xref: /dragonfly/sys/dev/netif/iwi/if_iwi.c (revision f00eae14)
1 /*-
2  * Copyright (c) 2004, 2005
3  *      Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
4  * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting
5  * Copyright (c) 2007 Andrew Thompson <thompsa@FreeBSD.org>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/dev/iwi/if_iwi.c,v 1.72 2009/07/10 15:28:33 rpaulo Exp $
30  */
31 
32 /*-
33  * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver
34  * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm
35  */
36 
37 #include <sys/param.h>
38 #include <sys/sysctl.h>
39 #include <sys/sockio.h>
40 #include <sys/mbuf.h>
41 #include <sys/kernel.h>
42 #include <sys/socket.h>
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/module.h>
48 #include <sys/bus.h>
49 #include <sys/endian.h>
50 #include <sys/proc.h>
51 #include <sys/mount.h>
52 #include <sys/namei.h>
53 #include <sys/linker.h>
54 #include <sys/firmware.h>
55 #include <sys/taskqueue.h>
56 #include <sys/devfs.h>
57 
58 #include <sys/resource.h>
59 #include <sys/rman.h>
60 
61 #include <bus/pci/pcireg.h>
62 #include <bus/pci/pcivar.h>
63 
64 #include <net/bpf.h>
65 #include <net/if.h>
66 #include <net/if_arp.h>
67 #include <net/ethernet.h>
68 #include <net/if_dl.h>
69 #include <net/if_media.h>
70 #include <net/if_types.h>
71 #include <net/ifq_var.h>
72 
73 #include <netproto/802_11/ieee80211_var.h>
74 #include <netproto/802_11/ieee80211_radiotap.h>
75 #include <netproto/802_11/ieee80211_input.h>
76 #include <netproto/802_11/ieee80211_regdomain.h>
77 
78 #include <netinet/in.h>
79 #include <netinet/in_systm.h>
80 #include <netinet/in_var.h>
81 #include <netinet/ip.h>
82 #include <netinet/if_ether.h>
83 
84 #include <dev/netif/iwi/if_iwireg.h>
85 #include <dev/netif/iwi/if_iwivar.h>
86 
87 #define IWI_DEBUG
88 #ifdef IWI_DEBUG
89 #define DPRINTF(x)	do { if (iwi_debug > 0) kprintf x; } while (0)
90 #define DPRINTFN(n, x)	do { if (iwi_debug >= (n)) kprintf x; } while (0)
91 int iwi_debug = 0;
92 SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level");
93 
94 static const char *iwi_fw_states[] = {
95 	"IDLE", 		/* IWI_FW_IDLE */
96 	"LOADING",		/* IWI_FW_LOADING */
97 	"ASSOCIATING",		/* IWI_FW_ASSOCIATING */
98 	"DISASSOCIATING",	/* IWI_FW_DISASSOCIATING */
99 	"SCANNING",		/* IWI_FW_SCANNING */
100 };
101 #else
102 #define DPRINTF(x)
103 #define DPRINTFN(n, x)
104 #endif
105 
106 MODULE_DEPEND(iwi, pci,  1, 1, 1);
107 MODULE_DEPEND(iwi, wlan, 1, 1, 1);
108 MODULE_DEPEND(iwi, firmware, 1, 1, 1);
109 
110 enum {
111 	IWI_LED_TX,
112 	IWI_LED_RX,
113 	IWI_LED_POLL,
114 };
115 
116 struct iwi_ident {
117 	uint16_t	vendor;
118 	uint16_t	device;
119 	const char	*name;
120 };
121 
122 static const struct iwi_ident iwi_ident_table[] = {
123 	{ 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" },
124 	{ 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" },
125 	{ 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" },
126 	{ 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" },
127 
128 	{ 0, 0, NULL }
129 };
130 
131 static struct ieee80211vap *iwi_vap_create(struct ieee80211com *,
132 		    const char name[IFNAMSIZ], int unit, int opmode, int flags,
133 		    const uint8_t bssid[IEEE80211_ADDR_LEN],
134 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
135 static void	iwi_vap_delete(struct ieee80211vap *);
136 static void	iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
137 static int	iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *,
138 		    int);
139 static void	iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
140 static void	iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
141 static int	iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *,
142 		    int, bus_addr_t, bus_addr_t);
143 static void	iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
144 static void	iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
145 static int	iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *,
146 		    int);
147 static void	iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
148 static void	iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
149 static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *,
150 		    const uint8_t [IEEE80211_ADDR_LEN]);
151 static void	iwi_node_free(struct ieee80211_node *);
152 static void	iwi_media_status(struct ifnet *, struct ifmediareq *);
153 static int	iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
154 static void	iwi_wme_init(struct iwi_softc *);
155 static int	iwi_wme_setparams(struct iwi_softc *, struct ieee80211com *);
156 static void	iwi_update_wme_task(void *, int);
157 static int	iwi_wme_update(struct ieee80211com *);
158 static uint16_t	iwi_read_prom_word(struct iwi_softc *, uint8_t);
159 static void	iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int,
160 		    struct iwi_frame *);
161 static void	iwi_notification_intr(struct iwi_softc *, struct iwi_notif *);
162 static void	iwi_rx_intr(struct iwi_softc *);
163 static void	iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *);
164 static void	iwi_intr(void *);
165 static int	iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t);
166 static void	iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [], int);
167 static int	iwi_tx_start(struct ifnet *, struct mbuf *,
168 		    struct ieee80211_node *, int);
169 static int	iwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
170 		    const struct ieee80211_bpf_params *);
171 static void	iwi_start_locked(struct ifnet *);
172 static void	iwi_start(struct ifnet *, struct ifaltq_subque *);
173 static void	iwi_watchdog(void *);
174 static int	iwi_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *ucred);
175 static void	iwi_stop_master(struct iwi_softc *);
176 static int	iwi_reset(struct iwi_softc *);
177 static int	iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *);
178 static int	iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *);
179 static void	iwi_release_fw_dma(struct iwi_softc *sc);
180 static int	iwi_config(struct iwi_softc *);
181 static int	iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode);
182 static void	iwi_put_firmware(struct iwi_softc *);
183 static int	iwi_scanchan(struct iwi_softc *, unsigned long, int);
184 static void	iwi_scan_start(struct ieee80211com *);
185 static void	iwi_scan_end(struct ieee80211com *);
186 static void	iwi_set_channel(struct ieee80211com *);
187 static void	iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell);
188 static void	iwi_scan_mindwell(struct ieee80211_scan_state *);
189 static int	iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *);
190 static void	iwi_disassoc_task(void *, int);
191 static int	iwi_disassociate(struct iwi_softc *, int quiet);
192 static void	iwi_init_locked(struct iwi_softc *);
193 static void	iwi_init(void *);
194 static int	iwi_init_fw_dma(struct iwi_softc *, int);
195 static void	iwi_stop_locked(void *);
196 static void	iwi_stop(struct iwi_softc *);
197 static void	iwi_restart_task(void *, int);
198 static int	iwi_getrfkill(struct iwi_softc *);
199 static void	iwi_radio_on_task(void *, int);
200 static void	iwi_radio_off_task(void *, int);
201 static void	iwi_sysctlattach(struct iwi_softc *);
202 static void	iwi_led_event(struct iwi_softc *, int);
203 static void	iwi_ledattach(struct iwi_softc *);
204 
205 static int iwi_probe(device_t);
206 static int iwi_attach(device_t);
207 static int iwi_detach(device_t);
208 static int iwi_shutdown(device_t);
209 static int iwi_suspend(device_t);
210 static int iwi_resume(device_t);
211 
212 static device_method_t iwi_methods[] = {
213 	/* Device interface */
214 	DEVMETHOD(device_probe,		iwi_probe),
215 	DEVMETHOD(device_attach,	iwi_attach),
216 	DEVMETHOD(device_detach,	iwi_detach),
217 	DEVMETHOD(device_shutdown,	iwi_shutdown),
218 	DEVMETHOD(device_suspend,	iwi_suspend),
219 	DEVMETHOD(device_resume,	iwi_resume),
220 
221 	DEVMETHOD_END
222 };
223 
224 static driver_t iwi_driver = {
225 	"iwi",
226 	iwi_methods,
227 	sizeof (struct iwi_softc)
228 };
229 
230 static devclass_t iwi_devclass;
231 
232 DRIVER_MODULE(iwi, pci, iwi_driver, iwi_devclass, NULL, NULL);
233 
234 static __inline uint8_t
235 MEM_READ_1(struct iwi_softc *sc, uint32_t addr)
236 {
237 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
238 	return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA);
239 }
240 
241 static __inline uint32_t
242 MEM_READ_4(struct iwi_softc *sc, uint32_t addr)
243 {
244 	CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
245 	return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA);
246 }
247 
248 static int
249 iwi_probe(device_t dev)
250 {
251 	const struct iwi_ident *ident;
252 
253 	wlan_serialize_enter();
254 	for (ident = iwi_ident_table; ident->name != NULL; ident++) {
255 		if (pci_get_vendor(dev) == ident->vendor &&
256 		    pci_get_device(dev) == ident->device) {
257 			device_set_desc(dev, ident->name);
258 			wlan_serialize_exit();
259 			return 0;
260 		}
261 	}
262 	wlan_serialize_exit();
263 	return ENXIO;
264 }
265 
266 /* Base Address Register */
267 #define IWI_PCI_BAR0	0x10
268 
269 static int
270 iwi_attach(device_t dev)
271 {
272 	struct iwi_softc *sc = device_get_softc(dev);
273 	struct ifnet *ifp;
274 	struct ieee80211com *ic;
275 	uint16_t val;
276 	int i, error;
277 	uint8_t bands;
278 	uint8_t macaddr[IEEE80211_ADDR_LEN];
279 
280 	wlan_serialize_enter();
281 
282 	sc->sc_dev = dev;
283 
284 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
285 	if (ifp == NULL) {
286 		device_printf(dev, "can not if_alloc()\n");
287 		wlan_serialize_exit();
288 		return ENXIO;
289 	}
290 	ic = ifp->if_l2com;
291 
292 	devfs_clone_bitmap_init(&sc->sc_unr);
293 
294 	TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on_task, sc);
295 	TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off_task, sc);
296 	TASK_INIT(&sc->sc_restarttask, 0, iwi_restart_task, sc);
297 	TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc_task, sc);
298 	TASK_INIT(&sc->sc_wmetask, 0, iwi_update_wme_task, sc);
299 
300 	callout_init(&sc->sc_wdtimer_callout);
301 	callout_init(&sc->sc_rftimer_callout);
302 
303 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
304 		device_printf(dev, "chip is in D%d power mode "
305 		    "-- setting to D0\n", pci_get_powerstate(dev));
306 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
307 	}
308 
309 	pci_write_config(dev, 0x41, 0, 1);
310 
311 	/* enable bus-mastering */
312 	pci_enable_busmaster(dev);
313 
314 	sc->mem_rid = IWI_PCI_BAR0;
315 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
316 	    RF_ACTIVE);
317 	if (sc->mem == NULL) {
318 		device_printf(dev, "could not allocate memory resource\n");
319 		goto fail;
320 	}
321 
322 	sc->sc_st = rman_get_bustag(sc->mem);
323 	sc->sc_sh = rman_get_bushandle(sc->mem);
324 
325 	sc->irq_rid = 0;
326 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
327 	    RF_ACTIVE | RF_SHAREABLE);
328 	if (sc->irq == NULL) {
329 		device_printf(dev, "could not allocate interrupt resource\n");
330 		goto fail;
331 	}
332 
333 	if (iwi_reset(sc) != 0) {
334 		device_printf(dev, "could not reset adapter\n");
335 		goto fail;
336 	}
337 
338 	/*
339 	 * Allocate rings.
340 	 */
341 	if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) {
342 		device_printf(dev, "could not allocate Cmd ring\n");
343 		goto fail;
344 	}
345 
346 	for (i = 0; i < 4; i++) {
347 		error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT,
348 		    IWI_CSR_TX1_RIDX + i * 4,
349 		    IWI_CSR_TX1_WIDX + i * 4);
350 		if (error != 0) {
351 			device_printf(dev, "could not allocate Tx ring %d\n",
352 				i+i);
353 			goto fail;
354 		}
355 	}
356 
357 	if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) {
358 		device_printf(dev, "could not allocate Rx ring\n");
359 		goto fail;
360 	}
361 
362 	iwi_wme_init(sc);
363 
364 	ifp->if_softc = sc;
365 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
366 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
367 	ifp->if_init = iwi_init;
368 	ifp->if_ioctl = iwi_ioctl;
369 	ifp->if_start = iwi_start;
370 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
371 	ifq_set_ready(&ifp->if_snd);
372 
373 	ic->ic_ifp = ifp;
374 	ic->ic_opmode = IEEE80211_M_STA;
375 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
376 
377 	/* set device capabilities */
378 	ic->ic_caps =
379 	      IEEE80211_C_STA		/* station mode supported */
380 	    | IEEE80211_C_IBSS		/* IBSS mode supported */
381 	    | IEEE80211_C_MONITOR	/* monitor mode supported */
382 	    | IEEE80211_C_PMGT		/* power save supported */
383 	    | IEEE80211_C_SHPREAMBLE	/* short preamble supported */
384 	    | IEEE80211_C_WPA		/* 802.11i */
385 	    | IEEE80211_C_WME		/* 802.11e */
386 #if 0
387 	    | IEEE80211_C_BGSCAN	/* capable of bg scanning */
388 #endif
389 	    ;
390 
391 	/* read MAC address from EEPROM */
392 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0);
393 	macaddr[0] = val & 0xff;
394 	macaddr[1] = val >> 8;
395 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1);
396 	macaddr[2] = val & 0xff;
397 	macaddr[3] = val >> 8;
398 	val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2);
399 	macaddr[4] = val & 0xff;
400 	macaddr[5] = val >> 8;
401 
402 	bands = 0;
403 	setbit(&bands, IEEE80211_MODE_11B);
404 	setbit(&bands, IEEE80211_MODE_11G);
405 	if (pci_get_device(dev) >= 0x4223)
406 		setbit(&bands, IEEE80211_MODE_11A);
407 	ieee80211_init_channels(ic, NULL, &bands);
408 
409 	ieee80211_ifattach(ic, macaddr);
410 	/* override default methods */
411 	ic->ic_node_alloc = iwi_node_alloc;
412 	sc->sc_node_free = ic->ic_node_free;
413 	ic->ic_node_free = iwi_node_free;
414 	ic->ic_raw_xmit = iwi_raw_xmit;
415 	ic->ic_scan_start = iwi_scan_start;
416 	ic->ic_scan_end = iwi_scan_end;
417 	ic->ic_set_channel = iwi_set_channel;
418 	ic->ic_scan_curchan = iwi_scan_curchan;
419 	ic->ic_scan_mindwell = iwi_scan_mindwell;
420 	ic->ic_wme.wme_update = iwi_wme_update;
421 
422 	ic->ic_vap_create = iwi_vap_create;
423 	ic->ic_vap_delete = iwi_vap_delete;
424 
425 	ieee80211_radiotap_attach(ic,
426 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
427 		IWI_TX_RADIOTAP_PRESENT,
428 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
429 		IWI_RX_RADIOTAP_PRESENT);
430 
431 	iwi_sysctlattach(sc);
432 	iwi_ledattach(sc);
433 
434 	/*
435 	 * Hook our interrupt after all initialization is complete.
436 	 */
437 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
438 	    iwi_intr, sc, &sc->sc_ih, &wlan_global_serializer);
439 	if (error != 0) {
440 		device_printf(dev, "could not set up interrupt\n");
441 		goto fail;
442 	}
443 
444 	if (bootverbose)
445 		ieee80211_announce(ic);
446 
447 	wlan_serialize_exit();
448 	return 0;
449 fail:
450 	/* XXX fix */
451 	wlan_serialize_exit();
452 	iwi_detach(dev);
453 	return ENXIO;
454 }
455 
456 static int
457 iwi_detach(device_t dev)
458 {
459 	struct iwi_softc *sc = device_get_softc(dev);
460 	struct ifnet *ifp = sc->sc_ifp;
461 	struct ieee80211com *ic = ifp->if_l2com;
462 
463 	wlan_serialize_enter();
464 
465 	/* NB: do early to drain any pending tasks */
466 	ieee80211_draintask(ic, &sc->sc_radiontask);
467 	ieee80211_draintask(ic, &sc->sc_radiofftask);
468 	ieee80211_draintask(ic, &sc->sc_restarttask);
469 	ieee80211_draintask(ic, &sc->sc_disassoctask);
470 
471 	iwi_stop(sc);
472 
473 	ieee80211_ifdetach(ic);
474 
475 	iwi_put_firmware(sc);
476 	iwi_release_fw_dma(sc);
477 
478 	iwi_free_cmd_ring(sc, &sc->cmdq);
479 	iwi_free_tx_ring(sc, &sc->txq[0]);
480 	iwi_free_tx_ring(sc, &sc->txq[1]);
481 	iwi_free_tx_ring(sc, &sc->txq[2]);
482 	iwi_free_tx_ring(sc, &sc->txq[3]);
483 	iwi_free_rx_ring(sc, &sc->rxq);
484 
485 	bus_teardown_intr(dev, sc->irq, sc->sc_ih);
486 	bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
487 
488 	bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
489 
490 	devfs_clone_bitmap_uninit(&sc->sc_unr);
491 
492 	if (sc->sc_sysctl_tree != NULL)
493 		sysctl_ctx_free(&sc->sc_sysctl_ctx);
494 
495 	if_free(ifp);
496 
497 	wlan_serialize_exit();
498 	return 0;
499 }
500 
501 static struct ieee80211vap *
502 iwi_vap_create(struct ieee80211com *ic,
503 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
504 	const uint8_t bssid[IEEE80211_ADDR_LEN],
505 	const uint8_t mac[IEEE80211_ADDR_LEN])
506 {
507 	struct ifnet *ifp = ic->ic_ifp;
508 	struct iwi_softc *sc = ifp->if_softc;
509 	struct iwi_vap *ivp;
510 	struct ieee80211vap *vap;
511 	int i;
512 
513 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
514 		return NULL;
515 	/*
516 	 * Get firmware image (and possibly dma memory) on mode change.
517 	 */
518 	if (iwi_get_firmware(sc, opmode))
519 		return NULL;
520 	/* allocate DMA memory for mapping firmware image */
521 	i = sc->fw_fw.size;
522 	if (sc->fw_boot.size > i)
523 		i = sc->fw_boot.size;
524 	/* XXX do we dma the ucode as well ? */
525 	if (sc->fw_uc.size > i)
526 		i = sc->fw_uc.size;
527 	if (iwi_init_fw_dma(sc, i))
528 		return NULL;
529 
530 	ivp = (struct iwi_vap *) kmalloc(sizeof(struct iwi_vap),
531 	    M_80211_VAP, M_WAITOK | M_ZERO);
532 	if (ivp == NULL)
533 		return NULL;
534 	vap = &ivp->iwi_vap;
535 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
536 	/* override the default, the setting comes from the linux driver */
537 	vap->iv_bmissthreshold = 24;
538 	/* override with driver methods */
539 	ivp->iwi_newstate = vap->iv_newstate;
540 	vap->iv_newstate = iwi_newstate;
541 
542 	/* complete setup */
543 	ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status);
544 	ic->ic_opmode = opmode;
545 	return vap;
546 }
547 
548 static void
549 iwi_vap_delete(struct ieee80211vap *vap)
550 {
551 	struct iwi_vap *ivp = IWI_VAP(vap);
552 
553 	ieee80211_vap_detach(vap);
554 	kfree(ivp, M_80211_VAP);
555 }
556 
557 static void
558 iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
559 {
560 	if (error != 0)
561 		return;
562 
563 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
564 
565 	*(bus_addr_t *)arg = segs[0].ds_addr;
566 }
567 
568 static int
569 iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count)
570 {
571 	int error;
572 
573 	ring->count = count;
574 	ring->queued = 0;
575 	ring->cur = ring->next = 0;
576 
577 	error = bus_dma_tag_create(NULL, 4, 0,
578 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
579 	    count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE,
580 	    0 , &ring->desc_dmat);
581 	if (error != 0) {
582 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
583 		goto fail;
584 	}
585 
586 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
587 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
588 	if (error != 0) {
589 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
590 		goto fail;
591 	}
592 
593 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
594 	    count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
595 	if (error != 0) {
596 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
597 		goto fail;
598 	}
599 
600 	return 0;
601 
602 fail:	iwi_free_cmd_ring(sc, ring);
603 	return error;
604 }
605 
606 static void
607 iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
608 {
609 	ring->queued = 0;
610 	ring->cur = ring->next = 0;
611 }
612 
613 static void
614 iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
615 {
616 	if (ring->desc != NULL) {
617 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
618 		    BUS_DMASYNC_POSTWRITE);
619 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
620 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
621 	}
622 
623 	if (ring->desc_dmat != NULL)
624 		bus_dma_tag_destroy(ring->desc_dmat);
625 }
626 
627 static int
628 iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count,
629     bus_addr_t csr_ridx, bus_addr_t csr_widx)
630 {
631 	int i, error;
632 
633 	ring->count = count;
634 	ring->queued = 0;
635 	ring->cur = ring->next = 0;
636 	ring->csr_ridx = csr_ridx;
637 	ring->csr_widx = csr_widx;
638 
639 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
640 	    BUS_SPACE_MAXADDR, NULL, NULL, count * IWI_TX_DESC_SIZE, 1,
641 	    count * IWI_TX_DESC_SIZE, 0, &ring->desc_dmat);
642 	if (error != 0) {
643 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
644 		goto fail;
645 	}
646 
647 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
648 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
649 	if (error != 0) {
650 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
651 		goto fail;
652 	}
653 
654 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
655 	    count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0);
656 	if (error != 0) {
657 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
658 		goto fail;
659 	}
660 
661 	ring->data = kmalloc(count * sizeof (struct iwi_tx_data), M_DEVBUF,
662 	    M_WAITOK | M_ZERO);
663 
664 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
665 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IWI_MAX_NSEG,
666 	    MCLBYTES, 0, &ring->data_dmat);
667 	if (error != 0) {
668 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
669 		goto fail;
670 	}
671 
672 	for (i = 0; i < count; i++) {
673 		error = bus_dmamap_create(ring->data_dmat, 0,
674 		    &ring->data[i].map);
675 		if (error != 0) {
676 			device_printf(sc->sc_dev, "could not create DMA map\n");
677 			goto fail;
678 		}
679 	}
680 
681 	return 0;
682 
683 fail:	iwi_free_tx_ring(sc, ring);
684 	return error;
685 }
686 
687 static void
688 iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
689 {
690 	struct iwi_tx_data *data;
691 	int i;
692 
693 	for (i = 0; i < ring->count; i++) {
694 		data = &ring->data[i];
695 
696 		if (data->m != NULL) {
697 			bus_dmamap_sync(ring->data_dmat, data->map,
698 			    BUS_DMASYNC_POSTWRITE);
699 			bus_dmamap_unload(ring->data_dmat, data->map);
700 			m_freem(data->m);
701 			data->m = NULL;
702 		}
703 
704 		if (data->ni != NULL) {
705 			ieee80211_free_node(data->ni);
706 			data->ni = NULL;
707 		}
708 	}
709 
710 	ring->queued = 0;
711 	ring->cur = ring->next = 0;
712 }
713 
714 static void
715 iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
716 {
717 	struct iwi_tx_data *data;
718 	int i;
719 
720 	if (ring->desc != NULL) {
721 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
722 		    BUS_DMASYNC_POSTWRITE);
723 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
724 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
725 	}
726 
727 	if (ring->desc_dmat != NULL)
728 		bus_dma_tag_destroy(ring->desc_dmat);
729 
730 	if (ring->data != NULL) {
731 		for (i = 0; i < ring->count; i++) {
732 			data = &ring->data[i];
733 
734 			if (data->m != NULL) {
735 				bus_dmamap_sync(ring->data_dmat, data->map,
736 				    BUS_DMASYNC_POSTWRITE);
737 				bus_dmamap_unload(ring->data_dmat, data->map);
738 				m_freem(data->m);
739 			}
740 
741 			if (data->ni != NULL)
742 				ieee80211_free_node(data->ni);
743 
744 			if (data->map != NULL)
745 				bus_dmamap_destroy(ring->data_dmat, data->map);
746 		}
747 
748 		kfree(ring->data, M_DEVBUF);
749 	}
750 
751 	if (ring->data_dmat != NULL)
752 		bus_dma_tag_destroy(ring->data_dmat);
753 }
754 
755 static int
756 iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count)
757 {
758 	struct iwi_rx_data *data;
759 	int i, error;
760 
761 	ring->count = count;
762 	ring->cur = 0;
763 
764 	ring->data = kmalloc(count * sizeof (struct iwi_rx_data), M_DEVBUF,
765 	    M_WAITOK | M_ZERO);
766 
767 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
768 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES,
769 	    0, &ring->data_dmat);
770 	if (error != 0) {
771 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
772 		goto fail;
773 	}
774 
775 	for (i = 0; i < count; i++) {
776 		data = &ring->data[i];
777 
778 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
779 		if (error != 0) {
780 			device_printf(sc->sc_dev, "could not create DMA map\n");
781 			goto fail;
782 		}
783 
784 		data->m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
785 		if (data->m == NULL) {
786 			device_printf(sc->sc_dev,
787 			    "could not allocate rx mbuf\n");
788 			error = ENOMEM;
789 			goto fail;
790 		}
791 
792 		error = bus_dmamap_load(ring->data_dmat, data->map,
793 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
794 		    &data->physaddr, 0);
795 		if (error != 0) {
796 			device_printf(sc->sc_dev,
797 			    "could not load rx buf DMA map");
798 			goto fail;
799 		}
800 
801 		data->reg = IWI_CSR_RX_BASE + i * 4;
802 	}
803 
804 	return 0;
805 
806 fail:	iwi_free_rx_ring(sc, ring);
807 	return error;
808 }
809 
810 static void
811 iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
812 {
813 	ring->cur = 0;
814 }
815 
816 static void
817 iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
818 {
819 	struct iwi_rx_data *data;
820 	int i;
821 
822 	if (ring->data != NULL) {
823 		for (i = 0; i < ring->count; i++) {
824 			data = &ring->data[i];
825 
826 			if (data->m != NULL) {
827 				bus_dmamap_sync(ring->data_dmat, data->map,
828 				    BUS_DMASYNC_POSTREAD);
829 				bus_dmamap_unload(ring->data_dmat, data->map);
830 				m_freem(data->m);
831 			}
832 
833 			if (data->map != NULL)
834 				bus_dmamap_destroy(ring->data_dmat, data->map);
835 		}
836 
837 		kfree(ring->data, M_DEVBUF);
838 	}
839 
840 	if (ring->data_dmat != NULL)
841 		bus_dma_tag_destroy(ring->data_dmat);
842 }
843 
844 static int
845 iwi_shutdown(device_t dev)
846 {
847 	struct iwi_softc *sc = device_get_softc(dev);
848 
849 	wlan_serialize_enter();
850 	iwi_stop(sc);
851 	iwi_put_firmware(sc);		/* ??? XXX */
852 	wlan_serialize_exit();
853 
854 	return 0;
855 }
856 
857 static int
858 iwi_suspend(device_t dev)
859 {
860 	struct iwi_softc *sc = device_get_softc(dev);
861 
862 	wlan_serialize_enter();
863 	iwi_stop(sc);
864 	wlan_serialize_exit();
865 
866 	return 0;
867 }
868 
869 static int
870 iwi_resume(device_t dev)
871 {
872 	struct iwi_softc *sc = device_get_softc(dev);
873 	struct ifnet *ifp = sc->sc_ifp;
874 
875 	wlan_serialize_enter();
876 	pci_write_config(dev, 0x41, 0, 1);
877 
878 	if (ifp->if_flags & IFF_UP)
879 		iwi_init(sc);
880 
881 	wlan_serialize_exit();
882 	return 0;
883 }
884 
885 static struct ieee80211_node *
886 iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
887 {
888 	struct iwi_node *in;
889 
890 	in = kmalloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
891 	if (in == NULL)
892 		return NULL;
893 	/* XXX assign sta table entry for adhoc */
894 	in->in_station = -1;
895 
896 	return &in->in_node;
897 }
898 
899 static void
900 iwi_node_free(struct ieee80211_node *ni)
901 {
902 	struct ieee80211com *ic = ni->ni_ic;
903 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
904 	struct iwi_node *in = (struct iwi_node *)ni;
905 	char ethstr[ETHER_ADDRSTRLEN + 1];
906 
907 	if (in->in_station != -1) {
908 		DPRINTF(("%s mac %s station %u\n", __func__,
909 			kether_ntoa(ni->ni_macaddr, ethstr), in->in_station));
910 		devfs_clone_bitmap_put(&sc->sc_unr, in->in_station);
911 	}
912 
913 	sc->sc_node_free(ni);
914 }
915 
916 /*
917  * Convert h/w rate code to IEEE rate code.
918  */
919 static int
920 iwi_cvtrate(int iwirate)
921 {
922 	switch (iwirate) {
923 	case IWI_RATE_DS1:	return 2;
924 	case IWI_RATE_DS2:	return 4;
925 	case IWI_RATE_DS5:	return 11;
926 	case IWI_RATE_DS11:	return 22;
927 	case IWI_RATE_OFDM6:	return 12;
928 	case IWI_RATE_OFDM9:	return 18;
929 	case IWI_RATE_OFDM12:	return 24;
930 	case IWI_RATE_OFDM18:	return 36;
931 	case IWI_RATE_OFDM24:	return 48;
932 	case IWI_RATE_OFDM36:	return 72;
933 	case IWI_RATE_OFDM48:	return 96;
934 	case IWI_RATE_OFDM54:	return 108;
935 	}
936 	return 0;
937 }
938 
939 /*
940  * The firmware automatically adapts the transmit speed.  We report its current
941  * value here.
942  */
943 static void
944 iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
945 {
946 	struct ieee80211vap *vap = ifp->if_softc;
947 	struct ieee80211com *ic = vap->iv_ic;
948 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
949 
950 	/* read current transmission rate from adapter */
951 	vap->iv_bss->ni_txrate =
952 	    iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE));
953 	ieee80211_media_status(ifp, imr);
954 }
955 
956 static int
957 iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
958 {
959 	struct iwi_vap *ivp = IWI_VAP(vap);
960 	struct ieee80211com *ic = vap->iv_ic;
961 	struct ifnet *ifp = ic->ic_ifp;
962 	struct iwi_softc *sc = ifp->if_softc;
963 
964 	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
965 		ieee80211_state_name[vap->iv_state],
966 		ieee80211_state_name[nstate], sc->flags));
967 
968 	switch (nstate) {
969 	case IEEE80211_S_INIT:
970 		/*
971 		 * NB: don't try to do this if iwi_stop_master has
972 		 *     shutdown the firmware and disabled interrupts.
973 		 */
974 		if (vap->iv_state == IEEE80211_S_RUN &&
975 		    (sc->flags & IWI_FLAG_FW_INITED))
976 			iwi_disassociate(sc, 0);
977 		break;
978 	case IEEE80211_S_AUTH:
979 		iwi_auth_and_assoc(sc, vap);
980 		break;
981 	case IEEE80211_S_RUN:
982 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
983 		    vap->iv_state == IEEE80211_S_SCAN) {
984 			/*
985 			 * XXX when joining an ibss network we are called
986 			 * with a SCAN -> RUN transition on scan complete.
987 			 * Use that to call iwi_auth_and_assoc.  On completing
988 			 * the join we are then called again with an
989 			 * AUTH -> RUN transition and we want to do nothing.
990 			 * This is all totally bogus and needs to be redone.
991 			 */
992 			iwi_auth_and_assoc(sc, vap);
993 		}
994 		break;
995 	case IEEE80211_S_ASSOC:
996 		/*
997 		 * If we are transitioning from AUTH then just wait
998 		 * for the ASSOC status to come back from the firmware.
999 		 * Otherwise we need to issue the association request.
1000 		 */
1001 		if (vap->iv_state == IEEE80211_S_AUTH)
1002 			break;
1003 		iwi_auth_and_assoc(sc, vap);
1004 		break;
1005 	default:
1006 		break;
1007 	}
1008 
1009 	return ivp->iwi_newstate(vap, nstate, arg);
1010 }
1011 
1012 /*
1013  * WME parameters coming from IEEE 802.11e specification.  These values are
1014  * already declared in ieee80211_proto.c, but they are static so they can't
1015  * be reused here.
1016  */
1017 static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = {
1018 	{ 0, 3, 5,  7,   0 },	/* WME_AC_BE */
1019 	{ 0, 3, 5, 10,   0 },	/* WME_AC_BK */
1020 	{ 0, 2, 4,  5, 188 },	/* WME_AC_VI */
1021 	{ 0, 2, 3,  4, 102 }	/* WME_AC_VO */
1022 };
1023 
1024 static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = {
1025 	{ 0, 3, 4,  6,   0 },	/* WME_AC_BE */
1026 	{ 0, 3, 4, 10,   0 },	/* WME_AC_BK */
1027 	{ 0, 2, 3,  4,  94 },	/* WME_AC_VI */
1028 	{ 0, 2, 2,  3,  47 }	/* WME_AC_VO */
1029 };
1030 #define IWI_EXP2(v)	htole16((1 << (v)) - 1)
1031 #define IWI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
1032 
1033 static void
1034 iwi_wme_init(struct iwi_softc *sc)
1035 {
1036 	const struct wmeParams *wmep;
1037 	int ac;
1038 
1039 	memset(sc->wme, 0, sizeof sc->wme);
1040 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1041 		/* set WME values for CCK modulation */
1042 		wmep = &iwi_wme_cck_params[ac];
1043 		sc->wme[1].aifsn[ac] = wmep->wmep_aifsn;
1044 		sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1045 		sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1046 		sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1047 		sc->wme[1].acm[ac]   = wmep->wmep_acm;
1048 
1049 		/* set WME values for OFDM modulation */
1050 		wmep = &iwi_wme_ofdm_params[ac];
1051 		sc->wme[2].aifsn[ac] = wmep->wmep_aifsn;
1052 		sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1053 		sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1054 		sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1055 		sc->wme[2].acm[ac]   = wmep->wmep_acm;
1056 	}
1057 }
1058 
1059 static int
1060 iwi_wme_setparams(struct iwi_softc *sc, struct ieee80211com *ic)
1061 {
1062 	const struct wmeParams *wmep;
1063 	int ac;
1064 
1065 	for (ac = 0; ac < WME_NUM_AC; ac++) {
1066 		/* set WME values for current operating mode */
1067 		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
1068 		sc->wme[0].aifsn[ac] = wmep->wmep_aifsn;
1069 		sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin);
1070 		sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax);
1071 		sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit);
1072 		sc->wme[0].acm[ac]   = wmep->wmep_acm;
1073 	}
1074 
1075 	DPRINTF(("Setting WME parameters\n"));
1076 	return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme);
1077 }
1078 #undef IWI_USEC
1079 #undef IWI_EXP2
1080 
1081 static void
1082 iwi_update_wme_task(void *arg, int npending)
1083 {
1084 	struct ieee80211com *ic = arg;
1085 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
1086 
1087 	wlan_serialize_enter();
1088 	(void) iwi_wme_setparams(sc, ic);
1089 	wlan_serialize_exit();
1090 }
1091 
1092 static int
1093 iwi_wme_update(struct ieee80211com *ic)
1094 {
1095 	struct iwi_softc *sc = ic->ic_ifp->if_softc;
1096 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1097 
1098 	/*
1099 	 * We may be called to update the WME parameters in
1100 	 * the adapter at various places.  If we're already
1101 	 * associated then initiate the request immediately;
1102 	 * otherwise we assume the params will get sent down
1103 	 * to the adapter as part of the work iwi_auth_and_assoc
1104 	 * does.
1105 	 */
1106 	if (vap->iv_state == IEEE80211_S_RUN)
1107 		ieee80211_runtask(ic, &sc->sc_wmetask);
1108 	return (0);
1109 }
1110 
1111 static int
1112 iwi_wme_setie(struct iwi_softc *sc)
1113 {
1114 	struct ieee80211_wme_info wme;
1115 
1116 	memset(&wme, 0, sizeof wme);
1117 	wme.wme_id = IEEE80211_ELEMID_VENDOR;
1118 	wme.wme_len = sizeof (struct ieee80211_wme_info) - 2;
1119 	wme.wme_oui[0] = 0x00;
1120 	wme.wme_oui[1] = 0x50;
1121 	wme.wme_oui[2] = 0xf2;
1122 	wme.wme_type = WME_OUI_TYPE;
1123 	wme.wme_subtype = WME_INFO_OUI_SUBTYPE;
1124 	wme.wme_version = WME_VERSION;
1125 	wme.wme_info = 0;
1126 
1127 	DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len));
1128 	return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme);
1129 }
1130 
1131 /*
1132  * Read 16 bits at address 'addr' from the serial EEPROM.
1133  */
1134 static uint16_t
1135 iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr)
1136 {
1137 	uint32_t tmp;
1138 	uint16_t val;
1139 	int n;
1140 
1141 	/* clock C once before the first command */
1142 	IWI_EEPROM_CTL(sc, 0);
1143 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1144 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1145 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1146 
1147 	/* write start bit (1) */
1148 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1149 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1150 
1151 	/* write READ opcode (10) */
1152 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
1153 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
1154 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1155 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1156 
1157 	/* write address A7-A0 */
1158 	for (n = 7; n >= 0; n--) {
1159 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1160 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D));
1161 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
1162 		    (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C);
1163 	}
1164 
1165 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1166 
1167 	/* read data Q15-Q0 */
1168 	val = 0;
1169 	for (n = 15; n >= 0; n--) {
1170 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
1171 		IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1172 		tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL);
1173 		val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n;
1174 	}
1175 
1176 	IWI_EEPROM_CTL(sc, 0);
1177 
1178 	/* clear Chip Select and clock C */
1179 	IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
1180 	IWI_EEPROM_CTL(sc, 0);
1181 	IWI_EEPROM_CTL(sc, IWI_EEPROM_C);
1182 
1183 	return val;
1184 }
1185 
1186 static void
1187 iwi_setcurchan(struct iwi_softc *sc, int chan)
1188 {
1189 	struct ifnet *ifp = sc->sc_ifp;
1190 	struct ieee80211com *ic = ifp->if_l2com;
1191 
1192 	sc->curchan = chan;
1193 	ieee80211_radiotap_chan_change(ic);
1194 }
1195 
1196 static void
1197 iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i,
1198     struct iwi_frame *frame)
1199 {
1200 	struct ifnet *ifp = sc->sc_ifp;
1201 	struct ieee80211com *ic = ifp->if_l2com;
1202 	struct mbuf *mnew, *m;
1203 	struct ieee80211_node *ni;
1204 	int type, error, framelen;
1205 	int8_t rssi, nf;
1206 
1207 	framelen = le16toh(frame->len);
1208 	if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) {
1209 		/*
1210 		 * XXX >MCLBYTES is bogus as it means the h/w dma'd
1211 		 *     out of bounds; need to figure out how to limit
1212 		 *     frame size in the firmware
1213 		 */
1214 		/* XXX stat */
1215 		DPRINTFN(1,
1216 		    ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1217 		    le16toh(frame->len), frame->chan, frame->rssi,
1218 		    frame->rssi_dbm));
1219 		return;
1220 	}
1221 
1222 	DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n",
1223 	    le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm));
1224 
1225 	if (frame->chan != sc->curchan)
1226 		iwi_setcurchan(sc, frame->chan);
1227 
1228 	/*
1229 	 * Try to allocate a new mbuf for this ring element and load it before
1230 	 * processing the current mbuf. If the ring element cannot be loaded,
1231 	 * drop the received packet and reuse the old mbuf. In the unlikely
1232 	 * case that the old mbuf can't be reloaded either, explicitly panic.
1233 	 */
1234 	mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1235 	if (mnew == NULL) {
1236 		IFNET_STAT_INC(ifp, ierrors, 1);
1237 		return;
1238 	}
1239 
1240 	bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1241 
1242 	error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1243 	    mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr,
1244 	    0);
1245 	if (error != 0) {
1246 		m_freem(mnew);
1247 
1248 		/* try to reload the old mbuf */
1249 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1250 		    mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr,
1251 		    &data->physaddr, 0);
1252 		if (error != 0) {
1253 			/* very unlikely that it will fail... */
1254 			panic("%s: could not load old rx mbuf",
1255 			    device_get_name(sc->sc_dev));
1256 		}
1257 		IFNET_STAT_INC(ifp, ierrors, 1);
1258 		return;
1259 	}
1260 
1261 	/*
1262 	 * New mbuf successfully loaded, update Rx ring and continue
1263 	 * processing.
1264 	 */
1265 	m = data->m;
1266 	data->m = mnew;
1267 	CSR_WRITE_4(sc, data->reg, data->physaddr);
1268 
1269 	/* finalize mbuf */
1270 	m->m_pkthdr.rcvif = ifp;
1271 	m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) +
1272 	    sizeof (struct iwi_frame) + framelen;
1273 
1274 	m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame));
1275 
1276 	rssi = frame->rssi_dbm;
1277 	nf = -95;
1278 	if (ieee80211_radiotap_active(ic)) {
1279 		struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap;
1280 
1281 		tap->wr_flags = 0;
1282 		tap->wr_antsignal = rssi;
1283 		tap->wr_antnoise = nf;
1284 		tap->wr_rate = iwi_cvtrate(frame->rate);
1285 		tap->wr_antenna = frame->antenna;
1286 	}
1287 
1288 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1289 	if (ni != NULL) {
1290 		type = ieee80211_input(ni, m, rssi, nf);
1291 		ieee80211_free_node(ni);
1292 	} else
1293 		type = ieee80211_input_all(ic, m, rssi, nf);
1294 
1295 	if (sc->sc_softled) {
1296 		/*
1297 		 * Blink for any data frame.  Otherwise do a
1298 		 * heartbeat-style blink when idle.  The latter
1299 		 * is mainly for station mode where we depend on
1300 		 * periodic beacon frames to trigger the poll event.
1301 		 */
1302 		if (type == IEEE80211_FC0_TYPE_DATA) {
1303 			sc->sc_rxrate = frame->rate;
1304 			iwi_led_event(sc, IWI_LED_RX);
1305 		} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
1306 			iwi_led_event(sc, IWI_LED_POLL);
1307 	}
1308 }
1309 
1310 /*
1311  * Check for an association response frame to see if QoS
1312  * has been negotiated.  We parse just enough to figure
1313  * out if we're supposed to use QoS.  The proper solution
1314  * is to pass the frame up so ieee80211_input can do the
1315  * work but that's made hard by how things currently are
1316  * done in the driver.
1317  */
1318 static void
1319 iwi_checkforqos(struct ieee80211vap *vap,
1320 	const struct ieee80211_frame *wh, int len)
1321 {
1322 #define	SUBTYPE(wh)	((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
1323 	const uint8_t *frm, *efrm, *wme;
1324 	struct ieee80211_node *ni;
1325 	uint16_t capinfo, associd;
1326 
1327 	/* NB: +8 for capinfo, status, associd, and first ie */
1328 	if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) ||
1329 	    SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP)
1330 		return;
1331 	/*
1332 	 * asresp frame format
1333 	 *	[2] capability information
1334 	 *	[2] status
1335 	 *	[2] association ID
1336 	 *	[tlv] supported rates
1337 	 *	[tlv] extended supported rates
1338 	 *	[tlv] WME
1339 	 */
1340 	frm = (const uint8_t *)&wh[1];
1341 	efrm = ((const uint8_t *) wh) + len;
1342 
1343 	capinfo = le16toh(*(const uint16_t *)frm);
1344 	frm += 2;
1345 	frm += 2;
1346 	associd = le16toh(*(const uint16_t *)frm);
1347 	frm += 2;
1348 
1349 	wme = NULL;
1350 	while (frm < efrm) {
1351 		IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1], return);
1352 		switch (*frm) {
1353 		case IEEE80211_ELEMID_VENDOR:
1354 			if (iswmeoui(frm))
1355 				wme = frm;
1356 			break;
1357 		}
1358 		frm += frm[1] + 2;
1359 	}
1360 
1361 	ni = vap->iv_bss;
1362 	ni->ni_capinfo = capinfo;
1363 	ni->ni_associd = associd;
1364 	if (wme != NULL)
1365 		ni->ni_flags |= IEEE80211_NODE_QOS;
1366 	else
1367 		ni->ni_flags &= ~IEEE80211_NODE_QOS;
1368 #undef SUBTYPE
1369 }
1370 
1371 /*
1372  * Task queue callbacks for iwi_notification_intr used to avoid LOR's.
1373  */
1374 
1375 static void
1376 iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif)
1377 {
1378 	struct ifnet *ifp = sc->sc_ifp;
1379 	struct ieee80211com *ic = ifp->if_l2com;
1380 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1381 	struct iwi_notif_scan_channel *chan;
1382 	struct iwi_notif_scan_complete *scan;
1383 	struct iwi_notif_authentication *auth;
1384 	struct iwi_notif_association *assoc;
1385 	struct iwi_notif_beacon_state *beacon;
1386 
1387 	switch (notif->type) {
1388 	case IWI_NOTIF_TYPE_SCAN_CHANNEL:
1389 		chan = (struct iwi_notif_scan_channel *)(notif + 1);
1390 
1391 		DPRINTFN(3, ("Scan of channel %u complete (%u)\n",
1392 		    ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan));
1393 
1394 		/* Reset the timer, the scan is still going */
1395 		sc->sc_state_timer = 3;
1396 		break;
1397 
1398 	case IWI_NOTIF_TYPE_SCAN_COMPLETE:
1399 		scan = (struct iwi_notif_scan_complete *)(notif + 1);
1400 
1401 		DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan,
1402 		    scan->status));
1403 
1404 		IWI_STATE_END(sc, IWI_FW_SCANNING);
1405 
1406 		if (scan->status == IWI_SCAN_COMPLETED) {
1407 			/* NB: don't need to defer, net80211 does it for us */
1408 			ieee80211_scan_next(vap);
1409 		}
1410 		break;
1411 
1412 	case IWI_NOTIF_TYPE_AUTHENTICATION:
1413 		auth = (struct iwi_notif_authentication *)(notif + 1);
1414 		switch (auth->state) {
1415 		case IWI_AUTH_SUCCESS:
1416 			DPRINTFN(2, ("Authentication succeeeded\n"));
1417 			ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1);
1418 			break;
1419 		case IWI_AUTH_FAIL:
1420 			/*
1421 			 * These are delivered as an unsolicited deauth
1422 			 * (e.g. due to inactivity) or in response to an
1423 			 * associate request.
1424 			 */
1425 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1426 			if (vap->iv_state != IEEE80211_S_RUN) {
1427 				DPRINTFN(2, ("Authentication failed\n"));
1428 				vap->iv_stats.is_rx_auth_fail++;
1429 				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1430 			} else {
1431 				DPRINTFN(2, ("Deauthenticated\n"));
1432 				vap->iv_stats.is_rx_deauth++;
1433 			}
1434 			ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1435 			break;
1436 		case IWI_AUTH_SENT_1:
1437 		case IWI_AUTH_RECV_2:
1438 		case IWI_AUTH_SEQ1_PASS:
1439 			break;
1440 		case IWI_AUTH_SEQ1_FAIL:
1441 			DPRINTFN(2, ("Initial authentication handshake failed; "
1442 				"you probably need shared key\n"));
1443 			vap->iv_stats.is_rx_auth_fail++;
1444 			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1445 			/* XXX retry shared key when in auto */
1446 			break;
1447 		default:
1448 			device_printf(sc->sc_dev,
1449 			    "unknown authentication state %u\n", auth->state);
1450 			break;
1451 		}
1452 		break;
1453 
1454 	case IWI_NOTIF_TYPE_ASSOCIATION:
1455 		assoc = (struct iwi_notif_association *)(notif + 1);
1456 		switch (assoc->state) {
1457 		case IWI_AUTH_SUCCESS:
1458 			/* re-association, do nothing */
1459 			break;
1460 		case IWI_ASSOC_SUCCESS:
1461 			DPRINTFN(2, ("Association succeeded\n"));
1462 			sc->flags |= IWI_FLAG_ASSOCIATED;
1463 			IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1464 			iwi_checkforqos(vap,
1465 			    (const struct ieee80211_frame *)(assoc+1),
1466 			    le16toh(notif->len) - sizeof(*assoc));
1467 			ieee80211_new_state(vap, IEEE80211_S_RUN, -1);
1468 			break;
1469 		case IWI_ASSOC_INIT:
1470 			sc->flags &= ~IWI_FLAG_ASSOCIATED;
1471 			switch (sc->fw_state) {
1472 			case IWI_FW_ASSOCIATING:
1473 				DPRINTFN(2, ("Association failed\n"));
1474 				IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
1475 				ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1476 				break;
1477 
1478 			case IWI_FW_DISASSOCIATING:
1479 				DPRINTFN(2, ("Dissassociated\n"));
1480 				IWI_STATE_END(sc, IWI_FW_DISASSOCIATING);
1481 				vap->iv_stats.is_rx_disassoc++;
1482 				ieee80211_new_state(vap, IEEE80211_S_SCAN, -1);
1483 				break;
1484 			}
1485 			break;
1486 		default:
1487 			device_printf(sc->sc_dev,
1488 			    "unknown association state %u\n", assoc->state);
1489 			break;
1490 		}
1491 		break;
1492 
1493 	case IWI_NOTIF_TYPE_BEACON:
1494 		/* XXX check struct length */
1495 		beacon = (struct iwi_notif_beacon_state *)(notif + 1);
1496 
1497 		DPRINTFN(5, ("Beacon state (%u, %u)\n",
1498 		    beacon->state, le32toh(beacon->number)));
1499 
1500 		if (beacon->state == IWI_BEACON_MISS) {
1501 			/*
1502 			 * The firmware notifies us of every beacon miss
1503 			 * so we need to track the count against the
1504 			 * configured threshold before notifying the
1505 			 * 802.11 layer.
1506 			 * XXX try to roam, drop assoc only on much higher count
1507 			 */
1508 			if (le32toh(beacon->number) >= vap->iv_bmissthreshold) {
1509 				DPRINTF(("Beacon miss: %u >= %u\n",
1510 				    le32toh(beacon->number),
1511 				    vap->iv_bmissthreshold));
1512 				vap->iv_stats.is_beacon_miss++;
1513 				/*
1514 				 * It's pointless to notify the 802.11 layer
1515 				 * as it'll try to send a probe request (which
1516 				 * we'll discard) and then timeout and drop us
1517 				 * into scan state.  Instead tell the firmware
1518 				 * to disassociate and then on completion we'll
1519 				 * kick the state machine to scan.
1520 				 */
1521 				ieee80211_runtask(ic, &sc->sc_disassoctask);
1522 			}
1523 		}
1524 		break;
1525 
1526 	case IWI_NOTIF_TYPE_CALIBRATION:
1527 	case IWI_NOTIF_TYPE_NOISE:
1528 	case IWI_NOTIF_TYPE_LINK_QUALITY:
1529 		DPRINTFN(5, ("Notification (%u)\n", notif->type));
1530 		break;
1531 
1532 	default:
1533 		DPRINTF(("unknown notification type %u flags 0x%x len %u\n",
1534 		    notif->type, notif->flags, le16toh(notif->len)));
1535 		break;
1536 	}
1537 }
1538 
1539 static void
1540 iwi_rx_intr(struct iwi_softc *sc)
1541 {
1542 	struct iwi_rx_data *data;
1543 	struct iwi_hdr *hdr;
1544 	uint32_t hw;
1545 
1546 	hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX);
1547 
1548 	for (; sc->rxq.cur != hw;) {
1549 		data = &sc->rxq.data[sc->rxq.cur];
1550 
1551 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1552 		    BUS_DMASYNC_POSTREAD);
1553 
1554 		hdr = mtod(data->m, struct iwi_hdr *);
1555 
1556 		switch (hdr->type) {
1557 		case IWI_HDR_TYPE_FRAME:
1558 			iwi_frame_intr(sc, data, sc->rxq.cur,
1559 			    (struct iwi_frame *)(hdr + 1));
1560 			break;
1561 
1562 		case IWI_HDR_TYPE_NOTIF:
1563 			iwi_notification_intr(sc,
1564 			    (struct iwi_notif *)(hdr + 1));
1565 			break;
1566 
1567 		default:
1568 			device_printf(sc->sc_dev, "unknown hdr type %u\n",
1569 			    hdr->type);
1570 		}
1571 
1572 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1573 
1574 		sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT;
1575 	}
1576 
1577 	/* tell the firmware what we have processed */
1578 	hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1;
1579 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw);
1580 }
1581 
1582 static void
1583 iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq)
1584 {
1585 	struct ifnet *ifp = sc->sc_ifp;
1586 	struct iwi_tx_data *data;
1587 	uint32_t hw;
1588 
1589 	hw = CSR_READ_4(sc, txq->csr_ridx);
1590 
1591 	for (; txq->next != hw;) {
1592 		data = &txq->data[txq->next];
1593 
1594 		bus_dmamap_sync(txq->data_dmat, data->map,
1595 		    BUS_DMASYNC_POSTWRITE);
1596 		bus_dmamap_unload(txq->data_dmat, data->map);
1597 		if (data->m->m_flags & M_TXCB)
1598 			ieee80211_process_callback(data->ni, data->m, 0/*XXX*/);
1599 		m_freem(data->m);
1600 		data->m = NULL;
1601 		ieee80211_free_node(data->ni);
1602 		data->ni = NULL;
1603 
1604 		DPRINTFN(15, ("tx done idx=%u\n", txq->next));
1605 
1606 		IFNET_STAT_INC(ifp, opackets, 1);
1607 
1608 		txq->queued--;
1609 		txq->next = (txq->next + 1) % IWI_TX_RING_COUNT;
1610 	}
1611 
1612 	sc->sc_tx_timer = 0;
1613 	ifq_clr_oactive(&ifp->if_snd);
1614 
1615 	if (sc->sc_softled)
1616 		iwi_led_event(sc, IWI_LED_TX);
1617 
1618 	iwi_start_locked(ifp);
1619 }
1620 
1621 static void
1622 iwi_fatal_error_intr(struct iwi_softc *sc)
1623 {
1624 	struct ifnet *ifp = sc->sc_ifp;
1625 	struct ieee80211com *ic = ifp->if_l2com;
1626 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1627 
1628 	device_printf(sc->sc_dev, "firmware error\n");
1629 	if (vap != NULL)
1630 		ieee80211_cancel_scan(vap);
1631 	ieee80211_runtask(ic, &sc->sc_restarttask);
1632 
1633 	sc->flags &= ~IWI_FLAG_BUSY;
1634 	sc->sc_busy_timer = 0;
1635 	wakeup(sc);
1636 }
1637 
1638 static void
1639 iwi_radio_off_intr(struct iwi_softc *sc)
1640 {
1641 	struct ifnet *ifp = sc->sc_ifp;
1642 	struct ieee80211com *ic = ifp->if_l2com;
1643 
1644 	ieee80211_runtask(ic, &sc->sc_radiofftask);
1645 }
1646 
1647 static void
1648 iwi_intr(void *arg)
1649 {
1650 	struct iwi_softc *sc = arg;
1651 	uint32_t r;
1652 
1653 	if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) {
1654 		return;
1655 	}
1656 
1657 	/* acknowledge interrupts */
1658 	CSR_WRITE_4(sc, IWI_CSR_INTR, r);
1659 
1660 	if (r & IWI_INTR_FATAL_ERROR) {
1661 		iwi_fatal_error_intr(sc);
1662 		return;
1663 	}
1664 
1665 	if (r & IWI_INTR_FW_INITED) {
1666 		if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR)))
1667 			wakeup(sc);
1668 	}
1669 
1670 	if (r & IWI_INTR_RADIO_OFF)
1671 		iwi_radio_off_intr(sc);
1672 
1673 	if (r & IWI_INTR_CMD_DONE) {
1674 		sc->flags &= ~IWI_FLAG_BUSY;
1675 		sc->sc_busy_timer = 0;
1676 		wakeup(sc);
1677 	}
1678 
1679 	if (r & IWI_INTR_TX1_DONE)
1680 		iwi_tx_intr(sc, &sc->txq[0]);
1681 
1682 	if (r & IWI_INTR_TX2_DONE)
1683 		iwi_tx_intr(sc, &sc->txq[1]);
1684 
1685 	if (r & IWI_INTR_TX3_DONE)
1686 		iwi_tx_intr(sc, &sc->txq[2]);
1687 
1688 	if (r & IWI_INTR_TX4_DONE)
1689 		iwi_tx_intr(sc, &sc->txq[3]);
1690 
1691 	if (r & IWI_INTR_RX_DONE)
1692 		iwi_rx_intr(sc);
1693 
1694 	if (r & IWI_INTR_PARITY_ERROR) {
1695 		/* XXX rate-limit */
1696 		device_printf(sc->sc_dev, "parity error\n");
1697 	}
1698 }
1699 
1700 static int
1701 iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len)
1702 {
1703 	struct iwi_cmd_desc *desc;
1704 
1705 	if (sc->flags & IWI_FLAG_BUSY) {
1706 		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
1707 			__func__, type);
1708 		return EAGAIN;
1709 	}
1710 
1711 	sc->flags |= IWI_FLAG_BUSY;
1712 	sc->sc_busy_timer = 2;
1713 
1714 	desc = &sc->cmdq.desc[sc->cmdq.cur];
1715 
1716 	desc->hdr.type = IWI_HDR_TYPE_COMMAND;
1717 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1718 	desc->type = type;
1719 	desc->len = len;
1720 	memcpy(desc->data, data, len);
1721 
1722 	bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map,
1723 	    BUS_DMASYNC_PREWRITE);
1724 
1725 	DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur,
1726 	    type, len));
1727 
1728 	sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT;
1729 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
1730 
1731 	return zsleep(sc, &wlan_global_serializer, 0, "iwicmd", hz);
1732 }
1733 
1734 static void
1735 iwi_write_ibssnode(struct iwi_softc *sc,
1736 	const u_int8_t addr[IEEE80211_ADDR_LEN], int entry)
1737 {
1738 	struct iwi_ibssnode node;
1739 	char ethstr[ETHER_ADDRSTRLEN + 1];
1740 
1741 	/* write node information into NIC memory */
1742 	memset(&node, 0, sizeof node);
1743 	IEEE80211_ADDR_COPY(node.bssid, addr);
1744 
1745 	DPRINTF(("%s mac %s station %u\n", __func__, kether_ntoa(node.bssid, ethstr), entry));
1746 
1747 	CSR_WRITE_REGION_1(sc,
1748 	    IWI_CSR_NODE_BASE + entry * sizeof node,
1749 	    (uint8_t *)&node, sizeof node);
1750 }
1751 
1752 static int
1753 iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni,
1754     int ac)
1755 {
1756 	struct iwi_softc *sc = ifp->if_softc;
1757 	struct ieee80211vap *vap = ni->ni_vap;
1758 	struct ieee80211com *ic = ni->ni_ic;
1759 	struct iwi_node *in = (struct iwi_node *)ni;
1760 	const struct ieee80211_frame *wh;
1761 	struct ieee80211_key *k;
1762 	const struct chanAccParams *cap;
1763 	struct iwi_tx_ring *txq = &sc->txq[ac];
1764 	struct iwi_tx_data *data;
1765 	struct iwi_tx_desc *desc;
1766 	struct mbuf *mnew;
1767 	bus_dma_segment_t segs[IWI_MAX_NSEG];
1768 	int error, nsegs, hdrlen, i;
1769 	int ismcast, flags, xflags, staid;
1770 
1771 	wh = mtod(m0, const struct ieee80211_frame *);
1772 	/* NB: only data frames use this path */
1773 	hdrlen = ieee80211_hdrsize(wh);
1774 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1775 	flags = xflags = 0;
1776 
1777 	if (!ismcast)
1778 		flags |= IWI_DATA_FLAG_NEED_ACK;
1779 	if (vap->iv_flags & IEEE80211_F_SHPREAMBLE)
1780 		flags |= IWI_DATA_FLAG_SHPREAMBLE;
1781 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1782 		xflags |= IWI_DATA_XFLAG_QOS;
1783 		cap = &ic->ic_wme.wme_chanParams;
1784 		if (!cap->cap_wmeParams[ac].wmep_noackPolicy)
1785 			flags &= ~IWI_DATA_FLAG_NEED_ACK;
1786 	}
1787 
1788 	/*
1789 	 * This is only used in IBSS mode where the firmware expect an index
1790 	 * in a h/w table instead of a destination address.
1791 	 */
1792 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
1793 		if (!ismcast) {
1794 			if (in->in_station == -1) {
1795 				in->in_station = devfs_clone_bitmap_get(&sc->sc_unr,
1796 					IWI_MAX_IBSSNODE-1);
1797 				if (in->in_station == -1) {
1798 					/* h/w table is full */
1799 					m_freem(m0);
1800 					ieee80211_free_node(ni);
1801 					IFNET_STAT_INC(ifp, oerrors, 1);
1802 					return 0;
1803 				}
1804 				iwi_write_ibssnode(sc,
1805 					ni->ni_macaddr, in->in_station);
1806 			}
1807 			staid = in->in_station;
1808 		} else {
1809 			/*
1810 			 * Multicast addresses have no associated node
1811 			 * so there will be no station entry.  We reserve
1812 			 * entry 0 for one mcast address and use that.
1813 			 * If there are many being used this will be
1814 			 * expensive and we'll need to do a better job
1815 			 * but for now this handles the broadcast case.
1816 			 */
1817 			if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) {
1818 				IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1);
1819 				iwi_write_ibssnode(sc, sc->sc_mcast, 0);
1820 			}
1821 			staid = 0;
1822 		}
1823 	} else
1824 		staid = 0;
1825 
1826 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1827 		k = ieee80211_crypto_encap(ni, m0);
1828 		if (k == NULL) {
1829 			m_freem(m0);
1830 			return ENOBUFS;
1831 		}
1832 
1833 		/* packet header may have moved, reset our local pointer */
1834 		wh = mtod(m0, struct ieee80211_frame *);
1835 	}
1836 
1837 	if (ieee80211_radiotap_active_vap(vap)) {
1838 		struct iwi_tx_radiotap_header *tap = &sc->sc_txtap;
1839 
1840 		tap->wt_flags = 0;
1841 
1842 		ieee80211_radiotap_tx(vap, m0);
1843 	}
1844 
1845 	data = &txq->data[txq->cur];
1846 	desc = &txq->desc[txq->cur];
1847 
1848 	/* save and trim IEEE802.11 header */
1849 	m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh);
1850 	m_adj(m0, hdrlen);
1851 
1852 	error = bus_dmamap_load_mbuf_segment(txq->data_dmat, data->map,
1853 	    m0, segs, 1, &nsegs, BUS_DMA_NOWAIT);
1854 	if (error != 0 && error != EFBIG) {
1855 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1856 		    error);
1857 		m_freem(m0);
1858 		return error;
1859 	}
1860 	if (error != 0) {
1861 		mnew = m_defrag(m0, MB_DONTWAIT);
1862 		if (mnew == NULL) {
1863 			device_printf(sc->sc_dev,
1864 			    "could not defragment mbuf\n");
1865 			m_freem(m0);
1866 			return ENOBUFS;
1867 		}
1868 		m0 = mnew;
1869 
1870 		error = bus_dmamap_load_mbuf_segment(txq->data_dmat,
1871 		    data->map, m0, segs, 1, &nsegs, BUS_DMA_NOWAIT);
1872 		if (error != 0) {
1873 			device_printf(sc->sc_dev,
1874 			    "could not map mbuf (error %d)\n", error);
1875 			m_freem(m0);
1876 			return error;
1877 		}
1878 	}
1879 
1880 	data->m = m0;
1881 	data->ni = ni;
1882 
1883 	desc->hdr.type = IWI_HDR_TYPE_DATA;
1884 	desc->hdr.flags = IWI_HDR_FLAG_IRQ;
1885 	desc->station = staid;
1886 	desc->cmd = IWI_DATA_CMD_TX;
1887 	desc->len = htole16(m0->m_pkthdr.len);
1888 	desc->flags = flags;
1889 	desc->xflags = xflags;
1890 
1891 #if 0
1892 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1893 		desc->wep_txkey = vap->iv_def_txkey;
1894 	else
1895 #endif
1896 		desc->flags |= IWI_DATA_FLAG_NO_WEP;
1897 
1898 	desc->nseg = htole32(nsegs);
1899 	for (i = 0; i < nsegs; i++) {
1900 		desc->seg_addr[i] = htole32(segs[i].ds_addr);
1901 		desc->seg_len[i]  = htole16(segs[i].ds_len);
1902 	}
1903 
1904 	bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1905 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1906 
1907 	DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n",
1908 	    ac, txq->cur, le16toh(desc->len), nsegs));
1909 
1910 	txq->queued++;
1911 	txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT;
1912 	CSR_WRITE_4(sc, txq->csr_widx, txq->cur);
1913 
1914 	return 0;
1915 }
1916 
1917 static int
1918 iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1919 	const struct ieee80211_bpf_params *params)
1920 {
1921 	/* no support; just discard */
1922 	m_freem(m);
1923 	ieee80211_free_node(ni);
1924 	return 0;
1925 }
1926 
1927 static void
1928 iwi_start_locked(struct ifnet *ifp)
1929 {
1930 	struct iwi_softc *sc = ifp->if_softc;
1931 	struct mbuf *m;
1932 	struct ieee80211_node *ni;
1933 	int ac;
1934 
1935 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1936 		return;
1937 
1938 	for (;;) {
1939 		m = ifq_dequeue(&ifp->if_snd, NULL);
1940 		if (m == NULL)
1941 			break;
1942 		ac = M_WME_GETAC(m);
1943 		if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) {
1944 			/* there is no place left in this ring; tail drop */
1945 			/* XXX tail drop */
1946 			ifq_prepend(&ifp->if_snd, m);
1947 			ifq_set_oactive(&ifp->if_snd);
1948 			break;
1949 		}
1950 
1951 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1952 		if (iwi_tx_start(ifp, m, ni, ac) != 0) {
1953 			ieee80211_free_node(ni);
1954 			IFNET_STAT_INC(ifp, oerrors, 1);
1955 			break;
1956 		}
1957 
1958 		sc->sc_tx_timer = 5;
1959 	}
1960 }
1961 
1962 static void
1963 iwi_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1964 {
1965 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1966 	iwi_start_locked(ifp);
1967 }
1968 
1969 static void
1970 iwi_watchdog(void *arg)
1971 {
1972 	struct iwi_softc *sc = arg;
1973 	struct ifnet *ifp = sc->sc_ifp;
1974 	struct ieee80211com *ic = ifp->if_l2com;
1975 
1976 	wlan_serialize_enter();
1977 	if (sc->sc_tx_timer > 0) {
1978 		if (--sc->sc_tx_timer == 0) {
1979 			if_printf(ifp, "device timeout\n");
1980 			IFNET_STAT_INC(ifp, oerrors, 1);
1981 			wlan_serialize_exit();
1982 			ieee80211_runtask(ic, &sc->sc_restarttask);
1983 			wlan_serialize_enter();
1984 		}
1985 	}
1986 	if (sc->sc_state_timer > 0) {
1987 		if (--sc->sc_state_timer == 0) {
1988 			if_printf(ifp, "firmware stuck in state %d, resetting\n",
1989 			    sc->fw_state);
1990 			if (sc->fw_state == IWI_FW_SCANNING) {
1991 				struct ieee80211com *ic = ifp->if_l2com;
1992 				ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps));
1993 			}
1994 			wlan_serialize_exit();
1995 			ieee80211_runtask(ic, &sc->sc_restarttask);
1996 			wlan_serialize_enter();
1997 			sc->sc_state_timer = 3;
1998 		}
1999 	}
2000 	if (sc->sc_busy_timer > 0) {
2001 		if (--sc->sc_busy_timer == 0) {
2002 			if_printf(ifp, "firmware command timeout, resetting\n");
2003 			wlan_serialize_exit();
2004 			ieee80211_runtask(ic, &sc->sc_restarttask);
2005 			wlan_serialize_enter();
2006 		}
2007 	}
2008 	callout_reset(&sc->sc_wdtimer_callout, hz, iwi_watchdog, sc);
2009 	wlan_serialize_exit();
2010 }
2011 
2012 static int
2013 iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *ucred)
2014 {
2015 	struct iwi_softc *sc = ifp->if_softc;
2016 	struct ieee80211com *ic = ifp->if_l2com;
2017 	struct ifreq *ifr = (struct ifreq *) data;
2018 	int error = 0, startall = 0;
2019 
2020 	switch (cmd) {
2021 	case SIOCSIFFLAGS:
2022 		if (ifp->if_flags & IFF_UP) {
2023 			if (!(ifp->if_flags & IFF_RUNNING)) {
2024 				iwi_init_locked(sc);
2025 				startall = 1;
2026 			}
2027 		} else {
2028 			if (ifp->if_flags & IFF_RUNNING)
2029 				iwi_stop_locked(sc);
2030 		}
2031 		if (startall)
2032 			ieee80211_start_all(ic);
2033 		break;
2034 	case SIOCGIFMEDIA:
2035 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2036 		break;
2037 	case SIOCGIFADDR:
2038 		error = ether_ioctl(ifp, cmd, data);
2039 		break;
2040 	default:
2041 		error = EINVAL;
2042 		break;
2043 	}
2044 	return error;
2045 }
2046 
2047 static void
2048 iwi_stop_master(struct iwi_softc *sc)
2049 {
2050 	uint32_t tmp;
2051 	int ntries;
2052 
2053 	/* disable interrupts */
2054 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
2055 
2056 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER);
2057 	for (ntries = 0; ntries < 5; ntries++) {
2058 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2059 			break;
2060 		DELAY(10);
2061 	}
2062 	if (ntries == 5)
2063 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2064 
2065 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2066 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET);
2067 
2068 	sc->flags &= ~IWI_FLAG_FW_INITED;
2069 }
2070 
2071 static int
2072 iwi_reset(struct iwi_softc *sc)
2073 {
2074 	uint32_t tmp;
2075 	int i, ntries;
2076 
2077 	iwi_stop_master(sc);
2078 
2079 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2080 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2081 
2082 	CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST);
2083 
2084 	/* wait for clock stabilization */
2085 	for (ntries = 0; ntries < 1000; ntries++) {
2086 		if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY)
2087 			break;
2088 		DELAY(200);
2089 	}
2090 	if (ntries == 1000) {
2091 		device_printf(sc->sc_dev,
2092 		    "timeout waiting for clock stabilization\n");
2093 		return EIO;
2094 	}
2095 
2096 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2097 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET);
2098 
2099 	DELAY(10);
2100 
2101 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2102 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
2103 
2104 	/* clear NIC memory */
2105 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0);
2106 	for (i = 0; i < 0xc000; i++)
2107 		CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2108 
2109 	return 0;
2110 }
2111 
2112 static const struct iwi_firmware_ohdr *
2113 iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw)
2114 {
2115 	const struct firmware *fp = fw->fp;
2116 	const struct iwi_firmware_ohdr *hdr;
2117 
2118 	if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) {
2119 		device_printf(sc->sc_dev, "image '%s' too small\n", fp->name);
2120 		return NULL;
2121 	}
2122 	hdr = (const struct iwi_firmware_ohdr *)fp->data;
2123 	if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) ||
2124 	    (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) {
2125 		device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n",
2126 		    fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)),
2127 		    IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR,
2128 		    IWI_FW_REQ_MINOR);
2129 		return NULL;
2130 	}
2131 	fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr);
2132 	fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr);
2133 	fw->name = fp->name;
2134 	return hdr;
2135 }
2136 
2137 static const struct iwi_firmware_ohdr *
2138 iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw)
2139 {
2140 	const struct iwi_firmware_ohdr *hdr;
2141 
2142 	hdr = iwi_setup_ofw(sc, fw);
2143 	if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) {
2144 		device_printf(sc->sc_dev, "%s is not a ucode image\n",
2145 		    fw->name);
2146 		hdr = NULL;
2147 	}
2148 	return hdr;
2149 }
2150 
2151 static void
2152 iwi_getfw(struct iwi_fw *fw, const char *fwname,
2153 	  struct iwi_fw *uc, const char *ucname)
2154 {
2155 	wlan_assert_serialized();
2156 	wlan_serialize_exit();
2157 	if (fw->fp == NULL)
2158 		fw->fp = firmware_get(fwname);
2159 
2160 	/* NB: pre-3.0 ucode is packaged separately */
2161 	if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300)
2162 		uc->fp = firmware_get(ucname);
2163 	wlan_serialize_enter();
2164 }
2165 
2166 /*
2167  * Get the required firmware images if not already loaded.
2168  * Note that we hold firmware images so long as the device
2169  * is marked up in case we need to reload them on device init.
2170  * This is necessary because we re-init the device sometimes
2171  * from a context where we cannot read from the filesystem
2172  * (e.g. from the taskqueue thread when rfkill is re-enabled).
2173  * XXX return 0 on success, 1 on error.
2174  *
2175  * NB: the order of get'ing and put'ing images here is
2176  * intentional to support handling firmware images bundled
2177  * by operating mode and/or all together in one file with
2178  * the boot firmware as "master".
2179  */
2180 static int
2181 iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode)
2182 {
2183 	const struct iwi_firmware_hdr *hdr;
2184 	const struct firmware *fp;
2185 
2186 	wlan_serialize_enter();
2187 
2188 	/* invalidate cached firmware on mode change */
2189 	if (sc->fw_mode != opmode)
2190 		iwi_put_firmware(sc);
2191 
2192 	switch (opmode) {
2193 	case IEEE80211_M_STA:
2194 		iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss");
2195 		break;
2196 	case IEEE80211_M_IBSS:
2197 		iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss");
2198 		break;
2199 	case IEEE80211_M_MONITOR:
2200 		iwi_getfw(&sc->fw_fw, "iwi_monitor",
2201 			  &sc->fw_uc, "iwi_ucode_monitor");
2202 		break;
2203 	default:
2204 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
2205 		wlan_serialize_exit();
2206 		return EINVAL;
2207 	}
2208 	fp = sc->fw_fw.fp;
2209 	if (fp == NULL) {
2210 		device_printf(sc->sc_dev, "could not load firmware\n");
2211 		goto bad;
2212 	}
2213 	if (fp->version < 300) {
2214 		/*
2215 		 * Firmware prior to 3.0 was packaged as separate
2216 		 * boot, firmware, and ucode images.  Verify the
2217 		 * ucode image was read in, retrieve the boot image
2218 		 * if needed, and check version stamps for consistency.
2219 		 * The version stamps in the data are also checked
2220 		 * above; this is a bit paranoid but is a cheap
2221 		 * safeguard against mis-packaging.
2222 		 */
2223 		if (sc->fw_uc.fp == NULL) {
2224 			device_printf(sc->sc_dev, "could not load ucode\n");
2225 			goto bad;
2226 		}
2227 		if (sc->fw_boot.fp == NULL) {
2228 			sc->fw_boot.fp = firmware_get("iwi_boot");
2229 			if (sc->fw_boot.fp == NULL) {
2230 				device_printf(sc->sc_dev,
2231 					"could not load boot firmware\n");
2232 				goto bad;
2233 			}
2234 		}
2235 		if (sc->fw_boot.fp->version != sc->fw_fw.fp->version ||
2236 		    sc->fw_boot.fp->version != sc->fw_uc.fp->version) {
2237 			device_printf(sc->sc_dev,
2238 			    "firmware version mismatch: "
2239 			    "'%s' is %d, '%s' is %d, '%s' is %d\n",
2240 			    sc->fw_boot.fp->name, sc->fw_boot.fp->version,
2241 			    sc->fw_uc.fp->name, sc->fw_uc.fp->version,
2242 			    sc->fw_fw.fp->name, sc->fw_fw.fp->version
2243 			);
2244 			goto bad;
2245 		}
2246 		/*
2247 		 * Check and setup each image.
2248 		 */
2249 		if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL ||
2250 		    iwi_setup_ofw(sc, &sc->fw_boot) == NULL ||
2251 		    iwi_setup_ofw(sc, &sc->fw_fw) == NULL)
2252 			goto bad;
2253 	} else {
2254 		/*
2255 		 * Check and setup combined image.
2256 		 */
2257 		if (fp->datasize < sizeof(struct iwi_firmware_hdr)) {
2258 			device_printf(sc->sc_dev, "image '%s' too small\n",
2259 			    fp->name);
2260 			goto bad;
2261 		}
2262 		hdr = (const struct iwi_firmware_hdr *)fp->data;
2263 		if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize)
2264 				+ le32toh(hdr->fsize)) {
2265 			device_printf(sc->sc_dev, "image '%s' too small (2)\n",
2266 			    fp->name);
2267 			goto bad;
2268 		}
2269 		sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr);
2270 		sc->fw_boot.size = le32toh(hdr->bsize);
2271 		sc->fw_boot.name = fp->name;
2272 		sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size;
2273 		sc->fw_uc.size = le32toh(hdr->usize);
2274 		sc->fw_uc.name = fp->name;
2275 		sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size;
2276 		sc->fw_fw.size = le32toh(hdr->fsize);
2277 		sc->fw_fw.name = fp->name;
2278 	}
2279 #if 0
2280 	device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n",
2281 		sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size);
2282 #endif
2283 
2284 	sc->fw_mode = opmode;
2285 	wlan_serialize_exit();
2286 	return 0;
2287 bad:
2288 	iwi_put_firmware(sc);
2289 	wlan_serialize_exit();
2290 	return 1;
2291 }
2292 
2293 static void
2294 iwi_put_fw(struct iwi_fw *fw)
2295 {
2296 	wlan_assert_serialized();
2297 	wlan_serialize_exit();
2298 	if (fw->fp != NULL) {
2299 		firmware_put(fw->fp, FIRMWARE_UNLOAD);
2300 		fw->fp = NULL;
2301 	}
2302 	wlan_serialize_enter();
2303 	fw->data = NULL;
2304 	fw->size = 0;
2305 	fw->name = NULL;
2306 }
2307 
2308 /*
2309  * Release any cached firmware images.
2310  */
2311 static void
2312 iwi_put_firmware(struct iwi_softc *sc)
2313 {
2314 	iwi_put_fw(&sc->fw_uc);
2315 	iwi_put_fw(&sc->fw_fw);
2316 	iwi_put_fw(&sc->fw_boot);
2317 }
2318 
2319 static int
2320 iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw)
2321 {
2322 	uint32_t tmp;
2323 	const uint16_t *w;
2324 	const char *uc = fw->data;
2325 	size_t size = fw->size;
2326 	int i, ntries, error;
2327 
2328 	error = 0;
2329 	CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) |
2330 	    IWI_RST_STOP_MASTER);
2331 	for (ntries = 0; ntries < 5; ntries++) {
2332 		if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
2333 			break;
2334 		DELAY(10);
2335 	}
2336 	if (ntries == 5) {
2337 		device_printf(sc->sc_dev, "timeout waiting for master\n");
2338 		error = EIO;
2339 		goto fail;
2340 	}
2341 
2342 	MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
2343 	DELAY(5000);
2344 
2345 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2346 	tmp &= ~IWI_RST_PRINCETON_RESET;
2347 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2348 
2349 	DELAY(5000);
2350 	MEM_WRITE_4(sc, 0x3000e0, 0);
2351 	DELAY(1000);
2352 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1);
2353 	DELAY(1000);
2354 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0);
2355 	DELAY(1000);
2356 	MEM_WRITE_1(sc, 0x200000, 0x00);
2357 	MEM_WRITE_1(sc, 0x200000, 0x40);
2358 	DELAY(1000);
2359 
2360 	/* write microcode into adapter memory */
2361 	for (w = (const uint16_t *)uc; size > 0; w++, size -= 2)
2362 		MEM_WRITE_2(sc, 0x200010, htole16(*w));
2363 
2364 	MEM_WRITE_1(sc, 0x200000, 0x00);
2365 	MEM_WRITE_1(sc, 0x200000, 0x80);
2366 
2367 	/* wait until we get an answer */
2368 	for (ntries = 0; ntries < 100; ntries++) {
2369 		if (MEM_READ_1(sc, 0x200000) & 1)
2370 			break;
2371 		DELAY(100);
2372 	}
2373 	if (ntries == 100) {
2374 		device_printf(sc->sc_dev,
2375 		    "timeout waiting for ucode to initialize\n");
2376 		error = EIO;
2377 		goto fail;
2378 	}
2379 
2380 	/* read the answer or the firmware will not initialize properly */
2381 	for (i = 0; i < 7; i++)
2382 		MEM_READ_4(sc, 0x200004);
2383 
2384 	MEM_WRITE_1(sc, 0x200000, 0x00);
2385 
2386 fail:
2387 	return error;
2388 }
2389 
2390 /* macro to handle unaligned little endian data in firmware image */
2391 #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
2392 
2393 static int
2394 iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw)
2395 {
2396 	u_char *p, *end;
2397 	uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp;
2398 	int ntries, error;
2399 
2400 	/* copy firmware image to DMA memory */
2401 	memcpy(sc->fw_virtaddr, fw->data, fw->size);
2402 
2403 	/* make sure the adapter will get up-to-date values */
2404 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE);
2405 
2406 	/* tell the adapter where the command blocks are stored */
2407 	MEM_WRITE_4(sc, 0x3000a0, 0x27000);
2408 
2409 	/*
2410 	 * Store command blocks into adapter's internal memory using register
2411 	 * indirections. The adapter will read the firmware image through DMA
2412 	 * using information stored in command blocks.
2413 	 */
2414 	src = sc->fw_physaddr;
2415 	p = sc->fw_virtaddr;
2416 	end = p + fw->size;
2417 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000);
2418 
2419 	while (p < end) {
2420 		dst = GETLE32(p); p += 4; src += 4;
2421 		len = GETLE32(p); p += 4; src += 4;
2422 		p += len;
2423 
2424 		while (len > 0) {
2425 			mlen = min(len, IWI_CB_MAXDATALEN);
2426 
2427 			ctl = IWI_CB_DEFAULT_CTL | mlen;
2428 			sum = ctl ^ src ^ dst;
2429 
2430 			/* write a command block */
2431 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl);
2432 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src);
2433 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst);
2434 			CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum);
2435 
2436 			src += mlen;
2437 			dst += mlen;
2438 			len -= mlen;
2439 		}
2440 	}
2441 
2442 	/* write a fictive final command block (sentinel) */
2443 	sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR);
2444 	CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
2445 
2446 	tmp = CSR_READ_4(sc, IWI_CSR_RST);
2447 	tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER);
2448 	CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
2449 
2450 	/* tell the adapter to start processing command blocks */
2451 	MEM_WRITE_4(sc, 0x3000a4, 0x540100);
2452 
2453 	/* wait until the adapter reaches the sentinel */
2454 	for (ntries = 0; ntries < 400; ntries++) {
2455 		if (MEM_READ_4(sc, 0x3000d0) >= sentinel)
2456 			break;
2457 		DELAY(100);
2458 	}
2459 	/* sync dma, just in case */
2460 	bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE);
2461 	if (ntries == 400) {
2462 		device_printf(sc->sc_dev,
2463 		    "timeout processing command blocks for %s firmware\n",
2464 		    fw->name);
2465 		return EIO;
2466 	}
2467 
2468 	/* we're done with command blocks processing */
2469 	MEM_WRITE_4(sc, 0x3000a4, 0x540c00);
2470 
2471 	/* allow interrupts so we know when the firmware is ready */
2472 	CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK);
2473 
2474 	/* tell the adapter to initialize the firmware */
2475 	CSR_WRITE_4(sc, IWI_CSR_RST, 0);
2476 
2477 	tmp = CSR_READ_4(sc, IWI_CSR_CTL);
2478 	CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY);
2479 
2480 	/* wait at most one second for firmware initialization to complete */
2481 	error = zsleep(sc, &wlan_global_serializer, 0, "iwiinit", hz);
2482 	if (error != 0) {
2483 		device_printf(sc->sc_dev, "timeout waiting for firmware "
2484 			    "initialization to complete\n");
2485 	}
2486 
2487 	return error;
2488 }
2489 
2490 static int
2491 iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap)
2492 {
2493 	uint32_t data;
2494 
2495 	if (vap->iv_flags & IEEE80211_F_PMGTON) {
2496 		/* XXX set more fine-grained operation */
2497 		data = htole32(IWI_POWER_MODE_MAX);
2498 	} else
2499 		data = htole32(IWI_POWER_MODE_CAM);
2500 
2501 	DPRINTF(("Setting power mode to %u\n", le32toh(data)));
2502 	return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data);
2503 }
2504 
2505 static int
2506 iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap)
2507 {
2508 	struct iwi_wep_key wepkey;
2509 	struct ieee80211_key *wk;
2510 	int error, i;
2511 
2512 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2513 		wk = &vap->iv_nw_keys[i];
2514 
2515 		wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY;
2516 		wepkey.idx = i;
2517 		wepkey.len = wk->wk_keylen;
2518 		memset(wepkey.key, 0, sizeof wepkey.key);
2519 		memcpy(wepkey.key, wk->wk_key, wk->wk_keylen);
2520 		DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx,
2521 		    wepkey.len));
2522 		error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey,
2523 		    sizeof wepkey);
2524 		if (error != 0)
2525 			return error;
2526 	}
2527 	return 0;
2528 }
2529 
2530 static int
2531 iwi_config(struct iwi_softc *sc)
2532 {
2533 	struct ifnet *ifp = sc->sc_ifp;
2534 	struct ieee80211com *ic = ifp->if_l2com;
2535 	struct iwi_configuration config;
2536 	struct iwi_rateset rs;
2537 	struct iwi_txpower power;
2538 	uint32_t data;
2539 	int error, i;
2540 	const uint8_t *eaddr = IF_LLADDR(ifp);
2541 	char ethstr[ETHER_ADDRSTRLEN + 1];
2542 
2543 	DPRINTF(("Setting MAC address to %s\n", kether_ntoa(eaddr, ethstr)));
2544 	error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, IF_LLADDR(ifp),
2545 	    IEEE80211_ADDR_LEN);
2546 	if (error != 0)
2547 		return error;
2548 
2549 	memset(&config, 0, sizeof config);
2550 	config.bluetooth_coexistence = sc->bluetooth;
2551 	config.silence_threshold = 0x1e;
2552 	config.antenna = sc->antenna;
2553 	config.multicast_enabled = 1;
2554 	config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2555 	config.disable_unicast_decryption = 1;
2556 	config.disable_multicast_decryption = 1;
2557 	DPRINTF(("Configuring adapter\n"));
2558 	error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2559 	if (error != 0)
2560 		return error;
2561 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
2562 		power.mode = IWI_MODE_11B;
2563 		power.nchan = 11;
2564 		for (i = 0; i < 11; i++) {
2565 			power.chan[i].chan = i + 1;
2566 			power.chan[i].power = IWI_TXPOWER_MAX;
2567 		}
2568 		DPRINTF(("Setting .11b channels tx power\n"));
2569 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2570 		if (error != 0)
2571 			return error;
2572 
2573 		power.mode = IWI_MODE_11G;
2574 		DPRINTF(("Setting .11g channels tx power\n"));
2575 		error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power);
2576 		if (error != 0)
2577 			return error;
2578 	}
2579 
2580 	memset(&rs, 0, sizeof rs);
2581 	rs.mode = IWI_MODE_11G;
2582 	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2583 	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates;
2584 	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates,
2585 	    rs.nrates);
2586 	DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates));
2587 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2588 	if (error != 0)
2589 		return error;
2590 
2591 	memset(&rs, 0, sizeof rs);
2592 	rs.mode = IWI_MODE_11A;
2593 	rs.type = IWI_RATESET_TYPE_SUPPORTED;
2594 	rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates;
2595 	memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates,
2596 	    rs.nrates);
2597 	DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates));
2598 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2599 	if (error != 0)
2600 		return error;
2601 
2602 	data = htole32(karc4random());
2603 	DPRINTF(("Setting initialization vector to %u\n", le32toh(data)));
2604 	error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data);
2605 	if (error != 0)
2606 		return error;
2607 
2608 	/* enable adapter */
2609 	DPRINTF(("Enabling adapter\n"));
2610 	return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0);
2611 }
2612 
2613 static __inline void
2614 set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type)
2615 {
2616 	uint8_t *st = &scan->scan_type[ix / 2];
2617 	if (ix % 2)
2618 		*st = (*st & 0xf0) | ((scan_type & 0xf) << 0);
2619 	else
2620 		*st = (*st & 0x0f) | ((scan_type & 0xf) << 4);
2621 }
2622 
2623 static int
2624 scan_type(const struct ieee80211_scan_state *ss,
2625 	const struct ieee80211_channel *chan)
2626 {
2627 	/* We can only set one essid for a directed scan */
2628 	if (ss->ss_nssid != 0)
2629 		return IWI_SCAN_TYPE_BDIRECTED;
2630 	if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) &&
2631 	    (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0)
2632 		return IWI_SCAN_TYPE_BROADCAST;
2633 	return IWI_SCAN_TYPE_PASSIVE;
2634 }
2635 
2636 static __inline int
2637 scan_band(const struct ieee80211_channel *c)
2638 {
2639 	return IEEE80211_IS_CHAN_5GHZ(c) ?  IWI_CHAN_5GHZ : IWI_CHAN_2GHZ;
2640 }
2641 
2642 /*
2643  * Start a scan on the current channel or all channels.
2644  */
2645 static int
2646 iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan)
2647 {
2648 	struct ieee80211com *ic;
2649 	struct ieee80211_channel *chan;
2650 	struct ieee80211_scan_state *ss;
2651 	struct iwi_scan_ext scan;
2652 	int error = 0;
2653 
2654 	if (sc->fw_state == IWI_FW_SCANNING) {
2655 		/*
2656 		 * This should not happen as we only trigger scan_next after
2657 		 * completion
2658 		 */
2659 		DPRINTF(("%s: called too early - still scanning\n", __func__));
2660 		return (EBUSY);
2661 	}
2662 	IWI_STATE_BEGIN(sc, IWI_FW_SCANNING);
2663 
2664 	ic = sc->sc_ifp->if_l2com;
2665 	ss = ic->ic_scan;
2666 
2667 	memset(&scan, 0, sizeof scan);
2668 	scan.full_scan_index = htole32(++sc->sc_scangen);
2669 	scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell);
2670 	if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) {
2671 		/*
2672 		 * Use very short dwell times for when we send probe request
2673 		 * frames.  Without this bg scans hang.  Ideally this should
2674 		 * be handled with early-termination as done by net80211 but
2675 		 * that's not feasible (aborting a scan is problematic).
2676 		 */
2677 		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30);
2678 		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30);
2679 	} else {
2680 		scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell);
2681 		scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell);
2682 	}
2683 
2684 	/* We can only set one essid for a directed scan */
2685 	if (ss->ss_nssid != 0) {
2686 		error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid,
2687 		    ss->ss_ssid[0].len);
2688 		if (error)
2689 			return (error);
2690 	}
2691 
2692 	if (allchan) {
2693 		int i, next, band, b, bstart;
2694 		/*
2695 		 * Convert scan list to run-length encoded channel list
2696 		 * the firmware requires (preserving the order setup by
2697 		 * net80211).  The first entry in each run specifies the
2698 		 * band and the count of items in the run.
2699 		 */
2700 		next = 0;		/* next open slot */
2701 		bstart = 0;		/* NB: not needed, silence compiler */
2702 		band = -1;		/* NB: impossible value */
2703 		KASSERT(ss->ss_last > 0, ("no channels"));
2704 		for (i = 0; i < ss->ss_last; i++) {
2705 			chan = ss->ss_chans[i];
2706 			b = scan_band(chan);
2707 			if (b != band) {
2708 				if (band != -1)
2709 					scan.channels[bstart] =
2710 					    (next - bstart) | band;
2711 				/* NB: this allocates a slot for the run-len */
2712 				band = b, bstart = next++;
2713 			}
2714 			if (next >= IWI_SCAN_CHANNELS) {
2715 				DPRINTF(("truncating scan list\n"));
2716 				break;
2717 			}
2718 			scan.channels[next] = ieee80211_chan2ieee(ic, chan);
2719 			set_scan_type(&scan, next, scan_type(ss, chan));
2720 			next++;
2721 		}
2722 		scan.channels[bstart] = (next - bstart) | band;
2723 	} else {
2724 		/* Scan the current channel only */
2725 		chan = ic->ic_curchan;
2726 		scan.channels[0] = 1 | scan_band(chan);
2727 		scan.channels[1] = ieee80211_chan2ieee(ic, chan);
2728 		set_scan_type(&scan, 1, scan_type(ss, chan));
2729 	}
2730 #ifdef IWI_DEBUG
2731 	if (iwi_debug > 0) {
2732 		static const char *scantype[8] =
2733 		   { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" };
2734 		int i;
2735 		kprintf("Scan request: index %u dwell %d/%d/%d\n"
2736 		    , le32toh(scan.full_scan_index)
2737 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE])
2738 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST])
2739 		    , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED])
2740 		);
2741 		i = 0;
2742 		do {
2743 			int run = scan.channels[i];
2744 			if (run == 0)
2745 				break;
2746 			kprintf("Scan %d %s channels:", run & 0x3f,
2747 			    run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz");
2748 			for (run &= 0x3f, i++; run > 0; run--, i++) {
2749 				uint8_t type = scan.scan_type[i/2];
2750 				kprintf(" %u/%s", scan.channels[i],
2751 				    scantype[(i & 1 ? type : type>>4) & 7]);
2752 			}
2753 			kprintf("\n");
2754 		} while (i < IWI_SCAN_CHANNELS);
2755 	}
2756 #endif
2757 
2758 	return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan));
2759 }
2760 
2761 static int
2762 iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm)
2763 {
2764 	struct iwi_sensitivity sens;
2765 
2766 	DPRINTF(("Setting sensitivity to %d\n", rssi_dbm));
2767 
2768 	memset(&sens, 0, sizeof sens);
2769 	sens.rssi = htole16(rssi_dbm);
2770 	return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens);
2771 }
2772 
2773 static int
2774 iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap)
2775 {
2776 	struct ieee80211com *ic = vap->iv_ic;
2777 	struct ifnet *ifp = vap->iv_ifp;
2778 	struct ieee80211_node *ni = vap->iv_bss;
2779 	struct iwi_configuration config;
2780 	struct iwi_associate *assoc = &sc->assoc;
2781 	struct iwi_rateset rs;
2782 	uint16_t capinfo;
2783 	uint32_t data;
2784 	int error, mode;
2785 	char ethstr[2][ETHER_ADDRSTRLEN + 1];
2786 
2787 	if (sc->flags & IWI_FLAG_ASSOCIATED) {
2788 		DPRINTF(("Already associated\n"));
2789 		return (-1);
2790 	}
2791 
2792 	IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING);
2793 	error = 0;
2794 	mode = 0;
2795 
2796 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan))
2797 		mode = IWI_MODE_11A;
2798 	else if (IEEE80211_IS_CHAN_G(ic->ic_curchan))
2799 		mode = IWI_MODE_11G;
2800 	if (IEEE80211_IS_CHAN_B(ic->ic_curchan))
2801 		mode = IWI_MODE_11B;
2802 
2803 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2804 		memset(&config, 0, sizeof config);
2805 		config.bluetooth_coexistence = sc->bluetooth;
2806 		config.antenna = sc->antenna;
2807 		config.multicast_enabled = 1;
2808 		if (mode == IWI_MODE_11G)
2809 			config.use_protection = 1;
2810 		config.answer_pbreq =
2811 		    (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0;
2812 		config.disable_unicast_decryption = 1;
2813 		config.disable_multicast_decryption = 1;
2814 		DPRINTF(("Configuring adapter\n"));
2815 		error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config);
2816 		if (error != 0)
2817 			goto done;
2818 	}
2819 
2820 #ifdef IWI_DEBUG
2821 	if (iwi_debug > 0) {
2822 		kprintf("Setting ESSID to ");
2823 		ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
2824 		kprintf("\n");
2825 	}
2826 #endif
2827 	error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen);
2828 	if (error != 0)
2829 		goto done;
2830 
2831 	error = iwi_setpowermode(sc, vap);
2832 	if (error != 0)
2833 		goto done;
2834 
2835 	data = htole32(vap->iv_rtsthreshold);
2836 	DPRINTF(("Setting RTS threshold to %u\n", le32toh(data)));
2837 	error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
2838 	if (error != 0)
2839 		goto done;
2840 
2841 	data = htole32(vap->iv_fragthreshold);
2842 	DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data)));
2843 	error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
2844 	if (error != 0)
2845 		goto done;
2846 
2847 	/* the rate set has already been "negotiated" */
2848 	memset(&rs, 0, sizeof rs);
2849 	rs.mode = mode;
2850 	rs.type = IWI_RATESET_TYPE_NEGOTIATED;
2851 	rs.nrates = ni->ni_rates.rs_nrates;
2852 	if (rs.nrates > IWI_RATESET_SIZE) {
2853 		DPRINTF(("Truncating negotiated rate set from %u\n",
2854 		    rs.nrates));
2855 		rs.nrates = IWI_RATESET_SIZE;
2856 	}
2857 	memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates);
2858 	DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates));
2859 	error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs);
2860 	if (error != 0)
2861 		goto done;
2862 
2863 	memset(assoc, 0, sizeof *assoc);
2864 
2865 	if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) {
2866 		/* NB: don't treat WME setup as failure */
2867 		if (iwi_wme_setparams(sc, ic) == 0 && iwi_wme_setie(sc) == 0)
2868 			assoc->policy |= htole16(IWI_POLICY_WME);
2869 		/* XXX complain on failure? */
2870 	}
2871 
2872 	if (vap->iv_appie_wpa != NULL) {
2873 		struct ieee80211_appie *ie = vap->iv_appie_wpa;
2874 
2875 		DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len));
2876 		error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len);
2877 		if (error != 0)
2878 			goto done;
2879 	}
2880 
2881 	error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni));
2882 	if (error != 0)
2883 		goto done;
2884 
2885 	assoc->mode = mode;
2886 	assoc->chan = ic->ic_curchan->ic_ieee;
2887 	/*
2888 	 * NB: do not arrange for shared key auth w/o privacy
2889 	 *     (i.e. a wep key); it causes a firmware error.
2890 	 */
2891 	if ((vap->iv_flags & IEEE80211_F_PRIVACY) &&
2892 	    ni->ni_authmode == IEEE80211_AUTH_SHARED) {
2893 		assoc->auth = IWI_AUTH_SHARED;
2894 		/*
2895 		 * It's possible to have privacy marked but no default
2896 		 * key setup.  This typically is due to a user app bug
2897 		 * but if we blindly grab the key the firmware will
2898 		 * barf so avoid it for now.
2899 		 */
2900 		if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE)
2901 			assoc->auth |= vap->iv_def_txkey << 4;
2902 
2903 		error = iwi_setwepkeys(sc, vap);
2904 		if (error != 0)
2905 			goto done;
2906 	}
2907 	if (vap->iv_flags & IEEE80211_F_WPA)
2908 		assoc->policy |= htole16(IWI_POLICY_WPA);
2909 	if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0)
2910 		assoc->type = IWI_HC_IBSS_START;
2911 	else
2912 		assoc->type = IWI_HC_ASSOC;
2913 	memcpy(assoc->tstamp, ni->ni_tstamp.data, 8);
2914 
2915 	if (vap->iv_opmode == IEEE80211_M_IBSS)
2916 		capinfo = IEEE80211_CAPINFO_IBSS;
2917 	else
2918 		capinfo = IEEE80211_CAPINFO_ESS;
2919 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2920 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2921 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2922 	    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2923 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2924 	if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)
2925 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2926 	assoc->capinfo = htole16(capinfo);
2927 
2928 	assoc->lintval = htole16(ic->ic_lintval);
2929 	assoc->intval = htole16(ni->ni_intval);
2930 	IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid);
2931 	if (vap->iv_opmode == IEEE80211_M_IBSS)
2932 		IEEE80211_ADDR_COPY(assoc->dst, ifp->if_broadcastaddr);
2933 	else
2934 		IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid);
2935 
2936 	DPRINTF(("%s bssid %s dst %s channel %u policy 0x%x "
2937 	    "auth %u capinfo 0x%x lintval %u bintval %u\n",
2938 	    assoc->type == IWI_HC_IBSS_START ? "Start" : "Join",
2939 	    kether_ntoa(assoc->bssid, ethstr[0]), kether_ntoa(assoc->dst, ethstr[1]),
2940 	    assoc->chan, le16toh(assoc->policy), assoc->auth,
2941 	    le16toh(assoc->capinfo), le16toh(assoc->lintval),
2942 	    le16toh(assoc->intval)));
2943 	error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
2944 done:
2945 	if (error)
2946 		IWI_STATE_END(sc, IWI_FW_ASSOCIATING);
2947 
2948 	return (error);
2949 }
2950 
2951 static void
2952 iwi_disassoc_task(void *arg, int pending)
2953 {
2954 	struct iwi_softc *sc = arg;
2955 
2956 	wlan_serialize_enter();
2957 	iwi_disassociate(sc, 0);
2958 	wlan_serialize_exit();
2959 }
2960 
2961 static int
2962 iwi_disassociate(struct iwi_softc *sc, int quiet)
2963 {
2964 	struct iwi_associate *assoc = &sc->assoc;
2965 	char ethstr[ETHER_ADDRSTRLEN + 1];
2966 
2967 	if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) {
2968 		DPRINTF(("Not associated\n"));
2969 		return (-1);
2970 	}
2971 
2972 	IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING);
2973 
2974 	if (quiet)
2975 		assoc->type = IWI_HC_DISASSOC_QUIET;
2976 	else
2977 		assoc->type = IWI_HC_DISASSOC;
2978 
2979 	DPRINTF(("Trying to disassociate from %s channel %u\n",
2980 	    kether_ntoa(assoc->bssid, ethstr), assoc->chan));
2981 	return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc);
2982 }
2983 
2984 /*
2985  * release dma resources for the firmware
2986  */
2987 static void
2988 iwi_release_fw_dma(struct iwi_softc *sc)
2989 {
2990 	if (sc->fw_flags & IWI_FW_HAVE_PHY)
2991 		bus_dmamap_unload(sc->fw_dmat, sc->fw_map);
2992 	if (sc->fw_flags & IWI_FW_HAVE_MAP)
2993 		bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map);
2994 	if (sc->fw_flags & IWI_FW_HAVE_DMAT)
2995 		bus_dma_tag_destroy(sc->fw_dmat);
2996 
2997 	sc->fw_flags = 0;
2998 	sc->fw_dma_size = 0;
2999 	sc->fw_dmat = NULL;
3000 	sc->fw_map = NULL;
3001 	sc->fw_physaddr = 0;
3002 	sc->fw_virtaddr = NULL;
3003 }
3004 
3005 /*
3006  * allocate the dma descriptor for the firmware.
3007  * Return 0 on success, 1 on error.
3008  * Must be called unlocked, protected by IWI_FLAG_FW_LOADING.
3009  */
3010 static int
3011 iwi_init_fw_dma(struct iwi_softc *sc, int size)
3012 {
3013 	if (sc->fw_dma_size >= size)
3014 		return 0;
3015 	if (bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
3016 	    BUS_SPACE_MAXADDR, NULL, NULL, size, 1, size,
3017 	    0, &sc->fw_dmat) != 0) {
3018 		device_printf(sc->sc_dev,
3019 		    "could not create firmware DMA tag\n");
3020 		goto error;
3021 	}
3022 	sc->fw_flags |= IWI_FW_HAVE_DMAT;
3023 	if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0,
3024 	    &sc->fw_map) != 0) {
3025 		device_printf(sc->sc_dev,
3026 		    "could not allocate firmware DMA memory\n");
3027 		goto error;
3028 	}
3029 	sc->fw_flags |= IWI_FW_HAVE_MAP;
3030 	if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr,
3031 	    size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) {
3032 		device_printf(sc->sc_dev, "could not load firmware DMA map\n");
3033 		goto error;
3034 	}
3035 	sc->fw_flags |= IWI_FW_HAVE_PHY;
3036 	sc->fw_dma_size = size;
3037 	return 0;
3038 
3039 error:
3040 	iwi_release_fw_dma(sc);
3041 	return 1;
3042 }
3043 
3044 static void
3045 iwi_init_locked(struct iwi_softc *sc)
3046 {
3047 	struct ifnet *ifp = sc->sc_ifp;
3048 	struct iwi_rx_data *data;
3049 	int i;
3050 
3051 	if (sc->fw_state == IWI_FW_LOADING) {
3052 		device_printf(sc->sc_dev, "%s: already loading\n", __func__);
3053 		return;		/* XXX: condvar? */
3054 	}
3055 
3056 	iwi_stop_locked(sc);
3057 
3058 	IWI_STATE_BEGIN(sc, IWI_FW_LOADING);
3059 
3060 	if (iwi_reset(sc) != 0) {
3061 		device_printf(sc->sc_dev, "could not reset adapter\n");
3062 		goto fail;
3063 	}
3064 	if (iwi_load_firmware(sc, &sc->fw_boot) != 0) {
3065 		device_printf(sc->sc_dev,
3066 		    "could not load boot firmware %s\n", sc->fw_boot.name);
3067 		goto fail;
3068 	}
3069 	if (iwi_load_ucode(sc, &sc->fw_uc) != 0) {
3070 		device_printf(sc->sc_dev,
3071 		    "could not load microcode %s\n", sc->fw_uc.name);
3072 		goto fail;
3073 	}
3074 
3075 	iwi_stop_master(sc);
3076 
3077 	CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr);
3078 	CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count);
3079 	CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
3080 
3081 	CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr);
3082 	CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count);
3083 	CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur);
3084 
3085 	CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr);
3086 	CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count);
3087 	CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur);
3088 
3089 	CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr);
3090 	CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count);
3091 	CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur);
3092 
3093 	CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr);
3094 	CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count);
3095 	CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur);
3096 
3097 	for (i = 0; i < sc->rxq.count; i++) {
3098 		data = &sc->rxq.data[i];
3099 		CSR_WRITE_4(sc, data->reg, data->physaddr);
3100 	}
3101 
3102 	CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1);
3103 
3104 	if (iwi_load_firmware(sc, &sc->fw_fw) != 0) {
3105 		device_printf(sc->sc_dev,
3106 		    "could not load main firmware %s\n", sc->fw_fw.name);
3107 		goto fail;
3108 	}
3109 	sc->flags |= IWI_FLAG_FW_INITED;
3110 
3111 	IWI_STATE_END(sc, IWI_FW_LOADING);
3112 
3113 	if (iwi_config(sc) != 0) {
3114 		device_printf(sc->sc_dev, "unable to enable adapter\n");
3115 		goto fail2;
3116 	}
3117 
3118 	callout_reset(&sc->sc_wdtimer_callout, hz, iwi_watchdog, sc);
3119 	ifq_clr_oactive(&ifp->if_snd);
3120 	ifp->if_flags |= IFF_RUNNING;
3121 	return;
3122 fail:
3123 	IWI_STATE_END(sc, IWI_FW_LOADING);
3124 fail2:
3125 	iwi_stop_locked(sc);
3126 }
3127 
3128 static void
3129 iwi_init(void *priv)
3130 {
3131 	struct iwi_softc *sc = priv;
3132 	struct ifnet *ifp = sc->sc_ifp;
3133 	struct ieee80211com *ic = ifp->if_l2com;
3134 
3135 	iwi_init_locked(sc);
3136 
3137 	if (ifp->if_flags & IFF_RUNNING)
3138 		ieee80211_start_all(ic);
3139 }
3140 
3141 static void
3142 iwi_stop_locked(void *priv)
3143 {
3144 	struct iwi_softc *sc = priv;
3145 	struct ifnet *ifp = sc->sc_ifp;
3146 
3147 	ifp->if_flags &= ~IFF_RUNNING;
3148 	ifq_clr_oactive(&ifp->if_snd);
3149 
3150 	if (sc->sc_softled) {
3151 		callout_stop(&sc->sc_ledtimer_callout);
3152 		sc->sc_blinking = 0;
3153 	}
3154 	callout_stop(&sc->sc_wdtimer_callout);
3155 	callout_stop(&sc->sc_rftimer_callout);
3156 
3157 	iwi_stop_master(sc);
3158 
3159 	CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET);
3160 
3161 	/* reset rings */
3162 	iwi_reset_cmd_ring(sc, &sc->cmdq);
3163 	iwi_reset_tx_ring(sc, &sc->txq[0]);
3164 	iwi_reset_tx_ring(sc, &sc->txq[1]);
3165 	iwi_reset_tx_ring(sc, &sc->txq[2]);
3166 	iwi_reset_tx_ring(sc, &sc->txq[3]);
3167 	iwi_reset_rx_ring(sc, &sc->rxq);
3168 
3169 	sc->sc_tx_timer = 0;
3170 	sc->sc_state_timer = 0;
3171 	sc->sc_busy_timer = 0;
3172 	sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED);
3173 	sc->fw_state = IWI_FW_IDLE;
3174 	wakeup(sc);
3175 }
3176 
3177 static void
3178 iwi_stop(struct iwi_softc *sc)
3179 {
3180 	iwi_stop_locked(sc);
3181 }
3182 
3183 static void
3184 iwi_restart_task(void *arg, int npending)
3185 {
3186 	struct iwi_softc *sc = arg;
3187 
3188 	wlan_serialize_enter();
3189 	iwi_init(sc);
3190 	wlan_serialize_exit();
3191 }
3192 
3193 /*
3194  * Return whether or not the radio is enabled in hardware
3195  * (i.e. the rfkill switch is "off").
3196  */
3197 static int
3198 iwi_getrfkill(struct iwi_softc *sc)
3199 {
3200 	return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0;
3201 }
3202 
3203 static void
3204 iwi_radio_on_task(void *arg, int pending)
3205 {
3206 	struct iwi_softc *sc = arg;
3207 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3208 
3209 	wlan_serialize_enter();
3210 	device_printf(sc->sc_dev, "radio turned on\n");
3211 
3212 	iwi_init(sc);
3213 	ieee80211_notify_radio(ic, 1);
3214 	wlan_serialize_exit();
3215 }
3216 
3217 static void
3218 iwi_rfkill_poll(void *arg)
3219 {
3220 	struct iwi_softc *sc = arg;
3221 
3222 	/*
3223 	 * Check for a change in rfkill state.  We get an
3224 	 * interrupt when a radio is disabled but not when
3225 	 * it is enabled so we must poll for the latter.
3226 	 */
3227 	if (!iwi_getrfkill(sc)) {
3228 		struct ifnet *ifp = sc->sc_ifp;
3229 		struct ieee80211com *ic = ifp->if_l2com;
3230 
3231 		ieee80211_runtask(ic, &sc->sc_radiontask);
3232 		return;
3233 	}
3234 	callout_reset(&sc->sc_rftimer_callout, 2*hz, iwi_rfkill_poll, sc);
3235 }
3236 
3237 static void
3238 iwi_radio_off_task(void *arg, int pending)
3239 {
3240 	struct iwi_softc *sc = arg;
3241 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3242 
3243 	wlan_serialize_enter();
3244 	device_printf(sc->sc_dev, "radio turned off\n");
3245 
3246 	ieee80211_notify_radio(ic, 0);
3247 
3248 	iwi_stop_locked(sc);
3249 	iwi_rfkill_poll(sc);
3250 	wlan_serialize_exit();
3251 }
3252 
3253 static int
3254 iwi_sysctl_stats(SYSCTL_HANDLER_ARGS)
3255 {
3256 	struct iwi_softc *sc = arg1;
3257 	uint32_t size, buf[128];
3258 
3259 	memset(buf, 0, sizeof buf);
3260 
3261 	if (!(sc->flags & IWI_FLAG_FW_INITED))
3262 		return SYSCTL_OUT(req, buf, sizeof buf);
3263 
3264 	size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1);
3265 	CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size);
3266 
3267 	return SYSCTL_OUT(req, buf, size);
3268 }
3269 
3270 static int
3271 iwi_sysctl_radio(SYSCTL_HANDLER_ARGS)
3272 {
3273 	struct iwi_softc *sc = arg1;
3274 	int val = !iwi_getrfkill(sc);
3275 
3276 	return SYSCTL_OUT(req, &val, sizeof val);
3277 }
3278 
3279 /*
3280  * Add sysctl knobs.
3281  */
3282 static void
3283 iwi_sysctlattach(struct iwi_softc *sc)
3284 {
3285 	struct sysctl_ctx_list *ctx;
3286 	struct sysctl_oid *tree;
3287 
3288 	ctx = &sc->sc_sysctl_ctx;
3289 	sysctl_ctx_init(ctx);
3290 
3291 	tree = SYSCTL_ADD_NODE(ctx, SYSCTL_STATIC_CHILDREN(_hw),
3292 	                       OID_AUTO,
3293 	                       device_get_nameunit(sc->sc_dev),
3294 	                       CTLFLAG_RD, 0, "");
3295 	if (tree == NULL) {
3296 		device_printf(sc->sc_dev, "can't add sysctl node\n");
3297 		return;
3298 	}
3299 
3300 	sc->sc_sysctl_tree = tree;
3301 
3302 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio",
3303 	    CTLTYPE_INT | CTLFLAG_RD, sc, 0, iwi_sysctl_radio, "I",
3304 	    "radio transmitter switch state (0=off, 1=on)");
3305 
3306 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats",
3307 	    CTLTYPE_OPAQUE | CTLFLAG_RD, sc, 0, iwi_sysctl_stats, "S",
3308 	    "statistics");
3309 
3310 	sc->bluetooth = 0;
3311 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth",
3312 	    CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence");
3313 
3314 	sc->antenna = IWI_ANTENNA_AUTO;
3315 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna",
3316 	    CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)");
3317 }
3318 
3319 /*
3320  * LED support.
3321  *
3322  * Different cards have different capabilities.  Some have three
3323  * led's while others have only one.  The linux ipw driver defines
3324  * led's for link state (associated or not), band (11a, 11g, 11b),
3325  * and for link activity.  We use one led and vary the blink rate
3326  * according to the tx/rx traffic a la the ath driver.
3327  */
3328 
3329 static __inline uint32_t
3330 iwi_toggle_event(uint32_t r)
3331 {
3332 	return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA |
3333 		     IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA);
3334 }
3335 
3336 static uint32_t
3337 iwi_read_event(struct iwi_softc *sc)
3338 {
3339 	return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT);
3340 }
3341 
3342 static void
3343 iwi_write_event(struct iwi_softc *sc, uint32_t v)
3344 {
3345 	MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v);
3346 }
3347 
3348 static void
3349 iwi_led_done(void *arg)
3350 {
3351 	struct iwi_softc *sc = arg;
3352 
3353 	sc->sc_blinking = 0;
3354 }
3355 
3356 /*
3357  * Turn the activity LED off: flip the pin and then set a timer so no
3358  * update will happen for the specified duration.
3359  */
3360 static void
3361 iwi_led_off(void *arg)
3362 {
3363 	struct iwi_softc *sc = arg;
3364 	uint32_t v;
3365 
3366 	v = iwi_read_event(sc);
3367 	v &= ~sc->sc_ledpin;
3368 	iwi_write_event(sc, iwi_toggle_event(v));
3369 	callout_reset(&sc->sc_ledtimer_callout, sc->sc_ledoff, iwi_led_done, sc);
3370 }
3371 
3372 /*
3373  * Blink the LED according to the specified on/off times.
3374  */
3375 static void
3376 iwi_led_blink(struct iwi_softc *sc, int on, int off)
3377 {
3378 	uint32_t v;
3379 
3380 	v = iwi_read_event(sc);
3381 	v |= sc->sc_ledpin;
3382 	iwi_write_event(sc, iwi_toggle_event(v));
3383 	sc->sc_blinking = 1;
3384 	sc->sc_ledoff = off;
3385 	callout_reset(&sc->sc_ledtimer_callout, on, iwi_led_off, sc);
3386 }
3387 
3388 static void
3389 iwi_led_event(struct iwi_softc *sc, int event)
3390 {
3391 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
3392 	static const struct {
3393 		u_int		rate;		/* tx/rx iwi rate */
3394 		u_int16_t	timeOn;		/* LED on time (ms) */
3395 		u_int16_t	timeOff;	/* LED off time (ms) */
3396 	} blinkrates[] = {
3397 		{ IWI_RATE_OFDM54, 40,  10 },
3398 		{ IWI_RATE_OFDM48, 44,  11 },
3399 		{ IWI_RATE_OFDM36, 50,  13 },
3400 		{ IWI_RATE_OFDM24, 57,  14 },
3401 		{ IWI_RATE_OFDM18, 67,  16 },
3402 		{ IWI_RATE_OFDM12, 80,  20 },
3403 		{ IWI_RATE_DS11,  100,  25 },
3404 		{ IWI_RATE_OFDM9, 133,  34 },
3405 		{ IWI_RATE_OFDM6, 160,  40 },
3406 		{ IWI_RATE_DS5,   200,  50 },
3407 		{            6,   240,  58 },	/* XXX 3Mb/s if it existed */
3408 		{ IWI_RATE_DS2,   267,  66 },
3409 		{ IWI_RATE_DS1,   400, 100 },
3410 		{            0,   500, 130 },	/* unknown rate/polling */
3411 	};
3412 	uint32_t txrate;
3413 	int j = 0;			/* XXX silence compiler */
3414 
3415 	sc->sc_ledevent = ticks;	/* time of last event */
3416 	if (sc->sc_blinking)		/* don't interrupt active blink */
3417 		return;
3418 	switch (event) {
3419 	case IWI_LED_POLL:
3420 		j = NELEM(blinkrates)-1;
3421 		break;
3422 	case IWI_LED_TX:
3423 		/* read current transmission rate from adapter */
3424 		txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE);
3425 		if (blinkrates[sc->sc_txrix].rate != txrate) {
3426 			for (j = 0; j < NELEM(blinkrates)-1; j++)
3427 				if (blinkrates[j].rate == txrate)
3428 					break;
3429 			sc->sc_txrix = j;
3430 		} else
3431 			j = sc->sc_txrix;
3432 		break;
3433 	case IWI_LED_RX:
3434 		if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) {
3435 			for (j = 0; j < NELEM(blinkrates)-1; j++)
3436 				if (blinkrates[j].rate == sc->sc_rxrate)
3437 					break;
3438 			sc->sc_rxrix = j;
3439 		} else
3440 			j = sc->sc_rxrix;
3441 		break;
3442 	}
3443 	/* XXX beware of overflow */
3444 	iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000,
3445 		(blinkrates[j].timeOff * hz) / 1000);
3446 }
3447 
3448 static int
3449 iwi_sysctl_softled(SYSCTL_HANDLER_ARGS)
3450 {
3451 	struct iwi_softc *sc = arg1;
3452 	int softled = sc->sc_softled;
3453 	int error;
3454 
3455 	error = sysctl_handle_int(oidp, &softled, 0, req);
3456 	if (error || !req->newptr)
3457 		return error;
3458 	softled = (softled != 0);
3459 	if (softled != sc->sc_softled) {
3460 		if (softled) {
3461 			uint32_t v = iwi_read_event(sc);
3462 			v &= ~sc->sc_ledpin;
3463 			iwi_write_event(sc, iwi_toggle_event(v));
3464 		}
3465 		sc->sc_softled = softled;
3466 	}
3467 	return 0;
3468 }
3469 
3470 static void
3471 iwi_ledattach(struct iwi_softc *sc)
3472 {
3473 	struct sysctl_ctx_list *ctx = &sc->sc_sysctl_ctx;
3474 	struct sysctl_oid *tree = sc->sc_sysctl_tree;
3475 
3476 	sc->sc_blinking = 0;
3477 	sc->sc_ledstate = 1;
3478 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
3479 	callout_init(&sc->sc_ledtimer_callout);
3480 
3481 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3482 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
3483 		iwi_sysctl_softled, "I", "enable/disable software LED support");
3484 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3485 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
3486 		"pin setting to turn activity LED on");
3487 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3488 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
3489 		"idle time for inactivity LED (ticks)");
3490 	/* XXX for debugging */
3491 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
3492 		"nictype", CTLFLAG_RD, &sc->sc_nictype, 0,
3493 		"NIC type from EEPROM");
3494 
3495 	sc->sc_ledpin = IWI_RST_LED_ACTIVITY;
3496 	sc->sc_softled = 1;
3497 
3498 	sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff;
3499 	if (sc->sc_nictype == 1) {
3500 		/*
3501 		 * NB: led's are reversed.
3502 		 */
3503 		sc->sc_ledpin = IWI_RST_LED_ASSOCIATED;
3504 	}
3505 }
3506 
3507 static void
3508 iwi_scan_start(struct ieee80211com *ic)
3509 {
3510 	/* ignore */
3511 }
3512 
3513 static void
3514 iwi_set_channel(struct ieee80211com *ic)
3515 {
3516 	struct ifnet *ifp = ic->ic_ifp;
3517 	struct iwi_softc *sc = ifp->if_softc;
3518 	if (sc->fw_state == IWI_FW_IDLE)
3519 		iwi_setcurchan(sc, ic->ic_curchan->ic_ieee);
3520 }
3521 
3522 static void
3523 iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3524 {
3525 	struct ieee80211vap *vap = ss->ss_vap;
3526 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3527 	struct iwi_softc *sc = ifp->if_softc;
3528 
3529 	if (iwi_scanchan(sc, maxdwell, 0))
3530 		ieee80211_cancel_scan(vap);
3531 }
3532 
3533 static void
3534 iwi_scan_mindwell(struct ieee80211_scan_state *ss)
3535 {
3536 	/* NB: don't try to abort scan; wait for firmware to finish */
3537 }
3538 
3539 static void
3540 iwi_scan_end(struct ieee80211com *ic)
3541 {
3542 	struct ifnet *ifp = ic->ic_ifp;
3543 	struct iwi_softc *sc = ifp->if_softc;
3544 
3545 	sc->flags &= ~IWI_FLAG_CHANNEL_SCAN;
3546 	/* NB: make sure we're still scanning */
3547 	if (sc->fw_state == IWI_FW_SCANNING)
3548 		iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0);
3549 }
3550