xref: /dragonfly/sys/dev/netif/iwi/if_iwi.c (revision 92fc8b5c)
1 /*-
2  * Copyright (c) 2004, 2005
3  *      Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
4  * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting
5  * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/dev/iwi/if_iwi.c,v 1.72 2009/07/10 15:28:33 rpaulo Exp $
30  */
31 
32 /*-
33  * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver
34  * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
35  */
36 
37 #include <sys/param.h>
38 #include <sys/sysctl.h>
39 #include <sys/sockio.h>
40 #include <sys/mbuf.h>
41 #include <sys/kernel.h>
42 #include <sys/socket.h>
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/module.h>
48 #include <sys/bus.h>
49 #include <sys/endian.h>
50 #include <sys/proc.h>
51 #include <sys/mount.h>
52 #include <sys/namei.h>
53 #include <sys/linker.h>
54 #include <sys/firmware.h>
55 #include <sys/taskqueue.h>
56 #include <sys/devfs.h>
57 
58 #include <sys/resource.h>
59 #include <sys/rman.h>
60 
61 #include <bus/pci/pcireg.h>
62 #include <bus/pci/pcivar.h>
63 
64 #include <net/bpf.h>
65 #include <net/if.h>
66 #include <net/if_arp.h>
67 #include <net/ethernet.h>
68 #include <net/if_dl.h>
69 #include <net/if_media.h>
70 #include <net/if_types.h>
71 #include <net/ifq_var.h>
72 
73 #include <netproto/802_11/ieee80211_var.h>
74 #include <netproto/802_11/ieee80211_radiotap.h>
75 #include <netproto/802_11/ieee80211_input.h>
76 #include <netproto/802_11/ieee80211_regdomain.h>
77 
78 #include <netinet/in.h>
79 #include <netinet/in_systm.h>
80 #include <netinet/in_var.h>
81 #include <netinet/ip.h>
82 #include <netinet/if_ether.h>
83 
84 #include <dev/netif/iwi/if_iwireg.h>
85 #include <dev/netif/iwi/if_iwivar.h>
86 
87 #define IWI_DEBUG
88 #ifdef IWI_DEBUG
89 #define DPRINTF(x)	do { if (iwi_debug > 0) kprintf x; } while (0)
90 #define DPRINTFN(n, x)	do { if (iwi_debug >= (n)) kprintf x; } while (0)
91 int iwi_debug = 0;
92 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level");
93 
94 static const char *iwi_fw_states[] = {
95 	"IDLE", 		/* IWI_FW_IDLE */
96 	"LOADING",		/* IWI_FW_LOADING */
97 	"ASSOCIATING",		/* IWI_FW_ASSOCIATING */
98 	"DISASSOCIATING",	/* IWI_FW_DISASSOCIATING */
99 	"SCANNING",		/* IWI_FW_SCANNING */
100 };
101 #else
102 #define DPRINTF(x)
103 #define DPRINTFN(n, x)
104 #endif
105 
106 MODULE_DEPEND(iwi, pci,  1, 1, 1);
107 MODULE_DEPEND(iwi, wlan, 1, 1, 1);
108 MODULE_DEPEND(iwi, firmware, 1, 1, 1);
109 
110 enum {
111 	IWI_LED_TX,
112 	IWI_LED_RX,
113 	IWI_LED_POLL,
114 };
115 
116 struct iwi_ident {
117 	uint16_t	vendor;
118 	uint16_t	device;
119 	const char	*name;
120 };
121 
122 static const struct iwi_ident iwi_ident_table[] = {
123 	{ 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" },
124 	{ 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" },
125 	{ 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" },
126 	{ 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" },
127 
128 	{ 0, 0, NULL }
129 };
130 
131 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *,
132 		    const char name[IFNAMSIZ], int unit, int opmode, int flags,
133 		    const uint8_t bssid[IEEE80211_ADDR_LEN],
134 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
135 static void	iwi_vap_delete(struct ieee80211vap *);
136 static void	iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
137 static int	iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *,
138 		    int);
139 static void	iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
140 static void	iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
141 static int	iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *,
142 		    int, bus_addr_t, bus_addr_t);
143 static void	iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
144 static void	iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
145 static int	iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *,
146 		    int);
147 static void	iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
148 static void	iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
149 static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *,
150 		    const uint8_t [IEEE80211_ADDR_LEN]);
151 static void	iwi_node_free(struct ieee80211_node *);
152 static void	iwi_media_status(struct ifnet *, struct ifmediareq *);
153 static int	iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
154 static void	iwi_wme_init(struct iwi_softc *);
155 static int	iwi_wme_setparams(struct iwi_softc *, struct ieee80211com *);
156 static void	iwi_update_wme_task(void *, int);
157 static int	iwi_wme_update(struct ieee80211com *);
158 static uint16_t	iwi_read_prom_word(struct iwi_softc *, uint8_t);
159 static void	iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int,
160 		    struct iwi_frame *);
161 static void	iwi_notification_intr(struct iwi_softc *, struct iwi_notif *);
162 static void	iwi_rx_intr(struct iwi_softc *);
163 static void	iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *);
164 static void	iwi_intr(void *);
165 static int	iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t);
166 static void	iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int);
167 static int	iwi_tx_start(struct ifnet *, struct mbuf *,
168 		    struct ieee80211_node *, int);
169 static int	iwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
170 		    const struct ieee80211_bpf_params *);
171 static void	iwi_start_locked(struct ifnet *);
172 static void	iwi_start(struct ifnet *);
173 static void	iwi_watchdog(void *);
174 static int	iwi_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *ucred);
175 static void	iwi_stop_master(struct iwi_softc *);
176 static int	iwi_reset(struct iwi_softc *);
177 static int	iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *);
178 static int	iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *);
179 static void	iwi_release_fw_dma(struct iwi_softc *sc);
180 static int	iwi_config(struct iwi_softc *);
181 static int	iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode);
182 static void	iwi_put_firmware(struct iwi_softc *);
183 static int	iwi_scanchan(struct iwi_softc *, unsigned long, int);
184 static void	iwi_scan_start(struct ieee80211com *);
185 static void	iwi_scan_end(struct ieee80211com *);
186 static void	iwi_set_channel(struct ieee80211com *);
187 static void	iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell);
188 static void	iwi_scan_mindwell(struct ieee80211_scan_state *);
189 static int	iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *);
190 static void	iwi_disassoc_task(void *, int);
191 static int	iwi_disassociate(struct iwi_softc *, int quiet);
192 static void	iwi_init_locked(struct iwi_softc *);
193 static void	iwi_init(void *);
194 static int	iwi_init_fw_dma(struct iwi_softc *, int);
195 static void	iwi_stop_locked(void *);
196 static void	iwi_stop(struct iwi_softc *);
197 static void	iwi_restart_task(void *, int);
198 static int	iwi_getrfkill(struct iwi_softc *);
199 static void	iwi_radio_on_task(void *, int);
200 static void	iwi_radio_off_task(void *, int);
201 static void	iwi_sysctlattach(struct iwi_softc *);
202 static void	iwi_led_event(struct iwi_softc *, int);
203 static void	iwi_ledattach(struct iwi_softc *);
204 
205 static int iwi_probe(device_t);
206 static int iwi_attach(device_t);
207 static int iwi_detach(device_t);
208 static int iwi_shutdown(device_t);
209 static int iwi_suspend(device_t);
210 static int iwi_resume(device_t);
211 
212 static device_method_t iwi_methods[] = {
213 	/* Device interface */
214 	DEVMETHOD(device_probe,		iwi_probe),
215 	DEVMETHOD(device_attach,	iwi_attach),
216 	DEVMETHOD(device_detach,	iwi_detach),
217 	DEVMETHOD(device_shutdown,	iwi_shutdown),
218 	DEVMETHOD(device_suspend,	iwi_suspend),
219 	DEVMETHOD(device_resume,	iwi_resume),
220 
221 	{ 0, 0 }
222 };
223 
224 static driver_t iwi_driver = {
225 	"iwi",
226 	iwi_methods,
227 	sizeof (struct iwi_softc)
228 };
229 
230 static devclass_t iwi_devclass;
231 
232 DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, 0, 0);
233 
234 static __inline uint8_t
235 MEM_READ_1(struct iwi_softc *sc, uint32_t addr)
236 {
237 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
238 	return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA);
239 }
240 
241 static __inline uint32_t
242 MEM_READ_4(struct iwi_softc *sc, uint32_t addr)
243 {
244 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
245 	return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA);
246 }
247 
248 static int
249 iwi_probe(device_t dev)
250 {
251 	const struct iwi_ident *ident;
252 
253 	wlan_serialize_enter();
254 	for (ident = iwi_ident_table; ident->name != NULL; ident++) {
255 		if (pci_get_vendor(dev) == ident->vendor &&
256 		    pci_get_device(dev) == ident->device) {
257 			device_set_desc(dev, ident->name);
258 			wlan_serialize_exit();
259 			return 0;
260 		}
261 	}
262 	wlan_serialize_exit();
263 	return ENXIO;
264 }
265 
266 /* Base Address Register */
267 #define IWI_PCI_BAR0	0x10
268 
269 static int
270 iwi_attach(device_t dev)
271 {
272 	struct iwi_softc *sc = device_get_softc(dev);
273 	struct ifnet *ifp;
274 	struct ieee80211com *ic;
275 	uint16_t val;
276 	int i, error;
277 	uint8_t bands;
278 	uint8_t macaddr[IEEE80211_ADDR_LEN];
279 
280 	wlan_serialize_enter();
281 
282 	sc->sc_dev = dev;
283 
284 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
285 	if (ifp == NULL) {
286 		device_printf(dev, "can not if_alloc()\n");
287 		wlan_serialize_exit();
288 		return ENXIO;
289 	}
290 	ic = ifp->if_l2com;
291 
292 	devfs_clone_bitmap_init(&sc->sc_unr);
293 
294 	TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on_task, sc);
295 	TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off_task, sc);
296 	TASK_INIT(&sc->sc_restarttask, 0, iwi_restart_task, sc);
297 	TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc_task, sc);
298 	TASK_INIT(&sc->sc_wmetask, 0, iwi_update_wme_task, sc);
299 
300 	callout_init(&sc->sc_wdtimer_callout);
301 	callout_init(&sc->sc_rftimer_callout);
302 
303 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
304 		device_printf(dev, "chip is in D%d power mode "
305 		    "-- setting to D0\n", pci_get_powerstate(dev));
306 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
307 	}
308 
309 	pci_write_config(dev, 0x41, 0, 1);
310 
311 	/* enable bus-mastering */
312 	pci_enable_busmaster(dev);
313 
314 	sc->mem_rid = IWI_PCI_BAR0;
315 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
316 	    RF_ACTIVE);
317 	if (sc->mem == NULL) {
318 		device_printf(dev, "could not allocate memory resource\n");
319 		goto fail;
320 	}
321 
322 	sc->sc_st = rman_get_bustag(sc->mem);
323 	sc->sc_sh = rman_get_bushandle(sc->mem);
324 
325 	sc->irq_rid = 0;
326 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
327 	    RF_ACTIVE | RF_SHAREABLE);
328 	if (sc->irq == NULL) {
329 		device_printf(dev, "could not allocate interrupt resource\n");
330 		goto fail;
331 	}
332 
333 	if (iwi_reset(sc) != 0) {
334 		device_printf(dev, "could not reset adapter\n");
335 		goto fail;
336 	}
337 
338 	/*
339 	 * Allocate rings.
340 	 */
341 	if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) {
342 		device_printf(dev, "could not allocate Cmd ring\n");
343 		goto fail;
344 	}
345 
346 	for (i = 0; i < 4; i++) {
347 		error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT,
348 		    IWI_CSR_TX1_RIDX + i * 4,
349 		    IWI_CSR_TX1_WIDX + i * 4);
350 		if (error != 0) {
351 			device_printf(dev, "could not allocate Tx ring %d\n",
352 				i+i);
353 			goto fail;
354 		}
355 	}
356 
357 	if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) {
358 		device_printf(dev, "could not allocate Rx ring\n");
359 		goto fail;
360 	}
361 
362 	iwi_wme_init(sc);
363 
364 	ifp->if_softc = sc;
365 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
366 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
367 	ifp->if_init = iwi_init;
368 	ifp->if_ioctl = iwi_ioctl;
369 	ifp->if_start = iwi_start;
370 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
371 	ifq_set_ready(&ifp->if_snd);
372 
373 	ic->ic_ifp = ifp;
374 	ic->ic_opmode = IEEE80211_M_STA;
375 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
376 
377 	/* set device capabilities */
378 	ic->ic_caps =
379 	      IEEE80211_C_STA		/* station mode supported */
380 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
381 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
382 	    | IEEE80211_C_PMGT		/* power save supported */
383 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
384 	    | IEEE80211_C_WPA		/* 802.11i */
385 	    | IEEE80211_C_WME		/* 802.11e */
386 #if 0
387 	    | IEEE80211_C_BGSCAN	/* capable of bg scanning */
388 #endif
389 	    ;
390 
391 	/* read MAC address from EEPROM */
392 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0);
393 	macaddr[0] = val & 0xff;
394 	macaddr[1] = val >> 8;
395 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1);
396 	macaddr[2] = val & 0xff;
397 	macaddr[3] = val >> 8;
398 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2);
399 	macaddr[4] = val & 0xff;
400 	macaddr[5] = val >> 8;
401 
402 	bands = 0;
403 	setbit(&bands, IEEE80211_MODE_11B);
404 	setbit(&bands, IEEE80211_MODE_11G);
405 	if (pci_get_device(dev) >= 0x4223)
406 		setbit(&bands, IEEE80211_MODE_11A);
407 	ieee80211_init_channels(ic, NULL, &bands);
408 
409 	ieee80211_ifattach(ic, macaddr);
410 	/* override default methods */
411 	ic->ic_node_alloc = iwi_node_alloc;
412 	sc->sc_node_free = ic->ic_node_free;
413 	ic->ic_node_free = iwi_node_free;
414 	ic->ic_raw_xmit = iwi_raw_xmit;
415 	ic->ic_scan_start = iwi_scan_start;
416 	ic->ic_scan_end = iwi_scan_end;
417 	ic->ic_set_channel = iwi_set_channel;
418 	ic->ic_scan_curchan = iwi_scan_curchan;
419 	ic->ic_scan_mindwell = iwi_scan_mindwell;
420 	ic->ic_wme.wme_update = iwi_wme_update;
421 
422 	ic->ic_vap_create = iwi_vap_create;
423 	ic->ic_vap_delete = iwi_vap_delete;
424 
425 	ieee80211_radiotap_attach(ic,
426 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
427 		IWI_TX_RADIOTAP_PRESENT,
428 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
429 		IWI_RX_RADIOTAP_PRESENT);
430 
431 	iwi_sysctlattach(sc);
432 	iwi_ledattach(sc);
433 
434 	/*
435 	 * Hook our interrupt after all initialization is complete.
436 	 */
437 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
438 	    iwi_intr, sc, &sc->sc_ih, &wlan_global_serializer);
439 	if (error != 0) {
440 		device_printf(dev, "could not set up interrupt\n");
441 		goto fail;
442 	}
443 
444 	if (bootverbose)
445 		ieee80211_announce(ic);
446 
447 	wlan_serialize_exit();
448 	return 0;
449 fail:
450 	/* XXX fix */
451 	wlan_serialize_exit();
452 	iwi_detach(dev);
453 	return ENXIO;
454 }
455 
456 static int
457 iwi_detach(device_t dev)
458 {
459 	struct iwi_softc *sc = device_get_softc(dev);
460 	struct ifnet *ifp = sc->sc_ifp;
461 	struct ieee80211com *ic = ifp->if_l2com;
462 
463 	wlan_serialize_enter();
464 
465 	/* NB: do early to drain any pending tasks */
466 	ieee80211_draintask(ic, &sc->sc_radiontask);
467 	ieee80211_draintask(ic, &sc->sc_radiofftask);
468 	ieee80211_draintask(ic, &sc->sc_restarttask);
469 	ieee80211_draintask(ic, &sc->sc_disassoctask);
470 
471 	iwi_stop(sc);
472 
473 	ieee80211_ifdetach(ic);
474 
475 	iwi_put_firmware(sc);
476 	iwi_release_fw_dma(sc);
477 
478 	iwi_free_cmd_ring(sc, &sc->cmdq);
479 	iwi_free_tx_ring(sc, &sc->txq[0]);
480 	iwi_free_tx_ring(sc, &sc->txq[1]);
481 	iwi_free_tx_ring(sc, &sc->txq[2]);
482 	iwi_free_tx_ring(sc, &sc->txq[3]);
483 	iwi_free_rx_ring(sc, &sc->rxq);
484 
485 	bus_teardown_intr(dev, sc->irq, sc->sc_ih);
486 	bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
487 
488 	bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
489 
490 	devfs_clone_bitmap_uninit(&sc->sc_unr);
491 
492 	if (sc->sc_sysctl_tree != NULL)
493 		sysctl_ctx_free(&sc->sc_sysctl_ctx);
494 
495 	if_free(ifp);
496 
497 	wlan_serialize_exit();
498 	return 0;
499 }
500 
501 static struct ieee80211vap *
502 iwi_vap_create(struct ieee80211com *ic,
503 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
504 	const uint8_t bssid[IEEE80211_ADDR_LEN],
505 	const uint8_t mac[IEEE80211_ADDR_LEN])
506 {
507 	struct ifnet *ifp = ic->ic_ifp;
508 	struct iwi_softc *sc = ifp->if_softc;
509 	struct iwi_vap *ivp;
510 	struct ieee80211vap *vap;
511 	int i;
512 
513 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
514 		return NULL;
515 	/*
516 	 * Get firmware image (and possibly dma memory) on mode change.
517 	 */
518 	if (iwi_get_firmware(sc, opmode))
519 		return NULL;
520 	/* allocate DMA memory for mapping firmware image */
521 	i = sc->fw_fw.size;
522 	if (sc->fw_boot.size > i)
523 		i = sc->fw_boot.size;
524 	/* XXX do we dma the ucode as well ? */
525 	if (sc->fw_uc.size > i)
526 		i = sc->fw_uc.size;
527 	if (iwi_init_fw_dma(sc, i))
528 		return NULL;
529 
530 	ivp = (struct iwi_vap *) kmalloc(sizeof(struct iwi_vap),
531 	    M_80211_VAP, M_WAITOK | M_ZERO);
532 	if (ivp == NULL)
533 		return NULL;
534 	vap = &ivp->iwi_vap;
535 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
536 	/* override the default, the setting comes from the linux driver */
537 	vap->iv_bmissthreshold = 24;
538 	/* override with driver methods */
539 	ivp->iwi_newstate = vap->iv_newstate;
540 	vap->iv_newstate = iwi_newstate;
541 
542 	/* complete setup */
543 	ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status);
544 	ic->ic_opmode = opmode;
545 	return vap;
546 }
547 
548 static void
549 iwi_vap_delete(struct ieee80211vap *vap)
550 {
551 	struct iwi_vap *ivp = IWI_VAP(vap);
552 
553 	ieee80211_vap_detach(vap);
554 	kfree(ivp, M_80211_VAP);
555 }
556 
557 static void
558 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
559 {
560 	if (error != 0)
561 		return;
562 
563 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
564 
565 	*(bus_addr_t *)arg = segs[0].ds_addr;
566 }
567 
568 static int
569 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count)
570 {
571 	int error;
572 
573 	ring->count = count;
574 	ring->queued = 0;
575 	ring->cur = ring->next = 0;
576 
577 	error = bus_dma_tag_create(NULL, 4, 0,
578 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
579 	    count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE,
580 	    0 , &ring->desc_dmat);
581 	if (error != 0) {
582 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
583 		goto fail;
584 	}
585 
586 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
587 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
588 	if (error != 0) {
589 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
590 		goto fail;
591 	}
592 
593 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
594 	    count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
595 	if (error != 0) {
596 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
597 		goto fail;
598 	}
599 
600 	return 0;
601 
602 fail:	iwi_free_cmd_ring(sc, ring);
603 	return error;
604 }
605 
606 static void
607 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
608 {
609 	ring->queued = 0;
610 	ring->cur = ring->next = 0;
611 }
612 
613 static void
614 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
615 {
616 	if (ring->desc != NULL) {
617 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
618 		    BUS_DMASYNC_POSTWRITE);
619 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
620 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
621 	}
622 
623 	if (ring->desc_dmat != NULL)
624 		bus_dma_tag_destroy(ring->desc_dmat);
625 }
626 
627 static int
628 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count,
629     bus_addr_t csr_ridx, bus_addr_t csr_widx)
630 {
631 	int i, error;
632 
633 	ring->count = count;
634 	ring->queued = 0;
635 	ring->cur = ring->next = 0;
636 	ring->csr_ridx = csr_ridx;
637 	ring->csr_widx = csr_widx;
638 
639 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
640 	    BUS_SPACE_MAXADDR, NULL, NULL, count * IWI_TX_DESC_SIZE, 1,
641 	    count * IWI_TX_DESC_SIZE, 0, &ring->desc_dmat);
642 	if (error != 0) {
643 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
644 		goto fail;
645 	}
646 
647 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
648 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
649 	if (error != 0) {
650 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
651 		goto fail;
652 	}
653 
654 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
655 	    count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
656 	if (error != 0) {
657 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
658 		goto fail;
659 	}
660 
661 	ring->data = kmalloc(count * sizeof (struct iwi_tx_data), M_DEVBUF,
662 	    M_WAITOK | M_ZERO);
663 	if (ring->data == NULL) {
664 		device_printf(sc->sc_dev, "could not allocate soft data\n");
665 		error = ENOMEM;
666 		goto fail;
667 	}
668 
669 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
670 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IWI_MAX_NSEG,
671 	    MCLBYTES, 0, &ring->data_dmat);
672 	if (error != 0) {
673 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
674 		goto fail;
675 	}
676 
677 	for (i = 0; i < count; i++) {
678 		error = bus_dmamap_create(ring->data_dmat, 0,
679 		    &ring->data[i].map);
680 		if (error != 0) {
681 			device_printf(sc->sc_dev, "could not create DMA map\n");
682 			goto fail;
683 		}
684 	}
685 
686 	return 0;
687 
688 fail:	iwi_free_tx_ring(sc, ring);
689 	return error;
690 }
691 
692 static void
693 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
694 {
695 	struct iwi_tx_data *data;
696 	int i;
697 
698 	for (i = 0; i < ring->count; i++) {
699 		data = &ring->data[i];
700 
701 		if (data->m != NULL) {
702 			bus_dmamap_sync(ring->data_dmat, data->map,
703 			    BUS_DMASYNC_POSTWRITE);
704 			bus_dmamap_unload(ring->data_dmat, data->map);
705 			m_freem(data->m);
706 			data->m = NULL;
707 		}
708 
709 		if (data->ni != NULL) {
710 			ieee80211_free_node(data->ni);
711 			data->ni = NULL;
712 		}
713 	}
714 
715 	ring->queued = 0;
716 	ring->cur = ring->next = 0;
717 }
718 
719 static void
720 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
721 {
722 	struct iwi_tx_data *data;
723 	int i;
724 
725 	if (ring->desc != NULL) {
726 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
727 		    BUS_DMASYNC_POSTWRITE);
728 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
729 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
730 	}
731 
732 	if (ring->desc_dmat != NULL)
733 		bus_dma_tag_destroy(ring->desc_dmat);
734 
735 	if (ring->data != NULL) {
736 		for (i = 0; i < ring->count; i++) {
737 			data = &ring->data[i];
738 
739 			if (data->m != NULL) {
740 				bus_dmamap_sync(ring->data_dmat, data->map,
741 				    BUS_DMASYNC_POSTWRITE);
742 				bus_dmamap_unload(ring->data_dmat, data->map);
743 				m_freem(data->m);
744 			}
745 
746 			if (data->ni != NULL)
747 				ieee80211_free_node(data->ni);
748 
749 			if (data->map != NULL)
750 				bus_dmamap_destroy(ring->data_dmat, data->map);
751 		}
752 
753 		kfree(ring->data, M_DEVBUF);
754 	}
755 
756 	if (ring->data_dmat != NULL)
757 		bus_dma_tag_destroy(ring->data_dmat);
758 }
759 
760 static int
761 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count)
762 {
763 	struct iwi_rx_data *data;
764 	int i, error;
765 
766 	ring->count = count;
767 	ring->cur = 0;
768 
769 	ring->data = kmalloc(count * sizeof (struct iwi_rx_data), M_DEVBUF,
770 	    M_WAITOK | M_ZERO);
771 	if (ring->data == NULL) {
772 		device_printf(sc->sc_dev, "could not allocate soft data\n");
773 		error = ENOMEM;
774 		goto fail;
775 	}
776 
777 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
778 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES,
779 	    0, &ring->data_dmat);
780 	if (error != 0) {
781 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
782 		goto fail;
783 	}
784 
785 	for (i = 0; i < count; i++) {
786 		data = &ring->data[i];
787 
788 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
789 		if (error != 0) {
790 			device_printf(sc->sc_dev, "could not create DMA map\n");
791 			goto fail;
792 		}
793 
794 		data->m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
795 		if (data->m == NULL) {
796 			device_printf(sc->sc_dev,
797 			    "could not allocate rx mbuf\n");
798 			error = ENOMEM;
799 			goto fail;
800 		}
801 
802 		error = bus_dmamap_load(ring->data_dmat, data->map,
803 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
804 		    &data->physaddr, 0);
805 		if (error != 0) {
806 			device_printf(sc->sc_dev,
807 			    "could not load rx buf DMA map");
808 			goto fail;
809 		}
810 
811 		data->reg = IWI_CSR_RX_BASE + i * 4;
812 	}
813 
814 	return 0;
815 
816 fail:	iwi_free_rx_ring(sc, ring);
817 	return error;
818 }
819 
820 static void
821 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
822 {
823 	ring->cur = 0;
824 }
825 
826 static void
827 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
828 {
829 	struct iwi_rx_data *data;
830 	int i;
831 
832 	if (ring->data != NULL) {
833 		for (i = 0; i < ring->count; i++) {
834 			data = &ring->data[i];
835 
836 			if (data->m != NULL) {
837 				bus_dmamap_sync(ring->data_dmat, data->map,
838 				    BUS_DMASYNC_POSTREAD);
839 				bus_dmamap_unload(ring->data_dmat, data->map);
840 				m_freem(data->m);
841 			}
842 
843 			if (data->map != NULL)
844 				bus_dmamap_destroy(ring->data_dmat, data->map);
845 		}
846 
847 		kfree(ring->data, M_DEVBUF);
848 	}
849 
850 	if (ring->data_dmat != NULL)
851 		bus_dma_tag_destroy(ring->data_dmat);
852 }
853 
854 static int
855 iwi_shutdown(device_t dev)
856 {
857 	struct iwi_softc *sc = device_get_softc(dev);
858 
859 	wlan_serialize_enter();
860 	iwi_stop(sc);
861 	iwi_put_firmware(sc);		/* ??? XXX */
862 	wlan_serialize_exit();
863 
864 	return 0;
865 }
866 
867 static int
868 iwi_suspend(device_t dev)
869 {
870 	struct iwi_softc *sc = device_get_softc(dev);
871 
872 	wlan_serialize_enter();
873 	iwi_stop(sc);
874 	wlan_serialize_exit();
875 
876 	return 0;
877 }
878 
879 static int
880 iwi_resume(device_t dev)
881 {
882 	struct iwi_softc *sc = device_get_softc(dev);
883 	struct ifnet *ifp = sc->sc_ifp;
884 
885 	wlan_serialize_enter();
886 	pci_write_config(dev, 0x41, 0, 1);
887 
888 	if (ifp->if_flags & IFF_UP)
889 		iwi_init(sc);
890 
891 	wlan_serialize_exit();
892 	return 0;
893 }
894 
895 static struct ieee80211_node *
896 iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
897 {
898 	struct iwi_node *in;
899 
900 	in = kmalloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
901 	if (in == NULL)
902 		return NULL;
903 	/* XXX assign sta table entry for adhoc */
904 	in->in_station = -1;
905 
906 	return &in->in_node;
907 }
908 
909 static void
910 iwi_node_free(struct ieee80211_node *ni)
911 {
912 	struct ieee80211com *ic = ni->ni_ic;
913 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
914 	struct iwi_node *in = (struct iwi_node *)ni;
915 
916 	if (in->in_station != -1) {
917 		DPRINTF(("%s mac %6D station %u\n", __func__,
918 		    ni->ni_macaddr, ":", in->in_station));
919 		devfs_clone_bitmap_put(&sc->sc_unr, in->in_station);
920 	}
921 
922 	sc->sc_node_free(ni);
923 }
924 
925 /*
926  * Convert h/w rate code to IEEE rate code.
927  */
928 static int
929 iwi_cvtrate(int iwirate)
930 {
931 	switch (iwirate) {
932 	case IWI_RATE_DS1:	return 2;
933 	case IWI_RATE_DS2:	return 4;
934 	case IWI_RATE_DS5:	return 11;
935 	case IWI_RATE_DS11:	return 22;
936 	case IWI_RATE_OFDM6:	return 12;
937 	case IWI_RATE_OFDM9:	return 18;
938 	case IWI_RATE_OFDM12:	return 24;
939 	case IWI_RATE_OFDM18:	return 36;
940 	case IWI_RATE_OFDM24:	return 48;
941 	case IWI_RATE_OFDM36:	return 72;
942 	case IWI_RATE_OFDM48:	return 96;
943 	case IWI_RATE_OFDM54:	return 108;
944 	}
945 	return 0;
946 }
947 
948 /*
949  * The firmware automatically adapts the transmit speed.  We report its current
950  * value here.
951  */
952 static void
953 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
954 {
955 	struct ieee80211vap *vap = ifp->if_softc;
956 	struct ieee80211com *ic = vap->iv_ic;
957 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
958 
959 	/* read current transmission rate from adapter */
960 	vap->iv_bss->ni_txrate =
961 	    iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE));
962 	ieee80211_media_status(ifp, imr);
963 }
964 
965 static int
966 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
967 {
968 	struct iwi_vap *ivp = IWI_VAP(vap);
969 	struct ieee80211com *ic = vap->iv_ic;
970 	struct ifnet *ifp = ic->ic_ifp;
971 	struct iwi_softc *sc = ifp->if_softc;
972 
973 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
974 		ieee80211_state_name[vap->iv_state],
975 		ieee80211_state_name[nstate], sc->flags));
976 
977 	switch (nstate) {
978 	case IEEE80211_S_INIT:
979 		/*
980 		 * NB: don't try to do this if iwi_stop_master has
981 		 *     shutdown the firmware and disabled interrupts.
982 		 */
983 		if (vap->iv_state == IEEE80211_S_RUN &&
984 		    (sc->flags & IWI_FLAG_FW_INITED))
985 			iwi_disassociate(sc, 0);
986 		break;
987 	case IEEE80211_S_AUTH:
988 		iwi_auth_and_assoc(sc, vap);
989 		break;
990 	case IEEE80211_S_RUN:
991 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
992 		    vap->iv_state == IEEE80211_S_SCAN) {
993 			/*
994 			 * XXX when joining an ibss network we are called
995 			 * with a SCAN -> RUN transition on scan complete.
996 			 * Use that to call iwi_auth_and_assoc.  On completing
997 			 * the join we are then called again with an
998 			 * AUTH -> RUN transition and we want to do nothing.
999 			 * This is all totally bogus and needs to be redone.
1000 			 */
1001 			iwi_auth_and_assoc(sc, vap);
1002 		}
1003 		break;
1004 	case IEEE80211_S_ASSOC:
1005 		/*
1006 		 * If we are transitioning from AUTH then just wait
1007 		 * for the ASSOC status to come back from the firmware.
1008 		 * Otherwise we need to issue the association request.
1009 		 */
1010 		if (vap->iv_state == IEEE80211_S_AUTH)
1011 			break;
1012 		iwi_auth_and_assoc(sc, vap);
1013 		break;
1014 	default:
1015 		break;
1016 	}
1017 
1018 	return ivp->iwi_newstate(vap, nstate, arg);
1019 }
1020 
1021 /*
1022  * WME parameters coming from IEEE 802.11e specification.  These values are
1023  * already declared in ieee80211_proto.c, but they are static so they can't
1024  * be reused here.
1025  */
1026 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = {
1027 	{ 0, 3, 5,  7,   0 },	/* WME_AC_BE */
1028 	{ 0, 3, 5, 10,   0 },	/* WME_AC_BK */
1029 	{ 0, 2, 4,  5, 188 },	/* WME_AC_VI */
1030 	{ 0, 2, 3,  4, 102 }	/* WME_AC_VO */
1031 };
1032 
1033 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = {
1034 	{ 0, 3, 4,  6,   0 },	/* WME_AC_BE */
1035 	{ 0, 3, 4, 10,   0 },	/* WME_AC_BK */
1036 	{ 0, 2, 3,  4,  94 },	/* WME_AC_VI */
1037 	{ 0, 2, 2,  3,  47 }	/* WME_AC_VO */
1038 };
1039 #define IWI_EXP2(v)	htole16((1 << (v)) - 1)
1040 #define IWI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
1041 
1042 static void
1043 iwi_wme_init(struct iwi_softc *sc)
1044 {
1045 	const struct wmeParams *wmep;
1046 	int ac;
1047 
1048 	memset(sc->wme, 0, sizeof sc->wme);
1049 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1050 		/* set WME values for CCK modulation */
1051 		wmep = &iwi_wme_cck_params[ac];
1052 		sc->wme[1].aifsn[ac] = wmep->wmep_aifsn;
1053 		sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1054 		sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1055 		sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1056 		sc->wme[1].acm[ac]   = wmep->wmep_acm;
1057 
1058 		/* set WME values for OFDM modulation */
1059 		wmep = &iwi_wme_ofdm_params[ac];
1060 		sc->wme[2].aifsn[ac] = wmep->wmep_aifsn;
1061 		sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1062 		sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1063 		sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1064 		sc->wme[2].acm[ac]   = wmep->wmep_acm;
1065 	}
1066 }
1067 
1068 static int
1069 iwi_wme_setparams(struct iwi_softc *sc, struct ieee80211com *ic)
1070 {
1071 	const struct wmeParams *wmep;
1072 	int ac;
1073 
1074 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1075 		/* set WME values for current operating mode */
1076 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
1077 		sc->wme[0].aifsn[ac] = wmep->wmep_aifsn;
1078 		sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1079 		sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1080 		sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1081 		sc->wme[0].acm[ac]   = wmep->wmep_acm;
1082 	}
1083 
1084 	DPRINTF(("Setting WME parameters\n"));
1085 	return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme);
1086 }
1087 #undef IWI_USEC
1088 #undef IWI_EXP2
1089 
1090 static void
1091 iwi_update_wme_task(void *arg, int npending)
1092 {
1093 	struct ieee80211com *ic = arg;
1094 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
1095 
1096 	wlan_serialize_enter();
1097 	(void) iwi_wme_setparams(sc, ic);
1098 	wlan_serialize_exit();
1099 }
1100 
1101 static int
1102 iwi_wme_update(struct ieee80211com *ic)
1103 {
1104 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
1105 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1106 
1107 	/*
1108 	 * We may be called to update the WME parameters in
1109 	 * the adapter at various places.  If we're already
1110 	 * associated then initiate the request immediately;
1111 	 * otherwise we assume the params will get sent down
1112 	 * to the adapter as part of the work iwi_auth_and_assoc
1113 	 * does.
1114 	 */
1115 	if (vap->iv_state == IEEE80211_S_RUN)
1116 		ieee80211_runtask(ic, &sc->sc_wmetask);
1117 	return (0);
1118 }
1119 
1120 static int
1121 iwi_wme_setie(struct iwi_softc *sc)
1122 {
1123 	struct ieee80211_wme_info wme;
1124 
1125 	memset(&wme, 0, sizeof wme);
1126 	wme.wme_id = IEEE80211_ELEMID_VENDOR;
1127 	wme.wme_len = sizeof (struct ieee80211_wme_info) - 2;
1128 	wme.wme_oui[0] = 0x00;
1129 	wme.wme_oui[1] = 0x50;
1130 	wme.wme_oui[2] = 0xf2;
1131 	wme.wme_type = WME_OUI_TYPE;
1132 	wme.wme_subtype = WME_INFO_OUI_SUBTYPE;
1133 	wme.wme_version = WME_VERSION;
1134 	wme.wme_info = 0;
1135 
1136 	DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len));
1137 	return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme);
1138 }
1139 
1140 /*
1141  * Read 16 bits at address 'addr' from the serial EEPROM.
1142  */
1143 static uint16_t
1144 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr)
1145 {
1146 	uint32_t tmp;
1147 	uint16_t val;
1148 	int n;
1149 
1150 	/* clock C once before the first command */
1151 	IWI_EEPROM_CTL(sc, 0);
1152 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1153 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1154 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1155 
1156 	/* write start bit (1) */
1157 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1158 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1159 
1160 	/* write READ opcode (10) */
1161 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1162 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1163 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1164 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1165 
1166 	/* write address A7-A0 */
1167 	for (n = 7; n >= 0; n--) {
1168 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1169 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D));
1170 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1171 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C);
1172 	}
1173 
1174 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1175 
1176 	/* read data Q15-Q0 */
1177 	val = 0;
1178 	for (n = 15; n >= 0; n--) {
1179 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1180 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1181 		tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL);
1182 		val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n;
1183 	}
1184 
1185 	IWI_EEPROM_CTL(sc, 0);
1186 
1187 	/* clear Chip Select and clock C */
1188 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1189 	IWI_EEPROM_CTL(sc, 0);
1190 	IWI_EEPROM_CTL(sc, IWI_EEPROM_C);
1191 
1192 	return val;
1193 }
1194 
1195 static void
1196 iwi_setcurchan(struct iwi_softc *sc, int chan)
1197 {
1198 	struct ifnet *ifp = sc->sc_ifp;
1199 	struct ieee80211com *ic = ifp->if_l2com;
1200 
1201 	sc->curchan = chan;
1202 	ieee80211_radiotap_chan_change(ic);
1203 }
1204 
1205 static void
1206 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i,
1207     struct iwi_frame *frame)
1208 {
1209 	struct ifnet *ifp = sc->sc_ifp;
1210 	struct ieee80211com *ic = ifp->if_l2com;
1211 	struct mbuf *mnew, *m;
1212 	struct ieee80211_node *ni;
1213 	int type, error, framelen;
1214 	int8_t rssi, nf;
1215 
1216 	framelen = le16toh(frame->len);
1217 	if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) {
1218 		/*
1219 		 * XXX >MCLBYTES is bogus as it means the h/w dma'd
1220 		 *     out of bounds; need to figure out how to limit
1221 		 *     frame size in the firmware
1222 		 */
1223 		/* XXX stat */
1224 		DPRINTFN(1,
1225 		    ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1226 		    le16toh(frame->len), frame->chan, frame->rssi,
1227 		    frame->rssi_dbm));
1228 		return;
1229 	}
1230 
1231 	DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1232 	    le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm));
1233 
1234 	if (frame->chan != sc->curchan)
1235 		iwi_setcurchan(sc, frame->chan);
1236 
1237 	/*
1238 	 * Try to allocate a new mbuf for this ring element and load it before
1239 	 * processing the current mbuf. If the ring element cannot be loaded,
1240 	 * drop the received packet and reuse the old mbuf. In the unlikely
1241 	 * case that the old mbuf can't be reloaded either, explicitly panic.
1242 	 */
1243 	mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1244 	if (mnew == NULL) {
1245 		ifp->if_ierrors++;
1246 		return;
1247 	}
1248 
1249 	bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1250 
1251 	error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1252 	    mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr,
1253 	    0);
1254 	if (error != 0) {
1255 		m_freem(mnew);
1256 
1257 		/* try to reload the old mbuf */
1258 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1259 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
1260 		    &data->physaddr, 0);
1261 		if (error != 0) {
1262 			/* very unlikely that it will fail... */
1263 			panic("%s: could not load old rx mbuf",
1264 			    device_get_name(sc->sc_dev));
1265 		}
1266 		ifp->if_ierrors++;
1267 		return;
1268 	}
1269 
1270 	/*
1271 	 * New mbuf successfully loaded, update Rx ring and continue
1272 	 * processing.
1273 	 */
1274 	m = data->m;
1275 	data->m = mnew;
1276 	CSR_WRITE_4(sc, data->reg, data->physaddr);
1277 
1278 	/* finalize mbuf */
1279 	m->m_pkthdr.rcvif = ifp;
1280 	m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) +
1281 	    sizeof (struct iwi_frame) + framelen;
1282 
1283 	m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame));
1284 
1285 	rssi = frame->rssi_dbm;
1286 	nf = -95;
1287 	if (ieee80211_radiotap_active(ic)) {
1288 		struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap;
1289 
1290 		tap->wr_flags = 0;
1291 		tap->wr_antsignal = rssi;
1292 		tap->wr_antnoise = nf;
1293 		tap->wr_rate = iwi_cvtrate(frame->rate);
1294 		tap->wr_antenna = frame->antenna;
1295 	}
1296 
1297 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1298 	if (ni != NULL) {
1299 		type = ieee80211_input(ni, m, rssi, nf);
1300 		ieee80211_free_node(ni);
1301 	} else
1302 		type = ieee80211_input_all(ic, m, rssi, nf);
1303 
1304 	if (sc->sc_softled) {
1305 		/*
1306 		 * Blink for any data frame.  Otherwise do a
1307 		 * heartbeat-style blink when idle.  The latter
1308 		 * is mainly for station mode where we depend on
1309 		 * periodic beacon frames to trigger the poll event.
1310 		 */
1311 		if (type == IEEE80211_FC0_TYPE_DATA) {
1312 			sc->sc_rxrate = frame->rate;
1313 			iwi_led_event(sc, IWI_LED_RX);
1314 		} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
1315 			iwi_led_event(sc, IWI_LED_POLL);
1316 	}
1317 }
1318 
1319 /*
1320  * Check for an association response frame to see if QoS
1321  * has been negotiated.  We parse just enough to figure
1322  * out if we're supposed to use QoS.  The proper solution
1323  * is to pass the frame up so ieee80211_input can do the
1324  * work but that's made hard by how things currently are
1325  * done in the driver.
1326  */
1327 static void
1328 iwi_checkforqos(struct ieee80211vap *vap,
1329 	const struct ieee80211_frame *wh, int len)
1330 {
1331 #define	SUBTYPE(wh)	((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
1332 	const uint8_t *frm, *efrm, *wme;
1333 	struct ieee80211_node *ni;
1334 	uint16_t capinfo, status, associd;
1335 
1336 	/* NB: +8 for capinfo, status, associd, and first ie */
1337 	if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) ||
1338 	    SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP)
1339 		return;
1340 	/*
1341 	 * asresp frame format
1342 	 *	[2] capability information
1343 	 *	[2] status
1344 	 *	[2] association ID
1345 	 *	[tlv] supported rates
1346 	 *	[tlv] extended supported rates
1347 	 *	[tlv] WME
1348 	 */
1349 	frm = (const uint8_t *)&wh[1];
1350 	efrm = ((const uint8_t *) wh) + len;
1351 
1352 	capinfo = le16toh(*(const uint16_t *)frm);
1353 	frm += 2;
1354 	status = le16toh(*(const uint16_t *)frm);
1355 	frm += 2;
1356 	associd = le16toh(*(const uint16_t *)frm);
1357 	frm += 2;
1358 
1359 	wme = NULL;
1360 	while (frm < efrm) {
1361 		IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1], return);
1362 		switch (*frm) {
1363 		case IEEE80211_ELEMID_VENDOR:
1364 			if (iswmeoui(frm))
1365 				wme = frm;
1366 			break;
1367 		}
1368 		frm += frm[1] + 2;
1369 	}
1370 
1371 	ni = vap->iv_bss;
1372 	ni->ni_capinfo = capinfo;
1373 	ni->ni_associd = associd;
1374 	if (wme != NULL)
1375 		ni->ni_flags |= IEEE80211_NODE_QOS;
1376 	else
1377 		ni->ni_flags &= ~IEEE80211_NODE_QOS;
1378 #undef SUBTYPE
1379 }
1380 
1381 /*
1382  * Task queue callbacks for iwi_notification_intr used to avoid LOR's.
1383  */
1384 
1385 static void
1386 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif)
1387 {
1388 	struct ifnet *ifp = sc->sc_ifp;
1389 	struct ieee80211com *ic = ifp->if_l2com;
1390 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1391 	struct iwi_notif_scan_channel *chan;
1392 	struct iwi_notif_scan_complete *scan;
1393 	struct iwi_notif_authentication *auth;
1394 	struct iwi_notif_association *assoc;
1395 	struct iwi_notif_beacon_state *beacon;
1396 
1397 	switch (notif->type) {
1398 	case IWI_NOTIF_TYPE_SCAN_CHANNEL:
1399 		chan = (struct iwi_notif_scan_channel *)(notif + 1);
1400 
1401 		DPRINTFN(3, ("Scan of channel %u complete (%u)\n",
1402 		    ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan));
1403 
1404 		/* Reset the timer, the scan is still going */
1405 		sc->sc_state_timer = 3;
1406 		break;
1407 
1408 	case IWI_NOTIF_TYPE_SCAN_COMPLETE:
1409 		scan = (struct iwi_notif_scan_complete *)(notif + 1);
1410 
1411 		DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan,
1412 		    scan->status));
1413 
1414 		IWI_STATE_END(sc, IWI_FW_SCANNING);
1415 
1416 		if (scan->status == IWI_SCAN_COMPLETED) {
1417 			/* NB: don't need to defer, net80211 does it for us */
1418 			ieee80211_scan_next(vap);
1419 		}
1420 		break;
1421 
1422 	case IWI_NOTIF_TYPE_AUTHENTICATION:
1423 		auth = (struct iwi_notif_authentication *)(notif + 1);
1424 		switch (auth->state) {
1425 		case IWI_AUTH_SUCCESS:
1426 			DPRINTFN(2, ("Authentication succeeeded\n"));
1427 			ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1);
1428 			break;
1429 		case IWI_AUTH_FAIL:
1430 			/*
1431 			 * These are delivered as an unsolicited deauth
1432 			 * (e.g. due to inactivity) or in response to an
1433 			 * associate request.
1434 			 */
1435 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1436 			if (vap->iv_state != IEEE80211_S_RUN) {
1437 				DPRINTFN(2, ("Authentication failed\n"));
1438 				vap->iv_stats.is_rx_auth_fail++;
1439 				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1440 			} else {
1441 				DPRINTFN(2, ("Deauthenticated\n"));
1442 				vap->iv_stats.is_rx_deauth++;
1443 			}
1444 			ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1445 			break;
1446 		case IWI_AUTH_SENT_1:
1447 		case IWI_AUTH_RECV_2:
1448 		case IWI_AUTH_SEQ1_PASS:
1449 			break;
1450 		case IWI_AUTH_SEQ1_FAIL:
1451 			DPRINTFN(2, ("Initial authentication handshake failed; "
1452 				"you probably need shared key\n"));
1453 			vap->iv_stats.is_rx_auth_fail++;
1454 			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1455 			/* XXX retry shared key when in auto */
1456 			break;
1457 		default:
1458 			device_printf(sc->sc_dev,
1459 			    "unknown authentication state %u\n", auth->state);
1460 			break;
1461 		}
1462 		break;
1463 
1464 	case IWI_NOTIF_TYPE_ASSOCIATION:
1465 		assoc = (struct iwi_notif_association *)(notif + 1);
1466 		switch (assoc->state) {
1467 		case IWI_AUTH_SUCCESS:
1468 			/* re-association, do nothing */
1469 			break;
1470 		case IWI_ASSOC_SUCCESS:
1471 			DPRINTFN(2, ("Association succeeded\n"));
1472 			sc->flags |= IWI_FLAG_ASSOCIATED;
1473 			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1474 			iwi_checkforqos(vap,
1475 			    (const struct ieee80211_frame *)(assoc+1),
1476 			    le16toh(notif->len) - sizeof(*assoc));
1477 			ieee80211_new_state(vap, IEEE80211_S_RUN, -1);
1478 			break;
1479 		case IWI_ASSOC_INIT:
1480 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1481 			switch (sc->fw_state) {
1482 			case IWI_FW_ASSOCIATING:
1483 				DPRINTFN(2, ("Association failed\n"));
1484 				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1485 				ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1486 				break;
1487 
1488 			case IWI_FW_DISASSOCIATING:
1489 				DPRINTFN(2, ("Dissassociated\n"));
1490 				IWI_STATE_END(sc, IWI_FW_DISASSOCIATING);
1491 				vap->iv_stats.is_rx_disassoc++;
1492 				ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1493 				break;
1494 			}
1495 			break;
1496 		default:
1497 			device_printf(sc->sc_dev,
1498 			    "unknown association state %u\n", assoc->state);
1499 			break;
1500 		}
1501 		break;
1502 
1503 	case IWI_NOTIF_TYPE_BEACON:
1504 		/* XXX check struct length */
1505 		beacon = (struct iwi_notif_beacon_state *)(notif + 1);
1506 
1507 		DPRINTFN(5, ("Beacon state (%u, %u)\n",
1508 		    beacon->state, le32toh(beacon->number)));
1509 
1510 		if (beacon->state == IWI_BEACON_MISS) {
1511 			/*
1512 			 * The firmware notifies us of every beacon miss
1513 			 * so we need to track the count against the
1514 			 * configured threshold before notifying the
1515 			 * 802.11 layer.
1516 			 * XXX try to roam, drop assoc only on much higher count
1517 			 */
1518 			if (le32toh(beacon->number) >= vap->iv_bmissthreshold) {
1519 				DPRINTF(("Beacon miss: %u >= %u\n",
1520 				    le32toh(beacon->number),
1521 				    vap->iv_bmissthreshold));
1522 				vap->iv_stats.is_beacon_miss++;
1523 				/*
1524 				 * It's pointless to notify the 802.11 layer
1525 				 * as it'll try to send a probe request (which
1526 				 * we'll discard) and then timeout and drop us
1527 				 * into scan state.  Instead tell the firmware
1528 				 * to disassociate and then on completion we'll
1529 				 * kick the state machine to scan.
1530 				 */
1531 				ieee80211_runtask(ic, &sc->sc_disassoctask);
1532 			}
1533 		}
1534 		break;
1535 
1536 	case IWI_NOTIF_TYPE_CALIBRATION:
1537 	case IWI_NOTIF_TYPE_NOISE:
1538 	case IWI_NOTIF_TYPE_LINK_QUALITY:
1539 		DPRINTFN(5, ("Notification (%u)\n", notif->type));
1540 		break;
1541 
1542 	default:
1543 		DPRINTF(("unknown notification type %u flags 0x%x len %u\n",
1544 		    notif->type, notif->flags, le16toh(notif->len)));
1545 		break;
1546 	}
1547 }
1548 
1549 static void
1550 iwi_rx_intr(struct iwi_softc *sc)
1551 {
1552 	struct iwi_rx_data *data;
1553 	struct iwi_hdr *hdr;
1554 	uint32_t hw;
1555 
1556 	hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX);
1557 
1558 	for (; sc->rxq.cur != hw;) {
1559 		data = &sc->rxq.data[sc->rxq.cur];
1560 
1561 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1562 		    BUS_DMASYNC_POSTREAD);
1563 
1564 		hdr = mtod(data->m, struct iwi_hdr *);
1565 
1566 		switch (hdr->type) {
1567 		case IWI_HDR_TYPE_FRAME:
1568 			iwi_frame_intr(sc, data, sc->rxq.cur,
1569 			    (struct iwi_frame *)(hdr + 1));
1570 			break;
1571 
1572 		case IWI_HDR_TYPE_NOTIF:
1573 			iwi_notification_intr(sc,
1574 			    (struct iwi_notif *)(hdr + 1));
1575 			break;
1576 
1577 		default:
1578 			device_printf(sc->sc_dev, "unknown hdr type %u\n",
1579 			    hdr->type);
1580 		}
1581 
1582 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1583 
1584 		sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT;
1585 	}
1586 
1587 	/* tell the firmware what we have processed */
1588 	hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1;
1589 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw);
1590 }
1591 
1592 static void
1593 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq)
1594 {
1595 	struct ifnet *ifp = sc->sc_ifp;
1596 	struct iwi_tx_data *data;
1597 	uint32_t hw;
1598 
1599 	hw = CSR_READ_4(sc, txq->csr_ridx);
1600 
1601 	for (; txq->next != hw;) {
1602 		data = &txq->data[txq->next];
1603 
1604 		bus_dmamap_sync(txq->data_dmat, data->map,
1605 		    BUS_DMASYNC_POSTWRITE);
1606 		bus_dmamap_unload(txq->data_dmat, data->map);
1607 		if (data->m->m_flags & M_TXCB)
1608 			ieee80211_process_callback(data->ni, data->m, 0/*XXX*/);
1609 		m_freem(data->m);
1610 		data->m = NULL;
1611 		ieee80211_free_node(data->ni);
1612 		data->ni = NULL;
1613 
1614 		DPRINTFN(15, ("tx done idx=%u\n", txq->next));
1615 
1616 		ifp->if_opackets++;
1617 
1618 		txq->queued--;
1619 		txq->next = (txq->next + 1) % IWI_TX_RING_COUNT;
1620 	}
1621 
1622 	sc->sc_tx_timer = 0;
1623 	ifp->if_flags &= ~IFF_OACTIVE;
1624 
1625 	if (sc->sc_softled)
1626 		iwi_led_event(sc, IWI_LED_TX);
1627 
1628 	iwi_start_locked(ifp);
1629 }
1630 
1631 static void
1632 iwi_fatal_error_intr(struct iwi_softc *sc)
1633 {
1634 	struct ifnet *ifp = sc->sc_ifp;
1635 	struct ieee80211com *ic = ifp->if_l2com;
1636 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1637 
1638 	device_printf(sc->sc_dev, "firmware error\n");
1639 	if (vap != NULL)
1640 		ieee80211_cancel_scan(vap);
1641 	ieee80211_runtask(ic, &sc->sc_restarttask);
1642 
1643 	sc->flags &= ~IWI_FLAG_BUSY;
1644 	sc->sc_busy_timer = 0;
1645 	wakeup(sc);
1646 }
1647 
1648 static void
1649 iwi_radio_off_intr(struct iwi_softc *sc)
1650 {
1651 	struct ifnet *ifp = sc->sc_ifp;
1652 	struct ieee80211com *ic = ifp->if_l2com;
1653 
1654 	ieee80211_runtask(ic, &sc->sc_radiofftask);
1655 }
1656 
1657 static void
1658 iwi_intr(void *arg)
1659 {
1660 	struct iwi_softc *sc = arg;
1661 	uint32_t r;
1662 
1663 	if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) {
1664 		return;
1665 	}
1666 
1667 	/* acknowledge interrupts */
1668 	CSR_WRITE_4(sc, IWI_CSR_INTR, r);
1669 
1670 	if (r & IWI_INTR_FATAL_ERROR) {
1671 		iwi_fatal_error_intr(sc);
1672 		return;
1673 	}
1674 
1675 	if (r & IWI_INTR_FW_INITED) {
1676 		if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR)))
1677 			wakeup(sc);
1678 	}
1679 
1680 	if (r & IWI_INTR_RADIO_OFF)
1681 		iwi_radio_off_intr(sc);
1682 
1683 	if (r & IWI_INTR_CMD_DONE) {
1684 		sc->flags &= ~IWI_FLAG_BUSY;
1685 		sc->sc_busy_timer = 0;
1686 		wakeup(sc);
1687 	}
1688 
1689 	if (r & IWI_INTR_TX1_DONE)
1690 		iwi_tx_intr(sc, &sc->txq[0]);
1691 
1692 	if (r & IWI_INTR_TX2_DONE)
1693 		iwi_tx_intr(sc, &sc->txq[1]);
1694 
1695 	if (r & IWI_INTR_TX3_DONE)
1696 		iwi_tx_intr(sc, &sc->txq[2]);
1697 
1698 	if (r & IWI_INTR_TX4_DONE)
1699 		iwi_tx_intr(sc, &sc->txq[3]);
1700 
1701 	if (r & IWI_INTR_RX_DONE)
1702 		iwi_rx_intr(sc);
1703 
1704 	if (r & IWI_INTR_PARITY_ERROR) {
1705 		/* XXX rate-limit */
1706 		device_printf(sc->sc_dev, "parity error\n");
1707 	}
1708 }
1709 
1710 static int
1711 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len)
1712 {
1713 	struct iwi_cmd_desc *desc;
1714 
1715 	if (sc->flags & IWI_FLAG_BUSY) {
1716 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
1717 			__func__, type);
1718 		return EAGAIN;
1719 	}
1720 
1721 	sc->flags |= IWI_FLAG_BUSY;
1722 	sc->sc_busy_timer = 2;
1723 
1724 	desc = &sc->cmdq.desc[sc->cmdq.cur];
1725 
1726 	desc->hdr.type = IWI_HDR_TYPE_COMMAND;
1727 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1728 	desc->type = type;
1729 	desc->len = len;
1730 	memcpy(desc->data, data, len);
1731 
1732 	bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map,
1733 	    BUS_DMASYNC_PREWRITE);
1734 
1735 	DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur,
1736 	    type, len));
1737 
1738 	sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT;
1739 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
1740 
1741 	return zsleep(sc, &wlan_global_serializer, 0, "iwicmd", hz);
1742 }
1743 
1744 static void
1745 iwi_write_ibssnode(struct iwi_softc *sc,
1746 	const u_int8_t addr[IEEE80211_ADDR_LEN], int entry)
1747 {
1748 	struct iwi_ibssnode node;
1749 
1750 	/* write node information into NIC memory */
1751 	memset(&node, 0, sizeof node);
1752 	IEEE80211_ADDR_COPY(node.bssid, addr);
1753 
1754 	DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry));
1755 
1756 	CSR_WRITE_REGION_1(sc,
1757 	    IWI_CSR_NODE_BASE + entry * sizeof node,
1758 	    (uint8_t *)&node, sizeof node);
1759 }
1760 
1761 static int
1762 iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni,
1763     int ac)
1764 {
1765 	struct iwi_softc *sc = ifp->if_softc;
1766 	struct ieee80211vap *vap = ni->ni_vap;
1767 	struct ieee80211com *ic = ni->ni_ic;
1768 	struct iwi_node *in = (struct iwi_node *)ni;
1769 	const struct ieee80211_frame *wh;
1770 	struct ieee80211_key *k;
1771 	const struct chanAccParams *cap;
1772 	struct iwi_tx_ring *txq = &sc->txq[ac];
1773 	struct iwi_tx_data *data;
1774 	struct iwi_tx_desc *desc;
1775 	struct mbuf *mnew;
1776 	bus_dma_segment_t segs[IWI_MAX_NSEG];
1777 	int error, nsegs, hdrlen, i;
1778 	int ismcast, flags, xflags, staid;
1779 
1780 	wh = mtod(m0, const struct ieee80211_frame *);
1781 	/* NB: only data frames use this path */
1782 	hdrlen = ieee80211_hdrsize(wh);
1783 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1784 	flags = xflags = 0;
1785 
1786 	if (!ismcast)
1787 		flags |= IWI_DATA_FLAG_NEED_ACK;
1788 	if (vap->iv_flags & IEEE80211_F_SHPREAMBLE)
1789 		flags |= IWI_DATA_FLAG_SHPREAMBLE;
1790 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1791 		xflags |= IWI_DATA_XFLAG_QOS;
1792 		cap = &ic->ic_wme.wme_chanParams;
1793 		if (!cap->cap_wmeParams[ac].wmep_noackPolicy)
1794 			flags &= ~IWI_DATA_FLAG_NEED_ACK;
1795 	}
1796 
1797 	/*
1798 	 * This is only used in IBSS mode where the firmware expect an index
1799 	 * in a h/w table instead of a destination address.
1800 	 */
1801 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
1802 		if (!ismcast) {
1803 			if (in->in_station == -1) {
1804 				in->in_station = devfs_clone_bitmap_get(&sc->sc_unr,
1805 					IWI_MAX_IBSSNODE-1);
1806 				if (in->in_station == -1) {
1807 					/* h/w table is full */
1808 					m_freem(m0);
1809 					ieee80211_free_node(ni);
1810 					ifp->if_oerrors++;
1811 					return 0;
1812 				}
1813 				iwi_write_ibssnode(sc,
1814 					ni->ni_macaddr, in->in_station);
1815 			}
1816 			staid = in->in_station;
1817 		} else {
1818 			/*
1819 			 * Multicast addresses have no associated node
1820 			 * so there will be no station entry.  We reserve
1821 			 * entry 0 for one mcast address and use that.
1822 			 * If there are many being used this will be
1823 			 * expensive and we'll need to do a better job
1824 			 * but for now this handles the broadcast case.
1825 			 */
1826 			if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) {
1827 				IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1);
1828 				iwi_write_ibssnode(sc, sc->sc_mcast, 0);
1829 			}
1830 			staid = 0;
1831 		}
1832 	} else
1833 		staid = 0;
1834 
1835 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1836 		k = ieee80211_crypto_encap(ni, m0);
1837 		if (k == NULL) {
1838 			m_freem(m0);
1839 			return ENOBUFS;
1840 		}
1841 
1842 		/* packet header may have moved, reset our local pointer */
1843 		wh = mtod(m0, struct ieee80211_frame *);
1844 	}
1845 
1846 	if (ieee80211_radiotap_active_vap(vap)) {
1847 		struct iwi_tx_radiotap_header *tap = &sc->sc_txtap;
1848 
1849 		tap->wt_flags = 0;
1850 
1851 		ieee80211_radiotap_tx(vap, m0);
1852 	}
1853 
1854 	data = &txq->data[txq->cur];
1855 	desc = &txq->desc[txq->cur];
1856 
1857 	/* save and trim IEEE802.11 header */
1858 	m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh);
1859 	m_adj(m0, hdrlen);
1860 
1861 	error = bus_dmamap_load_mbuf_segment(txq->data_dmat, data->map,
1862 	    m0, segs, 1, &nsegs, BUS_DMA_NOWAIT);
1863 	if (error != 0 && error != EFBIG) {
1864 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1865 		    error);
1866 		m_freem(m0);
1867 		return error;
1868 	}
1869 	if (error != 0) {
1870 		mnew = m_defrag(m0, MB_DONTWAIT);
1871 		if (mnew == NULL) {
1872 			device_printf(sc->sc_dev,
1873 			    "could not defragment mbuf\n");
1874 			m_freem(m0);
1875 			return ENOBUFS;
1876 		}
1877 		m0 = mnew;
1878 
1879 		error = bus_dmamap_load_mbuf_segment(txq->data_dmat,
1880 		    data->map, m0, segs, 1, &nsegs, BUS_DMA_NOWAIT);
1881 		if (error != 0) {
1882 			device_printf(sc->sc_dev,
1883 			    "could not map mbuf (error %d)\n", error);
1884 			m_freem(m0);
1885 			return error;
1886 		}
1887 	}
1888 
1889 	data->m = m0;
1890 	data->ni = ni;
1891 
1892 	desc->hdr.type = IWI_HDR_TYPE_DATA;
1893 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1894 	desc->station = staid;
1895 	desc->cmd = IWI_DATA_CMD_TX;
1896 	desc->len = htole16(m0->m_pkthdr.len);
1897 	desc->flags = flags;
1898 	desc->xflags = xflags;
1899 
1900 #if 0
1901 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1902 		desc->wep_txkey = vap->iv_def_txkey;
1903 	else
1904 #endif
1905 		desc->flags |= IWI_DATA_FLAG_NO_WEP;
1906 
1907 	desc->nseg = htole32(nsegs);
1908 	for (i = 0; i < nsegs; i++) {
1909 		desc->seg_addr[i] = htole32(segs[i].ds_addr);
1910 		desc->seg_len[i]  = htole16(segs[i].ds_len);
1911 	}
1912 
1913 	bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1914 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1915 
1916 	DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n",
1917 	    ac, txq->cur, le16toh(desc->len), nsegs));
1918 
1919 	txq->queued++;
1920 	txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT;
1921 	CSR_WRITE_4(sc, txq->csr_widx, txq->cur);
1922 
1923 	return 0;
1924 }
1925 
1926 static int
1927 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1928 	const struct ieee80211_bpf_params *params)
1929 {
1930 	/* no support; just discard */
1931 	m_freem(m);
1932 	ieee80211_free_node(ni);
1933 	return 0;
1934 }
1935 
1936 static void
1937 iwi_start_locked(struct ifnet *ifp)
1938 {
1939 	struct iwi_softc *sc = ifp->if_softc;
1940 	struct mbuf *m;
1941 	struct ieee80211_node *ni;
1942 	int ac;
1943 
1944 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1945 		return;
1946 
1947 	for (;;) {
1948 		IF_DEQUEUE(&ifp->if_snd, m);
1949 		if (m == NULL)
1950 			break;
1951 		ac = M_WME_GETAC(m);
1952 		if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) {
1953 			/* there is no place left in this ring; tail drop */
1954 			/* XXX tail drop */
1955 			IF_PREPEND(&ifp->if_snd, m);
1956 			ifp->if_flags |= IFF_OACTIVE;
1957 			break;
1958 		}
1959 
1960 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1961 		if (iwi_tx_start(ifp, m, ni, ac) != 0) {
1962 			ieee80211_free_node(ni);
1963 			ifp->if_oerrors++;
1964 			break;
1965 		}
1966 
1967 		sc->sc_tx_timer = 5;
1968 	}
1969 }
1970 
1971 static void
1972 iwi_start(struct ifnet *ifp)
1973 {
1974 	iwi_start_locked(ifp);
1975 }
1976 
1977 static void
1978 iwi_watchdog(void *arg)
1979 {
1980 	struct iwi_softc *sc = arg;
1981 	struct ifnet *ifp = sc->sc_ifp;
1982 	struct ieee80211com *ic = ifp->if_l2com;
1983 
1984 	wlan_serialize_enter();
1985 	if (sc->sc_tx_timer > 0) {
1986 		if (--sc->sc_tx_timer == 0) {
1987 			if_printf(ifp, "device timeout\n");
1988 			ifp->if_oerrors++;
1989 			wlan_serialize_exit();
1990 			ieee80211_runtask(ic, &sc->sc_restarttask);
1991 			wlan_serialize_enter();
1992 		}
1993 	}
1994 	if (sc->sc_state_timer > 0) {
1995 		if (--sc->sc_state_timer == 0) {
1996 			if_printf(ifp, "firmware stuck in state %d, resetting\n",
1997 			    sc->fw_state);
1998 			if (sc->fw_state == IWI_FW_SCANNING) {
1999 				struct ieee80211com *ic = ifp->if_l2com;
2000 				ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps));
2001 			}
2002 			wlan_serialize_exit();
2003 			ieee80211_runtask(ic, &sc->sc_restarttask);
2004 			wlan_serialize_enter();
2005 			sc->sc_state_timer = 3;
2006 		}
2007 	}
2008 	if (sc->sc_busy_timer > 0) {
2009 		if (--sc->sc_busy_timer == 0) {
2010 			if_printf(ifp, "firmware command timeout, resetting\n");
2011 			wlan_serialize_exit();
2012 			ieee80211_runtask(ic, &sc->sc_restarttask);
2013 			wlan_serialize_enter();
2014 		}
2015 	}
2016 	callout_reset(&sc->sc_wdtimer_callout, hz, iwi_watchdog, sc);
2017 	wlan_serialize_exit();
2018 }
2019 
2020 static int
2021 iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *ucred)
2022 {
2023 	struct iwi_softc *sc = ifp->if_softc;
2024 	struct ieee80211com *ic = ifp->if_l2com;
2025 	struct ifreq *ifr = (struct ifreq *) data;
2026 	int error = 0, startall = 0;
2027 
2028 	switch (cmd) {
2029 	case SIOCSIFFLAGS:
2030 		if (ifp->if_flags & IFF_UP) {
2031 			if (!(ifp->if_flags & IFF_RUNNING)) {
2032 				iwi_init_locked(sc);
2033 				startall = 1;
2034 			}
2035 		} else {
2036 			if (ifp->if_flags & IFF_RUNNING)
2037 				iwi_stop_locked(sc);
2038 		}
2039 		if (startall)
2040 			ieee80211_start_all(ic);
2041 		break;
2042 	case SIOCGIFMEDIA:
2043 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2044 		break;
2045 	case SIOCGIFADDR:
2046 		error = ether_ioctl(ifp, cmd, data);
2047 		break;
2048 	default:
2049 		error = EINVAL;
2050 		break;
2051 	}
2052 	return error;
2053 }
2054 
2055 static void
2056 iwi_stop_master(struct iwi_softc *sc)
2057 {
2058 	uint32_t tmp;
2059 	int ntries;
2060 
2061 	/* disable interrupts */
2062 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
2063 
2064 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER);
2065 	for (ntries = 0; ntries < 5; ntries++) {
2066 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2067 			break;
2068 		DELAY(10);
2069 	}
2070 	if (ntries == 5)
2071 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2072 
2073 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2074 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET);
2075 
2076 	sc->flags &= ~IWI_FLAG_FW_INITED;
2077 }
2078 
2079 static int
2080 iwi_reset(struct iwi_softc *sc)
2081 {
2082 	uint32_t tmp;
2083 	int i, ntries;
2084 
2085 	iwi_stop_master(sc);
2086 
2087 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2088 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2089 
2090 	CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST);
2091 
2092 	/* wait for clock stabilization */
2093 	for (ntries = 0; ntries < 1000; ntries++) {
2094 		if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY)
2095 			break;
2096 		DELAY(200);
2097 	}
2098 	if (ntries == 1000) {
2099 		device_printf(sc->sc_dev,
2100 		    "timeout waiting for clock stabilization\n");
2101 		return EIO;
2102 	}
2103 
2104 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2105 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET);
2106 
2107 	DELAY(10);
2108 
2109 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2110 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2111 
2112 	/* clear NIC memory */
2113 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0);
2114 	for (i = 0; i < 0xc000; i++)
2115 		CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2116 
2117 	return 0;
2118 }
2119 
2120 static const struct iwi_firmware_ohdr *
2121 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw)
2122 {
2123 	const struct firmware *fp = fw->fp;
2124 	const struct iwi_firmware_ohdr *hdr;
2125 
2126 	if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) {
2127 		device_printf(sc->sc_dev, "image '%s' too small\n", fp->name);
2128 		return NULL;
2129 	}
2130 	hdr = (const struct iwi_firmware_ohdr *)fp->data;
2131 	if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) ||
2132 	    (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) {
2133 		device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n",
2134 		    fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)),
2135 		    IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR,
2136 		    IWI_FW_REQ_MINOR);
2137 		return NULL;
2138 	}
2139 	fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr);
2140 	fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr);
2141 	fw->name = fp->name;
2142 	return hdr;
2143 }
2144 
2145 static const struct iwi_firmware_ohdr *
2146 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw)
2147 {
2148 	const struct iwi_firmware_ohdr *hdr;
2149 
2150 	hdr = iwi_setup_ofw(sc, fw);
2151 	if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) {
2152 		device_printf(sc->sc_dev, "%s is not a ucode image\n",
2153 		    fw->name);
2154 		hdr = NULL;
2155 	}
2156 	return hdr;
2157 }
2158 
2159 static void
2160 iwi_getfw(struct iwi_fw *fw, const char *fwname,
2161 	  struct iwi_fw *uc, const char *ucname)
2162 {
2163 	wlan_assert_serialized();
2164 	wlan_serialize_exit();
2165 	if (fw->fp == NULL)
2166 		fw->fp = firmware_get(fwname);
2167 
2168 	/* NB: pre-3.0 ucode is packaged separately */
2169 	if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300)
2170 		uc->fp = firmware_get(ucname);
2171 	wlan_serialize_enter();
2172 }
2173 
2174 /*
2175  * Get the required firmware images if not already loaded.
2176  * Note that we hold firmware images so long as the device
2177  * is marked up in case we need to reload them on device init.
2178  * This is necessary because we re-init the device sometimes
2179  * from a context where we cannot read from the filesystem
2180  * (e.g. from the taskqueue thread when rfkill is re-enabled).
2181  * XXX return 0 on success, 1 on error.
2182  *
2183  * NB: the order of get'ing and put'ing images here is
2184  * intentional to support handling firmware images bundled
2185  * by operating mode and/or all together in one file with
2186  * the boot firmware as "master".
2187  */
2188 static int
2189 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode)
2190 {
2191 	const struct iwi_firmware_hdr *hdr;
2192 	const struct firmware *fp;
2193 
2194 	wlan_serialize_enter();
2195 
2196 	/* invalidate cached firmware on mode change */
2197 	if (sc->fw_mode != opmode)
2198 		iwi_put_firmware(sc);
2199 
2200 	switch (opmode) {
2201 	case IEEE80211_M_STA:
2202 		iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss");
2203 		break;
2204 	case IEEE80211_M_IBSS:
2205 		iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss");
2206 		break;
2207 	case IEEE80211_M_MONITOR:
2208 		iwi_getfw(&sc->fw_fw, "iwi_monitor",
2209 			  &sc->fw_uc, "iwi_ucode_monitor");
2210 		break;
2211 	default:
2212 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
2213 		wlan_serialize_exit();
2214 		return EINVAL;
2215 	}
2216 	fp = sc->fw_fw.fp;
2217 	if (fp == NULL) {
2218 		device_printf(sc->sc_dev, "could not load firmware\n");
2219 		goto bad;
2220 	}
2221 	if (fp->version < 300) {
2222 		/*
2223 		 * Firmware prior to 3.0 was packaged as separate
2224 		 * boot, firmware, and ucode images.  Verify the
2225 		 * ucode image was read in, retrieve the boot image
2226 		 * if needed, and check version stamps for consistency.
2227 		 * The version stamps in the data are also checked
2228 		 * above; this is a bit paranoid but is a cheap
2229 		 * safeguard against mis-packaging.
2230 		 */
2231 		if (sc->fw_uc.fp == NULL) {
2232 			device_printf(sc->sc_dev, "could not load ucode\n");
2233 			goto bad;
2234 		}
2235 		if (sc->fw_boot.fp == NULL) {
2236 			sc->fw_boot.fp = firmware_get("iwi_boot");
2237 			if (sc->fw_boot.fp == NULL) {
2238 				device_printf(sc->sc_dev,
2239 					"could not load boot firmware\n");
2240 				goto bad;
2241 			}
2242 		}
2243 		if (sc->fw_boot.fp->version != sc->fw_fw.fp->version ||
2244 		    sc->fw_boot.fp->version != sc->fw_uc.fp->version) {
2245 			device_printf(sc->sc_dev,
2246 			    "firmware version mismatch: "
2247 			    "'%s' is %d, '%s' is %d, '%s' is %d\n",
2248 			    sc->fw_boot.fp->name, sc->fw_boot.fp->version,
2249 			    sc->fw_uc.fp->name, sc->fw_uc.fp->version,
2250 			    sc->fw_fw.fp->name, sc->fw_fw.fp->version
2251 			);
2252 			goto bad;
2253 		}
2254 		/*
2255 		 * Check and setup each image.
2256 		 */
2257 		if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL ||
2258 		    iwi_setup_ofw(sc, &sc->fw_boot) == NULL ||
2259 		    iwi_setup_ofw(sc, &sc->fw_fw) == NULL)
2260 			goto bad;
2261 	} else {
2262 		/*
2263 		 * Check and setup combined image.
2264 		 */
2265 		if (fp->datasize < sizeof(struct iwi_firmware_hdr)) {
2266 			device_printf(sc->sc_dev, "image '%s' too small\n",
2267 			    fp->name);
2268 			goto bad;
2269 		}
2270 		hdr = (const struct iwi_firmware_hdr *)fp->data;
2271 		if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize)
2272 				+ le32toh(hdr->fsize)) {
2273 			device_printf(sc->sc_dev, "image '%s' too small (2)\n",
2274 			    fp->name);
2275 			goto bad;
2276 		}
2277 		sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr);
2278 		sc->fw_boot.size = le32toh(hdr->bsize);
2279 		sc->fw_boot.name = fp->name;
2280 		sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size;
2281 		sc->fw_uc.size = le32toh(hdr->usize);
2282 		sc->fw_uc.name = fp->name;
2283 		sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size;
2284 		sc->fw_fw.size = le32toh(hdr->fsize);
2285 		sc->fw_fw.name = fp->name;
2286 	}
2287 #if 0
2288 	device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n",
2289 		sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size);
2290 #endif
2291 
2292 	sc->fw_mode = opmode;
2293 	wlan_serialize_exit();
2294 	return 0;
2295 bad:
2296 	iwi_put_firmware(sc);
2297 	wlan_serialize_exit();
2298 	return 1;
2299 }
2300 
2301 static void
2302 iwi_put_fw(struct iwi_fw *fw)
2303 {
2304 	wlan_assert_serialized();
2305 	wlan_serialize_exit();
2306 	if (fw->fp != NULL) {
2307 		firmware_put(fw->fp, FIRMWARE_UNLOAD);
2308 		fw->fp = NULL;
2309 	}
2310 	wlan_serialize_enter();
2311 	fw->data = NULL;
2312 	fw->size = 0;
2313 	fw->name = NULL;
2314 }
2315 
2316 /*
2317  * Release any cached firmware images.
2318  */
2319 static void
2320 iwi_put_firmware(struct iwi_softc *sc)
2321 {
2322 	iwi_put_fw(&sc->fw_uc);
2323 	iwi_put_fw(&sc->fw_fw);
2324 	iwi_put_fw(&sc->fw_boot);
2325 }
2326 
2327 static int
2328 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw)
2329 {
2330 	uint32_t tmp;
2331 	const uint16_t *w;
2332 	const char *uc = fw->data;
2333 	size_t size = fw->size;
2334 	int i, ntries, error;
2335 
2336 	error = 0;
2337 	CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
2338 	    IWI_RST_STOP_MASTER);
2339 	for (ntries = 0; ntries < 5; ntries++) {
2340 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2341 			break;
2342 		DELAY(10);
2343 	}
2344 	if (ntries == 5) {
2345 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2346 		error = EIO;
2347 		goto fail;
2348 	}
2349 
2350 	MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
2351 	DELAY(5000);
2352 
2353 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2354 	tmp &= ~IWI_RST_PRINCETON_RESET;
2355 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2356 
2357 	DELAY(5000);
2358 	MEM_WRITE_4(sc, 0x3000e0, 0);
2359 	DELAY(1000);
2360 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1);
2361 	DELAY(1000);
2362 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0);
2363 	DELAY(1000);
2364 	MEM_WRITE_1(sc, 0x200000, 0x00);
2365 	MEM_WRITE_1(sc, 0x200000, 0x40);
2366 	DELAY(1000);
2367 
2368 	/* write microcode into adapter memory */
2369 	for (w = (const uint16_t *)uc; size > 0; w++, size -= 2)
2370 		MEM_WRITE_2(sc, 0x200010, htole16(*w));
2371 
2372 	MEM_WRITE_1(sc, 0x200000, 0x00);
2373 	MEM_WRITE_1(sc, 0x200000, 0x80);
2374 
2375 	/* wait until we get an answer */
2376 	for (ntries = 0; ntries < 100; ntries++) {
2377 		if (MEM_READ_1(sc, 0x200000) & 1)
2378 			break;
2379 		DELAY(100);
2380 	}
2381 	if (ntries == 100) {
2382 		device_printf(sc->sc_dev,
2383 		    "timeout waiting for ucode to initialize\n");
2384 		error = EIO;
2385 		goto fail;
2386 	}
2387 
2388 	/* read the answer or the firmware will not initialize properly */
2389 	for (i = 0; i < 7; i++)
2390 		MEM_READ_4(sc, 0x200004);
2391 
2392 	MEM_WRITE_1(sc, 0x200000, 0x00);
2393 
2394 fail:
2395 	return error;
2396 }
2397 
2398 /* macro to handle unaligned little endian data in firmware image */
2399 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
2400 
2401 static int
2402 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw)
2403 {
2404 	u_char *p, *end;
2405 	uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp;
2406 	int ntries, error;
2407 
2408 	/* copy firmware image to DMA memory */
2409 	memcpy(sc->fw_virtaddr, fw->data, fw->size);
2410 
2411 	/* make sure the adapter will get up-to-date values */
2412 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE);
2413 
2414 	/* tell the adapter where the command blocks are stored */
2415 	MEM_WRITE_4(sc, 0x3000a0, 0x27000);
2416 
2417 	/*
2418 	 * Store command blocks into adapter's internal memory using register
2419 	 * indirections. The adapter will read the firmware image through DMA
2420 	 * using information stored in command blocks.
2421 	 */
2422 	src = sc->fw_physaddr;
2423 	p = sc->fw_virtaddr;
2424 	end = p + fw->size;
2425 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000);
2426 
2427 	while (p < end) {
2428 		dst = GETLE32(p); p += 4; src += 4;
2429 		len = GETLE32(p); p += 4; src += 4;
2430 		p += len;
2431 
2432 		while (len > 0) {
2433 			mlen = min(len, IWI_CB_MAXDATALEN);
2434 
2435 			ctl = IWI_CB_DEFAULT_CTL | mlen;
2436 			sum = ctl ^ src ^ dst;
2437 
2438 			/* write a command block */
2439 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl);
2440 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src);
2441 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst);
2442 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum);
2443 
2444 			src += mlen;
2445 			dst += mlen;
2446 			len -= mlen;
2447 		}
2448 	}
2449 
2450 	/* write a fictive final command block (sentinel) */
2451 	sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR);
2452 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2453 
2454 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2455 	tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER);
2456 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2457 
2458 	/* tell the adapter to start processing command blocks */
2459 	MEM_WRITE_4(sc, 0x3000a4, 0x540100);
2460 
2461 	/* wait until the adapter reaches the sentinel */
2462 	for (ntries = 0; ntries < 400; ntries++) {
2463 		if (MEM_READ_4(sc, 0x3000d0) >= sentinel)
2464 			break;
2465 		DELAY(100);
2466 	}
2467 	/* sync dma, just in case */
2468 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE);
2469 	if (ntries == 400) {
2470 		device_printf(sc->sc_dev,
2471 		    "timeout processing command blocks for %s firmware\n",
2472 		    fw->name);
2473 		return EIO;
2474 	}
2475 
2476 	/* we're done with command blocks processing */
2477 	MEM_WRITE_4(sc, 0x3000a4, 0x540c00);
2478 
2479 	/* allow interrupts so we know when the firmware is ready */
2480 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK);
2481 
2482 	/* tell the adapter to initialize the firmware */
2483 	CSR_WRITE_4(sc, IWI_CSR_RST, 0);
2484 
2485 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2486 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY);
2487 
2488 	/* wait at most one second for firmware initialization to complete */
2489 	error = zsleep(sc, &wlan_global_serializer, 0, "iwiinit", hz);
2490 	if (error != 0) {
2491 		device_printf(sc->sc_dev, "timeout waiting for firmware "
2492 			    "initialization to complete\n");
2493 	}
2494 
2495 	return error;
2496 }
2497 
2498 static int
2499 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap)
2500 {
2501 	uint32_t data;
2502 
2503 	if (vap->iv_flags & IEEE80211_F_PMGTON) {
2504 		/* XXX set more fine-grained operation */
2505 		data = htole32(IWI_POWER_MODE_MAX);
2506 	} else
2507 		data = htole32(IWI_POWER_MODE_CAM);
2508 
2509 	DPRINTF(("Setting power mode to %u\n", le32toh(data)));
2510 	return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data);
2511 }
2512 
2513 static int
2514 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap)
2515 {
2516 	struct iwi_wep_key wepkey;
2517 	struct ieee80211_key *wk;
2518 	int error, i;
2519 
2520 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2521 		wk = &vap->iv_nw_keys[i];
2522 
2523 		wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY;
2524 		wepkey.idx = i;
2525 		wepkey.len = wk->wk_keylen;
2526 		memset(wepkey.key, 0, sizeof wepkey.key);
2527 		memcpy(wepkey.key, wk->wk_key, wk->wk_keylen);
2528 		DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx,
2529 		    wepkey.len));
2530 		error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey,
2531 		    sizeof wepkey);
2532 		if (error != 0)
2533 			return error;
2534 	}
2535 	return 0;
2536 }
2537 
2538 static int
2539 iwi_config(struct iwi_softc *sc)
2540 {
2541 	struct ifnet *ifp = sc->sc_ifp;
2542 	struct ieee80211com *ic = ifp->if_l2com;
2543 	struct iwi_configuration config;
2544 	struct iwi_rateset rs;
2545 	struct iwi_txpower power;
2546 	uint32_t data;
2547 	int error, i;
2548 	const uint8_t *eaddr = IF_LLADDR(ifp);
2549 
2550 	DPRINTF(("Setting MAC address to %6D\n", eaddr, ":"));
2551 	error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, IF_LLADDR(ifp),
2552 	    IEEE80211_ADDR_LEN);
2553 	if (error != 0)
2554 		return error;
2555 
2556 	memset(&config, 0, sizeof config);
2557 	config.bluetooth_coexistence = sc->bluetooth;
2558 	config.silence_threshold = 0x1e;
2559 	config.antenna = sc->antenna;
2560 	config.multicast_enabled = 1;
2561 	config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2562 	config.disable_unicast_decryption = 1;
2563 	config.disable_multicast_decryption = 1;
2564 	DPRINTF(("Configuring adapter\n"));
2565 	error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2566 	if (error != 0)
2567 		return error;
2568 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
2569 		power.mode = IWI_MODE_11B;
2570 		power.nchan = 11;
2571 		for (i = 0; i < 11; i++) {
2572 			power.chan[i].chan = i + 1;
2573 			power.chan[i].power = IWI_TXPOWER_MAX;
2574 		}
2575 		DPRINTF(("Setting .11b channels tx power\n"));
2576 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2577 		if (error != 0)
2578 			return error;
2579 
2580 		power.mode = IWI_MODE_11G;
2581 		DPRINTF(("Setting .11g channels tx power\n"));
2582 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2583 		if (error != 0)
2584 			return error;
2585 	}
2586 
2587 	memset(&rs, 0, sizeof rs);
2588 	rs.mode = IWI_MODE_11G;
2589 	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2590 	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates;
2591 	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates,
2592 	    rs.nrates);
2593 	DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates));
2594 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2595 	if (error != 0)
2596 		return error;
2597 
2598 	memset(&rs, 0, sizeof rs);
2599 	rs.mode = IWI_MODE_11A;
2600 	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2601 	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates;
2602 	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates,
2603 	    rs.nrates);
2604 	DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates));
2605 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2606 	if (error != 0)
2607 		return error;
2608 
2609 	data = htole32(karc4random());
2610 	DPRINTF(("Setting initialization vector to %u\n", le32toh(data)));
2611 	error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data);
2612 	if (error != 0)
2613 		return error;
2614 
2615 	/* enable adapter */
2616 	DPRINTF(("Enabling adapter\n"));
2617 	return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0);
2618 }
2619 
2620 static __inline void
2621 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type)
2622 {
2623 	uint8_t *st = &scan->scan_type[ix / 2];
2624 	if (ix % 2)
2625 		*st = (*st & 0xf0) | ((scan_type & 0xf) << 0);
2626 	else
2627 		*st = (*st & 0x0f) | ((scan_type & 0xf) << 4);
2628 }
2629 
2630 static int
2631 scan_type(const struct ieee80211_scan_state *ss,
2632 	const struct ieee80211_channel *chan)
2633 {
2634 	/* We can only set one essid for a directed scan */
2635 	if (ss->ss_nssid != 0)
2636 		return IWI_SCAN_TYPE_BDIRECTED;
2637 	if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) &&
2638 	    (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0)
2639 		return IWI_SCAN_TYPE_BROADCAST;
2640 	return IWI_SCAN_TYPE_PASSIVE;
2641 }
2642 
2643 static __inline int
2644 scan_band(const struct ieee80211_channel *c)
2645 {
2646 	return IEEE80211_IS_CHAN_5GHZ(c) ?  IWI_CHAN_5GHZ : IWI_CHAN_2GHZ;
2647 }
2648 
2649 /*
2650  * Start a scan on the current channel or all channels.
2651  */
2652 static int
2653 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan)
2654 {
2655 	struct ieee80211com *ic;
2656 	struct ieee80211_channel *chan;
2657 	struct ieee80211_scan_state *ss;
2658 	struct iwi_scan_ext scan;
2659 	int error = 0;
2660 
2661 	if (sc->fw_state == IWI_FW_SCANNING) {
2662 		/*
2663 		 * This should not happen as we only trigger scan_next after
2664 		 * completion
2665 		 */
2666 		DPRINTF(("%s: called too early - still scanning\n", __func__));
2667 		return (EBUSY);
2668 	}
2669 	IWI_STATE_BEGIN(sc, IWI_FW_SCANNING);
2670 
2671 	ic = sc->sc_ifp->if_l2com;
2672 	ss = ic->ic_scan;
2673 
2674 	memset(&scan, 0, sizeof scan);
2675 	scan.full_scan_index = htole32(++sc->sc_scangen);
2676 	scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell);
2677 	if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) {
2678 		/*
2679 		 * Use very short dwell times for when we send probe request
2680 		 * frames.  Without this bg scans hang.  Ideally this should
2681 		 * be handled with early-termination as done by net80211 but
2682 		 * that's not feasible (aborting a scan is problematic).
2683 		 */
2684 		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30);
2685 		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30);
2686 	} else {
2687 		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell);
2688 		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell);
2689 	}
2690 
2691 	/* We can only set one essid for a directed scan */
2692 	if (ss->ss_nssid != 0) {
2693 		error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid,
2694 		    ss->ss_ssid[0].len);
2695 		if (error)
2696 			return (error);
2697 	}
2698 
2699 	if (allchan) {
2700 		int i, next, band, b, bstart;
2701 		/*
2702 		 * Convert scan list to run-length encoded channel list
2703 		 * the firmware requires (preserving the order setup by
2704 		 * net80211).  The first entry in each run specifies the
2705 		 * band and the count of items in the run.
2706 		 */
2707 		next = 0;		/* next open slot */
2708 		bstart = 0;		/* NB: not needed, silence compiler */
2709 		band = -1;		/* NB: impossible value */
2710 		KASSERT(ss->ss_last > 0, ("no channels"));
2711 		for (i = 0; i < ss->ss_last; i++) {
2712 			chan = ss->ss_chans[i];
2713 			b = scan_band(chan);
2714 			if (b != band) {
2715 				if (band != -1)
2716 					scan.channels[bstart] =
2717 					    (next - bstart) | band;
2718 				/* NB: this allocates a slot for the run-len */
2719 				band = b, bstart = next++;
2720 			}
2721 			if (next >= IWI_SCAN_CHANNELS) {
2722 				DPRINTF(("truncating scan list\n"));
2723 				break;
2724 			}
2725 			scan.channels[next] = ieee80211_chan2ieee(ic, chan);
2726 			set_scan_type(&scan, next, scan_type(ss, chan));
2727 			next++;
2728 		}
2729 		scan.channels[bstart] = (next - bstart) | band;
2730 	} else {
2731 		/* Scan the current channel only */
2732 		chan = ic->ic_curchan;
2733 		scan.channels[0] = 1 | scan_band(chan);
2734 		scan.channels[1] = ieee80211_chan2ieee(ic, chan);
2735 		set_scan_type(&scan, 1, scan_type(ss, chan));
2736 	}
2737 #ifdef IWI_DEBUG
2738 	if (iwi_debug > 0) {
2739 		static const char *scantype[8] =
2740 		   { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" };
2741 		int i;
2742 		kprintf("Scan request: index %u dwell %d/%d/%d\n"
2743 		    , le32toh(scan.full_scan_index)
2744 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE])
2745 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST])
2746 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED])
2747 		);
2748 		i = 0;
2749 		do {
2750 			int run = scan.channels[i];
2751 			if (run == 0)
2752 				break;
2753 			kprintf("Scan %d %s channels:", run & 0x3f,
2754 			    run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz");
2755 			for (run &= 0x3f, i++; run > 0; run--, i++) {
2756 				uint8_t type = scan.scan_type[i/2];
2757 				kprintf(" %u/%s", scan.channels[i],
2758 				    scantype[(i & 1 ? type : type>>4) & 7]);
2759 			}
2760 			kprintf("\n");
2761 		} while (i < IWI_SCAN_CHANNELS);
2762 	}
2763 #endif
2764 
2765 	return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan));
2766 }
2767 
2768 static int
2769 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm)
2770 {
2771 	struct iwi_sensitivity sens;
2772 
2773 	DPRINTF(("Setting sensitivity to %d\n", rssi_dbm));
2774 
2775 	memset(&sens, 0, sizeof sens);
2776 	sens.rssi = htole16(rssi_dbm);
2777 	return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens);
2778 }
2779 
2780 static int
2781 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap)
2782 {
2783 	struct ieee80211com *ic = vap->iv_ic;
2784 	struct ifnet *ifp = vap->iv_ifp;
2785 	struct ieee80211_node *ni = vap->iv_bss;
2786 	struct iwi_configuration config;
2787 	struct iwi_associate *assoc = &sc->assoc;
2788 	struct iwi_rateset rs;
2789 	uint16_t capinfo;
2790 	uint32_t data;
2791 	int error, mode;
2792 
2793 	if (sc->flags & IWI_FLAG_ASSOCIATED) {
2794 		DPRINTF(("Already associated\n"));
2795 		return (-1);
2796 	}
2797 
2798 	IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING);
2799 	error = 0;
2800 	mode = 0;
2801 
2802 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan))
2803 		mode = IWI_MODE_11A;
2804 	else if (IEEE80211_IS_CHAN_G(ic->ic_curchan))
2805 		mode = IWI_MODE_11G;
2806 	if (IEEE80211_IS_CHAN_B(ic->ic_curchan))
2807 		mode = IWI_MODE_11B;
2808 
2809 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2810 		memset(&config, 0, sizeof config);
2811 		config.bluetooth_coexistence = sc->bluetooth;
2812 		config.antenna = sc->antenna;
2813 		config.multicast_enabled = 1;
2814 		if (mode == IWI_MODE_11G)
2815 			config.use_protection = 1;
2816 		config.answer_pbreq =
2817 		    (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2818 		config.disable_unicast_decryption = 1;
2819 		config.disable_multicast_decryption = 1;
2820 		DPRINTF(("Configuring adapter\n"));
2821 		error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2822 		if (error != 0)
2823 			goto done;
2824 	}
2825 
2826 #ifdef IWI_DEBUG
2827 	if (iwi_debug > 0) {
2828 		kprintf("Setting ESSID to ");
2829 		ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
2830 		kprintf("\n");
2831 	}
2832 #endif
2833 	error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen);
2834 	if (error != 0)
2835 		goto done;
2836 
2837 	error = iwi_setpowermode(sc, vap);
2838 	if (error != 0)
2839 		goto done;
2840 
2841 	data = htole32(vap->iv_rtsthreshold);
2842 	DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
2843 	error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
2844 	if (error != 0)
2845 		goto done;
2846 
2847 	data = htole32(vap->iv_fragthreshold);
2848 	DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data)));
2849 	error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
2850 	if (error != 0)
2851 		goto done;
2852 
2853 	/* the rate set has already been "negotiated" */
2854 	memset(&rs, 0, sizeof rs);
2855 	rs.mode = mode;
2856 	rs.type = IWI_RATESET_TYPE_NEGOTIATED;
2857 	rs.nrates = ni->ni_rates.rs_nrates;
2858 	if (rs.nrates > IWI_RATESET_SIZE) {
2859 		DPRINTF(("Truncating negotiated rate set from %u\n",
2860 		    rs.nrates));
2861 		rs.nrates = IWI_RATESET_SIZE;
2862 	}
2863 	memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates);
2864 	DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates));
2865 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2866 	if (error != 0)
2867 		goto done;
2868 
2869 	memset(assoc, 0, sizeof *assoc);
2870 
2871 	if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) {
2872 		/* NB: don't treat WME setup as failure */
2873 		if (iwi_wme_setparams(sc, ic) == 0 && iwi_wme_setie(sc) == 0)
2874 			assoc->policy |= htole16(IWI_POLICY_WME);
2875 		/* XXX complain on failure? */
2876 	}
2877 
2878 	if (vap->iv_appie_wpa != NULL) {
2879 		struct ieee80211_appie *ie = vap->iv_appie_wpa;
2880 
2881 		DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len));
2882 		error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len);
2883 		if (error != 0)
2884 			goto done;
2885 	}
2886 
2887 	error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni));
2888 	if (error != 0)
2889 		goto done;
2890 
2891 	assoc->mode = mode;
2892 	assoc->chan = ic->ic_curchan->ic_ieee;
2893 	/*
2894 	 * NB: do not arrange for shared key auth w/o privacy
2895 	 *     (i.e. a wep key); it causes a firmware error.
2896 	 */
2897 	if ((vap->iv_flags & IEEE80211_F_PRIVACY) &&
2898 	    ni->ni_authmode == IEEE80211_AUTH_SHARED) {
2899 		assoc->auth = IWI_AUTH_SHARED;
2900 		/*
2901 		 * It's possible to have privacy marked but no default
2902 		 * key setup.  This typically is due to a user app bug
2903 		 * but if we blindly grab the key the firmware will
2904 		 * barf so avoid it for now.
2905 		 */
2906 		if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE)
2907 			assoc->auth |= vap->iv_def_txkey << 4;
2908 
2909 		error = iwi_setwepkeys(sc, vap);
2910 		if (error != 0)
2911 			goto done;
2912 	}
2913 	if (vap->iv_flags & IEEE80211_F_WPA)
2914 		assoc->policy |= htole16(IWI_POLICY_WPA);
2915 	if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0)
2916 		assoc->type = IWI_HC_IBSS_START;
2917 	else
2918 		assoc->type = IWI_HC_ASSOC;
2919 	memcpy(assoc->tstamp, ni->ni_tstamp.data, 8);
2920 
2921 	if (vap->iv_opmode == IEEE80211_M_IBSS)
2922 		capinfo = IEEE80211_CAPINFO_IBSS;
2923 	else
2924 		capinfo = IEEE80211_CAPINFO_ESS;
2925 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2926 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2927 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2928 	    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2929 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2930 	if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)
2931 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2932 	assoc->capinfo = htole16(capinfo);
2933 
2934 	assoc->lintval = htole16(ic->ic_lintval);
2935 	assoc->intval = htole16(ni->ni_intval);
2936 	IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid);
2937 	if (vap->iv_opmode == IEEE80211_M_IBSS)
2938 		IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr);
2939 	else
2940 		IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid);
2941 
2942 	DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x "
2943 	    "auth %u capinfo 0x%x lintval %u bintval %u\n",
2944 	    assoc->type == IWI_HC_IBSS_START ? "Start" : "Join",
2945 	    assoc->bssid, ":", assoc->dst, ":",
2946 	    assoc->chan, le16toh(assoc->policy), assoc->auth,
2947 	    le16toh(assoc->capinfo), le16toh(assoc->lintval),
2948 	    le16toh(assoc->intval)));
2949 	error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
2950 done:
2951 	if (error)
2952 		IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
2953 
2954 	return (error);
2955 }
2956 
2957 static void
2958 iwi_disassoc_task(void *arg, int pending)
2959 {
2960 	struct iwi_softc *sc = arg;
2961 
2962 	wlan_serialize_enter();
2963 	iwi_disassociate(sc, 0);
2964 	wlan_serialize_exit();
2965 }
2966 
2967 static int
2968 iwi_disassociate(struct iwi_softc *sc, int quiet)
2969 {
2970 	struct iwi_associate *assoc = &sc->assoc;
2971 
2972 	if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) {
2973 		DPRINTF(("Not associated\n"));
2974 		return (-1);
2975 	}
2976 
2977 	IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING);
2978 
2979 	if (quiet)
2980 		assoc->type = IWI_HC_DISASSOC_QUIET;
2981 	else
2982 		assoc->type = IWI_HC_DISASSOC;
2983 
2984 	DPRINTF(("Trying to disassociate from %6D channel %u\n",
2985 	    assoc->bssid, ":", assoc->chan));
2986 	return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
2987 }
2988 
2989 /*
2990  * release dma resources for the firmware
2991  */
2992 static void
2993 iwi_release_fw_dma(struct iwi_softc *sc)
2994 {
2995 	if (sc->fw_flags & IWI_FW_HAVE_PHY)
2996 		bus_dmamap_unload(sc->fw_dmat, sc->fw_map);
2997 	if (sc->fw_flags & IWI_FW_HAVE_MAP)
2998 		bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map);
2999 	if (sc->fw_flags & IWI_FW_HAVE_DMAT)
3000 		bus_dma_tag_destroy(sc->fw_dmat);
3001 
3002 	sc->fw_flags = 0;
3003 	sc->fw_dma_size = 0;
3004 	sc->fw_dmat = NULL;
3005 	sc->fw_map = NULL;
3006 	sc->fw_physaddr = 0;
3007 	sc->fw_virtaddr = NULL;
3008 }
3009 
3010 /*
3011  * allocate the dma descriptor for the firmware.
3012  * Return 0 on success, 1 on error.
3013  * Must be called unlocked, protected by IWI_FLAG_FW_LOADING.
3014  */
3015 static int
3016 iwi_init_fw_dma(struct iwi_softc *sc, int size)
3017 {
3018 	if (sc->fw_dma_size >= size)
3019 		return 0;
3020 	if (bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
3021 	    BUS_SPACE_MAXADDR, NULL, NULL, size, 1, size,
3022 	    0, &sc->fw_dmat) != 0) {
3023 		device_printf(sc->sc_dev,
3024 		    "could not create firmware DMA tag\n");
3025 		goto error;
3026 	}
3027 	sc->fw_flags |= IWI_FW_HAVE_DMAT;
3028 	if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0,
3029 	    &sc->fw_map) != 0) {
3030 		device_printf(sc->sc_dev,
3031 		    "could not allocate firmware DMA memory\n");
3032 		goto error;
3033 	}
3034 	sc->fw_flags |= IWI_FW_HAVE_MAP;
3035 	if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr,
3036 	    size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) {
3037 		device_printf(sc->sc_dev, "could not load firmware DMA map\n");
3038 		goto error;
3039 	}
3040 	sc->fw_flags |= IWI_FW_HAVE_PHY;
3041 	sc->fw_dma_size = size;
3042 	return 0;
3043 
3044 error:
3045 	iwi_release_fw_dma(sc);
3046 	return 1;
3047 }
3048 
3049 static void
3050 iwi_init_locked(struct iwi_softc *sc)
3051 {
3052 	struct ifnet *ifp = sc->sc_ifp;
3053 	struct iwi_rx_data *data;
3054 	int i;
3055 
3056 	if (sc->fw_state == IWI_FW_LOADING) {
3057 		device_printf(sc->sc_dev, "%s: already loading\n", __func__);
3058 		return;		/* XXX: condvar? */
3059 	}
3060 
3061 	iwi_stop_locked(sc);
3062 
3063 	IWI_STATE_BEGIN(sc, IWI_FW_LOADING);
3064 
3065 	if (iwi_reset(sc) != 0) {
3066 		device_printf(sc->sc_dev, "could not reset adapter\n");
3067 		goto fail;
3068 	}
3069 	if (iwi_load_firmware(sc, &sc->fw_boot) != 0) {
3070 		device_printf(sc->sc_dev,
3071 		    "could not load boot firmware %s\n", sc->fw_boot.name);
3072 		goto fail;
3073 	}
3074 	if (iwi_load_ucode(sc, &sc->fw_uc) != 0) {
3075 		device_printf(sc->sc_dev,
3076 		    "could not load microcode %s\n", sc->fw_uc.name);
3077 		goto fail;
3078 	}
3079 
3080 	iwi_stop_master(sc);
3081 
3082 	CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr);
3083 	CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count);
3084 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
3085 
3086 	CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr);
3087 	CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count);
3088 	CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur);
3089 
3090 	CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr);
3091 	CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count);
3092 	CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur);
3093 
3094 	CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr);
3095 	CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count);
3096 	CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur);
3097 
3098 	CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr);
3099 	CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count);
3100 	CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur);
3101 
3102 	for (i = 0; i < sc->rxq.count; i++) {
3103 		data = &sc->rxq.data[i];
3104 		CSR_WRITE_4(sc, data->reg, data->physaddr);
3105 	}
3106 
3107 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1);
3108 
3109 	if (iwi_load_firmware(sc, &sc->fw_fw) != 0) {
3110 		device_printf(sc->sc_dev,
3111 		    "could not load main firmware %s\n", sc->fw_fw.name);
3112 		goto fail;
3113 	}
3114 	sc->flags |= IWI_FLAG_FW_INITED;
3115 
3116 	IWI_STATE_END(sc, IWI_FW_LOADING);
3117 
3118 	if (iwi_config(sc) != 0) {
3119 		device_printf(sc->sc_dev, "unable to enable adapter\n");
3120 		goto fail2;
3121 	}
3122 
3123 	callout_reset(&sc->sc_wdtimer_callout, hz, iwi_watchdog, sc);
3124 	ifp->if_flags &= ~IFF_OACTIVE;
3125 	ifp->if_flags |= IFF_RUNNING;
3126 	return;
3127 fail:
3128 	IWI_STATE_END(sc, IWI_FW_LOADING);
3129 fail2:
3130 	iwi_stop_locked(sc);
3131 }
3132 
3133 static void
3134 iwi_init(void *priv)
3135 {
3136 	struct iwi_softc *sc = priv;
3137 	struct ifnet *ifp = sc->sc_ifp;
3138 	struct ieee80211com *ic = ifp->if_l2com;
3139 
3140 	iwi_init_locked(sc);
3141 
3142 	if (ifp->if_flags & IFF_RUNNING)
3143 		ieee80211_start_all(ic);
3144 }
3145 
3146 static void
3147 iwi_stop_locked(void *priv)
3148 {
3149 	struct iwi_softc *sc = priv;
3150 	struct ifnet *ifp = sc->sc_ifp;
3151 
3152 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3153 
3154 	if (sc->sc_softled) {
3155 		callout_stop(&sc->sc_ledtimer_callout);
3156 		sc->sc_blinking = 0;
3157 	}
3158 	callout_stop(&sc->sc_wdtimer_callout);
3159 	callout_stop(&sc->sc_rftimer_callout);
3160 
3161 	iwi_stop_master(sc);
3162 
3163 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET);
3164 
3165 	/* reset rings */
3166 	iwi_reset_cmd_ring(sc, &sc->cmdq);
3167 	iwi_reset_tx_ring(sc, &sc->txq[0]);
3168 	iwi_reset_tx_ring(sc, &sc->txq[1]);
3169 	iwi_reset_tx_ring(sc, &sc->txq[2]);
3170 	iwi_reset_tx_ring(sc, &sc->txq[3]);
3171 	iwi_reset_rx_ring(sc, &sc->rxq);
3172 
3173 	sc->sc_tx_timer = 0;
3174 	sc->sc_state_timer = 0;
3175 	sc->sc_busy_timer = 0;
3176 	sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED);
3177 	sc->fw_state = IWI_FW_IDLE;
3178 	wakeup(sc);
3179 }
3180 
3181 static void
3182 iwi_stop(struct iwi_softc *sc)
3183 {
3184 	iwi_stop_locked(sc);
3185 }
3186 
3187 static void
3188 iwi_restart_task(void *arg, int npending)
3189 {
3190 	struct iwi_softc *sc = arg;
3191 
3192 	wlan_serialize_enter();
3193 	iwi_init(sc);
3194 	wlan_serialize_exit();
3195 }
3196 
3197 /*
3198  * Return whether or not the radio is enabled in hardware
3199  * (i.e. the rfkill switch is "off").
3200  */
3201 static int
3202 iwi_getrfkill(struct iwi_softc *sc)
3203 {
3204 	return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0;
3205 }
3206 
3207 static void
3208 iwi_radio_on_task(void *arg, int pending)
3209 {
3210 	struct iwi_softc *sc = arg;
3211 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3212 
3213 	wlan_serialize_enter();
3214 	device_printf(sc->sc_dev, "radio turned on\n");
3215 
3216 	iwi_init(sc);
3217 	ieee80211_notify_radio(ic, 1);
3218 	wlan_serialize_exit();
3219 }
3220 
3221 static void
3222 iwi_rfkill_poll(void *arg)
3223 {
3224 	struct iwi_softc *sc = arg;
3225 
3226 	/*
3227 	 * Check for a change in rfkill state.  We get an
3228 	 * interrupt when a radio is disabled but not when
3229 	 * it is enabled so we must poll for the latter.
3230 	 */
3231 	if (!iwi_getrfkill(sc)) {
3232 		struct ifnet *ifp = sc->sc_ifp;
3233 		struct ieee80211com *ic = ifp->if_l2com;
3234 
3235 		ieee80211_runtask(ic, &sc->sc_radiontask);
3236 		return;
3237 	}
3238 	callout_reset(&sc->sc_rftimer_callout, 2*hz, iwi_rfkill_poll, sc);
3239 }
3240 
3241 static void
3242 iwi_radio_off_task(void *arg, int pending)
3243 {
3244 	struct iwi_softc *sc = arg;
3245 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3246 
3247 	wlan_serialize_enter();
3248 	device_printf(sc->sc_dev, "radio turned off\n");
3249 
3250 	ieee80211_notify_radio(ic, 0);
3251 
3252 	iwi_stop_locked(sc);
3253 	iwi_rfkill_poll(sc);
3254 	wlan_serialize_exit();
3255 }
3256 
3257 static int
3258 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS)
3259 {
3260 	struct iwi_softc *sc = arg1;
3261 	uint32_t size, buf[128];
3262 
3263 	memset(buf, 0, sizeof buf);
3264 
3265 	if (!(sc->flags & IWI_FLAG_FW_INITED))
3266 		return SYSCTL_OUT(req, buf, sizeof buf);
3267 
3268 	size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1);
3269 	CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size);
3270 
3271 	return SYSCTL_OUT(req, buf, size);
3272 }
3273 
3274 static int
3275 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS)
3276 {
3277 	struct iwi_softc *sc = arg1;
3278 	int val = !iwi_getrfkill(sc);
3279 
3280 	return SYSCTL_OUT(req, &val, sizeof val);
3281 }
3282 
3283 /*
3284  * Add sysctl knobs.
3285  */
3286 static void
3287 iwi_sysctlattach(struct iwi_softc *sc)
3288 {
3289 	struct sysctl_ctx_list *ctx;
3290 	struct sysctl_oid *tree;
3291 
3292 	ctx = &sc->sc_sysctl_ctx;
3293 	sysctl_ctx_init(ctx);
3294 
3295 	tree = SYSCTL_ADD_NODE(ctx, SYSCTL_STATIC_CHILDREN(_hw),
3296 	                       OID_AUTO,
3297 	                       device_get_nameunit(sc->sc_dev),
3298 	                       CTLFLAG_RD, 0, "");
3299 	if (tree == NULL) {
3300 		device_printf(sc->sc_dev, "can't add sysctl node\n");
3301 		return;
3302 	}
3303 
3304 	sc->sc_sysctl_tree = tree;
3305 
3306 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio",
3307 	    CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I",
3308 	    "radio transmitter switch state (0=off, 1=on)");
3309 
3310 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats",
3311 	    CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S",
3312 	    "statistics");
3313 
3314 	sc->bluetooth = 0;
3315 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth",
3316 	    CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence");
3317 
3318 	sc->antenna = IWI_ANTENNA_AUTO;
3319 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna",
3320 	    CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)");
3321 }
3322 
3323 /*
3324  * LED support.
3325  *
3326  * Different cards have different capabilities.  Some have three
3327  * led's while others have only one.  The linux ipw driver defines
3328  * led's for link state (associated or not), band (11a, 11g, 11b),
3329  * and for link activity.  We use one led and vary the blink rate
3330  * according to the tx/rx traffic a la the ath driver.
3331  */
3332 
3333 static __inline uint32_t
3334 iwi_toggle_event(uint32_t r)
3335 {
3336 	return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA |
3337 		     IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA);
3338 }
3339 
3340 static uint32_t
3341 iwi_read_event(struct iwi_softc *sc)
3342 {
3343 	return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT);
3344 }
3345 
3346 static void
3347 iwi_write_event(struct iwi_softc *sc, uint32_t v)
3348 {
3349 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v);
3350 }
3351 
3352 static void
3353 iwi_led_done(void *arg)
3354 {
3355 	struct iwi_softc *sc = arg;
3356 
3357 	sc->sc_blinking = 0;
3358 }
3359 
3360 /*
3361  * Turn the activity LED off: flip the pin and then set a timer so no
3362  * update will happen for the specified duration.
3363  */
3364 static void
3365 iwi_led_off(void *arg)
3366 {
3367 	struct iwi_softc *sc = arg;
3368 	uint32_t v;
3369 
3370 	v = iwi_read_event(sc);
3371 	v &= ~sc->sc_ledpin;
3372 	iwi_write_event(sc, iwi_toggle_event(v));
3373 	callout_reset(&sc->sc_ledtimer_callout, sc->sc_ledoff, iwi_led_done, sc);
3374 }
3375 
3376 /*
3377  * Blink the LED according to the specified on/off times.
3378  */
3379 static void
3380 iwi_led_blink(struct iwi_softc *sc, int on, int off)
3381 {
3382 	uint32_t v;
3383 
3384 	v = iwi_read_event(sc);
3385 	v |= sc->sc_ledpin;
3386 	iwi_write_event(sc, iwi_toggle_event(v));
3387 	sc->sc_blinking = 1;
3388 	sc->sc_ledoff = off;
3389 	callout_reset(&sc->sc_ledtimer_callout, on, iwi_led_off, sc);
3390 }
3391 
3392 static void
3393 iwi_led_event(struct iwi_softc *sc, int event)
3394 {
3395 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
3396 	static const struct {
3397 		u_int		rate;		/* tx/rx iwi rate */
3398 		u_int16_t	timeOn;		/* LED on time (ms) */
3399 		u_int16_t	timeOff;	/* LED off time (ms) */
3400 	} blinkrates[] = {
3401 		{ IWI_RATE_OFDM54, 40,  10 },
3402 		{ IWI_RATE_OFDM48, 44,  11 },
3403 		{ IWI_RATE_OFDM36, 50,  13 },
3404 		{ IWI_RATE_OFDM24, 57,  14 },
3405 		{ IWI_RATE_OFDM18, 67,  16 },
3406 		{ IWI_RATE_OFDM12, 80,  20 },
3407 		{ IWI_RATE_DS11,  100,  25 },
3408 		{ IWI_RATE_OFDM9, 133,  34 },
3409 		{ IWI_RATE_OFDM6, 160,  40 },
3410 		{ IWI_RATE_DS5,   200,  50 },
3411 		{            6,   240,  58 },	/* XXX 3Mb/s if it existed */
3412 		{ IWI_RATE_DS2,   267,  66 },
3413 		{ IWI_RATE_DS1,   400, 100 },
3414 		{            0,   500, 130 },	/* unknown rate/polling */
3415 	};
3416 	uint32_t txrate;
3417 	int j = 0;			/* XXX silence compiler */
3418 
3419 	sc->sc_ledevent = ticks;	/* time of last event */
3420 	if (sc->sc_blinking)		/* don't interrupt active blink */
3421 		return;
3422 	switch (event) {
3423 	case IWI_LED_POLL:
3424 		j = NELEM(blinkrates)-1;
3425 		break;
3426 	case IWI_LED_TX:
3427 		/* read current transmission rate from adapter */
3428 		txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE);
3429 		if (blinkrates[sc->sc_txrix].rate != txrate) {
3430 			for (j = 0; j < NELEM(blinkrates)-1; j++)
3431 				if (blinkrates[j].rate == txrate)
3432 					break;
3433 			sc->sc_txrix = j;
3434 		} else
3435 			j = sc->sc_txrix;
3436 		break;
3437 	case IWI_LED_RX:
3438 		if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) {
3439 			for (j = 0; j < NELEM(blinkrates)-1; j++)
3440 				if (blinkrates[j].rate == sc->sc_rxrate)
3441 					break;
3442 			sc->sc_rxrix = j;
3443 		} else
3444 			j = sc->sc_rxrix;
3445 		break;
3446 	}
3447 	/* XXX beware of overflow */
3448 	iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000,
3449 		(blinkrates[j].timeOff * hz) / 1000);
3450 }
3451 
3452 static int
3453 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS)
3454 {
3455 	struct iwi_softc *sc = arg1;
3456 	int softled = sc->sc_softled;
3457 	int error;
3458 
3459 	error = sysctl_handle_int(oidp, &softled, 0, req);
3460 	if (error || !req->newptr)
3461 		return error;
3462 	softled = (softled != 0);
3463 	if (softled != sc->sc_softled) {
3464 		if (softled) {
3465 			uint32_t v = iwi_read_event(sc);
3466 			v &= ~sc->sc_ledpin;
3467 			iwi_write_event(sc, iwi_toggle_event(v));
3468 		}
3469 		sc->sc_softled = softled;
3470 	}
3471 	return 0;
3472 }
3473 
3474 static void
3475 iwi_ledattach(struct iwi_softc *sc)
3476 {
3477 	struct sysctl_ctx_list *ctx = &sc->sc_sysctl_ctx;
3478 	struct sysctl_oid *tree = sc->sc_sysctl_tree;
3479 
3480 	sc->sc_blinking = 0;
3481 	sc->sc_ledstate = 1;
3482 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
3483 	callout_init(&sc->sc_ledtimer_callout);
3484 
3485 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3486 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
3487 		iwi_sysctl_softled, "I", "enable/disable software LED support");
3488 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3489 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
3490 		"pin setting to turn activity LED on");
3491 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3492 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
3493 		"idle time for inactivity LED (ticks)");
3494 	/* XXX for debugging */
3495 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3496 		"nictype", CTLFLAG_RD, &sc->sc_nictype, 0,
3497 		"NIC type from EEPROM");
3498 
3499 	sc->sc_ledpin = IWI_RST_LED_ACTIVITY;
3500 	sc->sc_softled = 1;
3501 
3502 	sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff;
3503 	if (sc->sc_nictype == 1) {
3504 		/*
3505 		 * NB: led's are reversed.
3506 		 */
3507 		sc->sc_ledpin = IWI_RST_LED_ASSOCIATED;
3508 	}
3509 }
3510 
3511 static void
3512 iwi_scan_start(struct ieee80211com *ic)
3513 {
3514 	/* ignore */
3515 }
3516 
3517 static void
3518 iwi_set_channel(struct ieee80211com *ic)
3519 {
3520 	struct ifnet *ifp = ic->ic_ifp;
3521 	struct iwi_softc *sc = ifp->if_softc;
3522 	if (sc->fw_state == IWI_FW_IDLE)
3523 		iwi_setcurchan(sc, ic->ic_curchan->ic_ieee);
3524 }
3525 
3526 static void
3527 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3528 {
3529 	struct ieee80211vap *vap = ss->ss_vap;
3530 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3531 	struct iwi_softc *sc = ifp->if_softc;
3532 
3533 	if (iwi_scanchan(sc, maxdwell, 0))
3534 		ieee80211_cancel_scan(vap);
3535 }
3536 
3537 static void
3538 iwi_scan_mindwell(struct ieee80211_scan_state *ss)
3539 {
3540 	/* NB: don't try to abort scan; wait for firmware to finish */
3541 }
3542 
3543 static void
3544 iwi_scan_end(struct ieee80211com *ic)
3545 {
3546 	struct ifnet *ifp = ic->ic_ifp;
3547 	struct iwi_softc *sc = ifp->if_softc;
3548 
3549 	sc->flags &= ~IWI_FLAG_CHANNEL_SCAN;
3550 	/* NB: make sure we're still scanning */
3551 	if (sc->fw_state == IWI_FW_SCANNING)
3552 		iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0);
3553 }
3554