xref: /dragonfly/sys/dev/netif/iwn/if_iwn.c (revision 0fe46dc6)
1 /*-
2  * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr>
3  * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org>
4  * Copyright (c) 2008 Sam Leffler, Errno Consulting
5  * Copyright (c) 2011 Intel Corporation
6  * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr>
7  * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*
23  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
24  * adapters.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_wlan.h"
31 #include "opt_iwn.h"
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/bus.h>
42 #include <sys/conf.h>
43 #include <sys/rman.h>
44 #include <sys/endian.h>
45 #include <sys/firmware.h>
46 #include <sys/limits.h>
47 #include <sys/module.h>
48 #include <sys/priv.h>
49 #include <sys/queue.h>
50 #include <sys/taskqueue.h>
51 #if defined(__DragonFly__)
52 #include <sys/device.h>
53 #endif
54 
55 #if defined(__DragonFly__)
56 /* empty */
57 #else
58 #include <machine/bus.h>
59 #include <machine/resource.h>
60 #include <machine/clock.h>
61 #endif
62 
63 #if defined(__DragonFly__)
64 #include <bus/pci/pcireg.h>
65 #include <bus/pci/pcivar.h>
66 #else
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #endif
70 
71 #include <net/if.h>
72 #include <net/if_var.h>
73 #include <net/if_dl.h>
74 #include <net/if_media.h>
75 
76 #include <netinet/in.h>
77 #include <netinet/if_ether.h>
78 
79 #include <netproto/802_11/ieee80211_var.h>
80 #include <netproto/802_11/ieee80211_radiotap.h>
81 #include <netproto/802_11/ieee80211_regdomain.h>
82 #include <netproto/802_11/ieee80211_ratectl.h>
83 
84 #include <dev/netif/iwn/if_iwnreg.h>
85 #include <dev/netif/iwn/if_iwnvar.h>
86 #include <dev/netif/iwn/if_iwn_devid.h>
87 #include <dev/netif/iwn/if_iwn_chip_cfg.h>
88 #include <dev/netif/iwn/if_iwn_debug.h>
89 #include <dev/netif/iwn/if_iwn_ioctl.h>
90 
91 struct iwn_ident {
92 	uint16_t	vendor;
93 	uint16_t	device;
94 	const char	*name;
95 };
96 
97 static const struct iwn_ident iwn_ident_table[] = {
98 	{ 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205"		},
99 	{ 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000"		},
100 	{ 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000"		},
101 	{ 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205"		},
102 	{ 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250"	},
103 	{ 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250"	},
104 	{ 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030"		},
105 	{ 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030"		},
106 	{ 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230"		},
107 	{ 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230"		},
108 	{ 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150"	},
109 	{ 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150"	},
110 	{ 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
111 	{ 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
112 	/* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */
113 	{ 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230"		},
114 	{ 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230"		},
115 	{ 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130"		},
116 	{ 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130"		},
117 	{ 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100"		},
118 	{ 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100"		},
119 	{ 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105"		},
120 	{ 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105"		},
121 	{ 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135"		},
122 	{ 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135"		},
123 	{ 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965"		},
124 	{ 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300"		},
125 	{ 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200"		},
126 	{ 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965"		},
127 	{ 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965"		},
128 	{ 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100"			},
129 	{ 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965"		},
130 	{ 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300"		},
131 	{ 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300"		},
132 	{ 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100"			},
133 	{ 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300"		},
134 	{ 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200"		},
135 	{ 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350"			},
136 	{ 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350"			},
137 	{ 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150"			},
138 	{ 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150"			},
139 	{ 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235"		},
140 	{ 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235"		},
141 	{ 0, 0, NULL }
142 };
143 
144 static int	iwn_probe(device_t);
145 static int	iwn_attach(device_t);
146 static int	iwn4965_attach(struct iwn_softc *, uint16_t);
147 static int	iwn5000_attach(struct iwn_softc *, uint16_t);
148 static int	iwn_config_specific(struct iwn_softc *, uint16_t);
149 static void	iwn_radiotap_attach(struct iwn_softc *);
150 static void	iwn_sysctlattach(struct iwn_softc *);
151 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
152 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
153 		    const uint8_t [IEEE80211_ADDR_LEN],
154 		    const uint8_t [IEEE80211_ADDR_LEN]);
155 static void	iwn_vap_delete(struct ieee80211vap *);
156 static int	iwn_detach(device_t);
157 static int	iwn_shutdown(device_t);
158 static int	iwn_suspend(device_t);
159 static int	iwn_resume(device_t);
160 static int	iwn_nic_lock(struct iwn_softc *);
161 static int	iwn_eeprom_lock(struct iwn_softc *);
162 static int	iwn_init_otprom(struct iwn_softc *);
163 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
164 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
165 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
166 		    void **, bus_size_t, bus_size_t);
167 static void	iwn_dma_contig_free(struct iwn_dma_info *);
168 static int	iwn_alloc_sched(struct iwn_softc *);
169 static void	iwn_free_sched(struct iwn_softc *);
170 static int	iwn_alloc_kw(struct iwn_softc *);
171 static void	iwn_free_kw(struct iwn_softc *);
172 static int	iwn_alloc_ict(struct iwn_softc *);
173 static void	iwn_free_ict(struct iwn_softc *);
174 static int	iwn_alloc_fwmem(struct iwn_softc *);
175 static void	iwn_free_fwmem(struct iwn_softc *);
176 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
177 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
178 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
179 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
180 		    int);
181 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
182 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
183 static void	iwn5000_ict_reset(struct iwn_softc *);
184 static int	iwn_read_eeprom(struct iwn_softc *,
185 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
186 static void	iwn4965_read_eeprom(struct iwn_softc *);
187 #ifdef	IWN_DEBUG
188 static void	iwn4965_print_power_group(struct iwn_softc *, int);
189 #endif
190 static void	iwn5000_read_eeprom(struct iwn_softc *);
191 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
192 static void	iwn_read_eeprom_band(struct iwn_softc *, int, int, int *,
193 		    struct ieee80211_channel[]);
194 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int, int, int *,
195 		    struct ieee80211_channel[]);
196 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
197 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
198 		    struct ieee80211_channel *);
199 static void	iwn_getradiocaps(struct ieee80211com *, int, int *,
200 		    struct ieee80211_channel[]);
201 static int	iwn_setregdomain(struct ieee80211com *,
202 		    struct ieee80211_regdomain *, int,
203 		    struct ieee80211_channel[]);
204 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
205 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
206 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
207 static void	iwn_newassoc(struct ieee80211_node *, int);
208 static int	iwn_media_change(struct ifnet *);
209 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
210 static void	iwn_calib_timeout(void *);
211 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
212 		    struct iwn_rx_data *);
213 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
214 		    struct iwn_rx_data *);
215 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
216 		    struct iwn_rx_data *);
217 static void	iwn5000_rx_calib_results(struct iwn_softc *,
218 		    struct iwn_rx_desc *, struct iwn_rx_data *);
219 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
220 		    struct iwn_rx_data *);
221 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
222 		    struct iwn_rx_data *);
223 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
224 		    struct iwn_rx_data *);
225 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
226 		    uint8_t);
227 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, int, void *);
228 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
229 static void	iwn_notif_intr(struct iwn_softc *);
230 static void	iwn_wakeup_intr(struct iwn_softc *);
231 static void	iwn_rftoggle_intr(struct iwn_softc *);
232 static void	iwn_fatal_intr(struct iwn_softc *);
233 static void	iwn_intr(void *);
234 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
235 		    uint16_t);
236 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
237 		    uint16_t);
238 #ifdef notyet
239 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
240 #endif
241 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
242 		    struct ieee80211_node *);
243 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
244 		    struct ieee80211_node *,
245 		    const struct ieee80211_bpf_params *params);
246 static void	iwn_xmit_task(void *arg0, int pending);
247 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
248 		    const struct ieee80211_bpf_params *);
249 static int	iwn_transmit(struct ieee80211com *, struct mbuf *);
250 static void	iwn_watchdog(void *);
251 static int	iwn_ioctl(struct ieee80211com *, u_long , void *);
252 static void	iwn_parent(struct ieee80211com *);
253 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
254 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
255 		    int);
256 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
257 		    int);
258 static int	iwn_set_link_quality(struct iwn_softc *,
259 		    struct ieee80211_node *);
260 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
261 static int	iwn_updateedca(struct ieee80211com *);
262 static void	iwn_update_mcast(struct ieee80211com *);
263 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
264 static int	iwn_set_critical_temp(struct iwn_softc *);
265 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
266 static void	iwn4965_power_calibration(struct iwn_softc *, int);
267 static int	iwn4965_set_txpower(struct iwn_softc *,
268 		    struct ieee80211_channel *, int);
269 static int	iwn5000_set_txpower(struct iwn_softc *,
270 		    struct ieee80211_channel *, int);
271 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
272 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
273 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
274 static int	iwn4965_get_temperature(struct iwn_softc *);
275 static int	iwn5000_get_temperature(struct iwn_softc *);
276 static int	iwn_init_sensitivity(struct iwn_softc *);
277 static void	iwn_collect_noise(struct iwn_softc *,
278 		    const struct iwn_rx_general_stats *);
279 static int	iwn4965_init_gains(struct iwn_softc *);
280 static int	iwn5000_init_gains(struct iwn_softc *);
281 static int	iwn4965_set_gains(struct iwn_softc *);
282 static int	iwn5000_set_gains(struct iwn_softc *);
283 static void	iwn_tune_sensitivity(struct iwn_softc *,
284 		    const struct iwn_rx_stats *);
285 static void	iwn_save_stats_counters(struct iwn_softc *,
286 		    const struct iwn_stats *);
287 static int	iwn_send_sensitivity(struct iwn_softc *);
288 static void	iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *);
289 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
290 static int	iwn_send_btcoex(struct iwn_softc *);
291 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
292 static int	iwn5000_runtime_calib(struct iwn_softc *);
293 static int	iwn_config(struct iwn_softc *);
294 static int	iwn_scan(struct iwn_softc *, struct ieee80211vap *,
295 		    struct ieee80211_scan_state *, struct ieee80211_channel *);
296 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
297 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
298 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
299 		    struct ieee80211_rx_ampdu *, int, int, int);
300 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
301 		    struct ieee80211_rx_ampdu *);
302 static int	iwn_addba_request(struct ieee80211_node *,
303 		    struct ieee80211_tx_ampdu *, int, int, int);
304 static int	iwn_addba_response(struct ieee80211_node *,
305 		    struct ieee80211_tx_ampdu *, int, int, int);
306 static int	iwn_ampdu_tx_start(struct ieee80211com *,
307 		    struct ieee80211_node *, uint8_t);
308 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
309 		    struct ieee80211_tx_ampdu *);
310 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
311 		    struct ieee80211_node *, int, uint8_t, uint16_t);
312 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
313 		    uint8_t, uint16_t);
314 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
315 		    struct ieee80211_node *, int, uint8_t, uint16_t);
316 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
317 		    uint8_t, uint16_t);
318 static int	iwn5000_query_calibration(struct iwn_softc *);
319 static int	iwn5000_send_calibration(struct iwn_softc *);
320 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
321 static int	iwn5000_crystal_calib(struct iwn_softc *);
322 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
323 static int	iwn5000_temp_offset_calibv2(struct iwn_softc *);
324 static int	iwn4965_post_alive(struct iwn_softc *);
325 static int	iwn5000_post_alive(struct iwn_softc *);
326 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
327 		    int);
328 static int	iwn4965_load_firmware(struct iwn_softc *);
329 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
330 		    const uint8_t *, int);
331 static int	iwn5000_load_firmware(struct iwn_softc *);
332 static int	iwn_read_firmware_leg(struct iwn_softc *,
333 		    struct iwn_fw_info *);
334 static int	iwn_read_firmware_tlv(struct iwn_softc *,
335 		    struct iwn_fw_info *, uint16_t);
336 static int	iwn_read_firmware(struct iwn_softc *);
337 static void	iwn_unload_firmware(struct iwn_softc *);
338 static int	iwn_clock_wait(struct iwn_softc *);
339 static int	iwn_apm_init(struct iwn_softc *);
340 static void	iwn_apm_stop_master(struct iwn_softc *);
341 static void	iwn_apm_stop(struct iwn_softc *);
342 static int	iwn4965_nic_config(struct iwn_softc *);
343 static int	iwn5000_nic_config(struct iwn_softc *);
344 static int	iwn_hw_prepare(struct iwn_softc *);
345 static int	iwn_hw_init(struct iwn_softc *);
346 static void	iwn_hw_stop(struct iwn_softc *);
347 static void	iwn_radio_on(void *, int);
348 static void	iwn_radio_off(void *, int);
349 static void	iwn_panicked(void *, int);
350 static void	iwn_init_locked(struct iwn_softc *);
351 static void	iwn_init(struct iwn_softc *);
352 static void	iwn_stop_locked(struct iwn_softc *);
353 static void	iwn_stop(struct iwn_softc *);
354 static void	iwn_scan_start(struct ieee80211com *);
355 static void	iwn_scan_end(struct ieee80211com *);
356 static void	iwn_set_channel(struct ieee80211com *);
357 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
358 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
359 #ifdef	IWN_DEBUG
360 static char	*iwn_get_csr_string(int);
361 static void	iwn_debug_register(struct iwn_softc *);
362 #endif
363 
364 static device_method_t iwn_methods[] = {
365 	/* Device interface */
366 	DEVMETHOD(device_probe,		iwn_probe),
367 	DEVMETHOD(device_attach,	iwn_attach),
368 	DEVMETHOD(device_detach,	iwn_detach),
369 	DEVMETHOD(device_shutdown,	iwn_shutdown),
370 	DEVMETHOD(device_suspend,	iwn_suspend),
371 	DEVMETHOD(device_resume,	iwn_resume),
372 
373 	DEVMETHOD_END
374 };
375 
376 static driver_t iwn_driver = {
377 	"iwn",
378 	iwn_methods,
379 	sizeof(struct iwn_softc)
380 };
381 static devclass_t iwn_devclass;
382 
383 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL);
384 
385 MODULE_VERSION(iwn, 1);
386 
387 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
388 MODULE_DEPEND(iwn, pci, 1, 1, 1);
389 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
390 
391 static d_ioctl_t iwn_cdev_ioctl;
392 static d_open_t iwn_cdev_open;
393 static d_close_t iwn_cdev_close;
394 
395 static struct dev_ops iwn_cdevsw = {
396 #if defined(__DragonFly__)
397 	/* none */
398 	{ "iwn", 0, 0 },
399 #else
400 	.d_version = D_VERSION,
401 	.d_flags = 0,
402 #endif
403 	.d_open = iwn_cdev_open,
404 	.d_close = iwn_cdev_close,
405 	.d_ioctl = iwn_cdev_ioctl,
406 #if defined(__DragonFly__)
407 	/* none */
408 #else
409 	.d_name = "iwn",
410 #endif
411 };
412 
413 static int
414 iwn_probe(device_t dev)
415 {
416 	const struct iwn_ident *ident;
417 
418 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
419 		if (pci_get_vendor(dev) == ident->vendor &&
420 		    pci_get_device(dev) == ident->device) {
421 			device_set_desc(dev, ident->name);
422 			return (BUS_PROBE_DEFAULT);
423 		}
424 	}
425 	return ENXIO;
426 }
427 
428 static int
429 iwn_is_3stream_device(struct iwn_softc *sc)
430 {
431 	/* XXX for now only 5300, until the 5350 can be tested */
432 	if (sc->hw_type == IWN_HW_REV_TYPE_5300)
433 		return (1);
434 	return (0);
435 }
436 
437 static int
438 iwn_attach(device_t dev)
439 {
440 	struct iwn_softc *sc = device_get_softc(dev);
441 	struct ieee80211com *ic;
442 	int i, error, rid;
443 #if defined(__DragonFly__)
444 	int irq_flags;
445 #endif
446 
447 	sc->sc_dev = dev;
448 
449 #ifdef	IWN_DEBUG
450 	error = resource_int_value(device_get_name(sc->sc_dev),
451 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
452 	if (error != 0)
453 		sc->sc_debug = 0;
454 #else
455 	sc->sc_debug = 0;
456 #endif
457 
458 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__);
459 
460 	/*
461 	 * Get the offset of the PCI Express Capability Structure in PCI
462 	 * Configuration Space.
463 	 */
464 #if defined(__DragonFly__)
465 	error = pci_find_extcap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
466 #else
467 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
468 #endif
469 	if (error != 0) {
470 		device_printf(dev, "PCIe capability structure not found!\n");
471 		return error;
472 	}
473 
474 	/* Clear device-specific "PCI retry timeout" register (41h). */
475 	pci_write_config(dev, 0x41, 0, 1);
476 
477 	/* Enable bus-mastering. */
478 	pci_enable_busmaster(dev);
479 
480 	rid = PCIR_BAR(0);
481 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
482 	    RF_ACTIVE);
483 	if (sc->mem == NULL) {
484 		device_printf(dev, "can't map mem space\n");
485 		error = ENOMEM;
486 		return error;
487 	}
488 	sc->sc_st = rman_get_bustag(sc->mem);
489 	sc->sc_sh = rman_get_bushandle(sc->mem);
490 
491 #if defined(__DragonFly__)
492 	pci_alloc_1intr(dev, 1, &rid, &irq_flags);
493 	/* Install interrupt handler. */
494 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, irq_flags);
495 #else
496 	i = 1;
497 	rid = 0;
498 	if (pci_alloc_msi(dev, &i) == 0)
499 		rid = 1;
500 	/* Install interrupt handler. */
501 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
502 	    (rid != 0 ? 0 : RF_SHAREABLE));
503 #endif
504 	if (sc->irq == NULL) {
505 		device_printf(dev, "can't map interrupt\n");
506 		error = ENOMEM;
507 		goto fail;
508 	}
509 
510 	IWN_LOCK_INIT(sc);
511 
512 	/* Read hardware revision and attach. */
513 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT)
514 	    & IWN_HW_REV_TYPE_MASK;
515 	sc->subdevice_id = pci_get_subdevice(dev);
516 
517 	/*
518 	 * 4965 versus 5000 and later have different methods.
519 	 * Let's set those up first.
520 	 */
521 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
522 		error = iwn4965_attach(sc, pci_get_device(dev));
523 	else
524 		error = iwn5000_attach(sc, pci_get_device(dev));
525 	if (error != 0) {
526 		device_printf(dev, "could not attach device, error %d\n",
527 		    error);
528 		goto fail;
529 	}
530 
531 	/*
532 	 * Next, let's setup the various parameters of each NIC.
533 	 */
534 	error = iwn_config_specific(sc, pci_get_device(dev));
535 	if (error != 0) {
536 		device_printf(dev, "could not attach device, error %d\n",
537 		    error);
538 		goto fail;
539 	}
540 
541 	if ((error = iwn_hw_prepare(sc)) != 0) {
542 		device_printf(dev, "hardware not ready, error %d\n", error);
543 		goto fail;
544 	}
545 
546 	/* Allocate DMA memory for firmware transfers. */
547 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
548 		device_printf(dev,
549 		    "could not allocate memory for firmware, error %d\n",
550 		    error);
551 		goto fail;
552 	}
553 
554 	/* Allocate "Keep Warm" page. */
555 	if ((error = iwn_alloc_kw(sc)) != 0) {
556 		device_printf(dev,
557 		    "could not allocate keep warm page, error %d\n", error);
558 		goto fail;
559 	}
560 
561 	/* Allocate ICT table for 5000 Series. */
562 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
563 	    (error = iwn_alloc_ict(sc)) != 0) {
564 		device_printf(dev, "could not allocate ICT table, error %d\n",
565 		    error);
566 		goto fail;
567 	}
568 
569 	/* Allocate TX scheduler "rings". */
570 	if ((error = iwn_alloc_sched(sc)) != 0) {
571 		device_printf(dev,
572 		    "could not allocate TX scheduler rings, error %d\n", error);
573 		goto fail;
574 	}
575 
576 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
577 	for (i = 0; i < sc->ntxqs; i++) {
578 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
579 			device_printf(dev,
580 			    "could not allocate TX ring %d, error %d\n", i,
581 			    error);
582 			goto fail;
583 		}
584 	}
585 
586 	/* Allocate RX ring. */
587 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
588 		device_printf(dev, "could not allocate RX ring, error %d\n",
589 		    error);
590 		goto fail;
591 	}
592 
593 	/* Clear pending interrupts. */
594 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
595 
596 	ic = &sc->sc_ic;
597 	ic->ic_softc = sc;
598 	ic->ic_name = device_get_nameunit(dev);
599 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
600 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
601 
602 	/* Set device capabilities. */
603 	ic->ic_caps =
604 		  IEEE80211_C_STA		/* station mode supported */
605 		| IEEE80211_C_MONITOR		/* monitor mode supported */
606 #if 0
607 		| IEEE80211_C_BGSCAN		/* background scanning */
608 #endif
609 		| IEEE80211_C_TXPMGT		/* tx power management */
610 		| IEEE80211_C_SHSLOT		/* short slot time supported */
611 		| IEEE80211_C_WPA
612 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
613 #if 0
614 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
615 #endif
616 		| IEEE80211_C_WME		/* WME */
617 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
618 		;
619 
620 	/* Read MAC address, channels, etc from EEPROM. */
621 	if ((error = iwn_read_eeprom(sc, ic->ic_macaddr)) != 0) {
622 		device_printf(dev, "could not read EEPROM, error %d\n",
623 		    error);
624 		goto fail;
625 	}
626 
627 	/* Count the number of available chains. */
628 	sc->ntxchains =
629 	    ((sc->txchainmask >> 2) & 1) +
630 	    ((sc->txchainmask >> 1) & 1) +
631 	    ((sc->txchainmask >> 0) & 1);
632 	sc->nrxchains =
633 	    ((sc->rxchainmask >> 2) & 1) +
634 	    ((sc->rxchainmask >> 1) & 1) +
635 	    ((sc->rxchainmask >> 0) & 1);
636 	if (bootverbose) {
637 #if defined(__DragonFly__)
638 		char ethstr[ETHER_ADDRSTRLEN+1];
639 		device_printf(dev, "MIMO %dT%dR, %.4s, address %s\n",
640 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
641 		    kether_ntoa(ic->ic_macaddr, ethstr));
642 #else
643 		device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n",
644 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
645 		    ic->ic_macaddr, ":");
646 #endif
647 	}
648 
649 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
650 		ic->ic_rxstream = sc->nrxchains;
651 		ic->ic_txstream = sc->ntxchains;
652 
653 		/*
654 		 * Some of the 3 antenna devices (ie, the 4965) only supports
655 		 * 2x2 operation.  So correct the number of streams if
656 		 * it's not a 3-stream device.
657 		 */
658 		if (! iwn_is_3stream_device(sc)) {
659 			if (ic->ic_rxstream > 2)
660 				ic->ic_rxstream = 2;
661 			if (ic->ic_txstream > 2)
662 				ic->ic_txstream = 2;
663 		}
664 
665 		ic->ic_htcaps =
666 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
667 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
668 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
669 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
670 #ifdef notyet
671 			| IEEE80211_HTCAP_GREENFIELD
672 #if IWN_RBUF_SIZE == 8192
673 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
674 #else
675 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
676 #endif
677 #endif
678 			/* s/w capabilities */
679 			| IEEE80211_HTC_HT		/* HT operation */
680 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
681 #ifdef notyet
682 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
683 #endif
684 			;
685 	}
686 
687 	ieee80211_ifattach(ic);
688 	ic->ic_vap_create = iwn_vap_create;
689 	ic->ic_ioctl = iwn_ioctl;
690 	ic->ic_parent = iwn_parent;
691 	ic->ic_vap_delete = iwn_vap_delete;
692 	ic->ic_transmit = iwn_transmit;
693 	ic->ic_raw_xmit = iwn_raw_xmit;
694 	ic->ic_node_alloc = iwn_node_alloc;
695 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
696 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
697 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
698 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
699 	sc->sc_addba_request = ic->ic_addba_request;
700 	ic->ic_addba_request = iwn_addba_request;
701 	sc->sc_addba_response = ic->ic_addba_response;
702 	ic->ic_addba_response = iwn_addba_response;
703 	sc->sc_addba_stop = ic->ic_addba_stop;
704 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
705 	ic->ic_newassoc = iwn_newassoc;
706 	ic->ic_wme.wme_update = iwn_updateedca;
707 	ic->ic_update_mcast = iwn_update_mcast;
708 	ic->ic_scan_start = iwn_scan_start;
709 	ic->ic_scan_end = iwn_scan_end;
710 	ic->ic_set_channel = iwn_set_channel;
711 	ic->ic_scan_curchan = iwn_scan_curchan;
712 	ic->ic_scan_mindwell = iwn_scan_mindwell;
713 	ic->ic_getradiocaps = iwn_getradiocaps;
714 	ic->ic_setregdomain = iwn_setregdomain;
715 
716 	iwn_radiotap_attach(sc);
717 
718 #if defined(__DragonFly__)
719 	callout_init_lk(&sc->calib_to, &sc->sc_lk);
720 	callout_init_lk(&sc->watchdog_to, &sc->sc_lk);
721 #else
722 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
723 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
724 #endif
725 	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc);
726 	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc);
727 	TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked, sc);
728 	TASK_INIT(&sc->sc_xmit_task, 0, iwn_xmit_task, sc);
729 
730 	mbufq_init(&sc->sc_xmit_queue, 1024);
731 
732 	sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK,
733 	    taskqueue_thread_enqueue, &sc->sc_tq);
734 #if defined(__DragonFly__)
735 	error = taskqueue_start_threads(&sc->sc_tq, 1, TDPRI_KERN_DAEMON,
736 					-1, "iwn_taskq");
737 #else
738 	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwn_taskq");
739 #endif
740 	if (error != 0) {
741 		device_printf(dev, "can't start threads, error %d\n", error);
742 		goto fail;
743 	}
744 
745 	iwn_sysctlattach(sc);
746 
747 	/*
748 	 * Hook our interrupt after all initialization is complete.
749 	 */
750 #if defined(__DragonFly__)
751 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
752 			       iwn_intr, sc, &sc->sc_ih,
753 			       &wlan_global_serializer);
754 #else
755 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
756 	    NULL, iwn_intr, sc, &sc->sc_ih);
757 #endif
758 	if (error != 0) {
759 		device_printf(dev, "can't establish interrupt, error %d\n",
760 		    error);
761 		goto fail;
762 	}
763 
764 #if 0
765 	device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n",
766 	    __func__,
767 	    sizeof(struct iwn_stats),
768 	    sizeof(struct iwn_stats_bt));
769 #endif
770 
771 	if (bootverbose)
772 		ieee80211_announce(ic);
773 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
774 
775 	/* Add debug ioctl right at the end */
776 	sc->sc_cdev = make_dev(&iwn_cdevsw, device_get_unit(dev),
777 	    UID_ROOT, GID_WHEEL, 0600, "%s", device_get_nameunit(dev));
778 	if (sc->sc_cdev == NULL) {
779 		device_printf(dev, "failed to create debug character device\n");
780 	} else {
781 		sc->sc_cdev->si_drv1 = sc;
782 	}
783 	return 0;
784 fail:
785 	iwn_detach(dev);
786 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
787 	return error;
788 }
789 
790 /*
791  * Define specific configuration based on device id and subdevice id
792  * pid : PCI device id
793  */
794 static int
795 iwn_config_specific(struct iwn_softc *sc, uint16_t pid)
796 {
797 
798 	switch (pid) {
799 /* 4965 series */
800 	case IWN_DID_4965_1:
801 	case IWN_DID_4965_2:
802 	case IWN_DID_4965_3:
803 	case IWN_DID_4965_4:
804 		sc->base_params = &iwn4965_base_params;
805 		sc->limits = &iwn4965_sensitivity_limits;
806 		sc->fwname = "iwn4965fw";
807 		/* Override chains masks, ROM is known to be broken. */
808 		sc->txchainmask = IWN_ANT_AB;
809 		sc->rxchainmask = IWN_ANT_ABC;
810 		/* Enable normal btcoex */
811 		sc->sc_flags |= IWN_FLAG_BTCOEX;
812 		break;
813 /* 1000 Series */
814 	case IWN_DID_1000_1:
815 	case IWN_DID_1000_2:
816 		switch(sc->subdevice_id) {
817 			case	IWN_SDID_1000_1:
818 			case	IWN_SDID_1000_2:
819 			case	IWN_SDID_1000_3:
820 			case	IWN_SDID_1000_4:
821 			case	IWN_SDID_1000_5:
822 			case	IWN_SDID_1000_6:
823 			case	IWN_SDID_1000_7:
824 			case	IWN_SDID_1000_8:
825 			case	IWN_SDID_1000_9:
826 			case	IWN_SDID_1000_10:
827 			case	IWN_SDID_1000_11:
828 			case	IWN_SDID_1000_12:
829 				sc->limits = &iwn1000_sensitivity_limits;
830 				sc->base_params = &iwn1000_base_params;
831 				sc->fwname = "iwn1000fw";
832 				break;
833 			default:
834 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
835 				    "0x%04x rev %d not supported (subdevice)\n", pid,
836 				    sc->subdevice_id,sc->hw_type);
837 				return ENOTSUP;
838 		}
839 		break;
840 /* 6x00 Series */
841 	case IWN_DID_6x00_2:
842 	case IWN_DID_6x00_4:
843 	case IWN_DID_6x00_1:
844 	case IWN_DID_6x00_3:
845 		sc->fwname = "iwn6000fw";
846 		sc->limits = &iwn6000_sensitivity_limits;
847 		switch(sc->subdevice_id) {
848 			case IWN_SDID_6x00_1:
849 			case IWN_SDID_6x00_2:
850 			case IWN_SDID_6x00_8:
851 				//iwl6000_3agn_cfg
852 				sc->base_params = &iwn_6000_base_params;
853 				break;
854 			case IWN_SDID_6x00_3:
855 			case IWN_SDID_6x00_6:
856 			case IWN_SDID_6x00_9:
857 				////iwl6000i_2agn
858 			case IWN_SDID_6x00_4:
859 			case IWN_SDID_6x00_7:
860 			case IWN_SDID_6x00_10:
861 				//iwl6000i_2abg_cfg
862 			case IWN_SDID_6x00_5:
863 				//iwl6000i_2bg_cfg
864 				sc->base_params = &iwn_6000i_base_params;
865 				sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
866 				sc->txchainmask = IWN_ANT_BC;
867 				sc->rxchainmask = IWN_ANT_BC;
868 				break;
869 			default:
870 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
871 				    "0x%04x rev %d not supported (subdevice)\n", pid,
872 				    sc->subdevice_id,sc->hw_type);
873 				return ENOTSUP;
874 		}
875 		break;
876 /* 6x05 Series */
877 	case IWN_DID_6x05_1:
878 	case IWN_DID_6x05_2:
879 		switch(sc->subdevice_id) {
880 			case IWN_SDID_6x05_1:
881 			case IWN_SDID_6x05_4:
882 			case IWN_SDID_6x05_6:
883 				//iwl6005_2agn_cfg
884 			case IWN_SDID_6x05_2:
885 			case IWN_SDID_6x05_5:
886 			case IWN_SDID_6x05_7:
887 				//iwl6005_2abg_cfg
888 			case IWN_SDID_6x05_3:
889 				//iwl6005_2bg_cfg
890 			case IWN_SDID_6x05_8:
891 			case IWN_SDID_6x05_9:
892 				//iwl6005_2agn_sff_cfg
893 			case IWN_SDID_6x05_10:
894 				//iwl6005_2agn_d_cfg
895 			case IWN_SDID_6x05_11:
896 				//iwl6005_2agn_mow1_cfg
897 			case IWN_SDID_6x05_12:
898 				//iwl6005_2agn_mow2_cfg
899 				sc->fwname = "iwn6000g2afw";
900 				sc->limits = &iwn6000_sensitivity_limits;
901 				sc->base_params = &iwn_6000g2_base_params;
902 				break;
903 			default:
904 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
905 				    "0x%04x rev %d not supported (subdevice)\n", pid,
906 				    sc->subdevice_id,sc->hw_type);
907 				return ENOTSUP;
908 		}
909 		break;
910 /* 6x35 Series */
911 	case IWN_DID_6035_1:
912 	case IWN_DID_6035_2:
913 		switch(sc->subdevice_id) {
914 			case IWN_SDID_6035_1:
915 			case IWN_SDID_6035_2:
916 			case IWN_SDID_6035_3:
917 			case IWN_SDID_6035_4:
918 				sc->fwname = "iwn6000g2bfw";
919 				sc->limits = &iwn6235_sensitivity_limits;
920 				sc->base_params = &iwn_6235_base_params;
921 				break;
922 			default:
923 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
924 				    "0x%04x rev %d not supported (subdevice)\n", pid,
925 				    sc->subdevice_id,sc->hw_type);
926 				return ENOTSUP;
927 		}
928 		break;
929 /* 6x50 WiFi/WiMax Series */
930 	case IWN_DID_6050_1:
931 	case IWN_DID_6050_2:
932 		switch(sc->subdevice_id) {
933 			case IWN_SDID_6050_1:
934 			case IWN_SDID_6050_3:
935 			case IWN_SDID_6050_5:
936 				//iwl6050_2agn_cfg
937 			case IWN_SDID_6050_2:
938 			case IWN_SDID_6050_4:
939 			case IWN_SDID_6050_6:
940 				//iwl6050_2abg_cfg
941 				sc->fwname = "iwn6050fw";
942 				sc->txchainmask = IWN_ANT_AB;
943 				sc->rxchainmask = IWN_ANT_AB;
944 				sc->limits = &iwn6000_sensitivity_limits;
945 				sc->base_params = &iwn_6050_base_params;
946 				break;
947 			default:
948 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
949 				    "0x%04x rev %d not supported (subdevice)\n", pid,
950 				    sc->subdevice_id,sc->hw_type);
951 				return ENOTSUP;
952 		}
953 		break;
954 /* 6150 WiFi/WiMax Series */
955 	case IWN_DID_6150_1:
956 	case IWN_DID_6150_2:
957 		switch(sc->subdevice_id) {
958 			case IWN_SDID_6150_1:
959 			case IWN_SDID_6150_3:
960 			case IWN_SDID_6150_5:
961 				// iwl6150_bgn_cfg
962 			case IWN_SDID_6150_2:
963 			case IWN_SDID_6150_4:
964 			case IWN_SDID_6150_6:
965 				//iwl6150_bg_cfg
966 				sc->fwname = "iwn6050fw";
967 				sc->limits = &iwn6000_sensitivity_limits;
968 				sc->base_params = &iwn_6150_base_params;
969 				break;
970 			default:
971 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
972 				    "0x%04x rev %d not supported (subdevice)\n", pid,
973 				    sc->subdevice_id,sc->hw_type);
974 				return ENOTSUP;
975 		}
976 		break;
977 /* 6030 Series and 1030 Series */
978 	case IWN_DID_x030_1:
979 	case IWN_DID_x030_2:
980 	case IWN_DID_x030_3:
981 	case IWN_DID_x030_4:
982 		switch(sc->subdevice_id) {
983 			case IWN_SDID_x030_1:
984 			case IWN_SDID_x030_3:
985 			case IWN_SDID_x030_5:
986 			// iwl1030_bgn_cfg
987 			case IWN_SDID_x030_2:
988 			case IWN_SDID_x030_4:
989 			case IWN_SDID_x030_6:
990 			//iwl1030_bg_cfg
991 			case IWN_SDID_x030_7:
992 			case IWN_SDID_x030_10:
993 			case IWN_SDID_x030_14:
994 			//iwl6030_2agn_cfg
995 			case IWN_SDID_x030_8:
996 			case IWN_SDID_x030_11:
997 			case IWN_SDID_x030_15:
998 			// iwl6030_2bgn_cfg
999 			case IWN_SDID_x030_9:
1000 			case IWN_SDID_x030_12:
1001 			case IWN_SDID_x030_16:
1002 			// iwl6030_2abg_cfg
1003 			case IWN_SDID_x030_13:
1004 			//iwl6030_2bg_cfg
1005 				sc->fwname = "iwn6000g2bfw";
1006 				sc->limits = &iwn6000_sensitivity_limits;
1007 				sc->base_params = &iwn_6000g2b_base_params;
1008 				break;
1009 			default:
1010 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1011 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1012 				    sc->subdevice_id,sc->hw_type);
1013 				return ENOTSUP;
1014 		}
1015 		break;
1016 /* 130 Series WiFi */
1017 /* XXX: This series will need adjustment for rate.
1018  * see rx_with_siso_diversity in linux kernel
1019  */
1020 	case IWN_DID_130_1:
1021 	case IWN_DID_130_2:
1022 		switch(sc->subdevice_id) {
1023 			case IWN_SDID_130_1:
1024 			case IWN_SDID_130_3:
1025 			case IWN_SDID_130_5:
1026 			//iwl130_bgn_cfg
1027 			case IWN_SDID_130_2:
1028 			case IWN_SDID_130_4:
1029 			case IWN_SDID_130_6:
1030 			//iwl130_bg_cfg
1031 				sc->fwname = "iwn6000g2bfw";
1032 				sc->limits = &iwn6000_sensitivity_limits;
1033 				sc->base_params = &iwn_6000g2b_base_params;
1034 				break;
1035 			default:
1036 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1037 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1038 				    sc->subdevice_id,sc->hw_type);
1039 				return ENOTSUP;
1040 		}
1041 		break;
1042 /* 100 Series WiFi */
1043 	case IWN_DID_100_1:
1044 	case IWN_DID_100_2:
1045 		switch(sc->subdevice_id) {
1046 			case IWN_SDID_100_1:
1047 			case IWN_SDID_100_2:
1048 			case IWN_SDID_100_3:
1049 			case IWN_SDID_100_4:
1050 			case IWN_SDID_100_5:
1051 			case IWN_SDID_100_6:
1052 				sc->limits = &iwn1000_sensitivity_limits;
1053 				sc->base_params = &iwn1000_base_params;
1054 				sc->fwname = "iwn100fw";
1055 				break;
1056 			default:
1057 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1058 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1059 				    sc->subdevice_id,sc->hw_type);
1060 				return ENOTSUP;
1061 		}
1062 		break;
1063 
1064 /* 105 Series */
1065 /* XXX: This series will need adjustment for rate.
1066  * see rx_with_siso_diversity in linux kernel
1067  */
1068 	case IWN_DID_105_1:
1069 	case IWN_DID_105_2:
1070 		switch(sc->subdevice_id) {
1071 			case IWN_SDID_105_1:
1072 			case IWN_SDID_105_2:
1073 			case IWN_SDID_105_3:
1074 			//iwl105_bgn_cfg
1075 			case IWN_SDID_105_4:
1076 			//iwl105_bgn_d_cfg
1077 				sc->limits = &iwn2030_sensitivity_limits;
1078 				sc->base_params = &iwn2000_base_params;
1079 				sc->fwname = "iwn105fw";
1080 				break;
1081 			default:
1082 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1083 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1084 				    sc->subdevice_id,sc->hw_type);
1085 				return ENOTSUP;
1086 		}
1087 		break;
1088 
1089 /* 135 Series */
1090 /* XXX: This series will need adjustment for rate.
1091  * see rx_with_siso_diversity in linux kernel
1092  */
1093 	case IWN_DID_135_1:
1094 	case IWN_DID_135_2:
1095 		switch(sc->subdevice_id) {
1096 			case IWN_SDID_135_1:
1097 			case IWN_SDID_135_2:
1098 			case IWN_SDID_135_3:
1099 				sc->limits = &iwn2030_sensitivity_limits;
1100 				sc->base_params = &iwn2030_base_params;
1101 				sc->fwname = "iwn135fw";
1102 				break;
1103 			default:
1104 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1105 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1106 				    sc->subdevice_id,sc->hw_type);
1107 				return ENOTSUP;
1108 		}
1109 		break;
1110 
1111 /* 2x00 Series */
1112 	case IWN_DID_2x00_1:
1113 	case IWN_DID_2x00_2:
1114 		switch(sc->subdevice_id) {
1115 			case IWN_SDID_2x00_1:
1116 			case IWN_SDID_2x00_2:
1117 			case IWN_SDID_2x00_3:
1118 			//iwl2000_2bgn_cfg
1119 			case IWN_SDID_2x00_4:
1120 			//iwl2000_2bgn_d_cfg
1121 				sc->limits = &iwn2030_sensitivity_limits;
1122 				sc->base_params = &iwn2000_base_params;
1123 				sc->fwname = "iwn2000fw";
1124 				break;
1125 			default:
1126 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1127 				    "0x%04x rev %d not supported (subdevice) \n",
1128 				    pid, sc->subdevice_id, sc->hw_type);
1129 				return ENOTSUP;
1130 		}
1131 		break;
1132 /* 2x30 Series */
1133 	case IWN_DID_2x30_1:
1134 	case IWN_DID_2x30_2:
1135 		switch(sc->subdevice_id) {
1136 			case IWN_SDID_2x30_1:
1137 			case IWN_SDID_2x30_3:
1138 			case IWN_SDID_2x30_5:
1139 			//iwl100_bgn_cfg
1140 			case IWN_SDID_2x30_2:
1141 			case IWN_SDID_2x30_4:
1142 			case IWN_SDID_2x30_6:
1143 			//iwl100_bg_cfg
1144 				sc->limits = &iwn2030_sensitivity_limits;
1145 				sc->base_params = &iwn2030_base_params;
1146 				sc->fwname = "iwn2030fw";
1147 				break;
1148 			default:
1149 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1150 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1151 				    sc->subdevice_id,sc->hw_type);
1152 				return ENOTSUP;
1153 		}
1154 		break;
1155 /* 5x00 Series */
1156 	case IWN_DID_5x00_1:
1157 	case IWN_DID_5x00_2:
1158 	case IWN_DID_5x00_3:
1159 	case IWN_DID_5x00_4:
1160 		sc->limits = &iwn5000_sensitivity_limits;
1161 		sc->base_params = &iwn5000_base_params;
1162 		sc->fwname = "iwn5000fw";
1163 		switch(sc->subdevice_id) {
1164 			case IWN_SDID_5x00_1:
1165 			case IWN_SDID_5x00_2:
1166 			case IWN_SDID_5x00_3:
1167 			case IWN_SDID_5x00_4:
1168 			case IWN_SDID_5x00_9:
1169 			case IWN_SDID_5x00_10:
1170 			case IWN_SDID_5x00_11:
1171 			case IWN_SDID_5x00_12:
1172 			case IWN_SDID_5x00_17:
1173 			case IWN_SDID_5x00_18:
1174 			case IWN_SDID_5x00_19:
1175 			case IWN_SDID_5x00_20:
1176 			//iwl5100_agn_cfg
1177 				sc->txchainmask = IWN_ANT_B;
1178 				sc->rxchainmask = IWN_ANT_AB;
1179 				break;
1180 			case IWN_SDID_5x00_5:
1181 			case IWN_SDID_5x00_6:
1182 			case IWN_SDID_5x00_13:
1183 			case IWN_SDID_5x00_14:
1184 			case IWN_SDID_5x00_21:
1185 			case IWN_SDID_5x00_22:
1186 			//iwl5100_bgn_cfg
1187 				sc->txchainmask = IWN_ANT_B;
1188 				sc->rxchainmask = IWN_ANT_AB;
1189 				break;
1190 			case IWN_SDID_5x00_7:
1191 			case IWN_SDID_5x00_8:
1192 			case IWN_SDID_5x00_15:
1193 			case IWN_SDID_5x00_16:
1194 			case IWN_SDID_5x00_23:
1195 			case IWN_SDID_5x00_24:
1196 			//iwl5100_abg_cfg
1197 				sc->txchainmask = IWN_ANT_B;
1198 				sc->rxchainmask = IWN_ANT_AB;
1199 				break;
1200 			case IWN_SDID_5x00_25:
1201 			case IWN_SDID_5x00_26:
1202 			case IWN_SDID_5x00_27:
1203 			case IWN_SDID_5x00_28:
1204 			case IWN_SDID_5x00_29:
1205 			case IWN_SDID_5x00_30:
1206 			case IWN_SDID_5x00_31:
1207 			case IWN_SDID_5x00_32:
1208 			case IWN_SDID_5x00_33:
1209 			case IWN_SDID_5x00_34:
1210 			case IWN_SDID_5x00_35:
1211 			case IWN_SDID_5x00_36:
1212 			//iwl5300_agn_cfg
1213 				sc->txchainmask = IWN_ANT_ABC;
1214 				sc->rxchainmask = IWN_ANT_ABC;
1215 				break;
1216 			default:
1217 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1218 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1219 				    sc->subdevice_id,sc->hw_type);
1220 				return ENOTSUP;
1221 		}
1222 		break;
1223 /* 5x50 Series */
1224 	case IWN_DID_5x50_1:
1225 	case IWN_DID_5x50_2:
1226 	case IWN_DID_5x50_3:
1227 	case IWN_DID_5x50_4:
1228 		sc->limits = &iwn5000_sensitivity_limits;
1229 		sc->base_params = &iwn5000_base_params;
1230 		sc->fwname = "iwn5000fw";
1231 		switch(sc->subdevice_id) {
1232 			case IWN_SDID_5x50_1:
1233 			case IWN_SDID_5x50_2:
1234 			case IWN_SDID_5x50_3:
1235 			//iwl5350_agn_cfg
1236 				sc->limits = &iwn5000_sensitivity_limits;
1237 				sc->base_params = &iwn5000_base_params;
1238 				sc->fwname = "iwn5000fw";
1239 				break;
1240 			case IWN_SDID_5x50_4:
1241 			case IWN_SDID_5x50_5:
1242 			case IWN_SDID_5x50_8:
1243 			case IWN_SDID_5x50_9:
1244 			case IWN_SDID_5x50_10:
1245 			case IWN_SDID_5x50_11:
1246 			//iwl5150_agn_cfg
1247 			case IWN_SDID_5x50_6:
1248 			case IWN_SDID_5x50_7:
1249 			case IWN_SDID_5x50_12:
1250 			case IWN_SDID_5x50_13:
1251 			//iwl5150_abg_cfg
1252 				sc->limits = &iwn5000_sensitivity_limits;
1253 				sc->fwname = "iwn5150fw";
1254 				sc->base_params = &iwn_5x50_base_params;
1255 				break;
1256 			default:
1257 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1258 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1259 				    sc->subdevice_id,sc->hw_type);
1260 				return ENOTSUP;
1261 		}
1262 		break;
1263 	default:
1264 		device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x"
1265 		    "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id,
1266 		     sc->hw_type);
1267 		return ENOTSUP;
1268 	}
1269 	return 0;
1270 }
1271 
1272 static int
1273 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
1274 {
1275 	struct iwn_ops *ops = &sc->ops;
1276 
1277 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1278 	ops->load_firmware = iwn4965_load_firmware;
1279 	ops->read_eeprom = iwn4965_read_eeprom;
1280 	ops->post_alive = iwn4965_post_alive;
1281 	ops->nic_config = iwn4965_nic_config;
1282 	ops->update_sched = iwn4965_update_sched;
1283 	ops->get_temperature = iwn4965_get_temperature;
1284 	ops->get_rssi = iwn4965_get_rssi;
1285 	ops->set_txpower = iwn4965_set_txpower;
1286 	ops->init_gains = iwn4965_init_gains;
1287 	ops->set_gains = iwn4965_set_gains;
1288 	ops->add_node = iwn4965_add_node;
1289 	ops->tx_done = iwn4965_tx_done;
1290 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
1291 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
1292 	sc->ntxqs = IWN4965_NTXQUEUES;
1293 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
1294 	sc->ndmachnls = IWN4965_NDMACHNLS;
1295 	sc->broadcast_id = IWN4965_ID_BROADCAST;
1296 	sc->rxonsz = IWN4965_RXONSZ;
1297 	sc->schedsz = IWN4965_SCHEDSZ;
1298 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
1299 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
1300 	sc->fwsz = IWN4965_FWSZ;
1301 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
1302 	sc->limits = &iwn4965_sensitivity_limits;
1303 	sc->fwname = "iwn4965fw";
1304 	/* Override chains masks, ROM is known to be broken. */
1305 	sc->txchainmask = IWN_ANT_AB;
1306 	sc->rxchainmask = IWN_ANT_ABC;
1307 	/* Enable normal btcoex */
1308 	sc->sc_flags |= IWN_FLAG_BTCOEX;
1309 
1310 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1311 
1312 	return 0;
1313 }
1314 
1315 static int
1316 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
1317 {
1318 	struct iwn_ops *ops = &sc->ops;
1319 
1320 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1321 
1322 	ops->load_firmware = iwn5000_load_firmware;
1323 	ops->read_eeprom = iwn5000_read_eeprom;
1324 	ops->post_alive = iwn5000_post_alive;
1325 	ops->nic_config = iwn5000_nic_config;
1326 	ops->update_sched = iwn5000_update_sched;
1327 	ops->get_temperature = iwn5000_get_temperature;
1328 	ops->get_rssi = iwn5000_get_rssi;
1329 	ops->set_txpower = iwn5000_set_txpower;
1330 	ops->init_gains = iwn5000_init_gains;
1331 	ops->set_gains = iwn5000_set_gains;
1332 	ops->add_node = iwn5000_add_node;
1333 	ops->tx_done = iwn5000_tx_done;
1334 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
1335 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
1336 	sc->ntxqs = IWN5000_NTXQUEUES;
1337 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
1338 	sc->ndmachnls = IWN5000_NDMACHNLS;
1339 	sc->broadcast_id = IWN5000_ID_BROADCAST;
1340 	sc->rxonsz = IWN5000_RXONSZ;
1341 	sc->schedsz = IWN5000_SCHEDSZ;
1342 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
1343 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
1344 	sc->fwsz = IWN5000_FWSZ;
1345 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
1346 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
1347 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
1348 
1349 	return 0;
1350 }
1351 
1352 /*
1353  * Attach the interface to 802.11 radiotap.
1354  */
1355 static void
1356 iwn_radiotap_attach(struct iwn_softc *sc)
1357 {
1358 
1359 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1360 	ieee80211_radiotap_attach(&sc->sc_ic,
1361 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
1362 		IWN_TX_RADIOTAP_PRESENT,
1363 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
1364 		IWN_RX_RADIOTAP_PRESENT);
1365 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1366 }
1367 
1368 static void
1369 iwn_sysctlattach(struct iwn_softc *sc)
1370 {
1371 #ifdef	IWN_DEBUG
1372 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
1373 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
1374 
1375 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1376 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
1377 		"control debugging printfs");
1378 #endif
1379 }
1380 
1381 static struct ieee80211vap *
1382 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1383     enum ieee80211_opmode opmode, int flags,
1384     const uint8_t bssid[IEEE80211_ADDR_LEN],
1385     const uint8_t mac[IEEE80211_ADDR_LEN])
1386 {
1387 	struct iwn_softc *sc = ic->ic_softc;
1388 	struct iwn_vap *ivp;
1389 	struct ieee80211vap *vap;
1390 
1391 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
1392 		return NULL;
1393 
1394 	ivp = kmalloc(sizeof(struct iwn_vap), M_80211_VAP, M_WAITOK | M_ZERO);
1395 	vap = &ivp->iv_vap;
1396 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
1397 	ivp->ctx = IWN_RXON_BSS_CTX;
1398 	vap->iv_bmissthreshold = 10;		/* override default */
1399 	/* Override with driver methods. */
1400 	ivp->iv_newstate = vap->iv_newstate;
1401 	vap->iv_newstate = iwn_newstate;
1402 	sc->ivap[IWN_RXON_BSS_CTX] = vap;
1403 
1404 	ieee80211_ratectl_init(vap);
1405 	/* Complete setup. */
1406 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status,
1407 	    mac);
1408 	ic->ic_opmode = opmode;
1409 	return vap;
1410 }
1411 
1412 static void
1413 iwn_vap_delete(struct ieee80211vap *vap)
1414 {
1415 	struct iwn_vap *ivp = IWN_VAP(vap);
1416 
1417 	ieee80211_ratectl_deinit(vap);
1418 	ieee80211_vap_detach(vap);
1419 	kfree(ivp, M_80211_VAP);
1420 }
1421 
1422 static void
1423 iwn_xmit_queue_drain(struct iwn_softc *sc)
1424 {
1425 	struct mbuf *m;
1426 	struct ieee80211_node *ni;
1427 
1428 	IWN_LOCK_ASSERT(sc);
1429 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
1430 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
1431 		ieee80211_free_node(ni);
1432 		m_freem(m);
1433 	}
1434 }
1435 
1436 static int
1437 iwn_xmit_queue_enqueue(struct iwn_softc *sc, struct mbuf *m)
1438 {
1439 
1440 	IWN_LOCK_ASSERT(sc);
1441 	return (mbufq_enqueue(&sc->sc_xmit_queue, m));
1442 }
1443 
1444 static int
1445 iwn_detach(device_t dev)
1446 {
1447 	struct iwn_softc *sc = device_get_softc(dev);
1448 	int qid;
1449 
1450 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1451 
1452 	if (sc->sc_ic.ic_softc != NULL) {
1453 		/* Free the mbuf queue and node references */
1454 		IWN_LOCK(sc);
1455 		iwn_xmit_queue_drain(sc);
1456 		IWN_UNLOCK(sc);
1457 
1458 		ieee80211_draintask(&sc->sc_ic, &sc->sc_radioon_task);
1459 		ieee80211_draintask(&sc->sc_ic, &sc->sc_radiooff_task);
1460 		iwn_stop(sc);
1461 
1462 #if defined(__DragonFly__)
1463 		/* doesn't exist for DFly, DFly drains tasks on free */
1464 #else
1465 		taskqueue_drain_all(sc->sc_tq);
1466 #endif
1467 		taskqueue_free(sc->sc_tq);
1468 
1469 		callout_drain(&sc->watchdog_to);
1470 		callout_drain(&sc->calib_to);
1471 		ieee80211_ifdetach(&sc->sc_ic);
1472 	}
1473 
1474 	/* Uninstall interrupt handler. */
1475 	if (sc->irq != NULL) {
1476 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
1477 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
1478 		    sc->irq);
1479 		pci_release_msi(dev);
1480 	}
1481 
1482 	/* Free DMA resources. */
1483 	iwn_free_rx_ring(sc, &sc->rxq);
1484 	for (qid = 0; qid < sc->ntxqs; qid++)
1485 		iwn_free_tx_ring(sc, &sc->txq[qid]);
1486 	iwn_free_sched(sc);
1487 	iwn_free_kw(sc);
1488 	if (sc->ict != NULL)
1489 		iwn_free_ict(sc);
1490 	iwn_free_fwmem(sc);
1491 
1492 	if (sc->mem != NULL)
1493 		bus_release_resource(dev, SYS_RES_MEMORY,
1494 		    rman_get_rid(sc->mem), sc->mem);
1495 
1496 	if (sc->sc_cdev) {
1497 		destroy_dev(sc->sc_cdev);
1498 		sc->sc_cdev = NULL;
1499 	}
1500 
1501 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__);
1502 	IWN_LOCK_DESTROY(sc);
1503 	return 0;
1504 }
1505 
1506 static int
1507 iwn_shutdown(device_t dev)
1508 {
1509 	struct iwn_softc *sc = device_get_softc(dev);
1510 
1511 	iwn_stop(sc);
1512 	return 0;
1513 }
1514 
1515 static int
1516 iwn_suspend(device_t dev)
1517 {
1518 	struct iwn_softc *sc = device_get_softc(dev);
1519 
1520 	ieee80211_suspend_all(&sc->sc_ic);
1521 	return 0;
1522 }
1523 
1524 static int
1525 iwn_resume(device_t dev)
1526 {
1527 	struct iwn_softc *sc = device_get_softc(dev);
1528 
1529 	/* Clear device-specific "PCI retry timeout" register (41h). */
1530 	pci_write_config(dev, 0x41, 0, 1);
1531 
1532 	ieee80211_resume_all(&sc->sc_ic);
1533 	return 0;
1534 }
1535 
1536 static int
1537 iwn_nic_lock(struct iwn_softc *sc)
1538 {
1539 	int ntries;
1540 
1541 	/* Request exclusive access to NIC. */
1542 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1543 
1544 	/* Spin until we actually get the lock. */
1545 	for (ntries = 0; ntries < 1000; ntries++) {
1546 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1547 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1548 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1549 			return 0;
1550 		DELAY(10);
1551 	}
1552 	return ETIMEDOUT;
1553 }
1554 
1555 static __inline void
1556 iwn_nic_unlock(struct iwn_softc *sc)
1557 {
1558 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1559 }
1560 
1561 static __inline uint32_t
1562 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1563 {
1564 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1565 	IWN_BARRIER_READ_WRITE(sc);
1566 	return IWN_READ(sc, IWN_PRPH_RDATA);
1567 }
1568 
1569 static __inline void
1570 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1571 {
1572 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1573 	IWN_BARRIER_WRITE(sc);
1574 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1575 }
1576 
1577 static __inline void
1578 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1579 {
1580 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1581 }
1582 
1583 static __inline void
1584 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1585 {
1586 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1587 }
1588 
1589 static __inline void
1590 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1591     const uint32_t *data, int count)
1592 {
1593 	for (; count > 0; count--, data++, addr += 4)
1594 		iwn_prph_write(sc, addr, *data);
1595 }
1596 
1597 static __inline uint32_t
1598 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1599 {
1600 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1601 	IWN_BARRIER_READ_WRITE(sc);
1602 	return IWN_READ(sc, IWN_MEM_RDATA);
1603 }
1604 
1605 static __inline void
1606 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1607 {
1608 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1609 	IWN_BARRIER_WRITE(sc);
1610 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1611 }
1612 
1613 static __inline void
1614 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1615 {
1616 	uint32_t tmp;
1617 
1618 	tmp = iwn_mem_read(sc, addr & ~3);
1619 	if (addr & 3)
1620 		tmp = (tmp & 0x0000ffff) | data << 16;
1621 	else
1622 		tmp = (tmp & 0xffff0000) | data;
1623 	iwn_mem_write(sc, addr & ~3, tmp);
1624 }
1625 
1626 static __inline void
1627 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1628     int count)
1629 {
1630 	for (; count > 0; count--, addr += 4)
1631 		*data++ = iwn_mem_read(sc, addr);
1632 }
1633 
1634 static __inline void
1635 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1636     int count)
1637 {
1638 	for (; count > 0; count--, addr += 4)
1639 		iwn_mem_write(sc, addr, val);
1640 }
1641 
1642 static int
1643 iwn_eeprom_lock(struct iwn_softc *sc)
1644 {
1645 	int i, ntries;
1646 
1647 	for (i = 0; i < 100; i++) {
1648 		/* Request exclusive access to EEPROM. */
1649 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1650 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1651 
1652 		/* Spin until we actually get the lock. */
1653 		for (ntries = 0; ntries < 100; ntries++) {
1654 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1655 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1656 				return 0;
1657 			DELAY(10);
1658 		}
1659 	}
1660 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__);
1661 	return ETIMEDOUT;
1662 }
1663 
1664 static __inline void
1665 iwn_eeprom_unlock(struct iwn_softc *sc)
1666 {
1667 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1668 }
1669 
1670 /*
1671  * Initialize access by host to One Time Programmable ROM.
1672  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1673  */
1674 static int
1675 iwn_init_otprom(struct iwn_softc *sc)
1676 {
1677 	uint16_t prev, base, next;
1678 	int count, error;
1679 
1680 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1681 
1682 	/* Wait for clock stabilization before accessing prph. */
1683 	if ((error = iwn_clock_wait(sc)) != 0)
1684 		return error;
1685 
1686 	if ((error = iwn_nic_lock(sc)) != 0)
1687 		return error;
1688 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1689 	DELAY(5);
1690 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1691 	iwn_nic_unlock(sc);
1692 
1693 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1694 	if (sc->base_params->shadow_ram_support) {
1695 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1696 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1697 	}
1698 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1699 	/* Clear ECC status. */
1700 	IWN_SETBITS(sc, IWN_OTP_GP,
1701 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1702 
1703 	/*
1704 	 * Find the block before last block (contains the EEPROM image)
1705 	 * for HW without OTP shadow RAM.
1706 	 */
1707 	if (! sc->base_params->shadow_ram_support) {
1708 		/* Switch to absolute addressing mode. */
1709 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1710 		base = prev = 0;
1711 		for (count = 0; count < sc->base_params->max_ll_items;
1712 		    count++) {
1713 			error = iwn_read_prom_data(sc, base, &next, 2);
1714 			if (error != 0)
1715 				return error;
1716 			if (next == 0)	/* End of linked-list. */
1717 				break;
1718 			prev = base;
1719 			base = le16toh(next);
1720 		}
1721 		if (count == 0 || count == sc->base_params->max_ll_items)
1722 			return EIO;
1723 		/* Skip "next" word. */
1724 		sc->prom_base = prev + 1;
1725 	}
1726 
1727 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1728 
1729 	return 0;
1730 }
1731 
1732 static int
1733 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1734 {
1735 	uint8_t *out = data;
1736 	uint32_t val, tmp;
1737 	int ntries;
1738 
1739 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1740 
1741 	addr += sc->prom_base;
1742 	for (; count > 0; count -= 2, addr++) {
1743 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1744 		for (ntries = 0; ntries < 10; ntries++) {
1745 			val = IWN_READ(sc, IWN_EEPROM);
1746 			if (val & IWN_EEPROM_READ_VALID)
1747 				break;
1748 			DELAY(5);
1749 		}
1750 		if (ntries == 10) {
1751 			device_printf(sc->sc_dev,
1752 			    "timeout reading ROM at 0x%x\n", addr);
1753 			return ETIMEDOUT;
1754 		}
1755 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1756 			/* OTPROM, check for ECC errors. */
1757 			tmp = IWN_READ(sc, IWN_OTP_GP);
1758 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1759 				device_printf(sc->sc_dev,
1760 				    "OTPROM ECC error at 0x%x\n", addr);
1761 				return EIO;
1762 			}
1763 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1764 				/* Correctable ECC error, clear bit. */
1765 				IWN_SETBITS(sc, IWN_OTP_GP,
1766 				    IWN_OTP_GP_ECC_CORR_STTS);
1767 			}
1768 		}
1769 		*out++ = val >> 16;
1770 		if (count > 1)
1771 			*out++ = val >> 24;
1772 	}
1773 
1774 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1775 
1776 	return 0;
1777 }
1778 
1779 static void
1780 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1781 {
1782 	if (error != 0)
1783 		return;
1784 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1785 	*(bus_addr_t *)arg = segs[0].ds_addr;
1786 }
1787 
1788 static int
1789 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1790     void **kvap, bus_size_t size, bus_size_t alignment)
1791 {
1792 	int error;
1793 
1794 	dma->tag = NULL;
1795 	dma->size = size;
1796 
1797 #if defined(__DragonFly__)
1798 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1799 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1800 	    1, size, 0, &dma->tag);
1801 #else
1802 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1803 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1804 	    1, size, 0, NULL, NULL, &dma->tag);
1805 #endif
1806 	if (error != 0)
1807 		goto fail;
1808 
1809 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1810 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1811 	if (error != 0)
1812 		goto fail;
1813 
1814 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1815 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1816 	if (error != 0)
1817 		goto fail;
1818 
1819 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1820 
1821 	if (kvap != NULL)
1822 		*kvap = dma->vaddr;
1823 
1824 	return 0;
1825 
1826 fail:	iwn_dma_contig_free(dma);
1827 	return error;
1828 }
1829 
1830 static void
1831 iwn_dma_contig_free(struct iwn_dma_info *dma)
1832 {
1833 	if (dma->vaddr != NULL) {
1834 		bus_dmamap_sync(dma->tag, dma->map,
1835 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1836 		bus_dmamap_unload(dma->tag, dma->map);
1837 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1838 		dma->vaddr = NULL;
1839 	}
1840 	if (dma->tag != NULL) {
1841 		bus_dma_tag_destroy(dma->tag);
1842 		dma->tag = NULL;
1843 	}
1844 }
1845 
1846 static int
1847 iwn_alloc_sched(struct iwn_softc *sc)
1848 {
1849 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1850 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1851 	    sc->schedsz, 1024);
1852 }
1853 
1854 static void
1855 iwn_free_sched(struct iwn_softc *sc)
1856 {
1857 	iwn_dma_contig_free(&sc->sched_dma);
1858 }
1859 
1860 static int
1861 iwn_alloc_kw(struct iwn_softc *sc)
1862 {
1863 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1864 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1865 }
1866 
1867 static void
1868 iwn_free_kw(struct iwn_softc *sc)
1869 {
1870 	iwn_dma_contig_free(&sc->kw_dma);
1871 }
1872 
1873 static int
1874 iwn_alloc_ict(struct iwn_softc *sc)
1875 {
1876 	/* ICT table must be aligned on a 4KB boundary. */
1877 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1878 	    IWN_ICT_SIZE, 4096);
1879 }
1880 
1881 static void
1882 iwn_free_ict(struct iwn_softc *sc)
1883 {
1884 	iwn_dma_contig_free(&sc->ict_dma);
1885 }
1886 
1887 static int
1888 iwn_alloc_fwmem(struct iwn_softc *sc)
1889 {
1890 	/* Must be aligned on a 16-byte boundary. */
1891 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1892 }
1893 
1894 static void
1895 iwn_free_fwmem(struct iwn_softc *sc)
1896 {
1897 	iwn_dma_contig_free(&sc->fw_dma);
1898 }
1899 
1900 static int
1901 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1902 {
1903 	bus_size_t size;
1904 	int i, error;
1905 
1906 	ring->cur = 0;
1907 
1908 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1909 
1910 	/* Allocate RX descriptors (256-byte aligned). */
1911 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1912 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1913 	    size, 256);
1914 	if (error != 0) {
1915 		device_printf(sc->sc_dev,
1916 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1917 		    __func__, error);
1918 		goto fail;
1919 	}
1920 
1921 	/* Allocate RX status area (16-byte aligned). */
1922 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1923 	    sizeof (struct iwn_rx_status), 16);
1924 	if (error != 0) {
1925 		device_printf(sc->sc_dev,
1926 		    "%s: could not allocate RX status DMA memory, error %d\n",
1927 		    __func__, error);
1928 		goto fail;
1929 	}
1930 
1931 	/* Create RX buffer DMA tag. */
1932 #if defined(__DragonFly__)
1933 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1934 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1935 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, 0, &ring->data_dmat);
1936 #else
1937 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1938 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1939 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
1940 #endif
1941 	if (error != 0) {
1942 		device_printf(sc->sc_dev,
1943 		    "%s: could not create RX buf DMA tag, error %d\n",
1944 		    __func__, error);
1945 		goto fail;
1946 	}
1947 
1948 	/*
1949 	 * Allocate and map RX buffers.
1950 	 */
1951 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1952 		struct iwn_rx_data *data = &ring->data[i];
1953 		bus_addr_t paddr;
1954 
1955 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1956 		if (error != 0) {
1957 			device_printf(sc->sc_dev,
1958 			    "%s: could not create RX buf DMA map, error %d\n",
1959 			    __func__, error);
1960 			goto fail;
1961 		}
1962 
1963 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
1964 		    IWN_RBUF_SIZE);
1965 		if (data->m == NULL) {
1966 			device_printf(sc->sc_dev,
1967 			    "%s: could not allocate RX mbuf\n", __func__);
1968 			error = ENOBUFS;
1969 			goto fail;
1970 		}
1971 
1972 		error = bus_dmamap_load(ring->data_dmat, data->map,
1973 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1974 		    &paddr, BUS_DMA_NOWAIT);
1975 		if (error != 0 && error != EFBIG) {
1976 			device_printf(sc->sc_dev,
1977 			    "%s: can't map mbuf, error %d\n", __func__,
1978 			    error);
1979 			goto fail;
1980 		}
1981 
1982 		/* Set physical address of RX buffer (256-byte aligned). */
1983 		ring->desc[i] = htole32(paddr >> 8);
1984 	}
1985 
1986 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1987 	    BUS_DMASYNC_PREWRITE);
1988 
1989 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
1990 
1991 	return 0;
1992 
1993 fail:	iwn_free_rx_ring(sc, ring);
1994 
1995 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
1996 
1997 	return error;
1998 }
1999 
2000 static void
2001 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
2002 {
2003 	int ntries;
2004 
2005 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
2006 
2007 	if (iwn_nic_lock(sc) == 0) {
2008 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
2009 		for (ntries = 0; ntries < 1000; ntries++) {
2010 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
2011 			    IWN_FH_RX_STATUS_IDLE)
2012 				break;
2013 			DELAY(10);
2014 		}
2015 		iwn_nic_unlock(sc);
2016 	}
2017 	ring->cur = 0;
2018 	sc->last_rx_valid = 0;
2019 }
2020 
2021 static void
2022 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
2023 {
2024 	int i;
2025 
2026 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
2027 
2028 	iwn_dma_contig_free(&ring->desc_dma);
2029 	iwn_dma_contig_free(&ring->stat_dma);
2030 
2031 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
2032 		struct iwn_rx_data *data = &ring->data[i];
2033 
2034 		if (data->m != NULL) {
2035 			bus_dmamap_sync(ring->data_dmat, data->map,
2036 			    BUS_DMASYNC_POSTREAD);
2037 			bus_dmamap_unload(ring->data_dmat, data->map);
2038 			m_freem(data->m);
2039 			data->m = NULL;
2040 		}
2041 		if (data->map != NULL)
2042 			bus_dmamap_destroy(ring->data_dmat, data->map);
2043 	}
2044 	if (ring->data_dmat != NULL) {
2045 		bus_dma_tag_destroy(ring->data_dmat);
2046 		ring->data_dmat = NULL;
2047 	}
2048 }
2049 
2050 static int
2051 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
2052 {
2053 	bus_addr_t paddr;
2054 	bus_size_t size;
2055 	int i, error;
2056 
2057 	ring->qid = qid;
2058 	ring->queued = 0;
2059 	ring->cur = 0;
2060 
2061 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2062 
2063 	/* Allocate TX descriptors (256-byte aligned). */
2064 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
2065 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
2066 	    size, 256);
2067 	if (error != 0) {
2068 		device_printf(sc->sc_dev,
2069 		    "%s: could not allocate TX ring DMA memory, error %d\n",
2070 		    __func__, error);
2071 		goto fail;
2072 	}
2073 
2074 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
2075 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
2076 	    size, 4);
2077 	if (error != 0) {
2078 		device_printf(sc->sc_dev,
2079 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
2080 		    __func__, error);
2081 		goto fail;
2082 	}
2083 
2084 #if defined(__DragonFly__)
2085 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
2086 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
2087 	    IWN_MAX_SCATTER - 1, MCLBYTES, 0, &ring->data_dmat);
2088 #else
2089 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
2090 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
2091 	    IWN_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
2092 #endif
2093 	if (error != 0) {
2094 		device_printf(sc->sc_dev,
2095 		    "%s: could not create TX buf DMA tag, error %d\n",
2096 		    __func__, error);
2097 		goto fail;
2098 	}
2099 
2100 	paddr = ring->cmd_dma.paddr;
2101 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2102 		struct iwn_tx_data *data = &ring->data[i];
2103 
2104 		data->cmd_paddr = paddr;
2105 		data->scratch_paddr = paddr + 12;
2106 		paddr += sizeof (struct iwn_tx_cmd);
2107 
2108 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2109 		if (error != 0) {
2110 			device_printf(sc->sc_dev,
2111 			    "%s: could not create TX buf DMA map, error %d\n",
2112 			    __func__, error);
2113 			goto fail;
2114 		}
2115 	}
2116 
2117 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2118 
2119 	return 0;
2120 
2121 fail:	iwn_free_tx_ring(sc, ring);
2122 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2123 	return error;
2124 }
2125 
2126 static void
2127 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2128 {
2129 	int i;
2130 
2131 	DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__);
2132 
2133 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2134 		struct iwn_tx_data *data = &ring->data[i];
2135 
2136 		if (data->m != NULL) {
2137 			bus_dmamap_sync(ring->data_dmat, data->map,
2138 			    BUS_DMASYNC_POSTWRITE);
2139 			bus_dmamap_unload(ring->data_dmat, data->map);
2140 			m_freem(data->m);
2141 			data->m = NULL;
2142 		}
2143 		if (data->ni != NULL) {
2144 			ieee80211_free_node(data->ni);
2145 			data->ni = NULL;
2146 		}
2147 	}
2148 	/* Clear TX descriptors. */
2149 	memset(ring->desc, 0, ring->desc_dma.size);
2150 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2151 	    BUS_DMASYNC_PREWRITE);
2152 	sc->qfullmsk &= ~(1 << ring->qid);
2153 	ring->queued = 0;
2154 	ring->cur = 0;
2155 }
2156 
2157 static void
2158 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2159 {
2160 	int i;
2161 
2162 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
2163 
2164 	iwn_dma_contig_free(&ring->desc_dma);
2165 	iwn_dma_contig_free(&ring->cmd_dma);
2166 
2167 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2168 		struct iwn_tx_data *data = &ring->data[i];
2169 
2170 		if (data->m != NULL) {
2171 			bus_dmamap_sync(ring->data_dmat, data->map,
2172 			    BUS_DMASYNC_POSTWRITE);
2173 			bus_dmamap_unload(ring->data_dmat, data->map);
2174 			m_freem(data->m);
2175 		}
2176 		if (data->map != NULL)
2177 			bus_dmamap_destroy(ring->data_dmat, data->map);
2178 	}
2179 	if (ring->data_dmat != NULL) {
2180 		bus_dma_tag_destroy(ring->data_dmat);
2181 		ring->data_dmat = NULL;
2182 	}
2183 }
2184 
2185 static void
2186 iwn5000_ict_reset(struct iwn_softc *sc)
2187 {
2188 	/* Disable interrupts. */
2189 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2190 
2191 	/* Reset ICT table. */
2192 	memset(sc->ict, 0, IWN_ICT_SIZE);
2193 	sc->ict_cur = 0;
2194 
2195 	/* Set physical address of ICT table (4KB aligned). */
2196 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
2197 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
2198 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
2199 
2200 	/* Enable periodic RX interrupt. */
2201 	sc->int_mask |= IWN_INT_RX_PERIODIC;
2202 	/* Switch to ICT interrupt mode in driver. */
2203 	sc->sc_flags |= IWN_FLAG_USE_ICT;
2204 
2205 	/* Re-enable interrupts. */
2206 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
2207 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2208 }
2209 
2210 static int
2211 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2212 {
2213 	struct iwn_ops *ops = &sc->ops;
2214 	uint16_t val;
2215 	int error;
2216 
2217 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2218 
2219 	/* Check whether adapter has an EEPROM or an OTPROM. */
2220 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
2221 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
2222 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
2223 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
2224 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
2225 
2226 	/* Adapter has to be powered on for EEPROM access to work. */
2227 	if ((error = iwn_apm_init(sc)) != 0) {
2228 		device_printf(sc->sc_dev,
2229 		    "%s: could not power ON adapter, error %d\n", __func__,
2230 		    error);
2231 		return error;
2232 	}
2233 
2234 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
2235 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
2236 		return EIO;
2237 	}
2238 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2239 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
2240 		    __func__, error);
2241 		return error;
2242 	}
2243 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
2244 		if ((error = iwn_init_otprom(sc)) != 0) {
2245 			device_printf(sc->sc_dev,
2246 			    "%s: could not initialize OTPROM, error %d\n",
2247 			    __func__, error);
2248 			return error;
2249 		}
2250 	}
2251 
2252 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
2253 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
2254 	/* Check if HT support is bonded out. */
2255 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
2256 		sc->sc_flags |= IWN_FLAG_HAS_11N;
2257 
2258 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
2259 	sc->rfcfg = le16toh(val);
2260 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
2261 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
2262 	if (sc->txchainmask == 0)
2263 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
2264 	if (sc->rxchainmask == 0)
2265 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
2266 
2267 	/* Read MAC address. */
2268 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
2269 
2270 	/* Read adapter-specific information from EEPROM. */
2271 	ops->read_eeprom(sc);
2272 
2273 	iwn_apm_stop(sc);	/* Power OFF adapter. */
2274 
2275 	iwn_eeprom_unlock(sc);
2276 
2277 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2278 
2279 	return 0;
2280 }
2281 
2282 static void
2283 iwn4965_read_eeprom(struct iwn_softc *sc)
2284 {
2285 	uint32_t addr;
2286 	uint16_t val;
2287 	int i;
2288 
2289 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2290 
2291 	/* Read regulatory domain (4 ASCII characters). */
2292 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
2293 
2294 	/* Read the list of authorized channels (20MHz & 40MHz). */
2295 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2296 		addr = iwn4965_regulatory_bands[i];
2297 		iwn_read_eeprom_channels(sc, i, addr);
2298 	}
2299 
2300 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
2301 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
2302 	sc->maxpwr2GHz = val & 0xff;
2303 	sc->maxpwr5GHz = val >> 8;
2304 	/* Check that EEPROM values are within valid range. */
2305 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2306 		sc->maxpwr5GHz = 38;
2307 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2308 		sc->maxpwr2GHz = 38;
2309 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2310 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2311 
2312 	/* Read samples for each TX power group. */
2313 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
2314 	    sizeof sc->bands);
2315 
2316 	/* Read voltage at which samples were taken. */
2317 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
2318 	sc->eeprom_voltage = (int16_t)le16toh(val);
2319 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2320 	    sc->eeprom_voltage);
2321 
2322 #ifdef IWN_DEBUG
2323 	/* Print samples. */
2324 	if (sc->sc_debug & IWN_DEBUG_ANY) {
2325 		for (i = 0; i < IWN_NBANDS - 1; i++)
2326 			iwn4965_print_power_group(sc, i);
2327 	}
2328 #endif
2329 
2330 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2331 }
2332 
2333 #ifdef IWN_DEBUG
2334 static void
2335 iwn4965_print_power_group(struct iwn_softc *sc, int i)
2336 {
2337 	struct iwn4965_eeprom_band *band = &sc->bands[i];
2338 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
2339 	int j, c;
2340 
2341 	kprintf("===band %d===\n", i);
2342 	kprintf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2343 	kprintf("chan1 num=%d\n", chans[0].num);
2344 	for (c = 0; c < 2; c++) {
2345 		for (j = 0; j < IWN_NSAMPLES; j++) {
2346 			kprintf("chain %d, sample %d: temp=%d gain=%d "
2347 			    "power=%d pa_det=%d\n", c, j,
2348 			    chans[0].samples[c][j].temp,
2349 			    chans[0].samples[c][j].gain,
2350 			    chans[0].samples[c][j].power,
2351 			    chans[0].samples[c][j].pa_det);
2352 		}
2353 	}
2354 	kprintf("chan2 num=%d\n", chans[1].num);
2355 	for (c = 0; c < 2; c++) {
2356 		for (j = 0; j < IWN_NSAMPLES; j++) {
2357 			kprintf("chain %d, sample %d: temp=%d gain=%d "
2358 			    "power=%d pa_det=%d\n", c, j,
2359 			    chans[1].samples[c][j].temp,
2360 			    chans[1].samples[c][j].gain,
2361 			    chans[1].samples[c][j].power,
2362 			    chans[1].samples[c][j].pa_det);
2363 		}
2364 	}
2365 }
2366 #endif
2367 
2368 static void
2369 iwn5000_read_eeprom(struct iwn_softc *sc)
2370 {
2371 	struct iwn5000_eeprom_calib_hdr hdr;
2372 	int32_t volt;
2373 	uint32_t base, addr;
2374 	uint16_t val;
2375 	int i;
2376 
2377 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2378 
2379 	/* Read regulatory domain (4 ASCII characters). */
2380 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2381 	base = le16toh(val);
2382 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
2383 	    sc->eeprom_domain, 4);
2384 
2385 	/* Read the list of authorized channels (20MHz & 40MHz). */
2386 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2387 		addr =  base + sc->base_params->regulatory_bands[i];
2388 		iwn_read_eeprom_channels(sc, i, addr);
2389 	}
2390 
2391 	/* Read enhanced TX power information for 6000 Series. */
2392 	if (sc->base_params->enhanced_TX_power)
2393 		iwn_read_eeprom_enhinfo(sc);
2394 
2395 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
2396 	base = le16toh(val);
2397 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
2398 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2399 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
2400 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
2401 	sc->calib_ver = hdr.version;
2402 
2403 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
2404 		sc->eeprom_voltage = le16toh(hdr.volt);
2405 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2406 		sc->eeprom_temp_high=le16toh(val);
2407 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2408 		sc->eeprom_temp = le16toh(val);
2409 	}
2410 
2411 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
2412 		/* Compute temperature offset. */
2413 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2414 		sc->eeprom_temp = le16toh(val);
2415 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2416 		volt = le16toh(val);
2417 		sc->temp_off = sc->eeprom_temp - (volt / -5);
2418 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
2419 		    sc->eeprom_temp, volt, sc->temp_off);
2420 	} else {
2421 		/* Read crystal calibration. */
2422 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
2423 		    &sc->eeprom_crystal, sizeof (uint32_t));
2424 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
2425 		    le32toh(sc->eeprom_crystal));
2426 	}
2427 
2428 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2429 
2430 }
2431 
2432 /*
2433  * Translate EEPROM flags to net80211.
2434  */
2435 static uint32_t
2436 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
2437 {
2438 	uint32_t nflags;
2439 
2440 	nflags = 0;
2441 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2442 		nflags |= IEEE80211_CHAN_PASSIVE;
2443 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
2444 		nflags |= IEEE80211_CHAN_NOADHOC;
2445 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
2446 		nflags |= IEEE80211_CHAN_DFS;
2447 		/* XXX apparently IBSS may still be marked */
2448 		nflags |= IEEE80211_CHAN_NOADHOC;
2449 	}
2450 
2451 	return nflags;
2452 }
2453 
2454 static void
2455 iwn_read_eeprom_band(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2456     struct ieee80211_channel chans[])
2457 {
2458 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2459 	const struct iwn_chan_band *band = &iwn_bands[n];
2460 	uint8_t bands[IEEE80211_MODE_BYTES];
2461 	uint8_t chan;
2462 	int i, error, nflags;
2463 
2464 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2465 
2466 	memset(bands, 0, sizeof(bands));
2467 	if (n == 0) {
2468 		setbit(bands, IEEE80211_MODE_11B);
2469 		setbit(bands, IEEE80211_MODE_11G);
2470 		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2471 			setbit(bands, IEEE80211_MODE_11NG);
2472 	} else {
2473 		setbit(bands, IEEE80211_MODE_11A);
2474 		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2475 			setbit(bands, IEEE80211_MODE_11NA);
2476 	}
2477 
2478 	for (i = 0; i < band->nchan; i++) {
2479 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2480 			DPRINTF(sc, IWN_DEBUG_RESET,
2481 			    "skip chan %d flags 0x%x maxpwr %d\n",
2482 			    band->chan[i], channels[i].flags,
2483 			    channels[i].maxpwr);
2484 			continue;
2485 		}
2486 
2487 		chan = band->chan[i];
2488 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2489 		error = ieee80211_add_channel(chans, maxchans, nchans,
2490 		    chan, 0, channels[i].maxpwr, nflags, bands);
2491 		if (error != 0)
2492 			break;
2493 
2494 		/* Save maximum allowed TX power for this channel. */
2495 		/* XXX wrong */
2496 		sc->maxpwr[chan] = channels[i].maxpwr;
2497 
2498 		DPRINTF(sc, IWN_DEBUG_RESET,
2499 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
2500 		    channels[i].flags, channels[i].maxpwr);
2501 	}
2502 
2503 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2504 
2505 }
2506 
2507 static void
2508 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2509     struct ieee80211_channel chans[])
2510 {
2511 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2512 	const struct iwn_chan_band *band = &iwn_bands[n];
2513 	uint8_t chan;
2514 	int i, error, nflags;
2515 
2516 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__);
2517 
2518 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) {
2519 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__);
2520 		return;
2521 	}
2522 
2523 	for (i = 0; i < band->nchan; i++) {
2524 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2525 			DPRINTF(sc, IWN_DEBUG_RESET,
2526 			    "skip chan %d flags 0x%x maxpwr %d\n",
2527 			    band->chan[i], channels[i].flags,
2528 			    channels[i].maxpwr);
2529 			continue;
2530 		}
2531 
2532 		chan = band->chan[i];
2533 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2534 		nflags |= (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A);
2535 		error = ieee80211_add_channel_ht40(chans, maxchans, nchans,
2536 		    chan, channels[i].maxpwr, nflags);
2537 		switch (error) {
2538 		case EINVAL:
2539 			device_printf(sc->sc_dev,
2540 			    "%s: no entry for channel %d\n", __func__, chan);
2541 			continue;
2542 		case ENOENT:
2543 			DPRINTF(sc, IWN_DEBUG_RESET,
2544 			    "%s: skip chan %d, extension channel not found\n",
2545 			    __func__, chan);
2546 			continue;
2547 		case ENOBUFS:
2548 			device_printf(sc->sc_dev,
2549 			    "%s: channel table is full!\n", __func__);
2550 			break;
2551 		case 0:
2552 			DPRINTF(sc, IWN_DEBUG_RESET,
2553 			    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2554 			    chan, channels[i].flags, channels[i].maxpwr);
2555 			/* FALLTHROUGH */
2556 		default:
2557 			break;
2558 		}
2559 	}
2560 
2561 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2562 
2563 }
2564 
2565 static void
2566 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2567 {
2568 	struct ieee80211com *ic = &sc->sc_ic;
2569 
2570 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
2571 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
2572 
2573 	if (n < 5) {
2574 		iwn_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2575 		    ic->ic_channels);
2576 	} else {
2577 		iwn_read_eeprom_ht40(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2578 		    ic->ic_channels);
2579 	}
2580 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2581 }
2582 
2583 static struct iwn_eeprom_chan *
2584 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
2585 {
2586 	int band, chan, i, j;
2587 
2588 	if (IEEE80211_IS_CHAN_HT40(c)) {
2589 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
2590 		if (IEEE80211_IS_CHAN_HT40D(c))
2591 			chan = c->ic_extieee;
2592 		else
2593 			chan = c->ic_ieee;
2594 		for (i = 0; i < iwn_bands[band].nchan; i++) {
2595 			if (iwn_bands[band].chan[i] == chan)
2596 				return &sc->eeprom_channels[band][i];
2597 		}
2598 	} else {
2599 		for (j = 0; j < 5; j++) {
2600 			for (i = 0; i < iwn_bands[j].nchan; i++) {
2601 				if (iwn_bands[j].chan[i] == c->ic_ieee &&
2602 				    ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1)
2603 					return &sc->eeprom_channels[j][i];
2604 			}
2605 		}
2606 	}
2607 	return NULL;
2608 }
2609 
2610 static void
2611 iwn_getradiocaps(struct ieee80211com *ic,
2612     int maxchans, int *nchans, struct ieee80211_channel chans[])
2613 {
2614 	struct iwn_softc *sc = ic->ic_softc;
2615 	int i;
2616 
2617 	/* Parse the list of authorized channels. */
2618 	for (i = 0; i < 5 && *nchans < maxchans; i++)
2619 		iwn_read_eeprom_band(sc, i, maxchans, nchans, chans);
2620 	for (i = 5; i < IWN_NBANDS - 1 && *nchans < maxchans; i++)
2621 		iwn_read_eeprom_ht40(sc, i, maxchans, nchans, chans);
2622 }
2623 
2624 /*
2625  * Enforce flags read from EEPROM.
2626  */
2627 static int
2628 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
2629     int nchan, struct ieee80211_channel chans[])
2630 {
2631 	struct iwn_softc *sc = ic->ic_softc;
2632 	int i;
2633 
2634 	for (i = 0; i < nchan; i++) {
2635 		struct ieee80211_channel *c = &chans[i];
2636 		struct iwn_eeprom_chan *channel;
2637 
2638 		channel = iwn_find_eeprom_channel(sc, c);
2639 		if (channel == NULL) {
2640 			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
2641 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2642 			return EINVAL;
2643 		}
2644 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2645 	}
2646 
2647 	return 0;
2648 }
2649 
2650 static void
2651 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2652 {
2653 	struct iwn_eeprom_enhinfo enhinfo[35];
2654 	struct ieee80211com *ic = &sc->sc_ic;
2655 	struct ieee80211_channel *c;
2656 	uint16_t val, base;
2657 	int8_t maxpwr;
2658 	uint8_t flags;
2659 	int i, j;
2660 
2661 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2662 
2663 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2664 	base = le16toh(val);
2665 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2666 	    enhinfo, sizeof enhinfo);
2667 
2668 	for (i = 0; i < nitems(enhinfo); i++) {
2669 		flags = enhinfo[i].flags;
2670 		if (!(flags & IWN_ENHINFO_VALID))
2671 			continue;	/* Skip invalid entries. */
2672 
2673 		maxpwr = 0;
2674 		if (sc->txchainmask & IWN_ANT_A)
2675 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2676 		if (sc->txchainmask & IWN_ANT_B)
2677 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2678 		if (sc->txchainmask & IWN_ANT_C)
2679 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2680 		if (sc->ntxchains == 2)
2681 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2682 		else if (sc->ntxchains == 3)
2683 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2684 
2685 		for (j = 0; j < ic->ic_nchans; j++) {
2686 			c = &ic->ic_channels[j];
2687 			if ((flags & IWN_ENHINFO_5GHZ)) {
2688 				if (!IEEE80211_IS_CHAN_A(c))
2689 					continue;
2690 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2691 				if (!IEEE80211_IS_CHAN_G(c))
2692 					continue;
2693 			} else if (!IEEE80211_IS_CHAN_B(c))
2694 				continue;
2695 			if ((flags & IWN_ENHINFO_HT40)) {
2696 				if (!IEEE80211_IS_CHAN_HT40(c))
2697 					continue;
2698 			} else {
2699 				if (IEEE80211_IS_CHAN_HT40(c))
2700 					continue;
2701 			}
2702 			if (enhinfo[i].chan != 0 &&
2703 			    enhinfo[i].chan != c->ic_ieee)
2704 				continue;
2705 
2706 			DPRINTF(sc, IWN_DEBUG_RESET,
2707 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2708 			    c->ic_flags, maxpwr / 2);
2709 			c->ic_maxregpower = maxpwr / 2;
2710 			c->ic_maxpower = maxpwr;
2711 		}
2712 	}
2713 
2714 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2715 
2716 }
2717 
2718 static struct ieee80211_node *
2719 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2720 {
2721 	return kmalloc(sizeof (struct iwn_node), M_80211_NODE,
2722 		       M_INTWAIT | M_ZERO);
2723 }
2724 
2725 static __inline int
2726 rate2plcp(int rate)
2727 {
2728 	switch (rate & 0xff) {
2729 	case 12:	return 0xd;
2730 	case 18:	return 0xf;
2731 	case 24:	return 0x5;
2732 	case 36:	return 0x7;
2733 	case 48:	return 0x9;
2734 	case 72:	return 0xb;
2735 	case 96:	return 0x1;
2736 	case 108:	return 0x3;
2737 	case 2:		return 10;
2738 	case 4:		return 20;
2739 	case 11:	return 55;
2740 	case 22:	return 110;
2741 	}
2742 	return 0;
2743 }
2744 
2745 static int
2746 iwn_get_1stream_tx_antmask(struct iwn_softc *sc)
2747 {
2748 
2749 	return IWN_LSB(sc->txchainmask);
2750 }
2751 
2752 static int
2753 iwn_get_2stream_tx_antmask(struct iwn_softc *sc)
2754 {
2755 	int tx;
2756 
2757 	/*
2758 	 * The '2 stream' setup is a bit .. odd.
2759 	 *
2760 	 * For NICs that support only 1 antenna, default to IWN_ANT_AB or
2761 	 * the firmware panics (eg Intel 5100.)
2762 	 *
2763 	 * For NICs that support two antennas, we use ANT_AB.
2764 	 *
2765 	 * For NICs that support three antennas, we use the two that
2766 	 * wasn't the default one.
2767 	 *
2768 	 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict
2769 	 * this to only one antenna.
2770 	 */
2771 
2772 	/* Default - transmit on the other antennas */
2773 	tx = (sc->txchainmask & ~IWN_LSB(sc->txchainmask));
2774 
2775 	/* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */
2776 	if (tx == 0)
2777 		tx = IWN_ANT_AB;
2778 
2779 	/*
2780 	 * If the NIC is a two-stream TX NIC, configure the TX mask to
2781 	 * the default chainmask
2782 	 */
2783 	else if (sc->ntxchains == 2)
2784 		tx = sc->txchainmask;
2785 
2786 	return (tx);
2787 }
2788 
2789 
2790 
2791 /*
2792  * Calculate the required PLCP value from the given rate,
2793  * to the given node.
2794  *
2795  * This will take the node configuration (eg 11n, rate table
2796  * setup, etc) into consideration.
2797  */
2798 static uint32_t
2799 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2800     uint8_t rate)
2801 {
2802 	struct ieee80211com *ic = ni->ni_ic;
2803 	uint32_t plcp = 0;
2804 	int ridx;
2805 
2806 	/*
2807 	 * If it's an MCS rate, let's set the plcp correctly
2808 	 * and set the relevant flags based on the node config.
2809 	 */
2810 	if (rate & IEEE80211_RATE_MCS) {
2811 		/*
2812 		 * Set the initial PLCP value to be between 0->31 for
2813 		 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2814 		 * flag.
2815 		 */
2816 		plcp = IEEE80211_RV(rate) | IWN_RFLAG_MCS;
2817 
2818 		/*
2819 		 * XXX the following should only occur if both
2820 		 * the local configuration _and_ the remote node
2821 		 * advertise these capabilities.  Thus this code
2822 		 * may need fixing!
2823 		 */
2824 
2825 		/*
2826 		 * Set the channel width and guard interval.
2827 		 */
2828 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2829 			plcp |= IWN_RFLAG_HT40;
2830 			if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2831 				plcp |= IWN_RFLAG_SGI;
2832 		} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) {
2833 			plcp |= IWN_RFLAG_SGI;
2834 		}
2835 
2836 		/*
2837 		 * Ensure the selected rate matches the link quality
2838 		 * table entries being used.
2839 		 */
2840 		if (rate > 0x8f)
2841 			plcp |= IWN_RFLAG_ANT(sc->txchainmask);
2842 		else if (rate > 0x87)
2843 			plcp |= IWN_RFLAG_ANT(iwn_get_2stream_tx_antmask(sc));
2844 		else
2845 			plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2846 	} else {
2847 		/*
2848 		 * Set the initial PLCP - fine for both
2849 		 * OFDM and CCK rates.
2850 		 */
2851 		plcp = rate2plcp(rate);
2852 
2853 		/* Set CCK flag if it's CCK */
2854 
2855 		/* XXX It would be nice to have a method
2856 		 * to map the ridx -> phy table entry
2857 		 * so we could just query that, rather than
2858 		 * this hack to check against IWN_RIDX_OFDM6.
2859 		 */
2860 		ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2861 		    rate & IEEE80211_RATE_VAL);
2862 		if (ridx < IWN_RIDX_OFDM6 &&
2863 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2864 			plcp |= IWN_RFLAG_CCK;
2865 
2866 		/* Set antenna configuration */
2867 		/* XXX TODO: is this the right antenna to use for legacy? */
2868 		plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2869 	}
2870 
2871 	DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2872 	    __func__,
2873 	    rate,
2874 	    plcp);
2875 
2876 	return (htole32(plcp));
2877 }
2878 
2879 static void
2880 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2881 {
2882 	/* Doesn't do anything at the moment */
2883 }
2884 
2885 static int
2886 iwn_media_change(struct ifnet *ifp)
2887 {
2888 	int error;
2889 
2890 	error = ieee80211_media_change(ifp);
2891 	/* NB: only the fixed rate can change and that doesn't need a reset */
2892 	return (error == ENETRESET ? 0 : error);
2893 }
2894 
2895 static int
2896 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2897 {
2898 	struct iwn_vap *ivp = IWN_VAP(vap);
2899 	struct ieee80211com *ic = vap->iv_ic;
2900 	struct iwn_softc *sc = ic->ic_softc;
2901 	int error = 0;
2902 
2903 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2904 
2905 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2906 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2907 
2908 	IEEE80211_UNLOCK(ic);
2909 	IWN_LOCK(sc);
2910 #if defined(__DragonFly__)
2911 	callout_stop_sync(&sc->calib_to);
2912 #else
2913 	callout_stop(&sc->calib_to);
2914 #endif
2915 
2916 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
2917 
2918 	switch (nstate) {
2919 	case IEEE80211_S_ASSOC:
2920 		if (vap->iv_state != IEEE80211_S_RUN)
2921 			break;
2922 		/* FALLTHROUGH */
2923 	case IEEE80211_S_AUTH:
2924 		if (vap->iv_state == IEEE80211_S_AUTH)
2925 			break;
2926 
2927 		/*
2928 		 * !AUTH -> AUTH transition requires state reset to handle
2929 		 * reassociations correctly.
2930 		 */
2931 		sc->rxon->associd = 0;
2932 		sc->rxon->filter &= ~htole32(IWN_FILTER_BSS);
2933 		sc->calib.state = IWN_CALIB_STATE_INIT;
2934 
2935 		/* Wait until we hear a beacon before we transmit */
2936 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2937 			sc->sc_beacon_wait = 1;
2938 
2939 		if ((error = iwn_auth(sc, vap)) != 0) {
2940 			device_printf(sc->sc_dev,
2941 			    "%s: could not move to auth state\n", __func__);
2942 		}
2943 		break;
2944 
2945 	case IEEE80211_S_RUN:
2946 		/*
2947 		 * RUN -> RUN transition; Just restart the timers.
2948 		 */
2949 		if (vap->iv_state == IEEE80211_S_RUN) {
2950 			sc->calib_cnt = 0;
2951 			break;
2952 		}
2953 
2954 		/* Wait until we hear a beacon before we transmit */
2955 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2956 			sc->sc_beacon_wait = 1;
2957 
2958 		/*
2959 		 * !RUN -> RUN requires setting the association id
2960 		 * which is done with a firmware cmd.  We also defer
2961 		 * starting the timers until that work is done.
2962 		 */
2963 		if ((error = iwn_run(sc, vap)) != 0) {
2964 			device_printf(sc->sc_dev,
2965 			    "%s: could not move to run state\n", __func__);
2966 		}
2967 		break;
2968 
2969 	case IEEE80211_S_INIT:
2970 		sc->calib.state = IWN_CALIB_STATE_INIT;
2971 		/*
2972 		 * Purge the xmit queue so we don't have old frames
2973 		 * during a new association attempt.
2974 		 */
2975 		sc->sc_beacon_wait = 0;
2976 		iwn_xmit_queue_drain(sc);
2977 		break;
2978 
2979 	default:
2980 		break;
2981 	}
2982 	IWN_UNLOCK(sc);
2983 	IEEE80211_LOCK(ic);
2984 	if (error != 0){
2985 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2986 		return error;
2987 	}
2988 
2989 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2990 
2991 	return ivp->iv_newstate(vap, nstate, arg);
2992 }
2993 
2994 static void
2995 iwn_calib_timeout(void *arg)
2996 {
2997 	struct iwn_softc *sc = arg;
2998 
2999 	IWN_LOCK_ASSERT(sc);
3000 
3001 	/* Force automatic TX power calibration every 60 secs. */
3002 	if (++sc->calib_cnt >= 120) {
3003 		uint32_t flags = 0;
3004 
3005 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
3006 		    "sending request for statistics");
3007 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
3008 		    sizeof flags, 1);
3009 		sc->calib_cnt = 0;
3010 	}
3011 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
3012 	    sc);
3013 }
3014 
3015 /*
3016  * Process an RX_PHY firmware notification.  This is usually immediately
3017  * followed by an MPDU_RX_DONE notification.
3018  */
3019 static void
3020 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3021     struct iwn_rx_data *data)
3022 {
3023 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
3024 
3025 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
3026 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3027 
3028 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
3029 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
3030 	sc->last_rx_valid = 1;
3031 }
3032 
3033 /*
3034  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
3035  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
3036  */
3037 static void
3038 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3039     struct iwn_rx_data *data)
3040 {
3041 	struct iwn_ops *ops = &sc->ops;
3042 	struct ieee80211com *ic = &sc->sc_ic;
3043 	struct iwn_rx_ring *ring = &sc->rxq;
3044 	struct ieee80211_frame *wh;
3045 	struct ieee80211_node *ni;
3046 	struct mbuf *m, *m1;
3047 	struct iwn_rx_stat *stat;
3048 	caddr_t head;
3049 	bus_addr_t paddr;
3050 	uint32_t flags;
3051 	int error, len, rssi, nf;
3052 
3053 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3054 
3055 	if (desc->type == IWN_MPDU_RX_DONE) {
3056 		/* Check for prior RX_PHY notification. */
3057 		if (!sc->last_rx_valid) {
3058 			DPRINTF(sc, IWN_DEBUG_ANY,
3059 			    "%s: missing RX_PHY\n", __func__);
3060 			return;
3061 		}
3062 		stat = &sc->last_rx_stat;
3063 	} else
3064 		stat = (struct iwn_rx_stat *)(desc + 1);
3065 
3066 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3067 
3068 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
3069 		device_printf(sc->sc_dev,
3070 		    "%s: invalid RX statistic header, len %d\n", __func__,
3071 		    stat->cfg_phy_len);
3072 		return;
3073 	}
3074 	if (desc->type == IWN_MPDU_RX_DONE) {
3075 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
3076 		head = (caddr_t)(mpdu + 1);
3077 		len = le16toh(mpdu->len);
3078 	} else {
3079 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
3080 		len = le16toh(stat->len);
3081 	}
3082 
3083 	flags = le32toh(*(uint32_t *)(head + len));
3084 
3085 	/* Discard frames with a bad FCS early. */
3086 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
3087 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
3088 		    __func__, flags);
3089 #if defined(__DragonFly__)
3090 		++ic->ic_ierrors;
3091 #else
3092 		counter_u64_add(ic->ic_ierrors, 1);
3093 #endif
3094 		return;
3095 	}
3096 	/* Discard frames that are too short. */
3097 	if (len < sizeof (struct ieee80211_frame_ack)) {
3098 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
3099 		    __func__, len);
3100 #if defined(__DragonFly__)
3101 		++ic->ic_ierrors;
3102 #else
3103 		counter_u64_add(ic->ic_ierrors, 1);
3104 #endif
3105 		return;
3106 	}
3107 
3108 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
3109 	if (m1 == NULL) {
3110 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
3111 		    __func__);
3112 #if defined(__DragonFly__)
3113 		++ic->ic_ierrors;
3114 #else
3115 		counter_u64_add(ic->ic_ierrors, 1);
3116 #endif
3117 		return;
3118 	}
3119 	bus_dmamap_unload(ring->data_dmat, data->map);
3120 
3121 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
3122 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3123 	if (error != 0 && error != EFBIG) {
3124 		device_printf(sc->sc_dev,
3125 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
3126 		m_freem(m1);
3127 
3128 		/* Try to reload the old mbuf. */
3129 		error = bus_dmamap_load(ring->data_dmat, data->map,
3130 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
3131 		    &paddr, BUS_DMA_NOWAIT);
3132 		if (error != 0 && error != EFBIG) {
3133 			panic("%s: could not load old RX mbuf", __func__);
3134 		}
3135 		/* Physical address may have changed. */
3136 		ring->desc[ring->cur] = htole32(paddr >> 8);
3137 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
3138 		    BUS_DMASYNC_PREWRITE);
3139 #if defined(__DragonFly__)
3140 		++ic->ic_ierrors;
3141 #else
3142 		counter_u64_add(ic->ic_ierrors, 1);
3143 #endif
3144 		return;
3145 	}
3146 
3147 	m = data->m;
3148 	data->m = m1;
3149 	/* Update RX descriptor. */
3150 	ring->desc[ring->cur] = htole32(paddr >> 8);
3151 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3152 	    BUS_DMASYNC_PREWRITE);
3153 
3154 	/* Finalize mbuf. */
3155 	m->m_data = head;
3156 	m->m_pkthdr.len = m->m_len = len;
3157 
3158 	/* Grab a reference to the source node. */
3159 	wh = mtod(m, struct ieee80211_frame *);
3160 	if (len >= sizeof(struct ieee80211_frame_min))
3161 		ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
3162 	else
3163 		ni = NULL;
3164 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
3165 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
3166 
3167 	rssi = ops->get_rssi(sc, stat);
3168 
3169 	if (ieee80211_radiotap_active(ic)) {
3170 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
3171 
3172 		tap->wr_flags = 0;
3173 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
3174 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3175 		tap->wr_dbm_antsignal = (int8_t)rssi;
3176 		tap->wr_dbm_antnoise = (int8_t)nf;
3177 		tap->wr_tsft = stat->tstamp;
3178 		switch (stat->rate) {
3179 		/* CCK rates. */
3180 		case  10: tap->wr_rate =   2; break;
3181 		case  20: tap->wr_rate =   4; break;
3182 		case  55: tap->wr_rate =  11; break;
3183 		case 110: tap->wr_rate =  22; break;
3184 		/* OFDM rates. */
3185 		case 0xd: tap->wr_rate =  12; break;
3186 		case 0xf: tap->wr_rate =  18; break;
3187 		case 0x5: tap->wr_rate =  24; break;
3188 		case 0x7: tap->wr_rate =  36; break;
3189 		case 0x9: tap->wr_rate =  48; break;
3190 		case 0xb: tap->wr_rate =  72; break;
3191 		case 0x1: tap->wr_rate =  96; break;
3192 		case 0x3: tap->wr_rate = 108; break;
3193 		/* Unknown rate: should not happen. */
3194 		default:  tap->wr_rate =   0;
3195 		}
3196 	}
3197 
3198 	/*
3199 	 * If it's a beacon and we're waiting, then do the
3200 	 * wakeup.  This should unblock raw_xmit/start.
3201 	 */
3202 	if (sc->sc_beacon_wait) {
3203 		uint8_t type, subtype;
3204 		/* NB: Re-assign wh */
3205 		wh = mtod(m, struct ieee80211_frame *);
3206 		type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3207 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3208 		/*
3209 		 * This assumes at this point we've received our own
3210 		 * beacon.
3211 		 */
3212 		DPRINTF(sc, IWN_DEBUG_TRACE,
3213 		    "%s: beacon_wait, type=%d, subtype=%d\n",
3214 		    __func__, type, subtype);
3215 		if (type == IEEE80211_FC0_TYPE_MGT &&
3216 		    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
3217 			DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3218 			    "%s: waking things up\n", __func__);
3219 			/* queue taskqueue to transmit! */
3220 			taskqueue_enqueue(sc->sc_tq, &sc->sc_xmit_task);
3221 		}
3222 	}
3223 
3224 	IWN_UNLOCK(sc);
3225 
3226 	/* Send the frame to the 802.11 layer. */
3227 	if (ni != NULL) {
3228 		if (ni->ni_flags & IEEE80211_NODE_HT)
3229 			m->m_flags |= M_AMPDU;
3230 		(void)ieee80211_input(ni, m, rssi - nf, nf);
3231 		/* Node is no longer needed. */
3232 		ieee80211_free_node(ni);
3233 	} else
3234 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
3235 
3236 	IWN_LOCK(sc);
3237 
3238 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3239 
3240 }
3241 
3242 /* Process an incoming Compressed BlockAck. */
3243 static void
3244 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3245     struct iwn_rx_data *data)
3246 {
3247 	struct iwn_ops *ops = &sc->ops;
3248 	struct iwn_node *wn;
3249 	struct ieee80211_node *ni;
3250 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
3251 	struct iwn_tx_ring *txq;
3252 	struct iwn_tx_data *txdata;
3253 	struct ieee80211_tx_ampdu *tap;
3254 	struct mbuf *m;
3255 	uint64_t bitmap;
3256 	uint16_t ssn;
3257 	uint8_t tid;
3258 	int ackfailcnt = 0, i, lastidx, qid, *res, shift;
3259 	int tx_ok = 0, tx_err = 0;
3260 
3261 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s begin\n", __func__);
3262 
3263 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3264 
3265 	qid = le16toh(ba->qid);
3266 	txq = &sc->txq[ba->qid];
3267 	tap = sc->qid2tap[ba->qid];
3268 	tid = tap->txa_tid;
3269 	wn = (void *)tap->txa_ni;
3270 
3271 	res = NULL;
3272 	ssn = 0;
3273 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3274 		res = tap->txa_private;
3275 		ssn = tap->txa_start & 0xfff;
3276 	}
3277 
3278 	for (lastidx = le16toh(ba->ssn) & 0xff; txq->read != lastidx;) {
3279 		txdata = &txq->data[txq->read];
3280 
3281 		/* Unmap and free mbuf. */
3282 		bus_dmamap_sync(txq->data_dmat, txdata->map,
3283 		    BUS_DMASYNC_POSTWRITE);
3284 		bus_dmamap_unload(txq->data_dmat, txdata->map);
3285 		m = txdata->m, txdata->m = NULL;
3286 		ni = txdata->ni, txdata->ni = NULL;
3287 
3288 		KASSERT(ni != NULL, ("no node"));
3289 		KASSERT(m != NULL, ("no mbuf"));
3290 
3291 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m);
3292 		ieee80211_tx_complete(ni, m, 1);
3293 
3294 		txq->queued--;
3295 		txq->read = (txq->read + 1) % IWN_TX_RING_COUNT;
3296 	}
3297 
3298 	if (txq->queued == 0 && res != NULL) {
3299 		iwn_nic_lock(sc);
3300 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3301 		iwn_nic_unlock(sc);
3302 		sc->qid2tap[qid] = NULL;
3303 		kfree(res, M_DEVBUF);
3304 		return;
3305 	}
3306 
3307 	if (wn->agg[tid].bitmap == 0)
3308 		return;
3309 
3310 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
3311 	if (shift < 0)
3312 		shift += 0x100;
3313 
3314 	if (wn->agg[tid].nframes > (64 - shift))
3315 		return;
3316 
3317 	/*
3318 	 * Walk the bitmap and calculate how many successful and failed
3319 	 * attempts are made.
3320 	 *
3321 	 * Yes, the rate control code doesn't know these are A-MPDU
3322 	 * subframes and that it's okay to fail some of these.
3323 	 */
3324 	ni = tap->txa_ni;
3325 	bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap;
3326 	for (i = 0; bitmap; i++) {
3327 		if ((bitmap & 1) == 0) {
3328 			tx_err ++;
3329 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3330 			    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
3331 		} else {
3332 			tx_ok ++;
3333 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3334 			    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
3335 		}
3336 		bitmap >>= 1;
3337 	}
3338 
3339 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3340 	    "->%s: end; %d ok; %d err\n",__func__, tx_ok, tx_err);
3341 
3342 }
3343 
3344 /*
3345  * Process a CALIBRATION_RESULT notification sent by the initialization
3346  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
3347  */
3348 static void
3349 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3350     struct iwn_rx_data *data)
3351 {
3352 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
3353 	int len, idx = -1;
3354 
3355 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3356 
3357 	/* Runtime firmware should not send such a notification. */
3358 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE){
3359 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received after clib done\n",
3360 	    __func__);
3361 		return;
3362 	}
3363 	len = (le32toh(desc->len) & 0x3fff) - 4;
3364 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3365 
3366 	switch (calib->code) {
3367 	case IWN5000_PHY_CALIB_DC:
3368 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC)
3369 			idx = 0;
3370 		break;
3371 	case IWN5000_PHY_CALIB_LO:
3372 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO)
3373 			idx = 1;
3374 		break;
3375 	case IWN5000_PHY_CALIB_TX_IQ:
3376 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ)
3377 			idx = 2;
3378 		break;
3379 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
3380 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC)
3381 			idx = 3;
3382 		break;
3383 	case IWN5000_PHY_CALIB_BASE_BAND:
3384 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND)
3385 			idx = 4;
3386 		break;
3387 	}
3388 	if (idx == -1)	/* Ignore other results. */
3389 		return;
3390 
3391 	/* Save calibration result. */
3392 	if (sc->calibcmd[idx].buf != NULL)
3393 		kfree(sc->calibcmd[idx].buf, M_DEVBUF);
3394 	sc->calibcmd[idx].buf = kmalloc(len, M_DEVBUF, M_INTWAIT);
3395 	if (sc->calibcmd[idx].buf == NULL) {
3396 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3397 		    "not enough memory for calibration result %d\n",
3398 		    calib->code);
3399 		return;
3400 	}
3401 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3402 	    "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len);
3403 	sc->calibcmd[idx].len = len;
3404 	memcpy(sc->calibcmd[idx].buf, calib, len);
3405 }
3406 
3407 static void
3408 iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib,
3409     struct iwn_stats *stats, int len)
3410 {
3411 	struct iwn_stats_bt *stats_bt;
3412 	struct iwn_stats *lstats;
3413 
3414 	/*
3415 	 * First - check whether the length is the bluetooth or normal.
3416 	 *
3417 	 * If it's normal - just copy it and bump out.
3418 	 * Otherwise we have to convert things.
3419 	 */
3420 
3421 	if (len == sizeof(struct iwn_stats) + 4) {
3422 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3423 		sc->last_stat_valid = 1;
3424 		return;
3425 	}
3426 
3427 	/*
3428 	 * If it's not the bluetooth size - log, then just copy.
3429 	 */
3430 	if (len != sizeof(struct iwn_stats_bt) + 4) {
3431 		DPRINTF(sc, IWN_DEBUG_STATS,
3432 		    "%s: size of rx statistics (%d) not an expected size!\n",
3433 		    __func__,
3434 		    len);
3435 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3436 		sc->last_stat_valid = 1;
3437 		return;
3438 	}
3439 
3440 	/*
3441 	 * Ok. Time to copy.
3442 	 */
3443 	stats_bt = (struct iwn_stats_bt *) stats;
3444 	lstats = &sc->last_stat;
3445 
3446 	/* flags */
3447 	lstats->flags = stats_bt->flags;
3448 	/* rx_bt */
3449 	memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm,
3450 	    sizeof(struct iwn_rx_phy_stats));
3451 	memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck,
3452 	    sizeof(struct iwn_rx_phy_stats));
3453 	memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common,
3454 	    sizeof(struct iwn_rx_general_stats));
3455 	memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht,
3456 	    sizeof(struct iwn_rx_ht_phy_stats));
3457 	/* tx */
3458 	memcpy(&lstats->tx, &stats_bt->tx,
3459 	    sizeof(struct iwn_tx_stats));
3460 	/* general */
3461 	memcpy(&lstats->general, &stats_bt->general,
3462 	    sizeof(struct iwn_general_stats));
3463 
3464 	/* XXX TODO: Squirrel away the extra bluetooth stats somewhere */
3465 	sc->last_stat_valid = 1;
3466 }
3467 
3468 /*
3469  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
3470  * The latter is sent by the firmware after each received beacon.
3471  */
3472 static void
3473 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3474     struct iwn_rx_data *data)
3475 {
3476 	struct iwn_ops *ops = &sc->ops;
3477 	struct ieee80211com *ic = &sc->sc_ic;
3478 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3479 	struct iwn_calib_state *calib = &sc->calib;
3480 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
3481 	struct iwn_stats *lstats;
3482 	int temp;
3483 
3484 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3485 
3486 	/* Ignore statistics received during a scan. */
3487 	if (vap->iv_state != IEEE80211_S_RUN ||
3488 	    (ic->ic_flags & IEEE80211_F_SCAN)){
3489 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n",
3490 	    __func__);
3491 		return;
3492 	}
3493 
3494 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3495 
3496 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS,
3497 	    "%s: received statistics, cmd %d, len %d\n",
3498 	    __func__, desc->type, le16toh(desc->len));
3499 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
3500 
3501 	/*
3502 	 * Collect/track general statistics for reporting.
3503 	 *
3504 	 * This takes care of ensuring that the bluetooth sized message
3505 	 * will be correctly converted to the legacy sized message.
3506 	 */
3507 	iwn_stats_update(sc, calib, stats, le16toh(desc->len));
3508 
3509 	/*
3510 	 * And now, let's take a reference of it to use!
3511 	 */
3512 	lstats = &sc->last_stat;
3513 
3514 	/* Test if temperature has changed. */
3515 	if (lstats->general.temp != sc->rawtemp) {
3516 		/* Convert "raw" temperature to degC. */
3517 		sc->rawtemp = stats->general.temp;
3518 		temp = ops->get_temperature(sc);
3519 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
3520 		    __func__, temp);
3521 
3522 		/* Update TX power if need be (4965AGN only). */
3523 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3524 			iwn4965_power_calibration(sc, temp);
3525 	}
3526 
3527 	if (desc->type != IWN_BEACON_STATISTICS)
3528 		return;	/* Reply to a statistics request. */
3529 
3530 	sc->noise = iwn_get_noise(&lstats->rx.general);
3531 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
3532 
3533 	/* Test that RSSI and noise are present in stats report. */
3534 	if (le32toh(lstats->rx.general.flags) != 1) {
3535 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
3536 		    "received statistics without RSSI");
3537 		return;
3538 	}
3539 
3540 	if (calib->state == IWN_CALIB_STATE_ASSOC)
3541 		iwn_collect_noise(sc, &lstats->rx.general);
3542 	else if (calib->state == IWN_CALIB_STATE_RUN) {
3543 		iwn_tune_sensitivity(sc, &lstats->rx);
3544 		/*
3545 		 * XXX TODO: Only run the RX recovery if we're associated!
3546 		 */
3547 		iwn_check_rx_recovery(sc, lstats);
3548 		iwn_save_stats_counters(sc, lstats);
3549 	}
3550 
3551 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3552 }
3553 
3554 /*
3555  * Save the relevant statistic counters for the next calibration
3556  * pass.
3557  */
3558 static void
3559 iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs)
3560 {
3561 	struct iwn_calib_state *calib = &sc->calib;
3562 
3563 	/* Save counters values for next call. */
3564 	calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp);
3565 	calib->fa_cck = le32toh(rs->rx.cck.fa);
3566 	calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp);
3567 	calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp);
3568 	calib->fa_ofdm = le32toh(rs->rx.ofdm.fa);
3569 
3570 	/* Last time we received these tick values */
3571 	sc->last_calib_ticks = ticks;
3572 }
3573 
3574 /*
3575  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
3576  * and 5000 adapters have different incompatible TX status formats.
3577  */
3578 static void
3579 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3580     struct iwn_rx_data *data)
3581 {
3582 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
3583 	struct iwn_tx_ring *ring;
3584 	int qid;
3585 
3586 	qid = desc->qid & 0xf;
3587 	ring = &sc->txq[qid];
3588 
3589 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3590 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3591 	    __func__, desc->qid, desc->idx,
3592 	    stat->rtsfailcnt,
3593 	    stat->ackfailcnt,
3594 	    stat->btkillcnt,
3595 	    stat->rate, le16toh(stat->duration),
3596 	    le32toh(stat->status));
3597 
3598 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3599 	if (qid >= sc->firstaggqueue) {
3600 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3601 		    stat->ackfailcnt, &stat->status);
3602 	} else {
3603 		iwn_tx_done(sc, desc, stat->ackfailcnt,
3604 		    le32toh(stat->status) & 0xff);
3605 	}
3606 }
3607 
3608 static void
3609 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3610     struct iwn_rx_data *data)
3611 {
3612 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
3613 	struct iwn_tx_ring *ring;
3614 	int qid;
3615 
3616 	qid = desc->qid & 0xf;
3617 	ring = &sc->txq[qid];
3618 
3619 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3620 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3621 	    __func__, desc->qid, desc->idx,
3622 	    stat->rtsfailcnt,
3623 	    stat->ackfailcnt,
3624 	    stat->btkillcnt,
3625 	    stat->rate, le16toh(stat->duration),
3626 	    le32toh(stat->status));
3627 
3628 #ifdef notyet
3629 	/* Reset TX scheduler slot. */
3630 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
3631 #endif
3632 
3633 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3634 	if (qid >= sc->firstaggqueue) {
3635 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3636 		    stat->ackfailcnt, &stat->status);
3637 	} else {
3638 		iwn_tx_done(sc, desc, stat->ackfailcnt,
3639 		    le16toh(stat->status) & 0xff);
3640 	}
3641 }
3642 
3643 /*
3644  * Adapter-independent backend for TX_DONE firmware notifications.
3645  */
3646 static void
3647 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
3648     uint8_t status)
3649 {
3650 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
3651 	struct iwn_tx_data *data = &ring->data[desc->idx];
3652 	struct mbuf *m;
3653 	struct ieee80211_node *ni;
3654 	struct ieee80211vap *vap;
3655 
3656 	KASSERT(data->ni != NULL, ("no node"));
3657 
3658 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3659 
3660 	/* Unmap and free mbuf. */
3661 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
3662 	bus_dmamap_unload(ring->data_dmat, data->map);
3663 	m = data->m, data->m = NULL;
3664 	ni = data->ni, data->ni = NULL;
3665 	vap = ni->ni_vap;
3666 
3667 	/*
3668 	 * Update rate control statistics for the node.
3669 	 */
3670 	if (status & IWN_TX_FAIL)
3671 		ieee80211_ratectl_tx_complete(vap, ni,
3672 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
3673 	else
3674 		ieee80211_ratectl_tx_complete(vap, ni,
3675 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
3676 
3677 	/*
3678 	 * Channels marked for "radar" require traffic to be received
3679 	 * to unlock before we can transmit.  Until traffic is seen
3680 	 * any attempt to transmit is returned immediately with status
3681 	 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
3682 	 * happen on first authenticate after scanning.  To workaround
3683 	 * this we ignore a failure of this sort in AUTH state so the
3684 	 * 802.11 layer will fall back to using a timeout to wait for
3685 	 * the AUTH reply.  This allows the firmware time to see
3686 	 * traffic so a subsequent retry of AUTH succeeds.  It's
3687 	 * unclear why the firmware does not maintain state for
3688 	 * channels recently visited as this would allow immediate
3689 	 * use of the channel after a scan (where we see traffic).
3690 	 */
3691 	if (status == IWN_TX_FAIL_TX_LOCKED &&
3692 	    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
3693 		ieee80211_tx_complete(ni, m, 0);
3694 	else
3695 		ieee80211_tx_complete(ni, m,
3696 		    (status & IWN_TX_FAIL) != 0);
3697 
3698 	sc->sc_tx_timer = 0;
3699 	if (--ring->queued < IWN_TX_RING_LOMARK)
3700 		sc->qfullmsk &= ~(1 << ring->qid);
3701 
3702 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3703 }
3704 
3705 /*
3706  * Process a "command done" firmware notification.  This is where we wakeup
3707  * processes waiting for a synchronous command completion.
3708  */
3709 static void
3710 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3711 {
3712 	struct iwn_tx_ring *ring;
3713 	struct iwn_tx_data *data;
3714 	int cmd_queue_num;
3715 
3716 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
3717 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
3718 	else
3719 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
3720 
3721 	if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num)
3722 		return;	/* Not a command ack. */
3723 
3724 	ring = &sc->txq[cmd_queue_num];
3725 	data = &ring->data[desc->idx];
3726 
3727 	/* If the command was mapped in an mbuf, free it. */
3728 	if (data->m != NULL) {
3729 		bus_dmamap_sync(ring->data_dmat, data->map,
3730 		    BUS_DMASYNC_POSTWRITE);
3731 		bus_dmamap_unload(ring->data_dmat, data->map);
3732 		m_freem(data->m);
3733 		data->m = NULL;
3734 	}
3735 	wakeup(&ring->desc[desc->idx]);
3736 }
3737 
3738 static void
3739 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes,
3740     int ackfailcnt, void *stat)
3741 {
3742 	struct iwn_ops *ops = &sc->ops;
3743 	struct iwn_tx_ring *ring = &sc->txq[qid];
3744 	struct iwn_tx_data *data;
3745 	struct mbuf *m;
3746 	struct iwn_node *wn;
3747 	struct ieee80211_node *ni;
3748 	struct ieee80211_tx_ampdu *tap;
3749 	uint64_t bitmap;
3750 	uint32_t *status = stat;
3751 	uint16_t *aggstatus = stat;
3752 	uint16_t ssn;
3753 	uint8_t tid;
3754 	int bit, i, lastidx, *res, seqno, shift, start;
3755 
3756 	/* XXX TODO: status is le16 field! Grr */
3757 
3758 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3759 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: nframes=%d, status=0x%08x\n",
3760 	    __func__,
3761 	    nframes,
3762 	    *status);
3763 
3764 	tap = sc->qid2tap[qid];
3765 	tid = tap->txa_tid;
3766 	wn = (void *)tap->txa_ni;
3767 	ni = tap->txa_ni;
3768 
3769 	/*
3770 	 * XXX TODO: ACK and RTS failures would be nice here!
3771 	 */
3772 
3773 	/*
3774 	 * A-MPDU single frame status - if we failed to transmit it
3775 	 * in A-MPDU, then it may be a permanent failure.
3776 	 *
3777 	 * XXX TODO: check what the Linux iwlwifi driver does here;
3778 	 * there's some permanent and temporary failures that may be
3779 	 * handled differently.
3780 	 */
3781 	if (nframes == 1) {
3782 		if ((*status & 0xff) != 1 && (*status & 0xff) != 2) {
3783 #ifdef	NOT_YET
3784 			kprintf("ieee80211_send_bar()\n");
3785 #endif
3786 			/*
3787 			 * If we completely fail a transmit, make sure a
3788 			 * notification is pushed up to the rate control
3789 			 * layer.
3790 			 */
3791 			ieee80211_ratectl_tx_complete(ni->ni_vap,
3792 			    ni,
3793 			    IEEE80211_RATECTL_TX_FAILURE,
3794 			    &ackfailcnt,
3795 			    NULL);
3796 		} else {
3797 			/*
3798 			 * If nframes=1, then we won't be getting a BA for
3799 			 * this frame.  Ensure that we correctly update the
3800 			 * rate control code with how many retries were
3801 			 * needed to send it.
3802 			 */
3803 			ieee80211_ratectl_tx_complete(ni->ni_vap,
3804 			    ni,
3805 			    IEEE80211_RATECTL_TX_SUCCESS,
3806 			    &ackfailcnt,
3807 			    NULL);
3808 		}
3809 	}
3810 
3811 	bitmap = 0;
3812 	start = idx;
3813 	for (i = 0; i < nframes; i++) {
3814 		if (le16toh(aggstatus[i * 2]) & 0xc)
3815 			continue;
3816 
3817 		idx = le16toh(aggstatus[2*i + 1]) & 0xff;
3818 		bit = idx - start;
3819 		shift = 0;
3820 		if (bit >= 64) {
3821 			shift = 0x100 - idx + start;
3822 			bit = 0;
3823 			start = idx;
3824 		} else if (bit <= -64)
3825 			bit = 0x100 - start + idx;
3826 		else if (bit < 0) {
3827 			shift = start - idx;
3828 			start = idx;
3829 			bit = 0;
3830 		}
3831 		bitmap = bitmap << shift;
3832 		bitmap |= 1ULL << bit;
3833 	}
3834 	tap = sc->qid2tap[qid];
3835 	tid = tap->txa_tid;
3836 	wn = (void *)tap->txa_ni;
3837 	wn->agg[tid].bitmap = bitmap;
3838 	wn->agg[tid].startidx = start;
3839 	wn->agg[tid].nframes = nframes;
3840 
3841 	res = NULL;
3842 	ssn = 0;
3843 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3844 		res = tap->txa_private;
3845 		ssn = tap->txa_start & 0xfff;
3846 	}
3847 
3848 	/* This is going nframes DWORDS into the descriptor? */
3849 	seqno = le32toh(*(status + nframes)) & 0xfff;
3850 	for (lastidx = (seqno & 0xff); ring->read != lastidx;) {
3851 		data = &ring->data[ring->read];
3852 
3853 		/* Unmap and free mbuf. */
3854 		bus_dmamap_sync(ring->data_dmat, data->map,
3855 		    BUS_DMASYNC_POSTWRITE);
3856 		bus_dmamap_unload(ring->data_dmat, data->map);
3857 		m = data->m, data->m = NULL;
3858 		ni = data->ni, data->ni = NULL;
3859 
3860 		KASSERT(ni != NULL, ("no node"));
3861 		KASSERT(m != NULL, ("no mbuf"));
3862 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m);
3863 		ieee80211_tx_complete(ni, m, 1);
3864 
3865 		ring->queued--;
3866 		ring->read = (ring->read + 1) % IWN_TX_RING_COUNT;
3867 	}
3868 
3869 	if (ring->queued == 0 && res != NULL) {
3870 		iwn_nic_lock(sc);
3871 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3872 		iwn_nic_unlock(sc);
3873 		sc->qid2tap[qid] = NULL;
3874 		kfree(res, M_DEVBUF);
3875 		return;
3876 	}
3877 
3878 	sc->sc_tx_timer = 0;
3879 	if (ring->queued < IWN_TX_RING_LOMARK)
3880 		sc->qfullmsk &= ~(1 << ring->qid);
3881 
3882 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3883 }
3884 
3885 /*
3886  * Process an INT_FH_RX or INT_SW_RX interrupt.
3887  */
3888 static void
3889 iwn_notif_intr(struct iwn_softc *sc)
3890 {
3891 	struct iwn_ops *ops = &sc->ops;
3892 	struct ieee80211com *ic = &sc->sc_ic;
3893 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3894 	uint16_t hw;
3895 
3896 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
3897 	    BUS_DMASYNC_POSTREAD);
3898 
3899 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
3900 	while (sc->rxq.cur != hw) {
3901 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
3902 		struct iwn_rx_desc *desc;
3903 
3904 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3905 		    BUS_DMASYNC_POSTREAD);
3906 		desc = mtod(data->m, struct iwn_rx_desc *);
3907 
3908 		DPRINTF(sc, IWN_DEBUG_RECV,
3909 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
3910 		    __func__, sc->rxq.cur, desc->qid & 0xf, desc->idx, desc->flags,
3911 		    desc->type, iwn_intr_str(desc->type),
3912 		    le16toh(desc->len));
3913 
3914 		if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF))	/* Reply to a command. */
3915 			iwn_cmd_done(sc, desc);
3916 
3917 		switch (desc->type) {
3918 		case IWN_RX_PHY:
3919 			iwn_rx_phy(sc, desc, data);
3920 			break;
3921 
3922 		case IWN_RX_DONE:		/* 4965AGN only. */
3923 		case IWN_MPDU_RX_DONE:
3924 			/* An 802.11 frame has been received. */
3925 			iwn_rx_done(sc, desc, data);
3926 			break;
3927 
3928 		case IWN_RX_COMPRESSED_BA:
3929 			/* A Compressed BlockAck has been received. */
3930 			iwn_rx_compressed_ba(sc, desc, data);
3931 			break;
3932 
3933 		case IWN_TX_DONE:
3934 			/* An 802.11 frame has been transmitted. */
3935 			ops->tx_done(sc, desc, data);
3936 			break;
3937 
3938 		case IWN_RX_STATISTICS:
3939 		case IWN_BEACON_STATISTICS:
3940 			iwn_rx_statistics(sc, desc, data);
3941 			break;
3942 
3943 		case IWN_BEACON_MISSED:
3944 		{
3945 			struct iwn_beacon_missed *miss =
3946 			    (struct iwn_beacon_missed *)(desc + 1);
3947 			int misses;
3948 
3949 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3950 			    BUS_DMASYNC_POSTREAD);
3951 			misses = le32toh(miss->consecutive);
3952 
3953 			DPRINTF(sc, IWN_DEBUG_STATE,
3954 			    "%s: beacons missed %d/%d\n", __func__,
3955 			    misses, le32toh(miss->total));
3956 			/*
3957 			 * If more than 5 consecutive beacons are missed,
3958 			 * reinitialize the sensitivity state machine.
3959 			 */
3960 			if (vap->iv_state == IEEE80211_S_RUN &&
3961 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3962 				if (misses > 5)
3963 					(void)iwn_init_sensitivity(sc);
3964 				if (misses >= vap->iv_bmissthreshold) {
3965 					IWN_UNLOCK(sc);
3966 					ieee80211_beacon_miss(ic);
3967 					IWN_LOCK(sc);
3968 				}
3969 			}
3970 			break;
3971 		}
3972 		case IWN_UC_READY:
3973 		{
3974 			struct iwn_ucode_info *uc =
3975 			    (struct iwn_ucode_info *)(desc + 1);
3976 
3977 			/* The microcontroller is ready. */
3978 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3979 			    BUS_DMASYNC_POSTREAD);
3980 			DPRINTF(sc, IWN_DEBUG_RESET,
3981 			    "microcode alive notification version=%d.%d "
3982 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
3983 			    uc->subtype, le32toh(uc->valid));
3984 
3985 			if (le32toh(uc->valid) != 1) {
3986 				device_printf(sc->sc_dev,
3987 				    "microcontroller initialization failed");
3988 				break;
3989 			}
3990 			if (uc->subtype == IWN_UCODE_INIT) {
3991 				/* Save microcontroller report. */
3992 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
3993 			}
3994 			/* Save the address of the error log in SRAM. */
3995 			sc->errptr = le32toh(uc->errptr);
3996 			break;
3997 		}
3998 		case IWN_STATE_CHANGED:
3999 		{
4000 			/*
4001 			 * State change allows hardware switch change to be
4002 			 * noted. However, we handle this in iwn_intr as we
4003 			 * get both the enable/disble intr.
4004 			 */
4005 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
4006 			    BUS_DMASYNC_POSTREAD);
4007 #ifdef	IWN_DEBUG
4008 			uint32_t *status = (uint32_t *)(desc + 1);
4009 			DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE,
4010 			    "state changed to %x\n",
4011 			    le32toh(*status));
4012 #endif
4013 			break;
4014 		}
4015 		case IWN_START_SCAN:
4016 		{
4017 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
4018 			    BUS_DMASYNC_POSTREAD);
4019 #ifdef	IWN_DEBUG
4020 			struct iwn_start_scan *scan =
4021 			    (struct iwn_start_scan *)(desc + 1);
4022 			DPRINTF(sc, IWN_DEBUG_ANY,
4023 			    "%s: scanning channel %d status %x\n",
4024 			    __func__, scan->chan, le32toh(scan->status));
4025 #endif
4026 			break;
4027 		}
4028 		case IWN_STOP_SCAN:
4029 		{
4030 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
4031 			    BUS_DMASYNC_POSTREAD);
4032 #ifdef	IWN_DEBUG
4033 			struct iwn_stop_scan *scan =
4034 			    (struct iwn_stop_scan *)(desc + 1);
4035 			DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN,
4036 			    "scan finished nchan=%d status=%d chan=%d\n",
4037 			    scan->nchan, scan->status, scan->chan);
4038 #endif
4039 			sc->sc_is_scanning = 0;
4040 			IWN_UNLOCK(sc);
4041 			ieee80211_scan_next(vap);
4042 			IWN_LOCK(sc);
4043 			break;
4044 		}
4045 		case IWN5000_CALIBRATION_RESULT:
4046 			iwn5000_rx_calib_results(sc, desc, data);
4047 			break;
4048 
4049 		case IWN5000_CALIBRATION_DONE:
4050 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
4051 			wakeup(sc);
4052 			break;
4053 		}
4054 
4055 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
4056 	}
4057 
4058 	/* Tell the firmware what we have processed. */
4059 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
4060 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
4061 }
4062 
4063 /*
4064  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
4065  * from power-down sleep mode.
4066  */
4067 static void
4068 iwn_wakeup_intr(struct iwn_softc *sc)
4069 {
4070 	int qid;
4071 
4072 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
4073 	    __func__);
4074 
4075 	/* Wakeup RX and TX rings. */
4076 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
4077 	for (qid = 0; qid < sc->ntxqs; qid++) {
4078 		struct iwn_tx_ring *ring = &sc->txq[qid];
4079 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
4080 	}
4081 }
4082 
4083 static void
4084 iwn_rftoggle_intr(struct iwn_softc *sc)
4085 {
4086 	struct ieee80211com *ic = &sc->sc_ic;
4087 	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
4088 
4089 	IWN_LOCK_ASSERT(sc);
4090 
4091 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
4092 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
4093 	if (tmp & IWN_GP_CNTRL_RFKILL)
4094 		ieee80211_runtask(ic, &sc->sc_radioon_task);
4095 	else
4096 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
4097 }
4098 
4099 /*
4100  * Dump the error log of the firmware when a firmware panic occurs.  Although
4101  * we can't debug the firmware because it is neither open source nor free, it
4102  * can help us to identify certain classes of problems.
4103  */
4104 static void
4105 iwn_fatal_intr(struct iwn_softc *sc)
4106 {
4107 	struct iwn_fw_dump dump;
4108 	int i;
4109 
4110 	IWN_LOCK_ASSERT(sc);
4111 
4112 	/* Force a complete recalibration on next init. */
4113 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
4114 
4115 	/* Check that the error log address is valid. */
4116 	if (sc->errptr < IWN_FW_DATA_BASE ||
4117 	    sc->errptr + sizeof (dump) >
4118 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
4119 		kprintf("%s: bad firmware error log address 0x%08x\n", __func__,
4120 		    sc->errptr);
4121 		return;
4122 	}
4123 	if (iwn_nic_lock(sc) != 0) {
4124 		kprintf("%s: could not read firmware error log\n", __func__);
4125 		return;
4126 	}
4127 	/* Read firmware error log from SRAM. */
4128 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
4129 	    sizeof (dump) / sizeof (uint32_t));
4130 	iwn_nic_unlock(sc);
4131 
4132 	if (dump.valid == 0) {
4133 		kprintf("%s: firmware error log is empty\n", __func__);
4134 		return;
4135 	}
4136 	kprintf("firmware error log:\n");
4137 	kprintf("  error type      = \"%s\" (0x%08X)\n",
4138 	    (dump.id < nitems(iwn_fw_errmsg)) ?
4139 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
4140 	    dump.id);
4141 	kprintf("  program counter = 0x%08X\n", dump.pc);
4142 	kprintf("  source line     = 0x%08X\n", dump.src_line);
4143 	kprintf("  error data      = 0x%08X%08X\n",
4144 	    dump.error_data[0], dump.error_data[1]);
4145 	kprintf("  branch link     = 0x%08X%08X\n",
4146 	    dump.branch_link[0], dump.branch_link[1]);
4147 	kprintf("  interrupt link  = 0x%08X%08X\n",
4148 	    dump.interrupt_link[0], dump.interrupt_link[1]);
4149 	kprintf("  time            = %u\n", dump.time[0]);
4150 
4151 	/* Dump driver status (TX and RX rings) while we're here. */
4152 	kprintf("driver status:\n");
4153 	for (i = 0; i < sc->ntxqs; i++) {
4154 		struct iwn_tx_ring *ring = &sc->txq[i];
4155 		kprintf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
4156 		    i, ring->qid, ring->cur, ring->queued);
4157 	}
4158 	kprintf("  rx ring: cur=%d\n", sc->rxq.cur);
4159 }
4160 
4161 static void
4162 iwn_intr(void *arg)
4163 {
4164 	struct iwn_softc *sc = arg;
4165 	uint32_t r1, r2, tmp;
4166 
4167 	IWN_LOCK(sc);
4168 
4169 	/* Disable interrupts. */
4170 	IWN_WRITE(sc, IWN_INT_MASK, 0);
4171 
4172 	/* Read interrupts from ICT (fast) or from registers (slow). */
4173 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4174 		tmp = 0;
4175 		while (sc->ict[sc->ict_cur] != 0) {
4176 			tmp |= sc->ict[sc->ict_cur];
4177 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
4178 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
4179 		}
4180 		tmp = le32toh(tmp);
4181 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
4182 			tmp = 0;
4183 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
4184 			tmp |= 0x8000;
4185 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
4186 		r2 = 0;	/* Unused. */
4187 	} else {
4188 		r1 = IWN_READ(sc, IWN_INT);
4189 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) {
4190 			IWN_UNLOCK(sc);
4191 			return;	/* Hardware gone! */
4192 		}
4193 		r2 = IWN_READ(sc, IWN_FH_INT);
4194 	}
4195 
4196 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n"
4197     , r1, r2);
4198 
4199 	if (r1 == 0 && r2 == 0)
4200 		goto done;	/* Interrupt not for us. */
4201 
4202 	/* Acknowledge interrupts. */
4203 	IWN_WRITE(sc, IWN_INT, r1);
4204 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
4205 		IWN_WRITE(sc, IWN_FH_INT, r2);
4206 
4207 	if (r1 & IWN_INT_RF_TOGGLED) {
4208 		iwn_rftoggle_intr(sc);
4209 		goto done;
4210 	}
4211 	if (r1 & IWN_INT_CT_REACHED) {
4212 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
4213 		    __func__);
4214 	}
4215 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
4216 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
4217 		    __func__);
4218 #ifdef	IWN_DEBUG
4219 		iwn_debug_register(sc);
4220 #endif
4221 		/* Dump firmware error log and stop. */
4222 		iwn_fatal_intr(sc);
4223 
4224 		taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task);
4225 		goto done;
4226 	}
4227 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
4228 	    (r2 & IWN_FH_INT_RX)) {
4229 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4230 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
4231 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
4232 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4233 			    IWN_INT_PERIODIC_DIS);
4234 			iwn_notif_intr(sc);
4235 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
4236 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4237 				    IWN_INT_PERIODIC_ENA);
4238 			}
4239 		} else
4240 			iwn_notif_intr(sc);
4241 	}
4242 
4243 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
4244 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
4245 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
4246 		wakeup(sc);	/* FH DMA transfer completed. */
4247 	}
4248 
4249 	if (r1 & IWN_INT_ALIVE)
4250 		wakeup(sc);	/* Firmware is alive. */
4251 
4252 	if (r1 & IWN_INT_WAKEUP)
4253 		iwn_wakeup_intr(sc);
4254 
4255 done:
4256 	/* Re-enable interrupts. */
4257 	if (sc->sc_flags & IWN_FLAG_RUNNING)
4258 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4259 
4260 	IWN_UNLOCK(sc);
4261 }
4262 
4263 /*
4264  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
4265  * 5000 adapters use a slightly different format).
4266  */
4267 static void
4268 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4269     uint16_t len)
4270 {
4271 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
4272 
4273 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4274 
4275 	*w = htole16(len + 8);
4276 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4277 	    BUS_DMASYNC_PREWRITE);
4278 	if (idx < IWN_SCHED_WINSZ) {
4279 		*(w + IWN_TX_RING_COUNT) = *w;
4280 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4281 		    BUS_DMASYNC_PREWRITE);
4282 	}
4283 }
4284 
4285 static void
4286 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4287     uint16_t len)
4288 {
4289 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4290 
4291 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4292 
4293 	*w = htole16(id << 12 | (len + 8));
4294 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4295 	    BUS_DMASYNC_PREWRITE);
4296 	if (idx < IWN_SCHED_WINSZ) {
4297 		*(w + IWN_TX_RING_COUNT) = *w;
4298 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4299 		    BUS_DMASYNC_PREWRITE);
4300 	}
4301 }
4302 
4303 #ifdef notyet
4304 static void
4305 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
4306 {
4307 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4308 
4309 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4310 
4311 	*w = (*w & htole16(0xf000)) | htole16(1);
4312 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4313 	    BUS_DMASYNC_PREWRITE);
4314 	if (idx < IWN_SCHED_WINSZ) {
4315 		*(w + IWN_TX_RING_COUNT) = *w;
4316 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4317 		    BUS_DMASYNC_PREWRITE);
4318 	}
4319 }
4320 #endif
4321 
4322 /*
4323  * Check whether OFDM 11g protection will be enabled for the given rate.
4324  *
4325  * The original driver code only enabled protection for OFDM rates.
4326  * It didn't check to see whether it was operating in 11a or 11bg mode.
4327  */
4328 static int
4329 iwn_check_rate_needs_protection(struct iwn_softc *sc,
4330     struct ieee80211vap *vap, uint8_t rate)
4331 {
4332 	struct ieee80211com *ic = vap->iv_ic;
4333 
4334 	/*
4335 	 * Not in 2GHz mode? Then there's no need to enable OFDM
4336 	 * 11bg protection.
4337 	 */
4338 	if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
4339 		return (0);
4340 	}
4341 
4342 	/*
4343 	 * 11bg protection not enabled? Then don't use it.
4344 	 */
4345 	if ((ic->ic_flags & IEEE80211_F_USEPROT) == 0)
4346 		return (0);
4347 
4348 	/*
4349 	 * If it's an 11n rate - no protection.
4350 	 * We'll do it via a specific 11n check.
4351 	 */
4352 	if (rate & IEEE80211_RATE_MCS) {
4353 		return (0);
4354 	}
4355 
4356 	/*
4357 	 * Do a rate table lookup.  If the PHY is CCK,
4358 	 * don't do protection.
4359 	 */
4360 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK)
4361 		return (0);
4362 
4363 	/*
4364 	 * Yup, enable protection.
4365 	 */
4366 	return (1);
4367 }
4368 
4369 /*
4370  * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into
4371  * the link quality table that reflects this particular entry.
4372  */
4373 static int
4374 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni,
4375     uint8_t rate)
4376 {
4377 	struct ieee80211_rateset *rs;
4378 	int is_11n;
4379 	int nr;
4380 	int i;
4381 	uint8_t cmp_rate;
4382 
4383 	/*
4384 	 * Figure out if we're using 11n or not here.
4385 	 */
4386 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0)
4387 		is_11n = 1;
4388 	else
4389 		is_11n = 0;
4390 
4391 	/*
4392 	 * Use the correct rate table.
4393 	 */
4394 	if (is_11n) {
4395 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4396 		nr = ni->ni_htrates.rs_nrates;
4397 	} else {
4398 		rs = &ni->ni_rates;
4399 		nr = rs->rs_nrates;
4400 	}
4401 
4402 	/*
4403 	 * Find the relevant link quality entry in the table.
4404 	 */
4405 	for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) {
4406 		/*
4407 		 * The link quality table index starts at 0 == highest
4408 		 * rate, so we walk the rate table backwards.
4409 		 */
4410 		cmp_rate = rs->rs_rates[(nr - 1) - i];
4411 		if (rate & IEEE80211_RATE_MCS)
4412 			cmp_rate |= IEEE80211_RATE_MCS;
4413 
4414 #if 0
4415 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n",
4416 		    __func__,
4417 		    i,
4418 		    nr,
4419 		    rate,
4420 		    cmp_rate);
4421 #endif
4422 
4423 		if (cmp_rate == rate)
4424 			return (i);
4425 	}
4426 
4427 	/* Failed? Start at the end */
4428 	return (IWN_MAX_TX_RETRIES - 1);
4429 }
4430 
4431 static int
4432 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
4433 {
4434 	struct iwn_ops *ops = &sc->ops;
4435 	const struct ieee80211_txparam *tp;
4436 	struct ieee80211vap *vap = ni->ni_vap;
4437 	struct ieee80211com *ic = ni->ni_ic;
4438 	struct iwn_node *wn = (void *)ni;
4439 	struct iwn_tx_ring *ring;
4440 	struct iwn_tx_desc *desc;
4441 	struct iwn_tx_data *data;
4442 	struct iwn_tx_cmd *cmd;
4443 	struct iwn_cmd_data *tx;
4444 	struct ieee80211_frame *wh;
4445 	struct ieee80211_key *k = NULL;
4446 	struct mbuf *m1;
4447 	uint32_t flags;
4448 	uint16_t qos;
4449 	u_int hdrlen;
4450 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4451 	uint8_t tid, type;
4452 	int ac, i, totlen, error, pad, nsegs = 0, rate;
4453 
4454 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4455 
4456 	IWN_LOCK_ASSERT(sc);
4457 
4458 	wh = mtod(m, struct ieee80211_frame *);
4459 	hdrlen = ieee80211_anyhdrsize(wh);
4460 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4461 
4462 	/* Select EDCA Access Category and TX ring for this frame. */
4463 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
4464 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
4465 		tid = qos & IEEE80211_QOS_TID;
4466 	} else {
4467 		qos = 0;
4468 		tid = 0;
4469 	}
4470 	ac = M_WME_GETAC(m);
4471 	if (m->m_flags & M_AMPDU_MPDU) {
4472 		uint16_t seqno;
4473 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
4474 
4475 		if (!IEEE80211_AMPDU_RUNNING(tap)) {
4476 			return EINVAL;
4477 		}
4478 
4479 		/*
4480 		 * Queue this frame to the hardware ring that we've
4481 		 * negotiated AMPDU TX on.
4482 		 *
4483 		 * Note that the sequence number must match the TX slot
4484 		 * being used!
4485 		 */
4486 		ac = *(int *)tap->txa_private;
4487 		seqno = ni->ni_txseqs[tid];
4488 		*(uint16_t *)wh->i_seq =
4489 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4490 		ring = &sc->txq[ac];
4491 		if ((seqno % 256) != ring->cur) {
4492 			device_printf(sc->sc_dev,
4493 			    "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n",
4494 			    __func__,
4495 			    m,
4496 			    seqno,
4497 			    seqno % 256,
4498 			    ring->cur);
4499 		}
4500 		ni->ni_txseqs[tid]++;
4501 	}
4502 	ring = &sc->txq[ac];
4503 	desc = &ring->desc[ring->cur];
4504 	data = &ring->data[ring->cur];
4505 
4506 	/* Choose a TX rate index. */
4507 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
4508 	if (type == IEEE80211_FC0_TYPE_MGT)
4509 		rate = tp->mgmtrate;
4510 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
4511 		rate = tp->mcastrate;
4512 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
4513 		rate = tp->ucastrate;
4514 	else if (m->m_flags & M_EAPOL)
4515 		rate = tp->mgmtrate;
4516 	else {
4517 		/* XXX pass pktlen */
4518 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
4519 		rate = ni->ni_txrate;
4520 	}
4521 
4522 	/* Encrypt the frame if need be. */
4523 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
4524 		/* Retrieve key for TX. */
4525 		k = ieee80211_crypto_encap(ni, m);
4526 		if (k == NULL) {
4527 			return ENOBUFS;
4528 		}
4529 		/* 802.11 header may have moved. */
4530 		wh = mtod(m, struct ieee80211_frame *);
4531 	}
4532 	totlen = m->m_pkthdr.len;
4533 
4534 	if (ieee80211_radiotap_active_vap(vap)) {
4535 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4536 
4537 		tap->wt_flags = 0;
4538 		tap->wt_rate = rate;
4539 		if (k != NULL)
4540 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4541 
4542 		ieee80211_radiotap_tx(vap, m);
4543 	}
4544 
4545 	/* Prepare TX firmware command. */
4546 	cmd = &ring->cmd[ring->cur];
4547 	cmd->code = IWN_CMD_TX_DATA;
4548 	cmd->flags = 0;
4549 	cmd->qid = ring->qid;
4550 	cmd->idx = ring->cur;
4551 
4552 	tx = (struct iwn_cmd_data *)cmd->data;
4553 	/* NB: No need to clear tx, all fields are reinitialized here. */
4554 	tx->scratch = 0;	/* clear "scratch" area */
4555 
4556 	flags = 0;
4557 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4558 		/* Unicast frame, check if an ACK is expected. */
4559 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
4560 		    IEEE80211_QOS_ACKPOLICY_NOACK)
4561 			flags |= IWN_TX_NEED_ACK;
4562 	}
4563 	if ((wh->i_fc[0] &
4564 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
4565 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
4566 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
4567 
4568 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
4569 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
4570 
4571 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
4572 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4573 		/* NB: Group frames are sent using CCK in 802.11b/g. */
4574 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
4575 			flags |= IWN_TX_NEED_RTS;
4576 		} else if (iwn_check_rate_needs_protection(sc, vap, rate)) {
4577 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4578 				flags |= IWN_TX_NEED_CTS;
4579 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4580 				flags |= IWN_TX_NEED_RTS;
4581 		} else if ((rate & IEEE80211_RATE_MCS) &&
4582 			(ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)) {
4583 			flags |= IWN_TX_NEED_RTS;
4584 		}
4585 
4586 		/* XXX HT protection? */
4587 
4588 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
4589 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4590 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
4591 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
4592 				flags |= IWN_TX_NEED_PROTECTION;
4593 			} else
4594 				flags |= IWN_TX_FULL_TXOP;
4595 		}
4596 	}
4597 
4598 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
4599 	    type != IEEE80211_FC0_TYPE_DATA)
4600 		tx->id = sc->broadcast_id;
4601 	else
4602 		tx->id = wn->id;
4603 
4604 	if (type == IEEE80211_FC0_TYPE_MGT) {
4605 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4606 
4607 		/* Tell HW to set timestamp in probe responses. */
4608 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4609 			flags |= IWN_TX_INSERT_TSTAMP;
4610 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4611 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4612 			tx->timeout = htole16(3);
4613 		else
4614 			tx->timeout = htole16(2);
4615 	} else
4616 		tx->timeout = htole16(0);
4617 
4618 	if (hdrlen & 3) {
4619 		/* First segment length must be a multiple of 4. */
4620 		flags |= IWN_TX_NEED_PADDING;
4621 		pad = 4 - (hdrlen & 3);
4622 	} else
4623 		pad = 0;
4624 
4625 	tx->len = htole16(totlen);
4626 	tx->tid = tid;
4627 	tx->rts_ntries = 60;
4628 	tx->data_ntries = 15;
4629 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4630 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4631 	if (tx->id == sc->broadcast_id) {
4632 		/* Group or management frame. */
4633 		tx->linkq = 0;
4634 	} else {
4635 		tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate);
4636 		flags |= IWN_TX_LINKQ;	/* enable MRR */
4637 	}
4638 
4639 	/* Set physical address of "scratch area". */
4640 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4641 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4642 
4643 	/* Copy 802.11 header in TX command. */
4644 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4645 
4646 	/* Trim 802.11 header. */
4647 	m_adj(m, hdrlen);
4648 	tx->security = 0;
4649 	tx->flags = htole32(flags);
4650 
4651 #if defined(__DragonFly__)
4652 	error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
4653 					     data->map, m,
4654 					     segs, IWN_MAX_SCATTER - 1,
4655 					      &nsegs, BUS_DMA_NOWAIT);
4656 #else
4657 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4658 	    &nsegs, BUS_DMA_NOWAIT);
4659 #endif
4660 	if (error != 0) {
4661 		if (error != EFBIG) {
4662 			device_printf(sc->sc_dev,
4663 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4664 			return error;
4665 		}
4666 		/* Too many DMA segments, linearize mbuf. */
4667 #if defined(__DragonFly__)
4668 		m1 = m_defrag(m, M_NOWAIT);
4669 #else
4670 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1);
4671 #endif
4672 		if (m1 == NULL) {
4673 			device_printf(sc->sc_dev,
4674 			    "%s: could not defrag mbuf\n", __func__);
4675 			return ENOBUFS;
4676 		}
4677 		m = m1;
4678 
4679 #if defined(__DragonFly__)
4680 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
4681 						     data->map, m,
4682 						     segs, IWN_MAX_SCATTER - 1,
4683 						     &nsegs, BUS_DMA_NOWAIT);
4684 #else
4685 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4686 		    segs, &nsegs, BUS_DMA_NOWAIT);
4687 #endif
4688 		if (error != 0) {
4689 			device_printf(sc->sc_dev,
4690 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4691 			return error;
4692 		}
4693 	}
4694 
4695 	data->m = m;
4696 	data->ni = ni;
4697 
4698 	DPRINTF(sc, IWN_DEBUG_XMIT,
4699 	    "%s: qid %d idx %d len %d nsegs %d flags 0x%08x rate 0x%04x plcp 0x%08x\n",
4700 	    __func__,
4701 	    ring->qid,
4702 	    ring->cur,
4703 	    m->m_pkthdr.len,
4704 	    nsegs,
4705 	    flags,
4706 	    rate,
4707 	    tx->rate);
4708 
4709 	/* Fill TX descriptor. */
4710 	desc->nsegs = 1;
4711 	if (m->m_len != 0)
4712 		desc->nsegs += nsegs;
4713 	/* First DMA segment is used by the TX command. */
4714 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4715 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4716 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4717 	/* Other DMA segments are for data payload. */
4718 	seg = &segs[0];
4719 	for (i = 1; i <= nsegs; i++) {
4720 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4721 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4722 		    seg->ds_len << 4);
4723 		seg++;
4724 	}
4725 
4726 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4727 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4728 	    BUS_DMASYNC_PREWRITE);
4729 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4730 	    BUS_DMASYNC_PREWRITE);
4731 
4732 	/* Update TX scheduler. */
4733 	if (ring->qid >= sc->firstaggqueue)
4734 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4735 
4736 	/* Kick TX ring. */
4737 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4738 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4739 
4740 	/* Mark TX ring as full if we reach a certain threshold. */
4741 	if (++ring->queued > IWN_TX_RING_HIMARK)
4742 		sc->qfullmsk |= 1 << ring->qid;
4743 
4744 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4745 
4746 	return 0;
4747 }
4748 
4749 static int
4750 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
4751     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
4752 {
4753 	struct iwn_ops *ops = &sc->ops;
4754 	struct ieee80211vap *vap = ni->ni_vap;
4755 	struct iwn_tx_cmd *cmd;
4756 	struct iwn_cmd_data *tx;
4757 	struct ieee80211_frame *wh;
4758 	struct iwn_tx_ring *ring;
4759 	struct iwn_tx_desc *desc;
4760 	struct iwn_tx_data *data;
4761 	struct mbuf *m1;
4762 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4763 	uint32_t flags;
4764 	u_int hdrlen;
4765 	int ac, totlen, error, pad, nsegs = 0, i, rate;
4766 	uint8_t type;
4767 
4768 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4769 
4770 	IWN_LOCK_ASSERT(sc);
4771 
4772 	wh = mtod(m, struct ieee80211_frame *);
4773 	hdrlen = ieee80211_anyhdrsize(wh);
4774 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4775 
4776 	ac = params->ibp_pri & 3;
4777 
4778 	ring = &sc->txq[ac];
4779 	desc = &ring->desc[ring->cur];
4780 	data = &ring->data[ring->cur];
4781 
4782 	/* Choose a TX rate. */
4783 	rate = params->ibp_rate0;
4784 	totlen = m->m_pkthdr.len;
4785 
4786 	/* Prepare TX firmware command. */
4787 	cmd = &ring->cmd[ring->cur];
4788 	cmd->code = IWN_CMD_TX_DATA;
4789 	cmd->flags = 0;
4790 	cmd->qid = ring->qid;
4791 	cmd->idx = ring->cur;
4792 
4793 	tx = (struct iwn_cmd_data *)cmd->data;
4794 	/* NB: No need to clear tx, all fields are reinitialized here. */
4795 	tx->scratch = 0;	/* clear "scratch" area */
4796 
4797 	flags = 0;
4798 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
4799 		flags |= IWN_TX_NEED_ACK;
4800 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
4801 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4802 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4803 			flags &= ~IWN_TX_NEED_RTS;
4804 			flags |= IWN_TX_NEED_PROTECTION;
4805 		} else
4806 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
4807 	}
4808 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
4809 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4810 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4811 			flags &= ~IWN_TX_NEED_CTS;
4812 			flags |= IWN_TX_NEED_PROTECTION;
4813 		} else
4814 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
4815 	}
4816 	if (type == IEEE80211_FC0_TYPE_MGT) {
4817 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4818 
4819 		/* Tell HW to set timestamp in probe responses. */
4820 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4821 			flags |= IWN_TX_INSERT_TSTAMP;
4822 
4823 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4824 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4825 			tx->timeout = htole16(3);
4826 		else
4827 			tx->timeout = htole16(2);
4828 	} else
4829 		tx->timeout = htole16(0);
4830 
4831 	if (hdrlen & 3) {
4832 		/* First segment length must be a multiple of 4. */
4833 		flags |= IWN_TX_NEED_PADDING;
4834 		pad = 4 - (hdrlen & 3);
4835 	} else
4836 		pad = 0;
4837 
4838 	if (ieee80211_radiotap_active_vap(vap)) {
4839 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4840 
4841 		tap->wt_flags = 0;
4842 		tap->wt_rate = rate;
4843 
4844 		ieee80211_radiotap_tx(vap, m);
4845 	}
4846 
4847 	tx->len = htole16(totlen);
4848 	tx->tid = 0;
4849 	tx->id = sc->broadcast_id;
4850 	tx->rts_ntries = params->ibp_try1;
4851 	tx->data_ntries = params->ibp_try0;
4852 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4853 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4854 
4855 	/* Group or management frame. */
4856 	tx->linkq = 0;
4857 
4858 	/* Set physical address of "scratch area". */
4859 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4860 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4861 
4862 	/* Copy 802.11 header in TX command. */
4863 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4864 
4865 	/* Trim 802.11 header. */
4866 	m_adj(m, hdrlen);
4867 	tx->security = 0;
4868 	tx->flags = htole32(flags);
4869 
4870 #if defined(__DragonFly__)
4871 	error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
4872 					     m, segs, IWN_MAX_SCATTER - 1,
4873 					     &nsegs, BUS_DMA_NOWAIT);
4874 #else
4875 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4876 	    &nsegs, BUS_DMA_NOWAIT);
4877 #endif
4878 	if (error != 0) {
4879 		if (error != EFBIG) {
4880 			device_printf(sc->sc_dev,
4881 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4882 			return error;
4883 		}
4884 		/* Too many DMA segments, linearize mbuf. */
4885 #if defined(__DragonFly__)
4886 		m1 = m_defrag(m, M_NOWAIT);
4887 #else
4888 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1);
4889 #endif
4890 		if (m1 == NULL) {
4891 			device_printf(sc->sc_dev,
4892 			    "%s: could not defrag mbuf\n", __func__);
4893 			return ENOBUFS;
4894 		}
4895 		m = m1;
4896 
4897 #if defined(__DragonFly__)
4898 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
4899 						     data->map, m,
4900 						     segs, IWN_MAX_SCATTER - 1,
4901 						     &nsegs, BUS_DMA_NOWAIT);
4902 #else
4903 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4904 		    segs, &nsegs, BUS_DMA_NOWAIT);
4905 #endif
4906 		if (error != 0) {
4907 			device_printf(sc->sc_dev,
4908 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4909 			return error;
4910 		}
4911 	}
4912 
4913 	data->m = m;
4914 	data->ni = ni;
4915 
4916 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
4917 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
4918 
4919 	/* Fill TX descriptor. */
4920 	desc->nsegs = 1;
4921 	if (m->m_len != 0)
4922 		desc->nsegs += nsegs;
4923 	/* First DMA segment is used by the TX command. */
4924 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4925 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4926 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4927 	/* Other DMA segments are for data payload. */
4928 	seg = &segs[0];
4929 	for (i = 1; i <= nsegs; i++) {
4930 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4931 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4932 		    seg->ds_len << 4);
4933 		seg++;
4934 	}
4935 
4936 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4937 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4938 	    BUS_DMASYNC_PREWRITE);
4939 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4940 	    BUS_DMASYNC_PREWRITE);
4941 
4942 	/* Update TX scheduler. */
4943 	if (ring->qid >= sc->firstaggqueue)
4944 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4945 
4946 	/* Kick TX ring. */
4947 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4948 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4949 
4950 	/* Mark TX ring as full if we reach a certain threshold. */
4951 	if (++ring->queued > IWN_TX_RING_HIMARK)
4952 		sc->qfullmsk |= 1 << ring->qid;
4953 
4954 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4955 
4956 	return 0;
4957 }
4958 
4959 static void
4960 iwn_xmit_task(void *arg0, int pending)
4961 {
4962 	struct iwn_softc *sc = arg0;
4963 	struct ieee80211_node *ni;
4964 	struct mbuf *m;
4965 	int error;
4966 	struct ieee80211_bpf_params p;
4967 	int have_p;
4968 
4969 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__);
4970 
4971 	IWN_LOCK(sc);
4972 	/*
4973 	 * Dequeue frames, attempt to transmit,
4974 	 * then disable beaconwait when we're done.
4975 	 */
4976 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
4977 		have_p = 0;
4978 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4979 
4980 		/* Get xmit params if appropriate */
4981 		if (ieee80211_get_xmit_params(m, &p) == 0)
4982 			have_p = 1;
4983 
4984 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: m=%p, have_p=%d\n",
4985 		    __func__, m, have_p);
4986 
4987 		/* If we have xmit params, use them */
4988 		if (have_p)
4989 			error = iwn_tx_data_raw(sc, m, ni, &p);
4990 		else
4991 			error = iwn_tx_data(sc, m, ni);
4992 
4993 		if (error != 0) {
4994 			if_inc_counter(ni->ni_vap->iv_ifp,
4995 			    IFCOUNTER_OERRORS, 1);
4996 			ieee80211_free_node(ni);
4997 			m_freem(m);
4998 		}
4999 	}
5000 
5001 	sc->sc_beacon_wait = 0;
5002 	IWN_UNLOCK(sc);
5003 }
5004 
5005 /*
5006  * raw frame xmit - free node/reference if failed.
5007  */
5008 static int
5009 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
5010     const struct ieee80211_bpf_params *params)
5011 {
5012 	struct ieee80211com *ic = ni->ni_ic;
5013 	struct iwn_softc *sc = ic->ic_softc;
5014 	int error = 0;
5015 
5016 	DPRINTF(sc, IWN_DEBUG_XMIT | IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5017 
5018 	IWN_LOCK(sc);
5019 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0) {
5020 		m_freem(m);
5021 		IWN_UNLOCK(sc);
5022 		return (ENETDOWN);
5023 	}
5024 
5025 	/* queue frame if we have to */
5026 	if (sc->sc_beacon_wait) {
5027 		if (iwn_xmit_queue_enqueue(sc, m) != 0) {
5028 			m_freem(m);
5029 			IWN_UNLOCK(sc);
5030 			return (ENOBUFS);
5031 		}
5032 		/* Queued, so just return OK */
5033 		IWN_UNLOCK(sc);
5034 		return (0);
5035 	}
5036 
5037 	if (params == NULL) {
5038 		/*
5039 		 * Legacy path; interpret frame contents to decide
5040 		 * precisely how to send the frame.
5041 		 */
5042 		error = iwn_tx_data(sc, m, ni);
5043 	} else {
5044 		/*
5045 		 * Caller supplied explicit parameters to use in
5046 		 * sending the frame.
5047 		 */
5048 		error = iwn_tx_data_raw(sc, m, ni, params);
5049 	}
5050 	if (error == 0)
5051 		sc->sc_tx_timer = 5;
5052 	else
5053 		m_freem(m);
5054 
5055 	IWN_UNLOCK(sc);
5056 
5057 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s: end\n",__func__);
5058 
5059 	return (error);
5060 }
5061 
5062 /*
5063  * transmit - don't free mbuf if failed; don't free node ref if failed.
5064  */
5065 static int
5066 iwn_transmit(struct ieee80211com *ic, struct mbuf *m)
5067 {
5068 	struct iwn_softc *sc = ic->ic_softc;
5069 	struct ieee80211_node *ni;
5070 	int error;
5071 
5072 	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
5073 
5074 	IWN_LOCK(sc);
5075 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0 || sc->sc_beacon_wait) {
5076 		IWN_UNLOCK(sc);
5077 		return (ENXIO);
5078 	}
5079 
5080 	if (sc->qfullmsk) {
5081 		IWN_UNLOCK(sc);
5082 		return (ENOBUFS);
5083 	}
5084 
5085 	error = iwn_tx_data(sc, m, ni);
5086 	if (!error)
5087 		sc->sc_tx_timer = 5;
5088 	IWN_UNLOCK(sc);
5089 	return (error);
5090 }
5091 
5092 static void
5093 iwn_watchdog(void *arg)
5094 {
5095 	struct iwn_softc *sc = arg;
5096 	struct ieee80211com *ic = &sc->sc_ic;
5097 
5098 	IWN_LOCK_ASSERT(sc);
5099 
5100 	KASSERT(sc->sc_flags & IWN_FLAG_RUNNING, ("not running"));
5101 
5102 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5103 
5104 	if (sc->sc_tx_timer > 0) {
5105 		if (--sc->sc_tx_timer == 0) {
5106 			ic_printf(ic, "device timeout\n");
5107 			ieee80211_restart_all(ic);
5108 			return;
5109 		}
5110 	}
5111 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
5112 }
5113 
5114 #if defined(__DragonFly__)
5115 static int
5116 iwn_cdev_open(struct dev_open_args *ap)
5117 #else
5118 static int
5119 iwn_cdev_open(struct cdev *dev, int flags, int type, struct thread *td)
5120 #endif
5121 {
5122 
5123 	return (0);
5124 }
5125 
5126 #if defined(__DragonFly__)
5127 static int
5128 iwn_cdev_close(struct dev_close_args *ap)
5129 #else
5130 static int
5131 iwn_cdev_close(struct cdev *dev, int flags, int type, struct thread *td)
5132 #endif
5133 {
5134 
5135 	return (0);
5136 }
5137 
5138 #if defined(__DragonFly__)
5139 static int
5140 iwn_cdev_ioctl(struct dev_ioctl_args *ap)
5141 {
5142 	cdev_t dev = ap->a_head.a_dev;
5143 	unsigned long cmd = ap->a_cmd;
5144 	caddr_t data = ap->a_data;
5145 	struct thread *td = curthread;
5146 #else
5147 static int
5148 iwn_cdev_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
5149     struct thread *td)
5150 {
5151 #endif
5152 	int rc;
5153 	struct iwn_softc *sc = dev->si_drv1;
5154 	struct iwn_ioctl_data *d;
5155 
5156 	rc = priv_check(td, PRIV_DRIVER);
5157 	if (rc != 0)
5158 		return (0);
5159 
5160 	switch (cmd) {
5161 	case SIOCGIWNSTATS:
5162 		d = (struct iwn_ioctl_data *) data;
5163 		IWN_LOCK(sc);
5164 		/* XXX validate permissions/memory/etc? */
5165 		rc = copyout(&sc->last_stat, d->dst_addr, sizeof(struct iwn_stats));
5166 		IWN_UNLOCK(sc);
5167 		break;
5168 	case SIOCZIWNSTATS:
5169 		IWN_LOCK(sc);
5170 		memset(&sc->last_stat, 0, sizeof(struct iwn_stats));
5171 		IWN_UNLOCK(sc);
5172 		break;
5173 	default:
5174 		rc = EINVAL;
5175 		break;
5176 	}
5177 	return (rc);
5178 }
5179 
5180 static int
5181 iwn_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
5182 {
5183 
5184 	return (ENOTTY);
5185 }
5186 
5187 static void
5188 iwn_parent(struct ieee80211com *ic)
5189 {
5190 	struct iwn_softc *sc = ic->ic_softc;
5191 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5192 	int startall = 0, stop = 0;
5193 
5194 	IWN_LOCK(sc);
5195 	if (ic->ic_nrunning > 0) {
5196 		if (!(sc->sc_flags & IWN_FLAG_RUNNING)) {
5197 			iwn_init_locked(sc);
5198 			if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
5199 				startall = 1;
5200 			else
5201 				stop = 1;
5202 		}
5203 	} else if (sc->sc_flags & IWN_FLAG_RUNNING)
5204 		iwn_stop_locked(sc);
5205 	IWN_UNLOCK(sc);
5206 	if (startall)
5207 		ieee80211_start_all(ic);
5208 	else if (vap != NULL && stop)
5209 		ieee80211_stop(vap);
5210 }
5211 
5212 /*
5213  * Send a command to the firmware.
5214  */
5215 static int
5216 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
5217 {
5218 	struct iwn_tx_ring *ring;
5219 	struct iwn_tx_desc *desc;
5220 	struct iwn_tx_data *data;
5221 	struct iwn_tx_cmd *cmd;
5222 	struct mbuf *m;
5223 	bus_addr_t paddr;
5224 	int totlen, error;
5225 	int cmd_queue_num;
5226 
5227 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5228 
5229 	if (async == 0)
5230 		IWN_LOCK_ASSERT(sc);
5231 
5232 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
5233 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
5234 	else
5235 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
5236 
5237 	ring = &sc->txq[cmd_queue_num];
5238 	desc = &ring->desc[ring->cur];
5239 	data = &ring->data[ring->cur];
5240 	totlen = 4 + size;
5241 
5242 	if (size > sizeof cmd->data) {
5243 		/* Command is too large to fit in a descriptor. */
5244 		if (totlen > MCLBYTES)
5245 			return EINVAL;
5246 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
5247 		if (m == NULL)
5248 			return ENOMEM;
5249 		cmd = mtod(m, struct iwn_tx_cmd *);
5250 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
5251 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
5252 		if (error != 0) {
5253 			m_freem(m);
5254 			return error;
5255 		}
5256 		data->m = m;
5257 	} else {
5258 		cmd = &ring->cmd[ring->cur];
5259 		paddr = data->cmd_paddr;
5260 	}
5261 
5262 	cmd->code = code;
5263 	cmd->flags = 0;
5264 	cmd->qid = ring->qid;
5265 	cmd->idx = ring->cur;
5266 	memcpy(cmd->data, buf, size);
5267 
5268 	desc->nsegs = 1;
5269 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
5270 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
5271 
5272 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
5273 	    __func__, iwn_intr_str(cmd->code), cmd->code,
5274 	    cmd->flags, cmd->qid, cmd->idx);
5275 
5276 	if (size > sizeof cmd->data) {
5277 		bus_dmamap_sync(ring->data_dmat, data->map,
5278 		    BUS_DMASYNC_PREWRITE);
5279 	} else {
5280 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
5281 		    BUS_DMASYNC_PREWRITE);
5282 	}
5283 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
5284 	    BUS_DMASYNC_PREWRITE);
5285 
5286 	/* Kick command ring. */
5287 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
5288 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
5289 
5290 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5291 
5292 #if defined(__DragonFly__)
5293 	return async ? 0 : lksleep(desc, &sc->sc_lk, PCATCH, "iwncmd", hz);
5294 #else
5295 	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
5296 #endif
5297 }
5298 
5299 static int
5300 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5301 {
5302 	struct iwn4965_node_info hnode;
5303 	caddr_t src, dst;
5304 
5305 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5306 
5307 	/*
5308 	 * We use the node structure for 5000 Series internally (it is
5309 	 * a superset of the one for 4965AGN). We thus copy the common
5310 	 * fields before sending the command.
5311 	 */
5312 	src = (caddr_t)node;
5313 	dst = (caddr_t)&hnode;
5314 	memcpy(dst, src, 48);
5315 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
5316 	memcpy(dst + 48, src + 72, 20);
5317 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
5318 }
5319 
5320 static int
5321 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5322 {
5323 
5324 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5325 
5326 	/* Direct mapping. */
5327 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
5328 }
5329 
5330 static int
5331 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
5332 {
5333 	struct iwn_node *wn = (void *)ni;
5334 	struct ieee80211_rateset *rs;
5335 	struct iwn_cmd_link_quality linkq;
5336 	int i, rate, txrate;
5337 	int is_11n;
5338 
5339 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5340 
5341 	memset(&linkq, 0, sizeof linkq);
5342 	linkq.id = wn->id;
5343 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5344 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5345 
5346 	linkq.ampdu_max = 32;		/* XXX negotiated? */
5347 	linkq.ampdu_threshold = 3;
5348 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5349 
5350 	DPRINTF(sc, IWN_DEBUG_XMIT,
5351 	    "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n",
5352 	    __func__,
5353 	    linkq.antmsk_1stream,
5354 	    linkq.antmsk_2stream,
5355 	    sc->ntxchains);
5356 
5357 	/*
5358 	 * Are we using 11n rates? Ensure the channel is
5359 	 * 11n _and_ we have some 11n rates, or don't
5360 	 * try.
5361 	 */
5362 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) {
5363 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
5364 		is_11n = 1;
5365 	} else {
5366 		rs = &ni->ni_rates;
5367 		is_11n = 0;
5368 	}
5369 
5370 	/* Start at highest available bit-rate. */
5371 	/*
5372 	 * XXX this is all very dirty!
5373 	 */
5374 	if (is_11n)
5375 		txrate = ni->ni_htrates.rs_nrates - 1;
5376 	else
5377 		txrate = rs->rs_nrates - 1;
5378 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
5379 		uint32_t plcp;
5380 
5381 		/*
5382 		 * XXX TODO: ensure the last two slots are the two lowest
5383 		 * rate entries, just for now.
5384 		 */
5385 		if (i == 14 || i == 15)
5386 			txrate = 0;
5387 
5388 		if (is_11n)
5389 			rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate];
5390 		else
5391 			rate = IEEE80211_RV(rs->rs_rates[txrate]);
5392 
5393 		/* Do rate -> PLCP config mapping */
5394 		plcp = iwn_rate_to_plcp(sc, ni, rate);
5395 		linkq.retry[i] = plcp;
5396 		DPRINTF(sc, IWN_DEBUG_XMIT,
5397 		    "%s: i=%d, txrate=%d, rate=0x%02x, plcp=0x%08x\n",
5398 		    __func__,
5399 		    i,
5400 		    txrate,
5401 		    rate,
5402 		    le32toh(plcp));
5403 
5404 		/*
5405 		 * The mimo field is an index into the table which
5406 		 * indicates the first index where it and subsequent entries
5407 		 * will not be using MIMO.
5408 		 *
5409 		 * Since we're filling linkq from 0..15 and we're filling
5410 		 * from the highest MCS rates to the lowest rates, if we
5411 		 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie,
5412 		 * the next entry.)  That way if the next entry is a non-MIMO
5413 		 * entry, we're already pointing at it.
5414 		 */
5415 		if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
5416 		    IEEE80211_RV(le32toh(plcp)) > 7)
5417 			linkq.mimo = i + 1;
5418 
5419 		/* Next retry at immediate lower bit-rate. */
5420 		if (txrate > 0)
5421 			txrate--;
5422 	}
5423 	/*
5424 	 * If we reached the end of the list and indeed we hit
5425 	 * all MIMO rates (eg 5300 doing MCS23-15) then yes,
5426 	 * set mimo to 15.  Setting it to 16 panics the firmware.
5427 	 */
5428 	if (linkq.mimo > 15)
5429 		linkq.mimo = 15;
5430 
5431 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: mimo = %d\n", __func__, linkq.mimo);
5432 
5433 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5434 
5435 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
5436 }
5437 
5438 /*
5439  * Broadcast node is used to send group-addressed and management frames.
5440  */
5441 static int
5442 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
5443 {
5444 	struct iwn_ops *ops = &sc->ops;
5445 	struct ieee80211com *ic = &sc->sc_ic;
5446 	struct iwn_node_info node;
5447 	struct iwn_cmd_link_quality linkq;
5448 	uint8_t txant;
5449 	int i, error;
5450 
5451 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5452 
5453 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5454 
5455 	memset(&node, 0, sizeof node);
5456 	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
5457 	node.id = sc->broadcast_id;
5458 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
5459 	if ((error = ops->add_node(sc, &node, async)) != 0)
5460 		return error;
5461 
5462 	/* Use the first valid TX antenna. */
5463 	txant = IWN_LSB(sc->txchainmask);
5464 
5465 	memset(&linkq, 0, sizeof linkq);
5466 	linkq.id = sc->broadcast_id;
5467 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5468 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5469 	linkq.ampdu_max = 64;
5470 	linkq.ampdu_threshold = 3;
5471 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5472 
5473 	/* Use lowest mandatory bit-rate. */
5474 	/* XXX rate table lookup? */
5475 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
5476 		linkq.retry[0] = htole32(0xd);
5477 	else
5478 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
5479 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
5480 	/* Use same bit-rate for all TX retries. */
5481 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
5482 		linkq.retry[i] = linkq.retry[0];
5483 	}
5484 
5485 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5486 
5487 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
5488 }
5489 
5490 static int
5491 iwn_updateedca(struct ieee80211com *ic)
5492 {
5493 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
5494 	struct iwn_softc *sc = ic->ic_softc;
5495 	struct iwn_edca_params cmd;
5496 	int aci;
5497 
5498 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5499 
5500 	memset(&cmd, 0, sizeof cmd);
5501 	cmd.flags = htole32(IWN_EDCA_UPDATE);
5502 
5503 	IEEE80211_LOCK(ic);
5504 	for (aci = 0; aci < WME_NUM_AC; aci++) {
5505 		const struct wmeParams *ac =
5506 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
5507 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
5508 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
5509 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
5510 		cmd.ac[aci].txoplimit =
5511 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
5512 	}
5513 	IEEE80211_UNLOCK(ic);
5514 
5515 	IWN_LOCK(sc);
5516 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5517 	IWN_UNLOCK(sc);
5518 
5519 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5520 
5521 	return 0;
5522 #undef IWN_EXP2
5523 }
5524 
5525 static void
5526 iwn_update_mcast(struct ieee80211com *ic)
5527 {
5528 	/* Ignore */
5529 }
5530 
5531 static void
5532 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
5533 {
5534 	struct iwn_cmd_led led;
5535 
5536 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5537 
5538 #if 0
5539 	/* XXX don't set LEDs during scan? */
5540 	if (sc->sc_is_scanning)
5541 		return;
5542 #endif
5543 
5544 	/* Clear microcode LED ownership. */
5545 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
5546 
5547 	led.which = which;
5548 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
5549 	led.off = off;
5550 	led.on = on;
5551 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
5552 }
5553 
5554 /*
5555  * Set the critical temperature at which the firmware will stop the radio
5556  * and notify us.
5557  */
5558 static int
5559 iwn_set_critical_temp(struct iwn_softc *sc)
5560 {
5561 	struct iwn_critical_temp crit;
5562 	int32_t temp;
5563 
5564 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5565 
5566 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
5567 
5568 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
5569 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
5570 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
5571 		temp = IWN_CTOK(110);
5572 	else
5573 		temp = 110;
5574 	memset(&crit, 0, sizeof crit);
5575 	crit.tempR = htole32(temp);
5576 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
5577 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
5578 }
5579 
5580 static int
5581 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
5582 {
5583 	struct iwn_cmd_timing cmd;
5584 	uint64_t val, mod;
5585 
5586 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5587 
5588 	memset(&cmd, 0, sizeof cmd);
5589 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
5590 	cmd.bintval = htole16(ni->ni_intval);
5591 	cmd.lintval = htole16(10);
5592 
5593 	/* Compute remaining time until next beacon. */
5594 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
5595 	mod = le64toh(cmd.tstamp) % val;
5596 	cmd.binitval = htole32((uint32_t)(val - mod));
5597 
5598 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
5599 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
5600 
5601 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
5602 }
5603 
5604 static void
5605 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
5606 {
5607 	struct ieee80211com *ic = &sc->sc_ic;
5608 
5609 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5610 
5611 	/* Adjust TX power if need be (delta >= 3 degC). */
5612 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
5613 	    __func__, sc->temp, temp);
5614 	if (abs(temp - sc->temp) >= 3) {
5615 		/* Record temperature of last calibration. */
5616 		sc->temp = temp;
5617 		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
5618 	}
5619 }
5620 
5621 /*
5622  * Set TX power for current channel (each rate has its own power settings).
5623  * This function takes into account the regulatory information from EEPROM,
5624  * the current temperature and the current voltage.
5625  */
5626 static int
5627 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5628     int async)
5629 {
5630 /* Fixed-point arithmetic division using a n-bit fractional part. */
5631 #define fdivround(a, b, n)	\
5632 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
5633 /* Linear interpolation. */
5634 #define interpolate(x, x1, y1, x2, y2, n)	\
5635 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
5636 
5637 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
5638 	struct iwn_ucode_info *uc = &sc->ucode_info;
5639 	struct iwn4965_cmd_txpower cmd;
5640 	struct iwn4965_eeprom_chan_samples *chans;
5641 	const uint8_t *rf_gain, *dsp_gain;
5642 	int32_t vdiff, tdiff;
5643 	int i, c, grp, maxpwr;
5644 	uint8_t chan;
5645 
5646 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5647 	/* Retrieve current channel from last RXON. */
5648 	chan = sc->rxon->chan;
5649 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
5650 	    chan);
5651 
5652 	memset(&cmd, 0, sizeof cmd);
5653 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
5654 	cmd.chan = chan;
5655 
5656 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
5657 		maxpwr   = sc->maxpwr5GHz;
5658 		rf_gain  = iwn4965_rf_gain_5ghz;
5659 		dsp_gain = iwn4965_dsp_gain_5ghz;
5660 	} else {
5661 		maxpwr   = sc->maxpwr2GHz;
5662 		rf_gain  = iwn4965_rf_gain_2ghz;
5663 		dsp_gain = iwn4965_dsp_gain_2ghz;
5664 	}
5665 
5666 	/* Compute voltage compensation. */
5667 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
5668 	if (vdiff > 0)
5669 		vdiff *= 2;
5670 	if (abs(vdiff) > 2)
5671 		vdiff = 0;
5672 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5673 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
5674 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
5675 
5676 	/* Get channel attenuation group. */
5677 	if (chan <= 20)		/* 1-20 */
5678 		grp = 4;
5679 	else if (chan <= 43)	/* 34-43 */
5680 		grp = 0;
5681 	else if (chan <= 70)	/* 44-70 */
5682 		grp = 1;
5683 	else if (chan <= 124)	/* 71-124 */
5684 		grp = 2;
5685 	else			/* 125-200 */
5686 		grp = 3;
5687 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5688 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
5689 
5690 	/* Get channel sub-band. */
5691 	for (i = 0; i < IWN_NBANDS; i++)
5692 		if (sc->bands[i].lo != 0 &&
5693 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
5694 			break;
5695 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
5696 		return EINVAL;
5697 	chans = sc->bands[i].chans;
5698 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5699 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
5700 
5701 	for (c = 0; c < 2; c++) {
5702 		uint8_t power, gain, temp;
5703 		int maxchpwr, pwr, ridx, idx;
5704 
5705 		power = interpolate(chan,
5706 		    chans[0].num, chans[0].samples[c][1].power,
5707 		    chans[1].num, chans[1].samples[c][1].power, 1);
5708 		gain  = interpolate(chan,
5709 		    chans[0].num, chans[0].samples[c][1].gain,
5710 		    chans[1].num, chans[1].samples[c][1].gain, 1);
5711 		temp  = interpolate(chan,
5712 		    chans[0].num, chans[0].samples[c][1].temp,
5713 		    chans[1].num, chans[1].samples[c][1].temp, 1);
5714 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5715 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
5716 		    __func__, c, power, gain, temp);
5717 
5718 		/* Compute temperature compensation. */
5719 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
5720 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5721 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
5722 		    __func__, tdiff, sc->temp, temp);
5723 
5724 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
5725 			/* Convert dBm to half-dBm. */
5726 			maxchpwr = sc->maxpwr[chan] * 2;
5727 			if ((ridx / 8) & 1)
5728 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
5729 
5730 			pwr = maxpwr;
5731 
5732 			/* Adjust TX power based on rate. */
5733 			if ((ridx % 8) == 5)
5734 				pwr -= 15;	/* OFDM48: -7.5dB */
5735 			else if ((ridx % 8) == 6)
5736 				pwr -= 17;	/* OFDM54: -8.5dB */
5737 			else if ((ridx % 8) == 7)
5738 				pwr -= 20;	/* OFDM60: -10dB */
5739 			else
5740 				pwr -= 10;	/* Others: -5dB */
5741 
5742 			/* Do not exceed channel max TX power. */
5743 			if (pwr > maxchpwr)
5744 				pwr = maxchpwr;
5745 
5746 			idx = gain - (pwr - power) - tdiff - vdiff;
5747 			if ((ridx / 8) & 1)	/* MIMO */
5748 				idx += (int32_t)le32toh(uc->atten[grp][c]);
5749 
5750 			if (cmd.band == 0)
5751 				idx += 9;	/* 5GHz */
5752 			if (ridx == IWN_RIDX_MAX)
5753 				idx += 5;	/* CCK */
5754 
5755 			/* Make sure idx stays in a valid range. */
5756 			if (idx < 0)
5757 				idx = 0;
5758 			else if (idx > IWN4965_MAX_PWR_INDEX)
5759 				idx = IWN4965_MAX_PWR_INDEX;
5760 
5761 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5762 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
5763 			    __func__, c, ridx, idx);
5764 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
5765 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
5766 		}
5767 	}
5768 
5769 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5770 	    "%s: set tx power for chan %d\n", __func__, chan);
5771 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
5772 
5773 #undef interpolate
5774 #undef fdivround
5775 }
5776 
5777 static int
5778 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5779     int async)
5780 {
5781 	struct iwn5000_cmd_txpower cmd;
5782 	int cmdid;
5783 
5784 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5785 
5786 	/*
5787 	 * TX power calibration is handled automatically by the firmware
5788 	 * for 5000 Series.
5789 	 */
5790 	memset(&cmd, 0, sizeof cmd);
5791 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
5792 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
5793 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
5794 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5795 	    "%s: setting TX power; rev=%d\n",
5796 	    __func__,
5797 	    IWN_UCODE_API(sc->ucode_rev));
5798 	if (IWN_UCODE_API(sc->ucode_rev) == 1)
5799 		cmdid = IWN_CMD_TXPOWER_DBM_V1;
5800 	else
5801 		cmdid = IWN_CMD_TXPOWER_DBM;
5802 	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
5803 }
5804 
5805 /*
5806  * Retrieve the maximum RSSI (in dBm) among receivers.
5807  */
5808 static int
5809 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5810 {
5811 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
5812 	uint8_t mask, agc;
5813 	int rssi;
5814 
5815 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5816 
5817 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
5818 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
5819 
5820 	rssi = 0;
5821 	if (mask & IWN_ANT_A)
5822 		rssi = MAX(rssi, phy->rssi[0]);
5823 	if (mask & IWN_ANT_B)
5824 		rssi = MAX(rssi, phy->rssi[2]);
5825 	if (mask & IWN_ANT_C)
5826 		rssi = MAX(rssi, phy->rssi[4]);
5827 
5828 	DPRINTF(sc, IWN_DEBUG_RECV,
5829 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
5830 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
5831 	    rssi - agc - IWN_RSSI_TO_DBM);
5832 	return rssi - agc - IWN_RSSI_TO_DBM;
5833 }
5834 
5835 static int
5836 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5837 {
5838 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
5839 	uint8_t agc;
5840 	int rssi;
5841 
5842 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5843 
5844 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
5845 
5846 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
5847 		   le16toh(phy->rssi[1]) & 0xff);
5848 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
5849 
5850 	DPRINTF(sc, IWN_DEBUG_RECV,
5851 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
5852 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
5853 	    rssi - agc - IWN_RSSI_TO_DBM);
5854 	return rssi - agc - IWN_RSSI_TO_DBM;
5855 }
5856 
5857 /*
5858  * Retrieve the average noise (in dBm) among receivers.
5859  */
5860 static int
5861 iwn_get_noise(const struct iwn_rx_general_stats *stats)
5862 {
5863 	int i, total, nbant, noise;
5864 
5865 	total = nbant = 0;
5866 	for (i = 0; i < 3; i++) {
5867 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
5868 			continue;
5869 		total += noise;
5870 		nbant++;
5871 	}
5872 	/* There should be at least one antenna but check anyway. */
5873 	return (nbant == 0) ? -127 : (total / nbant) - 107;
5874 }
5875 
5876 /*
5877  * Compute temperature (in degC) from last received statistics.
5878  */
5879 static int
5880 iwn4965_get_temperature(struct iwn_softc *sc)
5881 {
5882 	struct iwn_ucode_info *uc = &sc->ucode_info;
5883 	int32_t r1, r2, r3, r4, temp;
5884 
5885 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5886 
5887 	r1 = le32toh(uc->temp[0].chan20MHz);
5888 	r2 = le32toh(uc->temp[1].chan20MHz);
5889 	r3 = le32toh(uc->temp[2].chan20MHz);
5890 	r4 = le32toh(sc->rawtemp);
5891 
5892 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
5893 		return 0;
5894 
5895 	/* Sign-extend 23-bit R4 value to 32-bit. */
5896 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
5897 	/* Compute temperature in Kelvin. */
5898 	temp = (259 * (r4 - r2)) / (r3 - r1);
5899 	temp = (temp * 97) / 100 + 8;
5900 
5901 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
5902 	    IWN_KTOC(temp));
5903 	return IWN_KTOC(temp);
5904 }
5905 
5906 static int
5907 iwn5000_get_temperature(struct iwn_softc *sc)
5908 {
5909 	int32_t temp;
5910 
5911 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5912 
5913 	/*
5914 	 * Temperature is not used by the driver for 5000 Series because
5915 	 * TX power calibration is handled by firmware.
5916 	 */
5917 	temp = le32toh(sc->rawtemp);
5918 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
5919 		temp = (temp / -5) + sc->temp_off;
5920 		temp = IWN_KTOC(temp);
5921 	}
5922 	return temp;
5923 }
5924 
5925 /*
5926  * Initialize sensitivity calibration state machine.
5927  */
5928 static int
5929 iwn_init_sensitivity(struct iwn_softc *sc)
5930 {
5931 	struct iwn_ops *ops = &sc->ops;
5932 	struct iwn_calib_state *calib = &sc->calib;
5933 	uint32_t flags;
5934 	int error;
5935 
5936 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5937 
5938 	/* Reset calibration state machine. */
5939 	memset(calib, 0, sizeof (*calib));
5940 	calib->state = IWN_CALIB_STATE_INIT;
5941 	calib->cck_state = IWN_CCK_STATE_HIFA;
5942 	/* Set initial correlation values. */
5943 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
5944 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
5945 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
5946 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
5947 	calib->cck_x4      = 125;
5948 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
5949 	calib->energy_cck  = sc->limits->energy_cck;
5950 
5951 	/* Write initial sensitivity. */
5952 	if ((error = iwn_send_sensitivity(sc)) != 0)
5953 		return error;
5954 
5955 	/* Write initial gains. */
5956 	if ((error = ops->init_gains(sc)) != 0)
5957 		return error;
5958 
5959 	/* Request statistics at each beacon interval. */
5960 	flags = 0;
5961 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
5962 	    __func__);
5963 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
5964 }
5965 
5966 /*
5967  * Collect noise and RSSI statistics for the first 20 beacons received
5968  * after association and use them to determine connected antennas and
5969  * to set differential gains.
5970  */
5971 static void
5972 iwn_collect_noise(struct iwn_softc *sc,
5973     const struct iwn_rx_general_stats *stats)
5974 {
5975 	struct iwn_ops *ops = &sc->ops;
5976 	struct iwn_calib_state *calib = &sc->calib;
5977 	struct ieee80211com *ic = &sc->sc_ic;
5978 	uint32_t val;
5979 	int i;
5980 
5981 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5982 
5983 	/* Accumulate RSSI and noise for all 3 antennas. */
5984 	for (i = 0; i < 3; i++) {
5985 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
5986 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
5987 	}
5988 	/* NB: We update differential gains only once after 20 beacons. */
5989 	if (++calib->nbeacons < 20)
5990 		return;
5991 
5992 	/* Determine highest average RSSI. */
5993 	val = MAX(calib->rssi[0], calib->rssi[1]);
5994 	val = MAX(calib->rssi[2], val);
5995 
5996 	/* Determine which antennas are connected. */
5997 	sc->chainmask = sc->rxchainmask;
5998 	for (i = 0; i < 3; i++)
5999 		if (val - calib->rssi[i] > 15 * 20)
6000 			sc->chainmask &= ~(1 << i);
6001 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
6002 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
6003 	    __func__, sc->rxchainmask, sc->chainmask);
6004 
6005 	/* If none of the TX antennas are connected, keep at least one. */
6006 	if ((sc->chainmask & sc->txchainmask) == 0)
6007 		sc->chainmask |= IWN_LSB(sc->txchainmask);
6008 
6009 	(void)ops->set_gains(sc);
6010 	calib->state = IWN_CALIB_STATE_RUN;
6011 
6012 #ifdef notyet
6013 	/* XXX Disable RX chains with no antennas connected. */
6014 	sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
6015 	if (sc->sc_is_scanning)
6016 		device_printf(sc->sc_dev,
6017 		    "%s: is_scanning set, before RXON\n",
6018 		    __func__);
6019 	(void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
6020 #endif
6021 
6022 	/* Enable power-saving mode if requested by user. */
6023 	if (ic->ic_flags & IEEE80211_F_PMGTON)
6024 		(void)iwn_set_pslevel(sc, 0, 3, 1);
6025 
6026 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6027 
6028 }
6029 
6030 static int
6031 iwn4965_init_gains(struct iwn_softc *sc)
6032 {
6033 	struct iwn_phy_calib_gain cmd;
6034 
6035 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6036 
6037 	memset(&cmd, 0, sizeof cmd);
6038 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
6039 	/* Differential gains initially set to 0 for all 3 antennas. */
6040 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6041 	    "%s: setting initial differential gains\n", __func__);
6042 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6043 }
6044 
6045 static int
6046 iwn5000_init_gains(struct iwn_softc *sc)
6047 {
6048 	struct iwn_phy_calib cmd;
6049 
6050 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6051 
6052 	memset(&cmd, 0, sizeof cmd);
6053 	cmd.code = sc->reset_noise_gain;
6054 	cmd.ngroups = 1;
6055 	cmd.isvalid = 1;
6056 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6057 	    "%s: setting initial differential gains\n", __func__);
6058 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6059 }
6060 
6061 static int
6062 iwn4965_set_gains(struct iwn_softc *sc)
6063 {
6064 	struct iwn_calib_state *calib = &sc->calib;
6065 	struct iwn_phy_calib_gain cmd;
6066 	int i, delta, noise;
6067 
6068 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6069 
6070 	/* Get minimal noise among connected antennas. */
6071 	noise = INT_MAX;	/* NB: There's at least one antenna. */
6072 	for (i = 0; i < 3; i++)
6073 		if (sc->chainmask & (1 << i))
6074 			noise = MIN(calib->noise[i], noise);
6075 
6076 	memset(&cmd, 0, sizeof cmd);
6077 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
6078 	/* Set differential gains for connected antennas. */
6079 	for (i = 0; i < 3; i++) {
6080 		if (sc->chainmask & (1 << i)) {
6081 			/* Compute attenuation (in unit of 1.5dB). */
6082 			delta = (noise - (int32_t)calib->noise[i]) / 30;
6083 			/* NB: delta <= 0 */
6084 			/* Limit to [-4.5dB,0]. */
6085 			cmd.gain[i] = MIN(abs(delta), 3);
6086 			if (delta < 0)
6087 				cmd.gain[i] |= 1 << 2;	/* sign bit */
6088 		}
6089 	}
6090 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6091 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
6092 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
6093 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6094 }
6095 
6096 static int
6097 iwn5000_set_gains(struct iwn_softc *sc)
6098 {
6099 	struct iwn_calib_state *calib = &sc->calib;
6100 	struct iwn_phy_calib_gain cmd;
6101 	int i, ant, div, delta;
6102 
6103 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6104 
6105 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
6106 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
6107 
6108 	memset(&cmd, 0, sizeof cmd);
6109 	cmd.code = sc->noise_gain;
6110 	cmd.ngroups = 1;
6111 	cmd.isvalid = 1;
6112 	/* Get first available RX antenna as referential. */
6113 	ant = IWN_LSB(sc->rxchainmask);
6114 	/* Set differential gains for other antennas. */
6115 	for (i = ant + 1; i < 3; i++) {
6116 		if (sc->chainmask & (1 << i)) {
6117 			/* The delta is relative to antenna "ant". */
6118 			delta = ((int32_t)calib->noise[ant] -
6119 			    (int32_t)calib->noise[i]) / div;
6120 			/* Limit to [-4.5dB,+4.5dB]. */
6121 			cmd.gain[i - 1] = MIN(abs(delta), 3);
6122 			if (delta < 0)
6123 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
6124 		}
6125 	}
6126 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
6127 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
6128 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
6129 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6130 }
6131 
6132 /*
6133  * Tune RF RX sensitivity based on the number of false alarms detected
6134  * during the last beacon period.
6135  */
6136 static void
6137 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
6138 {
6139 #define inc(val, inc, max)			\
6140 	if ((val) < (max)) {			\
6141 		if ((val) < (max) - (inc))	\
6142 			(val) += (inc);		\
6143 		else				\
6144 			(val) = (max);		\
6145 		needs_update = 1;		\
6146 	}
6147 #define dec(val, dec, min)			\
6148 	if ((val) > (min)) {			\
6149 		if ((val) > (min) + (dec))	\
6150 			(val) -= (dec);		\
6151 		else				\
6152 			(val) = (min);		\
6153 		needs_update = 1;		\
6154 	}
6155 
6156 	const struct iwn_sensitivity_limits *limits = sc->limits;
6157 	struct iwn_calib_state *calib = &sc->calib;
6158 	uint32_t val, rxena, fa;
6159 	uint32_t energy[3], energy_min;
6160 	uint8_t noise[3], noise_ref;
6161 	int i, needs_update = 0;
6162 
6163 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6164 
6165 	/* Check that we've been enabled long enough. */
6166 	if ((rxena = le32toh(stats->general.load)) == 0){
6167 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__);
6168 		return;
6169 	}
6170 
6171 	/* Compute number of false alarms since last call for OFDM. */
6172 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6173 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
6174 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6175 
6176 	if (fa > 50 * rxena) {
6177 		/* High false alarm count, decrease sensitivity. */
6178 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6179 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
6180 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
6181 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
6182 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
6183 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
6184 
6185 	} else if (fa < 5 * rxena) {
6186 		/* Low false alarm count, increase sensitivity. */
6187 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6188 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
6189 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
6190 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
6191 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
6192 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
6193 	}
6194 
6195 	/* Compute maximum noise among 3 receivers. */
6196 	for (i = 0; i < 3; i++)
6197 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
6198 	val = MAX(noise[0], noise[1]);
6199 	val = MAX(noise[2], val);
6200 	/* Insert it into our samples table. */
6201 	calib->noise_samples[calib->cur_noise_sample] = val;
6202 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
6203 
6204 	/* Compute maximum noise among last 20 samples. */
6205 	noise_ref = calib->noise_samples[0];
6206 	for (i = 1; i < 20; i++)
6207 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
6208 
6209 	/* Compute maximum energy among 3 receivers. */
6210 	for (i = 0; i < 3; i++)
6211 		energy[i] = le32toh(stats->general.energy[i]);
6212 	val = MIN(energy[0], energy[1]);
6213 	val = MIN(energy[2], val);
6214 	/* Insert it into our samples table. */
6215 	calib->energy_samples[calib->cur_energy_sample] = val;
6216 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
6217 
6218 	/* Compute minimum energy among last 10 samples. */
6219 	energy_min = calib->energy_samples[0];
6220 	for (i = 1; i < 10; i++)
6221 		energy_min = MAX(energy_min, calib->energy_samples[i]);
6222 	energy_min += 6;
6223 
6224 	/* Compute number of false alarms since last call for CCK. */
6225 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
6226 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
6227 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6228 
6229 	if (fa > 50 * rxena) {
6230 		/* High false alarm count, decrease sensitivity. */
6231 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6232 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
6233 		calib->cck_state = IWN_CCK_STATE_HIFA;
6234 		calib->low_fa = 0;
6235 
6236 		if (calib->cck_x4 > 160) {
6237 			calib->noise_ref = noise_ref;
6238 			if (calib->energy_cck > 2)
6239 				dec(calib->energy_cck, 2, energy_min);
6240 		}
6241 		if (calib->cck_x4 < 160) {
6242 			calib->cck_x4 = 161;
6243 			needs_update = 1;
6244 		} else
6245 			inc(calib->cck_x4, 3, limits->max_cck_x4);
6246 
6247 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
6248 
6249 	} else if (fa < 5 * rxena) {
6250 		/* Low false alarm count, increase sensitivity. */
6251 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6252 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
6253 		calib->cck_state = IWN_CCK_STATE_LOFA;
6254 		calib->low_fa++;
6255 
6256 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
6257 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
6258 		     calib->low_fa > 100)) {
6259 			inc(calib->energy_cck, 2, limits->min_energy_cck);
6260 			dec(calib->cck_x4,     3, limits->min_cck_x4);
6261 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
6262 		}
6263 	} else {
6264 		/* Not worth to increase or decrease sensitivity. */
6265 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6266 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
6267 		calib->low_fa = 0;
6268 		calib->noise_ref = noise_ref;
6269 
6270 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
6271 			/* Previous interval had many false alarms. */
6272 			dec(calib->energy_cck, 8, energy_min);
6273 		}
6274 		calib->cck_state = IWN_CCK_STATE_INIT;
6275 	}
6276 
6277 	if (needs_update)
6278 		(void)iwn_send_sensitivity(sc);
6279 
6280 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6281 
6282 #undef dec
6283 #undef inc
6284 }
6285 
6286 static int
6287 iwn_send_sensitivity(struct iwn_softc *sc)
6288 {
6289 	struct iwn_calib_state *calib = &sc->calib;
6290 	struct iwn_enhanced_sensitivity_cmd cmd;
6291 	int len;
6292 
6293 	memset(&cmd, 0, sizeof cmd);
6294 	len = sizeof (struct iwn_sensitivity_cmd);
6295 	cmd.which = IWN_SENSITIVITY_WORKTBL;
6296 	/* OFDM modulation. */
6297 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
6298 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
6299 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
6300 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
6301 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
6302 	cmd.energy_ofdm_th     = htole16(62);
6303 	/* CCK modulation. */
6304 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
6305 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
6306 	cmd.energy_cck         = htole16(calib->energy_cck);
6307 	/* Barker modulation: use default values. */
6308 	cmd.corr_barker        = htole16(190);
6309 	cmd.corr_barker_mrc    = htole16(sc->limits->barker_mrc);
6310 
6311 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6312 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
6313 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
6314 	    calib->ofdm_mrc_x4, calib->cck_x4,
6315 	    calib->cck_mrc_x4, calib->energy_cck);
6316 
6317 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
6318 		goto send;
6319 	/* Enhanced sensitivity settings. */
6320 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
6321 	cmd.ofdm_det_slope_mrc = htole16(668);
6322 	cmd.ofdm_det_icept_mrc = htole16(4);
6323 	cmd.ofdm_det_slope     = htole16(486);
6324 	cmd.ofdm_det_icept     = htole16(37);
6325 	cmd.cck_det_slope_mrc  = htole16(853);
6326 	cmd.cck_det_icept_mrc  = htole16(4);
6327 	cmd.cck_det_slope      = htole16(476);
6328 	cmd.cck_det_icept      = htole16(99);
6329 send:
6330 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
6331 }
6332 
6333 /*
6334  * Look at the increase of PLCP errors over time; if it exceeds
6335  * a programmed threshold then trigger an RF retune.
6336  */
6337 static void
6338 iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs)
6339 {
6340 	int32_t delta_ofdm, delta_ht, delta_cck;
6341 	struct iwn_calib_state *calib = &sc->calib;
6342 	int delta_ticks, cur_ticks;
6343 	int delta_msec;
6344 	int thresh;
6345 
6346 	/*
6347 	 * Calculate the difference between the current and
6348 	 * previous statistics.
6349 	 */
6350 	delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck;
6351 	delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6352 	delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht;
6353 
6354 	/*
6355 	 * Calculate the delta in time between successive statistics
6356 	 * messages.  Yes, it can roll over; so we make sure that
6357 	 * this doesn't happen.
6358 	 *
6359 	 * XXX go figure out what to do about rollover
6360 	 * XXX go figure out what to do if ticks rolls over to -ve instead!
6361 	 * XXX go stab signed integer overflow undefined-ness in the face.
6362 	 */
6363 	cur_ticks = ticks;
6364 	delta_ticks = cur_ticks - sc->last_calib_ticks;
6365 
6366 	/*
6367 	 * If any are negative, then the firmware likely reset; so just
6368 	 * bail.  We'll pick this up next time.
6369 	 */
6370 	if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0)
6371 		return;
6372 
6373 	/*
6374 	 * delta_ticks is in ticks; we need to convert it up to milliseconds
6375 	 * so we can do some useful math with it.
6376 	 */
6377 	delta_msec = ticks_to_msecs(delta_ticks);
6378 
6379 	/*
6380 	 * Calculate what our threshold is given the current delta_msec.
6381 	 */
6382 	thresh = sc->base_params->plcp_err_threshold * delta_msec;
6383 
6384 	DPRINTF(sc, IWN_DEBUG_STATE,
6385 	    "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n",
6386 	    __func__,
6387 	    delta_msec,
6388 	    delta_cck,
6389 	    delta_ofdm,
6390 	    delta_ht,
6391 	    (delta_msec + delta_cck + delta_ofdm + delta_ht),
6392 	    thresh);
6393 
6394 	/*
6395 	 * If we need a retune, then schedule a single channel scan
6396 	 * to a channel that isn't the currently active one!
6397 	 *
6398 	 * The math from linux iwlwifi:
6399 	 *
6400 	 * if ((delta * 100 / msecs) > threshold)
6401 	 */
6402 	if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) {
6403 		DPRINTF(sc, IWN_DEBUG_ANY,
6404 		    "%s: PLCP error threshold raw (%d) comparison (%d) "
6405 		    "over limit (%d); retune!\n",
6406 		    __func__,
6407 		    (delta_cck + delta_ofdm + delta_ht),
6408 		    (delta_cck + delta_ofdm + delta_ht) * 100,
6409 		    thresh);
6410 	}
6411 }
6412 
6413 /*
6414  * Set STA mode power saving level (between 0 and 5).
6415  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
6416  */
6417 static int
6418 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
6419 {
6420 	struct iwn_pmgt_cmd cmd;
6421 	const struct iwn_pmgt *pmgt;
6422 	uint32_t max, skip_dtim;
6423 	uint32_t reg;
6424 	int i;
6425 
6426 	DPRINTF(sc, IWN_DEBUG_PWRSAVE,
6427 	    "%s: dtim=%d, level=%d, async=%d\n",
6428 	    __func__,
6429 	    dtim,
6430 	    level,
6431 	    async);
6432 
6433 	/* Select which PS parameters to use. */
6434 	if (dtim <= 2)
6435 		pmgt = &iwn_pmgt[0][level];
6436 	else if (dtim <= 10)
6437 		pmgt = &iwn_pmgt[1][level];
6438 	else
6439 		pmgt = &iwn_pmgt[2][level];
6440 
6441 	memset(&cmd, 0, sizeof cmd);
6442 	if (level != 0)	/* not CAM */
6443 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
6444 	if (level == 5)
6445 		cmd.flags |= htole16(IWN_PS_FAST_PD);
6446 	/* Retrieve PCIe Active State Power Management (ASPM). */
6447 #if defined(__DragonFly__)
6448 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINKCTRL, 4);
6449 	if (!(reg & PCIEM_LNKCTL_ASPM_L0S))	/* L0s Entry disabled. */
6450 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
6451 #else
6452 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
6453 	if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S))	/* L0s Entry disabled. */
6454 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
6455 #endif
6456 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
6457 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
6458 
6459 	if (dtim == 0) {
6460 		dtim = 1;
6461 		skip_dtim = 0;
6462 	} else
6463 		skip_dtim = pmgt->skip_dtim;
6464 	if (skip_dtim != 0) {
6465 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
6466 		max = pmgt->intval[4];
6467 		if (max == (uint32_t)-1)
6468 			max = dtim * (skip_dtim + 1);
6469 		else if (max > dtim)
6470 			max = rounddown(max, dtim);
6471 	} else
6472 		max = dtim;
6473 	for (i = 0; i < 5; i++)
6474 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
6475 
6476 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
6477 	    level);
6478 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
6479 }
6480 
6481 static int
6482 iwn_send_btcoex(struct iwn_softc *sc)
6483 {
6484 	struct iwn_bluetooth cmd;
6485 
6486 	memset(&cmd, 0, sizeof cmd);
6487 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
6488 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
6489 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
6490 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
6491 	    __func__);
6492 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
6493 }
6494 
6495 static int
6496 iwn_send_advanced_btcoex(struct iwn_softc *sc)
6497 {
6498 	static const uint32_t btcoex_3wire[12] = {
6499 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
6500 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
6501 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
6502 	};
6503 	struct iwn6000_btcoex_config btconfig;
6504 	struct iwn2000_btcoex_config btconfig2k;
6505 	struct iwn_btcoex_priotable btprio;
6506 	struct iwn_btcoex_prot btprot;
6507 	int error, i;
6508 	uint8_t flags;
6509 
6510 	memset(&btconfig, 0, sizeof btconfig);
6511 	memset(&btconfig2k, 0, sizeof btconfig2k);
6512 
6513 	flags = IWN_BT_FLAG_COEX6000_MODE_3W <<
6514 	    IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2
6515 
6516 	if (sc->base_params->bt_sco_disable)
6517 		flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6518 	else
6519 		flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6520 
6521 	flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION;
6522 
6523 	/* Default flags result is 145 as old value */
6524 
6525 	/*
6526 	 * Flags value has to be review. Values must change if we
6527 	 * which to disable it
6528 	 */
6529 	if (sc->base_params->bt_session_2) {
6530 		btconfig2k.flags = flags;
6531 		btconfig2k.max_kill = 5;
6532 		btconfig2k.bt3_t7_timer = 1;
6533 		btconfig2k.kill_ack = htole32(0xffff0000);
6534 		btconfig2k.kill_cts = htole32(0xffff0000);
6535 		btconfig2k.sample_time = 2;
6536 		btconfig2k.bt3_t2_timer = 0xc;
6537 
6538 		for (i = 0; i < 12; i++)
6539 			btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]);
6540 		btconfig2k.valid = htole16(0xff);
6541 		btconfig2k.prio_boost = htole32(0xf0);
6542 		DPRINTF(sc, IWN_DEBUG_RESET,
6543 		    "%s: configuring advanced bluetooth coexistence"
6544 		    " session 2, flags : 0x%x\n",
6545 		    __func__,
6546 		    flags);
6547 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k,
6548 		    sizeof(btconfig2k), 1);
6549 	} else {
6550 		btconfig.flags = flags;
6551 		btconfig.max_kill = 5;
6552 		btconfig.bt3_t7_timer = 1;
6553 		btconfig.kill_ack = htole32(0xffff0000);
6554 		btconfig.kill_cts = htole32(0xffff0000);
6555 		btconfig.sample_time = 2;
6556 		btconfig.bt3_t2_timer = 0xc;
6557 
6558 		for (i = 0; i < 12; i++)
6559 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
6560 		btconfig.valid = htole16(0xff);
6561 		btconfig.prio_boost = 0xf0;
6562 		DPRINTF(sc, IWN_DEBUG_RESET,
6563 		    "%s: configuring advanced bluetooth coexistence,"
6564 		    " flags : 0x%x\n",
6565 		    __func__,
6566 		    flags);
6567 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
6568 		    sizeof(btconfig), 1);
6569 	}
6570 
6571 	if (error != 0)
6572 		return error;
6573 
6574 	memset(&btprio, 0, sizeof btprio);
6575 	btprio.calib_init1 = 0x6;
6576 	btprio.calib_init2 = 0x7;
6577 	btprio.calib_periodic_low1 = 0x2;
6578 	btprio.calib_periodic_low2 = 0x3;
6579 	btprio.calib_periodic_high1 = 0x4;
6580 	btprio.calib_periodic_high2 = 0x5;
6581 	btprio.dtim = 0x6;
6582 	btprio.scan52 = 0x8;
6583 	btprio.scan24 = 0xa;
6584 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
6585 	    1);
6586 	if (error != 0)
6587 		return error;
6588 
6589 	/* Force BT state machine change. */
6590 	memset(&btprot, 0, sizeof btprot);
6591 	btprot.open = 1;
6592 	btprot.type = 1;
6593 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6594 	if (error != 0)
6595 		return error;
6596 	btprot.open = 0;
6597 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6598 }
6599 
6600 static int
6601 iwn5000_runtime_calib(struct iwn_softc *sc)
6602 {
6603 	struct iwn5000_calib_config cmd;
6604 
6605 	memset(&cmd, 0, sizeof cmd);
6606 	cmd.ucode.once.enable = 0xffffffff;
6607 	cmd.ucode.once.start = IWN5000_CALIB_DC;
6608 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6609 	    "%s: configuring runtime calibration\n", __func__);
6610 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
6611 }
6612 
6613 static uint32_t
6614 iwn_get_rxon_ht_flags(struct iwn_softc *sc, struct ieee80211_channel *c)
6615 {
6616 	struct ieee80211com *ic = &sc->sc_ic;
6617 	uint32_t htflags = 0;
6618 
6619 	if (! IEEE80211_IS_CHAN_HT(c))
6620 		return (0);
6621 
6622 	htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
6623 
6624 	if (IEEE80211_IS_CHAN_HT40(c)) {
6625 		switch (ic->ic_curhtprotmode) {
6626 		case IEEE80211_HTINFO_OPMODE_HT20PR:
6627 			htflags |= IWN_RXON_HT_MODEPURE40;
6628 			break;
6629 		default:
6630 			htflags |= IWN_RXON_HT_MODEMIXED;
6631 			break;
6632 		}
6633 	}
6634 	if (IEEE80211_IS_CHAN_HT40D(c))
6635 		htflags |= IWN_RXON_HT_HT40MINUS;
6636 
6637 	return (htflags);
6638 }
6639 
6640 static int
6641 iwn_config(struct iwn_softc *sc)
6642 {
6643 	struct iwn_ops *ops = &sc->ops;
6644 	struct ieee80211com *ic = &sc->sc_ic;
6645 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6646 	const uint8_t *macaddr;
6647 	uint32_t txmask;
6648 	uint16_t rxchain;
6649 	int error;
6650 
6651 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6652 
6653 	if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET)
6654 	    && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) {
6655 		device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are"
6656 		    " exclusive each together. Review NIC config file. Conf"
6657 		    " :  0x%08x Flags :  0x%08x  \n", __func__,
6658 		    sc->base_params->calib_need,
6659 		    (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET |
6660 		    IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2));
6661 		return (EINVAL);
6662 	}
6663 
6664 	/* Compute temperature calib if needed. Will be send by send calib */
6665 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) {
6666 		error = iwn5000_temp_offset_calib(sc);
6667 		if (error != 0) {
6668 			device_printf(sc->sc_dev,
6669 			    "%s: could not set temperature offset\n", __func__);
6670 			return (error);
6671 		}
6672 	} else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
6673 		error = iwn5000_temp_offset_calibv2(sc);
6674 		if (error != 0) {
6675 			device_printf(sc->sc_dev,
6676 			    "%s: could not compute temperature offset v2\n",
6677 			    __func__);
6678 			return (error);
6679 		}
6680 	}
6681 
6682 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6683 		/* Configure runtime DC calibration. */
6684 		error = iwn5000_runtime_calib(sc);
6685 		if (error != 0) {
6686 			device_printf(sc->sc_dev,
6687 			    "%s: could not configure runtime calibration\n",
6688 			    __func__);
6689 			return error;
6690 		}
6691 	}
6692 
6693 	/* Configure valid TX chains for >=5000 Series. */
6694 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6695 	    IWN_UCODE_API(sc->ucode_rev) > 1) {
6696 		txmask = htole32(sc->txchainmask);
6697 		DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6698 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
6699 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
6700 		    sizeof txmask, 0);
6701 		if (error != 0) {
6702 			device_printf(sc->sc_dev,
6703 			    "%s: could not configure valid TX chains, "
6704 			    "error %d\n", __func__, error);
6705 			return error;
6706 		}
6707 	}
6708 
6709 	/* Configure bluetooth coexistence. */
6710 	error = 0;
6711 
6712 	/* Configure bluetooth coexistence if needed. */
6713 	if (sc->base_params->bt_mode == IWN_BT_ADVANCED)
6714 		error = iwn_send_advanced_btcoex(sc);
6715 	if (sc->base_params->bt_mode == IWN_BT_SIMPLE)
6716 		error = iwn_send_btcoex(sc);
6717 
6718 	if (error != 0) {
6719 		device_printf(sc->sc_dev,
6720 		    "%s: could not configure bluetooth coexistence, error %d\n",
6721 		    __func__, error);
6722 		return error;
6723 	}
6724 
6725 	/* Set mode, channel, RX filter and enable RX. */
6726 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6727 	memset(sc->rxon, 0, sizeof (struct iwn_rxon));
6728 	macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr;
6729 	IEEE80211_ADDR_COPY(sc->rxon->myaddr, macaddr);
6730 	IEEE80211_ADDR_COPY(sc->rxon->wlap, macaddr);
6731 	sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
6732 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6733 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
6734 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6735 	switch (ic->ic_opmode) {
6736 	case IEEE80211_M_STA:
6737 		sc->rxon->mode = IWN_MODE_STA;
6738 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST);
6739 		break;
6740 	case IEEE80211_M_MONITOR:
6741 		sc->rxon->mode = IWN_MODE_MONITOR;
6742 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST |
6743 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
6744 		break;
6745 	default:
6746 		/* Should not get there. */
6747 		break;
6748 	}
6749 	sc->rxon->cck_mask  = 0x0f;	/* not yet negotiated */
6750 	sc->rxon->ofdm_mask = 0xff;	/* not yet negotiated */
6751 	sc->rxon->ht_single_mask = 0xff;
6752 	sc->rxon->ht_dual_mask = 0xff;
6753 	sc->rxon->ht_triple_mask = 0xff;
6754 	/*
6755 	 * In active association mode, ensure that
6756 	 * all the receive chains are enabled.
6757 	 *
6758 	 * Since we're not yet doing SMPS, don't allow the
6759 	 * number of idle RX chains to be less than the active
6760 	 * number.
6761 	 */
6762 	rxchain =
6763 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6764 	    IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) |
6765 	    IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains);
6766 	sc->rxon->rxchain = htole16(rxchain);
6767 	DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6768 	    "%s: rxchainmask=0x%x, nrxchains=%d\n",
6769 	    __func__,
6770 	    sc->rxchainmask,
6771 	    sc->nrxchains);
6772 
6773 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan));
6774 
6775 	DPRINTF(sc, IWN_DEBUG_RESET,
6776 	    "%s: setting configuration; flags=0x%08x\n",
6777 	    __func__, le32toh(sc->rxon->flags));
6778 	if (sc->sc_is_scanning)
6779 		device_printf(sc->sc_dev,
6780 		    "%s: is_scanning set, before RXON\n",
6781 		    __func__);
6782 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 0);
6783 	if (error != 0) {
6784 		device_printf(sc->sc_dev, "%s: RXON command failed\n",
6785 		    __func__);
6786 		return error;
6787 	}
6788 
6789 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
6790 		device_printf(sc->sc_dev, "%s: could not add broadcast node\n",
6791 		    __func__);
6792 		return error;
6793 	}
6794 
6795 	/* Configuration has changed, set TX power accordingly. */
6796 	if ((error = ops->set_txpower(sc, ic->ic_curchan, 0)) != 0) {
6797 		device_printf(sc->sc_dev, "%s: could not set TX power\n",
6798 		    __func__);
6799 		return error;
6800 	}
6801 
6802 	if ((error = iwn_set_critical_temp(sc)) != 0) {
6803 		device_printf(sc->sc_dev,
6804 		    "%s: could not set critical temperature\n", __func__);
6805 		return error;
6806 	}
6807 
6808 	/* Set power saving level to CAM during initialization. */
6809 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
6810 		device_printf(sc->sc_dev,
6811 		    "%s: could not set power saving level\n", __func__);
6812 		return error;
6813 	}
6814 
6815 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6816 
6817 	return 0;
6818 }
6819 
6820 static uint16_t
6821 iwn_get_active_dwell_time(struct iwn_softc *sc,
6822     struct ieee80211_channel *c, uint8_t n_probes)
6823 {
6824 	/* No channel? Default to 2GHz settings */
6825 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6826 		return (IWN_ACTIVE_DWELL_TIME_2GHZ +
6827 		IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
6828 	}
6829 
6830 	/* 5GHz dwell time */
6831 	return (IWN_ACTIVE_DWELL_TIME_5GHZ +
6832 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
6833 }
6834 
6835 /*
6836  * Limit the total dwell time to 85% of the beacon interval.
6837  *
6838  * Returns the dwell time in milliseconds.
6839  */
6840 static uint16_t
6841 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
6842 {
6843 	struct ieee80211com *ic = &sc->sc_ic;
6844 	struct ieee80211vap *vap = NULL;
6845 	int bintval = 0;
6846 
6847 	/* bintval is in TU (1.024mS) */
6848 	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
6849 		vap = TAILQ_FIRST(&ic->ic_vaps);
6850 		bintval = vap->iv_bss->ni_intval;
6851 	}
6852 
6853 	/*
6854 	 * If it's non-zero, we should calculate the minimum of
6855 	 * it and the DWELL_BASE.
6856 	 *
6857 	 * XXX Yes, the math should take into account that bintval
6858 	 * is 1.024mS, not 1mS..
6859 	 */
6860 	if (bintval > 0) {
6861 		DPRINTF(sc, IWN_DEBUG_SCAN,
6862 		    "%s: bintval=%d\n",
6863 		    __func__,
6864 		    bintval);
6865 		return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
6866 	}
6867 
6868 	/* No association context? Default */
6869 	return (IWN_PASSIVE_DWELL_BASE);
6870 }
6871 
6872 static uint16_t
6873 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c)
6874 {
6875 	uint16_t passive;
6876 
6877 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6878 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
6879 	} else {
6880 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
6881 	}
6882 
6883 	/* Clamp to the beacon interval if we're associated */
6884 	return (iwn_limit_dwell(sc, passive));
6885 }
6886 
6887 static int
6888 iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap,
6889     struct ieee80211_scan_state *ss, struct ieee80211_channel *c)
6890 {
6891 	struct ieee80211com *ic = &sc->sc_ic;
6892 	struct ieee80211_node *ni = vap->iv_bss;
6893 	struct iwn_scan_hdr *hdr;
6894 	struct iwn_cmd_data *tx;
6895 	struct iwn_scan_essid *essid;
6896 	struct iwn_scan_chan *chan;
6897 	struct ieee80211_frame *wh;
6898 	struct ieee80211_rateset *rs;
6899 	uint8_t *buf, *frm;
6900 	uint16_t rxchain;
6901 	uint8_t txant;
6902 	int buflen, error;
6903 	int is_active;
6904 	uint16_t dwell_active, dwell_passive;
6905 	uint32_t extra, scan_service_time;
6906 
6907 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6908 
6909 	/*
6910 	 * We are absolutely not allowed to send a scan command when another
6911 	 * scan command is pending.
6912 	 */
6913 	if (sc->sc_is_scanning) {
6914 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
6915 		    __func__);
6916 		return (EAGAIN);
6917 	}
6918 
6919 	/* Assign the scan channel */
6920 	c = ic->ic_curchan;
6921 
6922 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6923 	buf = kmalloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_INTWAIT | M_ZERO);
6924 	if (buf == NULL) {
6925 		device_printf(sc->sc_dev,
6926 		    "%s: could not allocate buffer for scan command\n",
6927 		    __func__);
6928 		return ENOMEM;
6929 	}
6930 	hdr = (struct iwn_scan_hdr *)buf;
6931 	/*
6932 	 * Move to the next channel if no frames are received within 10ms
6933 	 * after sending the probe request.
6934 	 */
6935 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
6936 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
6937 	/*
6938 	 * Max needs to be greater than active and passive and quiet!
6939 	 * It's also in microseconds!
6940 	 */
6941 	hdr->max_svc = htole32(250 * 1024);
6942 
6943 	/*
6944 	 * Reset scan: interval=100
6945 	 * Normal scan: interval=becaon interval
6946 	 * suspend_time: 100 (TU)
6947 	 *
6948 	 */
6949 	extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22;
6950 	//scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024);
6951 	scan_service_time = (4 << 22) | (100 * 1024);	/* Hardcode for now! */
6952 	hdr->pause_svc = htole32(scan_service_time);
6953 
6954 	/* Select antennas for scanning. */
6955 	rxchain =
6956 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6957 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
6958 	    IWN_RXCHAIN_DRIVER_FORCE;
6959 	if (IEEE80211_IS_CHAN_A(c) &&
6960 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
6961 		/* Ant A must be avoided in 5GHz because of an HW bug. */
6962 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
6963 	} else	/* Use all available RX antennas. */
6964 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
6965 	hdr->rxchain = htole16(rxchain);
6966 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
6967 
6968 	tx = (struct iwn_cmd_data *)(hdr + 1);
6969 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
6970 	tx->id = sc->broadcast_id;
6971 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
6972 
6973 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
6974 		/* Send probe requests at 6Mbps. */
6975 		tx->rate = htole32(0xd);
6976 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
6977 	} else {
6978 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
6979 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
6980 		    sc->rxon->associd && sc->rxon->chan > 14)
6981 			tx->rate = htole32(0xd);
6982 		else {
6983 			/* Send probe requests at 1Mbps. */
6984 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
6985 		}
6986 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
6987 	}
6988 	/* Use the first valid TX antenna. */
6989 	txant = IWN_LSB(sc->txchainmask);
6990 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
6991 
6992 	/*
6993 	 * Only do active scanning if we're announcing a probe request
6994 	 * for a given SSID (or more, if we ever add it to the driver.)
6995 	 */
6996 	is_active = 0;
6997 
6998 	/*
6999 	 * If we're scanning for a specific SSID, add it to the command.
7000 	 *
7001 	 * XXX maybe look at adding support for scanning multiple SSIDs?
7002 	 */
7003 	essid = (struct iwn_scan_essid *)(tx + 1);
7004 	if (ss != NULL) {
7005 		if (ss->ss_ssid[0].len != 0) {
7006 			essid[0].id = IEEE80211_ELEMID_SSID;
7007 			essid[0].len = ss->ss_ssid[0].len;
7008 			memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
7009 		}
7010 
7011 		DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n",
7012 		    __func__,
7013 		    ss->ss_ssid[0].len,
7014 		    ss->ss_ssid[0].len,
7015 		    ss->ss_ssid[0].ssid);
7016 
7017 		if (ss->ss_nssid > 0)
7018 			is_active = 1;
7019 	}
7020 
7021 	/*
7022 	 * Build a probe request frame.  Most of the following code is a
7023 	 * copy & paste of what is done in net80211.
7024 	 */
7025 	wh = (struct ieee80211_frame *)(essid + 20);
7026 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
7027 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
7028 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
7029 	IEEE80211_ADDR_COPY(wh->i_addr1, vap->iv_ifp->if_broadcastaddr);
7030 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(vap->iv_ifp));
7031 	IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_ifp->if_broadcastaddr);
7032 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
7033 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
7034 
7035 	frm = (uint8_t *)(wh + 1);
7036 	frm = ieee80211_add_ssid(frm, NULL, 0);
7037 	frm = ieee80211_add_rates(frm, rs);
7038 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
7039 		frm = ieee80211_add_xrates(frm, rs);
7040 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
7041 		frm = ieee80211_add_htcap(frm, ni);
7042 
7043 	/* Set length of probe request. */
7044 	tx->len = htole16(frm - (uint8_t *)wh);
7045 
7046 	/*
7047 	 * If active scanning is requested but a certain channel is
7048 	 * marked passive, we can do active scanning if we detect
7049 	 * transmissions.
7050 	 *
7051 	 * There is an issue with some firmware versions that triggers
7052 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
7053 	 * on a radar channel even though this means that we should NOT
7054 	 * send probes.
7055 	 *
7056 	 * The "good CRC threshold" is the number of frames that we
7057 	 * need to receive during our dwell time on a channel before
7058 	 * sending out probes -- setting this to a huge value will
7059 	 * mean we never reach it, but at the same time work around
7060 	 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER
7061 	 * here instead of IWL_GOOD_CRC_TH_DISABLED.
7062 	 *
7063 	 * This was fixed in later versions along with some other
7064 	 * scan changes, and the threshold behaves as a flag in those
7065 	 * versions.
7066 	 */
7067 
7068 	/*
7069 	 * If we're doing active scanning, set the crc_threshold
7070 	 * to a suitable value.  This is different to active veruss
7071 	 * passive scanning depending upon the channel flags; the
7072 	 * firmware will obey that particular check for us.
7073 	 */
7074 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
7075 		hdr->crc_threshold = is_active ?
7076 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
7077 	else
7078 		hdr->crc_threshold = is_active ?
7079 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
7080 
7081 	chan = (struct iwn_scan_chan *)frm;
7082 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
7083 	chan->flags = 0;
7084 	if (ss->ss_nssid > 0)
7085 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
7086 	chan->dsp_gain = 0x6e;
7087 
7088 	/*
7089 	 * Set the passive/active flag depending upon the channel mode.
7090 	 * XXX TODO: take the is_active flag into account as well?
7091 	 */
7092 	if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
7093 		chan->flags |= htole32(IWN_CHAN_PASSIVE);
7094 	else
7095 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
7096 
7097 	/*
7098 	 * Calculate the active/passive dwell times.
7099 	 */
7100 
7101 	dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid);
7102 	dwell_passive = iwn_get_passive_dwell_time(sc, c);
7103 
7104 	/* Make sure they're valid */
7105 	if (dwell_passive <= dwell_active)
7106 		dwell_passive = dwell_active + 1;
7107 
7108 	chan->active = htole16(dwell_active);
7109 	chan->passive = htole16(dwell_passive);
7110 
7111 	if (IEEE80211_IS_CHAN_5GHZ(c))
7112 		chan->rf_gain = 0x3b;
7113 	else
7114 		chan->rf_gain = 0x28;
7115 
7116 	DPRINTF(sc, IWN_DEBUG_STATE,
7117 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
7118 	    "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x "
7119 	    "isactive=%d numssid=%d\n", __func__,
7120 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
7121 	    dwell_active, dwell_passive, scan_service_time,
7122 	    hdr->crc_threshold, is_active, ss->ss_nssid);
7123 
7124 	hdr->nchan++;
7125 	chan++;
7126 	buflen = (uint8_t *)chan - buf;
7127 	hdr->len = htole16(buflen);
7128 
7129 	if (sc->sc_is_scanning) {
7130 		device_printf(sc->sc_dev,
7131 		    "%s: called with is_scanning set!\n",
7132 		    __func__);
7133 	}
7134 	sc->sc_is_scanning = 1;
7135 
7136 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
7137 	    hdr->nchan);
7138 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
7139 	kfree(buf, M_DEVBUF);
7140 
7141 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7142 
7143 	return error;
7144 }
7145 
7146 static int
7147 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
7148 {
7149 	struct iwn_ops *ops = &sc->ops;
7150 	struct ieee80211com *ic = &sc->sc_ic;
7151 	struct ieee80211_node *ni = vap->iv_bss;
7152 	int error;
7153 
7154 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7155 
7156 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7157 	/* Update adapter configuration. */
7158 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7159 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7160 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7161 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7162 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7163 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7164 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7165 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7166 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7167 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7168 		sc->rxon->cck_mask  = 0;
7169 		sc->rxon->ofdm_mask = 0x15;
7170 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7171 		sc->rxon->cck_mask  = 0x03;
7172 		sc->rxon->ofdm_mask = 0;
7173 	} else {
7174 		/* Assume 802.11b/g. */
7175 		sc->rxon->cck_mask  = 0x03;
7176 		sc->rxon->ofdm_mask = 0x15;
7177 	}
7178 
7179 	/* try HT */
7180 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan));
7181 
7182 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
7183 	    sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask,
7184 	    sc->rxon->ofdm_mask);
7185 	if (sc->sc_is_scanning)
7186 		device_printf(sc->sc_dev,
7187 		    "%s: is_scanning set, before RXON\n",
7188 		    __func__);
7189 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
7190 	if (error != 0) {
7191 		device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n",
7192 		    __func__, error);
7193 		return error;
7194 	}
7195 
7196 	/* Configuration has changed, set TX power accordingly. */
7197 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
7198 		device_printf(sc->sc_dev,
7199 		    "%s: could not set TX power, error %d\n", __func__, error);
7200 		return error;
7201 	}
7202 	/*
7203 	 * Reconfiguring RXON clears the firmware nodes table so we must
7204 	 * add the broadcast node again.
7205 	 */
7206 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
7207 		device_printf(sc->sc_dev,
7208 		    "%s: could not add broadcast node, error %d\n", __func__,
7209 		    error);
7210 		return error;
7211 	}
7212 
7213 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7214 
7215 	return 0;
7216 }
7217 
7218 static int
7219 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
7220 {
7221 	struct iwn_ops *ops = &sc->ops;
7222 	struct ieee80211com *ic = &sc->sc_ic;
7223 	struct ieee80211_node *ni = vap->iv_bss;
7224 	struct iwn_node_info node;
7225 	int error;
7226 
7227 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7228 
7229 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7230 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
7231 		/* Link LED blinks while monitoring. */
7232 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
7233 		return 0;
7234 	}
7235 	if ((error = iwn_set_timing(sc, ni)) != 0) {
7236 		device_printf(sc->sc_dev,
7237 		    "%s: could not set timing, error %d\n", __func__, error);
7238 		return error;
7239 	}
7240 
7241 	/* Update adapter configuration. */
7242 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7243 	sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd));
7244 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7245 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7246 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7247 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7248 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7249 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7250 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7251 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7252 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7253 		sc->rxon->cck_mask  = 0;
7254 		sc->rxon->ofdm_mask = 0x15;
7255 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7256 		sc->rxon->cck_mask  = 0x03;
7257 		sc->rxon->ofdm_mask = 0;
7258 	} else {
7259 		/* Assume 802.11b/g. */
7260 		sc->rxon->cck_mask  = 0x0f;
7261 		sc->rxon->ofdm_mask = 0x15;
7262 	}
7263 	/* try HT */
7264 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ni->ni_chan));
7265 	sc->rxon->filter |= htole32(IWN_FILTER_BSS);
7266 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x, curhtprotmode=%d\n",
7267 	    sc->rxon->chan, le32toh(sc->rxon->flags), ic->ic_curhtprotmode);
7268 	if (sc->sc_is_scanning)
7269 		device_printf(sc->sc_dev,
7270 		    "%s: is_scanning set, before RXON\n",
7271 		    __func__);
7272 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
7273 	if (error != 0) {
7274 		device_printf(sc->sc_dev,
7275 		    "%s: could not update configuration, error %d\n", __func__,
7276 		    error);
7277 		return error;
7278 	}
7279 
7280 	/* Configuration has changed, set TX power accordingly. */
7281 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
7282 		device_printf(sc->sc_dev,
7283 		    "%s: could not set TX power, error %d\n", __func__, error);
7284 		return error;
7285 	}
7286 
7287 	/* Fake a join to initialize the TX rate. */
7288 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
7289 	iwn_newassoc(ni, 1);
7290 
7291 	/* Add BSS node. */
7292 	memset(&node, 0, sizeof node);
7293 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
7294 	node.id = IWN_ID_BSS;
7295 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
7296 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
7297 		case IEEE80211_HTCAP_SMPS_ENA:
7298 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
7299 			break;
7300 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
7301 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
7302 			break;
7303 		}
7304 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
7305 		    IWN_AMDPU_DENSITY(5));	/* 4us */
7306 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
7307 			node.htflags |= htole32(IWN_NODE_HT40);
7308 	}
7309 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
7310 	error = ops->add_node(sc, &node, 1);
7311 	if (error != 0) {
7312 		device_printf(sc->sc_dev,
7313 		    "%s: could not add BSS node, error %d\n", __func__, error);
7314 		return error;
7315 	}
7316 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
7317 	    __func__, node.id);
7318 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
7319 		device_printf(sc->sc_dev,
7320 		    "%s: could not setup link quality for node %d, error %d\n",
7321 		    __func__, node.id, error);
7322 		return error;
7323 	}
7324 
7325 	if ((error = iwn_init_sensitivity(sc)) != 0) {
7326 		device_printf(sc->sc_dev,
7327 		    "%s: could not set sensitivity, error %d\n", __func__,
7328 		    error);
7329 		return error;
7330 	}
7331 	/* Start periodic calibration timer. */
7332 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
7333 	sc->calib_cnt = 0;
7334 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
7335 	    sc);
7336 
7337 	/* Link LED always on while associated. */
7338 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
7339 
7340 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7341 
7342 	return 0;
7343 }
7344 
7345 /*
7346  * This function is called by upper layer when an ADDBA request is received
7347  * from another STA and before the ADDBA response is sent.
7348  */
7349 static int
7350 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
7351     int baparamset, int batimeout, int baseqctl)
7352 {
7353 #define MS(_v, _f)	(((_v) & _f) >> _f##_S)
7354 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7355 	struct iwn_ops *ops = &sc->ops;
7356 	struct iwn_node *wn = (void *)ni;
7357 	struct iwn_node_info node;
7358 	uint16_t ssn;
7359 	uint8_t tid;
7360 	int error;
7361 
7362 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7363 
7364 	tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID);
7365 	ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START);
7366 
7367 	memset(&node, 0, sizeof node);
7368 	node.id = wn->id;
7369 	node.control = IWN_NODE_UPDATE;
7370 	node.flags = IWN_FLAG_SET_ADDBA;
7371 	node.addba_tid = tid;
7372 	node.addba_ssn = htole16(ssn);
7373 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
7374 	    wn->id, tid, ssn);
7375 	error = ops->add_node(sc, &node, 1);
7376 	if (error != 0)
7377 		return error;
7378 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
7379 #undef MS
7380 }
7381 
7382 /*
7383  * This function is called by upper layer on teardown of an HT-immediate
7384  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
7385  */
7386 static void
7387 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
7388 {
7389 	struct ieee80211com *ic = ni->ni_ic;
7390 	struct iwn_softc *sc = ic->ic_softc;
7391 	struct iwn_ops *ops = &sc->ops;
7392 	struct iwn_node *wn = (void *)ni;
7393 	struct iwn_node_info node;
7394 	uint8_t tid;
7395 
7396 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7397 
7398 	/* XXX: tid as an argument */
7399 	for (tid = 0; tid < WME_NUM_TID; tid++) {
7400 		if (&ni->ni_rx_ampdu[tid] == rap)
7401 			break;
7402 	}
7403 
7404 	memset(&node, 0, sizeof node);
7405 	node.id = wn->id;
7406 	node.control = IWN_NODE_UPDATE;
7407 	node.flags = IWN_FLAG_SET_DELBA;
7408 	node.delba_tid = tid;
7409 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
7410 	(void)ops->add_node(sc, &node, 1);
7411 	sc->sc_ampdu_rx_stop(ni, rap);
7412 }
7413 
7414 static int
7415 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7416     int dialogtoken, int baparamset, int batimeout)
7417 {
7418 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7419 	int qid;
7420 
7421 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7422 
7423 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
7424 		if (sc->qid2tap[qid] == NULL)
7425 			break;
7426 	}
7427 	if (qid == sc->ntxqs) {
7428 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
7429 		    __func__);
7430 		return 0;
7431 	}
7432 	tap->txa_private = kmalloc(sizeof(int), M_DEVBUF, M_INTWAIT);
7433 	if (tap->txa_private == NULL) {
7434 		device_printf(sc->sc_dev,
7435 		    "%s: failed to alloc TX aggregation structure\n", __func__);
7436 		return 0;
7437 	}
7438 	sc->qid2tap[qid] = tap;
7439 	*(int *)tap->txa_private = qid;
7440 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
7441 	    batimeout);
7442 }
7443 
7444 static int
7445 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7446     int code, int baparamset, int batimeout)
7447 {
7448 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7449 	int qid = *(int *)tap->txa_private;
7450 	uint8_t tid = tap->txa_tid;
7451 	int ret;
7452 
7453 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7454 
7455 	if (code == IEEE80211_STATUS_SUCCESS) {
7456 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
7457 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
7458 		if (ret != 1)
7459 			return ret;
7460 	} else {
7461 		sc->qid2tap[qid] = NULL;
7462 		kfree(tap->txa_private, M_DEVBUF);
7463 		tap->txa_private = NULL;
7464 	}
7465 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
7466 }
7467 
7468 /*
7469  * This function is called by upper layer when an ADDBA response is received
7470  * from another STA.
7471  */
7472 static int
7473 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
7474     uint8_t tid)
7475 {
7476 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
7477 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7478 	struct iwn_ops *ops = &sc->ops;
7479 	struct iwn_node *wn = (void *)ni;
7480 	struct iwn_node_info node;
7481 	int error, qid;
7482 
7483 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7484 
7485 	/* Enable TX for the specified RA/TID. */
7486 	wn->disable_tid &= ~(1 << tid);
7487 	memset(&node, 0, sizeof node);
7488 	node.id = wn->id;
7489 	node.control = IWN_NODE_UPDATE;
7490 	node.flags = IWN_FLAG_SET_DISABLE_TID;
7491 	node.disable_tid = htole16(wn->disable_tid);
7492 	error = ops->add_node(sc, &node, 1);
7493 	if (error != 0)
7494 		return 0;
7495 
7496 	if ((error = iwn_nic_lock(sc)) != 0)
7497 		return 0;
7498 	qid = *(int *)tap->txa_private;
7499 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
7500 	    __func__, wn->id, tid, tap->txa_start, qid);
7501 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
7502 	iwn_nic_unlock(sc);
7503 
7504 	iwn_set_link_quality(sc, ni);
7505 	return 1;
7506 }
7507 
7508 static void
7509 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
7510 {
7511 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7512 	struct iwn_ops *ops = &sc->ops;
7513 	uint8_t tid = tap->txa_tid;
7514 	int qid;
7515 
7516 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7517 
7518 	sc->sc_addba_stop(ni, tap);
7519 
7520 	if (tap->txa_private == NULL)
7521 		return;
7522 
7523 	qid = *(int *)tap->txa_private;
7524 	if (sc->txq[qid].queued != 0)
7525 		return;
7526 	if (iwn_nic_lock(sc) != 0)
7527 		return;
7528 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
7529 	iwn_nic_unlock(sc);
7530 	sc->qid2tap[qid] = NULL;
7531 	kfree(tap->txa_private, M_DEVBUF);
7532 	tap->txa_private = NULL;
7533 }
7534 
7535 static void
7536 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7537     int qid, uint8_t tid, uint16_t ssn)
7538 {
7539 	struct iwn_node *wn = (void *)ni;
7540 
7541 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7542 
7543 	/* Stop TX scheduler while we're changing its configuration. */
7544 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7545 	    IWN4965_TXQ_STATUS_CHGACT);
7546 
7547 	/* Assign RA/TID translation to the queue. */
7548 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
7549 	    wn->id << 4 | tid);
7550 
7551 	/* Enable chain-building mode for the queue. */
7552 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
7553 
7554 	/* Set starting sequence number from the ADDBA request. */
7555 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7556 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7557 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7558 
7559 	/* Set scheduler window size. */
7560 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
7561 	    IWN_SCHED_WINSZ);
7562 	/* Set scheduler frame limit. */
7563 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7564 	    IWN_SCHED_LIMIT << 16);
7565 
7566 	/* Enable interrupts for the queue. */
7567 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7568 
7569 	/* Mark the queue as active. */
7570 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7571 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
7572 	    iwn_tid2fifo[tid] << 1);
7573 }
7574 
7575 static void
7576 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7577 {
7578 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7579 
7580 	/* Stop TX scheduler while we're changing its configuration. */
7581 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7582 	    IWN4965_TXQ_STATUS_CHGACT);
7583 
7584 	/* Set starting sequence number from the ADDBA request. */
7585 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7586 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7587 
7588 	/* Disable interrupts for the queue. */
7589 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7590 
7591 	/* Mark the queue as inactive. */
7592 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7593 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
7594 }
7595 
7596 static void
7597 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7598     int qid, uint8_t tid, uint16_t ssn)
7599 {
7600 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7601 
7602 	struct iwn_node *wn = (void *)ni;
7603 
7604 	/* Stop TX scheduler while we're changing its configuration. */
7605 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7606 	    IWN5000_TXQ_STATUS_CHGACT);
7607 
7608 	/* Assign RA/TID translation to the queue. */
7609 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
7610 	    wn->id << 4 | tid);
7611 
7612 	/* Enable chain-building mode for the queue. */
7613 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
7614 
7615 	/* Enable aggregation for the queue. */
7616 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7617 
7618 	/* Set starting sequence number from the ADDBA request. */
7619 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7620 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7621 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7622 
7623 	/* Set scheduler window size and frame limit. */
7624 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7625 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7626 
7627 	/* Enable interrupts for the queue. */
7628 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7629 
7630 	/* Mark the queue as active. */
7631 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7632 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
7633 }
7634 
7635 static void
7636 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7637 {
7638 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7639 
7640 	/* Stop TX scheduler while we're changing its configuration. */
7641 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7642 	    IWN5000_TXQ_STATUS_CHGACT);
7643 
7644 	/* Disable aggregation for the queue. */
7645 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7646 
7647 	/* Set starting sequence number from the ADDBA request. */
7648 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7649 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7650 
7651 	/* Disable interrupts for the queue. */
7652 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7653 
7654 	/* Mark the queue as inactive. */
7655 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7656 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
7657 }
7658 
7659 /*
7660  * Query calibration tables from the initialization firmware.  We do this
7661  * only once at first boot.  Called from a process context.
7662  */
7663 static int
7664 iwn5000_query_calibration(struct iwn_softc *sc)
7665 {
7666 	struct iwn5000_calib_config cmd;
7667 	int error;
7668 
7669 	memset(&cmd, 0, sizeof cmd);
7670 	cmd.ucode.once.enable = htole32(0xffffffff);
7671 	cmd.ucode.once.start  = htole32(0xffffffff);
7672 	cmd.ucode.once.send   = htole32(0xffffffff);
7673 	cmd.ucode.flags       = htole32(0xffffffff);
7674 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
7675 	    __func__);
7676 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
7677 	if (error != 0)
7678 		return error;
7679 
7680 	/* Wait at most two seconds for calibration to complete. */
7681 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
7682 #if defined(__DragonFly__)
7683 		error = lksleep(sc, &sc->sc_lk, PCATCH, "iwncal", 2 * hz);
7684 #else
7685 		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz);
7686 #endif
7687 	return error;
7688 }
7689 
7690 /*
7691  * Send calibration results to the runtime firmware.  These results were
7692  * obtained on first boot from the initialization firmware.
7693  */
7694 static int
7695 iwn5000_send_calibration(struct iwn_softc *sc)
7696 {
7697 	int idx, error;
7698 
7699 	for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) {
7700 		if (!(sc->base_params->calib_need & (1<<idx))) {
7701 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7702 			    "No need of calib %d\n",
7703 			    idx);
7704 			continue; /* no need for this calib */
7705 		}
7706 		if (sc->calibcmd[idx].buf == NULL) {
7707 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7708 			    "Need calib idx : %d but no available data\n",
7709 			    idx);
7710 			continue;
7711 		}
7712 
7713 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7714 		    "send calibration result idx=%d len=%d\n", idx,
7715 		    sc->calibcmd[idx].len);
7716 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
7717 		    sc->calibcmd[idx].len, 0);
7718 		if (error != 0) {
7719 			device_printf(sc->sc_dev,
7720 			    "%s: could not send calibration result, error %d\n",
7721 			    __func__, error);
7722 			return error;
7723 		}
7724 	}
7725 	return 0;
7726 }
7727 
7728 static int
7729 iwn5000_send_wimax_coex(struct iwn_softc *sc)
7730 {
7731 	struct iwn5000_wimax_coex wimax;
7732 
7733 #if 0
7734 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
7735 		/* Enable WiMAX coexistence for combo adapters. */
7736 		wimax.flags =
7737 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
7738 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
7739 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
7740 		    IWN_WIMAX_COEX_ENABLE;
7741 		memcpy(wimax.events, iwn6050_wimax_events,
7742 		    sizeof iwn6050_wimax_events);
7743 	} else
7744 #endif
7745 	{
7746 		/* Disable WiMAX coexistence. */
7747 		wimax.flags = 0;
7748 		memset(wimax.events, 0, sizeof wimax.events);
7749 	}
7750 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
7751 	    __func__);
7752 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
7753 }
7754 
7755 static int
7756 iwn5000_crystal_calib(struct iwn_softc *sc)
7757 {
7758 	struct iwn5000_phy_calib_crystal cmd;
7759 
7760 	memset(&cmd, 0, sizeof cmd);
7761 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
7762 	cmd.ngroups = 1;
7763 	cmd.isvalid = 1;
7764 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
7765 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
7766 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
7767 	    cmd.cap_pin[0], cmd.cap_pin[1]);
7768 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7769 }
7770 
7771 static int
7772 iwn5000_temp_offset_calib(struct iwn_softc *sc)
7773 {
7774 	struct iwn5000_phy_calib_temp_offset cmd;
7775 
7776 	memset(&cmd, 0, sizeof cmd);
7777 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7778 	cmd.ngroups = 1;
7779 	cmd.isvalid = 1;
7780 	if (sc->eeprom_temp != 0)
7781 		cmd.offset = htole16(sc->eeprom_temp);
7782 	else
7783 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
7784 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
7785 	    le16toh(cmd.offset));
7786 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7787 }
7788 
7789 static int
7790 iwn5000_temp_offset_calibv2(struct iwn_softc *sc)
7791 {
7792 	struct iwn5000_phy_calib_temp_offsetv2 cmd;
7793 
7794 	memset(&cmd, 0, sizeof cmd);
7795 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7796 	cmd.ngroups = 1;
7797 	cmd.isvalid = 1;
7798 	if (sc->eeprom_temp != 0) {
7799 		cmd.offset_low = htole16(sc->eeprom_temp);
7800 		cmd.offset_high = htole16(sc->eeprom_temp_high);
7801 	} else {
7802 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
7803 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
7804 	}
7805 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
7806 
7807 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7808 	    "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n",
7809 	    le16toh(cmd.offset_low),
7810 	    le16toh(cmd.offset_high),
7811 	    le16toh(cmd.burnt_voltage_ref));
7812 
7813 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7814 }
7815 
7816 /*
7817  * This function is called after the runtime firmware notifies us of its
7818  * readiness (called in a process context).
7819  */
7820 static int
7821 iwn4965_post_alive(struct iwn_softc *sc)
7822 {
7823 	int error, qid;
7824 
7825 	if ((error = iwn_nic_lock(sc)) != 0)
7826 		return error;
7827 
7828 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7829 
7830 	/* Clear TX scheduler state in SRAM. */
7831 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7832 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
7833 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
7834 
7835 	/* Set physical address of TX scheduler rings (1KB aligned). */
7836 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7837 
7838 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7839 
7840 	/* Disable chain mode for all our 16 queues. */
7841 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
7842 
7843 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
7844 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
7845 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7846 
7847 		/* Set scheduler window size. */
7848 		iwn_mem_write(sc, sc->sched_base +
7849 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
7850 		/* Set scheduler frame limit. */
7851 		iwn_mem_write(sc, sc->sched_base +
7852 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7853 		    IWN_SCHED_LIMIT << 16);
7854 	}
7855 
7856 	/* Enable interrupts for all our 16 queues. */
7857 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
7858 	/* Identify TX FIFO rings (0-7). */
7859 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
7860 
7861 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7862 	for (qid = 0; qid < 7; qid++) {
7863 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
7864 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7865 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
7866 	}
7867 	iwn_nic_unlock(sc);
7868 	return 0;
7869 }
7870 
7871 /*
7872  * This function is called after the initialization or runtime firmware
7873  * notifies us of its readiness (called in a process context).
7874  */
7875 static int
7876 iwn5000_post_alive(struct iwn_softc *sc)
7877 {
7878 	int error, qid;
7879 
7880 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7881 
7882 	/* Switch to using ICT interrupt mode. */
7883 	iwn5000_ict_reset(sc);
7884 
7885 	if ((error = iwn_nic_lock(sc)) != 0){
7886 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
7887 		return error;
7888 	}
7889 
7890 	/* Clear TX scheduler state in SRAM. */
7891 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7892 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
7893 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
7894 
7895 	/* Set physical address of TX scheduler rings (1KB aligned). */
7896 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7897 
7898 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7899 
7900 	/* Enable chain mode for all queues, except command queue. */
7901 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
7902 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf);
7903 	else
7904 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
7905 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
7906 
7907 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
7908 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
7909 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7910 
7911 		iwn_mem_write(sc, sc->sched_base +
7912 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
7913 		/* Set scheduler window size and frame limit. */
7914 		iwn_mem_write(sc, sc->sched_base +
7915 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7916 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7917 	}
7918 
7919 	/* Enable interrupts for all our 20 queues. */
7920 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
7921 	/* Identify TX FIFO rings (0-7). */
7922 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
7923 
7924 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7925 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) {
7926 		/* Mark TX rings as active. */
7927 		for (qid = 0; qid < 11; qid++) {
7928 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 };
7929 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7930 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7931 		}
7932 	} else {
7933 		/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7934 		for (qid = 0; qid < 7; qid++) {
7935 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
7936 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7937 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7938 		}
7939 	}
7940 	iwn_nic_unlock(sc);
7941 
7942 	/* Configure WiMAX coexistence for combo adapters. */
7943 	error = iwn5000_send_wimax_coex(sc);
7944 	if (error != 0) {
7945 		device_printf(sc->sc_dev,
7946 		    "%s: could not configure WiMAX coexistence, error %d\n",
7947 		    __func__, error);
7948 		return error;
7949 	}
7950 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
7951 		/* Perform crystal calibration. */
7952 		error = iwn5000_crystal_calib(sc);
7953 		if (error != 0) {
7954 			device_printf(sc->sc_dev,
7955 			    "%s: crystal calibration failed, error %d\n",
7956 			    __func__, error);
7957 			return error;
7958 		}
7959 	}
7960 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
7961 		/* Query calibration from the initialization firmware. */
7962 		if ((error = iwn5000_query_calibration(sc)) != 0) {
7963 			device_printf(sc->sc_dev,
7964 			    "%s: could not query calibration, error %d\n",
7965 			    __func__, error);
7966 			return error;
7967 		}
7968 		/*
7969 		 * We have the calibration results now, reboot with the
7970 		 * runtime firmware (call ourselves recursively!)
7971 		 */
7972 		iwn_hw_stop(sc);
7973 		error = iwn_hw_init(sc);
7974 	} else {
7975 		/* Send calibration results to runtime firmware. */
7976 		error = iwn5000_send_calibration(sc);
7977 	}
7978 
7979 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7980 
7981 	return error;
7982 }
7983 
7984 /*
7985  * The firmware boot code is small and is intended to be copied directly into
7986  * the NIC internal memory (no DMA transfer).
7987  */
7988 static int
7989 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
7990 {
7991 	int error, ntries;
7992 
7993 	size /= sizeof (uint32_t);
7994 
7995 	if ((error = iwn_nic_lock(sc)) != 0)
7996 		return error;
7997 
7998 	/* Copy microcode image into NIC memory. */
7999 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
8000 	    (const uint32_t *)ucode, size);
8001 
8002 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
8003 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
8004 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
8005 
8006 	/* Start boot load now. */
8007 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
8008 
8009 	/* Wait for transfer to complete. */
8010 	for (ntries = 0; ntries < 1000; ntries++) {
8011 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
8012 		    IWN_BSM_WR_CTRL_START))
8013 			break;
8014 		DELAY(10);
8015 	}
8016 	if (ntries == 1000) {
8017 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
8018 		    __func__);
8019 		iwn_nic_unlock(sc);
8020 		return ETIMEDOUT;
8021 	}
8022 
8023 	/* Enable boot after power up. */
8024 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
8025 
8026 	iwn_nic_unlock(sc);
8027 	return 0;
8028 }
8029 
8030 static int
8031 iwn4965_load_firmware(struct iwn_softc *sc)
8032 {
8033 	struct iwn_fw_info *fw = &sc->fw;
8034 	struct iwn_dma_info *dma = &sc->fw_dma;
8035 	int error;
8036 
8037 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
8038 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
8039 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8040 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
8041 	    fw->init.text, fw->init.textsz);
8042 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8043 
8044 	/* Tell adapter where to find initialization sections. */
8045 	if ((error = iwn_nic_lock(sc)) != 0)
8046 		return error;
8047 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
8048 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
8049 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
8050 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
8051 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
8052 	iwn_nic_unlock(sc);
8053 
8054 	/* Load firmware boot code. */
8055 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
8056 	if (error != 0) {
8057 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
8058 		    __func__);
8059 		return error;
8060 	}
8061 	/* Now press "execute". */
8062 	IWN_WRITE(sc, IWN_RESET, 0);
8063 
8064 	/* Wait at most one second for first alive notification. */
8065 #if defined(__DragonFly__)
8066 	if ((error = lksleep(sc, &sc->sc_lk, PCATCH, "iwninit", hz)) != 0) {
8067 #else
8068 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
8069 #endif
8070 		device_printf(sc->sc_dev,
8071 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8072 		    __func__, error);
8073 		return error;
8074 	}
8075 
8076 	/* Retrieve current temperature for initial TX power calibration. */
8077 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
8078 	sc->temp = iwn4965_get_temperature(sc);
8079 
8080 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
8081 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
8082 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8083 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
8084 	    fw->main.text, fw->main.textsz);
8085 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8086 
8087 	/* Tell adapter where to find runtime sections. */
8088 	if ((error = iwn_nic_lock(sc)) != 0)
8089 		return error;
8090 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
8091 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
8092 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
8093 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
8094 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
8095 	    IWN_FW_UPDATED | fw->main.textsz);
8096 	iwn_nic_unlock(sc);
8097 
8098 	return 0;
8099 }
8100 
8101 static int
8102 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
8103     const uint8_t *section, int size)
8104 {
8105 	struct iwn_dma_info *dma = &sc->fw_dma;
8106 	int error;
8107 
8108 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8109 
8110 	/* Copy firmware section into pre-allocated DMA-safe memory. */
8111 	memcpy(dma->vaddr, section, size);
8112 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8113 
8114 	if ((error = iwn_nic_lock(sc)) != 0)
8115 		return error;
8116 
8117 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8118 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
8119 
8120 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
8121 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
8122 	    IWN_LOADDR(dma->paddr));
8123 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
8124 	    IWN_HIADDR(dma->paddr) << 28 | size);
8125 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
8126 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
8127 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
8128 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
8129 
8130 	/* Kick Flow Handler to start DMA transfer. */
8131 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8132 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
8133 
8134 	iwn_nic_unlock(sc);
8135 
8136 	/* Wait at most five seconds for FH DMA transfer to complete. */
8137 #if defined(__DragonFly__)
8138 	return lksleep(sc, &sc->sc_lk, PCATCH, "iwninit", 5 * hz);
8139 #else
8140 	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz);
8141 #endif
8142 }
8143 
8144 static int
8145 iwn5000_load_firmware(struct iwn_softc *sc)
8146 {
8147 	struct iwn_fw_part *fw;
8148 	int error;
8149 
8150 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8151 
8152 	/* Load the initialization firmware on first boot only. */
8153 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
8154 	    &sc->fw.main : &sc->fw.init;
8155 
8156 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
8157 	    fw->text, fw->textsz);
8158 	if (error != 0) {
8159 		device_printf(sc->sc_dev,
8160 		    "%s: could not load firmware %s section, error %d\n",
8161 		    __func__, ".text", error);
8162 		return error;
8163 	}
8164 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
8165 	    fw->data, fw->datasz);
8166 	if (error != 0) {
8167 		device_printf(sc->sc_dev,
8168 		    "%s: could not load firmware %s section, error %d\n",
8169 		    __func__, ".data", error);
8170 		return error;
8171 	}
8172 
8173 	/* Now press "execute". */
8174 	IWN_WRITE(sc, IWN_RESET, 0);
8175 	return 0;
8176 }
8177 
8178 /*
8179  * Extract text and data sections from a legacy firmware image.
8180  */
8181 static int
8182 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
8183 {
8184 	const uint32_t *ptr;
8185 	size_t hdrlen = 24;
8186 	uint32_t rev;
8187 
8188 	ptr = (const uint32_t *)fw->data;
8189 	rev = le32toh(*ptr++);
8190 
8191 	sc->ucode_rev = rev;
8192 
8193 	/* Check firmware API version. */
8194 	if (IWN_FW_API(rev) <= 1) {
8195 		device_printf(sc->sc_dev,
8196 		    "%s: bad firmware, need API version >=2\n", __func__);
8197 		return EINVAL;
8198 	}
8199 	if (IWN_FW_API(rev) >= 3) {
8200 		/* Skip build number (version 2 header). */
8201 		hdrlen += 4;
8202 		ptr++;
8203 	}
8204 	if (fw->size < hdrlen) {
8205 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8206 		    __func__, fw->size);
8207 		return EINVAL;
8208 	}
8209 	fw->main.textsz = le32toh(*ptr++);
8210 	fw->main.datasz = le32toh(*ptr++);
8211 	fw->init.textsz = le32toh(*ptr++);
8212 	fw->init.datasz = le32toh(*ptr++);
8213 	fw->boot.textsz = le32toh(*ptr++);
8214 
8215 	/* Check that all firmware sections fit. */
8216 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
8217 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
8218 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8219 		    __func__, fw->size);
8220 		return EINVAL;
8221 	}
8222 
8223 	/* Get pointers to firmware sections. */
8224 	fw->main.text = (const uint8_t *)ptr;
8225 	fw->main.data = fw->main.text + fw->main.textsz;
8226 	fw->init.text = fw->main.data + fw->main.datasz;
8227 	fw->init.data = fw->init.text + fw->init.textsz;
8228 	fw->boot.text = fw->init.data + fw->init.datasz;
8229 	return 0;
8230 }
8231 
8232 /*
8233  * Extract text and data sections from a TLV firmware image.
8234  */
8235 static int
8236 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
8237     uint16_t alt)
8238 {
8239 	const struct iwn_fw_tlv_hdr *hdr;
8240 	const struct iwn_fw_tlv *tlv;
8241 	const uint8_t *ptr, *end;
8242 	uint64_t altmask;
8243 	uint32_t len, tmp;
8244 
8245 	if (fw->size < sizeof (*hdr)) {
8246 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8247 		    __func__, fw->size);
8248 		return EINVAL;
8249 	}
8250 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
8251 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
8252 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
8253 		    __func__, le32toh(hdr->signature));
8254 		return EINVAL;
8255 	}
8256 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
8257 	    le32toh(hdr->build));
8258 	sc->ucode_rev = le32toh(hdr->rev);
8259 
8260 	/*
8261 	 * Select the closest supported alternative that is less than
8262 	 * or equal to the specified one.
8263 	 */
8264 	altmask = le64toh(hdr->altmask);
8265 	while (alt > 0 && !(altmask & (1ULL << alt)))
8266 		alt--;	/* Downgrade. */
8267 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
8268 
8269 	ptr = (const uint8_t *)(hdr + 1);
8270 	end = (const uint8_t *)(fw->data + fw->size);
8271 
8272 	/* Parse type-length-value fields. */
8273 	while (ptr + sizeof (*tlv) <= end) {
8274 		tlv = (const struct iwn_fw_tlv *)ptr;
8275 		len = le32toh(tlv->len);
8276 
8277 		ptr += sizeof (*tlv);
8278 		if (ptr + len > end) {
8279 			device_printf(sc->sc_dev,
8280 			    "%s: firmware too short: %zu bytes\n", __func__,
8281 			    fw->size);
8282 			return EINVAL;
8283 		}
8284 		/* Skip other alternatives. */
8285 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
8286 			goto next;
8287 
8288 		switch (le16toh(tlv->type)) {
8289 		case IWN_FW_TLV_MAIN_TEXT:
8290 			fw->main.text = ptr;
8291 			fw->main.textsz = len;
8292 			break;
8293 		case IWN_FW_TLV_MAIN_DATA:
8294 			fw->main.data = ptr;
8295 			fw->main.datasz = len;
8296 			break;
8297 		case IWN_FW_TLV_INIT_TEXT:
8298 			fw->init.text = ptr;
8299 			fw->init.textsz = len;
8300 			break;
8301 		case IWN_FW_TLV_INIT_DATA:
8302 			fw->init.data = ptr;
8303 			fw->init.datasz = len;
8304 			break;
8305 		case IWN_FW_TLV_BOOT_TEXT:
8306 			fw->boot.text = ptr;
8307 			fw->boot.textsz = len;
8308 			break;
8309 		case IWN_FW_TLV_ENH_SENS:
8310 			if (!len)
8311 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
8312 			break;
8313 		case IWN_FW_TLV_PHY_CALIB:
8314 			tmp = le32toh(*ptr);
8315 			if (tmp < 253) {
8316 				sc->reset_noise_gain = tmp;
8317 				sc->noise_gain = tmp + 1;
8318 			}
8319 			break;
8320 		case IWN_FW_TLV_PAN:
8321 			sc->sc_flags |= IWN_FLAG_PAN_SUPPORT;
8322 			DPRINTF(sc, IWN_DEBUG_RESET,
8323 			    "PAN Support found: %d\n", 1);
8324 			break;
8325 		case IWN_FW_TLV_FLAGS:
8326 			if (len < sizeof(uint32_t))
8327 				break;
8328 			if (len % sizeof(uint32_t))
8329 				break;
8330 			sc->tlv_feature_flags = le32toh(*ptr);
8331 			DPRINTF(sc, IWN_DEBUG_RESET,
8332 			    "%s: feature: 0x%08x\n",
8333 			    __func__,
8334 			    sc->tlv_feature_flags);
8335 			break;
8336 		case IWN_FW_TLV_PBREQ_MAXLEN:
8337 		case IWN_FW_TLV_RUNT_EVTLOG_PTR:
8338 		case IWN_FW_TLV_RUNT_EVTLOG_SIZE:
8339 		case IWN_FW_TLV_RUNT_ERRLOG_PTR:
8340 		case IWN_FW_TLV_INIT_EVTLOG_PTR:
8341 		case IWN_FW_TLV_INIT_EVTLOG_SIZE:
8342 		case IWN_FW_TLV_INIT_ERRLOG_PTR:
8343 		case IWN_FW_TLV_WOWLAN_INST:
8344 		case IWN_FW_TLV_WOWLAN_DATA:
8345 			DPRINTF(sc, IWN_DEBUG_RESET,
8346 			    "TLV type %d recognized but not handled\n",
8347 			    le16toh(tlv->type));
8348 			break;
8349 		default:
8350 			DPRINTF(sc, IWN_DEBUG_RESET,
8351 			    "TLV type %d not handled\n", le16toh(tlv->type));
8352 			break;
8353 		}
8354  next:		/* TLV fields are 32-bit aligned. */
8355 		ptr += (len + 3) & ~3;
8356 	}
8357 	return 0;
8358 }
8359 
8360 static int
8361 iwn_read_firmware(struct iwn_softc *sc)
8362 {
8363 	struct iwn_fw_info *fw = &sc->fw;
8364 	int error;
8365 
8366 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8367 
8368 	IWN_UNLOCK(sc);
8369 
8370 	memset(fw, 0, sizeof (*fw));
8371 
8372 	/* Read firmware image from filesystem. */
8373 	sc->fw_fp = firmware_get(sc->fwname);
8374 	if (sc->fw_fp == NULL) {
8375 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
8376 		    __func__, sc->fwname);
8377 		IWN_LOCK(sc);
8378 		return EINVAL;
8379 	}
8380 	IWN_LOCK(sc);
8381 
8382 	fw->size = sc->fw_fp->datasize;
8383 	fw->data = (const uint8_t *)sc->fw_fp->data;
8384 	if (fw->size < sizeof (uint32_t)) {
8385 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8386 		    __func__, fw->size);
8387 		error = EINVAL;
8388 		goto fail;
8389 	}
8390 
8391 	/* Retrieve text and data sections. */
8392 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
8393 		error = iwn_read_firmware_leg(sc, fw);
8394 	else
8395 		error = iwn_read_firmware_tlv(sc, fw, 1);
8396 	if (error != 0) {
8397 		device_printf(sc->sc_dev,
8398 		    "%s: could not read firmware sections, error %d\n",
8399 		    __func__, error);
8400 		goto fail;
8401 	}
8402 
8403 	device_printf(sc->sc_dev, "%s: ucode rev=0x%08x\n", __func__, sc->ucode_rev);
8404 
8405 	/* Make sure text and data sections fit in hardware memory. */
8406 	if (fw->main.textsz > sc->fw_text_maxsz ||
8407 	    fw->main.datasz > sc->fw_data_maxsz ||
8408 	    fw->init.textsz > sc->fw_text_maxsz ||
8409 	    fw->init.datasz > sc->fw_data_maxsz ||
8410 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
8411 	    (fw->boot.textsz & 3) != 0) {
8412 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
8413 		    __func__);
8414 		error = EINVAL;
8415 		goto fail;
8416 	}
8417 
8418 	/* We can proceed with loading the firmware. */
8419 	return 0;
8420 
8421 fail:	iwn_unload_firmware(sc);
8422 	return error;
8423 }
8424 
8425 static void
8426 iwn_unload_firmware(struct iwn_softc *sc)
8427 {
8428 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8429 	sc->fw_fp = NULL;
8430 }
8431 
8432 static int
8433 iwn_clock_wait(struct iwn_softc *sc)
8434 {
8435 	int ntries;
8436 
8437 	/* Set "initialization complete" bit. */
8438 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8439 
8440 	/* Wait for clock stabilization. */
8441 	for (ntries = 0; ntries < 2500; ntries++) {
8442 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
8443 			return 0;
8444 		DELAY(10);
8445 	}
8446 	device_printf(sc->sc_dev,
8447 	    "%s: timeout waiting for clock stabilization\n", __func__);
8448 	return ETIMEDOUT;
8449 }
8450 
8451 static int
8452 iwn_apm_init(struct iwn_softc *sc)
8453 {
8454 	uint32_t reg;
8455 	int error;
8456 
8457 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8458 
8459 	/* Disable L0s exit timer (NMI bug workaround). */
8460 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
8461 	/* Don't wait for ICH L0s (ICH bug workaround). */
8462 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
8463 
8464 	/* Set FH wait threshold to max (HW bug under stress workaround). */
8465 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
8466 
8467 	/* Enable HAP INTA to move adapter from L1a to L0s. */
8468 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
8469 
8470 	/* Retrieve PCIe Active State Power Management (ASPM). */
8471 #if defined(__DragonFly__)
8472 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINKCTRL, 4);
8473 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
8474 	if (reg & PCIEM_LNKCTL_ASPM_L1)	/* L1 Entry enabled. */
8475 #else
8476 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
8477 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
8478 	if (reg & PCIEM_LINK_CTL_ASPMC_L1)	/* L1 Entry enabled. */
8479 #endif
8480 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8481 	else
8482 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8483 
8484 	if (sc->base_params->pll_cfg_val)
8485 		IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val);
8486 
8487 	/* Wait for clock stabilization before accessing prph. */
8488 	if ((error = iwn_clock_wait(sc)) != 0)
8489 		return error;
8490 
8491 	if ((error = iwn_nic_lock(sc)) != 0)
8492 		return error;
8493 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
8494 		/* Enable DMA and BSM (Bootstrap State Machine). */
8495 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8496 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
8497 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
8498 	} else {
8499 		/* Enable DMA. */
8500 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8501 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8502 	}
8503 	DELAY(20);
8504 	/* Disable L1-Active. */
8505 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
8506 	iwn_nic_unlock(sc);
8507 
8508 	return 0;
8509 }
8510 
8511 static void
8512 iwn_apm_stop_master(struct iwn_softc *sc)
8513 {
8514 	int ntries;
8515 
8516 	/* Stop busmaster DMA activity. */
8517 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
8518 	for (ntries = 0; ntries < 100; ntries++) {
8519 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
8520 			return;
8521 		DELAY(10);
8522 	}
8523 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
8524 }
8525 
8526 static void
8527 iwn_apm_stop(struct iwn_softc *sc)
8528 {
8529 	iwn_apm_stop_master(sc);
8530 
8531 	/* Reset the entire device. */
8532 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
8533 	DELAY(10);
8534 	/* Clear "initialization complete" bit. */
8535 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8536 }
8537 
8538 static int
8539 iwn4965_nic_config(struct iwn_softc *sc)
8540 {
8541 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8542 
8543 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
8544 		/*
8545 		 * I don't believe this to be correct but this is what the
8546 		 * vendor driver is doing. Probably the bits should not be
8547 		 * shifted in IWN_RFCFG_*.
8548 		 */
8549 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8550 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8551 		    IWN_RFCFG_STEP(sc->rfcfg) |
8552 		    IWN_RFCFG_DASH(sc->rfcfg));
8553 	}
8554 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8555 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8556 	return 0;
8557 }
8558 
8559 static int
8560 iwn5000_nic_config(struct iwn_softc *sc)
8561 {
8562 	uint32_t tmp;
8563 	int error;
8564 
8565 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8566 
8567 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
8568 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8569 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8570 		    IWN_RFCFG_STEP(sc->rfcfg) |
8571 		    IWN_RFCFG_DASH(sc->rfcfg));
8572 	}
8573 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8574 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8575 
8576 	if ((error = iwn_nic_lock(sc)) != 0)
8577 		return error;
8578 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
8579 
8580 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
8581 		/*
8582 		 * Select first Switching Voltage Regulator (1.32V) to
8583 		 * solve a stability issue related to noisy DC2DC line
8584 		 * in the silicon of 1000 Series.
8585 		 */
8586 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
8587 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
8588 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
8589 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
8590 	}
8591 	iwn_nic_unlock(sc);
8592 
8593 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
8594 		/* Use internal power amplifier only. */
8595 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
8596 	}
8597 	if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) {
8598 		/* Indicate that ROM calibration version is >=6. */
8599 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
8600 	}
8601 	if (sc->base_params->additional_gp_drv_bit)
8602 		IWN_SETBITS(sc, IWN_GP_DRIVER,
8603 		    sc->base_params->additional_gp_drv_bit);
8604 	return 0;
8605 }
8606 
8607 /*
8608  * Take NIC ownership over Intel Active Management Technology (AMT).
8609  */
8610 static int
8611 iwn_hw_prepare(struct iwn_softc *sc)
8612 {
8613 	int ntries;
8614 
8615 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8616 
8617 	/* Check if hardware is ready. */
8618 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8619 	for (ntries = 0; ntries < 5; ntries++) {
8620 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8621 		    IWN_HW_IF_CONFIG_NIC_READY)
8622 			return 0;
8623 		DELAY(10);
8624 	}
8625 
8626 	/* Hardware not ready, force into ready state. */
8627 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
8628 	for (ntries = 0; ntries < 15000; ntries++) {
8629 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
8630 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
8631 			break;
8632 		DELAY(10);
8633 	}
8634 	if (ntries == 15000)
8635 		return ETIMEDOUT;
8636 
8637 	/* Hardware should be ready now. */
8638 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8639 	for (ntries = 0; ntries < 5; ntries++) {
8640 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8641 		    IWN_HW_IF_CONFIG_NIC_READY)
8642 			return 0;
8643 		DELAY(10);
8644 	}
8645 	return ETIMEDOUT;
8646 }
8647 
8648 static int
8649 iwn_hw_init(struct iwn_softc *sc)
8650 {
8651 	struct iwn_ops *ops = &sc->ops;
8652 	int error, chnl, qid;
8653 
8654 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8655 
8656 	/* Clear pending interrupts. */
8657 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8658 
8659 	if ((error = iwn_apm_init(sc)) != 0) {
8660 		device_printf(sc->sc_dev,
8661 		    "%s: could not power ON adapter, error %d\n", __func__,
8662 		    error);
8663 		return error;
8664 	}
8665 
8666 	/* Select VMAIN power source. */
8667 	if ((error = iwn_nic_lock(sc)) != 0)
8668 		return error;
8669 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
8670 	iwn_nic_unlock(sc);
8671 
8672 	/* Perform adapter-specific initialization. */
8673 	if ((error = ops->nic_config(sc)) != 0)
8674 		return error;
8675 
8676 	/* Initialize RX ring. */
8677 	if ((error = iwn_nic_lock(sc)) != 0)
8678 		return error;
8679 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
8680 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
8681 	/* Set physical address of RX ring (256-byte aligned). */
8682 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
8683 	/* Set physical address of RX status (16-byte aligned). */
8684 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
8685 	/* Enable RX. */
8686 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
8687 	    IWN_FH_RX_CONFIG_ENA           |
8688 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
8689 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
8690 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
8691 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
8692 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
8693 	iwn_nic_unlock(sc);
8694 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
8695 
8696 	if ((error = iwn_nic_lock(sc)) != 0)
8697 		return error;
8698 
8699 	/* Initialize TX scheduler. */
8700 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8701 
8702 	/* Set physical address of "keep warm" page (16-byte aligned). */
8703 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
8704 
8705 	/* Initialize TX rings. */
8706 	for (qid = 0; qid < sc->ntxqs; qid++) {
8707 		struct iwn_tx_ring *txq = &sc->txq[qid];
8708 
8709 		/* Set physical address of TX ring (256-byte aligned). */
8710 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
8711 		    txq->desc_dma.paddr >> 8);
8712 	}
8713 	iwn_nic_unlock(sc);
8714 
8715 	/* Enable DMA channels. */
8716 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8717 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
8718 		    IWN_FH_TX_CONFIG_DMA_ENA |
8719 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
8720 	}
8721 
8722 	/* Clear "radio off" and "commands blocked" bits. */
8723 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8724 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
8725 
8726 	/* Clear pending interrupts. */
8727 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8728 	/* Enable interrupt coalescing. */
8729 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
8730 	/* Enable interrupts. */
8731 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8732 
8733 	/* _Really_ make sure "radio off" bit is cleared! */
8734 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8735 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8736 
8737 	/* Enable shadow registers. */
8738 	if (sc->base_params->shadow_reg_enable)
8739 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
8740 
8741 	if ((error = ops->load_firmware(sc)) != 0) {
8742 		device_printf(sc->sc_dev,
8743 		    "%s: could not load firmware, error %d\n", __func__,
8744 		    error);
8745 		return error;
8746 	}
8747 	/* Wait at most one second for firmware alive notification. */
8748 #if defined(__DragonFly__)
8749 	if ((error = lksleep(sc, &sc->sc_lk, PCATCH, "iwninit", hz)) != 0) {
8750 #else
8751 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
8752 #endif
8753 		device_printf(sc->sc_dev,
8754 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8755 		    __func__, error);
8756 		return error;
8757 	}
8758 	/* Do post-firmware initialization. */
8759 
8760 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8761 
8762 	return ops->post_alive(sc);
8763 }
8764 
8765 static void
8766 iwn_hw_stop(struct iwn_softc *sc)
8767 {
8768 	int chnl, qid, ntries;
8769 
8770 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8771 
8772 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
8773 
8774 	/* Disable interrupts. */
8775 	IWN_WRITE(sc, IWN_INT_MASK, 0);
8776 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8777 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
8778 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8779 
8780 	/* Make sure we no longer hold the NIC lock. */
8781 	iwn_nic_unlock(sc);
8782 
8783 	/* Stop TX scheduler. */
8784 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8785 
8786 	/* Stop all DMA channels. */
8787 	if (iwn_nic_lock(sc) == 0) {
8788 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8789 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
8790 			for (ntries = 0; ntries < 200; ntries++) {
8791 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
8792 				    IWN_FH_TX_STATUS_IDLE(chnl))
8793 					break;
8794 				DELAY(10);
8795 			}
8796 		}
8797 		iwn_nic_unlock(sc);
8798 	}
8799 
8800 	/* Stop RX ring. */
8801 	iwn_reset_rx_ring(sc, &sc->rxq);
8802 
8803 	/* Reset all TX rings. */
8804 	for (qid = 0; qid < sc->ntxqs; qid++)
8805 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
8806 
8807 	if (iwn_nic_lock(sc) == 0) {
8808 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
8809 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8810 		iwn_nic_unlock(sc);
8811 	}
8812 	DELAY(5);
8813 	/* Power OFF adapter. */
8814 	iwn_apm_stop(sc);
8815 }
8816 
8817 static void
8818 iwn_radio_on(void *arg0, int pending)
8819 {
8820 	struct iwn_softc *sc = arg0;
8821 	struct ieee80211com *ic = &sc->sc_ic;
8822 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8823 
8824 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8825 
8826 	if (vap != NULL) {
8827 		iwn_init(sc);
8828 		ieee80211_init(vap);
8829 	}
8830 }
8831 
8832 static void
8833 iwn_radio_off(void *arg0, int pending)
8834 {
8835 	struct iwn_softc *sc = arg0;
8836 	struct ieee80211com *ic = &sc->sc_ic;
8837 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8838 
8839 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8840 
8841 	iwn_stop(sc);
8842 	if (vap != NULL)
8843 		ieee80211_stop(vap);
8844 
8845 	/* Enable interrupts to get RF toggle notification. */
8846 	IWN_LOCK(sc);
8847 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8848 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8849 	IWN_UNLOCK(sc);
8850 }
8851 
8852 static void
8853 iwn_panicked(void *arg0, int pending)
8854 {
8855 	struct iwn_softc *sc = arg0;
8856 	struct ieee80211com *ic = &sc->sc_ic;
8857 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8858 #if 0
8859 	int error;
8860 #endif
8861 
8862 	if (vap == NULL) {
8863 		kprintf("%s: null vap\n", __func__);
8864 		return;
8865 	}
8866 
8867 	device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
8868 	    "restarting\n", __func__, vap->iv_state);
8869 
8870 	/*
8871 	 * This is not enough work. We need to also reinitialise
8872 	 * the correct transmit state for aggregation enabled queues,
8873 	 * which has a very specific requirement of
8874 	 * ring index = 802.11 seqno % 256.  If we don't do this (which
8875 	 * we definitely don't!) then the firmware will just panic again.
8876 	 */
8877 #if 1
8878 	ieee80211_restart_all(ic);
8879 #else
8880 	IWN_LOCK(sc);
8881 
8882 	iwn_stop_locked(sc);
8883 	iwn_init_locked(sc);
8884 	if (vap->iv_state >= IEEE80211_S_AUTH &&
8885 	    (error = iwn_auth(sc, vap)) != 0) {
8886 		device_printf(sc->sc_dev,
8887 		    "%s: could not move to auth state\n", __func__);
8888 	}
8889 	if (vap->iv_state >= IEEE80211_S_RUN &&
8890 	    (error = iwn_run(sc, vap)) != 0) {
8891 		device_printf(sc->sc_dev,
8892 		    "%s: could not move to run state\n", __func__);
8893 	}
8894 
8895 	IWN_UNLOCK(sc);
8896 #endif
8897 }
8898 
8899 static void
8900 iwn_init_locked(struct iwn_softc *sc)
8901 {
8902 	int error;
8903 
8904 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8905 
8906 	IWN_LOCK_ASSERT(sc);
8907 
8908 	sc->sc_flags |= IWN_FLAG_RUNNING;
8909 
8910 	if ((error = iwn_hw_prepare(sc)) != 0) {
8911 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
8912 		    __func__, error);
8913 		goto fail;
8914 	}
8915 
8916 	/* Initialize interrupt mask to default value. */
8917 	sc->int_mask = IWN_INT_MASK_DEF;
8918 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8919 
8920 	/* Check that the radio is not disabled by hardware switch. */
8921 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
8922 		device_printf(sc->sc_dev,
8923 		    "radio is disabled by hardware switch\n");
8924 		/* Enable interrupts to get RF toggle notifications. */
8925 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
8926 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8927 		return;
8928 	}
8929 
8930 	/* Read firmware images from the filesystem. */
8931 	if ((error = iwn_read_firmware(sc)) != 0) {
8932 		device_printf(sc->sc_dev,
8933 		    "%s: could not read firmware, error %d\n", __func__,
8934 		    error);
8935 		goto fail;
8936 	}
8937 
8938 	/* Initialize hardware and upload firmware. */
8939 	error = iwn_hw_init(sc);
8940 	iwn_unload_firmware(sc);
8941 	if (error != 0) {
8942 		device_printf(sc->sc_dev,
8943 		    "%s: could not initialize hardware, error %d\n", __func__,
8944 		    error);
8945 		goto fail;
8946 	}
8947 
8948 	/* Configure adapter now that it is ready. */
8949 	if ((error = iwn_config(sc)) != 0) {
8950 		device_printf(sc->sc_dev,
8951 		    "%s: could not configure device, error %d\n", __func__,
8952 		    error);
8953 		goto fail;
8954 	}
8955 
8956 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
8957 
8958 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8959 
8960 	return;
8961 
8962 fail:
8963 	sc->sc_flags &= ~IWN_FLAG_RUNNING;
8964 	iwn_stop_locked(sc);
8965 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
8966 }
8967 
8968 static void
8969 iwn_init(struct iwn_softc *sc)
8970 {
8971 
8972 	IWN_LOCK(sc);
8973 	iwn_init_locked(sc);
8974 	IWN_UNLOCK(sc);
8975 
8976 	if (sc->sc_flags & IWN_FLAG_RUNNING)
8977 		ieee80211_start_all(&sc->sc_ic);
8978 }
8979 
8980 static void
8981 iwn_stop_locked(struct iwn_softc *sc)
8982 {
8983 
8984 	IWN_LOCK_ASSERT(sc);
8985 
8986 	sc->sc_is_scanning = 0;
8987 	sc->sc_tx_timer = 0;
8988 #if defined(__DragonFly__)
8989 	callout_stop_sync(&sc->watchdog_to);
8990 	callout_stop_sync(&sc->calib_to);
8991 #else
8992 	callout_stop(&sc->watchdog_to);
8993 	callout_stop(&sc->calib_to);
8994 #endif
8995 	sc->sc_flags &= ~IWN_FLAG_RUNNING;
8996 
8997 	/* Power OFF hardware. */
8998 	iwn_hw_stop(sc);
8999 }
9000 
9001 static void
9002 iwn_stop(struct iwn_softc *sc)
9003 {
9004 	IWN_LOCK(sc);
9005 	iwn_stop_locked(sc);
9006 	IWN_UNLOCK(sc);
9007 }
9008 
9009 /*
9010  * Callback from net80211 to start a scan.
9011  */
9012 static void
9013 iwn_scan_start(struct ieee80211com *ic)
9014 {
9015 	struct iwn_softc *sc = ic->ic_softc;
9016 
9017 	IWN_LOCK(sc);
9018 	/* make the link LED blink while we're scanning */
9019 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
9020 	IWN_UNLOCK(sc);
9021 }
9022 
9023 /*
9024  * Callback from net80211 to terminate a scan.
9025  */
9026 static void
9027 iwn_scan_end(struct ieee80211com *ic)
9028 {
9029 	struct iwn_softc *sc = ic->ic_softc;
9030 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
9031 
9032 	IWN_LOCK(sc);
9033 	if (vap->iv_state == IEEE80211_S_RUN) {
9034 		/* Set link LED to ON status if we are associated */
9035 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
9036 	}
9037 	IWN_UNLOCK(sc);
9038 }
9039 
9040 /*
9041  * Callback from net80211 to force a channel change.
9042  */
9043 static void
9044 iwn_set_channel(struct ieee80211com *ic)
9045 {
9046 	const struct ieee80211_channel *c = ic->ic_curchan;
9047 	struct iwn_softc *sc = ic->ic_softc;
9048 	int error;
9049 
9050 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
9051 
9052 	IWN_LOCK(sc);
9053 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
9054 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
9055 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
9056 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
9057 
9058 	/*
9059 	 * Only need to set the channel in Monitor mode. AP scanning and auth
9060 	 * are already taken care of by their respective firmware commands.
9061 	 */
9062 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
9063 		error = iwn_config(sc);
9064 		if (error != 0)
9065 		device_printf(sc->sc_dev,
9066 		    "%s: error %d settting channel\n", __func__, error);
9067 	}
9068 	IWN_UNLOCK(sc);
9069 }
9070 
9071 /*
9072  * Callback from net80211 to start scanning of the current channel.
9073  */
9074 static void
9075 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
9076 {
9077 	struct ieee80211vap *vap = ss->ss_vap;
9078 	struct ieee80211com *ic = vap->iv_ic;
9079 	struct iwn_softc *sc = ic->ic_softc;
9080 	int error;
9081 
9082 	IWN_LOCK(sc);
9083 	error = iwn_scan(sc, vap, ss, ic->ic_curchan);
9084 	IWN_UNLOCK(sc);
9085 	if (error != 0)
9086 		ieee80211_cancel_scan(vap);
9087 }
9088 
9089 /*
9090  * Callback from net80211 to handle the minimum dwell time being met.
9091  * The intent is to terminate the scan but we just let the firmware
9092  * notify us when it's finished as we have no safe way to abort it.
9093  */
9094 static void
9095 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
9096 {
9097 	/* NB: don't try to abort scan; wait for firmware to finish */
9098 }
9099 #ifdef	IWN_DEBUG
9100 #define	IWN_DESC(x) case x:	return #x
9101 
9102 /*
9103  * Translate CSR code to string
9104  */
9105 static char *iwn_get_csr_string(int csr)
9106 {
9107 	switch (csr) {
9108 		IWN_DESC(IWN_HW_IF_CONFIG);
9109 		IWN_DESC(IWN_INT_COALESCING);
9110 		IWN_DESC(IWN_INT);
9111 		IWN_DESC(IWN_INT_MASK);
9112 		IWN_DESC(IWN_FH_INT);
9113 		IWN_DESC(IWN_GPIO_IN);
9114 		IWN_DESC(IWN_RESET);
9115 		IWN_DESC(IWN_GP_CNTRL);
9116 		IWN_DESC(IWN_HW_REV);
9117 		IWN_DESC(IWN_EEPROM);
9118 		IWN_DESC(IWN_EEPROM_GP);
9119 		IWN_DESC(IWN_OTP_GP);
9120 		IWN_DESC(IWN_GIO);
9121 		IWN_DESC(IWN_GP_UCODE);
9122 		IWN_DESC(IWN_GP_DRIVER);
9123 		IWN_DESC(IWN_UCODE_GP1);
9124 		IWN_DESC(IWN_UCODE_GP2);
9125 		IWN_DESC(IWN_LED);
9126 		IWN_DESC(IWN_DRAM_INT_TBL);
9127 		IWN_DESC(IWN_GIO_CHICKEN);
9128 		IWN_DESC(IWN_ANA_PLL);
9129 		IWN_DESC(IWN_HW_REV_WA);
9130 		IWN_DESC(IWN_DBG_HPET_MEM);
9131 	default:
9132 		return "UNKNOWN CSR";
9133 	}
9134 }
9135 
9136 /*
9137  * This function print firmware register
9138  */
9139 static void
9140 iwn_debug_register(struct iwn_softc *sc)
9141 {
9142 	int i;
9143 	static const uint32_t csr_tbl[] = {
9144 		IWN_HW_IF_CONFIG,
9145 		IWN_INT_COALESCING,
9146 		IWN_INT,
9147 		IWN_INT_MASK,
9148 		IWN_FH_INT,
9149 		IWN_GPIO_IN,
9150 		IWN_RESET,
9151 		IWN_GP_CNTRL,
9152 		IWN_HW_REV,
9153 		IWN_EEPROM,
9154 		IWN_EEPROM_GP,
9155 		IWN_OTP_GP,
9156 		IWN_GIO,
9157 		IWN_GP_UCODE,
9158 		IWN_GP_DRIVER,
9159 		IWN_UCODE_GP1,
9160 		IWN_UCODE_GP2,
9161 		IWN_LED,
9162 		IWN_DRAM_INT_TBL,
9163 		IWN_GIO_CHICKEN,
9164 		IWN_ANA_PLL,
9165 		IWN_HW_REV_WA,
9166 		IWN_DBG_HPET_MEM,
9167 	};
9168 	DPRINTF(sc, IWN_DEBUG_REGISTER,
9169 	    "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s",
9170 	    "\n");
9171 	for (i = 0; i <  nitems(csr_tbl); i++){
9172 		DPRINTF(sc, IWN_DEBUG_REGISTER,"  %10s: 0x%08x ",
9173 			iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i]));
9174 		if ((i+1) % 3 == 0)
9175 			DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9176 	}
9177 	DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9178 }
9179 #endif
9180 
9181 
9182