp = sc->sc_ifp;
2538 	struct ieee80211com *ic = ifp->if_l2com;
2539 	struct iwi_configuration config;
2540 	struct iwi_rateset rs;
2541 	struct iwi_txpower power;
2542 	uint32_t data;
2543 	int error, i;
2544 	const uint8_t *eaddr = IF_LLADDR(ifp);
2545 	char ethstr[ETHER_ADDRSTRLEN + 1];
2546 
2547 	DPRINTF(("Setting MAC address to %s\n", kether_ntoa(eaddr, ethstr)));
2548 	error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, IF_LLADDR(ifp),
2549 	    IEEE80211_ADDR_LEN);
2550 	if (error != 0)
2551 		return error;
2552 
2553 	memset(&config, 0, sizeof config);
2554 	config.bluetooth_coexistence = sc->bluetooth;
2555 	config.silence_threshold = 0x1e;
2556 	config.antenna = sc->antenna;
2557 	config.multicast_enabled = 1;
2558 	config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2559 	config.disable_unicast_decryption = 1;
2560 	config.disable_multicast_decryption = 1;
2561 	DPRINTF(("Configuring adapter\n"));
2562 	error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2563 	if (error != 0)
2564 		return error;
2565 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
2566 		power.mode = IWI_MODE_11B;
2567 		power.nchan = 11;
2568 		for (i = 0; i < 11; i++) {
2569 			power.chan[i].chan = i + 1;
2570 			power.chan[i].power = IWI_TXPOWER_MAX;
2571 		}
2572 		DPRINTF(("Setting .11b channels tx power\n"));
2573 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2574 		if (error != 0)
2575 			return error;
2576 
2577 		power.mode = IWI_MODE_11G;
2578 		DPRINTF(("Setting .11g channels tx power\n"));
2579 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2580 		if (error != 0)
2581 			return error;
2582 	}
2583 
2584 	memset(&rs, 0, sizeof rs);
2585 	rs.mode = IWI_MODE_11G;
2586 	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2587 	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates;
2588 	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates,
2589 	    rs.nrates);
2590 	DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates));
2591 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2592 	if (error != 0)
2593 		return error;
2594 
2595 	memset(&rs, 0, sizeof rs);
2596 	rs.mode = IWI_MODE_11A;
2597 	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2598 	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates;
2599 	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates,
2600 	    rs.nrates);
2601 	DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates));
2602 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2603 	if (error != 0)
2604 		return error;
2605 
2606 	data = htole32(karc4random());
2607 	DPRINTF(("Setting initialization vector to %u\n", le32toh(data)));
2608 	error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data);
2609 	if (error != 0)
2610 		return error;
2611 
2612 	/* enable adapter */
2613 	DPRINTF(("Enabling adapter\n"));
2614 	return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0);
2615 }
2616 
2617 static __inline void
2618 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type)
2619 {
2620 	uint8_t *st = &scan->scan_type[ix / 2];
2621 	if (ix % 2)
2622 		*st = (*st & 0xf0) | ((scan_type & 0xf) << 0);
2623 	else
2624 		*st = (*st & 0x0f) | ((scan_type & 0xf) << 4);
2625 }
2626 
2627 static int
2628 scan_type(const struct ieee80211_scan_state *ss,
2629 	const struct ieee80211_channel *chan)
2630 {
2631 	/* We can only set one essid for a directed scan */
2632 	if (ss->ss_nssid != 0)
2633 		return IWI_SCAN_TYPE_BDIRECTED;
2634 	if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) &&
2635 	    (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0)
2636 		return IWI_SCAN_TYPE_BROADCAST;
2637 	return IWI_SCAN_TYPE_PASSIVE;
2638 }
2639 
2640 static __inline int
2641 scan_band(const struct ieee80211_channel *c)
2642 {
2643 	return IEEE80211_IS_CHAN_5GHZ(c) ?  IWI_CHAN_5GHZ : IWI_CHAN_2GHZ;
2644 }
2645 
2646 /*
2647  * Start a scan on the current channel or all channels.
2648  */
2649 static int
2650 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan)
2651 {
2652 	struct ieee80211com *ic;
2653 	struct ieee80211_channel *chan;
2654 	struct ieee80211_scan_state *ss;
2655 	struct iwi_scan_ext scan;
2656 	int error = 0;
2657 
2658 	if (sc->fw_state == IWI_FW_SCANNING) {
2659 		/*
2660 		 * This should not happen as we only trigger scan_next after
2661 		 * completion
2662 		 */
2663 		DPRINTF(("%s: called too early - still scanning\n", __func__));
2664 		return (EBUSY);
2665 	}
2666 	IWI_STATE_BEGIN(sc, IWI_FW_SCANNING);
2667 
2668 	ic = sc->sc_ifp->if_l2com;
2669 	ss = ic->ic_scan;
2670 
2671 	memset(&scan, 0, sizeof scan);
2672 	scan.full_scan_index = htole32(++sc->sc_scangen);
2673 	scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell);
2674 	if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) {
2675 		/*
2676 		 * Use very short dwell times for when we send probe request
2677 		 * frames.  Without this bg scans hang.  Ideally this should
2678 		 * be handled with early-termination as done by net80211 but
2679 		 * that's not feasible (aborting a scan is problematic).
2680 		 */
2681 		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30);
2682 		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30);
2683 	} else {
2684 		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell);
2685 		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell);
2686 	}
2687 
2688 	/* We can only set one essid for a directed scan */
2689 	if (ss->ss_nssid != 0) {
2690 		error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid,
2691 		    ss->ss_ssid[0].len);
2692 		if (error)
2693 			return (error);
2694 	}
2695 
2696 	if (allchan) {
2697 		int i, next, band, b, bstart;
2698 		/*
2699 		 * Convert scan list to run-length encoded channel list
2700 		 * the firmware requires (preserving the order setup by
2701 		 * net80211).  The first entry in each run specifies the
2702 		 * band and the count of items in the run.
2703 		 */
2704 		next = 0;		/* next open slot */
2705 		bstart = 0;		/* NB: not needed, silence compiler */
2706 		band = -1;		/* NB: impossible value */
2707 		KASSERT(ss->ss_last > 0, ("no channels"));
2708 		for (i = 0; i < ss->ss_last; i++) {
2709 			chan = ss->ss_chans[i];
2710 			b = scan_band(chan);
2711 			if (b != band) {
2712 				if (band != -1)
2713 					scan.channels[bstart] =
2714 					    (next - bstart) | band;
2715 				/* NB: this allocates a slot for the run-len */
2716 				band = b, bstart = next++;
2717 			}
2718 			if (next >= IWI_SCAN_CHANNELS) {
2719 				DPRINTF(("truncating scan list\n"));
2720 				break;
2721 			}
2722 			scan.channels[next] = ieee80211_chan2ieee(ic, chan);
2723 			set_scan_type(&scan, next, scan_type(ss, chan));
2724 			next++;
2725 		}
2726 		scan.channels[bstart] = (next - bstart) | band;
2727 	} else {
2728 		/* Scan the current channel only */
2729 		chan = ic->ic_curchan;
2730 		scan.channels[0] = 1 | scan_band(chan);
2731 		scan.channels[1] = ieee80211_chan2ieee(ic, chan);
2732 		set_scan_type(&scan, 1, scan_type(ss, chan));
2733 	}
2734 #ifdef IWI_DEBUG
2735 	if (iwi_debug > 0) {
2736 		static const char *scantype[8] =
2737 		   { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" };
2738 		int i;
2739 		kprintf("Scan request: index %u dwell %d/%d/%d\n"
2740 		    , le32toh(scan.full_scan_index)
2741 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE])
2742 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST])
2743 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED])
2744 		);
2745 		i = 0;
2746 		do {
2747 			int run = scan.channels[i];
2748 			if (run == 0)
2749 				break;
2750 			kprintf("Scan %d %s channels:", run & 0x3f,
2751 			    run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz");
2752 			for (run &= 0x3f, i++; run > 0; run--, i++) {
2753 				uint8_t type = scan.scan_type[i/2];
2754 				kprintf(" %u/%s", scan.channels[i],
2755 				    scantype[(i & 1 ? type : type>>4) & 7]);
2756 			}
2757 			kprintf("\n");
2758 		} while (i < IWI_SCAN_CHANNELS);
2759 	}
2760 #endif
2761 
2762 	return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan));
2763 }
2764 
2765 static int
2766 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm)
2767 {
2768 	struct iwi_sensitivity sens;
2769 
2770 	DPRINTF(("Setting sensitivity to %d\n", rssi_dbm));
2771 
2772 	memset(&sens, 0, sizeof sens);
2773 	sens.rssi = htole16(rssi_dbm);
2774 	return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens);
2775 }
2776 
2777 static int
2778 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap)
2779 {
2780 	struct ieee80211com *ic = vap->iv_ic;
2781 	struct ifnet *ifp = vap->iv_ifp;
2782 	struct ieee80211_node *ni = vap->iv_bss;
2783 	struct iwi_configuration config;
2784 	struct iwi_associate *assoc = &sc->assoc;
2785 	struct iwi_rateset rs;
2786 	uint16_t capinfo;
2787 	uint32_t data;
2788 	int error, mode;
2789 	char ethstr[2][ETHER_ADDRSTRLEN + 1];
2790 
2791 	if (sc->flags & IWI_FLAG_ASSOCIATED) {
2792 		DPRINTF(("Already associated\n"));
2793 		return (-1);
2794 	}
2795 
2796 	IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING);
2797 	error = 0;
2798 	mode = 0;
2799 
2800 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan))
2801 		mode = IWI_MODE_11A;
2802 	else if (IEEE80211_IS_CHAN_G(ic->ic_curchan))
2803 		mode = IWI_MODE_11G;
2804 	if (IEEE80211_IS_CHAN_B(ic->ic_curchan))
2805 		mode = IWI_MODE_11B;
2806 
2807 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2808 		memset(&config, 0, sizeof config);
2809 		config.bluetooth_coexistence = sc->bluetooth;
2810 		config.antenna = sc->antenna;
2811 		config.multicast_enabled = 1;
2812 		if (mode == IWI_MODE_11G)
2813 			config.use_protection = 1;
2814 		config.answer_pbreq =
2815 		    (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2816 		config.disable_unicast_decryption = 1;
2817 		config.disable_multicast_decryption = 1;
2818 		DPRINTF(("Configuring adapter\n"));
2819 		error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2820 		if (error != 0)
2821 			goto done;
2822 	}
2823 
2824 #ifdef IWI_DEBUG
2825 	if (iwi_debug > 0) {
2826 		kprintf("Setting ESSID to ");
2827 		ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
2828 		kprintf("\n");
2829 	}
2830 #endif
2831 	error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen);
2832 	if (error != 0)
2833 		goto done;
2834 
2835 	error = iwi_setpowermode(sc, vap);
2836 	if (error != 0)
2837 		goto done;
2838 
2839 	data = htole32(vap->iv_rtsthreshold);
2840 	DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
2841 	error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
2842 	if (error != 0)
2843 		goto done;
2844 
2845 	data = htole32(vap->iv_fragthreshold);
2846 	DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data)));
2847 	error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
2848 	if (error != 0)
2849 		goto done;
2850 
2851 	/* the rate set has already been "negotiated" */
2852 	memset(&rs, 0, sizeof rs);
2853 	rs.mode = mode;
2854 	rs.type = IWI_RATESET_TYPE_NEGOTIATED;
2855 	rs.nrates = ni->ni_rates.rs_nrates;
2856 	if (rs.nrates > IWI_RATESET_SIZE) {
2857 		DPRINTF(("Truncating negotiated rate set from %u\n",
2858 		    rs.nrates));
2859 		rs.nrates = IWI_RATESET_SIZE;
2860 	}
2861 	memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates);
2862 	DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates));
2863 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2864 	if (error != 0)
2865 		goto done;
2866 
2867 	memset(assoc, 0, sizeof *assoc);
2868 
2869 	if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) {
2870 		/* NB: don't treat WME setup as failure */
2871 		if (iwi_wme_setparams(sc, ic) == 0 && iwi_wme_setie(sc) == 0)
2872 			assoc->policy |= htole16(IWI_POLICY_WME);
2873 		/* XXX complain on failure? */
2874 	}
2875 
2876 	if (vap->iv_appie_wpa != NULL) {
2877 		struct ieee80211_appie *ie = vap->iv_appie_wpa;
2878 
2879 		DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len));
2880 		error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len);
2881 		if (error != 0)
2882 			goto done;
2883 	}
2884 
2885 	error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni));
2886 	if (error != 0)
2887 		goto done;
2888 
2889 	assoc->mode = mode;
2890 	assoc->chan = ic->ic_curchan->ic_ieee;
2891 	/*
2892 	 * NB: do not arrange for shared key auth w/o privacy
2893 	 *     (i.e. a wep key); it causes a firmware error.
2894 	 */
2895 	if ((vap->iv_flags & IEEE80211_F_PRIVACY) &&
2896 	    ni->ni_authmode == IEEE80211_AUTH_SHARED) {
2897 		assoc->auth = IWI_AUTH_SHARED;
2898 		/*
2899 		 * It's possible to have privacy marked but no default
2900 		 * key setup.  This typically is due to a user app bug
2901 		 * but if we blindly grab the key the firmware will
2902 		 * barf so avoid it for now.
2903 		 */
2904 		if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE)
2905 			assoc->auth |= vap->iv_def_txkey << 4;
2906 
2907 		error = iwi_setwepkeys(sc, vap);
2908 		if (error != 0)
2909 			goto done;
2910 	}
2911 	if (vap->iv_flags & IEEE80211_F_WPA)
2912 		assoc->policy |= htole16(IWI_POLICY_WPA);
2913 	if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0)
2914 		assoc->type = IWI_HC_IBSS_START;
2915 	else
2916 		assoc->type = IWI_HC_ASSOC;
2917 	memcpy(assoc->tstamp, ni->ni_tstamp.data, 8);
2918 
2919 	if (vap->iv_opmode == IEEE80211_M_IBSS)
2920 		capinfo = IEEE80211_CAPINFO_IBSS;
2921 	else
2922 		capinfo = IEEE80211_CAPINFO_ESS;
2923 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2924 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2925 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2926 	    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2927 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2928 	if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)
2929 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2930 	assoc->capinfo = htole16(capinfo);
2931 
2932 	assoc->lintval = htole16(ic->ic_lintval);
2933 	assoc->intval = htole16(ni->ni_intval);
2934 	IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid);
2935 	if (vap->iv_opmode == IEEE80211_M_IBSS)
2936 		IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr);
2937 	else
2938 		IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid);
2939 
2940 	DPRINTF(("%s bssid %s dst %s channel %u policy 0x%x "
2941 	    "auth %u capinfo 0x%x lintval %u bintval %u\n",
2942 	    assoc->type == IWI_HC_IBSS_START ? "Start" : "Join",
2943 	    kether_ntoa(assoc->bssid, ethstr[0]), kether_ntoa(assoc->dst, ethstr[1]),
2944 	    assoc->chan, le16toh(assoc->policy), assoc->auth,
2945 	    le16toh(assoc->capinfo), le16toh(assoc->lintval),
2946 	    le16toh(assoc->intval)));
2947 	error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
2948 done:
2949 	if (error)
2950 		IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
2951 
2952 	return (error);
2953 }
2954 
2955 static void
2956 iwi_disassoc_task(void *arg, int pending)
2957 {
2958 	struct iwi_softc *sc = arg;
2959 
2960 	wlan_serialize_enter();
2961 	iwi_disassociate(sc, 0);
2962 	wlan_serialize_exit();
2963 }
2964 
2965 static int
2966 iwi_disassociate(struct iwi_softc *sc, int quiet)
2967 {
2968 	struct iwi_associate *assoc = &sc->assoc;
2969 	char ethstr[ETHER_ADDRSTRLEN + 1];
2970 
2971 	if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) {
2972 		DPRINTF(("Not associated\n"));
2973 		return (-1);
2974 	}
2975 
2976 	IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING);
2977 
2978 	if (quiet)
2979 		assoc->type = IWI_HC_DISASSOC_QUIET;
2980 	else
2981 		assoc->type = IWI_HC_DISASSOC;
2982 
2983 	DPRINTF(("Trying to disassociate from %s channel %u\n",
2984 	    kether_ntoa(assoc->bssid, ethstr), assoc->chan));
2985 	return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
2986 }
2987 
2988 /*
2989  * release dma resources for the firmware
2990  */
2991 static void
2992 iwi_release_fw_dma(struct iwi_softc *sc)
2993 {
2994 	if (sc->fw_flags & IWI_FW_HAVE_PHY)
2995 		bus_dmamap_unload(sc->fw_dmat, sc->fw_map);
2996 	if (sc->fw_flags & IWI_FW_HAVE_MAP)
2997 		bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map);
2998 	if (sc->fw_flags & IWI_FW_HAVE_DMAT)
2999 		bus_dma_tag_destroy(sc->fw_dmat);
3000 
3001 	sc->fw_flags = 0;
3002 	sc->fw_dma_size = 0;
3003 	sc->fw_dmat = NULL;
3004 	sc->fw_map = NULL;
3005 	sc->fw_physaddr = 0;
3006 	sc->fw_virtaddr = NULL;
3007 }
3008 
3009 /*
3010  * allocate the dma descriptor for the firmware.
3011  * Return 0 on success, 1 on error.
3012  * Must be called unlocked, protected by IWI_FLAG_FW_LOADING.
3013  */
3014 static int
3015 iwi_init_fw_dma(struct iwi_softc *sc, int size)
3016 {
3017 	if (sc->fw_dma_size >= size)
3018 		return 0;
3019 	if (bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
3020 	    BUS_SPACE_MAXADDR, NULL, NULL, size, 1, size,
3021 	    0, &sc->fw_dmat) != 0) {
3022 		device_printf(sc->sc_dev,
3023 		    "could not create firmware DMA tag\n");
3024 		goto error;
3025 	}
3026 	sc->fw_flags |= IWI_FW_HAVE_DMAT;
3027 	if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0,
3028 	    &sc->fw_map) != 0) {
3029 		device_printf(sc->sc_dev,
3030 		    "could not allocate firmware DMA memory\n");
3031 		goto error;
3032 	}
3033 	sc->fw_flags |= IWI_FW_HAVE_MAP;
3034 	if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr,
3035 	    size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) {
3036 		device_printf(sc->sc_dev, "could not load firmware DMA map\n");
3037 		goto error;
3038 	}
3039 	sc->fw_flags |= IWI_FW_HAVE_PHY;
3040 	sc->fw_dma_size = size;
3041 	return 0;
3042 
3043 error:
3044 	iwi_release_fw_dma(sc);
3045 	return 1;
3046 }
3047 
3048 static void
3049 iwi_init_locked(struct iwi_softc *sc)
3050 {
3051 	struct ifnet *ifp = sc->sc_ifp;
3052 	struct iwi_rx_data *data;
3053 	int i;
3054 
3055 	if (sc->fw_state == IWI_FW_LOADING) {
3056 		device_printf(sc->sc_dev, "%s: already loading\n", __func__);
3057 		return;		/* XXX: condvar? */
3058 	}
3059 
3060 	iwi_stop_locked(sc);
3061 
3062 	IWI_STATE_BEGIN(sc, IWI_FW_LOADING);
3063 
3064 	if (iwi_reset(sc) != 0) {
3065 		device_printf(sc->sc_dev, "could not reset adapter\n");
3066 		goto fail;
3067 	}
3068 	if (iwi_load_firmware(sc, &sc->fw_boot) != 0) {
3069 		device_printf(sc->sc_dev,
3070 		    "could not load boot firmware %s\n", sc->fw_boot.name);
3071 		goto fail;
3072 	}
3073 	if (iwi_load_ucode(sc, &sc->fw_uc) != 0) {
3074 		device_printf(sc->sc_dev,
3075 		    "could not load microcode %s\n", sc->fw_uc.name);
3076 		goto fail;
3077 	}
3078 
3079 	iwi_stop_master(sc);
3080 
3081 	CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr);
3082 	CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count);
3083 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
3084 
3085 	CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr);
3086 	CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count);
3087 	CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur);
3088 
3089 	CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr);
3090 	CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count);
3091 	CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur);
3092 
3093 	CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr);
3094 	CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count);
3095 	CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur);
3096 
3097 	CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr);
3098 	CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count);
3099 	CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur);
3100 
3101 	for (i = 0; i < sc->rxq.count; i++) {
3102 		data = &sc->rxq.data[i];
3103 		CSR_WRITE_4(sc, data->reg, data->physaddr);
3104 	}
3105 
3106 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1);
3107 
3108 	if (iwi_load_firmware(sc, &sc->fw_fw) != 0) {
3109 		device_printf(sc->sc_dev,
3110 		    "could not load main firmware %s\n", sc->fw_fw.name);
3111 		goto fail;
3112 	}
3113 	sc->flags |= IWI_FLAG_FW_INITED;
3114 
3115 	IWI_STATE_END(sc, IWI_FW_LOADING);
3116 
3117 	if (iwi_config(sc) != 0) {
3118 		device_printf(sc->sc_dev, "unable to enable adapter\n");
3119 		goto fail2;
3120 	}
3121 
3122 	callout_reset(&sc->sc_wdtimer_callout, hz, iwi_watchdog, sc);
3123 	ifq_clr_oactive(&ifp->if_snd);
3124 	ifp->if_flags |= IFF_RUNNING;
3125 	return;
3126 fail:
3127 	IWI_STATE_END(sc, IWI_FW_LOADING);
3128 fail2:
3129 	iwi_stop_locked(sc);
3130 }
3131 
3132 static void
3133 iwi_init(void *priv)
3134 {
3135 	struct iwi_softc *sc = priv;
3136 	struct ifnet *ifp = sc->sc_ifp;
3137 	struct ieee80211com *ic = ifp->if_l2com;
3138 
3139 	iwi_init_locked(sc);
3140 
3141 	if (ifp->if_flags & IFF_RUNNING)
3142 		ieee80211_start_all(ic);
3143 }
3144 
3145 static void
3146 iwi_stop_locked(void *priv)
3147 {
3148 	struct iwi_softc *sc = priv;
3149 	struct ifnet *ifp = sc->sc_ifp;
3150 
3151 	ifp->if_flags &= ~IFF_RUNNING;
3152 	ifq_clr_oactive(&ifp->if_snd);
3153 
3154 	if (sc->sc_softled) {
3155 		callout_stop(&sc->sc_ledtimer_callout);
3156 		sc->sc_blinking = 0;
3157 	}
3158 	callout_stop(&sc->sc_wdtimer_callout);
3159 	callout_stop(&sc->sc_rftimer_callout);
3160 
3161 	iwi_stop_master(sc);
3162 
3163 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET);
3164 
3165 	/* reset rings */
3166 	iwi_reset_cmd_ring(sc, &sc->cmdq);
3167 	iwi_reset_tx_ring(sc, &sc->txq[0]);
3168 	iwi_reset_tx_ring(sc, &sc->txq[1]);
3169 	iwi_reset_tx_ring(sc, &sc->txq[2]);
3170 	iwi_reset_tx_ring(sc, &sc->txq[3]);
3171 	iwi_reset_rx_ring(sc, &sc->rxq);
3172 
3173 	sc->sc_tx_timer = 0;
3174 	sc->sc_state_timer = 0;
3175 	sc->sc_busy_timer = 0;
3176 	sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED);
3177 	sc->fw_state = IWI_FW_IDLE;
3178 	wakeup(sc);
3179 }
3180 
3181 static void
3182 iwi_stop(struct iwi_softc *sc)
3183 {
3184 	iwi_stop_locked(sc);
3185 }
3186 
3187 static void
3188 iwi_restart_task(void *arg, int npending)
3189 {
3190 	struct iwi_softc *sc = arg;
3191 
3192 	wlan_serialize_enter();
3193 	iwi_init(sc);
3194 	wlan_serialize_exit();
3195 }
3196 
3197 /*
3198  * Return whether or not the radio is enabled in hardware
3199  * (i.e. the rfkill switch is "off").
3200  */
3201 static int
3202 iwi_getrfkill(struct iwi_softc *sc)
3203 {
3204 	return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0;
3205 }
3206 
3207 static void
3208 iwi_radio_on_task(void *arg, int pending)
3209 {
3210 	struct iwi_softc *sc = arg;
3211 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3212 
3213 	wlan_serialize_enter();
3214 	device_printf(sc->sc_dev, "radio turned on\n");
3215 
3216 	iwi_init(sc);
3217 	ieee80211_notify_radio(ic, 1);
3218 	wlan_serialize_exit();
3219 }
3220 
3221 static void
3222 iwi_rfkill_poll(void *arg)
3223 {
3224 	struct iwi_softc *sc = arg;
3225 
3226 	/*
3227 	 * Check for a change in rfkill state.  We get an
3228 	 * interrupt when a radio is disabled but not when
3229 	 * it is enabled so we must poll for the latter.
3230 	 */
3231 	if (!iwi_getrfkill(sc)) {
3232 		struct ifnet *ifp = sc->sc_ifp;
3233 		struct ieee80211com *ic = ifp->if_l2com;
3234 
3235 		ieee80211_runtask(ic, &sc->sc_radiontask);
3236 		return;
3237 	}
3238 	callout_reset(&sc->sc_rftimer_callout, 2*hz, iwi_rfkill_poll, sc);
3239 }
3240 
3241 static void
3242 iwi_radio_off_task(void *arg, int pending)
3243 {
3244 	struct iwi_softc *sc = arg;
3245 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3246 
3247 	wlan_serialize_enter();
3248 	device_printf(sc->sc_dev, "radio turned off\n");
3249 
3250 	ieee80211_notify_radio(ic, 0);
3251 
3252 	iwi_stop_locked(sc);
3253 	iwi_rfkill_poll(sc);
3254 	wlan_serialize_exit();
3255 }
3256 
3257 static int
3258 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS)
3259 {
3260 	struct iwi_softc *sc = arg1;
3261 	uint32_t size, buf[128];
3262 
3263 	memset(buf, 0, sizeof buf);
3264 
3265 	if (!(sc->flags & IWI_FLAG_FW_INITED))
3266 		return SYSCTL_OUT(req, buf, sizeof buf);
3267 
3268 	size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1);
3269 	CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size);
3270 
3271 	return SYSCTL_OUT(req, buf, size);
3272 }
3273 
3274 static int
3275 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS)
3276 {
3277 	struct iwi_softc *sc = arg1;
3278 	int val = !iwi_getrfkill(sc);
3279 
3280 	return SYSCTL_OUT(req, &val, sizeof val);
3281 }
3282 
3283 /*
3284  * Add sysctl knobs.
3285  */
3286 static void
3287 iwi_sysctlattach(struct iwi_softc *sc)
3288 {
3289 	struct sysctl_ctx_list *ctx;
3290 	struct sysctl_oid *tree;
3291 
3292 	ctx = &sc->sc_sysctl_ctx;
3293 	sysctl_ctx_init(ctx);
3294 
3295 	tree = SYSCTL_ADD_NODE(ctx, SYSCTL_STATIC_CHILDREN(_hw),
3296 	                       OID_AUTO,
3297 	                       device_get_nameunit(sc->sc_dev),
3298 	                       CTLFLAG_RD, 0, "");
3299 	if (tree == NULL) {
3300 		device_printf(sc->sc_dev, "can't add sysctl node\n");
3301 		return;
3302 	}
3303 
3304 	sc->sc_sysctl_tree = tree;
3305 
3306 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio",
3307 	    CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I",
3308 	    "radio transmitter switch state (0=off, 1=on)");
3309 
3310 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats",
3311 	    CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S",
3312 	    "statistics");
3313 
3314 	sc->bluetooth = 0;
3315 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth",
3316 	    CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence");
3317 
3318 	sc->antenna = IWI_ANTENNA_AUTO;
3319 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna",
3320 	    CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)");
3321 }
3322 
3323 /*
3324  * LED support.
3325  *
3326  * Different cards have different capabilities.  Some have three
3327  * led's while others have only one.  The linux ipw driver defines
3328  * led's for link state (associated or not), band (11a, 11g, 11b),
3329  * and for link activity.  We use one led and vary the blink rate
3330  * according to the tx/rx traffic a la the ath driver.
3331  */
3332 
3333 static __inline uint32_t
3334 iwi_toggle_event(uint32_t r)
3335 {
3336 	return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA |
3337 		     IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA);
3338 }
3339 
3340 static uint32_t
3341 iwi_read_event(struct iwi_softc *sc)
3342 {
3343 	return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT);
3344 }
3345 
3346 static void
3347 iwi_write_event(struct iwi_softc *sc, uint32_t v)
3348 {
3349 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v);
3350 }
3351 
3352 static void
3353 iwi_led_done(void *arg)
3354 {
3355 	struct iwi_softc *sc = arg;
3356 
3357 	sc->sc_blinking = 0;
3358 }
3359 
3360 /*
3361  * Turn the activity LED off: flip the pin and then set a timer so no
3362  * update will happen for the specified duration.
3363  */
3364 static void
3365 iwi_led_off(void *arg)
3366 {
3367 	struct iwi_softc *sc = arg;
3368 	uint32_t v;
3369 
3370 	v = iwi_read_event(sc);
3371 	v &= ~sc->sc_ledpin;
3372 	iwi_write_event(sc, iwi_toggle_event(v));
3373 	callout_reset(&sc->sc_ledtimer_callout, sc->sc_ledoff, iwi_led_done, sc);
3374 }
3375 
3376 /*
3377  * Blink the LED according to the specified on/off times.
3378  */
3379 static void
3380 iwi_led_blink(struct iwi_softc *sc, int on, int off)
3381 {
3382 	uint32_t v;
3383 
3384 	v = iwi_read_event(sc);
3385 	v |= sc->sc_ledpin;
3386 	iwi_write_event(sc, iwi_toggle_event(v));
3387 	sc->sc_blinking = 1;
3388 	sc->sc_ledoff = off;
3389 	callout_reset(&sc->sc_ledtimer_callout, on, iwi_led_off, sc);
3390 }
3391 
3392 static void
3393 iwi_led_event(struct iwi_softc *sc, int event)
3394 {
3395 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
3396 	static const struct {
3397 		u_int		rate;		/* tx/rx iwi rate */
3398 		u_int16_t	timeOn;		/* LED on time (ms) */
3399 		u_int16_t	timeOff;	/* LED off time (ms) */
3400 	} blinkrates[] = {
3401 		{ IWI_RATE_OFDM54, 40,  10 },
3402 		{ IWI_RATE_OFDM48, 44,  11 },
3403 		{ IWI_RATE_OFDM36, 50,  13 },
3404 		{ IWI_RATE_OFDM24, 57,  14 },
3405 		{ IWI_RATE_OFDM18, 67,  16 },
3406 		{ IWI_RATE_OFDM12, 80,  20 },
3407 		{ IWI_RATE_DS11,  100,  25 },
3408 		{ IWI_RATE_OFDM9, 133,  34 },
3409 		{ IWI_RATE_OFDM6, 160,  40 },
3410 		{ IWI_RATE_DS5,   200,  50 },
3411 		{            6,   240,  58 },	/* XXX 3Mb/s if it existed */
3412 		{ IWI_RATE_DS2,   267,  66 },
3413 		{ IWI_RATE_DS1,   400, 100 },
3414 		{            0,   500, 130 },	/* unknown rate/polling */
3415 	};
3416 	uint32_t txrate;
3417 	int j = 0;			/* XXX silence compiler */
3418 
3419 	sc->sc_ledevent = ticks;	/* time of last event */
3420 	if (sc->sc_blinking)		/* don't interrupt active blink */
3421 		return;
3422 	switch (event) {
3423 	case IWI_LED_POLL:
3424 		j = NELEM(blinkrates)-1;
3425 		break;
3426 	case IWI_LED_TX:
3427 		/* read current transmission rate from adapter */
3428 		txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE);
3429 		if (blinkrates[sc->sc_txrix].rate != txrate) {
3430 			for (j = 0; j < NELEM(blinkrates)-1; j++)
3431 				if (blinkrates[j].rate == txrate)
3432 					break;
3433 			sc->sc_txrix = j;
3434 		} else
3435 			j = sc->sc_txrix;
3436 		break;
3437 	case IWI_LED_RX:
3438 		if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) {
3439 			for (j = 0; j < NELEM(blinkrates)-1; j++)
3440 				if (blinkrates[j].rate == sc->sc_rxrate)
3441 					break;
3442 			sc->sc_rxrix = j;
3443 		} else
3444 			j = sc->sc_rxrix;
3445 		break;
3446 	}
3447 	/* XXX beware of overflow */
3448 	iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000,
3449 		(blinkrates[j].timeOff * hz) / 1000);
3450 }
3451 
3452 static int
3453 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS)
3454 {
3455 	struct iwi_softc *sc = arg1;
3456 	int softled = sc->sc_softled;
3457 	int error;
3458 
3459 	error = sysctl_handle_int(oidp, &softled, 0, req);
3460 	if (error || !req->newptr)
3461 		return error;
3462 	softled = (softled != 0);
3463 	if (softled != sc->sc_softled) {
3464 		if (softled) {
3465 			uint32_t v = iwi_read_event(sc);
3466 			v &= ~sc->sc_ledpin;
3467 			iwi_write_event(sc, iwi_toggle_event(v));
3468 		}
3469 		sc->sc_softled = softled;
3470 	}
3471 	return 0;
3472 }
3473 
3474 static void
3475 iwi_ledattach(struct iwi_softc *sc)
3476 {
3477 	struct sysctl_ctx_list *ctx = &sc->sc_sysctl_ctx;
3478 	struct sysctl_oid *tree = sc->sc_sysctl_tree;
3479 
3480 	sc->sc_blinking = 0;
3481 	sc->sc_ledstate = 1;
3482 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
3483 	callout_init(&sc->sc_ledtimer_callout);
3484 
3485 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3486 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
3487 		iwi_sysctl_softled, "I", "enable/disable software LED support");
3488 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3489 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
3490 		"pin setting to turn activity LED on");
3491 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3492 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
3493 		"idle time for inactivity LED (ticks)");
3494 	/* XXX for debugging */
3495 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3496 		"nictype", CTLFLAG_RD, &sc->sc_nictype, 0,
3497 		"NIC type from EEPROM");
3498 
3499 	sc->sc_ledpin = IWI_RST_LED_ACTIVITY;
3500 	sc->sc_softled = 1;
3501 
3502 	sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff;
3503 	if (sc->sc_nictype == 1) {
3504 		/*
3505 		 * NB: led's are reversed.
3506 		 */
3507 		sc->sc_ledpin = IWI_RST_LED_ASSOCIATED;
3508 	}
3509 }
3510 
3511 static void
3512 iwi_scan_start(struct ieee80211com *ic)
3513 {
3514 	/* ignore */
3515 }
3516 
3517 static void
3518 iwi_set_channel(struct ieee80211com *ic)
3519 {
3520 	struct ifnet *ifp = ic->ic_ifp;
3521 	struct iwi_softc *sc = ifp->if_softc;
3522 	if (sc->fw_state == IWI_FW_IDLE)
3523 		iwi_setcurchan(sc, ic->ic_curchan->ic_ieee);
3524 }
3525 
3526 static void
3527 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3528 {
3529 	struct ieee80211vap *vap = ss->ss_vap;
3530 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3531 	struct iwi_softc *sc = ifp->if_softc;
3532 
3533 	if (iwi_scanchan(sc, maxdwell, 0))
3534 		ieee80211_cancel_scan(vap);
3535 }
3536 
3537 static void
3538 iwi_scan_mindwell(struct ieee80211_scan_state *ss)
3539 {
3540 	/* NB: don't try to abort scan; wait for firmware to finish */
3541 }
3542 
3543 static void
3544 iwi_scan_end(struct ieee80211com *ic)
3545 {
3546 	struct ifnet *ifp = ic->ic_ifp;
3547 	struct iwi_softc *sc = ifp->if_softc;
3548 
3549 	sc->flags &= ~IWI_FLAG_CHANNEL_SCAN;
3550 	/* NB: make sure we're still scanning */
3551 	if (sc->fw_state == IWI_FW_SCANNING)
3552 		iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0);
3553 }
3554