xref: /dragonfly/sys/dev/netif/iwn/if_iwn.c (revision 31524921)
1 /*-
2  * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr>
3  * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org>
4  * Copyright (c) 2008 Sam Leffler, Errno Consulting
5  * Copyright (c) 2011 Intel Corporation
6  * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr>
7  * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*
23  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
24  * adapters.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_wlan.h"
31 #include "opt_iwn.h"
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/bus.h>
42 #include <sys/rman.h>
43 #include <sys/endian.h>
44 #include <sys/firmware.h>
45 #include <sys/limits.h>
46 #include <sys/module.h>
47 #include <sys/queue.h>
48 #include <sys/taskqueue.h>
49 #include <sys/stdbool.h>
50 
51 #include <machine/clock.h>
52 
53 #include <bus/pci/pcireg.h>
54 #include <bus/pci/pcivar.h>
55 
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_arp.h>
60 #include <net/ethernet.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 #include <net/if_types.h>
64 #include <net/ifq_var.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/in_var.h>
69 #include <netinet/if_ether.h>
70 #include <netinet/ip.h>
71 
72 #include <netproto/802_11/ieee80211_var.h>
73 #include <netproto/802_11/ieee80211_radiotap.h>
74 #include <netproto/802_11/ieee80211_regdomain.h>
75 #include <netproto/802_11/ieee80211_ratectl.h>
76 
77 #include <dev/netif/iwn/if_iwnreg.h>
78 #include <dev/netif/iwn/if_iwnvar.h>
79 #include <dev/netif/iwn/if_iwn_devid.h>
80 #include <dev/netif/iwn/if_iwn_chip_cfg.h>
81 #include <dev/netif/iwn/if_iwn_debug.h>
82 #include <dev/netif/iwn/if_iwn_ioctl.h>
83 
84 struct iwn_ident {
85 	uint16_t	vendor;
86 	uint16_t	device;
87 	const char	*name;
88 };
89 
90 static const struct iwn_ident iwn_ident_table[] = {
91 	{ 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205"		},
92 	{ 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000"		},
93 	{ 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000"		},
94 	{ 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205"		},
95 	{ 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250"	},
96 	{ 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250"	},
97 	{ 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030"		},
98 	{ 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030"		},
99 	{ 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230"		},
100 	{ 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230"		},
101 	{ 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150"	},
102 	{ 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150"	},
103 	{ 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
104 	{ 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
105 	/* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */
106 	{ 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230"		},
107 	{ 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230"		},
108 	{ 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130"		},
109 	{ 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130"		},
110 	{ 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100"		},
111 	{ 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100"		},
112 	{ 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105"		},
113 	{ 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105"		},
114 	{ 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135"		},
115 	{ 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135"		},
116 	{ 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965"		},
117 	{ 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300"		},
118 	{ 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200"		},
119 	{ 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965"		},
120 	{ 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965"		},
121 	{ 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100"			},
122 	{ 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965"		},
123 	{ 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300"		},
124 	{ 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300"		},
125 	{ 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100"			},
126 	{ 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300"		},
127 	{ 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200"		},
128 	{ 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350"			},
129 	{ 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350"			},
130 	{ 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150"			},
131 	{ 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150"			},
132 	{ 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235"		},
133 	{ 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235"		},
134 	{ 0, 0, NULL }
135 };
136 
137 static int	iwn_probe(device_t);
138 static int	iwn_attach(device_t);
139 static int	iwn4965_attach(struct iwn_softc *, uint16_t);
140 static int	iwn5000_attach(struct iwn_softc *, uint16_t);
141 static int	iwn_config_specific(struct iwn_softc *, uint16_t);
142 static void	iwn_radiotap_attach(struct iwn_softc *);
143 static void	iwn_sysctlattach(struct iwn_softc *);
144 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
145 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
146 		    const uint8_t [IEEE80211_ADDR_LEN],
147 		    const uint8_t [IEEE80211_ADDR_LEN]);
148 static void	iwn_vap_delete(struct ieee80211vap *);
149 static int	iwn_detach(device_t);
150 static int	iwn_shutdown(device_t);
151 static int	iwn_suspend(device_t);
152 static int	iwn_resume(device_t);
153 static int	iwn_nic_lock(struct iwn_softc *);
154 static int	iwn_eeprom_lock(struct iwn_softc *);
155 static int	iwn_init_otprom(struct iwn_softc *);
156 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
157 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
158 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
159 		    void **, bus_size_t, bus_size_t);
160 static void	iwn_dma_contig_free(struct iwn_dma_info *);
161 static int	iwn_alloc_sched(struct iwn_softc *);
162 static void	iwn_free_sched(struct iwn_softc *);
163 static int	iwn_alloc_kw(struct iwn_softc *);
164 static void	iwn_free_kw(struct iwn_softc *);
165 static int	iwn_alloc_ict(struct iwn_softc *);
166 static void	iwn_free_ict(struct iwn_softc *);
167 static int	iwn_alloc_fwmem(struct iwn_softc *);
168 static void	iwn_free_fwmem(struct iwn_softc *);
169 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
170 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
171 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
172 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
173 		    int);
174 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
175 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
176 static void	iwn5000_ict_reset(struct iwn_softc *);
177 static int	iwn_read_eeprom(struct iwn_softc *,
178 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
179 static void	iwn4965_read_eeprom(struct iwn_softc *);
180 #ifdef	IWN_DEBUG
181 static void	iwn4965_print_power_group(struct iwn_softc *, int);
182 #endif
183 static void	iwn5000_read_eeprom(struct iwn_softc *);
184 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
185 static void	iwn_read_eeprom_band(struct iwn_softc *, int);
186 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int);
187 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
188 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
189 		    struct ieee80211_channel *);
190 static int	iwn_setregdomain(struct ieee80211com *,
191 		    struct ieee80211_regdomain *, int,
192 		    struct ieee80211_channel[]);
193 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
194 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
195 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
196 static void	iwn_newassoc(struct ieee80211_node *, int);
197 static int	iwn_media_change(struct ifnet *);
198 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
199 static void	iwn_calib_timeout(void *);
200 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
201 		    struct iwn_rx_data *);
202 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
203 		    struct iwn_rx_data *);
204 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
205 		    struct iwn_rx_data *);
206 static void	iwn5000_rx_calib_results(struct iwn_softc *,
207 		    struct iwn_rx_desc *, struct iwn_rx_data *);
208 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
209 		    struct iwn_rx_data *);
210 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
211 		    struct iwn_rx_data *);
212 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
213 		    struct iwn_rx_data *);
214 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
215 		    uint8_t);
216 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, int, void *);
217 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
218 static void	iwn_notif_intr(struct iwn_softc *);
219 static void	iwn_wakeup_intr(struct iwn_softc *);
220 static void	iwn_rftoggle_intr(struct iwn_softc *);
221 static void	iwn_fatal_intr(struct iwn_softc *);
222 static void	iwn_intr(void *);
223 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
224 		    uint16_t);
225 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
226 		    uint16_t);
227 #ifdef notyet
228 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
229 #endif
230 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
231 		    struct ieee80211_node *);
232 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
233 		    struct ieee80211_node *,
234 		    const struct ieee80211_bpf_params *params);
235 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
236 		    const struct ieee80211_bpf_params *);
237 #if defined(__DragonFly__)
238 static void	iwn_start(struct ifnet *,  struct ifaltq_subque *);
239 #else
240 static void	iwn_start(struct ifnet *);
241 #endif
242 static void	iwn_start_locked(struct ifnet *);
243 static void	iwn_watchdog(void *);
244 #if defined(__DragonFly__)
245 static int	iwn_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
246 #else
247 static int	iwn_ioctl(struct ifnet *, u_long, caddr_t);
248 #endif
249 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
250 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
251 		    int);
252 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
253 		    int);
254 static int	iwn_set_link_quality(struct iwn_softc *,
255 		    struct ieee80211_node *);
256 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
257 static int	iwn_updateedca(struct ieee80211com *);
258 static void	iwn_update_mcast(struct ifnet *);
259 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
260 static int	iwn_set_critical_temp(struct iwn_softc *);
261 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
262 static void	iwn4965_power_calibration(struct iwn_softc *, int);
263 static int	iwn4965_set_txpower(struct iwn_softc *,
264 		    struct ieee80211_channel *, int);
265 static int	iwn5000_set_txpower(struct iwn_softc *,
266 		    struct ieee80211_channel *, int);
267 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
268 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
269 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
270 static int	iwn4965_get_temperature(struct iwn_softc *);
271 static int	iwn5000_get_temperature(struct iwn_softc *);
272 static int	iwn_init_sensitivity(struct iwn_softc *);
273 static void	iwn_collect_noise(struct iwn_softc *,
274 		    const struct iwn_rx_general_stats *);
275 static int	iwn4965_init_gains(struct iwn_softc *);
276 static int	iwn5000_init_gains(struct iwn_softc *);
277 static int	iwn4965_set_gains(struct iwn_softc *);
278 static int	iwn5000_set_gains(struct iwn_softc *);
279 static void	iwn_tune_sensitivity(struct iwn_softc *,
280 		    const struct iwn_rx_stats *);
281 static void	iwn_save_stats_counters(struct iwn_softc *,
282 		    const struct iwn_stats *);
283 static int	iwn_send_sensitivity(struct iwn_softc *);
284 static void	iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *);
285 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
286 static int	iwn_send_btcoex(struct iwn_softc *);
287 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
288 static int	iwn5000_runtime_calib(struct iwn_softc *);
289 static int	iwn_config(struct iwn_softc *);
290 static int	iwn_scan(struct iwn_softc *, struct ieee80211vap *,
291 		    struct ieee80211_scan_state *, struct ieee80211_channel *);
292 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
293 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
294 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
295 		    struct ieee80211_rx_ampdu *, int, int, int);
296 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
297 		    struct ieee80211_rx_ampdu *);
298 static int	iwn_addba_request(struct ieee80211_node *,
299 		    struct ieee80211_tx_ampdu *, int, int, int);
300 static int	iwn_addba_response(struct ieee80211_node *,
301 		    struct ieee80211_tx_ampdu *, int, int, int);
302 static int	iwn_ampdu_tx_start(struct ieee80211com *,
303 		    struct ieee80211_node *, uint8_t);
304 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
305 		    struct ieee80211_tx_ampdu *);
306 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
307 		    struct ieee80211_node *, int, uint8_t, uint16_t);
308 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
309 		    uint8_t, uint16_t);
310 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
311 		    struct ieee80211_node *, int, uint8_t, uint16_t);
312 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
313 		    uint8_t, uint16_t);
314 static int	iwn5000_query_calibration(struct iwn_softc *);
315 static int	iwn5000_send_calibration(struct iwn_softc *);
316 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
317 static int	iwn5000_crystal_calib(struct iwn_softc *);
318 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
319 static int	iwn5000_temp_offset_calibv2(struct iwn_softc *);
320 static int	iwn4965_post_alive(struct iwn_softc *);
321 static int	iwn5000_post_alive(struct iwn_softc *);
322 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
323 		    int);
324 static int	iwn4965_load_firmware(struct iwn_softc *);
325 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
326 		    const uint8_t *, int);
327 static int	iwn5000_load_firmware(struct iwn_softc *);
328 static int	iwn_read_firmware_leg(struct iwn_softc *,
329 		    struct iwn_fw_info *);
330 static int	iwn_read_firmware_tlv(struct iwn_softc *,
331 		    struct iwn_fw_info *, uint16_t);
332 static int	iwn_read_firmware(struct iwn_softc *);
333 static int	iwn_clock_wait(struct iwn_softc *);
334 static int	iwn_apm_init(struct iwn_softc *);
335 static void	iwn_apm_stop_master(struct iwn_softc *);
336 static void	iwn_apm_stop(struct iwn_softc *);
337 static int	iwn4965_nic_config(struct iwn_softc *);
338 static int	iwn5000_nic_config(struct iwn_softc *);
339 static int	iwn_hw_prepare(struct iwn_softc *);
340 static int	iwn_hw_init(struct iwn_softc *);
341 static void	iwn_hw_stop(struct iwn_softc *);
342 static void	iwn_radio_on(void *, int);
343 static void	iwn_radio_off(void *, int);
344 static void	iwn_panicked(void *, int);
345 static void	iwn_init_locked(struct iwn_softc *);
346 static void	iwn_init(void *);
347 static void	iwn_stop_locked(struct iwn_softc *);
348 static void	iwn_stop(struct iwn_softc *);
349 static void	iwn_scan_start(struct ieee80211com *);
350 static void	iwn_scan_end(struct ieee80211com *);
351 static void	iwn_set_channel(struct ieee80211com *);
352 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
353 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
354 static void	iwn_hw_reset(void *, int);
355 #ifdef	IWN_DEBUG
356 static char	*iwn_get_csr_string(int);
357 static void	iwn_debug_register(struct iwn_softc *);
358 #endif
359 static int	iwn_sleep(struct iwn_softc *sc, void *wchan,
360 				int flags, const char *wmsg, int timo);
361 
362 static device_method_t iwn_methods[] = {
363 	/* Device interface */
364 	DEVMETHOD(device_probe,		iwn_probe),
365 	DEVMETHOD(device_attach,	iwn_attach),
366 	DEVMETHOD(device_detach,	iwn_detach),
367 	DEVMETHOD(device_shutdown,	iwn_shutdown),
368 	DEVMETHOD(device_suspend,	iwn_suspend),
369 	DEVMETHOD(device_resume,	iwn_resume),
370 
371 	DEVMETHOD_END
372 };
373 
374 static driver_t iwn_driver = {
375 	"iwn",
376 	iwn_methods,
377 	sizeof(struct iwn_softc)
378 };
379 static devclass_t iwn_devclass;
380 
381 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL);
382 
383 MODULE_VERSION(iwn, 1);
384 
385 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
386 MODULE_DEPEND(iwn, pci, 1, 1, 1);
387 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
388 
389 static int
390 iwn_probe(device_t dev)
391 {
392 	const struct iwn_ident *ident;
393 
394 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
395 		if (pci_get_vendor(dev) == ident->vendor &&
396 		    pci_get_device(dev) == ident->device) {
397 			device_set_desc(dev, ident->name);
398 			return (BUS_PROBE_DEFAULT);
399 		}
400 	}
401 	return ENXIO;
402 }
403 
404 static int
405 iwn_is_3stream_device(struct iwn_softc *sc)
406 {
407 	/* XXX for now only 5300, until the 5350 can be tested */
408 	if (sc->hw_type == IWN_HW_REV_TYPE_5300)
409 		return (1);
410 	return (0);
411 }
412 
413 static int
414 iwn_attach(device_t dev)
415 {
416 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
417 	struct ieee80211com *ic;
418 	struct ifnet *ifp;
419 	int i, error, rid;
420 	uint8_t macaddr[IEEE80211_ADDR_LEN];
421 	char ethstr[ETHER_ADDRSTRLEN + 1];
422 
423 	wlan_serialize_enter();
424 
425 	sc->sc_dev = dev;
426 
427 #ifdef	IWN_DEBUG
428 	error = resource_int_value(device_get_name(sc->sc_dev),
429 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
430 	if (error != 0)
431 		sc->sc_debug = 0;
432 #else
433 	sc->sc_debug = 0;
434 #endif
435 
436 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__);
437 
438 	/*
439 	 * Get the offset of the PCI Express Capability Structure in PCI
440 	 * Configuration Space.
441 	 */
442 #if defined(__DragonFly__)
443 	error = pci_find_extcap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
444 #else
445 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
446 #endif
447 	if (error != 0) {
448 		device_printf(dev, "PCIe capability structure not found!\n");
449 		wlan_serialize_exit();
450 		return error;
451 	}
452 
453 	/* Clear device-specific "PCI retry timeout" register (41h). */
454 	pci_write_config(dev, 0x41, 0, 1);
455 
456 	/* Enable bus-mastering. */
457 	pci_enable_busmaster(dev);
458 
459 	rid = PCIR_BAR(0);
460 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
461 	    RF_ACTIVE);
462 	if (sc->mem == NULL) {
463 		device_printf(dev, "can't map mem space\n");
464 		error = ENOMEM;
465 		wlan_serialize_exit();
466 		return error;
467 	}
468 	sc->sc_st = rman_get_bustag(sc->mem);
469 	sc->sc_sh = rman_get_bushandle(sc->mem);
470 
471 	rid = 0;
472 #ifdef OLD_MSI
473 	i = 1;
474 	if (pci_alloc_msi(dev, &i) == 0)
475 		rid = 1;
476 #endif
477 	/* Install interrupt handler. */
478 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
479 	    (rid != 0 ? 0 : RF_SHAREABLE));
480 	if (sc->irq == NULL) {
481 		device_printf(dev, "can't map interrupt\n");
482 		error = ENOMEM;
483 		goto fail;
484 	}
485 
486 	IWN_LOCK_INIT(sc);
487 
488 	/* Read hardware revision and attach. */
489 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT)
490 	    & IWN_HW_REV_TYPE_MASK;
491 	sc->subdevice_id = pci_get_subdevice(dev);
492 
493 	/*
494 	 * 4965 versus 5000 and later have different methods.
495 	 * Let's set those up first.
496 	 */
497 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
498 		error = iwn4965_attach(sc, pci_get_device(dev));
499 	else
500 		error = iwn5000_attach(sc, pci_get_device(dev));
501 	if (error != 0) {
502 		device_printf(dev, "could not attach device, error %d\n",
503 		    error);
504 		goto fail;
505 	}
506 
507 	/*
508 	 * Next, let's setup the various parameters of each NIC.
509 	 */
510 	error = iwn_config_specific(sc, pci_get_device(dev));
511 	if (error != 0) {
512 		device_printf(dev, "could not attach device, error %d\n",
513 		    error);
514 		goto fail;
515 	}
516 
517 	if ((error = iwn_hw_prepare(sc)) != 0) {
518 		device_printf(dev, "hardware not ready, error %d\n", error);
519 		goto fail;
520 	}
521 
522 	/* Allocate DMA memory for firmware transfers. */
523 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
524 		device_printf(dev,
525 		    "could not allocate memory for firmware, error %d\n",
526 		    error);
527 		goto fail;
528 	}
529 
530 	/* Allocate "Keep Warm" page. */
531 	if ((error = iwn_alloc_kw(sc)) != 0) {
532 		device_printf(dev,
533 		    "could not allocate keep warm page, error %d\n", error);
534 		goto fail;
535 	}
536 
537 	/* Allocate ICT table for 5000 Series. */
538 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
539 	    (error = iwn_alloc_ict(sc)) != 0) {
540 		device_printf(dev, "could not allocate ICT table, error %d\n",
541 		    error);
542 		goto fail;
543 	}
544 
545 	/* Allocate TX scheduler "rings". */
546 	if ((error = iwn_alloc_sched(sc)) != 0) {
547 		device_printf(dev,
548 		    "could not allocate TX scheduler rings, error %d\n", error);
549 		goto fail;
550 	}
551 
552 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
553 	for (i = 0; i < sc->ntxqs; i++) {
554 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
555 			device_printf(dev,
556 			    "could not allocate TX ring %d, error %d\n", i,
557 			    error);
558 			goto fail;
559 		}
560 	}
561 
562 	/* Allocate RX ring. */
563 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
564 		device_printf(dev, "could not allocate RX ring, error %d\n",
565 		    error);
566 		goto fail;
567 	}
568 
569 	/* Clear pending interrupts. */
570 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
571 
572 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
573 	if (ifp == NULL) {
574 		device_printf(dev, "can not allocate ifnet structure\n");
575 		goto fail;
576 	}
577 
578 	ic = ifp->if_l2com;
579 	ic->ic_ifp = ifp;
580 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
581 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
582 
583 	/* Set device capabilities. */
584 	ic->ic_caps =
585 		  IEEE80211_C_STA		/* station mode supported */
586 		| IEEE80211_C_MONITOR		/* monitor mode supported */
587 		| IEEE80211_C_BGSCAN		/* background scanning */
588 		| IEEE80211_C_TXPMGT		/* tx power management */
589 		| IEEE80211_C_SHSLOT		/* short slot time supported */
590 		| IEEE80211_C_WPA
591 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
592 #if 0
593 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
594 #endif
595 		| IEEE80211_C_WME		/* WME */
596 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
597 		;
598 
599 	/* Read MAC address, channels, etc from EEPROM. */
600 	if ((error = iwn_read_eeprom(sc, macaddr)) != 0) {
601 		device_printf(dev, "could not read EEPROM, error %d\n",
602 		    error);
603 		goto fail;
604 	}
605 
606 	/* Count the number of available chains. */
607 	sc->ntxchains =
608 	    ((sc->txchainmask >> 2) & 1) +
609 	    ((sc->txchainmask >> 1) & 1) +
610 	    ((sc->txchainmask >> 0) & 1);
611 	sc->nrxchains =
612 	    ((sc->rxchainmask >> 2) & 1) +
613 	    ((sc->rxchainmask >> 1) & 1) +
614 	    ((sc->rxchainmask >> 0) & 1);
615 	if (bootverbose) {
616 		device_printf(dev, "MIMO %dT%dR, %.4s, address %s\n",
617 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
618 		    kether_ntoa(macaddr, ethstr));
619 	}
620 
621 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
622 		ic->ic_rxstream = sc->nrxchains;
623 		ic->ic_txstream = sc->ntxchains;
624 
625 		/*
626 		 * Some of the 3 antenna devices (ie, the 4965) only supports
627 		 * 2x2 operation.  So correct the number of streams if
628 		 * it's not a 3-stream device.
629 		 */
630 		if (! iwn_is_3stream_device(sc)) {
631 			if (ic->ic_rxstream > 2)
632 				ic->ic_rxstream = 2;
633 			if (ic->ic_txstream > 2)
634 				ic->ic_txstream = 2;
635 		}
636 
637 		ic->ic_htcaps =
638 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
639 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
640 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
641 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
642 #ifdef notyet
643 			| IEEE80211_HTCAP_GREENFIELD
644 #if IWN_RBUF_SIZE == 8192
645 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
646 #else
647 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
648 #endif
649 #endif
650 			/* s/w capabilities */
651 			| IEEE80211_HTC_HT		/* HT operation */
652 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
653 #ifdef notyet
654 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
655 #endif
656 			;
657 	}
658 
659 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
660 	ifp->if_softc = sc;
661 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
662 	ifp->if_init = iwn_init;
663 	ifp->if_ioctl = iwn_ioctl;
664 	ifp->if_start = iwn_start;
665 #if defined(__DragonFly__)
666 	ifp->if_nmbjclusters = IWN_RX_RING_COUNT;
667 	ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
668 #else
669 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
670 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
671 	IFQ_SET_READY(&ifp->if_snd);
672 #endif
673 
674 	ieee80211_ifattach(ic, macaddr);
675 	ic->ic_vap_create = iwn_vap_create;
676 	ic->ic_vap_delete = iwn_vap_delete;
677 	ic->ic_raw_xmit = iwn_raw_xmit;
678 	ic->ic_node_alloc = iwn_node_alloc;
679 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
680 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
681 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
682 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
683 	sc->sc_addba_request = ic->ic_addba_request;
684 	ic->ic_addba_request = iwn_addba_request;
685 	sc->sc_addba_response = ic->ic_addba_response;
686 	ic->ic_addba_response = iwn_addba_response;
687 	sc->sc_addba_stop = ic->ic_addba_stop;
688 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
689 	ic->ic_newassoc = iwn_newassoc;
690 	ic->ic_wme.wme_update = iwn_updateedca;
691 	ic->ic_update_mcast = iwn_update_mcast;
692 	ic->ic_scan_start = iwn_scan_start;
693 	ic->ic_scan_end = iwn_scan_end;
694 	ic->ic_set_channel = iwn_set_channel;
695 	ic->ic_scan_curchan = iwn_scan_curchan;
696 	ic->ic_scan_mindwell = iwn_scan_mindwell;
697 	ic->ic_setregdomain = iwn_setregdomain;
698 
699 	iwn_radiotap_attach(sc);
700 
701 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
702 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
703 	TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset, sc);
704 	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc);
705 	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc);
706 	TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked, sc);
707 
708 	sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK,
709 	    taskqueue_thread_enqueue, &sc->sc_tq);
710 #if defined(__DragonFly__)
711 	error = taskqueue_start_threads(&sc->sc_tq, 1, TDPRI_KERN_DAEMON,
712 					-1, "iwn_taskq");
713 #else
714 	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwn_taskq");
715 #endif
716 	if (error != 0) {
717 		device_printf(dev, "can't start threads, error %d\n", error);
718 		goto fail;
719 	}
720 
721 	iwn_sysctlattach(sc);
722 
723 	/*
724 	 * Hook our interrupt after all initialization is complete.
725 	 */
726 #if defined(__DragonFly__)
727 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
728 			       iwn_intr, sc, &sc->sc_ih,
729 			       &wlan_global_serializer);
730 #else
731 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
732 	    NULL, iwn_intr, sc, &sc->sc_ih);
733 #endif
734 	if (error != 0) {
735 		device_printf(dev, "can't establish interrupt, error %d\n",
736 		    error);
737 		goto fail;
738 	}
739 
740 #if 0
741 	device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n",
742 	    __func__,
743 	    sizeof(struct iwn_stats),
744 	    sizeof(struct iwn_stats_bt));
745 #endif
746 
747 	if (bootverbose)
748 		ieee80211_announce(ic);
749 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
750 	wlan_serialize_exit();
751 	return 0;
752 fail:
753 	wlan_serialize_exit();
754 	iwn_detach(dev);
755 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
756 	return error;
757 }
758 
759 /*
760  * Define specific configuration based on device id and subdevice id
761  * pid : PCI device id
762  */
763 static int
764 iwn_config_specific(struct iwn_softc *sc, uint16_t pid)
765 {
766 
767 	switch (pid) {
768 /* 4965 series */
769 	case IWN_DID_4965_1:
770 	case IWN_DID_4965_2:
771 	case IWN_DID_4965_3:
772 	case IWN_DID_4965_4:
773 		sc->base_params = &iwn4965_base_params;
774 		sc->limits = &iwn4965_sensitivity_limits;
775 		sc->fwname = "iwn4965fw";
776 		/* Override chains masks, ROM is known to be broken. */
777 		sc->txchainmask = IWN_ANT_AB;
778 		sc->rxchainmask = IWN_ANT_ABC;
779 		/* Enable normal btcoex */
780 		sc->sc_flags |= IWN_FLAG_BTCOEX;
781 		break;
782 /* 1000 Series */
783 	case IWN_DID_1000_1:
784 	case IWN_DID_1000_2:
785 		switch(sc->subdevice_id) {
786 			case	IWN_SDID_1000_1:
787 			case	IWN_SDID_1000_2:
788 			case	IWN_SDID_1000_3:
789 			case	IWN_SDID_1000_4:
790 			case	IWN_SDID_1000_5:
791 			case	IWN_SDID_1000_6:
792 			case	IWN_SDID_1000_7:
793 			case	IWN_SDID_1000_8:
794 			case	IWN_SDID_1000_9:
795 			case	IWN_SDID_1000_10:
796 			case	IWN_SDID_1000_11:
797 			case	IWN_SDID_1000_12:
798 				sc->limits = &iwn1000_sensitivity_limits;
799 				sc->base_params = &iwn1000_base_params;
800 				sc->fwname = "iwn1000fw";
801 				break;
802 			default:
803 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
804 				    "0x%04x rev %d not supported (subdevice)\n", pid,
805 				    sc->subdevice_id,sc->hw_type);
806 				return ENOTSUP;
807 		}
808 		break;
809 /* 6x00 Series */
810 	case IWN_DID_6x00_2:
811 	case IWN_DID_6x00_4:
812 	case IWN_DID_6x00_1:
813 	case IWN_DID_6x00_3:
814 		sc->fwname = "iwn6000fw";
815 		sc->limits = &iwn6000_sensitivity_limits;
816 		switch(sc->subdevice_id) {
817 			case IWN_SDID_6x00_1:
818 			case IWN_SDID_6x00_2:
819 			case IWN_SDID_6x00_8:
820 				//iwl6000_3agn_cfg
821 				sc->base_params = &iwn_6000_base_params;
822 				break;
823 			case IWN_SDID_6x00_3:
824 			case IWN_SDID_6x00_6:
825 			case IWN_SDID_6x00_9:
826 				////iwl6000i_2agn
827 			case IWN_SDID_6x00_4:
828 			case IWN_SDID_6x00_7:
829 			case IWN_SDID_6x00_10:
830 				//iwl6000i_2abg_cfg
831 			case IWN_SDID_6x00_5:
832 				//iwl6000i_2bg_cfg
833 				sc->base_params = &iwn_6000i_base_params;
834 				sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
835 				sc->txchainmask = IWN_ANT_BC;
836 				sc->rxchainmask = IWN_ANT_BC;
837 				break;
838 			default:
839 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
840 				    "0x%04x rev %d not supported (subdevice)\n", pid,
841 				    sc->subdevice_id,sc->hw_type);
842 				return ENOTSUP;
843 		}
844 		break;
845 /* 6x05 Series */
846 	case IWN_DID_6x05_1:
847 	case IWN_DID_6x05_2:
848 		switch(sc->subdevice_id) {
849 			case IWN_SDID_6x05_1:
850 			case IWN_SDID_6x05_4:
851 			case IWN_SDID_6x05_6:
852 				//iwl6005_2agn_cfg
853 			case IWN_SDID_6x05_2:
854 			case IWN_SDID_6x05_5:
855 			case IWN_SDID_6x05_7:
856 				//iwl6005_2abg_cfg
857 			case IWN_SDID_6x05_3:
858 				//iwl6005_2bg_cfg
859 			case IWN_SDID_6x05_8:
860 			case IWN_SDID_6x05_9:
861 				//iwl6005_2agn_sff_cfg
862 			case IWN_SDID_6x05_10:
863 				//iwl6005_2agn_d_cfg
864 			case IWN_SDID_6x05_11:
865 				//iwl6005_2agn_mow1_cfg
866 			case IWN_SDID_6x05_12:
867 				//iwl6005_2agn_mow2_cfg
868 				sc->fwname = "iwn6000g2afw";
869 				sc->limits = &iwn6000_sensitivity_limits;
870 				sc->base_params = &iwn_6000g2_base_params;
871 				break;
872 			default:
873 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
874 				    "0x%04x rev %d not supported (subdevice)\n", pid,
875 				    sc->subdevice_id,sc->hw_type);
876 				return ENOTSUP;
877 		}
878 		break;
879 /* 6x35 Series */
880 	case IWN_DID_6035_1:
881 	case IWN_DID_6035_2:
882 		switch(sc->subdevice_id) {
883 			case IWN_SDID_6035_1:
884 			case IWN_SDID_6035_2:
885 			case IWN_SDID_6035_3:
886 			case IWN_SDID_6035_4:
887 				sc->fwname = "iwn6000g2bfw";
888 				sc->limits = &iwn6235_sensitivity_limits;
889 				sc->base_params = &iwn_6235_base_params;
890 				break;
891 			default:
892 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
893 				    "0x%04x rev %d not supported (subdevice)\n", pid,
894 				    sc->subdevice_id,sc->hw_type);
895 				return ENOTSUP;
896 		}
897 		break;
898 /* 6x50 WiFi/WiMax Series */
899 	case IWN_DID_6050_1:
900 	case IWN_DID_6050_2:
901 		switch(sc->subdevice_id) {
902 			case IWN_SDID_6050_1:
903 			case IWN_SDID_6050_3:
904 			case IWN_SDID_6050_5:
905 				//iwl6050_2agn_cfg
906 			case IWN_SDID_6050_2:
907 			case IWN_SDID_6050_4:
908 			case IWN_SDID_6050_6:
909 				//iwl6050_2abg_cfg
910 				sc->fwname = "iwn6050fw";
911 				sc->txchainmask = IWN_ANT_AB;
912 				sc->rxchainmask = IWN_ANT_AB;
913 				sc->limits = &iwn6000_sensitivity_limits;
914 				sc->base_params = &iwn_6050_base_params;
915 				break;
916 			default:
917 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
918 				    "0x%04x rev %d not supported (subdevice)\n", pid,
919 				    sc->subdevice_id,sc->hw_type);
920 				return ENOTSUP;
921 		}
922 		break;
923 /* 6150 WiFi/WiMax Series */
924 	case IWN_DID_6150_1:
925 	case IWN_DID_6150_2:
926 		switch(sc->subdevice_id) {
927 			case IWN_SDID_6150_1:
928 			case IWN_SDID_6150_3:
929 			case IWN_SDID_6150_5:
930 				// iwl6150_bgn_cfg
931 			case IWN_SDID_6150_2:
932 			case IWN_SDID_6150_4:
933 			case IWN_SDID_6150_6:
934 				//iwl6150_bg_cfg
935 				sc->fwname = "iwn6050fw";
936 				sc->limits = &iwn6000_sensitivity_limits;
937 				sc->base_params = &iwn_6150_base_params;
938 				break;
939 			default:
940 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
941 				    "0x%04x rev %d not supported (subdevice)\n", pid,
942 				    sc->subdevice_id,sc->hw_type);
943 				return ENOTSUP;
944 		}
945 		break;
946 /* 6030 Series and 1030 Series */
947 	case IWN_DID_x030_1:
948 	case IWN_DID_x030_2:
949 	case IWN_DID_x030_3:
950 	case IWN_DID_x030_4:
951 		switch(sc->subdevice_id) {
952 			case IWN_SDID_x030_1:
953 			case IWN_SDID_x030_3:
954 			case IWN_SDID_x030_5:
955 			// iwl1030_bgn_cfg
956 			case IWN_SDID_x030_2:
957 			case IWN_SDID_x030_4:
958 			case IWN_SDID_x030_6:
959 			//iwl1030_bg_cfg
960 			case IWN_SDID_x030_7:
961 			case IWN_SDID_x030_10:
962 			case IWN_SDID_x030_14:
963 			//iwl6030_2agn_cfg
964 			case IWN_SDID_x030_8:
965 			case IWN_SDID_x030_11:
966 			case IWN_SDID_x030_15:
967 			// iwl6030_2bgn_cfg
968 			case IWN_SDID_x030_9:
969 			case IWN_SDID_x030_12:
970 			case IWN_SDID_x030_16:
971 			// iwl6030_2abg_cfg
972 			case IWN_SDID_x030_13:
973 			//iwl6030_2bg_cfg
974 				sc->fwname = "iwn6000g2bfw";
975 				sc->limits = &iwn6000_sensitivity_limits;
976 				sc->base_params = &iwn_6000g2b_base_params;
977 				break;
978 			default:
979 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
980 				    "0x%04x rev %d not supported (subdevice)\n", pid,
981 				    sc->subdevice_id,sc->hw_type);
982 				return ENOTSUP;
983 		}
984 		break;
985 /* 130 Series WiFi */
986 /* XXX: This series will need adjustment for rate.
987  * see rx_with_siso_diversity in linux kernel
988  */
989 	case IWN_DID_130_1:
990 	case IWN_DID_130_2:
991 		switch(sc->subdevice_id) {
992 			case IWN_SDID_130_1:
993 			case IWN_SDID_130_3:
994 			case IWN_SDID_130_5:
995 			//iwl130_bgn_cfg
996 			case IWN_SDID_130_2:
997 			case IWN_SDID_130_4:
998 			case IWN_SDID_130_6:
999 			//iwl130_bg_cfg
1000 				sc->fwname = "iwn6000g2bfw";
1001 				sc->limits = &iwn6000_sensitivity_limits;
1002 				sc->base_params = &iwn_6000g2b_base_params;
1003 				break;
1004 			default:
1005 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1006 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1007 				    sc->subdevice_id,sc->hw_type);
1008 				return ENOTSUP;
1009 		}
1010 		break;
1011 /* 100 Series WiFi */
1012 	case IWN_DID_100_1:
1013 	case IWN_DID_100_2:
1014 		switch(sc->subdevice_id) {
1015 			case IWN_SDID_100_1:
1016 			case IWN_SDID_100_2:
1017 			case IWN_SDID_100_3:
1018 			case IWN_SDID_100_4:
1019 			case IWN_SDID_100_5:
1020 			case IWN_SDID_100_6:
1021 				sc->limits = &iwn1000_sensitivity_limits;
1022 				sc->base_params = &iwn1000_base_params;
1023 				sc->fwname = "iwn100fw";
1024 				break;
1025 			default:
1026 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1027 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1028 				    sc->subdevice_id,sc->hw_type);
1029 				return ENOTSUP;
1030 		}
1031 		break;
1032 
1033 /* 105 Series */
1034 /* XXX: This series will need adjustment for rate.
1035  * see rx_with_siso_diversity in linux kernel
1036  */
1037 	case IWN_DID_105_1:
1038 	case IWN_DID_105_2:
1039 		switch(sc->subdevice_id) {
1040 			case IWN_SDID_105_1:
1041 			case IWN_SDID_105_2:
1042 			case IWN_SDID_105_3:
1043 			//iwl105_bgn_cfg
1044 			case IWN_SDID_105_4:
1045 			//iwl105_bgn_d_cfg
1046 				sc->limits = &iwn2030_sensitivity_limits;
1047 				sc->base_params = &iwn2000_base_params;
1048 				sc->fwname = "iwn105fw";
1049 				break;
1050 			default:
1051 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1052 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1053 				    sc->subdevice_id,sc->hw_type);
1054 				return ENOTSUP;
1055 		}
1056 		break;
1057 
1058 /* 135 Series */
1059 /* XXX: This series will need adjustment for rate.
1060  * see rx_with_siso_diversity in linux kernel
1061  */
1062 	case IWN_DID_135_1:
1063 	case IWN_DID_135_2:
1064 		switch(sc->subdevice_id) {
1065 			case IWN_SDID_135_1:
1066 			case IWN_SDID_135_2:
1067 			case IWN_SDID_135_3:
1068 				sc->limits = &iwn2030_sensitivity_limits;
1069 				sc->base_params = &iwn2030_base_params;
1070 				sc->fwname = "iwn135fw";
1071 				break;
1072 			default:
1073 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1074 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1075 				    sc->subdevice_id,sc->hw_type);
1076 				return ENOTSUP;
1077 		}
1078 		break;
1079 
1080 /* 2x00 Series */
1081 	case IWN_DID_2x00_1:
1082 	case IWN_DID_2x00_2:
1083 		switch(sc->subdevice_id) {
1084 			case IWN_SDID_2x00_1:
1085 			case IWN_SDID_2x00_2:
1086 			case IWN_SDID_2x00_3:
1087 			//iwl2000_2bgn_cfg
1088 			case IWN_SDID_2x00_4:
1089 			//iwl2000_2bgn_d_cfg
1090 				sc->limits = &iwn2030_sensitivity_limits;
1091 				sc->base_params = &iwn2000_base_params;
1092 				sc->fwname = "iwn2000fw";
1093 				break;
1094 			default:
1095 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1096 				    "0x%04x rev %d not supported (subdevice) \n",
1097 				    pid, sc->subdevice_id, sc->hw_type);
1098 				return ENOTSUP;
1099 		}
1100 		break;
1101 /* 2x30 Series */
1102 	case IWN_DID_2x30_1:
1103 	case IWN_DID_2x30_2:
1104 		switch(sc->subdevice_id) {
1105 			case IWN_SDID_2x30_1:
1106 			case IWN_SDID_2x30_3:
1107 			case IWN_SDID_2x30_5:
1108 			//iwl100_bgn_cfg
1109 			case IWN_SDID_2x30_2:
1110 			case IWN_SDID_2x30_4:
1111 			case IWN_SDID_2x30_6:
1112 			//iwl100_bg_cfg
1113 				sc->limits = &iwn2030_sensitivity_limits;
1114 				sc->base_params = &iwn2030_base_params;
1115 				sc->fwname = "iwn2030fw";
1116 				break;
1117 			default:
1118 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1119 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1120 				    sc->subdevice_id,sc->hw_type);
1121 				return ENOTSUP;
1122 		}
1123 		break;
1124 /* 5x00 Series */
1125 	case IWN_DID_5x00_1:
1126 	case IWN_DID_5x00_2:
1127 	case IWN_DID_5x00_3:
1128 	case IWN_DID_5x00_4:
1129 		sc->limits = &iwn5000_sensitivity_limits;
1130 		sc->base_params = &iwn5000_base_params;
1131 		sc->fwname = "iwn5000fw";
1132 		switch(sc->subdevice_id) {
1133 			case IWN_SDID_5x00_1:
1134 			case IWN_SDID_5x00_2:
1135 			case IWN_SDID_5x00_3:
1136 			case IWN_SDID_5x00_4:
1137 			case IWN_SDID_5x00_9:
1138 			case IWN_SDID_5x00_10:
1139 			case IWN_SDID_5x00_11:
1140 			case IWN_SDID_5x00_12:
1141 			case IWN_SDID_5x00_17:
1142 			case IWN_SDID_5x00_18:
1143 			case IWN_SDID_5x00_19:
1144 			case IWN_SDID_5x00_20:
1145 			//iwl5100_agn_cfg
1146 				sc->txchainmask = IWN_ANT_B;
1147 				sc->rxchainmask = IWN_ANT_AB;
1148 				break;
1149 			case IWN_SDID_5x00_5:
1150 			case IWN_SDID_5x00_6:
1151 			case IWN_SDID_5x00_13:
1152 			case IWN_SDID_5x00_14:
1153 			case IWN_SDID_5x00_21:
1154 			case IWN_SDID_5x00_22:
1155 			//iwl5100_bgn_cfg
1156 				sc->txchainmask = IWN_ANT_B;
1157 				sc->rxchainmask = IWN_ANT_AB;
1158 				break;
1159 			case IWN_SDID_5x00_7:
1160 			case IWN_SDID_5x00_8:
1161 			case IWN_SDID_5x00_15:
1162 			case IWN_SDID_5x00_16:
1163 			case IWN_SDID_5x00_23:
1164 			case IWN_SDID_5x00_24:
1165 			//iwl5100_abg_cfg
1166 				sc->txchainmask = IWN_ANT_B;
1167 				sc->rxchainmask = IWN_ANT_AB;
1168 				break;
1169 			case IWN_SDID_5x00_25:
1170 			case IWN_SDID_5x00_26:
1171 			case IWN_SDID_5x00_27:
1172 			case IWN_SDID_5x00_28:
1173 			case IWN_SDID_5x00_29:
1174 			case IWN_SDID_5x00_30:
1175 			case IWN_SDID_5x00_31:
1176 			case IWN_SDID_5x00_32:
1177 			case IWN_SDID_5x00_33:
1178 			case IWN_SDID_5x00_34:
1179 			case IWN_SDID_5x00_35:
1180 			case IWN_SDID_5x00_36:
1181 			//iwl5300_agn_cfg
1182 				sc->txchainmask = IWN_ANT_ABC;
1183 				sc->rxchainmask = IWN_ANT_ABC;
1184 				break;
1185 			default:
1186 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1187 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1188 				    sc->subdevice_id,sc->hw_type);
1189 				return ENOTSUP;
1190 		}
1191 		break;
1192 /* 5x50 Series */
1193 	case IWN_DID_5x50_1:
1194 	case IWN_DID_5x50_2:
1195 	case IWN_DID_5x50_3:
1196 	case IWN_DID_5x50_4:
1197 		sc->limits = &iwn5000_sensitivity_limits;
1198 		sc->base_params = &iwn5000_base_params;
1199 		sc->fwname = "iwn5000fw";
1200 		switch(sc->subdevice_id) {
1201 			case IWN_SDID_5x50_1:
1202 			case IWN_SDID_5x50_2:
1203 			case IWN_SDID_5x50_3:
1204 			//iwl5350_agn_cfg
1205 				sc->limits = &iwn5000_sensitivity_limits;
1206 				sc->base_params = &iwn5000_base_params;
1207 				sc->fwname = "iwn5000fw";
1208 				break;
1209 			case IWN_SDID_5x50_4:
1210 			case IWN_SDID_5x50_5:
1211 			case IWN_SDID_5x50_8:
1212 			case IWN_SDID_5x50_9:
1213 			case IWN_SDID_5x50_10:
1214 			case IWN_SDID_5x50_11:
1215 			//iwl5150_agn_cfg
1216 			case IWN_SDID_5x50_6:
1217 			case IWN_SDID_5x50_7:
1218 			case IWN_SDID_5x50_12:
1219 			case IWN_SDID_5x50_13:
1220 			//iwl5150_abg_cfg
1221 				sc->limits = &iwn5000_sensitivity_limits;
1222 				sc->fwname = "iwn5150fw";
1223 				sc->base_params = &iwn_5x50_base_params;
1224 				break;
1225 			default:
1226 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1227 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1228 				    sc->subdevice_id,sc->hw_type);
1229 				return ENOTSUP;
1230 		}
1231 		break;
1232 	default:
1233 		device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x"
1234 		    "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id,
1235 		     sc->hw_type);
1236 		return ENOTSUP;
1237 	}
1238 	return 0;
1239 }
1240 
1241 static int
1242 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
1243 {
1244 	struct iwn_ops *ops = &sc->ops;
1245 
1246 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1247 	ops->load_firmware = iwn4965_load_firmware;
1248 	ops->read_eeprom = iwn4965_read_eeprom;
1249 	ops->post_alive = iwn4965_post_alive;
1250 	ops->nic_config = iwn4965_nic_config;
1251 	ops->update_sched = iwn4965_update_sched;
1252 	ops->get_temperature = iwn4965_get_temperature;
1253 	ops->get_rssi = iwn4965_get_rssi;
1254 	ops->set_txpower = iwn4965_set_txpower;
1255 	ops->init_gains = iwn4965_init_gains;
1256 	ops->set_gains = iwn4965_set_gains;
1257 	ops->add_node = iwn4965_add_node;
1258 	ops->tx_done = iwn4965_tx_done;
1259 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
1260 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
1261 	sc->ntxqs = IWN4965_NTXQUEUES;
1262 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
1263 	sc->ndmachnls = IWN4965_NDMACHNLS;
1264 	sc->broadcast_id = IWN4965_ID_BROADCAST;
1265 	sc->rxonsz = IWN4965_RXONSZ;
1266 	sc->schedsz = IWN4965_SCHEDSZ;
1267 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
1268 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
1269 	sc->fwsz = IWN4965_FWSZ;
1270 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
1271 	sc->limits = &iwn4965_sensitivity_limits;
1272 	sc->fwname = "iwn4965fw";
1273 	/* Override chains masks, ROM is known to be broken. */
1274 	sc->txchainmask = IWN_ANT_AB;
1275 	sc->rxchainmask = IWN_ANT_ABC;
1276 	/* Enable normal btcoex */
1277 	sc->sc_flags |= IWN_FLAG_BTCOEX;
1278 
1279 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1280 
1281 	return 0;
1282 }
1283 
1284 static int
1285 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
1286 {
1287 	struct iwn_ops *ops = &sc->ops;
1288 
1289 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1290 
1291 	ops->load_firmware = iwn5000_load_firmware;
1292 	ops->read_eeprom = iwn5000_read_eeprom;
1293 	ops->post_alive = iwn5000_post_alive;
1294 	ops->nic_config = iwn5000_nic_config;
1295 	ops->update_sched = iwn5000_update_sched;
1296 	ops->get_temperature = iwn5000_get_temperature;
1297 	ops->get_rssi = iwn5000_get_rssi;
1298 	ops->set_txpower = iwn5000_set_txpower;
1299 	ops->init_gains = iwn5000_init_gains;
1300 	ops->set_gains = iwn5000_set_gains;
1301 	ops->add_node = iwn5000_add_node;
1302 	ops->tx_done = iwn5000_tx_done;
1303 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
1304 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
1305 	sc->ntxqs = IWN5000_NTXQUEUES;
1306 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
1307 	sc->ndmachnls = IWN5000_NDMACHNLS;
1308 	sc->broadcast_id = IWN5000_ID_BROADCAST;
1309 	sc->rxonsz = IWN5000_RXONSZ;
1310 	sc->schedsz = IWN5000_SCHEDSZ;
1311 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
1312 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
1313 	sc->fwsz = IWN5000_FWSZ;
1314 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
1315 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
1316 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
1317 
1318 	return 0;
1319 }
1320 
1321 /*
1322  * Attach the interface to 802.11 radiotap.
1323  */
1324 static void
1325 iwn_radiotap_attach(struct iwn_softc *sc)
1326 {
1327 	struct ifnet *ifp = sc->sc_ifp;
1328 	struct ieee80211com *ic = ifp->if_l2com;
1329 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1330 	ieee80211_radiotap_attach(ic,
1331 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
1332 		IWN_TX_RADIOTAP_PRESENT,
1333 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
1334 		IWN_RX_RADIOTAP_PRESENT);
1335 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1336 }
1337 
1338 static void
1339 iwn_sysctlattach(struct iwn_softc *sc)
1340 {
1341 #ifdef	IWN_DEBUG
1342 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
1343 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
1344 
1345 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1346 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
1347 		"control debugging printfs");
1348 #endif
1349 }
1350 
1351 static struct ieee80211vap *
1352 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1353     enum ieee80211_opmode opmode, int flags,
1354     const uint8_t bssid[IEEE80211_ADDR_LEN],
1355     const uint8_t mac[IEEE80211_ADDR_LEN])
1356 {
1357 	struct iwn_vap *ivp;
1358 	struct ieee80211vap *vap;
1359 	uint8_t mac1[IEEE80211_ADDR_LEN];
1360 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
1361 
1362 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
1363 		return NULL;
1364 
1365 	IEEE80211_ADDR_COPY(mac1, mac);
1366 
1367 	ivp = kmalloc(sizeof(struct iwn_vap), M_80211_VAP, M_INTWAIT | M_ZERO);
1368 	if (ivp == NULL)
1369 		return NULL;
1370 	vap = &ivp->iv_vap;
1371 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac1);
1372 	ivp->ctx = IWN_RXON_BSS_CTX;
1373 	IEEE80211_ADDR_COPY(ivp->macaddr, mac1);
1374 	vap->iv_bmissthreshold = 10;		/* override default */
1375 	/* Override with driver methods. */
1376 	ivp->iv_newstate = vap->iv_newstate;
1377 	vap->iv_newstate = iwn_newstate;
1378 	sc->ivap[IWN_RXON_BSS_CTX] = vap;
1379 
1380 	ieee80211_ratectl_init(vap);
1381 	/* Complete setup. */
1382 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status);
1383 	ic->ic_opmode = opmode;
1384 	return vap;
1385 }
1386 
1387 static void
1388 iwn_vap_delete(struct ieee80211vap *vap)
1389 {
1390 	struct iwn_vap *ivp = IWN_VAP(vap);
1391 
1392 	ieee80211_ratectl_deinit(vap);
1393 	ieee80211_vap_detach(vap);
1394 	kfree(ivp, M_80211_VAP);
1395 }
1396 
1397 static int
1398 iwn_detach(device_t dev)
1399 {
1400 	struct iwn_softc *sc = device_get_softc(dev);
1401 	struct ifnet *ifp = sc->sc_ifp;
1402 	struct ieee80211com *ic;
1403 	int qid;
1404 
1405 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1406 
1407 	if (ifp != NULL) {
1408 		ic = ifp->if_l2com;
1409 
1410 		ieee80211_draintask(ic, &sc->sc_reinit_task);
1411 		ieee80211_draintask(ic, &sc->sc_radioon_task);
1412 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
1413 
1414 		iwn_stop(sc);
1415 
1416 #if defined(__DragonFly__)
1417 		/* doesn't exist for DFly, DFly drains tasks on free */
1418 #else
1419 		taskqueue_drain_all(sc->sc_tq);
1420 #endif
1421 		taskqueue_free(sc->sc_tq);
1422 
1423 		callout_drain(&sc->watchdog_to);
1424 		callout_drain(&sc->calib_to);
1425 		wlan_serialize_enter();
1426 		ieee80211_ifdetach(ic);
1427 		wlan_serialize_exit();
1428 	}
1429 
1430 	/* Uninstall interrupt handler. */
1431 	if (sc->irq != NULL) {
1432 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
1433 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
1434 		    sc->irq);
1435 		pci_release_msi(dev);
1436 	}
1437 
1438 	/* Free DMA resources. */
1439 	iwn_free_rx_ring(sc, &sc->rxq);
1440 	for (qid = 0; qid < sc->ntxqs; qid++)
1441 		iwn_free_tx_ring(sc, &sc->txq[qid]);
1442 	iwn_free_sched(sc);
1443 	iwn_free_kw(sc);
1444 	if (sc->ict != NULL)
1445 		iwn_free_ict(sc);
1446 	iwn_free_fwmem(sc);
1447 
1448 	if (sc->mem != NULL)
1449 		bus_release_resource(dev, SYS_RES_MEMORY,
1450 		    rman_get_rid(sc->mem), sc->mem);
1451 
1452 	if (ifp != NULL)
1453 		if_free(ifp);
1454 
1455 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__);
1456 	IWN_LOCK_DESTROY(sc);
1457 	return 0;
1458 }
1459 
1460 static int
1461 iwn_shutdown(device_t dev)
1462 {
1463 	struct iwn_softc *sc = device_get_softc(dev);
1464 
1465 	iwn_stop(sc);
1466 	return 0;
1467 }
1468 
1469 static int
1470 iwn_suspend(device_t dev)
1471 {
1472 	struct iwn_softc *sc = device_get_softc(dev);
1473 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1474 
1475 	ieee80211_suspend_all(ic);
1476 	return 0;
1477 }
1478 
1479 static int
1480 iwn_resume(device_t dev)
1481 {
1482 	struct iwn_softc *sc = device_get_softc(dev);
1483 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1484 
1485 	/* Clear device-specific "PCI retry timeout" register (41h). */
1486 	pci_write_config(dev, 0x41, 0, 1);
1487 
1488 	ieee80211_resume_all(ic);
1489 	return 0;
1490 }
1491 
1492 static int
1493 iwn_nic_lock(struct iwn_softc *sc)
1494 {
1495 	int ntries;
1496 
1497 	/* Request exclusive access to NIC. */
1498 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1499 
1500 	/* Spin until we actually get the lock. */
1501 	for (ntries = 0; ntries < 1000; ntries++) {
1502 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1503 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1504 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1505 			return 0;
1506 		DELAY(10);
1507 	}
1508 	return ETIMEDOUT;
1509 }
1510 
1511 static __inline void
1512 iwn_nic_unlock(struct iwn_softc *sc)
1513 {
1514 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1515 }
1516 
1517 static __inline uint32_t
1518 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1519 {
1520 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1521 	IWN_BARRIER_READ_WRITE(sc);
1522 	return IWN_READ(sc, IWN_PRPH_RDATA);
1523 }
1524 
1525 static __inline void
1526 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1527 {
1528 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1529 	IWN_BARRIER_WRITE(sc);
1530 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1531 }
1532 
1533 static __inline void
1534 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1535 {
1536 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1537 }
1538 
1539 static __inline void
1540 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1541 {
1542 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1543 }
1544 
1545 static __inline void
1546 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1547     const uint32_t *data, int count)
1548 {
1549 	for (; count > 0; count--, data++, addr += 4)
1550 		iwn_prph_write(sc, addr, *data);
1551 }
1552 
1553 static __inline uint32_t
1554 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1555 {
1556 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1557 	IWN_BARRIER_READ_WRITE(sc);
1558 	return IWN_READ(sc, IWN_MEM_RDATA);
1559 }
1560 
1561 static __inline void
1562 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1563 {
1564 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1565 	IWN_BARRIER_WRITE(sc);
1566 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1567 }
1568 
1569 static __inline void
1570 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1571 {
1572 	uint32_t tmp;
1573 
1574 	tmp = iwn_mem_read(sc, addr & ~3);
1575 	if (addr & 3)
1576 		tmp = (tmp & 0x0000ffff) | data << 16;
1577 	else
1578 		tmp = (tmp & 0xffff0000) | data;
1579 	iwn_mem_write(sc, addr & ~3, tmp);
1580 }
1581 
1582 static __inline void
1583 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1584     int count)
1585 {
1586 	for (; count > 0; count--, addr += 4)
1587 		*data++ = iwn_mem_read(sc, addr);
1588 }
1589 
1590 static __inline void
1591 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1592     int count)
1593 {
1594 	for (; count > 0; count--, addr += 4)
1595 		iwn_mem_write(sc, addr, val);
1596 }
1597 
1598 static int
1599 iwn_eeprom_lock(struct iwn_softc *sc)
1600 {
1601 	int i, ntries;
1602 
1603 	for (i = 0; i < 100; i++) {
1604 		/* Request exclusive access to EEPROM. */
1605 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1606 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1607 
1608 		/* Spin until we actually get the lock. */
1609 		for (ntries = 0; ntries < 100; ntries++) {
1610 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1611 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1612 				return 0;
1613 			DELAY(10);
1614 		}
1615 	}
1616 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__);
1617 	return ETIMEDOUT;
1618 }
1619 
1620 static __inline void
1621 iwn_eeprom_unlock(struct iwn_softc *sc)
1622 {
1623 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1624 }
1625 
1626 /*
1627  * Initialize access by host to One Time Programmable ROM.
1628  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1629  */
1630 static int
1631 iwn_init_otprom(struct iwn_softc *sc)
1632 {
1633 	uint16_t prev, base, next;
1634 	int count, error;
1635 
1636 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1637 
1638 	/* Wait for clock stabilization before accessing prph. */
1639 	if ((error = iwn_clock_wait(sc)) != 0)
1640 		return error;
1641 
1642 	if ((error = iwn_nic_lock(sc)) != 0)
1643 		return error;
1644 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1645 	DELAY(5);
1646 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1647 	iwn_nic_unlock(sc);
1648 
1649 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1650 	if (sc->base_params->shadow_ram_support) {
1651 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1652 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1653 	}
1654 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1655 	/* Clear ECC status. */
1656 	IWN_SETBITS(sc, IWN_OTP_GP,
1657 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1658 
1659 	/*
1660 	 * Find the block before last block (contains the EEPROM image)
1661 	 * for HW without OTP shadow RAM.
1662 	 */
1663 	if (! sc->base_params->shadow_ram_support) {
1664 		/* Switch to absolute addressing mode. */
1665 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1666 		base = prev = 0;
1667 		for (count = 0; count < sc->base_params->max_ll_items;
1668 		    count++) {
1669 			error = iwn_read_prom_data(sc, base, &next, 2);
1670 			if (error != 0)
1671 				return error;
1672 			if (next == 0)	/* End of linked-list. */
1673 				break;
1674 			prev = base;
1675 			base = le16toh(next);
1676 		}
1677 		if (count == 0 || count == sc->base_params->max_ll_items)
1678 			return EIO;
1679 		/* Skip "next" word. */
1680 		sc->prom_base = prev + 1;
1681 	}
1682 
1683 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1684 
1685 	return 0;
1686 }
1687 
1688 static int
1689 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1690 {
1691 	uint8_t *out = data;
1692 	uint32_t val, tmp;
1693 	int ntries;
1694 
1695 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1696 
1697 	addr += sc->prom_base;
1698 	for (; count > 0; count -= 2, addr++) {
1699 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1700 		for (ntries = 0; ntries < 10; ntries++) {
1701 			val = IWN_READ(sc, IWN_EEPROM);
1702 			if (val & IWN_EEPROM_READ_VALID)
1703 				break;
1704 			DELAY(5);
1705 		}
1706 		if (ntries == 10) {
1707 			device_printf(sc->sc_dev,
1708 			    "timeout reading ROM at 0x%x\n", addr);
1709 			return ETIMEDOUT;
1710 		}
1711 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1712 			/* OTPROM, check for ECC errors. */
1713 			tmp = IWN_READ(sc, IWN_OTP_GP);
1714 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1715 				device_printf(sc->sc_dev,
1716 				    "OTPROM ECC error at 0x%x\n", addr);
1717 				return EIO;
1718 			}
1719 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1720 				/* Correctable ECC error, clear bit. */
1721 				IWN_SETBITS(sc, IWN_OTP_GP,
1722 				    IWN_OTP_GP_ECC_CORR_STTS);
1723 			}
1724 		}
1725 		*out++ = val >> 16;
1726 		if (count > 1)
1727 			*out++ = val >> 24;
1728 	}
1729 
1730 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1731 
1732 	return 0;
1733 }
1734 
1735 static void
1736 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1737 {
1738 	if (error != 0)
1739 		return;
1740 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1741 	*(bus_addr_t *)arg = segs[0].ds_addr;
1742 }
1743 
1744 static int
1745 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1746     void **kvap, bus_size_t size, bus_size_t alignment)
1747 {
1748 	int error;
1749 
1750 	dma->tag = NULL;
1751 	dma->size = size;
1752 
1753 #if defined(__DragonFly__)
1754 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1755 				   0,
1756 				   BUS_SPACE_MAXADDR_32BIT,
1757 				   BUS_SPACE_MAXADDR,
1758 				   NULL, NULL,
1759 				   size, 1, size,
1760 				   BUS_DMA_NOWAIT, &dma->tag);
1761 #else
1762 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1763 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1764 	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
1765 #endif
1766 	if (error != 0)
1767 		goto fail;
1768 
1769 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1770 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1771 	if (error != 0)
1772 		goto fail;
1773 
1774 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1775 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1776 	if (error != 0)
1777 		goto fail;
1778 
1779 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1780 
1781 	if (kvap != NULL)
1782 		*kvap = dma->vaddr;
1783 
1784 	return 0;
1785 
1786 fail:	iwn_dma_contig_free(dma);
1787 	return error;
1788 }
1789 
1790 static void
1791 iwn_dma_contig_free(struct iwn_dma_info *dma)
1792 {
1793 	if (dma->vaddr != NULL) {
1794 		bus_dmamap_sync(dma->tag, dma->map,
1795 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1796 		bus_dmamap_unload(dma->tag, dma->map);
1797 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1798 		dma->vaddr = NULL;
1799 	}
1800 	if (dma->tag != NULL) {
1801 		bus_dma_tag_destroy(dma->tag);
1802 		dma->tag = NULL;
1803 	}
1804 }
1805 
1806 static int
1807 iwn_alloc_sched(struct iwn_softc *sc)
1808 {
1809 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1810 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1811 	    sc->schedsz, 1024);
1812 }
1813 
1814 static void
1815 iwn_free_sched(struct iwn_softc *sc)
1816 {
1817 	iwn_dma_contig_free(&sc->sched_dma);
1818 }
1819 
1820 static int
1821 iwn_alloc_kw(struct iwn_softc *sc)
1822 {
1823 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1824 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1825 }
1826 
1827 static void
1828 iwn_free_kw(struct iwn_softc *sc)
1829 {
1830 	iwn_dma_contig_free(&sc->kw_dma);
1831 }
1832 
1833 static int
1834 iwn_alloc_ict(struct iwn_softc *sc)
1835 {
1836 	/* ICT table must be aligned on a 4KB boundary. */
1837 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1838 	    IWN_ICT_SIZE, 4096);
1839 }
1840 
1841 static void
1842 iwn_free_ict(struct iwn_softc *sc)
1843 {
1844 	iwn_dma_contig_free(&sc->ict_dma);
1845 }
1846 
1847 static int
1848 iwn_alloc_fwmem(struct iwn_softc *sc)
1849 {
1850 	/* Must be aligned on a 16-byte boundary. */
1851 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1852 }
1853 
1854 static void
1855 iwn_free_fwmem(struct iwn_softc *sc)
1856 {
1857 	iwn_dma_contig_free(&sc->fw_dma);
1858 }
1859 
1860 static int
1861 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1862 {
1863 	bus_size_t size;
1864 	int i, error;
1865 
1866 	ring->cur = 0;
1867 
1868 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1869 
1870 	/* Allocate RX descriptors (256-byte aligned). */
1871 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1872 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1873 	    size, 256);
1874 	if (error != 0) {
1875 		device_printf(sc->sc_dev,
1876 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1877 		    __func__, error);
1878 		goto fail;
1879 	}
1880 
1881 	/* Allocate RX status area (16-byte aligned). */
1882 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1883 	    sizeof (struct iwn_rx_status), 16);
1884 	if (error != 0) {
1885 		device_printf(sc->sc_dev,
1886 		    "%s: could not allocate RX status DMA memory, error %d\n",
1887 		    __func__, error);
1888 		goto fail;
1889 	}
1890 
1891 	/* Create RX buffer DMA tag. */
1892 #if defined(__DragonFly__)
1893 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1,
1894 				   0,
1895 				   BUS_SPACE_MAXADDR_32BIT,
1896 				   BUS_SPACE_MAXADDR,
1897 				   NULL, NULL,
1898 				   IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE,
1899 				   BUS_DMA_NOWAIT, &ring->data_dmat);
1900 #else
1901 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1902 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1903 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, BUS_DMA_NOWAIT, NULL, NULL,
1904 	    &ring->data_dmat);
1905 #endif
1906 	if (error != 0) {
1907 		device_printf(sc->sc_dev,
1908 		    "%s: could not create RX buf DMA tag, error %d\n",
1909 		    __func__, error);
1910 		goto fail;
1911 	}
1912 
1913 	/*
1914 	 * Allocate and map RX buffers.
1915 	 */
1916 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1917 		struct iwn_rx_data *data = &ring->data[i];
1918 		bus_addr_t paddr;
1919 
1920 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1921 		if (error != 0) {
1922 			device_printf(sc->sc_dev,
1923 			    "%s: could not create RX buf DMA map, error %d\n",
1924 			    __func__, error);
1925 			goto fail;
1926 		}
1927 
1928 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
1929 				   IWN_RBUF_SIZE);
1930 		if (data->m == NULL) {
1931 			device_printf(sc->sc_dev,
1932 			    "%s: could not allocate RX mbuf\n", __func__);
1933 			error = ENOBUFS;
1934 			goto fail;
1935 		}
1936 
1937 		error = bus_dmamap_load(ring->data_dmat, data->map,
1938 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1939 		    &paddr, BUS_DMA_NOWAIT);
1940 		if (error != 0 && error != EFBIG) {
1941 			device_printf(sc->sc_dev,
1942 			    "%s: can't not map mbuf, error %d\n", __func__,
1943 			    error);
1944 			goto fail;
1945 		}
1946 
1947 		/* Set physical address of RX buffer (256-byte aligned). */
1948 		ring->desc[i] = htole32(paddr >> 8);
1949 	}
1950 
1951 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1952 	    BUS_DMASYNC_PREWRITE);
1953 
1954 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
1955 
1956 	return 0;
1957 
1958 fail:	iwn_free_rx_ring(sc, ring);
1959 
1960 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
1961 
1962 	return error;
1963 }
1964 
1965 static void
1966 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1967 {
1968 	int ntries;
1969 
1970 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
1971 
1972 	if (iwn_nic_lock(sc) == 0) {
1973 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1974 		for (ntries = 0; ntries < 1000; ntries++) {
1975 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1976 			    IWN_FH_RX_STATUS_IDLE)
1977 				break;
1978 			DELAY(10);
1979 		}
1980 		iwn_nic_unlock(sc);
1981 	}
1982 	ring->cur = 0;
1983 	sc->last_rx_valid = 0;
1984 }
1985 
1986 static void
1987 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1988 {
1989 	int i;
1990 
1991 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1992 
1993 	iwn_dma_contig_free(&ring->desc_dma);
1994 	iwn_dma_contig_free(&ring->stat_dma);
1995 
1996 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1997 		struct iwn_rx_data *data = &ring->data[i];
1998 
1999 		if (data->m != NULL) {
2000 			bus_dmamap_sync(ring->data_dmat, data->map,
2001 			    BUS_DMASYNC_POSTREAD);
2002 			bus_dmamap_unload(ring->data_dmat, data->map);
2003 			m_freem(data->m);
2004 			data->m = NULL;
2005 		}
2006 		if (data->map != NULL)
2007 			bus_dmamap_destroy(ring->data_dmat, data->map);
2008 	}
2009 	if (ring->data_dmat != NULL) {
2010 		bus_dma_tag_destroy(ring->data_dmat);
2011 		ring->data_dmat = NULL;
2012 	}
2013 }
2014 
2015 static int
2016 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
2017 {
2018 	bus_addr_t paddr;
2019 	bus_size_t size;
2020 	int i, error;
2021 
2022 	ring->qid = qid;
2023 	ring->queued = 0;
2024 	ring->cur = 0;
2025 
2026 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2027 
2028 	/* Allocate TX descriptors (256-byte aligned). */
2029 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
2030 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
2031 	    size, 256);
2032 	if (error != 0) {
2033 		device_printf(sc->sc_dev,
2034 		    "%s: could not allocate TX ring DMA memory, error %d\n",
2035 		    __func__, error);
2036 		goto fail;
2037 	}
2038 
2039 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
2040 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
2041 	    size, 4);
2042 	if (error != 0) {
2043 		device_printf(sc->sc_dev,
2044 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
2045 		    __func__, error);
2046 		goto fail;
2047 	}
2048 
2049 #if defined(__DragonFly__)
2050 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1,
2051 				   0,
2052 				   BUS_SPACE_MAXADDR_32BIT,
2053 				   BUS_SPACE_MAXADDR,
2054 				   NULL, NULL,
2055 				   MCLBYTES, IWN_MAX_SCATTER - 1, MCLBYTES,
2056 				   BUS_DMA_NOWAIT, &ring->data_dmat);
2057 #else
2058 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
2059 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
2060 	    IWN_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
2061 	    &ring->data_dmat);
2062 #endif
2063 	if (error != 0) {
2064 		device_printf(sc->sc_dev,
2065 		    "%s: could not create TX buf DMA tag, error %d\n",
2066 		    __func__, error);
2067 		goto fail;
2068 	}
2069 
2070 	paddr = ring->cmd_dma.paddr;
2071 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2072 		struct iwn_tx_data *data = &ring->data[i];
2073 
2074 		data->cmd_paddr = paddr;
2075 		data->scratch_paddr = paddr + 12;
2076 		paddr += sizeof (struct iwn_tx_cmd);
2077 
2078 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2079 		if (error != 0) {
2080 			device_printf(sc->sc_dev,
2081 			    "%s: could not create TX buf DMA map, error %d\n",
2082 			    __func__, error);
2083 			goto fail;
2084 		}
2085 	}
2086 
2087 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2088 
2089 	return 0;
2090 
2091 fail:	iwn_free_tx_ring(sc, ring);
2092 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2093 	return error;
2094 }
2095 
2096 static void
2097 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2098 {
2099 	int i;
2100 
2101 	DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__);
2102 
2103 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2104 		struct iwn_tx_data *data = &ring->data[i];
2105 
2106 		if (data->m != NULL) {
2107 			bus_dmamap_sync(ring->data_dmat, data->map,
2108 			    BUS_DMASYNC_POSTWRITE);
2109 			bus_dmamap_unload(ring->data_dmat, data->map);
2110 			m_freem(data->m);
2111 			data->m = NULL;
2112 		}
2113 	}
2114 	/* Clear TX descriptors. */
2115 	memset(ring->desc, 0, ring->desc_dma.size);
2116 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2117 	    BUS_DMASYNC_PREWRITE);
2118 	sc->qfullmsk &= ~(1 << ring->qid);
2119 	ring->queued = 0;
2120 	ring->cur = 0;
2121 }
2122 
2123 static void
2124 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2125 {
2126 	int i;
2127 
2128 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
2129 
2130 	iwn_dma_contig_free(&ring->desc_dma);
2131 	iwn_dma_contig_free(&ring->cmd_dma);
2132 
2133 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2134 		struct iwn_tx_data *data = &ring->data[i];
2135 
2136 		if (data->m != NULL) {
2137 			bus_dmamap_sync(ring->data_dmat, data->map,
2138 			    BUS_DMASYNC_POSTWRITE);
2139 			bus_dmamap_unload(ring->data_dmat, data->map);
2140 			m_freem(data->m);
2141 		}
2142 		if (data->map != NULL)
2143 			bus_dmamap_destroy(ring->data_dmat, data->map);
2144 	}
2145 	if (ring->data_dmat != NULL) {
2146 		bus_dma_tag_destroy(ring->data_dmat);
2147 		ring->data_dmat = NULL;
2148 	}
2149 }
2150 
2151 static void
2152 iwn5000_ict_reset(struct iwn_softc *sc)
2153 {
2154 	/* Disable interrupts. */
2155 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2156 
2157 	/* Reset ICT table. */
2158 	memset(sc->ict, 0, IWN_ICT_SIZE);
2159 	sc->ict_cur = 0;
2160 
2161 	/* Set physical address of ICT table (4KB aligned). */
2162 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
2163 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
2164 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
2165 
2166 	/* Enable periodic RX interrupt. */
2167 	sc->int_mask |= IWN_INT_RX_PERIODIC;
2168 	/* Switch to ICT interrupt mode in driver. */
2169 	sc->sc_flags |= IWN_FLAG_USE_ICT;
2170 
2171 	/* Re-enable interrupts. */
2172 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
2173 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2174 }
2175 
2176 static int
2177 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2178 {
2179 	struct iwn_ops *ops = &sc->ops;
2180 	uint16_t val;
2181 	int error;
2182 
2183 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2184 
2185 	/* Check whether adapter has an EEPROM or an OTPROM. */
2186 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
2187 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
2188 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
2189 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
2190 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
2191 
2192 	/* Adapter has to be powered on for EEPROM access to work. */
2193 	if ((error = iwn_apm_init(sc)) != 0) {
2194 		device_printf(sc->sc_dev,
2195 		    "%s: could not power ON adapter, error %d\n", __func__,
2196 		    error);
2197 		return error;
2198 	}
2199 
2200 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
2201 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
2202 		return EIO;
2203 	}
2204 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2205 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
2206 		    __func__, error);
2207 		return error;
2208 	}
2209 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
2210 		if ((error = iwn_init_otprom(sc)) != 0) {
2211 			device_printf(sc->sc_dev,
2212 			    "%s: could not initialize OTPROM, error %d\n",
2213 			    __func__, error);
2214 			return error;
2215 		}
2216 	}
2217 
2218 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
2219 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
2220 	/* Check if HT support is bonded out. */
2221 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
2222 		sc->sc_flags |= IWN_FLAG_HAS_11N;
2223 
2224 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
2225 	sc->rfcfg = le16toh(val);
2226 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
2227 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
2228 	if (sc->txchainmask == 0)
2229 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
2230 	if (sc->rxchainmask == 0)
2231 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
2232 
2233 	/* Read MAC address. */
2234 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
2235 
2236 	/* Read adapter-specific information from EEPROM. */
2237 	ops->read_eeprom(sc);
2238 
2239 	iwn_apm_stop(sc);	/* Power OFF adapter. */
2240 
2241 	iwn_eeprom_unlock(sc);
2242 
2243 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2244 
2245 	return 0;
2246 }
2247 
2248 static void
2249 iwn4965_read_eeprom(struct iwn_softc *sc)
2250 {
2251 	uint32_t addr;
2252 	uint16_t val;
2253 	int i;
2254 
2255 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2256 
2257 	/* Read regulatory domain (4 ASCII characters). */
2258 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
2259 
2260 	/* Read the list of authorized channels (20MHz ones only). */
2261 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2262 		addr = iwn4965_regulatory_bands[i];
2263 		iwn_read_eeprom_channels(sc, i, addr);
2264 	}
2265 
2266 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
2267 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
2268 	sc->maxpwr2GHz = val & 0xff;
2269 	sc->maxpwr5GHz = val >> 8;
2270 	/* Check that EEPROM values are within valid range. */
2271 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2272 		sc->maxpwr5GHz = 38;
2273 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2274 		sc->maxpwr2GHz = 38;
2275 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2276 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2277 
2278 	/* Read samples for each TX power group. */
2279 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
2280 	    sizeof sc->bands);
2281 
2282 	/* Read voltage at which samples were taken. */
2283 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
2284 	sc->eeprom_voltage = (int16_t)le16toh(val);
2285 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2286 	    sc->eeprom_voltage);
2287 
2288 #ifdef IWN_DEBUG
2289 	/* Print samples. */
2290 	if (sc->sc_debug & IWN_DEBUG_ANY) {
2291 		for (i = 0; i < IWN_NBANDS - 1; i++)
2292 			iwn4965_print_power_group(sc, i);
2293 	}
2294 #endif
2295 
2296 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2297 }
2298 
2299 #ifdef IWN_DEBUG
2300 static void
2301 iwn4965_print_power_group(struct iwn_softc *sc, int i)
2302 {
2303 	struct iwn4965_eeprom_band *band = &sc->bands[i];
2304 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
2305 	int j, c;
2306 
2307 	kprintf("===band %d===\n", i);
2308 	kprintf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2309 	kprintf("chan1 num=%d\n", chans[0].num);
2310 	for (c = 0; c < 2; c++) {
2311 		for (j = 0; j < IWN_NSAMPLES; j++) {
2312 			kprintf("chain %d, sample %d: temp=%d gain=%d "
2313 			    "power=%d pa_det=%d\n", c, j,
2314 			    chans[0].samples[c][j].temp,
2315 			    chans[0].samples[c][j].gain,
2316 			    chans[0].samples[c][j].power,
2317 			    chans[0].samples[c][j].pa_det);
2318 		}
2319 	}
2320 	kprintf("chan2 num=%d\n", chans[1].num);
2321 	for (c = 0; c < 2; c++) {
2322 		for (j = 0; j < IWN_NSAMPLES; j++) {
2323 			kprintf("chain %d, sample %d: temp=%d gain=%d "
2324 			    "power=%d pa_det=%d\n", c, j,
2325 			    chans[1].samples[c][j].temp,
2326 			    chans[1].samples[c][j].gain,
2327 			    chans[1].samples[c][j].power,
2328 			    chans[1].samples[c][j].pa_det);
2329 		}
2330 	}
2331 }
2332 #endif
2333 
2334 static void
2335 iwn5000_read_eeprom(struct iwn_softc *sc)
2336 {
2337 	struct iwn5000_eeprom_calib_hdr hdr;
2338 	int32_t volt;
2339 	uint32_t base, addr;
2340 	uint16_t val;
2341 	int i;
2342 
2343 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2344 
2345 	/* Read regulatory domain (4 ASCII characters). */
2346 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2347 	base = le16toh(val);
2348 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
2349 	    sc->eeprom_domain, 4);
2350 
2351 	/* Read the list of authorized channels (20MHz ones only). */
2352 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2353 		addr =  base + sc->base_params->regulatory_bands[i];
2354 		iwn_read_eeprom_channels(sc, i, addr);
2355 	}
2356 
2357 	/* Read enhanced TX power information for 6000 Series. */
2358 	if (sc->base_params->enhanced_TX_power)
2359 		iwn_read_eeprom_enhinfo(sc);
2360 
2361 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
2362 	base = le16toh(val);
2363 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
2364 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2365 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
2366 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
2367 	sc->calib_ver = hdr.version;
2368 
2369 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
2370 		sc->eeprom_voltage = le16toh(hdr.volt);
2371 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2372 		sc->eeprom_temp_high=le16toh(val);
2373 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2374 		sc->eeprom_temp = le16toh(val);
2375 	}
2376 
2377 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
2378 		/* Compute temperature offset. */
2379 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2380 		sc->eeprom_temp = le16toh(val);
2381 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2382 		volt = le16toh(val);
2383 		sc->temp_off = sc->eeprom_temp - (volt / -5);
2384 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
2385 		    sc->eeprom_temp, volt, sc->temp_off);
2386 	} else {
2387 		/* Read crystal calibration. */
2388 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
2389 		    &sc->eeprom_crystal, sizeof (uint32_t));
2390 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
2391 		    le32toh(sc->eeprom_crystal));
2392 	}
2393 
2394 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2395 
2396 }
2397 
2398 /*
2399  * Translate EEPROM flags to net80211.
2400  */
2401 static uint32_t
2402 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
2403 {
2404 	uint32_t nflags;
2405 
2406 	nflags = 0;
2407 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2408 		nflags |= IEEE80211_CHAN_PASSIVE;
2409 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
2410 		nflags |= IEEE80211_CHAN_NOADHOC;
2411 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
2412 		nflags |= IEEE80211_CHAN_DFS;
2413 		/* XXX apparently IBSS may still be marked */
2414 		nflags |= IEEE80211_CHAN_NOADHOC;
2415 	}
2416 
2417 	return nflags;
2418 }
2419 
2420 static void
2421 iwn_read_eeprom_band(struct iwn_softc *sc, int n)
2422 {
2423 	struct ifnet *ifp = sc->sc_ifp;
2424 	struct ieee80211com *ic = ifp->if_l2com;
2425 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2426 	const struct iwn_chan_band *band = &iwn_bands[n];
2427 	struct ieee80211_channel *c;
2428 	uint8_t chan;
2429 	int i, nflags;
2430 
2431 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2432 
2433 	for (i = 0; i < band->nchan; i++) {
2434 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2435 			DPRINTF(sc, IWN_DEBUG_RESET,
2436 			    "skip chan %d flags 0x%x maxpwr %d\n",
2437 			    band->chan[i], channels[i].flags,
2438 			    channels[i].maxpwr);
2439 			continue;
2440 		}
2441 		chan = band->chan[i];
2442 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2443 
2444 		c = &ic->ic_channels[ic->ic_nchans++];
2445 		c->ic_ieee = chan;
2446 		c->ic_maxregpower = channels[i].maxpwr;
2447 		c->ic_maxpower = 2*c->ic_maxregpower;
2448 
2449 		if (n == 0) {	/* 2GHz band */
2450 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G);
2451 			/* G =>'s B is supported */
2452 			c->ic_flags = IEEE80211_CHAN_B | nflags;
2453 			c = &ic->ic_channels[ic->ic_nchans++];
2454 			c[0] = c[-1];
2455 			c->ic_flags = IEEE80211_CHAN_G | nflags;
2456 		} else {	/* 5GHz band */
2457 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
2458 			c->ic_flags = IEEE80211_CHAN_A | nflags;
2459 		}
2460 
2461 		/* Save maximum allowed TX power for this channel. */
2462 		sc->maxpwr[chan] = channels[i].maxpwr;
2463 
2464 		DPRINTF(sc, IWN_DEBUG_RESET,
2465 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
2466 		    channels[i].flags, channels[i].maxpwr);
2467 
2468 		if (sc->sc_flags & IWN_FLAG_HAS_11N) {
2469 			/* add HT20, HT40 added separately */
2470 			c = &ic->ic_channels[ic->ic_nchans++];
2471 			c[0] = c[-1];
2472 			c->ic_flags |= IEEE80211_CHAN_HT20;
2473 		}
2474 	}
2475 
2476 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2477 
2478 }
2479 
2480 static void
2481 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n)
2482 {
2483 	struct ifnet *ifp = sc->sc_ifp;
2484 	struct ieee80211com *ic = ifp->if_l2com;
2485 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2486 	const struct iwn_chan_band *band = &iwn_bands[n];
2487 	struct ieee80211_channel *c, *cent, *extc;
2488 	uint8_t chan;
2489 	int i, nflags;
2490 
2491 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__);
2492 
2493 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) {
2494 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__);
2495 		return;
2496 	}
2497 
2498 	for (i = 0; i < band->nchan; i++) {
2499 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2500 			DPRINTF(sc, IWN_DEBUG_RESET,
2501 			    "skip chan %d flags 0x%x maxpwr %d\n",
2502 			    band->chan[i], channels[i].flags,
2503 			    channels[i].maxpwr);
2504 			continue;
2505 		}
2506 		chan = band->chan[i];
2507 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2508 
2509 		/*
2510 		 * Each entry defines an HT40 channel pair; find the
2511 		 * center channel, then the extension channel above.
2512 		 */
2513 		cent = ieee80211_find_channel_byieee(ic, chan,
2514 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
2515 		if (cent == NULL) {	/* XXX shouldn't happen */
2516 			device_printf(sc->sc_dev,
2517 			    "%s: no entry for channel %d\n", __func__, chan);
2518 			continue;
2519 		}
2520 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
2521 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
2522 		if (extc == NULL) {
2523 			DPRINTF(sc, IWN_DEBUG_RESET,
2524 			    "%s: skip chan %d, extension channel not found\n",
2525 			    __func__, chan);
2526 			continue;
2527 		}
2528 
2529 		DPRINTF(sc, IWN_DEBUG_RESET,
2530 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2531 		    chan, channels[i].flags, channels[i].maxpwr);
2532 
2533 		c = &ic->ic_channels[ic->ic_nchans++];
2534 		c[0] = cent[0];
2535 		c->ic_extieee = extc->ic_ieee;
2536 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2537 		c->ic_flags |= IEEE80211_CHAN_HT40U | nflags;
2538 		c = &ic->ic_channels[ic->ic_nchans++];
2539 		c[0] = extc[0];
2540 		c->ic_extieee = cent->ic_ieee;
2541 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2542 		c->ic_flags |= IEEE80211_CHAN_HT40D | nflags;
2543 	}
2544 
2545 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2546 
2547 }
2548 
2549 static void
2550 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2551 {
2552 	struct ifnet *ifp = sc->sc_ifp;
2553 	struct ieee80211com *ic = ifp->if_l2com;
2554 
2555 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
2556 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
2557 
2558 	if (n < 5)
2559 		iwn_read_eeprom_band(sc, n);
2560 	else
2561 		iwn_read_eeprom_ht40(sc, n);
2562 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2563 }
2564 
2565 static struct iwn_eeprom_chan *
2566 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
2567 {
2568 	int band, chan, i, j;
2569 
2570 	if (IEEE80211_IS_CHAN_HT40(c)) {
2571 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
2572 		if (IEEE80211_IS_CHAN_HT40D(c))
2573 			chan = c->ic_extieee;
2574 		else
2575 			chan = c->ic_ieee;
2576 		for (i = 0; i < iwn_bands[band].nchan; i++) {
2577 			if (iwn_bands[band].chan[i] == chan)
2578 				return &sc->eeprom_channels[band][i];
2579 		}
2580 	} else {
2581 		for (j = 0; j < 5; j++) {
2582 			for (i = 0; i < iwn_bands[j].nchan; i++) {
2583 				if (iwn_bands[j].chan[i] == c->ic_ieee)
2584 					return &sc->eeprom_channels[j][i];
2585 			}
2586 		}
2587 	}
2588 	return NULL;
2589 }
2590 
2591 /*
2592  * Enforce flags read from EEPROM.
2593  */
2594 static int
2595 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
2596     int nchan, struct ieee80211_channel chans[])
2597 {
2598 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2599 	int i;
2600 
2601 	for (i = 0; i < nchan; i++) {
2602 		struct ieee80211_channel *c = &chans[i];
2603 		struct iwn_eeprom_chan *channel;
2604 
2605 		channel = iwn_find_eeprom_channel(sc, c);
2606 		if (channel == NULL) {
2607 			if_printf(ic->ic_ifp,
2608 			    "%s: invalid channel %u freq %u/0x%x\n",
2609 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2610 			return EINVAL;
2611 		}
2612 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2613 	}
2614 
2615 	return 0;
2616 }
2617 
2618 static void
2619 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2620 {
2621 	struct iwn_eeprom_enhinfo enhinfo[35];
2622 	struct ifnet *ifp = sc->sc_ifp;
2623 	struct ieee80211com *ic = ifp->if_l2com;
2624 	struct ieee80211_channel *c;
2625 	uint16_t val, base;
2626 	int8_t maxpwr;
2627 	uint8_t flags;
2628 	int i, j;
2629 
2630 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2631 
2632 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2633 	base = le16toh(val);
2634 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2635 	    enhinfo, sizeof enhinfo);
2636 
2637 	for (i = 0; i < nitems(enhinfo); i++) {
2638 		flags = enhinfo[i].flags;
2639 		if (!(flags & IWN_ENHINFO_VALID))
2640 			continue;	/* Skip invalid entries. */
2641 
2642 		maxpwr = 0;
2643 		if (sc->txchainmask & IWN_ANT_A)
2644 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2645 		if (sc->txchainmask & IWN_ANT_B)
2646 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2647 		if (sc->txchainmask & IWN_ANT_C)
2648 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2649 		if (sc->ntxchains == 2)
2650 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2651 		else if (sc->ntxchains == 3)
2652 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2653 
2654 		for (j = 0; j < ic->ic_nchans; j++) {
2655 			c = &ic->ic_channels[j];
2656 			if ((flags & IWN_ENHINFO_5GHZ)) {
2657 				if (!IEEE80211_IS_CHAN_A(c))
2658 					continue;
2659 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2660 				if (!IEEE80211_IS_CHAN_G(c))
2661 					continue;
2662 			} else if (!IEEE80211_IS_CHAN_B(c))
2663 				continue;
2664 			if ((flags & IWN_ENHINFO_HT40)) {
2665 				if (!IEEE80211_IS_CHAN_HT40(c))
2666 					continue;
2667 			} else {
2668 				if (IEEE80211_IS_CHAN_HT40(c))
2669 					continue;
2670 			}
2671 			if (enhinfo[i].chan != 0 &&
2672 			    enhinfo[i].chan != c->ic_ieee)
2673 				continue;
2674 
2675 			DPRINTF(sc, IWN_DEBUG_RESET,
2676 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2677 			    c->ic_flags, maxpwr / 2);
2678 			c->ic_maxregpower = maxpwr / 2;
2679 			c->ic_maxpower = maxpwr;
2680 		}
2681 	}
2682 
2683 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2684 
2685 }
2686 
2687 static struct ieee80211_node *
2688 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2689 {
2690 	return (kmalloc(sizeof (struct iwn_node),
2691 		        M_80211_NODE, M_INTWAIT | M_ZERO));
2692 }
2693 
2694 static __inline int
2695 rate2plcp(int rate)
2696 {
2697 	switch (rate & 0xff) {
2698 	case 12:	return 0xd;
2699 	case 18:	return 0xf;
2700 	case 24:	return 0x5;
2701 	case 36:	return 0x7;
2702 	case 48:	return 0x9;
2703 	case 72:	return 0xb;
2704 	case 96:	return 0x1;
2705 	case 108:	return 0x3;
2706 	case 2:		return 10;
2707 	case 4:		return 20;
2708 	case 11:	return 55;
2709 	case 22:	return 110;
2710 	}
2711 	return 0;
2712 }
2713 
2714 static int
2715 iwn_get_1stream_tx_antmask(struct iwn_softc *sc)
2716 {
2717 
2718 	return IWN_LSB(sc->txchainmask);
2719 }
2720 
2721 static int
2722 iwn_get_2stream_tx_antmask(struct iwn_softc *sc)
2723 {
2724 	int tx;
2725 
2726 	/*
2727 	 * The '2 stream' setup is a bit .. odd.
2728 	 *
2729 	 * For NICs that support only 1 antenna, default to IWN_ANT_AB or
2730 	 * the firmware panics (eg Intel 5100.)
2731 	 *
2732 	 * For NICs that support two antennas, we use ANT_AB.
2733 	 *
2734 	 * For NICs that support three antennas, we use the two that
2735 	 * wasn't the default one.
2736 	 *
2737 	 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict
2738 	 * this to only one antenna.
2739 	 */
2740 
2741 	/* Default - transmit on the other antennas */
2742 	tx = (sc->txchainmask & ~IWN_LSB(sc->txchainmask));
2743 
2744 	/* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */
2745 	if (tx == 0)
2746 		tx = IWN_ANT_AB;
2747 
2748 	/*
2749 	 * If the NIC is a two-stream TX NIC, configure the TX mask to
2750 	 * the default chainmask
2751 	 */
2752 	else if (sc->ntxchains == 2)
2753 		tx = sc->txchainmask;
2754 
2755 	return (tx);
2756 }
2757 
2758 
2759 
2760 /*
2761  * Calculate the required PLCP value from the given rate,
2762  * to the given node.
2763  *
2764  * This will take the node configuration (eg 11n, rate table
2765  * setup, etc) into consideration.
2766  */
2767 static uint32_t
2768 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2769     uint8_t rate)
2770 {
2771 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
2772 	struct ieee80211com *ic = ni->ni_ic;
2773 	uint32_t plcp = 0;
2774 	int ridx;
2775 
2776 	/*
2777 	 * If it's an MCS rate, let's set the plcp correctly
2778 	 * and set the relevant flags based on the node config.
2779 	 */
2780 	if (rate & IEEE80211_RATE_MCS) {
2781 		/*
2782 		 * Set the initial PLCP value to be between 0->31 for
2783 		 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2784 		 * flag.
2785 		 */
2786 		plcp = RV(rate) | IWN_RFLAG_MCS;
2787 
2788 		/*
2789 		 * XXX the following should only occur if both
2790 		 * the local configuration _and_ the remote node
2791 		 * advertise these capabilities.  Thus this code
2792 		 * may need fixing!
2793 		 */
2794 
2795 		/*
2796 		 * Set the channel width and guard interval.
2797 		 */
2798 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2799 			plcp |= IWN_RFLAG_HT40;
2800 			if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2801 				plcp |= IWN_RFLAG_SGI;
2802 		} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) {
2803 			plcp |= IWN_RFLAG_SGI;
2804 		}
2805 
2806 		/*
2807 		 * Ensure the selected rate matches the link quality
2808 		 * table entries being used.
2809 		 */
2810 		if (rate > 0x8f)
2811 			plcp |= IWN_RFLAG_ANT(sc->txchainmask);
2812 		else if (rate > 0x87)
2813 			plcp |= IWN_RFLAG_ANT(iwn_get_2stream_tx_antmask(sc));
2814 		else
2815 			plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2816 	} else {
2817 		/*
2818 		 * Set the initial PLCP - fine for both
2819 		 * OFDM and CCK rates.
2820 		 */
2821 		plcp = rate2plcp(rate);
2822 
2823 		/* Set CCK flag if it's CCK */
2824 
2825 		/* XXX It would be nice to have a method
2826 		 * to map the ridx -> phy table entry
2827 		 * so we could just query that, rather than
2828 		 * this hack to check against IWN_RIDX_OFDM6.
2829 		 */
2830 		ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2831 		    rate & IEEE80211_RATE_VAL);
2832 		if (ridx < IWN_RIDX_OFDM6 &&
2833 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2834 			plcp |= IWN_RFLAG_CCK;
2835 
2836 		/* Set antenna configuration */
2837 		/* XXX TODO: is this the right antenna to use for legacy? */
2838 		plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2839 	}
2840 
2841 	DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2842 	    __func__,
2843 	    rate,
2844 	    plcp);
2845 
2846 	return (htole32(plcp));
2847 #undef	RV
2848 }
2849 
2850 static void
2851 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2852 {
2853 	/* Doesn't do anything at the moment */
2854 }
2855 
2856 static int
2857 iwn_media_change(struct ifnet *ifp)
2858 {
2859 	int error;
2860 
2861 	error = ieee80211_media_change(ifp);
2862 	/* NB: only the fixed rate can change and that doesn't need a reset */
2863 	return (error == ENETRESET ? 0 : error);
2864 }
2865 
2866 static int
2867 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2868 {
2869 	struct iwn_vap *ivp = IWN_VAP(vap);
2870 	struct ieee80211com *ic = vap->iv_ic;
2871 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2872 	int error = 0;
2873 
2874 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2875 
2876 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2877 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2878 
2879 	IEEE80211_UNLOCK(ic);
2880 	IWN_LOCK(sc);
2881 #if defined(__DragonFly__)
2882 	callout_stop_sync(&sc->calib_to);
2883 #else
2884 	callout_stop(&sc->calib_to);
2885 #endif
2886 
2887 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
2888 
2889 	switch (nstate) {
2890 	case IEEE80211_S_ASSOC:
2891 		if (vap->iv_state != IEEE80211_S_RUN)
2892 			break;
2893 		/* FALLTHROUGH */
2894 	case IEEE80211_S_AUTH:
2895 		if (vap->iv_state == IEEE80211_S_AUTH)
2896 			break;
2897 
2898 		/*
2899 		 * !AUTH -> AUTH transition requires state reset to handle
2900 		 * reassociations correctly.
2901 		 */
2902 		sc->rxon->associd = 0;
2903 		sc->rxon->filter &= ~htole32(IWN_FILTER_BSS);
2904 		sc->calib.state = IWN_CALIB_STATE_INIT;
2905 
2906 		if ((error = iwn_auth(sc, vap)) != 0) {
2907 			device_printf(sc->sc_dev,
2908 			    "%s: could not move to auth state\n", __func__);
2909 		}
2910 		break;
2911 
2912 	case IEEE80211_S_RUN:
2913 		/*
2914 		 * RUN -> RUN transition; Just restart the timers.
2915 		 */
2916 		if (vap->iv_state == IEEE80211_S_RUN) {
2917 			sc->calib_cnt = 0;
2918 			break;
2919 		}
2920 
2921 		/*
2922 		 * !RUN -> RUN requires setting the association id
2923 		 * which is done with a firmware cmd.  We also defer
2924 		 * starting the timers until that work is done.
2925 		 */
2926 		if ((error = iwn_run(sc, vap)) != 0) {
2927 			device_printf(sc->sc_dev,
2928 			    "%s: could not move to run state\n", __func__);
2929 		}
2930 		break;
2931 
2932 	case IEEE80211_S_INIT:
2933 		sc->calib.state = IWN_CALIB_STATE_INIT;
2934 		break;
2935 
2936 	default:
2937 		break;
2938 	}
2939 	IWN_UNLOCK(sc);
2940 	IEEE80211_LOCK(ic);
2941 	if (error != 0){
2942 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2943 		return error;
2944 	}
2945 
2946 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2947 
2948 	return ivp->iv_newstate(vap, nstate, arg);
2949 }
2950 
2951 static void
2952 iwn_calib_timeout(void *arg)
2953 {
2954 	struct iwn_softc *sc = arg;
2955 
2956 	IWN_LOCK_ASSERT(sc);
2957 
2958 	/* Force automatic TX power calibration every 60 secs. */
2959 	if (++sc->calib_cnt >= 120) {
2960 		uint32_t flags = 0;
2961 
2962 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2963 		    "sending request for statistics");
2964 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2965 		    sizeof flags, 1);
2966 		sc->calib_cnt = 0;
2967 	}
2968 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2969 	    sc);
2970 }
2971 
2972 /*
2973  * Process an RX_PHY firmware notification.  This is usually immediately
2974  * followed by an MPDU_RX_DONE notification.
2975  */
2976 static void
2977 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2978     struct iwn_rx_data *data)
2979 {
2980 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2981 
2982 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2983 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2984 
2985 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2986 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2987 	sc->last_rx_valid = 1;
2988 }
2989 
2990 /*
2991  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2992  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2993  */
2994 static void
2995 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2996     struct iwn_rx_data *data)
2997 {
2998 	struct iwn_ops *ops = &sc->ops;
2999 	struct ifnet *ifp = sc->sc_ifp;
3000 	struct ieee80211com *ic = ifp->if_l2com;
3001 	struct iwn_rx_ring *ring = &sc->rxq;
3002 	struct ieee80211_frame *wh;
3003 	struct ieee80211_node *ni;
3004 	struct mbuf *m, *m1;
3005 	struct iwn_rx_stat *stat;
3006 	caddr_t head;
3007 	bus_addr_t paddr;
3008 	uint32_t flags;
3009 	int error, len, rssi, nf;
3010 
3011 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3012 
3013 	if (desc->type == IWN_MPDU_RX_DONE) {
3014 		/* Check for prior RX_PHY notification. */
3015 		if (!sc->last_rx_valid) {
3016 			DPRINTF(sc, IWN_DEBUG_ANY,
3017 			    "%s: missing RX_PHY\n", __func__);
3018 			return;
3019 		}
3020 		stat = &sc->last_rx_stat;
3021 	} else
3022 		stat = (struct iwn_rx_stat *)(desc + 1);
3023 
3024 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3025 
3026 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
3027 		device_printf(sc->sc_dev,
3028 		    "%s: invalid RX statistic header, len %d\n", __func__,
3029 		    stat->cfg_phy_len);
3030 		return;
3031 	}
3032 	if (desc->type == IWN_MPDU_RX_DONE) {
3033 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
3034 		head = (caddr_t)(mpdu + 1);
3035 		len = le16toh(mpdu->len);
3036 	} else {
3037 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
3038 		len = le16toh(stat->len);
3039 	}
3040 
3041 	flags = le32toh(*(uint32_t *)(head + len));
3042 
3043 	/* Discard frames with a bad FCS early. */
3044 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
3045 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
3046 		    __func__, flags);
3047 #if defined(__DragonFly__)
3048 		++ifp->if_ierrors;
3049 #else
3050 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3051 #endif
3052 		return;
3053 	}
3054 	/* Discard frames that are too short. */
3055 	if (len < sizeof (*wh)) {
3056 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
3057 		    __func__, len);
3058 #if defined(__DragonFly__)
3059 		++ifp->if_ierrors;
3060 #else
3061 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3062 #endif
3063 		return;
3064 	}
3065 
3066 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
3067 	if (m1 == NULL) {
3068 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
3069 		    __func__);
3070 #if defined(__DragonFly__)
3071 		++ifp->if_ierrors;
3072 #else
3073 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3074 #endif
3075 		return;
3076 	}
3077 	bus_dmamap_unload(ring->data_dmat, data->map);
3078 
3079 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
3080 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3081 	if (error != 0 && error != EFBIG) {
3082 		device_printf(sc->sc_dev,
3083 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
3084 		m_freem(m1);
3085 
3086 		/* Try to reload the old mbuf. */
3087 		error = bus_dmamap_load(ring->data_dmat, data->map,
3088 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
3089 		    &paddr, BUS_DMA_NOWAIT);
3090 		if (error != 0 && error != EFBIG) {
3091 			panic("%s: could not load old RX mbuf", __func__);
3092 		}
3093 		/* Physical address may have changed. */
3094 		ring->desc[ring->cur] = htole32(paddr >> 8);
3095 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
3096 		    BUS_DMASYNC_PREWRITE);
3097 #if defined(__DragonFly__)
3098 		++ifp->if_ierrors;
3099 #else
3100 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3101 #endif
3102 		return;
3103 	}
3104 
3105 	m = data->m;
3106 	data->m = m1;
3107 	/* Update RX descriptor. */
3108 	ring->desc[ring->cur] = htole32(paddr >> 8);
3109 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3110 	    BUS_DMASYNC_PREWRITE);
3111 
3112 	/* Finalize mbuf. */
3113 	m->m_pkthdr.rcvif = ifp;
3114 	m->m_data = head;
3115 	m->m_pkthdr.len = m->m_len = len;
3116 
3117 	/* Grab a reference to the source node. */
3118 	wh = mtod(m, struct ieee80211_frame *);
3119 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
3120 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
3121 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
3122 
3123 	rssi = ops->get_rssi(sc, stat);
3124 
3125 	if (ieee80211_radiotap_active(ic)) {
3126 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
3127 
3128 		tap->wr_flags = 0;
3129 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
3130 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3131 		tap->wr_dbm_antsignal = (int8_t)rssi;
3132 		tap->wr_dbm_antnoise = (int8_t)nf;
3133 		tap->wr_tsft = stat->tstamp;
3134 		switch (stat->rate) {
3135 		/* CCK rates. */
3136 		case  10: tap->wr_rate =   2; break;
3137 		case  20: tap->wr_rate =   4; break;
3138 		case  55: tap->wr_rate =  11; break;
3139 		case 110: tap->wr_rate =  22; break;
3140 		/* OFDM rates. */
3141 		case 0xd: tap->wr_rate =  12; break;
3142 		case 0xf: tap->wr_rate =  18; break;
3143 		case 0x5: tap->wr_rate =  24; break;
3144 		case 0x7: tap->wr_rate =  36; break;
3145 		case 0x9: tap->wr_rate =  48; break;
3146 		case 0xb: tap->wr_rate =  72; break;
3147 		case 0x1: tap->wr_rate =  96; break;
3148 		case 0x3: tap->wr_rate = 108; break;
3149 		/* Unknown rate: should not happen. */
3150 		default:  tap->wr_rate =   0;
3151 		}
3152 	}
3153 
3154 	IWN_UNLOCK(sc);
3155 
3156 	/* Send the frame to the 802.11 layer. */
3157 	if (ni != NULL) {
3158 		if (ni->ni_flags & IEEE80211_NODE_HT)
3159 			m->m_flags |= M_AMPDU;
3160 		(void)ieee80211_input(ni, m, rssi - nf, nf);
3161 		/* Node is no longer needed. */
3162 		ieee80211_free_node(ni);
3163 	} else
3164 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
3165 
3166 	IWN_LOCK(sc);
3167 
3168 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3169 
3170 }
3171 
3172 /* Process an incoming Compressed BlockAck. */
3173 static void
3174 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3175     struct iwn_rx_data *data)
3176 {
3177 	struct iwn_ops *ops = &sc->ops;
3178 	struct ifnet *ifp = sc->sc_ifp;
3179 	struct iwn_node *wn;
3180 	struct ieee80211_node *ni;
3181 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
3182 	struct iwn_tx_ring *txq;
3183 	struct iwn_tx_data *txdata;
3184 	struct ieee80211_tx_ampdu *tap;
3185 	struct mbuf *m;
3186 	uint64_t bitmap;
3187 	uint16_t ssn;
3188 	uint8_t tid;
3189 	int ackfailcnt = 0, i, lastidx, qid, *res, shift;
3190 	int tx_ok = 0, tx_err = 0;
3191 
3192 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s begin\n", __func__);
3193 
3194 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3195 
3196 	qid = le16toh(ba->qid);
3197 	txq = &sc->txq[ba->qid];
3198 	tap = sc->qid2tap[ba->qid];
3199 	tid = tap->txa_tid;
3200 	wn = (void *)tap->txa_ni;
3201 
3202 	res = NULL;
3203 	ssn = 0;
3204 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3205 		res = tap->txa_private;
3206 		ssn = tap->txa_start & 0xfff;
3207 	}
3208 
3209 	for (lastidx = le16toh(ba->ssn) & 0xff; txq->read != lastidx;) {
3210 		txdata = &txq->data[txq->read];
3211 
3212 		/* Unmap and free mbuf. */
3213 		bus_dmamap_sync(txq->data_dmat, txdata->map,
3214 		    BUS_DMASYNC_POSTWRITE);
3215 		bus_dmamap_unload(txq->data_dmat, txdata->map);
3216 		m = txdata->m, txdata->m = NULL;
3217 		ni = txdata->ni, txdata->ni = NULL;
3218 
3219 		KASSERT(ni != NULL, ("no node"));
3220 		KASSERT(m != NULL, ("no mbuf"));
3221 
3222 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m);
3223 		ieee80211_tx_complete(ni, m, 1);
3224 
3225 		txq->queued--;
3226 		txq->read = (txq->read + 1) % IWN_TX_RING_COUNT;
3227 	}
3228 
3229 	if (txq->queued == 0 && res != NULL) {
3230 		iwn_nic_lock(sc);
3231 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3232 		iwn_nic_unlock(sc);
3233 		sc->qid2tap[qid] = NULL;
3234 		kfree(res, M_DEVBUF);
3235 		return;
3236 	}
3237 
3238 	if (wn->agg[tid].bitmap == 0)
3239 		return;
3240 
3241 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
3242 	if (shift < 0)
3243 		shift += 0x100;
3244 
3245 	if (wn->agg[tid].nframes > (64 - shift))
3246 		return;
3247 
3248 	/*
3249 	 * Walk the bitmap and calculate how many successful and failed
3250 	 * attempts are made.
3251 	 *
3252 	 * Yes, the rate control code doesn't know these are A-MPDU
3253 	 * subframes and that it's okay to fail some of these.
3254 	 */
3255 	ni = tap->txa_ni;
3256 	bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap;
3257 	for (i = 0; bitmap; i++) {
3258 		if ((bitmap & 1) == 0) {
3259 #if defined(__DragonFly__)
3260 			++ifp->if_oerrors;
3261 #else
3262 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3263 #endif
3264 			tx_err ++;
3265 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3266 			    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
3267 		} else {
3268 #if defined(__DragonFly__)
3269 			++ifp->if_opackets;
3270 #else
3271 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3272 #endif
3273 			tx_ok ++;
3274 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3275 			    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
3276 		}
3277 		bitmap >>= 1;
3278 	}
3279 
3280 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3281 	    "->%s: end; %d ok; %d err\n",__func__, tx_ok, tx_err);
3282 
3283 }
3284 
3285 /*
3286  * Process a CALIBRATION_RESULT notification sent by the initialization
3287  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
3288  */
3289 static void
3290 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3291     struct iwn_rx_data *data)
3292 {
3293 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
3294 	int len, idx = -1;
3295 
3296 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3297 
3298 	/* Runtime firmware should not send such a notification. */
3299 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE){
3300 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received after clib done\n",
3301 	    __func__);
3302 		return;
3303 	}
3304 	len = (le32toh(desc->len) & 0x3fff) - 4;
3305 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3306 
3307 	switch (calib->code) {
3308 	case IWN5000_PHY_CALIB_DC:
3309 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC)
3310 			idx = 0;
3311 		break;
3312 	case IWN5000_PHY_CALIB_LO:
3313 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO)
3314 			idx = 1;
3315 		break;
3316 	case IWN5000_PHY_CALIB_TX_IQ:
3317 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ)
3318 			idx = 2;
3319 		break;
3320 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
3321 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC)
3322 			idx = 3;
3323 		break;
3324 	case IWN5000_PHY_CALIB_BASE_BAND:
3325 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND)
3326 			idx = 4;
3327 		break;
3328 	}
3329 	if (idx == -1)	/* Ignore other results. */
3330 		return;
3331 
3332 	/* Save calibration result. */
3333 	if (sc->calibcmd[idx].buf != NULL)
3334 		kfree(sc->calibcmd[idx].buf, M_DEVBUF);
3335 	sc->calibcmd[idx].buf = kmalloc(len, M_DEVBUF, M_INTWAIT);
3336 	if (sc->calibcmd[idx].buf == NULL) {
3337 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3338 		    "not enough memory for calibration result %d\n",
3339 		    calib->code);
3340 		return;
3341 	}
3342 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3343 	    "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len);
3344 	sc->calibcmd[idx].len = len;
3345 	memcpy(sc->calibcmd[idx].buf, calib, len);
3346 }
3347 
3348 static void
3349 iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib,
3350     struct iwn_stats *stats, int len)
3351 {
3352 	struct iwn_stats_bt *stats_bt;
3353 	struct iwn_stats *lstats;
3354 
3355 	/*
3356 	 * First - check whether the length is the bluetooth or normal.
3357 	 *
3358 	 * If it's normal - just copy it and bump out.
3359 	 * Otherwise we have to convert things.
3360 	 */
3361 
3362 	if (len == sizeof(struct iwn_stats) + 4) {
3363 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3364 		sc->last_stat_valid = 1;
3365 		return;
3366 	}
3367 
3368 	/*
3369 	 * If it's not the bluetooth size - log, then just copy.
3370 	 */
3371 	if (len != sizeof(struct iwn_stats_bt) + 4) {
3372 		DPRINTF(sc, IWN_DEBUG_STATS,
3373 		    "%s: size of rx statistics (%d) not an expected size!\n",
3374 		    __func__,
3375 		    len);
3376 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3377 		sc->last_stat_valid = 1;
3378 		return;
3379 	}
3380 
3381 	/*
3382 	 * Ok. Time to copy.
3383 	 */
3384 	stats_bt = (struct iwn_stats_bt *) stats;
3385 	lstats = &sc->last_stat;
3386 
3387 	/* flags */
3388 	lstats->flags = stats_bt->flags;
3389 	/* rx_bt */
3390 	memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm,
3391 	    sizeof(struct iwn_rx_phy_stats));
3392 	memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck,
3393 	    sizeof(struct iwn_rx_phy_stats));
3394 	memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common,
3395 	    sizeof(struct iwn_rx_general_stats));
3396 	memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht,
3397 	    sizeof(struct iwn_rx_ht_phy_stats));
3398 	/* tx */
3399 	memcpy(&lstats->tx, &stats_bt->tx,
3400 	    sizeof(struct iwn_tx_stats));
3401 	/* general */
3402 	memcpy(&lstats->general, &stats_bt->general,
3403 	    sizeof(struct iwn_general_stats));
3404 
3405 	/* XXX TODO: Squirrel away the extra bluetooth stats somewhere */
3406 	sc->last_stat_valid = 1;
3407 }
3408 
3409 /*
3410  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
3411  * The latter is sent by the firmware after each received beacon.
3412  */
3413 static void
3414 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3415     struct iwn_rx_data *data)
3416 {
3417 	struct iwn_ops *ops = &sc->ops;
3418 	struct ifnet *ifp = sc->sc_ifp;
3419 	struct ieee80211com *ic = ifp->if_l2com;
3420 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3421 	struct iwn_calib_state *calib = &sc->calib;
3422 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
3423 	struct iwn_stats *lstats;
3424 	int temp;
3425 
3426 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3427 
3428 	/* Ignore statistics received during a scan. */
3429 	if (vap->iv_state != IEEE80211_S_RUN ||
3430 	    (ic->ic_flags & IEEE80211_F_SCAN)){
3431 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n",
3432 	    __func__);
3433 		return;
3434 	}
3435 
3436 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3437 
3438 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS,
3439 	    "%s: received statistics, cmd %d, len %d\n",
3440 	    __func__, desc->type, le16toh(desc->len));
3441 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
3442 
3443 	/*
3444 	 * Collect/track general statistics for reporting.
3445 	 *
3446 	 * This takes care of ensuring that the bluetooth sized message
3447 	 * will be correctly converted to the legacy sized message.
3448 	 */
3449 	iwn_stats_update(sc, calib, stats, le16toh(desc->len));
3450 
3451 	/*
3452 	 * And now, let's take a reference of it to use!
3453 	 */
3454 	lstats = &sc->last_stat;
3455 
3456 	/* Test if temperature has changed. */
3457 	if (lstats->general.temp != sc->rawtemp) {
3458 		/* Convert "raw" temperature to degC. */
3459 		sc->rawtemp = stats->general.temp;
3460 		temp = ops->get_temperature(sc);
3461 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
3462 		    __func__, temp);
3463 
3464 		/* Update TX power if need be (4965AGN only). */
3465 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3466 			iwn4965_power_calibration(sc, temp);
3467 	}
3468 
3469 	if (desc->type != IWN_BEACON_STATISTICS)
3470 		return;	/* Reply to a statistics request. */
3471 
3472 	sc->noise = iwn_get_noise(&lstats->rx.general);
3473 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
3474 
3475 	/* Test that RSSI and noise are present in stats report. */
3476 	if (le32toh(lstats->rx.general.flags) != 1) {
3477 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
3478 		    "received statistics without RSSI");
3479 		return;
3480 	}
3481 
3482 	if (calib->state == IWN_CALIB_STATE_ASSOC)
3483 		iwn_collect_noise(sc, &lstats->rx.general);
3484 	else if (calib->state == IWN_CALIB_STATE_RUN) {
3485 		iwn_tune_sensitivity(sc, &lstats->rx);
3486 		/*
3487 		 * XXX TODO: Only run the RX recovery if we're associated!
3488 		 */
3489 		iwn_check_rx_recovery(sc, lstats);
3490 		iwn_save_stats_counters(sc, lstats);
3491 	}
3492 
3493 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3494 }
3495 
3496 /*
3497  * Save the relevant statistic counters for the next calibration
3498  * pass.
3499  */
3500 static void
3501 iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs)
3502 {
3503 	struct iwn_calib_state *calib = &sc->calib;
3504 
3505 	/* Save counters values for next call. */
3506 	calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp);
3507 	calib->fa_cck = le32toh(rs->rx.cck.fa);
3508 	calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp);
3509 	calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp);
3510 	calib->fa_ofdm = le32toh(rs->rx.ofdm.fa);
3511 
3512 	/* Last time we received these tick values */
3513 	sc->last_calib_ticks = ticks;
3514 }
3515 
3516 /*
3517  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
3518  * and 5000 adapters have different incompatible TX status formats.
3519  */
3520 static void
3521 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3522     struct iwn_rx_data *data)
3523 {
3524 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
3525 	struct iwn_tx_ring *ring;
3526 	int qid;
3527 
3528 	qid = desc->qid & 0xf;
3529 	ring = &sc->txq[qid];
3530 
3531 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3532 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3533 	    __func__, desc->qid, desc->idx,
3534 	    stat->rtsfailcnt,
3535 	    stat->ackfailcnt,
3536 	    stat->btkillcnt,
3537 	    stat->rate, le16toh(stat->duration),
3538 	    le32toh(stat->status));
3539 
3540 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3541 	if (qid >= sc->firstaggqueue) {
3542 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3543 		    stat->ackfailcnt, &stat->status);
3544 	} else {
3545 		iwn_tx_done(sc, desc, stat->ackfailcnt,
3546 		    le32toh(stat->status) & 0xff);
3547 	}
3548 }
3549 
3550 static void
3551 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3552     struct iwn_rx_data *data)
3553 {
3554 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
3555 	struct iwn_tx_ring *ring;
3556 	int qid;
3557 
3558 	qid = desc->qid & 0xf;
3559 	ring = &sc->txq[qid];
3560 
3561 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3562 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3563 	    __func__, desc->qid, desc->idx,
3564 	    stat->rtsfailcnt,
3565 	    stat->ackfailcnt,
3566 	    stat->btkillcnt,
3567 	    stat->rate, le16toh(stat->duration),
3568 	    le32toh(stat->status));
3569 
3570 #ifdef notyet
3571 	/* Reset TX scheduler slot. */
3572 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
3573 #endif
3574 
3575 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3576 	if (qid >= sc->firstaggqueue) {
3577 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3578 		    stat->ackfailcnt, &stat->status);
3579 	} else {
3580 		iwn_tx_done(sc, desc, stat->ackfailcnt,
3581 		    le16toh(stat->status) & 0xff);
3582 	}
3583 }
3584 
3585 /*
3586  * Adapter-independent backend for TX_DONE firmware notifications.
3587  */
3588 static void
3589 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
3590     uint8_t status)
3591 {
3592 	struct ifnet *ifp = sc->sc_ifp;
3593 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
3594 	struct iwn_tx_data *data = &ring->data[desc->idx];
3595 	struct mbuf *m;
3596 	struct ieee80211_node *ni;
3597 	struct ieee80211vap *vap;
3598 
3599 	KASSERT(data->ni != NULL, ("no node"));
3600 
3601 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3602 
3603 	/* Unmap and free mbuf. */
3604 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
3605 	bus_dmamap_unload(ring->data_dmat, data->map);
3606 	m = data->m, data->m = NULL;
3607 	ni = data->ni, data->ni = NULL;
3608 	vap = ni->ni_vap;
3609 
3610 	/*
3611 	 * Update rate control statistics for the node.
3612 	 */
3613 	if (status & IWN_TX_FAIL) {
3614 #if defined(__DragonFly__)
3615 		++ifp->if_oerrors;
3616 #else
3617 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3618 #endif
3619 		ieee80211_ratectl_tx_complete(vap, ni,
3620 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
3621 	} else {
3622 #if defined(__DragonFly__)
3623 		++ifp->if_opackets;
3624 #else
3625 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3626 #endif
3627 		ieee80211_ratectl_tx_complete(vap, ni,
3628 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
3629 	}
3630 
3631 	/*
3632 	 * Channels marked for "radar" require traffic to be received
3633 	 * to unlock before we can transmit.  Until traffic is seen
3634 	 * any attempt to transmit is returned immediately with status
3635 	 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
3636 	 * happen on first authenticate after scanning.  To workaround
3637 	 * this we ignore a failure of this sort in AUTH state so the
3638 	 * 802.11 layer will fall back to using a timeout to wait for
3639 	 * the AUTH reply.  This allows the firmware time to see
3640 	 * traffic so a subsequent retry of AUTH succeeds.  It's
3641 	 * unclear why the firmware does not maintain state for
3642 	 * channels recently visited as this would allow immediate
3643 	 * use of the channel after a scan (where we see traffic).
3644 	 */
3645 	if (status == IWN_TX_FAIL_TX_LOCKED &&
3646 	    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
3647 		ieee80211_tx_complete(ni, m, 0);
3648 	else
3649 		ieee80211_tx_complete(ni, m,
3650 		    (status & IWN_TX_FAIL) != 0);
3651 
3652 	sc->sc_tx_timer = 0;
3653 	if (--ring->queued < IWN_TX_RING_LOMARK) {
3654 		sc->qfullmsk &= ~(1 << ring->qid);
3655 #if defined(__DragonFly__)
3656 		if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) {
3657 			ifq_clr_oactive(&ifp->if_snd);
3658 			iwn_start_locked(ifp);
3659 		}
3660 #else
3661 		if (sc->qfullmsk == 0 &&
3662 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
3663 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3664 			iwn_start_locked(ifp);
3665 		}
3666 #endif
3667 	}
3668 
3669 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3670 
3671 }
3672 
3673 /*
3674  * Process a "command done" firmware notification.  This is where we wakeup
3675  * processes waiting for a synchronous command completion.
3676  */
3677 static void
3678 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3679 {
3680 	struct iwn_tx_ring *ring;
3681 	struct iwn_tx_data *data;
3682 	int cmd_queue_num;
3683 
3684 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
3685 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
3686 	else
3687 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
3688 
3689 	if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num)
3690 		return;	/* Not a command ack. */
3691 
3692 	ring = &sc->txq[cmd_queue_num];
3693 	data = &ring->data[desc->idx];
3694 
3695 	/* If the command was mapped in an mbuf, free it. */
3696 	if (data->m != NULL) {
3697 		bus_dmamap_sync(ring->data_dmat, data->map,
3698 		    BUS_DMASYNC_POSTWRITE);
3699 		bus_dmamap_unload(ring->data_dmat, data->map);
3700 		m_freem(data->m);
3701 		data->m = NULL;
3702 	}
3703 	wakeup(&ring->desc[desc->idx]);
3704 }
3705 
3706 static void
3707 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes,
3708     int ackfailcnt, void *stat)
3709 {
3710 	struct iwn_ops *ops = &sc->ops;
3711 	struct ifnet *ifp = sc->sc_ifp;
3712 	struct iwn_tx_ring *ring = &sc->txq[qid];
3713 	struct iwn_tx_data *data;
3714 	struct mbuf *m;
3715 	struct iwn_node *wn;
3716 	struct ieee80211_node *ni;
3717 	struct ieee80211_tx_ampdu *tap;
3718 	uint64_t bitmap;
3719 	uint32_t *status = stat;
3720 	uint16_t *aggstatus = stat;
3721 	uint16_t ssn;
3722 	uint8_t tid;
3723 	int bit, i, lastidx, *res, seqno, shift, start;
3724 
3725 	/* XXX TODO: status is le16 field! Grr */
3726 
3727 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3728 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: nframes=%d, status=0x%08x\n",
3729 	    __func__,
3730 	    nframes,
3731 	    *status);
3732 
3733 	tap = sc->qid2tap[qid];
3734 	tid = tap->txa_tid;
3735 	wn = (void *)tap->txa_ni;
3736 	ni = tap->txa_ni;
3737 
3738 	/*
3739 	 * XXX TODO: ACK and RTS failures would be nice here!
3740 	 */
3741 
3742 	/*
3743 	 * A-MPDU single frame status - if we failed to transmit it
3744 	 * in A-MPDU, then it may be a permanent failure.
3745 	 *
3746 	 * XXX TODO: check what the Linux iwlwifi driver does here;
3747 	 * there's some permanent and temporary failures that may be
3748 	 * handled differently.
3749 	 */
3750 	if (nframes == 1) {
3751 		if ((*status & 0xff) != 1 && (*status & 0xff) != 2) {
3752 #ifdef	NOT_YET
3753 			kprintf("ieee80211_send_bar()\n");
3754 #endif
3755 			/*
3756 			 * If we completely fail a transmit, make sure a
3757 			 * notification is pushed up to the rate control
3758 			 * layer.
3759 			 */
3760 			ieee80211_ratectl_tx_complete(ni->ni_vap,
3761 			    ni,
3762 			    IEEE80211_RATECTL_TX_FAILURE,
3763 			    &ackfailcnt,
3764 			    NULL);
3765 		} else {
3766 			/*
3767 			 * If nframes=1, then we won't be getting a BA for
3768 			 * this frame.  Ensure that we correctly update the
3769 			 * rate control code with how many retries were
3770 			 * needed to send it.
3771 			 */
3772 			ieee80211_ratectl_tx_complete(ni->ni_vap,
3773 			    ni,
3774 			    IEEE80211_RATECTL_TX_SUCCESS,
3775 			    &ackfailcnt,
3776 			    NULL);
3777 		}
3778 	}
3779 
3780 	bitmap = 0;
3781 	start = idx;
3782 	for (i = 0; i < nframes; i++) {
3783 		if (le16toh(aggstatus[i * 2]) & 0xc)
3784 			continue;
3785 
3786 		idx = le16toh(aggstatus[2*i + 1]) & 0xff;
3787 		bit = idx - start;
3788 		shift = 0;
3789 		if (bit >= 64) {
3790 			shift = 0x100 - idx + start;
3791 			bit = 0;
3792 			start = idx;
3793 		} else if (bit <= -64)
3794 			bit = 0x100 - start + idx;
3795 		else if (bit < 0) {
3796 			shift = start - idx;
3797 			start = idx;
3798 			bit = 0;
3799 		}
3800 		bitmap = bitmap << shift;
3801 		bitmap |= 1ULL << bit;
3802 	}
3803 	tap = sc->qid2tap[qid];
3804 	tid = tap->txa_tid;
3805 	wn = (void *)tap->txa_ni;
3806 	wn->agg[tid].bitmap = bitmap;
3807 	wn->agg[tid].startidx = start;
3808 	wn->agg[tid].nframes = nframes;
3809 
3810 	res = NULL;
3811 	ssn = 0;
3812 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3813 		res = tap->txa_private;
3814 		ssn = tap->txa_start & 0xfff;
3815 	}
3816 
3817 	/* This is going nframes DWORDS into the descriptor? */
3818 	seqno = le32toh(*(status + nframes)) & 0xfff;
3819 	for (lastidx = (seqno & 0xff); ring->read != lastidx;) {
3820 		data = &ring->data[ring->read];
3821 
3822 		/* Unmap and free mbuf. */
3823 		bus_dmamap_sync(ring->data_dmat, data->map,
3824 		    BUS_DMASYNC_POSTWRITE);
3825 		bus_dmamap_unload(ring->data_dmat, data->map);
3826 		m = data->m, data->m = NULL;
3827 		ni = data->ni, data->ni = NULL;
3828 
3829 		KASSERT(ni != NULL, ("no node"));
3830 		KASSERT(m != NULL, ("no mbuf"));
3831 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m);
3832 		ieee80211_tx_complete(ni, m, 1);
3833 
3834 		ring->queued--;
3835 		ring->read = (ring->read + 1) % IWN_TX_RING_COUNT;
3836 	}
3837 
3838 	if (ring->queued == 0 && res != NULL) {
3839 		iwn_nic_lock(sc);
3840 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3841 		iwn_nic_unlock(sc);
3842 		sc->qid2tap[qid] = NULL;
3843 		kfree(res, M_DEVBUF);
3844 		return;
3845 	}
3846 
3847 	sc->sc_tx_timer = 0;
3848 	if (ring->queued < IWN_TX_RING_LOMARK) {
3849 		sc->qfullmsk &= ~(1 << ring->qid);
3850 #if defined(__DragonFly__)
3851 		if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) {
3852 			ifq_clr_oactive(&ifp->if_snd);
3853 			iwn_start_locked(ifp);
3854 		}
3855 #else
3856 		if (sc->qfullmsk == 0 &&
3857 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
3858 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3859 			iwn_start_locked(ifp);
3860 		}
3861 #endif
3862 	}
3863 
3864 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3865 
3866 }
3867 
3868 /*
3869  * Process an INT_FH_RX or INT_SW_RX interrupt.
3870  */
3871 static void
3872 iwn_notif_intr(struct iwn_softc *sc)
3873 {
3874 	struct iwn_ops *ops = &sc->ops;
3875 	struct ifnet *ifp = sc->sc_ifp;
3876 	struct ieee80211com *ic = ifp->if_l2com;
3877 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3878 	uint16_t hw;
3879 
3880 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
3881 	    BUS_DMASYNC_POSTREAD);
3882 
3883 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
3884 	while (sc->rxq.cur != hw) {
3885 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
3886 		struct iwn_rx_desc *desc;
3887 
3888 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3889 		    BUS_DMASYNC_POSTREAD);
3890 		desc = mtod(data->m, struct iwn_rx_desc *);
3891 
3892 		DPRINTF(sc, IWN_DEBUG_RECV,
3893 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
3894 		    __func__, sc->rxq.cur, desc->qid & 0xf, desc->idx, desc->flags,
3895 		    desc->type, iwn_intr_str(desc->type),
3896 		    le16toh(desc->len));
3897 
3898 		if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF))	/* Reply to a command. */
3899 			iwn_cmd_done(sc, desc);
3900 
3901 		switch (desc->type) {
3902 		case IWN_RX_PHY:
3903 			iwn_rx_phy(sc, desc, data);
3904 			break;
3905 
3906 		case IWN_RX_DONE:		/* 4965AGN only. */
3907 		case IWN_MPDU_RX_DONE:
3908 			/* An 802.11 frame has been received. */
3909 			iwn_rx_done(sc, desc, data);
3910 			break;
3911 
3912 		case IWN_RX_COMPRESSED_BA:
3913 			/* A Compressed BlockAck has been received. */
3914 			iwn_rx_compressed_ba(sc, desc, data);
3915 			break;
3916 
3917 		case IWN_TX_DONE:
3918 			/* An 802.11 frame has been transmitted. */
3919 			ops->tx_done(sc, desc, data);
3920 			break;
3921 
3922 		case IWN_RX_STATISTICS:
3923 		case IWN_BEACON_STATISTICS:
3924 			iwn_rx_statistics(sc, desc, data);
3925 			break;
3926 
3927 		case IWN_BEACON_MISSED:
3928 		{
3929 			struct iwn_beacon_missed *miss =
3930 			    (struct iwn_beacon_missed *)(desc + 1);
3931 			int misses;
3932 
3933 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3934 			    BUS_DMASYNC_POSTREAD);
3935 			misses = le32toh(miss->consecutive);
3936 
3937 			DPRINTF(sc, IWN_DEBUG_STATE,
3938 			    "%s: beacons missed %d/%d\n", __func__,
3939 			    misses, le32toh(miss->total));
3940 			/*
3941 			 * If more than 5 consecutive beacons are missed,
3942 			 * reinitialize the sensitivity state machine.
3943 			 */
3944 			if (vap->iv_state == IEEE80211_S_RUN &&
3945 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3946 				if (misses > 5)
3947 					(void)iwn_init_sensitivity(sc);
3948 				if (misses >= vap->iv_bmissthreshold) {
3949 					IWN_UNLOCK(sc);
3950 					ieee80211_beacon_miss(ic);
3951 					IWN_LOCK(sc);
3952 				}
3953 			}
3954 			break;
3955 		}
3956 		case IWN_UC_READY:
3957 		{
3958 			struct iwn_ucode_info *uc =
3959 			    (struct iwn_ucode_info *)(desc + 1);
3960 
3961 			/* The microcontroller is ready. */
3962 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3963 			    BUS_DMASYNC_POSTREAD);
3964 			DPRINTF(sc, IWN_DEBUG_RESET,
3965 			    "microcode alive notification version=%d.%d "
3966 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
3967 			    uc->subtype, le32toh(uc->valid));
3968 
3969 			if (le32toh(uc->valid) != 1) {
3970 				device_printf(sc->sc_dev,
3971 				    "microcontroller initialization failed");
3972 				break;
3973 			}
3974 			if (uc->subtype == IWN_UCODE_INIT) {
3975 				/* Save microcontroller report. */
3976 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
3977 			}
3978 			/* Save the address of the error log in SRAM. */
3979 			sc->errptr = le32toh(uc->errptr);
3980 			break;
3981 		}
3982 		case IWN_STATE_CHANGED:
3983 		{
3984 			/*
3985 			 * State change allows hardware switch change to be
3986 			 * noted. However, we handle this in iwn_intr as we
3987 			 * get both the enable/disble intr.
3988 			 */
3989 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3990 			    BUS_DMASYNC_POSTREAD);
3991 #ifdef	IWN_DEBUG
3992 			uint32_t *status = (uint32_t *)(desc + 1);
3993 			DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE,
3994 			    "state changed to %x\n",
3995 			    le32toh(*status));
3996 #endif
3997 			break;
3998 		}
3999 		case IWN_START_SCAN:
4000 		{
4001 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
4002 			    BUS_DMASYNC_POSTREAD);
4003 #ifdef	IWN_DEBUG
4004 			struct iwn_start_scan *scan =
4005 			    (struct iwn_start_scan *)(desc + 1);
4006 			DPRINTF(sc, IWN_DEBUG_ANY,
4007 			    "%s: scanning channel %d status %x\n",
4008 			    __func__, scan->chan, le32toh(scan->status));
4009 #endif
4010 			break;
4011 		}
4012 		case IWN_STOP_SCAN:
4013 		{
4014 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
4015 			    BUS_DMASYNC_POSTREAD);
4016 #ifdef	IWN_DEBUG
4017 			struct iwn_stop_scan *scan =
4018 			    (struct iwn_stop_scan *)(desc + 1);
4019 			DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN,
4020 			    "scan finished nchan=%d status=%d chan=%d\n",
4021 			    scan->nchan, scan->status, scan->chan);
4022 #endif
4023 			sc->sc_is_scanning = 0;
4024 			IWN_UNLOCK(sc);
4025 			ieee80211_scan_next(vap);
4026 			IWN_LOCK(sc);
4027 			break;
4028 		}
4029 		case IWN5000_CALIBRATION_RESULT:
4030 			iwn5000_rx_calib_results(sc, desc, data);
4031 			break;
4032 
4033 		case IWN5000_CALIBRATION_DONE:
4034 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
4035 			wakeup(sc);
4036 			break;
4037 		}
4038 
4039 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
4040 	}
4041 
4042 	/* Tell the firmware what we have processed. */
4043 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
4044 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
4045 }
4046 
4047 /*
4048  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
4049  * from power-down sleep mode.
4050  */
4051 static void
4052 iwn_wakeup_intr(struct iwn_softc *sc)
4053 {
4054 	int qid;
4055 
4056 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
4057 	    __func__);
4058 
4059 	/* Wakeup RX and TX rings. */
4060 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
4061 	for (qid = 0; qid < sc->ntxqs; qid++) {
4062 		struct iwn_tx_ring *ring = &sc->txq[qid];
4063 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
4064 	}
4065 }
4066 
4067 static void
4068 iwn_rftoggle_intr(struct iwn_softc *sc)
4069 {
4070 	struct ifnet *ifp = sc->sc_ifp;
4071 	struct ieee80211com *ic = ifp->if_l2com;
4072 	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
4073 
4074 	IWN_LOCK_ASSERT(sc);
4075 
4076 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
4077 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
4078 	if (tmp & IWN_GP_CNTRL_RFKILL)
4079 		ieee80211_runtask(ic, &sc->sc_radioon_task);
4080 	else
4081 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
4082 }
4083 
4084 /*
4085  * Dump the error log of the firmware when a firmware panic occurs.  Although
4086  * we can't debug the firmware because it is neither open source nor free, it
4087  * can help us to identify certain classes of problems.
4088  */
4089 static void
4090 iwn_fatal_intr(struct iwn_softc *sc)
4091 {
4092 	struct iwn_fw_dump dump;
4093 	int i;
4094 
4095 	IWN_LOCK_ASSERT(sc);
4096 
4097 	/* Force a complete recalibration on next init. */
4098 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
4099 
4100 	/* Check that the error log address is valid. */
4101 	if (sc->errptr < IWN_FW_DATA_BASE ||
4102 	    sc->errptr + sizeof (dump) >
4103 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
4104 		kprintf("%s: bad firmware error log address 0x%08x\n", __func__,
4105 		    sc->errptr);
4106 		return;
4107 	}
4108 	if (iwn_nic_lock(sc) != 0) {
4109 		kprintf("%s: could not read firmware error log\n", __func__);
4110 		return;
4111 	}
4112 	/* Read firmware error log from SRAM. */
4113 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
4114 	    sizeof (dump) / sizeof (uint32_t));
4115 	iwn_nic_unlock(sc);
4116 
4117 	if (dump.valid == 0) {
4118 		kprintf("%s: firmware error log is empty\n", __func__);
4119 		return;
4120 	}
4121 	kprintf("firmware error log:\n");
4122 	kprintf("  error type      = \"%s\" (0x%08X)\n",
4123 	    (dump.id < nitems(iwn_fw_errmsg)) ?
4124 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
4125 	    dump.id);
4126 	kprintf("  program counter = 0x%08X\n", dump.pc);
4127 	kprintf("  source line     = 0x%08X\n", dump.src_line);
4128 	kprintf("  error data      = 0x%08X%08X\n",
4129 	    dump.error_data[0], dump.error_data[1]);
4130 	kprintf("  branch link     = 0x%08X%08X\n",
4131 	    dump.branch_link[0], dump.branch_link[1]);
4132 	kprintf("  interrupt link  = 0x%08X%08X\n",
4133 	    dump.interrupt_link[0], dump.interrupt_link[1]);
4134 	kprintf("  time            = %u\n", dump.time[0]);
4135 
4136 	/* Dump driver status (TX and RX rings) while we're here. */
4137 	kprintf("driver status:\n");
4138 	for (i = 0; i < sc->ntxqs; i++) {
4139 		struct iwn_tx_ring *ring = &sc->txq[i];
4140 		kprintf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
4141 		    i, ring->qid, ring->cur, ring->queued);
4142 	}
4143 	kprintf("  rx ring: cur=%d\n", sc->rxq.cur);
4144 }
4145 
4146 static void
4147 iwn_intr(void *arg)
4148 {
4149 	struct iwn_softc *sc = arg;
4150 	struct ifnet *ifp = sc->sc_ifp;
4151 	uint32_t r1, r2, tmp;
4152 
4153 	IWN_LOCK(sc);
4154 
4155 	/* Disable interrupts. */
4156 	IWN_WRITE(sc, IWN_INT_MASK, 0);
4157 
4158 	/* Read interrupts from ICT (fast) or from registers (slow). */
4159 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4160 		tmp = 0;
4161 		while (sc->ict[sc->ict_cur] != 0) {
4162 			tmp |= sc->ict[sc->ict_cur];
4163 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
4164 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
4165 		}
4166 		tmp = le32toh(tmp);
4167 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
4168 			tmp = 0;
4169 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
4170 			tmp |= 0x8000;
4171 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
4172 		r2 = 0;	/* Unused. */
4173 	} else {
4174 		r1 = IWN_READ(sc, IWN_INT);
4175 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
4176 			return;	/* Hardware gone! */
4177 		r2 = IWN_READ(sc, IWN_FH_INT);
4178 	}
4179 
4180 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n"
4181     , r1, r2);
4182 
4183 	if (r1 == 0 && r2 == 0)
4184 		goto done;	/* Interrupt not for us. */
4185 
4186 	/* Acknowledge interrupts. */
4187 	IWN_WRITE(sc, IWN_INT, r1);
4188 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
4189 		IWN_WRITE(sc, IWN_FH_INT, r2);
4190 
4191 	if (r1 & IWN_INT_RF_TOGGLED) {
4192 		iwn_rftoggle_intr(sc);
4193 		goto done;
4194 	}
4195 	if (r1 & IWN_INT_CT_REACHED) {
4196 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
4197 		    __func__);
4198 	}
4199 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
4200 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
4201 		    __func__);
4202 #ifdef	IWN_DEBUG
4203 		iwn_debug_register(sc);
4204 #endif
4205 		/* Dump firmware error log and stop. */
4206 		iwn_fatal_intr(sc);
4207 
4208 		taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task);
4209 		goto done;
4210 	}
4211 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
4212 	    (r2 & IWN_FH_INT_RX)) {
4213 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4214 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
4215 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
4216 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4217 			    IWN_INT_PERIODIC_DIS);
4218 			iwn_notif_intr(sc);
4219 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
4220 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4221 				    IWN_INT_PERIODIC_ENA);
4222 			}
4223 		} else
4224 			iwn_notif_intr(sc);
4225 	}
4226 
4227 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
4228 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
4229 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
4230 		wakeup(sc);	/* FH DMA transfer completed. */
4231 	}
4232 
4233 	if (r1 & IWN_INT_ALIVE)
4234 		wakeup(sc);	/* Firmware is alive. */
4235 
4236 	if (r1 & IWN_INT_WAKEUP)
4237 		iwn_wakeup_intr(sc);
4238 
4239 done:
4240 	/* Re-enable interrupts. */
4241 	if (ifp->if_flags & IFF_UP)
4242 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4243 
4244 	IWN_UNLOCK(sc);
4245 }
4246 
4247 /*
4248  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
4249  * 5000 adapters use a slightly different format).
4250  */
4251 static void
4252 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4253     uint16_t len)
4254 {
4255 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
4256 
4257 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4258 
4259 	*w = htole16(len + 8);
4260 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4261 	    BUS_DMASYNC_PREWRITE);
4262 	if (idx < IWN_SCHED_WINSZ) {
4263 		*(w + IWN_TX_RING_COUNT) = *w;
4264 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4265 		    BUS_DMASYNC_PREWRITE);
4266 	}
4267 }
4268 
4269 static void
4270 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4271     uint16_t len)
4272 {
4273 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4274 
4275 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4276 
4277 	*w = htole16(id << 12 | (len + 8));
4278 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4279 	    BUS_DMASYNC_PREWRITE);
4280 	if (idx < IWN_SCHED_WINSZ) {
4281 		*(w + IWN_TX_RING_COUNT) = *w;
4282 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4283 		    BUS_DMASYNC_PREWRITE);
4284 	}
4285 }
4286 
4287 #ifdef notyet
4288 static void
4289 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
4290 {
4291 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4292 
4293 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4294 
4295 	*w = (*w & htole16(0xf000)) | htole16(1);
4296 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4297 	    BUS_DMASYNC_PREWRITE);
4298 	if (idx < IWN_SCHED_WINSZ) {
4299 		*(w + IWN_TX_RING_COUNT) = *w;
4300 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4301 		    BUS_DMASYNC_PREWRITE);
4302 	}
4303 }
4304 #endif
4305 
4306 /*
4307  * Check whether OFDM 11g protection will be enabled for the given rate.
4308  *
4309  * The original driver code only enabled protection for OFDM rates.
4310  * It didn't check to see whether it was operating in 11a or 11bg mode.
4311  */
4312 static int
4313 iwn_check_rate_needs_protection(struct iwn_softc *sc,
4314     struct ieee80211vap *vap, uint8_t rate)
4315 {
4316 	struct ieee80211com *ic = vap->iv_ic;
4317 
4318 	/*
4319 	 * Not in 2GHz mode? Then there's no need to enable OFDM
4320 	 * 11bg protection.
4321 	 */
4322 	if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
4323 		return (0);
4324 	}
4325 
4326 	/*
4327 	 * 11bg protection not enabled? Then don't use it.
4328 	 */
4329 	if ((ic->ic_flags & IEEE80211_F_USEPROT) == 0)
4330 		return (0);
4331 
4332 	/*
4333 	 * If it's an 11n rate - no protection.
4334 	 * We'll do it via a specific 11n check.
4335 	 */
4336 	if (rate & IEEE80211_RATE_MCS) {
4337 		return (0);
4338 	}
4339 
4340 	/*
4341 	 * Do a rate table lookup.  If the PHY is CCK,
4342 	 * don't do protection.
4343 	 */
4344 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK)
4345 		return (0);
4346 
4347 	/*
4348 	 * Yup, enable protection.
4349 	 */
4350 	return (1);
4351 }
4352 
4353 /*
4354  * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into
4355  * the link quality table that reflects this particular entry.
4356  */
4357 static int
4358 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni,
4359     uint8_t rate)
4360 {
4361 	struct ieee80211_rateset *rs;
4362 	int is_11n;
4363 	int nr;
4364 	int i;
4365 	uint8_t cmp_rate;
4366 
4367 	/*
4368 	 * Figure out if we're using 11n or not here.
4369 	 */
4370 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0)
4371 		is_11n = 1;
4372 	else
4373 		is_11n = 0;
4374 
4375 	/*
4376 	 * Use the correct rate table.
4377 	 */
4378 	if (is_11n) {
4379 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4380 		nr = ni->ni_htrates.rs_nrates;
4381 	} else {
4382 		rs = &ni->ni_rates;
4383 		nr = rs->rs_nrates;
4384 	}
4385 
4386 	/*
4387 	 * Find the relevant link quality entry in the table.
4388 	 */
4389 	for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) {
4390 		/*
4391 		 * The link quality table index starts at 0 == highest
4392 		 * rate, so we walk the rate table backwards.
4393 		 */
4394 		cmp_rate = rs->rs_rates[(nr - 1) - i];
4395 		if (rate & IEEE80211_RATE_MCS)
4396 			cmp_rate |= IEEE80211_RATE_MCS;
4397 
4398 #if 0
4399 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n",
4400 		    __func__,
4401 		    i,
4402 		    nr,
4403 		    rate,
4404 		    cmp_rate);
4405 #endif
4406 
4407 		if (cmp_rate == rate)
4408 			return (i);
4409 	}
4410 
4411 	/* Failed? Start at the end */
4412 	return (IWN_MAX_TX_RETRIES - 1);
4413 }
4414 
4415 static int
4416 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
4417 {
4418 	struct iwn_ops *ops = &sc->ops;
4419 	const struct ieee80211_txparam *tp;
4420 	struct ieee80211vap *vap = ni->ni_vap;
4421 	struct ieee80211com *ic = ni->ni_ic;
4422 	struct iwn_node *wn = (void *)ni;
4423 	struct iwn_tx_ring *ring;
4424 	struct iwn_tx_desc *desc;
4425 	struct iwn_tx_data *data;
4426 	struct iwn_tx_cmd *cmd;
4427 	struct iwn_cmd_data *tx;
4428 	struct ieee80211_frame *wh;
4429 	struct ieee80211_key *k = NULL;
4430 	struct mbuf *m1;
4431 	uint32_t flags;
4432 	uint16_t qos;
4433 	u_int hdrlen;
4434 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4435 	uint8_t tid, type;
4436 	int ac, i, totlen, error, pad, nsegs = 0, rate;
4437 
4438 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4439 
4440 	IWN_LOCK_ASSERT(sc);
4441 
4442 	wh = mtod(m, struct ieee80211_frame *);
4443 	hdrlen = ieee80211_anyhdrsize(wh);
4444 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4445 
4446 	/* Select EDCA Access Category and TX ring for this frame. */
4447 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
4448 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
4449 		tid = qos & IEEE80211_QOS_TID;
4450 	} else {
4451 		qos = 0;
4452 		tid = 0;
4453 	}
4454 	ac = M_WME_GETAC(m);
4455 	if (m->m_flags & M_AMPDU_MPDU) {
4456 		uint16_t seqno;
4457 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
4458 
4459 		if (!IEEE80211_AMPDU_RUNNING(tap)) {
4460 			m_freem(m);
4461 			return EINVAL;
4462 		}
4463 
4464 		/*
4465 		 * Queue this frame to the hardware ring that we've
4466 		 * negotiated AMPDU TX on.
4467 		 *
4468 		 * Note that the sequence number must match the TX slot
4469 		 * being used!
4470 		 */
4471 		ac = *(int *)tap->txa_private;
4472 		seqno = ni->ni_txseqs[tid];
4473 		*(uint16_t *)wh->i_seq =
4474 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4475 		ring = &sc->txq[ac];
4476 		if ((seqno % 256) != ring->cur) {
4477 			device_printf(sc->sc_dev,
4478 			    "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n",
4479 			    __func__,
4480 			    m,
4481 			    seqno,
4482 			    seqno % 256,
4483 			    ring->cur);
4484 		}
4485 		ni->ni_txseqs[tid]++;
4486 	}
4487 	ring = &sc->txq[ac];
4488 	desc = &ring->desc[ring->cur];
4489 	data = &ring->data[ring->cur];
4490 
4491 	/* Choose a TX rate index. */
4492 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
4493 	if (type == IEEE80211_FC0_TYPE_MGT)
4494 		rate = tp->mgmtrate;
4495 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
4496 		rate = tp->mcastrate;
4497 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
4498 		rate = tp->ucastrate;
4499 	else if (m->m_flags & M_EAPOL)
4500 		rate = tp->mgmtrate;
4501 	else {
4502 		/* XXX pass pktlen */
4503 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
4504 		rate = ni->ni_txrate;
4505 	}
4506 
4507 	/* Encrypt the frame if need be. */
4508 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
4509 		/* Retrieve key for TX. */
4510 		k = ieee80211_crypto_encap(ni, m);
4511 		if (k == NULL) {
4512 			m_freem(m);
4513 			return ENOBUFS;
4514 		}
4515 		/* 802.11 header may have moved. */
4516 		wh = mtod(m, struct ieee80211_frame *);
4517 	}
4518 	totlen = m->m_pkthdr.len;
4519 
4520 	if (ieee80211_radiotap_active_vap(vap)) {
4521 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4522 
4523 		tap->wt_flags = 0;
4524 		tap->wt_rate = rate;
4525 		if (k != NULL)
4526 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4527 
4528 		ieee80211_radiotap_tx(vap, m);
4529 	}
4530 
4531 	/* Prepare TX firmware command. */
4532 	cmd = &ring->cmd[ring->cur];
4533 	cmd->code = IWN_CMD_TX_DATA;
4534 	cmd->flags = 0;
4535 	cmd->qid = ring->qid;
4536 	cmd->idx = ring->cur;
4537 
4538 	tx = (struct iwn_cmd_data *)cmd->data;
4539 	/* NB: No need to clear tx, all fields are reinitialized here. */
4540 	tx->scratch = 0;	/* clear "scratch" area */
4541 
4542 	flags = 0;
4543 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4544 		/* Unicast frame, check if an ACK is expected. */
4545 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
4546 		    IEEE80211_QOS_ACKPOLICY_NOACK)
4547 			flags |= IWN_TX_NEED_ACK;
4548 	}
4549 	if ((wh->i_fc[0] &
4550 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
4551 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
4552 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
4553 
4554 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
4555 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
4556 
4557 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
4558 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4559 		/* NB: Group frames are sent using CCK in 802.11b/g. */
4560 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
4561 			flags |= IWN_TX_NEED_RTS;
4562 		} else if (iwn_check_rate_needs_protection(sc, vap, rate)) {
4563 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4564 				flags |= IWN_TX_NEED_CTS;
4565 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4566 				flags |= IWN_TX_NEED_RTS;
4567 		} else if ((rate & IEEE80211_RATE_MCS) &&
4568 			(ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)) {
4569 			flags |= IWN_TX_NEED_RTS;
4570 		}
4571 
4572 		/* XXX HT protection? */
4573 
4574 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
4575 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4576 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
4577 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
4578 				flags |= IWN_TX_NEED_PROTECTION;
4579 			} else
4580 				flags |= IWN_TX_FULL_TXOP;
4581 		}
4582 	}
4583 
4584 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
4585 	    type != IEEE80211_FC0_TYPE_DATA)
4586 		tx->id = sc->broadcast_id;
4587 	else
4588 		tx->id = wn->id;
4589 
4590 	if (type == IEEE80211_FC0_TYPE_MGT) {
4591 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4592 
4593 		/* Tell HW to set timestamp in probe responses. */
4594 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4595 			flags |= IWN_TX_INSERT_TSTAMP;
4596 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4597 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4598 			tx->timeout = htole16(3);
4599 		else
4600 			tx->timeout = htole16(2);
4601 	} else
4602 		tx->timeout = htole16(0);
4603 
4604 	if (hdrlen & 3) {
4605 		/* First segment length must be a multiple of 4. */
4606 		flags |= IWN_TX_NEED_PADDING;
4607 		pad = 4 - (hdrlen & 3);
4608 	} else
4609 		pad = 0;
4610 
4611 	tx->len = htole16(totlen);
4612 	tx->tid = tid;
4613 	tx->rts_ntries = 60;
4614 	tx->data_ntries = 15;
4615 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4616 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4617 	if (tx->id == sc->broadcast_id) {
4618 		/* Group or management frame. */
4619 		tx->linkq = 0;
4620 	} else {
4621 		tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate);
4622 		flags |= IWN_TX_LINKQ;	/* enable MRR */
4623 	}
4624 
4625 	/* Set physical address of "scratch area". */
4626 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4627 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4628 
4629 	/* Copy 802.11 header in TX command. */
4630 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4631 
4632 	/* Trim 802.11 header. */
4633 	m_adj(m, hdrlen);
4634 	tx->security = 0;
4635 	tx->flags = htole32(flags);
4636 
4637 #if defined(__DragonFly__)
4638 	error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
4639 					     data->map, m,
4640 					     segs, IWN_MAX_SCATTER - 1,
4641 					     &nsegs, BUS_DMA_NOWAIT);
4642 #else
4643 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4644 	    &nsegs, BUS_DMA_NOWAIT);
4645 #endif
4646 	if (error != 0) {
4647 		if (error != EFBIG) {
4648 			device_printf(sc->sc_dev,
4649 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4650 			m_freem(m);
4651 			return error;
4652 		}
4653 		/* Too many DMA segments, linearize mbuf. */
4654 #if defined(__DragonFly__)
4655 		m1 = m_defrag(m, M_NOWAIT);
4656 #else
4657 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER);
4658 #endif
4659 		if (m1 == NULL) {
4660 			device_printf(sc->sc_dev,
4661 			    "%s: could not defrag mbuf\n", __func__);
4662 			m_freem(m);
4663 			return ENOBUFS;
4664 		}
4665 		m = m1;
4666 
4667 #if defined(__DragonFly__)
4668 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
4669 						     data->map, m,
4670 						     segs, IWN_MAX_SCATTER - 1,
4671 						     &nsegs, BUS_DMA_NOWAIT);
4672 #else
4673 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4674 		    segs, &nsegs, BUS_DMA_NOWAIT);
4675 #endif
4676 		if (error != 0) {
4677 			device_printf(sc->sc_dev,
4678 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4679 			m_freem(m);
4680 			return error;
4681 		}
4682 	}
4683 
4684 	data->m = m;
4685 	data->ni = ni;
4686 
4687 	DPRINTF(sc, IWN_DEBUG_XMIT,
4688 	    "%s: qid %d idx %d len %d nsegs %d flags 0x%08x rate 0x%04x plcp 0x%08x\n",
4689 	    __func__,
4690 	    ring->qid,
4691 	    ring->cur,
4692 	    m->m_pkthdr.len,
4693 	    nsegs,
4694 	    flags,
4695 	    rate,
4696 	    tx->rate);
4697 
4698 	/* Fill TX descriptor. */
4699 	desc->nsegs = 1;
4700 	if (m->m_len != 0)
4701 		desc->nsegs += nsegs;
4702 	/* First DMA segment is used by the TX command. */
4703 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4704 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4705 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4706 	/* Other DMA segments are for data payload. */
4707 	seg = &segs[0];
4708 	for (i = 1; i <= nsegs; i++) {
4709 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4710 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4711 		    seg->ds_len << 4);
4712 		seg++;
4713 	}
4714 
4715 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4716 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4717 	    BUS_DMASYNC_PREWRITE);
4718 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4719 	    BUS_DMASYNC_PREWRITE);
4720 
4721 	/* Update TX scheduler. */
4722 	if (ring->qid >= sc->firstaggqueue)
4723 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4724 
4725 	/* Kick TX ring. */
4726 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4727 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4728 
4729 	/* Mark TX ring as full if we reach a certain threshold. */
4730 	if (++ring->queued > IWN_TX_RING_HIMARK)
4731 		sc->qfullmsk |= 1 << ring->qid;
4732 
4733 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4734 
4735 	return 0;
4736 }
4737 
4738 static int
4739 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
4740     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
4741 {
4742 	struct iwn_ops *ops = &sc->ops;
4743 //	struct ifnet *ifp = sc->sc_ifp;
4744 	struct ieee80211vap *vap = ni->ni_vap;
4745 //	struct ieee80211com *ic = ifp->if_l2com;
4746 	struct iwn_tx_cmd *cmd;
4747 	struct iwn_cmd_data *tx;
4748 	struct ieee80211_frame *wh;
4749 	struct iwn_tx_ring *ring;
4750 	struct iwn_tx_desc *desc;
4751 	struct iwn_tx_data *data;
4752 	struct mbuf *m1;
4753 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4754 	uint32_t flags;
4755 	u_int hdrlen;
4756 	int ac, totlen, error, pad, nsegs = 0, i, rate;
4757 	uint8_t type;
4758 
4759 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4760 
4761 	IWN_LOCK_ASSERT(sc);
4762 
4763 	wh = mtod(m, struct ieee80211_frame *);
4764 	hdrlen = ieee80211_anyhdrsize(wh);
4765 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4766 
4767 	ac = params->ibp_pri & 3;
4768 
4769 	ring = &sc->txq[ac];
4770 	desc = &ring->desc[ring->cur];
4771 	data = &ring->data[ring->cur];
4772 
4773 	/* Choose a TX rate. */
4774 	rate = params->ibp_rate0;
4775 	totlen = m->m_pkthdr.len;
4776 
4777 	/* Prepare TX firmware command. */
4778 	cmd = &ring->cmd[ring->cur];
4779 	cmd->code = IWN_CMD_TX_DATA;
4780 	cmd->flags = 0;
4781 	cmd->qid = ring->qid;
4782 	cmd->idx = ring->cur;
4783 
4784 	tx = (struct iwn_cmd_data *)cmd->data;
4785 	/* NB: No need to clear tx, all fields are reinitialized here. */
4786 	tx->scratch = 0;	/* clear "scratch" area */
4787 
4788 	flags = 0;
4789 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
4790 		flags |= IWN_TX_NEED_ACK;
4791 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
4792 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4793 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4794 			flags &= ~IWN_TX_NEED_RTS;
4795 			flags |= IWN_TX_NEED_PROTECTION;
4796 		} else
4797 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
4798 	}
4799 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
4800 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4801 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4802 			flags &= ~IWN_TX_NEED_CTS;
4803 			flags |= IWN_TX_NEED_PROTECTION;
4804 		} else
4805 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
4806 	}
4807 	if (type == IEEE80211_FC0_TYPE_MGT) {
4808 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4809 
4810 		/* Tell HW to set timestamp in probe responses. */
4811 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4812 			flags |= IWN_TX_INSERT_TSTAMP;
4813 
4814 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4815 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4816 			tx->timeout = htole16(3);
4817 		else
4818 			tx->timeout = htole16(2);
4819 	} else
4820 		tx->timeout = htole16(0);
4821 
4822 	if (hdrlen & 3) {
4823 		/* First segment length must be a multiple of 4. */
4824 		flags |= IWN_TX_NEED_PADDING;
4825 		pad = 4 - (hdrlen & 3);
4826 	} else
4827 		pad = 0;
4828 
4829 	if (ieee80211_radiotap_active_vap(vap)) {
4830 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4831 
4832 		tap->wt_flags = 0;
4833 		tap->wt_rate = rate;
4834 
4835 		ieee80211_radiotap_tx(vap, m);
4836 	}
4837 
4838 	tx->len = htole16(totlen);
4839 	tx->tid = 0;
4840 	tx->id = sc->broadcast_id;
4841 	tx->rts_ntries = params->ibp_try1;
4842 	tx->data_ntries = params->ibp_try0;
4843 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4844 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4845 
4846 	/* Group or management frame. */
4847 	tx->linkq = 0;
4848 
4849 	/* Set physical address of "scratch area". */
4850 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4851 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4852 
4853 	/* Copy 802.11 header in TX command. */
4854 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4855 
4856 	/* Trim 802.11 header. */
4857 	m_adj(m, hdrlen);
4858 	tx->security = 0;
4859 	tx->flags = htole32(flags);
4860 
4861 #if defined(__DragonFly__)
4862 	error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
4863 					     m, segs, IWN_MAX_SCATTER - 1,
4864 					     &nsegs, BUS_DMA_NOWAIT);
4865 #else
4866 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4867 	    &nsegs, BUS_DMA_NOWAIT);
4868 #endif
4869 	if (error != 0) {
4870 		if (error != EFBIG) {
4871 			device_printf(sc->sc_dev,
4872 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4873 			m_freem(m);
4874 			return error;
4875 		}
4876 		/* Too many DMA segments, linearize mbuf. */
4877 #if defined(__DragonFly__)
4878 		m1 = m_defrag(m, M_NOWAIT);
4879 #else
4880 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER);
4881 #endif
4882 		if (m1 == NULL) {
4883 			device_printf(sc->sc_dev,
4884 			    "%s: could not defrag mbuf\n", __func__);
4885 			m_freem(m);
4886 			return ENOBUFS;
4887 		}
4888 		m = m1;
4889 
4890 #if defined(__DragonFly__)
4891 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
4892 						     data->map, m,
4893 						     segs, IWN_MAX_SCATTER - 1,
4894 						     &nsegs, BUS_DMA_NOWAIT);
4895 #else
4896 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4897 		    segs, &nsegs, BUS_DMA_NOWAIT);
4898 #endif
4899 		if (error != 0) {
4900 			device_printf(sc->sc_dev,
4901 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4902 			m_freem(m);
4903 			return error;
4904 		}
4905 	}
4906 
4907 	data->m = m;
4908 	data->ni = ni;
4909 
4910 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
4911 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
4912 
4913 	/* Fill TX descriptor. */
4914 	desc->nsegs = 1;
4915 	if (m->m_len != 0)
4916 		desc->nsegs += nsegs;
4917 	/* First DMA segment is used by the TX command. */
4918 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4919 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4920 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4921 	/* Other DMA segments are for data payload. */
4922 	seg = &segs[0];
4923 	for (i = 1; i <= nsegs; i++) {
4924 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4925 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4926 		    seg->ds_len << 4);
4927 		seg++;
4928 	}
4929 
4930 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4931 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4932 	    BUS_DMASYNC_PREWRITE);
4933 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4934 	    BUS_DMASYNC_PREWRITE);
4935 
4936 	/* Update TX scheduler. */
4937 	if (ring->qid >= sc->firstaggqueue)
4938 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4939 
4940 	/* Kick TX ring. */
4941 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4942 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4943 
4944 	/* Mark TX ring as full if we reach a certain threshold. */
4945 	if (++ring->queued > IWN_TX_RING_HIMARK)
4946 		sc->qfullmsk |= 1 << ring->qid;
4947 
4948 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4949 
4950 	return 0;
4951 }
4952 
4953 static int
4954 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
4955     const struct ieee80211_bpf_params *params)
4956 {
4957 	struct ieee80211com *ic = ni->ni_ic;
4958 	struct ifnet *ifp = ic->ic_ifp;
4959 	struct iwn_softc *sc = ifp->if_softc;
4960 	int error = 0;
4961 
4962 	DPRINTF(sc, IWN_DEBUG_XMIT | IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4963 
4964 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4965 		ieee80211_free_node(ni);
4966 		m_freem(m);
4967 		return ENETDOWN;
4968 	}
4969 
4970 	IWN_LOCK(sc);
4971 	if (params == NULL) {
4972 		/*
4973 		 * Legacy path; interpret frame contents to decide
4974 		 * precisely how to send the frame.
4975 		 */
4976 		error = iwn_tx_data(sc, m, ni);
4977 	} else {
4978 		/*
4979 		 * Caller supplied explicit parameters to use in
4980 		 * sending the frame.
4981 		 */
4982 		error = iwn_tx_data_raw(sc, m, ni, params);
4983 	}
4984 	if (error != 0) {
4985 		/* NB: m is reclaimed on tx failure */
4986 		ieee80211_free_node(ni);
4987 #if defined(__DragonFly__)
4988 		++ifp->if_oerrors;
4989 #else
4990 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
4991 #endif
4992 	}
4993 	sc->sc_tx_timer = 5;
4994 
4995 	IWN_UNLOCK(sc);
4996 
4997 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s: end\n",__func__);
4998 
4999 	return error;
5000 }
5001 
5002 #if defined(__DragonFly__)
5003 static void
5004 iwn_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
5005 #else
5006 static void
5007 iwn_start(struct ifnet *ifp)
5008 #endif
5009 {
5010 	struct iwn_softc *sc = ifp->if_softc;
5011 
5012 	IWN_LOCK(sc);
5013 	iwn_start_locked(ifp);
5014 	IWN_UNLOCK(sc);
5015 }
5016 
5017 #if defined(__DragonFly__)
5018 
5019 static void
5020 iwn_start_locked(struct ifnet *ifp)
5021 {
5022 	struct iwn_softc *sc = ifp->if_softc;
5023 	struct ieee80211_node *ni;
5024 	struct mbuf *m;
5025 
5026 	IWN_LOCK_ASSERT(sc);
5027 
5028 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__);
5029 
5030 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
5031 	    ifq_is_oactive(&ifp->if_snd))
5032 		return;
5033 
5034 	for (;;) {
5035 		if (sc->qfullmsk != 0) {
5036 			ifq_set_oactive(&ifp->if_snd);
5037 			break;
5038 		}
5039 		m = ifq_dequeue(&ifp->if_snd);
5040 		if (m == NULL)
5041 			break;
5042 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
5043 		if (iwn_tx_data(sc, m, ni) != 0) {
5044 			ieee80211_free_node(ni);
5045 			++ifp->if_oerrors;
5046 			continue;
5047 		}
5048 		sc->sc_tx_timer = 5;
5049 	}
5050 
5051 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: done\n", __func__);
5052 }
5053 
5054 #else
5055 
5056 static void
5057 iwn_start_locked(struct ifnet *ifp)
5058 {
5059 	struct iwn_softc *sc = ifp->if_softc;
5060 	struct ieee80211_node *ni;
5061 	struct mbuf *m;
5062 
5063 	IWN_LOCK_ASSERT(sc);
5064 
5065 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__);
5066 
5067 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
5068 	    (ifp->if_drv_flags & IFF_DRV_OACTIVE))
5069 		return;
5070 
5071 	for (;;) {
5072 		if (sc->qfullmsk != 0) {
5073 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5074 			break;
5075 		}
5076 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
5077 		if (m == NULL)
5078 			break;
5079 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
5080 		if (iwn_tx_data(sc, m, ni) != 0) {
5081 			ieee80211_free_node(ni);
5082 #if defined(__DragonFly__)
5083 			++ifp->if_oerrors;
5084 #else
5085 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
5086 #endif
5087 			continue;
5088 		}
5089 		sc->sc_tx_timer = 5;
5090 	}
5091 
5092 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: done\n", __func__);
5093 }
5094 
5095 #endif
5096 
5097 static void
5098 iwn_watchdog(void *arg)
5099 {
5100 	struct iwn_softc *sc = arg;
5101 	struct ifnet *ifp = sc->sc_ifp;
5102 	struct ieee80211com *ic = ifp->if_l2com;
5103 
5104 	IWN_LOCK_ASSERT(sc);
5105 
5106 	KASSERT(ifp->if_drv_flags & IFF_DRV_RUNNING, ("not running"));
5107 
5108 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5109 
5110 	if (sc->sc_tx_timer > 0) {
5111 		if (--sc->sc_tx_timer == 0) {
5112 			if_printf(ifp, "device timeout\n");
5113 			ieee80211_runtask(ic, &sc->sc_reinit_task);
5114 			return;
5115 		}
5116 	}
5117 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
5118 }
5119 
5120 #if defined(__DragonFly__)
5121 static int
5122 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data,
5123 	  struct ucred *cred __unused)
5124 #else
5125 static int
5126 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5127 #endif
5128 {
5129 	struct iwn_softc *sc = ifp->if_softc;
5130 	struct ieee80211com *ic = ifp->if_l2com;
5131 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5132 	struct ifreq *ifr = (struct ifreq *) data;
5133 	int error = 0, startall = 0, stop = 0;
5134 
5135 	switch (cmd) {
5136 	case SIOCGIFADDR:
5137 		error = ether_ioctl(ifp, cmd, data);
5138 		break;
5139 	case SIOCSIFFLAGS:
5140 		IWN_LOCK(sc);
5141 		if (ifp->if_flags & IFF_UP) {
5142 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
5143 				iwn_init_locked(sc);
5144 				if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
5145 					startall = 1;
5146 				else
5147 					stop = 1;
5148 			}
5149 		} else {
5150 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5151 				iwn_stop_locked(sc);
5152 		}
5153 		IWN_UNLOCK(sc);
5154 		if (startall)
5155 			ieee80211_start_all(ic);
5156 		else if (vap != NULL && stop)
5157 			ieee80211_stop(vap);
5158 		break;
5159 	case SIOCGIFMEDIA:
5160 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
5161 		break;
5162 	case SIOCGIWNSTATS:
5163 		IWN_LOCK(sc);
5164 		/* XXX validate permissions/memory/etc? */
5165 		error = copyout(&sc->last_stat, ifr->ifr_data,
5166 		    sizeof(struct iwn_stats));
5167 		IWN_UNLOCK(sc);
5168 		break;
5169 	case SIOCZIWNSTATS:
5170 		IWN_LOCK(sc);
5171 		memset(&sc->last_stat, 0, sizeof(struct iwn_stats));
5172 		IWN_UNLOCK(sc);
5173 		error = 0;
5174 		break;
5175 	default:
5176 		error = EINVAL;
5177 		break;
5178 	}
5179 	return error;
5180 }
5181 
5182 /*
5183  * Send a command to the firmware.
5184  */
5185 static int
5186 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
5187 {
5188 	struct iwn_tx_ring *ring;
5189 	struct iwn_tx_desc *desc;
5190 	struct iwn_tx_data *data;
5191 	struct iwn_tx_cmd *cmd;
5192 	struct mbuf *m;
5193 	bus_addr_t paddr;
5194 	int totlen, error;
5195 	int cmd_queue_num;
5196 
5197 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5198 
5199 	if (async == 0)
5200 		IWN_LOCK_ASSERT(sc);
5201 
5202 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
5203 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
5204 	else
5205 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
5206 
5207 	ring = &sc->txq[cmd_queue_num];
5208 	desc = &ring->desc[ring->cur];
5209 	data = &ring->data[ring->cur];
5210 	totlen = 4 + size;
5211 
5212 	if (size > sizeof cmd->data) {
5213 		/* Command is too large to fit in a descriptor. */
5214 		if (totlen > MCLBYTES)
5215 			return EINVAL;
5216 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
5217 		if (m == NULL)
5218 			return ENOMEM;
5219 		cmd = mtod(m, struct iwn_tx_cmd *);
5220 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
5221 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
5222 		if (error != 0) {
5223 			m_freem(m);
5224 			return error;
5225 		}
5226 		data->m = m;
5227 	} else {
5228 		cmd = &ring->cmd[ring->cur];
5229 		paddr = data->cmd_paddr;
5230 	}
5231 
5232 	cmd->code = code;
5233 	cmd->flags = 0;
5234 	cmd->qid = ring->qid;
5235 	cmd->idx = ring->cur;
5236 	memcpy(cmd->data, buf, size);
5237 
5238 	desc->nsegs = 1;
5239 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
5240 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
5241 
5242 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
5243 	    __func__, iwn_intr_str(cmd->code), cmd->code,
5244 	    cmd->flags, cmd->qid, cmd->idx);
5245 
5246 	if (size > sizeof cmd->data) {
5247 		bus_dmamap_sync(ring->data_dmat, data->map,
5248 		    BUS_DMASYNC_PREWRITE);
5249 	} else {
5250 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
5251 		    BUS_DMASYNC_PREWRITE);
5252 	}
5253 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
5254 	    BUS_DMASYNC_PREWRITE);
5255 
5256 	/* Kick command ring. */
5257 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
5258 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
5259 
5260 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5261 
5262 	return async ? 0 : iwn_sleep(sc, desc, PCATCH, "iwncmd", hz);
5263 }
5264 
5265 static int
5266 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5267 {
5268 	struct iwn4965_node_info hnode;
5269 	caddr_t src, dst;
5270 
5271 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5272 
5273 	/*
5274 	 * We use the node structure for 5000 Series internally (it is
5275 	 * a superset of the one for 4965AGN). We thus copy the common
5276 	 * fields before sending the command.
5277 	 */
5278 	src = (caddr_t)node;
5279 	dst = (caddr_t)&hnode;
5280 	memcpy(dst, src, 48);
5281 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
5282 	memcpy(dst + 48, src + 72, 20);
5283 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
5284 }
5285 
5286 static int
5287 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5288 {
5289 
5290 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5291 
5292 	/* Direct mapping. */
5293 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
5294 }
5295 
5296 static int
5297 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
5298 {
5299 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
5300 	struct iwn_node *wn = (void *)ni;
5301 	struct ieee80211_rateset *rs;
5302 	struct iwn_cmd_link_quality linkq;
5303 	int i, rate, txrate;
5304 	int is_11n;
5305 
5306 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5307 
5308 	memset(&linkq, 0, sizeof linkq);
5309 	linkq.id = wn->id;
5310 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5311 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5312 
5313 	linkq.ampdu_max = 32;		/* XXX negotiated? */
5314 	linkq.ampdu_threshold = 3;
5315 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5316 
5317 	DPRINTF(sc, IWN_DEBUG_XMIT,
5318 	    "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n",
5319 	    __func__,
5320 	    linkq.antmsk_1stream,
5321 	    linkq.antmsk_2stream,
5322 	    sc->ntxchains);
5323 
5324 	/*
5325 	 * Are we using 11n rates? Ensure the channel is
5326 	 * 11n _and_ we have some 11n rates, or don't
5327 	 * try.
5328 	 */
5329 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) {
5330 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
5331 		is_11n = 1;
5332 	} else {
5333 		rs = &ni->ni_rates;
5334 		is_11n = 0;
5335 	}
5336 
5337 	/* Start at highest available bit-rate. */
5338 	/*
5339 	 * XXX this is all very dirty!
5340 	 */
5341 	if (is_11n)
5342 		txrate = ni->ni_htrates.rs_nrates - 1;
5343 	else
5344 		txrate = rs->rs_nrates - 1;
5345 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
5346 		uint32_t plcp;
5347 
5348 		/*
5349 		 * XXX TODO: ensure the last two slots are the two lowest
5350 		 * rate entries, just for now.
5351 		 */
5352 		if (i == 14 || i == 15)
5353 			txrate = 0;
5354 
5355 		if (is_11n)
5356 			rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate];
5357 		else
5358 			rate = RV(rs->rs_rates[txrate]);
5359 
5360 		/* Do rate -> PLCP config mapping */
5361 		plcp = iwn_rate_to_plcp(sc, ni, rate);
5362 		linkq.retry[i] = plcp;
5363 		DPRINTF(sc, IWN_DEBUG_XMIT,
5364 		    "%s: i=%d, txrate=%d, rate=0x%02x, plcp=0x%08x\n",
5365 		    __func__,
5366 		    i,
5367 		    txrate,
5368 		    rate,
5369 		    le32toh(plcp));
5370 
5371 		/*
5372 		 * The mimo field is an index into the table which
5373 		 * indicates the first index where it and subsequent entries
5374 		 * will not be using MIMO.
5375 		 *
5376 		 * Since we're filling linkq from 0..15 and we're filling
5377 		 * from the higest MCS rates to the lowest rates, if we
5378 		 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie,
5379 		 * the next entry.)  That way if the next entry is a non-MIMO
5380 		 * entry, we're already pointing at it.
5381 		 */
5382 		if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
5383 		    RV(le32toh(plcp)) > 7)
5384 			linkq.mimo = i + 1;
5385 
5386 		/* Next retry at immediate lower bit-rate. */
5387 		if (txrate > 0)
5388 			txrate--;
5389 	}
5390 	/*
5391 	 * If we reached the end of the list and indeed we hit
5392 	 * all MIMO rates (eg 5300 doing MCS23-15) then yes,
5393 	 * set mimo to 15.  Setting it to 16 panics the firmware.
5394 	 */
5395 	if (linkq.mimo > 15)
5396 		linkq.mimo = 15;
5397 
5398 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: mimo = %d\n", __func__, linkq.mimo);
5399 
5400 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5401 
5402 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
5403 #undef	RV
5404 }
5405 
5406 /*
5407  * Broadcast node is used to send group-addressed and management frames.
5408  */
5409 static int
5410 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
5411 {
5412 	struct iwn_ops *ops = &sc->ops;
5413 	struct ifnet *ifp = sc->sc_ifp;
5414 	struct ieee80211com *ic = ifp->if_l2com;
5415 	struct iwn_node_info node;
5416 	struct iwn_cmd_link_quality linkq;
5417 	uint8_t txant;
5418 	int i, error;
5419 
5420 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5421 
5422 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5423 
5424 	memset(&node, 0, sizeof node);
5425 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
5426 	node.id = sc->broadcast_id;
5427 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
5428 	if ((error = ops->add_node(sc, &node, async)) != 0)
5429 		return error;
5430 
5431 	/* Use the first valid TX antenna. */
5432 	txant = IWN_LSB(sc->txchainmask);
5433 
5434 	memset(&linkq, 0, sizeof linkq);
5435 	linkq.id = sc->broadcast_id;
5436 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5437 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5438 	linkq.ampdu_max = 64;
5439 	linkq.ampdu_threshold = 3;
5440 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5441 
5442 	/* Use lowest mandatory bit-rate. */
5443 	/* XXX rate table lookup? */
5444 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
5445 		linkq.retry[0] = htole32(0xd);
5446 	else
5447 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
5448 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
5449 	/* Use same bit-rate for all TX retries. */
5450 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
5451 		linkq.retry[i] = linkq.retry[0];
5452 	}
5453 
5454 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5455 
5456 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
5457 }
5458 
5459 static int
5460 iwn_updateedca(struct ieee80211com *ic)
5461 {
5462 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
5463 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
5464 	struct iwn_edca_params cmd;
5465 	int aci;
5466 
5467 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5468 
5469 	memset(&cmd, 0, sizeof cmd);
5470 	cmd.flags = htole32(IWN_EDCA_UPDATE);
5471 	for (aci = 0; aci < WME_NUM_AC; aci++) {
5472 		const struct wmeParams *ac =
5473 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
5474 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
5475 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
5476 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
5477 		cmd.ac[aci].txoplimit =
5478 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
5479 	}
5480 	IEEE80211_UNLOCK(ic);
5481 	IWN_LOCK(sc);
5482 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5483 	IWN_UNLOCK(sc);
5484 	IEEE80211_LOCK(ic);
5485 
5486 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5487 
5488 	return 0;
5489 #undef IWN_EXP2
5490 }
5491 
5492 static void
5493 iwn_update_mcast(struct ifnet *ifp)
5494 {
5495 	/* Ignore */
5496 }
5497 
5498 static void
5499 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
5500 {
5501 	struct iwn_cmd_led led;
5502 
5503 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5504 
5505 #if 0
5506 	/* XXX don't set LEDs during scan? */
5507 	if (sc->sc_is_scanning)
5508 		return;
5509 #endif
5510 
5511 	/* Clear microcode LED ownership. */
5512 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
5513 
5514 	led.which = which;
5515 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
5516 	led.off = off;
5517 	led.on = on;
5518 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
5519 }
5520 
5521 /*
5522  * Set the critical temperature at which the firmware will stop the radio
5523  * and notify us.
5524  */
5525 static int
5526 iwn_set_critical_temp(struct iwn_softc *sc)
5527 {
5528 	struct iwn_critical_temp crit;
5529 	int32_t temp;
5530 
5531 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5532 
5533 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
5534 
5535 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
5536 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
5537 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
5538 		temp = IWN_CTOK(110);
5539 	else
5540 		temp = 110;
5541 	memset(&crit, 0, sizeof crit);
5542 	crit.tempR = htole32(temp);
5543 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
5544 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
5545 }
5546 
5547 static int
5548 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
5549 {
5550 	struct iwn_cmd_timing cmd;
5551 	uint64_t val, mod;
5552 
5553 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5554 
5555 	memset(&cmd, 0, sizeof cmd);
5556 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
5557 	cmd.bintval = htole16(ni->ni_intval);
5558 	cmd.lintval = htole16(10);
5559 
5560 	/* Compute remaining time until next beacon. */
5561 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
5562 	mod = le64toh(cmd.tstamp) % val;
5563 	cmd.binitval = htole32((uint32_t)(val - mod));
5564 
5565 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
5566 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
5567 
5568 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
5569 }
5570 
5571 static void
5572 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
5573 {
5574 	struct ifnet *ifp = sc->sc_ifp;
5575 	struct ieee80211com *ic = ifp->if_l2com;
5576 
5577 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5578 
5579 	/* Adjust TX power if need be (delta >= 3 degC). */
5580 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
5581 	    __func__, sc->temp, temp);
5582 	if (abs(temp - sc->temp) >= 3) {
5583 		/* Record temperature of last calibration. */
5584 		sc->temp = temp;
5585 		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
5586 	}
5587 }
5588 
5589 /*
5590  * Set TX power for current channel (each rate has its own power settings).
5591  * This function takes into account the regulatory information from EEPROM,
5592  * the current temperature and the current voltage.
5593  */
5594 static int
5595 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5596     int async)
5597 {
5598 /* Fixed-point arithmetic division using a n-bit fractional part. */
5599 #define fdivround(a, b, n)	\
5600 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
5601 /* Linear interpolation. */
5602 #define interpolate(x, x1, y1, x2, y2, n)	\
5603 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
5604 
5605 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
5606 	struct iwn_ucode_info *uc = &sc->ucode_info;
5607 	struct iwn4965_cmd_txpower cmd;
5608 	struct iwn4965_eeprom_chan_samples *chans;
5609 	const uint8_t *rf_gain, *dsp_gain;
5610 	int32_t vdiff, tdiff;
5611 	int i, c, grp, maxpwr;
5612 	uint8_t chan;
5613 
5614 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5615 	/* Retrieve current channel from last RXON. */
5616 	chan = sc->rxon->chan;
5617 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
5618 	    chan);
5619 
5620 	memset(&cmd, 0, sizeof cmd);
5621 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
5622 	cmd.chan = chan;
5623 
5624 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
5625 		maxpwr   = sc->maxpwr5GHz;
5626 		rf_gain  = iwn4965_rf_gain_5ghz;
5627 		dsp_gain = iwn4965_dsp_gain_5ghz;
5628 	} else {
5629 		maxpwr   = sc->maxpwr2GHz;
5630 		rf_gain  = iwn4965_rf_gain_2ghz;
5631 		dsp_gain = iwn4965_dsp_gain_2ghz;
5632 	}
5633 
5634 	/* Compute voltage compensation. */
5635 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
5636 	if (vdiff > 0)
5637 		vdiff *= 2;
5638 	if (abs(vdiff) > 2)
5639 		vdiff = 0;
5640 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5641 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
5642 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
5643 
5644 	/* Get channel attenuation group. */
5645 	if (chan <= 20)		/* 1-20 */
5646 		grp = 4;
5647 	else if (chan <= 43)	/* 34-43 */
5648 		grp = 0;
5649 	else if (chan <= 70)	/* 44-70 */
5650 		grp = 1;
5651 	else if (chan <= 124)	/* 71-124 */
5652 		grp = 2;
5653 	else			/* 125-200 */
5654 		grp = 3;
5655 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5656 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
5657 
5658 	/* Get channel sub-band. */
5659 	for (i = 0; i < IWN_NBANDS; i++)
5660 		if (sc->bands[i].lo != 0 &&
5661 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
5662 			break;
5663 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
5664 		return EINVAL;
5665 	chans = sc->bands[i].chans;
5666 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5667 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
5668 
5669 	for (c = 0; c < 2; c++) {
5670 		uint8_t power, gain, temp;
5671 		int maxchpwr, pwr, ridx, idx;
5672 
5673 		power = interpolate(chan,
5674 		    chans[0].num, chans[0].samples[c][1].power,
5675 		    chans[1].num, chans[1].samples[c][1].power, 1);
5676 		gain  = interpolate(chan,
5677 		    chans[0].num, chans[0].samples[c][1].gain,
5678 		    chans[1].num, chans[1].samples[c][1].gain, 1);
5679 		temp  = interpolate(chan,
5680 		    chans[0].num, chans[0].samples[c][1].temp,
5681 		    chans[1].num, chans[1].samples[c][1].temp, 1);
5682 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5683 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
5684 		    __func__, c, power, gain, temp);
5685 
5686 		/* Compute temperature compensation. */
5687 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
5688 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5689 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
5690 		    __func__, tdiff, sc->temp, temp);
5691 
5692 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
5693 			/* Convert dBm to half-dBm. */
5694 			maxchpwr = sc->maxpwr[chan] * 2;
5695 			if ((ridx / 8) & 1)
5696 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
5697 
5698 			pwr = maxpwr;
5699 
5700 			/* Adjust TX power based on rate. */
5701 			if ((ridx % 8) == 5)
5702 				pwr -= 15;	/* OFDM48: -7.5dB */
5703 			else if ((ridx % 8) == 6)
5704 				pwr -= 17;	/* OFDM54: -8.5dB */
5705 			else if ((ridx % 8) == 7)
5706 				pwr -= 20;	/* OFDM60: -10dB */
5707 			else
5708 				pwr -= 10;	/* Others: -5dB */
5709 
5710 			/* Do not exceed channel max TX power. */
5711 			if (pwr > maxchpwr)
5712 				pwr = maxchpwr;
5713 
5714 			idx = gain - (pwr - power) - tdiff - vdiff;
5715 			if ((ridx / 8) & 1)	/* MIMO */
5716 				idx += (int32_t)le32toh(uc->atten[grp][c]);
5717 
5718 			if (cmd.band == 0)
5719 				idx += 9;	/* 5GHz */
5720 			if (ridx == IWN_RIDX_MAX)
5721 				idx += 5;	/* CCK */
5722 
5723 			/* Make sure idx stays in a valid range. */
5724 			if (idx < 0)
5725 				idx = 0;
5726 			else if (idx > IWN4965_MAX_PWR_INDEX)
5727 				idx = IWN4965_MAX_PWR_INDEX;
5728 
5729 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5730 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
5731 			    __func__, c, ridx, idx);
5732 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
5733 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
5734 		}
5735 	}
5736 
5737 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5738 	    "%s: set tx power for chan %d\n", __func__, chan);
5739 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
5740 
5741 #undef interpolate
5742 #undef fdivround
5743 }
5744 
5745 static int
5746 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5747     int async)
5748 {
5749 	struct iwn5000_cmd_txpower cmd;
5750 	int cmdid;
5751 
5752 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5753 
5754 	/*
5755 	 * TX power calibration is handled automatically by the firmware
5756 	 * for 5000 Series.
5757 	 */
5758 	memset(&cmd, 0, sizeof cmd);
5759 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
5760 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
5761 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
5762 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5763 	    "%s: setting TX power; rev=%d\n",
5764 	    __func__,
5765 	    IWN_UCODE_API(sc->ucode_rev));
5766 	if (IWN_UCODE_API(sc->ucode_rev) == 1)
5767 		cmdid = IWN_CMD_TXPOWER_DBM_V1;
5768 	else
5769 		cmdid = IWN_CMD_TXPOWER_DBM;
5770 	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
5771 }
5772 
5773 /*
5774  * Retrieve the maximum RSSI (in dBm) among receivers.
5775  */
5776 static int
5777 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5778 {
5779 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
5780 	uint8_t mask, agc;
5781 	int rssi;
5782 
5783 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5784 
5785 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
5786 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
5787 
5788 	rssi = 0;
5789 	if (mask & IWN_ANT_A)
5790 		rssi = MAX(rssi, phy->rssi[0]);
5791 	if (mask & IWN_ANT_B)
5792 		rssi = MAX(rssi, phy->rssi[2]);
5793 	if (mask & IWN_ANT_C)
5794 		rssi = MAX(rssi, phy->rssi[4]);
5795 
5796 	DPRINTF(sc, IWN_DEBUG_RECV,
5797 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
5798 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
5799 	    rssi - agc - IWN_RSSI_TO_DBM);
5800 	return rssi - agc - IWN_RSSI_TO_DBM;
5801 }
5802 
5803 static int
5804 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5805 {
5806 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
5807 	uint8_t agc;
5808 	int rssi;
5809 
5810 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5811 
5812 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
5813 
5814 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
5815 		   le16toh(phy->rssi[1]) & 0xff);
5816 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
5817 
5818 	DPRINTF(sc, IWN_DEBUG_RECV,
5819 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
5820 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
5821 	    rssi - agc - IWN_RSSI_TO_DBM);
5822 	return rssi - agc - IWN_RSSI_TO_DBM;
5823 }
5824 
5825 /*
5826  * Retrieve the average noise (in dBm) among receivers.
5827  */
5828 static int
5829 iwn_get_noise(const struct iwn_rx_general_stats *stats)
5830 {
5831 	int i, total, nbant, noise;
5832 
5833 	total = nbant = 0;
5834 	for (i = 0; i < 3; i++) {
5835 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
5836 			continue;
5837 		total += noise;
5838 		nbant++;
5839 	}
5840 	/* There should be at least one antenna but check anyway. */
5841 	return (nbant == 0) ? -127 : (total / nbant) - 107;
5842 }
5843 
5844 /*
5845  * Compute temperature (in degC) from last received statistics.
5846  */
5847 static int
5848 iwn4965_get_temperature(struct iwn_softc *sc)
5849 {
5850 	struct iwn_ucode_info *uc = &sc->ucode_info;
5851 	int32_t r1, r2, r3, r4, temp;
5852 
5853 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5854 
5855 	r1 = le32toh(uc->temp[0].chan20MHz);
5856 	r2 = le32toh(uc->temp[1].chan20MHz);
5857 	r3 = le32toh(uc->temp[2].chan20MHz);
5858 	r4 = le32toh(sc->rawtemp);
5859 
5860 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
5861 		return 0;
5862 
5863 	/* Sign-extend 23-bit R4 value to 32-bit. */
5864 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
5865 	/* Compute temperature in Kelvin. */
5866 	temp = (259 * (r4 - r2)) / (r3 - r1);
5867 	temp = (temp * 97) / 100 + 8;
5868 
5869 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
5870 	    IWN_KTOC(temp));
5871 	return IWN_KTOC(temp);
5872 }
5873 
5874 static int
5875 iwn5000_get_temperature(struct iwn_softc *sc)
5876 {
5877 	int32_t temp;
5878 
5879 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5880 
5881 	/*
5882 	 * Temperature is not used by the driver for 5000 Series because
5883 	 * TX power calibration is handled by firmware.
5884 	 */
5885 	temp = le32toh(sc->rawtemp);
5886 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
5887 		temp = (temp / -5) + sc->temp_off;
5888 		temp = IWN_KTOC(temp);
5889 	}
5890 	return temp;
5891 }
5892 
5893 /*
5894  * Initialize sensitivity calibration state machine.
5895  */
5896 static int
5897 iwn_init_sensitivity(struct iwn_softc *sc)
5898 {
5899 	struct iwn_ops *ops = &sc->ops;
5900 	struct iwn_calib_state *calib = &sc->calib;
5901 	uint32_t flags;
5902 	int error;
5903 
5904 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5905 
5906 	/* Reset calibration state machine. */
5907 	memset(calib, 0, sizeof (*calib));
5908 	calib->state = IWN_CALIB_STATE_INIT;
5909 	calib->cck_state = IWN_CCK_STATE_HIFA;
5910 	/* Set initial correlation values. */
5911 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
5912 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
5913 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
5914 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
5915 	calib->cck_x4      = 125;
5916 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
5917 	calib->energy_cck  = sc->limits->energy_cck;
5918 
5919 	/* Write initial sensitivity. */
5920 	if ((error = iwn_send_sensitivity(sc)) != 0)
5921 		return error;
5922 
5923 	/* Write initial gains. */
5924 	if ((error = ops->init_gains(sc)) != 0)
5925 		return error;
5926 
5927 	/* Request statistics at each beacon interval. */
5928 	flags = 0;
5929 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
5930 	    __func__);
5931 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
5932 }
5933 
5934 /*
5935  * Collect noise and RSSI statistics for the first 20 beacons received
5936  * after association and use them to determine connected antennas and
5937  * to set differential gains.
5938  */
5939 static void
5940 iwn_collect_noise(struct iwn_softc *sc,
5941     const struct iwn_rx_general_stats *stats)
5942 {
5943 	struct iwn_ops *ops = &sc->ops;
5944 	struct iwn_calib_state *calib = &sc->calib;
5945 	struct ifnet *ifp = sc->sc_ifp;
5946 	struct ieee80211com *ic = ifp->if_l2com;
5947 	uint32_t val;
5948 	int i;
5949 
5950 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5951 
5952 	/* Accumulate RSSI and noise for all 3 antennas. */
5953 	for (i = 0; i < 3; i++) {
5954 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
5955 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
5956 	}
5957 	/* NB: We update differential gains only once after 20 beacons. */
5958 	if (++calib->nbeacons < 20)
5959 		return;
5960 
5961 	/* Determine highest average RSSI. */
5962 	val = MAX(calib->rssi[0], calib->rssi[1]);
5963 	val = MAX(calib->rssi[2], val);
5964 
5965 	/* Determine which antennas are connected. */
5966 	sc->chainmask = sc->rxchainmask;
5967 	for (i = 0; i < 3; i++)
5968 		if (val - calib->rssi[i] > 15 * 20)
5969 			sc->chainmask &= ~(1 << i);
5970 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5971 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
5972 	    __func__, sc->rxchainmask, sc->chainmask);
5973 
5974 	/* If none of the TX antennas are connected, keep at least one. */
5975 	if ((sc->chainmask & sc->txchainmask) == 0)
5976 		sc->chainmask |= IWN_LSB(sc->txchainmask);
5977 
5978 	(void)ops->set_gains(sc);
5979 	calib->state = IWN_CALIB_STATE_RUN;
5980 
5981 #ifdef notyet
5982 	/* XXX Disable RX chains with no antennas connected. */
5983 	sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
5984 	if (sc->sc_is_scanning)
5985 		device_printf(sc->sc_dev,
5986 		    "%s: is_scanning set, before RXON\n",
5987 		    __func__);
5988 	(void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
5989 #endif
5990 
5991 	/* Enable power-saving mode if requested by user. */
5992 	if (ic->ic_flags & IEEE80211_F_PMGTON)
5993 		(void)iwn_set_pslevel(sc, 0, 3, 1);
5994 
5995 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5996 
5997 }
5998 
5999 static int
6000 iwn4965_init_gains(struct iwn_softc *sc)
6001 {
6002 	struct iwn_phy_calib_gain cmd;
6003 
6004 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6005 
6006 	memset(&cmd, 0, sizeof cmd);
6007 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
6008 	/* Differential gains initially set to 0 for all 3 antennas. */
6009 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6010 	    "%s: setting initial differential gains\n", __func__);
6011 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6012 }
6013 
6014 static int
6015 iwn5000_init_gains(struct iwn_softc *sc)
6016 {
6017 	struct iwn_phy_calib cmd;
6018 
6019 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6020 
6021 	memset(&cmd, 0, sizeof cmd);
6022 	cmd.code = sc->reset_noise_gain;
6023 	cmd.ngroups = 1;
6024 	cmd.isvalid = 1;
6025 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6026 	    "%s: setting initial differential gains\n", __func__);
6027 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6028 }
6029 
6030 static int
6031 iwn4965_set_gains(struct iwn_softc *sc)
6032 {
6033 	struct iwn_calib_state *calib = &sc->calib;
6034 	struct iwn_phy_calib_gain cmd;
6035 	int i, delta, noise;
6036 
6037 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6038 
6039 	/* Get minimal noise among connected antennas. */
6040 	noise = INT_MAX;	/* NB: There's at least one antenna. */
6041 	for (i = 0; i < 3; i++)
6042 		if (sc->chainmask & (1 << i))
6043 			noise = MIN(calib->noise[i], noise);
6044 
6045 	memset(&cmd, 0, sizeof cmd);
6046 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
6047 	/* Set differential gains for connected antennas. */
6048 	for (i = 0; i < 3; i++) {
6049 		if (sc->chainmask & (1 << i)) {
6050 			/* Compute attenuation (in unit of 1.5dB). */
6051 			delta = (noise - (int32_t)calib->noise[i]) / 30;
6052 			/* NB: delta <= 0 */
6053 			/* Limit to [-4.5dB,0]. */
6054 			cmd.gain[i] = MIN(abs(delta), 3);
6055 			if (delta < 0)
6056 				cmd.gain[i] |= 1 << 2;	/* sign bit */
6057 		}
6058 	}
6059 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6060 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
6061 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
6062 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6063 }
6064 
6065 static int
6066 iwn5000_set_gains(struct iwn_softc *sc)
6067 {
6068 	struct iwn_calib_state *calib = &sc->calib;
6069 	struct iwn_phy_calib_gain cmd;
6070 	int i, ant, div, delta;
6071 
6072 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6073 
6074 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
6075 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
6076 
6077 	memset(&cmd, 0, sizeof cmd);
6078 	cmd.code = sc->noise_gain;
6079 	cmd.ngroups = 1;
6080 	cmd.isvalid = 1;
6081 	/* Get first available RX antenna as referential. */
6082 	ant = IWN_LSB(sc->rxchainmask);
6083 	/* Set differential gains for other antennas. */
6084 	for (i = ant + 1; i < 3; i++) {
6085 		if (sc->chainmask & (1 << i)) {
6086 			/* The delta is relative to antenna "ant". */
6087 			delta = ((int32_t)calib->noise[ant] -
6088 			    (int32_t)calib->noise[i]) / div;
6089 			/* Limit to [-4.5dB,+4.5dB]. */
6090 			cmd.gain[i - 1] = MIN(abs(delta), 3);
6091 			if (delta < 0)
6092 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
6093 		}
6094 	}
6095 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
6096 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
6097 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
6098 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6099 }
6100 
6101 /*
6102  * Tune RF RX sensitivity based on the number of false alarms detected
6103  * during the last beacon period.
6104  */
6105 static void
6106 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
6107 {
6108 #define inc(val, inc, max)			\
6109 	if ((val) < (max)) {			\
6110 		if ((val) < (max) - (inc))	\
6111 			(val) += (inc);		\
6112 		else				\
6113 			(val) = (max);		\
6114 		needs_update = 1;		\
6115 	}
6116 #define dec(val, dec, min)			\
6117 	if ((val) > (min)) {			\
6118 		if ((val) > (min) + (dec))	\
6119 			(val) -= (dec);		\
6120 		else				\
6121 			(val) = (min);		\
6122 		needs_update = 1;		\
6123 	}
6124 
6125 	const struct iwn_sensitivity_limits *limits = sc->limits;
6126 	struct iwn_calib_state *calib = &sc->calib;
6127 	uint32_t val, rxena, fa;
6128 	uint32_t energy[3], energy_min;
6129 	uint8_t noise[3], noise_ref;
6130 	int i, needs_update = 0;
6131 
6132 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6133 
6134 	/* Check that we've been enabled long enough. */
6135 	if ((rxena = le32toh(stats->general.load)) == 0){
6136 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__);
6137 		return;
6138 	}
6139 
6140 	/* Compute number of false alarms since last call for OFDM. */
6141 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6142 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
6143 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6144 
6145 	if (fa > 50 * rxena) {
6146 		/* High false alarm count, decrease sensitivity. */
6147 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6148 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
6149 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
6150 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
6151 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
6152 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
6153 
6154 	} else if (fa < 5 * rxena) {
6155 		/* Low false alarm count, increase sensitivity. */
6156 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6157 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
6158 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
6159 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
6160 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
6161 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
6162 	}
6163 
6164 	/* Compute maximum noise among 3 receivers. */
6165 	for (i = 0; i < 3; i++)
6166 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
6167 	val = MAX(noise[0], noise[1]);
6168 	val = MAX(noise[2], val);
6169 	/* Insert it into our samples table. */
6170 	calib->noise_samples[calib->cur_noise_sample] = val;
6171 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
6172 
6173 	/* Compute maximum noise among last 20 samples. */
6174 	noise_ref = calib->noise_samples[0];
6175 	for (i = 1; i < 20; i++)
6176 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
6177 
6178 	/* Compute maximum energy among 3 receivers. */
6179 	for (i = 0; i < 3; i++)
6180 		energy[i] = le32toh(stats->general.energy[i]);
6181 	val = MIN(energy[0], energy[1]);
6182 	val = MIN(energy[2], val);
6183 	/* Insert it into our samples table. */
6184 	calib->energy_samples[calib->cur_energy_sample] = val;
6185 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
6186 
6187 	/* Compute minimum energy among last 10 samples. */
6188 	energy_min = calib->energy_samples[0];
6189 	for (i = 1; i < 10; i++)
6190 		energy_min = MAX(energy_min, calib->energy_samples[i]);
6191 	energy_min += 6;
6192 
6193 	/* Compute number of false alarms since last call for CCK. */
6194 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
6195 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
6196 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6197 
6198 	if (fa > 50 * rxena) {
6199 		/* High false alarm count, decrease sensitivity. */
6200 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6201 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
6202 		calib->cck_state = IWN_CCK_STATE_HIFA;
6203 		calib->low_fa = 0;
6204 
6205 		if (calib->cck_x4 > 160) {
6206 			calib->noise_ref = noise_ref;
6207 			if (calib->energy_cck > 2)
6208 				dec(calib->energy_cck, 2, energy_min);
6209 		}
6210 		if (calib->cck_x4 < 160) {
6211 			calib->cck_x4 = 161;
6212 			needs_update = 1;
6213 		} else
6214 			inc(calib->cck_x4, 3, limits->max_cck_x4);
6215 
6216 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
6217 
6218 	} else if (fa < 5 * rxena) {
6219 		/* Low false alarm count, increase sensitivity. */
6220 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6221 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
6222 		calib->cck_state = IWN_CCK_STATE_LOFA;
6223 		calib->low_fa++;
6224 
6225 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
6226 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
6227 		     calib->low_fa > 100)) {
6228 			inc(calib->energy_cck, 2, limits->min_energy_cck);
6229 			dec(calib->cck_x4,     3, limits->min_cck_x4);
6230 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
6231 		}
6232 	} else {
6233 		/* Not worth to increase or decrease sensitivity. */
6234 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6235 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
6236 		calib->low_fa = 0;
6237 		calib->noise_ref = noise_ref;
6238 
6239 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
6240 			/* Previous interval had many false alarms. */
6241 			dec(calib->energy_cck, 8, energy_min);
6242 		}
6243 		calib->cck_state = IWN_CCK_STATE_INIT;
6244 	}
6245 
6246 	if (needs_update)
6247 		(void)iwn_send_sensitivity(sc);
6248 
6249 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6250 
6251 #undef dec
6252 #undef inc
6253 }
6254 
6255 static int
6256 iwn_send_sensitivity(struct iwn_softc *sc)
6257 {
6258 	struct iwn_calib_state *calib = &sc->calib;
6259 	struct iwn_enhanced_sensitivity_cmd cmd;
6260 	int len;
6261 
6262 	memset(&cmd, 0, sizeof cmd);
6263 	len = sizeof (struct iwn_sensitivity_cmd);
6264 	cmd.which = IWN_SENSITIVITY_WORKTBL;
6265 	/* OFDM modulation. */
6266 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
6267 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
6268 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
6269 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
6270 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
6271 	cmd.energy_ofdm_th     = htole16(62);
6272 	/* CCK modulation. */
6273 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
6274 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
6275 	cmd.energy_cck         = htole16(calib->energy_cck);
6276 	/* Barker modulation: use default values. */
6277 	cmd.corr_barker        = htole16(190);
6278 	cmd.corr_barker_mrc    = htole16(sc->limits->barker_mrc);
6279 
6280 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6281 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
6282 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
6283 	    calib->ofdm_mrc_x4, calib->cck_x4,
6284 	    calib->cck_mrc_x4, calib->energy_cck);
6285 
6286 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
6287 		goto send;
6288 	/* Enhanced sensitivity settings. */
6289 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
6290 	cmd.ofdm_det_slope_mrc = htole16(668);
6291 	cmd.ofdm_det_icept_mrc = htole16(4);
6292 	cmd.ofdm_det_slope     = htole16(486);
6293 	cmd.ofdm_det_icept     = htole16(37);
6294 	cmd.cck_det_slope_mrc  = htole16(853);
6295 	cmd.cck_det_icept_mrc  = htole16(4);
6296 	cmd.cck_det_slope      = htole16(476);
6297 	cmd.cck_det_icept      = htole16(99);
6298 send:
6299 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
6300 }
6301 
6302 /*
6303  * Look at the increase of PLCP errors over time; if it exceeds
6304  * a programmed threshold then trigger an RF retune.
6305  */
6306 static void
6307 iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs)
6308 {
6309 	int32_t delta_ofdm, delta_ht, delta_cck;
6310 	struct iwn_calib_state *calib = &sc->calib;
6311 	int delta_ticks, cur_ticks;
6312 	int delta_msec;
6313 	int thresh;
6314 
6315 	/*
6316 	 * Calculate the difference between the current and
6317 	 * previous statistics.
6318 	 */
6319 	delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck;
6320 	delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6321 	delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht;
6322 
6323 	/*
6324 	 * Calculate the delta in time between successive statistics
6325 	 * messages.  Yes, it can roll over; so we make sure that
6326 	 * this doesn't happen.
6327 	 *
6328 	 * XXX go figure out what to do about rollover
6329 	 * XXX go figure out what to do if ticks rolls over to -ve instead!
6330 	 * XXX go stab signed integer overflow undefined-ness in the face.
6331 	 */
6332 	cur_ticks = ticks;
6333 	delta_ticks = cur_ticks - sc->last_calib_ticks;
6334 
6335 	/*
6336 	 * If any are negative, then the firmware likely reset; so just
6337 	 * bail.  We'll pick this up next time.
6338 	 */
6339 	if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0)
6340 		return;
6341 
6342 	/*
6343 	 * delta_ticks is in ticks; we need to convert it up to milliseconds
6344 	 * so we can do some useful math with it.
6345 	 */
6346 	delta_msec = ticks_to_msecs(delta_ticks);
6347 
6348 	/*
6349 	 * Calculate what our threshold is given the current delta_msec.
6350 	 */
6351 	thresh = sc->base_params->plcp_err_threshold * delta_msec;
6352 
6353 	DPRINTF(sc, IWN_DEBUG_STATE,
6354 	    "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n",
6355 	    __func__,
6356 	    delta_msec,
6357 	    delta_cck,
6358 	    delta_ofdm,
6359 	    delta_ht,
6360 	    (delta_msec + delta_cck + delta_ofdm + delta_ht),
6361 	    thresh);
6362 
6363 	/*
6364 	 * If we need a retune, then schedule a single channel scan
6365 	 * to a channel that isn't the currently active one!
6366 	 *
6367 	 * The math from linux iwlwifi:
6368 	 *
6369 	 * if ((delta * 100 / msecs) > threshold)
6370 	 */
6371 	if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) {
6372 		DPRINTF(sc, IWN_DEBUG_ANY,
6373 		    "%s: PLCP error threshold raw (%d) comparison (%d) "
6374 		    "over limit (%d); retune!\n",
6375 		    __func__,
6376 		    (delta_cck + delta_ofdm + delta_ht),
6377 		    (delta_cck + delta_ofdm + delta_ht) * 100,
6378 		    thresh);
6379 	}
6380 }
6381 
6382 /*
6383  * Set STA mode power saving level (between 0 and 5).
6384  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
6385  */
6386 static int
6387 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
6388 {
6389 	struct iwn_pmgt_cmd cmd;
6390 	const struct iwn_pmgt *pmgt;
6391 	uint32_t max, skip_dtim;
6392 	uint32_t reg;
6393 	int i;
6394 
6395 	DPRINTF(sc, IWN_DEBUG_PWRSAVE,
6396 	    "%s: dtim=%d, level=%d, async=%d\n",
6397 	    __func__,
6398 	    dtim,
6399 	    level,
6400 	    async);
6401 
6402 	/* Select which PS parameters to use. */
6403 	if (dtim <= 2)
6404 		pmgt = &iwn_pmgt[0][level];
6405 	else if (dtim <= 10)
6406 		pmgt = &iwn_pmgt[1][level];
6407 	else
6408 		pmgt = &iwn_pmgt[2][level];
6409 
6410 	memset(&cmd, 0, sizeof cmd);
6411 	if (level != 0)	/* not CAM */
6412 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
6413 	if (level == 5)
6414 		cmd.flags |= htole16(IWN_PS_FAST_PD);
6415 	/* Retrieve PCIe Active State Power Management (ASPM). */
6416 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
6417 	if (!(reg & 0x1))	/* L0s Entry disabled. */
6418 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
6419 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
6420 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
6421 
6422 	if (dtim == 0) {
6423 		dtim = 1;
6424 		skip_dtim = 0;
6425 	} else
6426 		skip_dtim = pmgt->skip_dtim;
6427 	if (skip_dtim != 0) {
6428 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
6429 		max = pmgt->intval[4];
6430 		if (max == (uint32_t)-1)
6431 			max = dtim * (skip_dtim + 1);
6432 		else if (max > dtim)
6433 			max = (max / dtim) * dtim;
6434 	} else
6435 		max = dtim;
6436 	for (i = 0; i < 5; i++)
6437 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
6438 
6439 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
6440 	    level);
6441 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
6442 }
6443 
6444 static int
6445 iwn_send_btcoex(struct iwn_softc *sc)
6446 {
6447 	struct iwn_bluetooth cmd;
6448 
6449 	memset(&cmd, 0, sizeof cmd);
6450 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
6451 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
6452 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
6453 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
6454 	    __func__);
6455 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
6456 }
6457 
6458 static int
6459 iwn_send_advanced_btcoex(struct iwn_softc *sc)
6460 {
6461 	static const uint32_t btcoex_3wire[12] = {
6462 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
6463 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
6464 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
6465 	};
6466 	struct iwn6000_btcoex_config btconfig;
6467 	struct iwn2000_btcoex_config btconfig2k;
6468 	struct iwn_btcoex_priotable btprio;
6469 	struct iwn_btcoex_prot btprot;
6470 	int error, i;
6471 	uint8_t flags;
6472 
6473 	memset(&btconfig, 0, sizeof btconfig);
6474 	memset(&btconfig2k, 0, sizeof btconfig2k);
6475 
6476 	flags = IWN_BT_FLAG_COEX6000_MODE_3W <<
6477 	    IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2
6478 
6479 	if (sc->base_params->bt_sco_disable)
6480 		flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6481 	else
6482 		flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6483 
6484 	flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION;
6485 
6486 	/* Default flags result is 145 as old value */
6487 
6488 	/*
6489 	 * Flags value has to be review. Values must change if we
6490 	 * which to disable it
6491 	 */
6492 	if (sc->base_params->bt_session_2) {
6493 		btconfig2k.flags = flags;
6494 		btconfig2k.max_kill = 5;
6495 		btconfig2k.bt3_t7_timer = 1;
6496 		btconfig2k.kill_ack = htole32(0xffff0000);
6497 		btconfig2k.kill_cts = htole32(0xffff0000);
6498 		btconfig2k.sample_time = 2;
6499 		btconfig2k.bt3_t2_timer = 0xc;
6500 
6501 		for (i = 0; i < 12; i++)
6502 			btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]);
6503 		btconfig2k.valid = htole16(0xff);
6504 		btconfig2k.prio_boost = htole32(0xf0);
6505 		DPRINTF(sc, IWN_DEBUG_RESET,
6506 		    "%s: configuring advanced bluetooth coexistence"
6507 		    " session 2, flags : 0x%x\n",
6508 		    __func__,
6509 		    flags);
6510 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k,
6511 		    sizeof(btconfig2k), 1);
6512 	} else {
6513 		btconfig.flags = flags;
6514 		btconfig.max_kill = 5;
6515 		btconfig.bt3_t7_timer = 1;
6516 		btconfig.kill_ack = htole32(0xffff0000);
6517 		btconfig.kill_cts = htole32(0xffff0000);
6518 		btconfig.sample_time = 2;
6519 		btconfig.bt3_t2_timer = 0xc;
6520 
6521 		for (i = 0; i < 12; i++)
6522 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
6523 		btconfig.valid = htole16(0xff);
6524 		btconfig.prio_boost = 0xf0;
6525 		DPRINTF(sc, IWN_DEBUG_RESET,
6526 		    "%s: configuring advanced bluetooth coexistence,"
6527 		    " flags : 0x%x\n",
6528 		    __func__,
6529 		    flags);
6530 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
6531 		    sizeof(btconfig), 1);
6532 	}
6533 
6534 	if (error != 0)
6535 		return error;
6536 
6537 	memset(&btprio, 0, sizeof btprio);
6538 	btprio.calib_init1 = 0x6;
6539 	btprio.calib_init2 = 0x7;
6540 	btprio.calib_periodic_low1 = 0x2;
6541 	btprio.calib_periodic_low2 = 0x3;
6542 	btprio.calib_periodic_high1 = 0x4;
6543 	btprio.calib_periodic_high2 = 0x5;
6544 	btprio.dtim = 0x6;
6545 	btprio.scan52 = 0x8;
6546 	btprio.scan24 = 0xa;
6547 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
6548 	    1);
6549 	if (error != 0)
6550 		return error;
6551 
6552 	/* Force BT state machine change. */
6553 	memset(&btprot, 0, sizeof btprot);
6554 	btprot.open = 1;
6555 	btprot.type = 1;
6556 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6557 	if (error != 0)
6558 		return error;
6559 	btprot.open = 0;
6560 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6561 }
6562 
6563 static int
6564 iwn5000_runtime_calib(struct iwn_softc *sc)
6565 {
6566 	struct iwn5000_calib_config cmd;
6567 
6568 	memset(&cmd, 0, sizeof cmd);
6569 	cmd.ucode.once.enable = 0xffffffff;
6570 	cmd.ucode.once.start = IWN5000_CALIB_DC;
6571 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6572 	    "%s: configuring runtime calibration\n", __func__);
6573 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
6574 }
6575 
6576 static int
6577 iwn_config(struct iwn_softc *sc)
6578 {
6579 	struct iwn_ops *ops = &sc->ops;
6580 	struct ifnet *ifp = sc->sc_ifp;
6581 	struct ieee80211com *ic = ifp->if_l2com;
6582 	uint32_t txmask;
6583 	uint16_t rxchain;
6584 	int error;
6585 
6586 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6587 
6588 	if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET)
6589 	    && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) {
6590 		device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are"
6591 		    " exclusive each together. Review NIC config file. Conf"
6592 		    " :  0x%08x Flags :  0x%08x  \n", __func__,
6593 		    sc->base_params->calib_need,
6594 		    (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET |
6595 		    IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2));
6596 		return (EINVAL);
6597 	}
6598 
6599 	/* Compute temperature calib if needed. Will be send by send calib */
6600 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) {
6601 		error = iwn5000_temp_offset_calib(sc);
6602 		if (error != 0) {
6603 			device_printf(sc->sc_dev,
6604 			    "%s: could not set temperature offset\n", __func__);
6605 			return (error);
6606 		}
6607 	} else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
6608 		error = iwn5000_temp_offset_calibv2(sc);
6609 		if (error != 0) {
6610 			device_printf(sc->sc_dev,
6611 			    "%s: could not compute temperature offset v2\n",
6612 			    __func__);
6613 			return (error);
6614 		}
6615 	}
6616 
6617 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6618 		/* Configure runtime DC calibration. */
6619 		error = iwn5000_runtime_calib(sc);
6620 		if (error != 0) {
6621 			device_printf(sc->sc_dev,
6622 			    "%s: could not configure runtime calibration\n",
6623 			    __func__);
6624 			return error;
6625 		}
6626 	}
6627 
6628 	/* Configure valid TX chains for >=5000 Series. */
6629 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6630 	    IWN_UCODE_API(sc->ucode_rev) > 1) {
6631 		txmask = htole32(sc->txchainmask);
6632 		DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6633 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
6634 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
6635 		    sizeof txmask, 0);
6636 		if (error != 0) {
6637 			device_printf(sc->sc_dev,
6638 			    "%s: could not configure valid TX chains, "
6639 			    "error %d\n", __func__, error);
6640 			return error;
6641 		}
6642 	}
6643 
6644 	/* Configure bluetooth coexistence. */
6645 	error = 0;
6646 
6647 	/* Configure bluetooth coexistence if needed. */
6648 	if (sc->base_params->bt_mode == IWN_BT_ADVANCED)
6649 		error = iwn_send_advanced_btcoex(sc);
6650 	if (sc->base_params->bt_mode == IWN_BT_SIMPLE)
6651 		error = iwn_send_btcoex(sc);
6652 
6653 	if (error != 0) {
6654 		device_printf(sc->sc_dev,
6655 		    "%s: could not configure bluetooth coexistence, error %d\n",
6656 		    __func__, error);
6657 		return error;
6658 	}
6659 
6660 	/* Set mode, channel, RX filter and enable RX. */
6661 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6662 	memset(sc->rxon, 0, sizeof (struct iwn_rxon));
6663 	IEEE80211_ADDR_COPY(sc->rxon->myaddr, IF_LLADDR(ifp));
6664 	IEEE80211_ADDR_COPY(sc->rxon->wlap, IF_LLADDR(ifp));
6665 	sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
6666 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6667 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
6668 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6669 	switch (ic->ic_opmode) {
6670 	case IEEE80211_M_STA:
6671 		sc->rxon->mode = IWN_MODE_STA;
6672 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST);
6673 		break;
6674 	case IEEE80211_M_MONITOR:
6675 		sc->rxon->mode = IWN_MODE_MONITOR;
6676 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST |
6677 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
6678 		break;
6679 	default:
6680 		/* Should not get there. */
6681 		break;
6682 	}
6683 	sc->rxon->cck_mask  = 0x0f;	/* not yet negotiated */
6684 	sc->rxon->ofdm_mask = 0xff;	/* not yet negotiated */
6685 	sc->rxon->ht_single_mask = 0xff;
6686 	sc->rxon->ht_dual_mask = 0xff;
6687 	sc->rxon->ht_triple_mask = 0xff;
6688 	/*
6689 	 * In active association mode, ensure that
6690 	 * all the receive chains are enabled.
6691 	 *
6692 	 * Since we're not yet doing SMPS, don't allow the
6693 	 * number of idle RX chains to be less than the active
6694 	 * number.
6695 	 */
6696 	rxchain =
6697 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6698 	    IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) |
6699 	    IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains);
6700 	sc->rxon->rxchain = htole16(rxchain);
6701 	DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6702 	    "%s: rxchainmask=0x%x, nrxchains=%d\n",
6703 	    __func__,
6704 	    sc->rxchainmask,
6705 	    sc->nrxchains);
6706 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__);
6707 	if (sc->sc_is_scanning)
6708 		device_printf(sc->sc_dev,
6709 		    "%s: is_scanning set, before RXON\n",
6710 		    __func__);
6711 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 0);
6712 	if (error != 0) {
6713 		device_printf(sc->sc_dev, "%s: RXON command failed\n",
6714 		    __func__);
6715 		return error;
6716 	}
6717 
6718 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
6719 		device_printf(sc->sc_dev, "%s: could not add broadcast node\n",
6720 		    __func__);
6721 		return error;
6722 	}
6723 
6724 	/* Configuration has changed, set TX power accordingly. */
6725 	if ((error = ops->set_txpower(sc, ic->ic_curchan, 0)) != 0) {
6726 		device_printf(sc->sc_dev, "%s: could not set TX power\n",
6727 		    __func__);
6728 		return error;
6729 	}
6730 
6731 	if ((error = iwn_set_critical_temp(sc)) != 0) {
6732 		device_printf(sc->sc_dev,
6733 		    "%s: could not set critical temperature\n", __func__);
6734 		return error;
6735 	}
6736 
6737 	/* Set power saving level to CAM during initialization. */
6738 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
6739 		device_printf(sc->sc_dev,
6740 		    "%s: could not set power saving level\n", __func__);
6741 		return error;
6742 	}
6743 
6744 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6745 
6746 	return 0;
6747 }
6748 
6749 static uint16_t
6750 iwn_get_active_dwell_time(struct iwn_softc *sc,
6751     struct ieee80211_channel *c, uint8_t n_probes)
6752 {
6753 	/* No channel? Default to 2GHz settings */
6754 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6755 		return (IWN_ACTIVE_DWELL_TIME_2GHZ +
6756 		IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
6757 	}
6758 
6759 	/* 5GHz dwell time */
6760 	return (IWN_ACTIVE_DWELL_TIME_5GHZ +
6761 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
6762 }
6763 
6764 /*
6765  * Limit the total dwell time to 85% of the beacon interval.
6766  *
6767  * Returns the dwell time in milliseconds.
6768  */
6769 static uint16_t
6770 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
6771 {
6772 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
6773 	struct ieee80211vap *vap = NULL;
6774 	int bintval = 0;
6775 
6776 	/* bintval is in TU (1.024mS) */
6777 	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
6778 		vap = TAILQ_FIRST(&ic->ic_vaps);
6779 		bintval = vap->iv_bss->ni_intval;
6780 	}
6781 
6782 	/*
6783 	 * If it's non-zero, we should calculate the minimum of
6784 	 * it and the DWELL_BASE.
6785 	 *
6786 	 * XXX Yes, the math should take into account that bintval
6787 	 * is 1.024mS, not 1mS..
6788 	 */
6789 	if (bintval > 0) {
6790 		DPRINTF(sc, IWN_DEBUG_SCAN,
6791 		    "%s: bintval=%d\n",
6792 		    __func__,
6793 		    bintval);
6794 		return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
6795 	}
6796 
6797 	/* No association context? Default */
6798 	return (IWN_PASSIVE_DWELL_BASE);
6799 }
6800 
6801 static uint16_t
6802 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c)
6803 {
6804 	uint16_t passive;
6805 
6806 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6807 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
6808 	} else {
6809 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
6810 	}
6811 
6812 	/* Clamp to the beacon interval if we're associated */
6813 	return (iwn_limit_dwell(sc, passive));
6814 }
6815 
6816 static int
6817 iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap,
6818     struct ieee80211_scan_state *ss, struct ieee80211_channel *c)
6819 {
6820 	struct ifnet *ifp = sc->sc_ifp;
6821 	struct ieee80211com *ic = ifp->if_l2com;
6822 	struct ieee80211_node *ni = vap->iv_bss;
6823 	struct iwn_scan_hdr *hdr;
6824 	struct iwn_cmd_data *tx;
6825 	struct iwn_scan_essid *essid;
6826 	struct iwn_scan_chan *chan;
6827 	struct ieee80211_frame *wh;
6828 	struct ieee80211_rateset *rs;
6829 	uint8_t *buf, *frm;
6830 	uint16_t rxchain;
6831 	uint8_t txant;
6832 	int buflen, error;
6833 	int is_active;
6834 	uint16_t dwell_active, dwell_passive;
6835 	uint32_t extra, scan_service_time;
6836 
6837 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6838 
6839 	/*
6840 	 * We are absolutely not allowed to send a scan command when another
6841 	 * scan command is pending.
6842 	 */
6843 	if (sc->sc_is_scanning) {
6844 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
6845 		    __func__);
6846 		return (EAGAIN);
6847 	}
6848 
6849 	/* Assign the scan channel */
6850 	c = ic->ic_curchan;
6851 
6852 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6853 	buf = kmalloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_INTWAIT | M_ZERO);
6854 	if (buf == NULL) {
6855 		device_printf(sc->sc_dev,
6856 		    "%s: could not allocate buffer for scan command\n",
6857 		    __func__);
6858 		return ENOMEM;
6859 	}
6860 	hdr = (struct iwn_scan_hdr *)buf;
6861 	/*
6862 	 * Move to the next channel if no frames are received within 10ms
6863 	 * after sending the probe request.
6864 	 */
6865 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
6866 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
6867 	/*
6868 	 * Max needs to be greater than active and passive and quiet!
6869 	 * It's also in microseconds!
6870 	 */
6871 	hdr->max_svc = htole32(250 * 1024);
6872 
6873 	/*
6874 	 * Reset scan: interval=100
6875 	 * Normal scan: interval=becaon interval
6876 	 * suspend_time: 100 (TU)
6877 	 *
6878 	 */
6879 	extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22;
6880 	//scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024);
6881 	scan_service_time = (4 << 22) | (100 * 1024);	/* Hardcode for now! */
6882 	hdr->pause_svc = htole32(scan_service_time);
6883 
6884 	/* Select antennas for scanning. */
6885 	rxchain =
6886 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6887 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
6888 	    IWN_RXCHAIN_DRIVER_FORCE;
6889 	if (IEEE80211_IS_CHAN_A(c) &&
6890 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
6891 		/* Ant A must be avoided in 5GHz because of an HW bug. */
6892 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
6893 	} else	/* Use all available RX antennas. */
6894 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
6895 	hdr->rxchain = htole16(rxchain);
6896 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
6897 
6898 	tx = (struct iwn_cmd_data *)(hdr + 1);
6899 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
6900 	tx->id = sc->broadcast_id;
6901 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
6902 
6903 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
6904 		/* Send probe requests at 6Mbps. */
6905 		tx->rate = htole32(0xd);
6906 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
6907 	} else {
6908 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
6909 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
6910 		    sc->rxon->associd && sc->rxon->chan > 14)
6911 			tx->rate = htole32(0xd);
6912 		else {
6913 			/* Send probe requests at 1Mbps. */
6914 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
6915 		}
6916 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
6917 	}
6918 	/* Use the first valid TX antenna. */
6919 	txant = IWN_LSB(sc->txchainmask);
6920 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
6921 
6922 	/*
6923 	 * Only do active scanning if we're announcing a probe request
6924 	 * for a given SSID (or more, if we ever add it to the driver.)
6925 	 */
6926 	is_active = 0;
6927 
6928 	/*
6929 	 * If we're scanning for a specific SSID, add it to the command.
6930 	 *
6931 	 * XXX maybe look at adding support for scanning multiple SSIDs?
6932 	 */
6933 	essid = (struct iwn_scan_essid *)(tx + 1);
6934 	if (ss != NULL) {
6935 		if (ss->ss_ssid[0].len != 0) {
6936 			essid[0].id = IEEE80211_ELEMID_SSID;
6937 			essid[0].len = ss->ss_ssid[0].len;
6938 			memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
6939 		}
6940 
6941 		DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n",
6942 		    __func__,
6943 		    ss->ss_ssid[0].len,
6944 		    ss->ss_ssid[0].len,
6945 		    ss->ss_ssid[0].ssid);
6946 
6947 		if (ss->ss_nssid > 0)
6948 			is_active = 1;
6949 	}
6950 
6951 	/*
6952 	 * Build a probe request frame.  Most of the following code is a
6953 	 * copy & paste of what is done in net80211.
6954 	 */
6955 	wh = (struct ieee80211_frame *)(essid + 20);
6956 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
6957 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
6958 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
6959 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
6960 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
6961 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
6962 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
6963 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
6964 
6965 	frm = (uint8_t *)(wh + 1);
6966 	frm = ieee80211_add_ssid(frm, NULL, 0);
6967 	frm = ieee80211_add_rates(frm, rs);
6968 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
6969 		frm = ieee80211_add_xrates(frm, rs);
6970 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
6971 		frm = ieee80211_add_htcap(frm, ni);
6972 
6973 	/* Set length of probe request. */
6974 	tx->len = htole16(frm - (uint8_t *)wh);
6975 
6976 	/*
6977 	 * If active scanning is requested but a certain channel is
6978 	 * marked passive, we can do active scanning if we detect
6979 	 * transmissions.
6980 	 *
6981 	 * There is an issue with some firmware versions that triggers
6982 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
6983 	 * on a radar channel even though this means that we should NOT
6984 	 * send probes.
6985 	 *
6986 	 * The "good CRC threshold" is the number of frames that we
6987 	 * need to receive during our dwell time on a channel before
6988 	 * sending out probes -- setting this to a huge value will
6989 	 * mean we never reach it, but at the same time work around
6990 	 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER
6991 	 * here instead of IWL_GOOD_CRC_TH_DISABLED.
6992 	 *
6993 	 * This was fixed in later versions along with some other
6994 	 * scan changes, and the threshold behaves as a flag in those
6995 	 * versions.
6996 	 */
6997 
6998 	/*
6999 	 * If we're doing active scanning, set the crc_threshold
7000 	 * to a suitable value.  This is different to active veruss
7001 	 * passive scanning depending upon the channel flags; the
7002 	 * firmware will obey that particular check for us.
7003 	 */
7004 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
7005 		hdr->crc_threshold = is_active ?
7006 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
7007 	else
7008 		hdr->crc_threshold = is_active ?
7009 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
7010 
7011 	chan = (struct iwn_scan_chan *)frm;
7012 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
7013 	chan->flags = 0;
7014 	if (ss->ss_nssid > 0)
7015 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
7016 	chan->dsp_gain = 0x6e;
7017 
7018 	/*
7019 	 * Set the passive/active flag depending upon the channel mode.
7020 	 * XXX TODO: take the is_active flag into account as well?
7021 	 */
7022 	if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
7023 		chan->flags |= htole32(IWN_CHAN_PASSIVE);
7024 	else
7025 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
7026 
7027 	/*
7028 	 * Calculate the active/passive dwell times.
7029 	 */
7030 
7031 	dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid);
7032 	dwell_passive = iwn_get_passive_dwell_time(sc, c);
7033 
7034 	/* Make sure they're valid */
7035 	if (dwell_passive <= dwell_active)
7036 		dwell_passive = dwell_active + 1;
7037 
7038 	chan->active = htole16(dwell_active);
7039 	chan->passive = htole16(dwell_passive);
7040 
7041 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
7042 	    !(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
7043 		chan->rf_gain = 0x3b;
7044 	} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
7045 		chan->rf_gain = 0x3b;
7046 	} else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
7047 		chan->rf_gain = 0x28;
7048 	} else {
7049 		chan->rf_gain = 0x28;
7050 	}
7051 
7052 	DPRINTF(sc, IWN_DEBUG_STATE,
7053 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
7054 	    "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x "
7055 	    "isactive=%d numssid=%d\n", __func__,
7056 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
7057 	    dwell_active, dwell_passive, scan_service_time,
7058 	    hdr->crc_threshold, is_active, ss->ss_nssid);
7059 
7060 	hdr->nchan++;
7061 	chan++;
7062 	buflen = (uint8_t *)chan - buf;
7063 	hdr->len = htole16(buflen);
7064 
7065 	if (sc->sc_is_scanning) {
7066 		device_printf(sc->sc_dev,
7067 		    "%s: called with is_scanning set!\n",
7068 		    __func__);
7069 	}
7070 	sc->sc_is_scanning = 1;
7071 
7072 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
7073 	    hdr->nchan);
7074 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
7075 	kfree(buf, M_DEVBUF);
7076 
7077 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7078 
7079 	return error;
7080 }
7081 
7082 static int
7083 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
7084 {
7085 	struct iwn_ops *ops = &sc->ops;
7086 	struct ifnet *ifp = sc->sc_ifp;
7087 	struct ieee80211com *ic = ifp->if_l2com;
7088 	struct ieee80211_node *ni = vap->iv_bss;
7089 	int error;
7090 
7091 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7092 
7093 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7094 	/* Update adapter configuration. */
7095 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7096 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7097 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7098 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7099 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7100 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7101 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7102 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7103 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7104 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7105 		sc->rxon->cck_mask  = 0;
7106 		sc->rxon->ofdm_mask = 0x15;
7107 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7108 		sc->rxon->cck_mask  = 0x03;
7109 		sc->rxon->ofdm_mask = 0;
7110 	} else {
7111 		/* Assume 802.11b/g. */
7112 		sc->rxon->cck_mask  = 0x03;
7113 		sc->rxon->ofdm_mask = 0x15;
7114 	}
7115 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
7116 	    sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask,
7117 	    sc->rxon->ofdm_mask);
7118 	if (sc->sc_is_scanning)
7119 		device_printf(sc->sc_dev,
7120 		    "%s: is_scanning set, before RXON\n",
7121 		    __func__);
7122 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
7123 	if (error != 0) {
7124 		device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n",
7125 		    __func__, error);
7126 		return error;
7127 	}
7128 
7129 	/* Configuration has changed, set TX power accordingly. */
7130 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
7131 		device_printf(sc->sc_dev,
7132 		    "%s: could not set TX power, error %d\n", __func__, error);
7133 		return error;
7134 	}
7135 	/*
7136 	 * Reconfiguring RXON clears the firmware nodes table so we must
7137 	 * add the broadcast node again.
7138 	 */
7139 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
7140 		device_printf(sc->sc_dev,
7141 		    "%s: could not add broadcast node, error %d\n", __func__,
7142 		    error);
7143 		return error;
7144 	}
7145 
7146 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7147 
7148 	return 0;
7149 }
7150 
7151 static int
7152 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
7153 {
7154 	struct iwn_ops *ops = &sc->ops;
7155 	struct ifnet *ifp = sc->sc_ifp;
7156 	struct ieee80211com *ic = ifp->if_l2com;
7157 	struct ieee80211_node *ni = vap->iv_bss;
7158 	struct iwn_node_info node;
7159 	uint32_t htflags = 0;
7160 	int error;
7161 
7162 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7163 
7164 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7165 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
7166 		/* Link LED blinks while monitoring. */
7167 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
7168 		return 0;
7169 	}
7170 	if ((error = iwn_set_timing(sc, ni)) != 0) {
7171 		device_printf(sc->sc_dev,
7172 		    "%s: could not set timing, error %d\n", __func__, error);
7173 		return error;
7174 	}
7175 
7176 	/* Update adapter configuration. */
7177 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7178 	sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd));
7179 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7180 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7181 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7182 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7183 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7184 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7185 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7186 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7187 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7188 		sc->rxon->cck_mask  = 0;
7189 		sc->rxon->ofdm_mask = 0x15;
7190 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7191 		sc->rxon->cck_mask  = 0x03;
7192 		sc->rxon->ofdm_mask = 0;
7193 	} else {
7194 		/* Assume 802.11b/g. */
7195 		sc->rxon->cck_mask  = 0x0f;
7196 		sc->rxon->ofdm_mask = 0x15;
7197 	}
7198 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
7199 		htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
7200 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
7201 			switch (ic->ic_curhtprotmode) {
7202 			case IEEE80211_HTINFO_OPMODE_HT20PR:
7203 				htflags |= IWN_RXON_HT_MODEPURE40;
7204 				break;
7205 			default:
7206 				htflags |= IWN_RXON_HT_MODEMIXED;
7207 				break;
7208 			}
7209 		}
7210 		if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
7211 			htflags |= IWN_RXON_HT_HT40MINUS;
7212 	}
7213 	sc->rxon->flags |= htole32(htflags);
7214 	sc->rxon->filter |= htole32(IWN_FILTER_BSS);
7215 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x\n",
7216 	    sc->rxon->chan, sc->rxon->flags);
7217 	if (sc->sc_is_scanning)
7218 		device_printf(sc->sc_dev,
7219 		    "%s: is_scanning set, before RXON\n",
7220 		    __func__);
7221 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
7222 	if (error != 0) {
7223 		device_printf(sc->sc_dev,
7224 		    "%s: could not update configuration, error %d\n", __func__,
7225 		    error);
7226 		return error;
7227 	}
7228 
7229 	/* Configuration has changed, set TX power accordingly. */
7230 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
7231 		device_printf(sc->sc_dev,
7232 		    "%s: could not set TX power, error %d\n", __func__, error);
7233 		return error;
7234 	}
7235 
7236 	/* Fake a join to initialize the TX rate. */
7237 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
7238 	iwn_newassoc(ni, 1);
7239 
7240 	/* Add BSS node. */
7241 	memset(&node, 0, sizeof node);
7242 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
7243 	node.id = IWN_ID_BSS;
7244 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
7245 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
7246 		case IEEE80211_HTCAP_SMPS_ENA:
7247 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
7248 			break;
7249 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
7250 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
7251 			break;
7252 		}
7253 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
7254 		    IWN_AMDPU_DENSITY(5));	/* 4us */
7255 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
7256 			node.htflags |= htole32(IWN_NODE_HT40);
7257 	}
7258 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
7259 	error = ops->add_node(sc, &node, 1);
7260 	if (error != 0) {
7261 		device_printf(sc->sc_dev,
7262 		    "%s: could not add BSS node, error %d\n", __func__, error);
7263 		return error;
7264 	}
7265 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
7266 	    __func__, node.id);
7267 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
7268 		device_printf(sc->sc_dev,
7269 		    "%s: could not setup link quality for node %d, error %d\n",
7270 		    __func__, node.id, error);
7271 		return error;
7272 	}
7273 
7274 	if ((error = iwn_init_sensitivity(sc)) != 0) {
7275 		device_printf(sc->sc_dev,
7276 		    "%s: could not set sensitivity, error %d\n", __func__,
7277 		    error);
7278 		return error;
7279 	}
7280 	/* Start periodic calibration timer. */
7281 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
7282 	sc->calib_cnt = 0;
7283 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
7284 	    sc);
7285 
7286 	/* Link LED always on while associated. */
7287 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
7288 
7289 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7290 
7291 	return 0;
7292 }
7293 
7294 /*
7295  * This function is called by upper layer when an ADDBA request is received
7296  * from another STA and before the ADDBA response is sent.
7297  */
7298 static int
7299 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
7300     int baparamset, int batimeout, int baseqctl)
7301 {
7302 #define MS(_v, _f)	(((_v) & _f) >> _f##_S)
7303 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7304 	struct iwn_ops *ops = &sc->ops;
7305 	struct iwn_node *wn = (void *)ni;
7306 	struct iwn_node_info node;
7307 	uint16_t ssn;
7308 	uint8_t tid;
7309 	int error;
7310 
7311 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7312 
7313 	tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID);
7314 	ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START);
7315 
7316 	memset(&node, 0, sizeof node);
7317 	node.id = wn->id;
7318 	node.control = IWN_NODE_UPDATE;
7319 	node.flags = IWN_FLAG_SET_ADDBA;
7320 	node.addba_tid = tid;
7321 	node.addba_ssn = htole16(ssn);
7322 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
7323 	    wn->id, tid, ssn);
7324 	error = ops->add_node(sc, &node, 1);
7325 	if (error != 0)
7326 		return error;
7327 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
7328 #undef MS
7329 }
7330 
7331 /*
7332  * This function is called by upper layer on teardown of an HT-immediate
7333  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
7334  */
7335 static void
7336 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
7337 {
7338 	struct ieee80211com *ic = ni->ni_ic;
7339 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
7340 	struct iwn_ops *ops = &sc->ops;
7341 	struct iwn_node *wn = (void *)ni;
7342 	struct iwn_node_info node;
7343 	uint8_t tid;
7344 
7345 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7346 
7347 	/* XXX: tid as an argument */
7348 	for (tid = 0; tid < WME_NUM_TID; tid++) {
7349 		if (&ni->ni_rx_ampdu[tid] == rap)
7350 			break;
7351 	}
7352 
7353 	memset(&node, 0, sizeof node);
7354 	node.id = wn->id;
7355 	node.control = IWN_NODE_UPDATE;
7356 	node.flags = IWN_FLAG_SET_DELBA;
7357 	node.delba_tid = tid;
7358 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
7359 	(void)ops->add_node(sc, &node, 1);
7360 	sc->sc_ampdu_rx_stop(ni, rap);
7361 }
7362 
7363 static int
7364 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7365     int dialogtoken, int baparamset, int batimeout)
7366 {
7367 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7368 	int qid;
7369 
7370 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7371 
7372 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
7373 		if (sc->qid2tap[qid] == NULL)
7374 			break;
7375 	}
7376 	if (qid == sc->ntxqs) {
7377 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
7378 		    __func__);
7379 		return 0;
7380 	}
7381 	tap->txa_private = kmalloc(sizeof(int), M_DEVBUF, M_INTWAIT);
7382 	if (tap->txa_private == NULL) {
7383 		device_printf(sc->sc_dev,
7384 		    "%s: failed to alloc TX aggregation structure\n", __func__);
7385 		return 0;
7386 	}
7387 	sc->qid2tap[qid] = tap;
7388 	*(int *)tap->txa_private = qid;
7389 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
7390 	    batimeout);
7391 }
7392 
7393 static int
7394 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7395     int code, int baparamset, int batimeout)
7396 {
7397 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7398 	int qid = *(int *)tap->txa_private;
7399 	uint8_t tid = tap->txa_tid;
7400 	int ret;
7401 
7402 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7403 
7404 	if (code == IEEE80211_STATUS_SUCCESS) {
7405 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
7406 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
7407 		if (ret != 1)
7408 			return ret;
7409 	} else {
7410 		sc->qid2tap[qid] = NULL;
7411 		kfree(tap->txa_private, M_DEVBUF);
7412 		tap->txa_private = NULL;
7413 	}
7414 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
7415 }
7416 
7417 /*
7418  * This function is called by upper layer when an ADDBA response is received
7419  * from another STA.
7420  */
7421 static int
7422 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
7423     uint8_t tid)
7424 {
7425 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
7426 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7427 	struct iwn_ops *ops = &sc->ops;
7428 	struct iwn_node *wn = (void *)ni;
7429 	struct iwn_node_info node;
7430 	int error, qid;
7431 
7432 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7433 
7434 	/* Enable TX for the specified RA/TID. */
7435 	wn->disable_tid &= ~(1 << tid);
7436 	memset(&node, 0, sizeof node);
7437 	node.id = wn->id;
7438 	node.control = IWN_NODE_UPDATE;
7439 	node.flags = IWN_FLAG_SET_DISABLE_TID;
7440 	node.disable_tid = htole16(wn->disable_tid);
7441 	error = ops->add_node(sc, &node, 1);
7442 	if (error != 0)
7443 		return 0;
7444 
7445 	if ((error = iwn_nic_lock(sc)) != 0)
7446 		return 0;
7447 	qid = *(int *)tap->txa_private;
7448 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
7449 	    __func__, wn->id, tid, tap->txa_start, qid);
7450 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
7451 	iwn_nic_unlock(sc);
7452 
7453 	iwn_set_link_quality(sc, ni);
7454 	return 1;
7455 }
7456 
7457 static void
7458 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
7459 {
7460 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7461 	struct iwn_ops *ops = &sc->ops;
7462 	uint8_t tid = tap->txa_tid;
7463 	int qid;
7464 
7465 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7466 
7467 	sc->sc_addba_stop(ni, tap);
7468 
7469 	if (tap->txa_private == NULL)
7470 		return;
7471 
7472 	qid = *(int *)tap->txa_private;
7473 	if (sc->txq[qid].queued != 0)
7474 		return;
7475 	if (iwn_nic_lock(sc) != 0)
7476 		return;
7477 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
7478 	iwn_nic_unlock(sc);
7479 	sc->qid2tap[qid] = NULL;
7480 	kfree(tap->txa_private, M_DEVBUF);
7481 	tap->txa_private = NULL;
7482 }
7483 
7484 static void
7485 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7486     int qid, uint8_t tid, uint16_t ssn)
7487 {
7488 	struct iwn_node *wn = (void *)ni;
7489 
7490 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7491 
7492 	/* Stop TX scheduler while we're changing its configuration. */
7493 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7494 	    IWN4965_TXQ_STATUS_CHGACT);
7495 
7496 	/* Assign RA/TID translation to the queue. */
7497 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
7498 	    wn->id << 4 | tid);
7499 
7500 	/* Enable chain-building mode for the queue. */
7501 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
7502 
7503 	/* Set starting sequence number from the ADDBA request. */
7504 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7505 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7506 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7507 
7508 	/* Set scheduler window size. */
7509 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
7510 	    IWN_SCHED_WINSZ);
7511 	/* Set scheduler frame limit. */
7512 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7513 	    IWN_SCHED_LIMIT << 16);
7514 
7515 	/* Enable interrupts for the queue. */
7516 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7517 
7518 	/* Mark the queue as active. */
7519 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7520 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
7521 	    iwn_tid2fifo[tid] << 1);
7522 }
7523 
7524 static void
7525 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7526 {
7527 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7528 
7529 	/* Stop TX scheduler while we're changing its configuration. */
7530 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7531 	    IWN4965_TXQ_STATUS_CHGACT);
7532 
7533 	/* Set starting sequence number from the ADDBA request. */
7534 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7535 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7536 
7537 	/* Disable interrupts for the queue. */
7538 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7539 
7540 	/* Mark the queue as inactive. */
7541 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7542 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
7543 }
7544 
7545 static void
7546 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7547     int qid, uint8_t tid, uint16_t ssn)
7548 {
7549 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7550 
7551 	struct iwn_node *wn = (void *)ni;
7552 
7553 	/* Stop TX scheduler while we're changing its configuration. */
7554 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7555 	    IWN5000_TXQ_STATUS_CHGACT);
7556 
7557 	/* Assign RA/TID translation to the queue. */
7558 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
7559 	    wn->id << 4 | tid);
7560 
7561 	/* Enable chain-building mode for the queue. */
7562 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
7563 
7564 	/* Enable aggregation for the queue. */
7565 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7566 
7567 	/* Set starting sequence number from the ADDBA request. */
7568 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7569 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7570 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7571 
7572 	/* Set scheduler window size and frame limit. */
7573 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7574 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7575 
7576 	/* Enable interrupts for the queue. */
7577 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7578 
7579 	/* Mark the queue as active. */
7580 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7581 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
7582 }
7583 
7584 static void
7585 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7586 {
7587 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7588 
7589 	/* Stop TX scheduler while we're changing its configuration. */
7590 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7591 	    IWN5000_TXQ_STATUS_CHGACT);
7592 
7593 	/* Disable aggregation for the queue. */
7594 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7595 
7596 	/* Set starting sequence number from the ADDBA request. */
7597 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7598 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7599 
7600 	/* Disable interrupts for the queue. */
7601 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7602 
7603 	/* Mark the queue as inactive. */
7604 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7605 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
7606 }
7607 
7608 /*
7609  * Query calibration tables from the initialization firmware.  We do this
7610  * only once at first boot.  Called from a process context.
7611  */
7612 static int
7613 iwn5000_query_calibration(struct iwn_softc *sc)
7614 {
7615 	struct iwn5000_calib_config cmd;
7616 	int error;
7617 
7618 	memset(&cmd, 0, sizeof cmd);
7619 	cmd.ucode.once.enable = htole32(0xffffffff);
7620 	cmd.ucode.once.start  = htole32(0xffffffff);
7621 	cmd.ucode.once.send   = htole32(0xffffffff);
7622 	cmd.ucode.flags       = htole32(0xffffffff);
7623 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
7624 	    __func__);
7625 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
7626 	if (error != 0)
7627 		return error;
7628 
7629 	/* Wait at most two seconds for calibration to complete. */
7630 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
7631 		error = iwn_sleep(sc, sc, PCATCH, "iwncal", 2 * hz);
7632 	return error;
7633 }
7634 
7635 /*
7636  * Send calibration results to the runtime firmware.  These results were
7637  * obtained on first boot from the initialization firmware.
7638  */
7639 static int
7640 iwn5000_send_calibration(struct iwn_softc *sc)
7641 {
7642 	int idx, error;
7643 
7644 	for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) {
7645 		if (!(sc->base_params->calib_need & (1<<idx))) {
7646 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7647 			    "No need of calib %d\n",
7648 			    idx);
7649 			continue; /* no need for this calib */
7650 		}
7651 		if (sc->calibcmd[idx].buf == NULL) {
7652 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7653 			    "Need calib idx : %d but no available data\n",
7654 			    idx);
7655 			continue;
7656 		}
7657 
7658 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7659 		    "send calibration result idx=%d len=%d\n", idx,
7660 		    sc->calibcmd[idx].len);
7661 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
7662 		    sc->calibcmd[idx].len, 0);
7663 		if (error != 0) {
7664 			device_printf(sc->sc_dev,
7665 			    "%s: could not send calibration result, error %d\n",
7666 			    __func__, error);
7667 			return error;
7668 		}
7669 	}
7670 	return 0;
7671 }
7672 
7673 static int
7674 iwn5000_send_wimax_coex(struct iwn_softc *sc)
7675 {
7676 	struct iwn5000_wimax_coex wimax;
7677 
7678 #if 0
7679 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
7680 		/* Enable WiMAX coexistence for combo adapters. */
7681 		wimax.flags =
7682 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
7683 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
7684 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
7685 		    IWN_WIMAX_COEX_ENABLE;
7686 		memcpy(wimax.events, iwn6050_wimax_events,
7687 		    sizeof iwn6050_wimax_events);
7688 	} else
7689 #endif
7690 	{
7691 		/* Disable WiMAX coexistence. */
7692 		wimax.flags = 0;
7693 		memset(wimax.events, 0, sizeof wimax.events);
7694 	}
7695 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
7696 	    __func__);
7697 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
7698 }
7699 
7700 static int
7701 iwn5000_crystal_calib(struct iwn_softc *sc)
7702 {
7703 	struct iwn5000_phy_calib_crystal cmd;
7704 
7705 	memset(&cmd, 0, sizeof cmd);
7706 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
7707 	cmd.ngroups = 1;
7708 	cmd.isvalid = 1;
7709 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
7710 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
7711 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
7712 	    cmd.cap_pin[0], cmd.cap_pin[1]);
7713 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7714 }
7715 
7716 static int
7717 iwn5000_temp_offset_calib(struct iwn_softc *sc)
7718 {
7719 	struct iwn5000_phy_calib_temp_offset cmd;
7720 
7721 	memset(&cmd, 0, sizeof cmd);
7722 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7723 	cmd.ngroups = 1;
7724 	cmd.isvalid = 1;
7725 	if (sc->eeprom_temp != 0)
7726 		cmd.offset = htole16(sc->eeprom_temp);
7727 	else
7728 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
7729 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
7730 	    le16toh(cmd.offset));
7731 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7732 }
7733 
7734 static int
7735 iwn5000_temp_offset_calibv2(struct iwn_softc *sc)
7736 {
7737 	struct iwn5000_phy_calib_temp_offsetv2 cmd;
7738 
7739 	memset(&cmd, 0, sizeof cmd);
7740 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7741 	cmd.ngroups = 1;
7742 	cmd.isvalid = 1;
7743 	if (sc->eeprom_temp != 0) {
7744 		cmd.offset_low = htole16(sc->eeprom_temp);
7745 		cmd.offset_high = htole16(sc->eeprom_temp_high);
7746 	} else {
7747 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
7748 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
7749 	}
7750 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
7751 
7752 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7753 	    "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n",
7754 	    le16toh(cmd.offset_low),
7755 	    le16toh(cmd.offset_high),
7756 	    le16toh(cmd.burnt_voltage_ref));
7757 
7758 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7759 }
7760 
7761 /*
7762  * This function is called after the runtime firmware notifies us of its
7763  * readiness (called in a process context).
7764  */
7765 static int
7766 iwn4965_post_alive(struct iwn_softc *sc)
7767 {
7768 	int error, qid;
7769 
7770 	if ((error = iwn_nic_lock(sc)) != 0)
7771 		return error;
7772 
7773 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7774 
7775 	/* Clear TX scheduler state in SRAM. */
7776 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7777 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
7778 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
7779 
7780 	/* Set physical address of TX scheduler rings (1KB aligned). */
7781 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7782 
7783 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7784 
7785 	/* Disable chain mode for all our 16 queues. */
7786 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
7787 
7788 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
7789 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
7790 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7791 
7792 		/* Set scheduler window size. */
7793 		iwn_mem_write(sc, sc->sched_base +
7794 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
7795 		/* Set scheduler frame limit. */
7796 		iwn_mem_write(sc, sc->sched_base +
7797 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7798 		    IWN_SCHED_LIMIT << 16);
7799 	}
7800 
7801 	/* Enable interrupts for all our 16 queues. */
7802 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
7803 	/* Identify TX FIFO rings (0-7). */
7804 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
7805 
7806 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7807 	for (qid = 0; qid < 7; qid++) {
7808 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
7809 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7810 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
7811 	}
7812 	iwn_nic_unlock(sc);
7813 	return 0;
7814 }
7815 
7816 /*
7817  * This function is called after the initialization or runtime firmware
7818  * notifies us of its readiness (called in a process context).
7819  */
7820 static int
7821 iwn5000_post_alive(struct iwn_softc *sc)
7822 {
7823 	int error, qid;
7824 
7825 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7826 
7827 	/* Switch to using ICT interrupt mode. */
7828 	iwn5000_ict_reset(sc);
7829 
7830 	if ((error = iwn_nic_lock(sc)) != 0){
7831 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
7832 		return error;
7833 	}
7834 
7835 	/* Clear TX scheduler state in SRAM. */
7836 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7837 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
7838 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
7839 
7840 	/* Set physical address of TX scheduler rings (1KB aligned). */
7841 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7842 
7843 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7844 
7845 	/* Enable chain mode for all queues, except command queue. */
7846 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
7847 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf);
7848 	else
7849 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
7850 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
7851 
7852 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
7853 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
7854 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7855 
7856 		iwn_mem_write(sc, sc->sched_base +
7857 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
7858 		/* Set scheduler window size and frame limit. */
7859 		iwn_mem_write(sc, sc->sched_base +
7860 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7861 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7862 	}
7863 
7864 	/* Enable interrupts for all our 20 queues. */
7865 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
7866 	/* Identify TX FIFO rings (0-7). */
7867 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
7868 
7869 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7870 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) {
7871 		/* Mark TX rings as active. */
7872 		for (qid = 0; qid < 11; qid++) {
7873 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 };
7874 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7875 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7876 		}
7877 	} else {
7878 		/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7879 		for (qid = 0; qid < 7; qid++) {
7880 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
7881 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7882 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7883 		}
7884 	}
7885 	iwn_nic_unlock(sc);
7886 
7887 	/* Configure WiMAX coexistence for combo adapters. */
7888 	error = iwn5000_send_wimax_coex(sc);
7889 	if (error != 0) {
7890 		device_printf(sc->sc_dev,
7891 		    "%s: could not configure WiMAX coexistence, error %d\n",
7892 		    __func__, error);
7893 		return error;
7894 	}
7895 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
7896 		/* Perform crystal calibration. */
7897 		error = iwn5000_crystal_calib(sc);
7898 		if (error != 0) {
7899 			device_printf(sc->sc_dev,
7900 			    "%s: crystal calibration failed, error %d\n",
7901 			    __func__, error);
7902 			return error;
7903 		}
7904 	}
7905 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
7906 		/* Query calibration from the initialization firmware. */
7907 		if ((error = iwn5000_query_calibration(sc)) != 0) {
7908 			device_printf(sc->sc_dev,
7909 			    "%s: could not query calibration, error %d\n",
7910 			    __func__, error);
7911 			return error;
7912 		}
7913 		/*
7914 		 * We have the calibration results now, reboot with the
7915 		 * runtime firmware (call ourselves recursively!)
7916 		 */
7917 		iwn_hw_stop(sc);
7918 		error = iwn_hw_init(sc);
7919 	} else {
7920 		/* Send calibration results to runtime firmware. */
7921 		error = iwn5000_send_calibration(sc);
7922 	}
7923 
7924 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7925 
7926 	return error;
7927 }
7928 
7929 /*
7930  * The firmware boot code is small and is intended to be copied directly into
7931  * the NIC internal memory (no DMA transfer).
7932  */
7933 static int
7934 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
7935 {
7936 	int error, ntries;
7937 
7938 	size /= sizeof (uint32_t);
7939 
7940 	if ((error = iwn_nic_lock(sc)) != 0)
7941 		return error;
7942 
7943 	/* Copy microcode image into NIC memory. */
7944 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
7945 	    (const uint32_t *)ucode, size);
7946 
7947 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
7948 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
7949 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
7950 
7951 	/* Start boot load now. */
7952 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
7953 
7954 	/* Wait for transfer to complete. */
7955 	for (ntries = 0; ntries < 1000; ntries++) {
7956 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
7957 		    IWN_BSM_WR_CTRL_START))
7958 			break;
7959 		DELAY(10);
7960 	}
7961 	if (ntries == 1000) {
7962 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7963 		    __func__);
7964 		iwn_nic_unlock(sc);
7965 		return ETIMEDOUT;
7966 	}
7967 
7968 	/* Enable boot after power up. */
7969 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
7970 
7971 	iwn_nic_unlock(sc);
7972 	return 0;
7973 }
7974 
7975 static int
7976 iwn4965_load_firmware(struct iwn_softc *sc)
7977 {
7978 	struct iwn_fw_info *fw = &sc->fw;
7979 	struct iwn_dma_info *dma = &sc->fw_dma;
7980 	int error;
7981 
7982 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
7983 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
7984 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7985 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7986 	    fw->init.text, fw->init.textsz);
7987 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7988 
7989 	/* Tell adapter where to find initialization sections. */
7990 	if ((error = iwn_nic_lock(sc)) != 0)
7991 		return error;
7992 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7993 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
7994 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7995 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7996 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
7997 	iwn_nic_unlock(sc);
7998 
7999 	/* Load firmware boot code. */
8000 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
8001 	if (error != 0) {
8002 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
8003 		    __func__);
8004 		return error;
8005 	}
8006 	/* Now press "execute". */
8007 	IWN_WRITE(sc, IWN_RESET, 0);
8008 
8009 	/* Wait at most one second for first alive notification. */
8010 	if ((error = iwn_sleep(sc, sc, PCATCH, "iwninit", hz)) != 0) {
8011 		device_printf(sc->sc_dev,
8012 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8013 		    __func__, error);
8014 		return error;
8015 	}
8016 
8017 	/* Retrieve current temperature for initial TX power calibration. */
8018 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
8019 	sc->temp = iwn4965_get_temperature(sc);
8020 
8021 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
8022 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
8023 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8024 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
8025 	    fw->main.text, fw->main.textsz);
8026 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8027 
8028 	/* Tell adapter where to find runtime sections. */
8029 	if ((error = iwn_nic_lock(sc)) != 0)
8030 		return error;
8031 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
8032 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
8033 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
8034 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
8035 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
8036 	    IWN_FW_UPDATED | fw->main.textsz);
8037 	iwn_nic_unlock(sc);
8038 
8039 	return 0;
8040 }
8041 
8042 static int
8043 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
8044     const uint8_t *section, int size)
8045 {
8046 	struct iwn_dma_info *dma = &sc->fw_dma;
8047 	int error;
8048 
8049 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8050 
8051 	/* Copy firmware section into pre-allocated DMA-safe memory. */
8052 	memcpy(dma->vaddr, section, size);
8053 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8054 
8055 	if ((error = iwn_nic_lock(sc)) != 0)
8056 		return error;
8057 
8058 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8059 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
8060 
8061 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
8062 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
8063 	    IWN_LOADDR(dma->paddr));
8064 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
8065 	    IWN_HIADDR(dma->paddr) << 28 | size);
8066 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
8067 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
8068 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
8069 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
8070 
8071 	/* Kick Flow Handler to start DMA transfer. */
8072 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8073 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
8074 
8075 	iwn_nic_unlock(sc);
8076 
8077 	/* Wait at most five seconds for FH DMA transfer to complete. */
8078 	return iwn_sleep(sc, sc, PCATCH, "iwninit", 5 * hz);
8079 }
8080 
8081 static int
8082 iwn5000_load_firmware(struct iwn_softc *sc)
8083 {
8084 	struct iwn_fw_part *fw;
8085 	int error;
8086 
8087 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8088 
8089 	/* Load the initialization firmware on first boot only. */
8090 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
8091 	    &sc->fw.main : &sc->fw.init;
8092 
8093 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
8094 	    fw->text, fw->textsz);
8095 	if (error != 0) {
8096 		device_printf(sc->sc_dev,
8097 		    "%s: could not load firmware %s section, error %d\n",
8098 		    __func__, ".text", error);
8099 		return error;
8100 	}
8101 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
8102 	    fw->data, fw->datasz);
8103 	if (error != 0) {
8104 		device_printf(sc->sc_dev,
8105 		    "%s: could not load firmware %s section, error %d\n",
8106 		    __func__, ".data", error);
8107 		return error;
8108 	}
8109 
8110 	/* Now press "execute". */
8111 	IWN_WRITE(sc, IWN_RESET, 0);
8112 	return 0;
8113 }
8114 
8115 /*
8116  * Extract text and data sections from a legacy firmware image.
8117  */
8118 static int
8119 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
8120 {
8121 	const uint32_t *ptr;
8122 	size_t hdrlen = 24;
8123 	uint32_t rev;
8124 
8125 	ptr = (const uint32_t *)fw->data;
8126 	rev = le32toh(*ptr++);
8127 
8128 	sc->ucode_rev = rev;
8129 
8130 	/* Check firmware API version. */
8131 	if (IWN_FW_API(rev) <= 1) {
8132 		device_printf(sc->sc_dev,
8133 		    "%s: bad firmware, need API version >=2\n", __func__);
8134 		return EINVAL;
8135 	}
8136 	if (IWN_FW_API(rev) >= 3) {
8137 		/* Skip build number (version 2 header). */
8138 		hdrlen += 4;
8139 		ptr++;
8140 	}
8141 	if (fw->size < hdrlen) {
8142 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8143 		    __func__, fw->size);
8144 		return EINVAL;
8145 	}
8146 	fw->main.textsz = le32toh(*ptr++);
8147 	fw->main.datasz = le32toh(*ptr++);
8148 	fw->init.textsz = le32toh(*ptr++);
8149 	fw->init.datasz = le32toh(*ptr++);
8150 	fw->boot.textsz = le32toh(*ptr++);
8151 
8152 	/* Check that all firmware sections fit. */
8153 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
8154 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
8155 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8156 		    __func__, fw->size);
8157 		return EINVAL;
8158 	}
8159 
8160 	/* Get pointers to firmware sections. */
8161 	fw->main.text = (const uint8_t *)ptr;
8162 	fw->main.data = fw->main.text + fw->main.textsz;
8163 	fw->init.text = fw->main.data + fw->main.datasz;
8164 	fw->init.data = fw->init.text + fw->init.textsz;
8165 	fw->boot.text = fw->init.data + fw->init.datasz;
8166 	return 0;
8167 }
8168 
8169 /*
8170  * Extract text and data sections from a TLV firmware image.
8171  */
8172 static int
8173 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
8174     uint16_t alt)
8175 {
8176 	const struct iwn_fw_tlv_hdr *hdr;
8177 	const struct iwn_fw_tlv *tlv;
8178 	const uint8_t *ptr, *end;
8179 	uint64_t altmask;
8180 	uint32_t len, tmp;
8181 
8182 	if (fw->size < sizeof (*hdr)) {
8183 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8184 		    __func__, fw->size);
8185 		return EINVAL;
8186 	}
8187 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
8188 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
8189 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
8190 		    __func__, le32toh(hdr->signature));
8191 		return EINVAL;
8192 	}
8193 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
8194 	    le32toh(hdr->build));
8195 	sc->ucode_rev = le32toh(hdr->rev);
8196 
8197 	/*
8198 	 * Select the closest supported alternative that is less than
8199 	 * or equal to the specified one.
8200 	 */
8201 	altmask = le64toh(hdr->altmask);
8202 	while (alt > 0 && !(altmask & (1ULL << alt)))
8203 		alt--;	/* Downgrade. */
8204 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
8205 
8206 	ptr = (const uint8_t *)(hdr + 1);
8207 	end = (const uint8_t *)(fw->data + fw->size);
8208 
8209 	/* Parse type-length-value fields. */
8210 	while (ptr + sizeof (*tlv) <= end) {
8211 		tlv = (const struct iwn_fw_tlv *)ptr;
8212 		len = le32toh(tlv->len);
8213 
8214 		ptr += sizeof (*tlv);
8215 		if (ptr + len > end) {
8216 			device_printf(sc->sc_dev,
8217 			    "%s: firmware too short: %zu bytes\n", __func__,
8218 			    fw->size);
8219 			return EINVAL;
8220 		}
8221 		/* Skip other alternatives. */
8222 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
8223 			goto next;
8224 
8225 		switch (le16toh(tlv->type)) {
8226 		case IWN_FW_TLV_MAIN_TEXT:
8227 			fw->main.text = ptr;
8228 			fw->main.textsz = len;
8229 			break;
8230 		case IWN_FW_TLV_MAIN_DATA:
8231 			fw->main.data = ptr;
8232 			fw->main.datasz = len;
8233 			break;
8234 		case IWN_FW_TLV_INIT_TEXT:
8235 			fw->init.text = ptr;
8236 			fw->init.textsz = len;
8237 			break;
8238 		case IWN_FW_TLV_INIT_DATA:
8239 			fw->init.data = ptr;
8240 			fw->init.datasz = len;
8241 			break;
8242 		case IWN_FW_TLV_BOOT_TEXT:
8243 			fw->boot.text = ptr;
8244 			fw->boot.textsz = len;
8245 			break;
8246 		case IWN_FW_TLV_ENH_SENS:
8247 			if (!len)
8248 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
8249 			break;
8250 		case IWN_FW_TLV_PHY_CALIB:
8251 			tmp = le32toh(*ptr);
8252 			if (tmp < 253) {
8253 				sc->reset_noise_gain = tmp;
8254 				sc->noise_gain = tmp + 1;
8255 			}
8256 			break;
8257 		case IWN_FW_TLV_PAN:
8258 			sc->sc_flags |= IWN_FLAG_PAN_SUPPORT;
8259 			DPRINTF(sc, IWN_DEBUG_RESET,
8260 			    "PAN Support found: %d\n", 1);
8261 			break;
8262 		case IWN_FW_TLV_FLAGS:
8263 			if (len < sizeof(uint32_t))
8264 				break;
8265 			if (len % sizeof(uint32_t))
8266 				break;
8267 			sc->tlv_feature_flags = le32toh(*ptr);
8268 			DPRINTF(sc, IWN_DEBUG_RESET,
8269 			    "%s: feature: 0x%08x\n",
8270 			    __func__,
8271 			    sc->tlv_feature_flags);
8272 			break;
8273 		case IWN_FW_TLV_PBREQ_MAXLEN:
8274 		case IWN_FW_TLV_RUNT_EVTLOG_PTR:
8275 		case IWN_FW_TLV_RUNT_EVTLOG_SIZE:
8276 		case IWN_FW_TLV_RUNT_ERRLOG_PTR:
8277 		case IWN_FW_TLV_INIT_EVTLOG_PTR:
8278 		case IWN_FW_TLV_INIT_EVTLOG_SIZE:
8279 		case IWN_FW_TLV_INIT_ERRLOG_PTR:
8280 		case IWN_FW_TLV_WOWLAN_INST:
8281 		case IWN_FW_TLV_WOWLAN_DATA:
8282 			DPRINTF(sc, IWN_DEBUG_RESET,
8283 			    "TLV type %d recognized but not handled\n",
8284 			    le16toh(tlv->type));
8285 			break;
8286 		default:
8287 			DPRINTF(sc, IWN_DEBUG_RESET,
8288 			    "TLV type %d not handled\n", le16toh(tlv->type));
8289 			break;
8290 		}
8291  next:		/* TLV fields are 32-bit aligned. */
8292 		ptr += (len + 3) & ~3;
8293 	}
8294 	return 0;
8295 }
8296 
8297 static int
8298 iwn_read_firmware(struct iwn_softc *sc)
8299 {
8300 	struct iwn_fw_info *fw = &sc->fw;
8301 	int error;
8302 
8303 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8304 
8305 	IWN_UNLOCK(sc);
8306 
8307 	memset(fw, 0, sizeof (*fw));
8308 
8309 	/* Read firmware image from filesystem. */
8310 	sc->fw_fp = firmware_get(sc->fwname);
8311 	if (sc->fw_fp == NULL) {
8312 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
8313 		    __func__, sc->fwname);
8314 		IWN_LOCK(sc);
8315 		error = EINVAL;
8316 		goto done;
8317 	}
8318 	IWN_LOCK(sc);
8319 
8320 	fw->size = sc->fw_fp->datasize;
8321 	fw->data = (const uint8_t *)sc->fw_fp->data;
8322 	if (fw->size < sizeof (uint32_t)) {
8323 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8324 		    __func__, fw->size);
8325 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8326 		sc->fw_fp = NULL;
8327 		error = EINVAL;
8328 		goto done;
8329 	}
8330 
8331 	/* Retrieve text and data sections. */
8332 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
8333 		error = iwn_read_firmware_leg(sc, fw);
8334 	else
8335 		error = iwn_read_firmware_tlv(sc, fw, 1);
8336 	if (error != 0) {
8337 		device_printf(sc->sc_dev,
8338 		    "%s: could not read firmware sections, error %d\n",
8339 		    __func__, error);
8340 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8341 		sc->fw_fp = NULL;
8342 		goto done;
8343 	}
8344 
8345 	device_printf(sc->sc_dev, "%s: ucode rev=0x%08x\n", __func__, sc->ucode_rev);
8346 
8347 	/* Make sure text and data sections fit in hardware memory. */
8348 	if (fw->main.textsz > sc->fw_text_maxsz ||
8349 	    fw->main.datasz > sc->fw_data_maxsz ||
8350 	    fw->init.textsz > sc->fw_text_maxsz ||
8351 	    fw->init.datasz > sc->fw_data_maxsz ||
8352 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
8353 	    (fw->boot.textsz & 3) != 0) {
8354 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
8355 		    __func__);
8356 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8357 		sc->fw_fp = NULL;
8358 		error = EINVAL;
8359 	}
8360 	error = 0;
8361 done:
8362 	/* We can proceed with loading the firmware. */
8363 	return error;
8364 }
8365 
8366 static int
8367 iwn_clock_wait(struct iwn_softc *sc)
8368 {
8369 	int ntries;
8370 
8371 	/* Set "initialization complete" bit. */
8372 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8373 
8374 	/* Wait for clock stabilization. */
8375 	for (ntries = 0; ntries < 2500; ntries++) {
8376 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
8377 			return 0;
8378 		DELAY(10);
8379 	}
8380 	device_printf(sc->sc_dev,
8381 	    "%s: timeout waiting for clock stabilization\n", __func__);
8382 	return ETIMEDOUT;
8383 }
8384 
8385 static int
8386 iwn_apm_init(struct iwn_softc *sc)
8387 {
8388 	uint32_t reg;
8389 	int error;
8390 
8391 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8392 
8393 	/* Disable L0s exit timer (NMI bug workaround). */
8394 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
8395 	/* Don't wait for ICH L0s (ICH bug workaround). */
8396 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
8397 
8398 	/* Set FH wait threshold to max (HW bug under stress workaround). */
8399 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
8400 
8401 	/* Enable HAP INTA to move adapter from L1a to L0s. */
8402 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
8403 
8404 	/* Retrieve PCIe Active State Power Management (ASPM). */
8405 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
8406 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
8407 	if (reg & 0x02)	/* L1 Entry enabled. */
8408 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8409 	else
8410 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8411 
8412 	if (sc->base_params->pll_cfg_val)
8413 		IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val);
8414 
8415 	/* Wait for clock stabilization before accessing prph. */
8416 	if ((error = iwn_clock_wait(sc)) != 0)
8417 		return error;
8418 
8419 	if ((error = iwn_nic_lock(sc)) != 0)
8420 		return error;
8421 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
8422 		/* Enable DMA and BSM (Bootstrap State Machine). */
8423 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8424 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
8425 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
8426 	} else {
8427 		/* Enable DMA. */
8428 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8429 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8430 	}
8431 	DELAY(20);
8432 	/* Disable L1-Active. */
8433 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
8434 	iwn_nic_unlock(sc);
8435 
8436 	return 0;
8437 }
8438 
8439 static void
8440 iwn_apm_stop_master(struct iwn_softc *sc)
8441 {
8442 	int ntries;
8443 
8444 	/* Stop busmaster DMA activity. */
8445 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
8446 	for (ntries = 0; ntries < 100; ntries++) {
8447 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
8448 			return;
8449 		DELAY(10);
8450 	}
8451 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
8452 }
8453 
8454 static void
8455 iwn_apm_stop(struct iwn_softc *sc)
8456 {
8457 	iwn_apm_stop_master(sc);
8458 
8459 	/* Reset the entire device. */
8460 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
8461 	DELAY(10);
8462 	/* Clear "initialization complete" bit. */
8463 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8464 }
8465 
8466 static int
8467 iwn4965_nic_config(struct iwn_softc *sc)
8468 {
8469 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8470 
8471 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
8472 		/*
8473 		 * I don't believe this to be correct but this is what the
8474 		 * vendor driver is doing. Probably the bits should not be
8475 		 * shifted in IWN_RFCFG_*.
8476 		 */
8477 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8478 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8479 		    IWN_RFCFG_STEP(sc->rfcfg) |
8480 		    IWN_RFCFG_DASH(sc->rfcfg));
8481 	}
8482 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8483 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8484 	return 0;
8485 }
8486 
8487 static int
8488 iwn5000_nic_config(struct iwn_softc *sc)
8489 {
8490 	uint32_t tmp;
8491 	int error;
8492 
8493 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8494 
8495 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
8496 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8497 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8498 		    IWN_RFCFG_STEP(sc->rfcfg) |
8499 		    IWN_RFCFG_DASH(sc->rfcfg));
8500 	}
8501 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8502 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8503 
8504 	if ((error = iwn_nic_lock(sc)) != 0)
8505 		return error;
8506 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
8507 
8508 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
8509 		/*
8510 		 * Select first Switching Voltage Regulator (1.32V) to
8511 		 * solve a stability issue related to noisy DC2DC line
8512 		 * in the silicon of 1000 Series.
8513 		 */
8514 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
8515 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
8516 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
8517 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
8518 	}
8519 	iwn_nic_unlock(sc);
8520 
8521 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
8522 		/* Use internal power amplifier only. */
8523 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
8524 	}
8525 	if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) {
8526 		/* Indicate that ROM calibration version is >=6. */
8527 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
8528 	}
8529 	if (sc->base_params->additional_gp_drv_bit)
8530 		IWN_SETBITS(sc, IWN_GP_DRIVER,
8531 		    sc->base_params->additional_gp_drv_bit);
8532 	return 0;
8533 }
8534 
8535 /*
8536  * Take NIC ownership over Intel Active Management Technology (AMT).
8537  */
8538 static int
8539 iwn_hw_prepare(struct iwn_softc *sc)
8540 {
8541 	int ntries;
8542 
8543 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8544 
8545 	/* Check if hardware is ready. */
8546 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8547 	for (ntries = 0; ntries < 5; ntries++) {
8548 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8549 		    IWN_HW_IF_CONFIG_NIC_READY)
8550 			return 0;
8551 		DELAY(10);
8552 	}
8553 
8554 	/* Hardware not ready, force into ready state. */
8555 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
8556 	for (ntries = 0; ntries < 15000; ntries++) {
8557 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
8558 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
8559 			break;
8560 		DELAY(10);
8561 	}
8562 	if (ntries == 15000)
8563 		return ETIMEDOUT;
8564 
8565 	/* Hardware should be ready now. */
8566 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8567 	for (ntries = 0; ntries < 5; ntries++) {
8568 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8569 		    IWN_HW_IF_CONFIG_NIC_READY)
8570 			return 0;
8571 		DELAY(10);
8572 	}
8573 	return ETIMEDOUT;
8574 }
8575 
8576 static int
8577 iwn_hw_init(struct iwn_softc *sc)
8578 {
8579 	struct iwn_ops *ops = &sc->ops;
8580 	int error, chnl, qid;
8581 
8582 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8583 
8584 	/* Clear pending interrupts. */
8585 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8586 
8587 	if ((error = iwn_apm_init(sc)) != 0) {
8588 		device_printf(sc->sc_dev,
8589 		    "%s: could not power ON adapter, error %d\n", __func__,
8590 		    error);
8591 		return error;
8592 	}
8593 
8594 	/* Select VMAIN power source. */
8595 	if ((error = iwn_nic_lock(sc)) != 0)
8596 		return error;
8597 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
8598 	iwn_nic_unlock(sc);
8599 
8600 	/* Perform adapter-specific initialization. */
8601 	if ((error = ops->nic_config(sc)) != 0)
8602 		return error;
8603 
8604 	/* Initialize RX ring. */
8605 	if ((error = iwn_nic_lock(sc)) != 0)
8606 		return error;
8607 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
8608 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
8609 	/* Set physical address of RX ring (256-byte aligned). */
8610 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
8611 	/* Set physical address of RX status (16-byte aligned). */
8612 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
8613 	/* Enable RX. */
8614 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
8615 	    IWN_FH_RX_CONFIG_ENA           |
8616 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
8617 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
8618 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
8619 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
8620 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
8621 	iwn_nic_unlock(sc);
8622 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
8623 
8624 	if ((error = iwn_nic_lock(sc)) != 0)
8625 		return error;
8626 
8627 	/* Initialize TX scheduler. */
8628 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8629 
8630 	/* Set physical address of "keep warm" page (16-byte aligned). */
8631 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
8632 
8633 	/* Initialize TX rings. */
8634 	for (qid = 0; qid < sc->ntxqs; qid++) {
8635 		struct iwn_tx_ring *txq = &sc->txq[qid];
8636 
8637 		/* Set physical address of TX ring (256-byte aligned). */
8638 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
8639 		    txq->desc_dma.paddr >> 8);
8640 	}
8641 	iwn_nic_unlock(sc);
8642 
8643 	/* Enable DMA channels. */
8644 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8645 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
8646 		    IWN_FH_TX_CONFIG_DMA_ENA |
8647 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
8648 	}
8649 
8650 	/* Clear "radio off" and "commands blocked" bits. */
8651 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8652 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
8653 
8654 	/* Clear pending interrupts. */
8655 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8656 	/* Enable interrupt coalescing. */
8657 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
8658 	/* Enable interrupts. */
8659 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8660 
8661 	/* _Really_ make sure "radio off" bit is cleared! */
8662 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8663 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8664 
8665 	/* Enable shadow registers. */
8666 	if (sc->base_params->shadow_reg_enable)
8667 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
8668 
8669 	if ((error = ops->load_firmware(sc)) != 0) {
8670 		device_printf(sc->sc_dev,
8671 		    "%s: could not load firmware, error %d\n", __func__,
8672 		    error);
8673 		return error;
8674 	}
8675 	/* Wait at most one second for firmware alive notification. */
8676 	if ((error = iwn_sleep(sc, sc, PCATCH, "iwninit", hz)) != 0) {
8677 		device_printf(sc->sc_dev,
8678 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8679 		    __func__, error);
8680 		return error;
8681 	}
8682 	/* Do post-firmware initialization. */
8683 
8684 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8685 
8686 	return ops->post_alive(sc);
8687 }
8688 
8689 static void
8690 iwn_hw_stop(struct iwn_softc *sc)
8691 {
8692 	int chnl, qid, ntries;
8693 
8694 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8695 
8696 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
8697 
8698 	/* Disable interrupts. */
8699 	IWN_WRITE(sc, IWN_INT_MASK, 0);
8700 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8701 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
8702 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8703 
8704 	/* Make sure we no longer hold the NIC lock. */
8705 	iwn_nic_unlock(sc);
8706 
8707 	/* Stop TX scheduler. */
8708 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8709 
8710 	/* Stop all DMA channels. */
8711 	if (iwn_nic_lock(sc) == 0) {
8712 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8713 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
8714 			for (ntries = 0; ntries < 200; ntries++) {
8715 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
8716 				    IWN_FH_TX_STATUS_IDLE(chnl))
8717 					break;
8718 				DELAY(10);
8719 			}
8720 		}
8721 		iwn_nic_unlock(sc);
8722 	}
8723 
8724 	/* Stop RX ring. */
8725 	iwn_reset_rx_ring(sc, &sc->rxq);
8726 
8727 	/* Reset all TX rings. */
8728 	for (qid = 0; qid < sc->ntxqs; qid++)
8729 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
8730 
8731 	if (iwn_nic_lock(sc) == 0) {
8732 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
8733 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8734 		iwn_nic_unlock(sc);
8735 	}
8736 	DELAY(5);
8737 	/* Power OFF adapter. */
8738 	iwn_apm_stop(sc);
8739 }
8740 
8741 static void
8742 iwn_radio_on(void *arg0, int pending)
8743 {
8744 	struct iwn_softc *sc = arg0;
8745 	struct ifnet *ifp = sc->sc_ifp;
8746 	struct ieee80211com *ic = ifp->if_l2com;
8747 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8748 
8749 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8750 
8751 	if (vap != NULL) {
8752 		iwn_init(sc);
8753 		ieee80211_init(vap);
8754 	}
8755 }
8756 
8757 static void
8758 iwn_radio_off(void *arg0, int pending)
8759 {
8760 	struct iwn_softc *sc = arg0;
8761 	struct ifnet *ifp = sc->sc_ifp;
8762 	struct ieee80211com *ic = ifp->if_l2com;
8763 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8764 
8765 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8766 
8767 	iwn_stop(sc);
8768 	if (vap != NULL)
8769 		ieee80211_stop(vap);
8770 
8771 	/* Enable interrupts to get RF toggle notification. */
8772 	IWN_LOCK(sc);
8773 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8774 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8775 	IWN_UNLOCK(sc);
8776 }
8777 
8778 static void
8779 iwn_panicked(void *arg0, int pending)
8780 {
8781 	struct iwn_softc *sc = arg0;
8782 	struct ifnet *ifp = sc->sc_ifp;
8783 	struct ieee80211com *ic = ifp->if_l2com;
8784 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8785 	int error;
8786 
8787 	if (vap == NULL) {
8788 		kprintf("%s: null vap\n", __func__);
8789 		return;
8790 	}
8791 
8792 	device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
8793 	    "resetting...\n", __func__, vap->iv_state);
8794 
8795 	IWN_LOCK(sc);
8796 
8797 	iwn_stop_locked(sc);
8798 	iwn_init_locked(sc);
8799 	if (vap->iv_state >= IEEE80211_S_AUTH &&
8800 	    (error = iwn_auth(sc, vap)) != 0) {
8801 		device_printf(sc->sc_dev,
8802 		    "%s: could not move to auth state\n", __func__);
8803 	}
8804 	if (vap->iv_state >= IEEE80211_S_RUN &&
8805 	    (error = iwn_run(sc, vap)) != 0) {
8806 		device_printf(sc->sc_dev,
8807 		    "%s: could not move to run state\n", __func__);
8808 	}
8809 
8810 	/* Only run start once the NIC is in a useful state, like associated */
8811 	iwn_start_locked(sc->sc_ifp);
8812 
8813 	IWN_UNLOCK(sc);
8814 }
8815 
8816 static void
8817 iwn_init_locked(struct iwn_softc *sc)
8818 {
8819 	struct ifnet *ifp = sc->sc_ifp;
8820 	int error;
8821 
8822 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8823 
8824 	IWN_LOCK_ASSERT(sc);
8825 
8826 	if ((error = iwn_hw_prepare(sc)) != 0) {
8827 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
8828 		    __func__, error);
8829 		goto fail;
8830 	}
8831 
8832 	/* Initialize interrupt mask to default value. */
8833 	sc->int_mask = IWN_INT_MASK_DEF;
8834 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8835 
8836 	/* Check that the radio is not disabled by hardware switch. */
8837 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
8838 		device_printf(sc->sc_dev,
8839 		    "radio is disabled by hardware switch\n");
8840 		/* Enable interrupts to get RF toggle notifications. */
8841 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
8842 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8843 		return;
8844 	}
8845 
8846 	/* Read firmware images from the filesystem. */
8847 	if ((error = iwn_read_firmware(sc)) != 0) {
8848 		device_printf(sc->sc_dev,
8849 		    "%s: could not read firmware, error %d\n", __func__,
8850 		    error);
8851 		goto fail;
8852 	}
8853 
8854 	/* Initialize hardware and upload firmware. */
8855 	error = iwn_hw_init(sc);
8856 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8857 	sc->fw_fp = NULL;
8858 	if (error != 0) {
8859 		device_printf(sc->sc_dev,
8860 		    "%s: could not initialize hardware, error %d\n", __func__,
8861 		    error);
8862 		goto fail;
8863 	}
8864 
8865 	/* Configure adapter now that it is ready. */
8866 	if ((error = iwn_config(sc)) != 0) {
8867 		device_printf(sc->sc_dev,
8868 		    "%s: could not configure device, error %d\n", __func__,
8869 		    error);
8870 		goto fail;
8871 	}
8872 
8873 #if defined(__DragonFly__)
8874         ifq_clr_oactive(&ifp->if_snd);
8875 	ifp->if_flags |= IFF_RUNNING;
8876 #else
8877 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
8878 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
8879 #endif
8880 
8881 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
8882 
8883 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8884 
8885 	return;
8886 
8887 fail:	iwn_stop_locked(sc);
8888 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
8889 }
8890 
8891 static void
8892 iwn_init(void *arg)
8893 {
8894 	struct iwn_softc *sc = arg;
8895 	struct ifnet *ifp = sc->sc_ifp;
8896 	struct ieee80211com *ic = ifp->if_l2com;
8897 
8898 	IWN_LOCK(sc);
8899 	iwn_init_locked(sc);
8900 	IWN_UNLOCK(sc);
8901 
8902 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
8903 		ieee80211_start_all(ic);
8904 }
8905 
8906 static void
8907 iwn_stop_locked(struct iwn_softc *sc)
8908 {
8909 	struct ifnet *ifp = sc->sc_ifp;
8910 
8911 	IWN_LOCK_ASSERT(sc);
8912 
8913 	sc->sc_is_scanning = 0;
8914 	sc->sc_tx_timer = 0;
8915 #if defined(__DragonFly__)
8916 	callout_stop_sync(&sc->watchdog_to);
8917 	callout_stop_sync(&sc->calib_to);
8918         ifq_clr_oactive(&ifp->if_snd);
8919 	ifp->if_flags &= ~IFF_RUNNING;
8920 #else
8921 	callout_stop(&sc->watchdog_to);
8922 	callout_stop(&sc->calib_to);
8923 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
8924 #endif
8925 
8926 	/* Power OFF hardware. */
8927 	iwn_hw_stop(sc);
8928 }
8929 
8930 static void
8931 iwn_stop(struct iwn_softc *sc)
8932 {
8933 	IWN_LOCK(sc);
8934 	iwn_stop_locked(sc);
8935 	IWN_UNLOCK(sc);
8936 }
8937 
8938 /*
8939  * Callback from net80211 to start a scan.
8940  */
8941 static void
8942 iwn_scan_start(struct ieee80211com *ic)
8943 {
8944 	struct ifnet *ifp = ic->ic_ifp;
8945 	struct iwn_softc *sc = ifp->if_softc;
8946 
8947 	IWN_LOCK(sc);
8948 	/* make the link LED blink while we're scanning */
8949 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
8950 	IWN_UNLOCK(sc);
8951 }
8952 
8953 /*
8954  * Callback from net80211 to terminate a scan.
8955  */
8956 static void
8957 iwn_scan_end(struct ieee80211com *ic)
8958 {
8959 	struct ifnet *ifp = ic->ic_ifp;
8960 	struct iwn_softc *sc = ifp->if_softc;
8961 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8962 
8963 	IWN_LOCK(sc);
8964 	if (vap->iv_state == IEEE80211_S_RUN) {
8965 		/* Set link LED to ON status if we are associated */
8966 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
8967 	}
8968 	IWN_UNLOCK(sc);
8969 }
8970 
8971 /*
8972  * Callback from net80211 to force a channel change.
8973  */
8974 static void
8975 iwn_set_channel(struct ieee80211com *ic)
8976 {
8977 	const struct ieee80211_channel *c = ic->ic_curchan;
8978 	struct ifnet *ifp = ic->ic_ifp;
8979 	struct iwn_softc *sc = ifp->if_softc;
8980 	int error;
8981 
8982 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8983 
8984 	IWN_LOCK(sc);
8985 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
8986 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
8987 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
8988 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
8989 
8990 	/*
8991 	 * Only need to set the channel in Monitor mode. AP scanning and auth
8992 	 * are already taken care of by their respective firmware commands.
8993 	 */
8994 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
8995 		error = iwn_config(sc);
8996 		if (error != 0)
8997 		device_printf(sc->sc_dev,
8998 		    "%s: error %d settting channel\n", __func__, error);
8999 	}
9000 	IWN_UNLOCK(sc);
9001 }
9002 
9003 /*
9004  * Callback from net80211 to start scanning of the current channel.
9005  */
9006 static void
9007 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
9008 {
9009 	struct ieee80211vap *vap = ss->ss_vap;
9010 	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
9011 	struct ieee80211com *ic = vap->iv_ic;
9012 	int error;
9013 
9014 	IWN_LOCK(sc);
9015 	error = iwn_scan(sc, vap, ss, ic->ic_curchan);
9016 	IWN_UNLOCK(sc);
9017 	if (error != 0)
9018 		ieee80211_cancel_scan(vap);
9019 }
9020 
9021 /*
9022  * Callback from net80211 to handle the minimum dwell time being met.
9023  * The intent is to terminate the scan but we just let the firmware
9024  * notify us when it's finished as we have no safe way to abort it.
9025  */
9026 static void
9027 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
9028 {
9029 	/* NB: don't try to abort scan; wait for firmware to finish */
9030 }
9031 
9032 static void
9033 iwn_hw_reset(void *arg0, int pending)
9034 {
9035 	struct iwn_softc *sc = arg0;
9036 	struct ifnet *ifp = sc->sc_ifp;
9037 	struct ieee80211com *ic = ifp->if_l2com;
9038 
9039 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
9040 
9041 	iwn_stop(sc);
9042 	iwn_init(sc);
9043 	ieee80211_notify_radio(ic, 1);
9044 }
9045 #ifdef	IWN_DEBUG
9046 #define	IWN_DESC(x) case x:	return #x
9047 #define	COUNTOF(array) (sizeof(array) / sizeof(array[0]))
9048 
9049 /*
9050  * Translate CSR code to string
9051  */
9052 static char *iwn_get_csr_string(int csr)
9053 {
9054 	switch (csr) {
9055 		IWN_DESC(IWN_HW_IF_CONFIG);
9056 		IWN_DESC(IWN_INT_COALESCING);
9057 		IWN_DESC(IWN_INT);
9058 		IWN_DESC(IWN_INT_MASK);
9059 		IWN_DESC(IWN_FH_INT);
9060 		IWN_DESC(IWN_GPIO_IN);
9061 		IWN_DESC(IWN_RESET);
9062 		IWN_DESC(IWN_GP_CNTRL);
9063 		IWN_DESC(IWN_HW_REV);
9064 		IWN_DESC(IWN_EEPROM);
9065 		IWN_DESC(IWN_EEPROM_GP);
9066 		IWN_DESC(IWN_OTP_GP);
9067 		IWN_DESC(IWN_GIO);
9068 		IWN_DESC(IWN_GP_UCODE);
9069 		IWN_DESC(IWN_GP_DRIVER);
9070 		IWN_DESC(IWN_UCODE_GP1);
9071 		IWN_DESC(IWN_UCODE_GP2);
9072 		IWN_DESC(IWN_LED);
9073 		IWN_DESC(IWN_DRAM_INT_TBL);
9074 		IWN_DESC(IWN_GIO_CHICKEN);
9075 		IWN_DESC(IWN_ANA_PLL);
9076 		IWN_DESC(IWN_HW_REV_WA);
9077 		IWN_DESC(IWN_DBG_HPET_MEM);
9078 	default:
9079 		return "UNKNOWN CSR";
9080 	}
9081 }
9082 
9083 /*
9084  * This function print firmware register
9085  */
9086 static void
9087 iwn_debug_register(struct iwn_softc *sc)
9088 {
9089 	int i;
9090 	static const uint32_t csr_tbl[] = {
9091 		IWN_HW_IF_CONFIG,
9092 		IWN_INT_COALESCING,
9093 		IWN_INT,
9094 		IWN_INT_MASK,
9095 		IWN_FH_INT,
9096 		IWN_GPIO_IN,
9097 		IWN_RESET,
9098 		IWN_GP_CNTRL,
9099 		IWN_HW_REV,
9100 		IWN_EEPROM,
9101 		IWN_EEPROM_GP,
9102 		IWN_OTP_GP,
9103 		IWN_GIO,
9104 		IWN_GP_UCODE,
9105 		IWN_GP_DRIVER,
9106 		IWN_UCODE_GP1,
9107 		IWN_UCODE_GP2,
9108 		IWN_LED,
9109 		IWN_DRAM_INT_TBL,
9110 		IWN_GIO_CHICKEN,
9111 		IWN_ANA_PLL,
9112 		IWN_HW_REV_WA,
9113 		IWN_DBG_HPET_MEM,
9114 	};
9115 	DPRINTF(sc, IWN_DEBUG_REGISTER,
9116 	    "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s",
9117 	    "\n");
9118 	for (i = 0; i <  COUNTOF(csr_tbl); i++){
9119 		DPRINTF(sc, IWN_DEBUG_REGISTER,"  %10s: 0x%08x ",
9120 			iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i]));
9121 		if ((i+1) % 3 == 0)
9122 			DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9123 	}
9124 	DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9125 }
9126 #endif
9127 
9128 #if defined(__DragonFly__)
9129 
9130 static int
9131 iwn_sleep(struct iwn_softc *sc, void *wchan,
9132 	  int flags, const char *wmsg, int timo)
9133 {
9134 	int iws;
9135 	int error;
9136 
9137 	iws = wlan_is_serialized();
9138 	if (iws)
9139 		wlan_serialize_exit();
9140 	error = lksleep(wchan, &sc->sc_mtx, flags, wmsg, timo);
9141 	if (iws)
9142 		wlan_serialize_enter();
9143 
9144 	return error;
9145 }
9146 
9147 #else
9148 
9149 static int
9150 iwn_sleep(struct iwn_softc *sc, void *wchan,
9151 	  int flags, const char *wmsg, int timo)
9152 {
9153 	int error;
9154 
9155 	error = lksleep(wchan, &sc->sc_mtx, flags, wmsg, timo);
9156 
9157 	return error;
9158 }
9159 
9160 #endif
9161