xref: /dragonfly/sys/dev/netif/iwn/if_iwn.c (revision 7eedf208)
1 /*-
2  * Copyright (c) 2007-2009
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  * Copyright (c) 2008
5  *	Benjamin Close <benjsc@FreeBSD.org>
6  * Copyright (c) 2008 Sam Leffler, Errno Consulting
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
23  * adapters.
24  */
25 
26 /* $FreeBSD$ */
27 
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/bus.h>
37 #include <sys/rman.h>
38 #include <sys/endian.h>
39 #include <sys/firmware.h>
40 #include <sys/limits.h>
41 #include <sys/module.h>
42 #include <sys/queue.h>
43 #include <sys/taskqueue.h>
44 #include <sys/libkern.h>
45 
46 #include <sys/bus.h>
47 #include <sys/resource.h>
48 #include <machine/clock.h>
49 
50 #include <bus/pci/pcireg.h>
51 #include <bus/pci/pcivar.h>
52 
53 #include <net/bpf.h>
54 #include <net/if.h>
55 #include <net/if_arp.h>
56 #include <net/ifq_var.h>
57 #include <net/ethernet.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_types.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/if_ether.h>
66 #include <netinet/ip.h>
67 
68 #include <netproto/802_11/ieee80211_var.h>
69 #include <netproto/802_11/ieee80211_radiotap.h>
70 #include <netproto/802_11/ieee80211_regdomain.h>
71 #include <netproto/802_11/ieee80211_ratectl.h>
72 
73 #include "if_iwnreg.h"
74 #include "if_iwnvar.h"
75 
76 static int	iwn_pci_probe(device_t);
77 static int	iwn_pci_attach(device_t);
78 static const struct iwn_hal *iwn_hal_attach(struct iwn_softc *);
79 static void	iwn_radiotap_attach(struct iwn_softc *);
80 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
81 		    const char name[IFNAMSIZ], int unit, int opmode,
82 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
83 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
84 static void	iwn_vap_delete(struct ieee80211vap *);
85 static int	iwn_cleanup(device_t);
86 static int	iwn_pci_detach(device_t);
87 static int	iwn_nic_lock(struct iwn_softc *);
88 static int	iwn_eeprom_lock(struct iwn_softc *);
89 static int	iwn_init_otprom(struct iwn_softc *);
90 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
91 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
92 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
93 		    void **, bus_size_t, bus_size_t, int);
94 static void	iwn_dma_contig_free(struct iwn_dma_info *);
95 static int	iwn_alloc_sched(struct iwn_softc *);
96 static void	iwn_free_sched(struct iwn_softc *);
97 static int	iwn_alloc_kw(struct iwn_softc *);
98 static void	iwn_free_kw(struct iwn_softc *);
99 static int	iwn_alloc_ict(struct iwn_softc *);
100 static void	iwn_free_ict(struct iwn_softc *);
101 static int	iwn_alloc_fwmem(struct iwn_softc *);
102 static void	iwn_free_fwmem(struct iwn_softc *);
103 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
104 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
105 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
106 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
107 		    int);
108 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
109 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
110 static void	iwn5000_ict_reset(struct iwn_softc *);
111 static int	iwn_read_eeprom(struct iwn_softc *,
112 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
113 static void	iwn4965_read_eeprom(struct iwn_softc *);
114 static void	iwn4965_print_power_group(struct iwn_softc *, int);
115 static void	iwn5000_read_eeprom(struct iwn_softc *);
116 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
117 static void	iwn_read_eeprom_band(struct iwn_softc *, int);
118 #if 0	/* HT */
119 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int);
120 #endif
121 static void	iwn_read_eeprom_channels(struct iwn_softc *, int,
122 		    uint32_t);
123 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
124 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
125 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
126 static void	iwn_newassoc(struct ieee80211_node *, int);
127 static int	iwn_media_change(struct ifnet *);
128 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
129 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
130 		    struct iwn_rx_data *);
131 static void	iwn_timer_callout(void *);
132 static void	iwn_calib_reset(struct iwn_softc *);
133 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
134 		    struct iwn_rx_data *);
135 #if 0	/* HT */
136 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
137 		    struct iwn_rx_data *);
138 #endif
139 static void	iwn5000_rx_calib_results(struct iwn_softc *,
140 		    struct iwn_rx_desc *, struct iwn_rx_data *);
141 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
142 		    struct iwn_rx_data *);
143 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
144 		    struct iwn_rx_data *);
145 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
146 		    struct iwn_rx_data *);
147 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
148 		    uint8_t);
149 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
150 static void	iwn_notif_intr(struct iwn_softc *);
151 static void	iwn_wakeup_intr(struct iwn_softc *);
152 static void	iwn_rftoggle_intr(struct iwn_softc *);
153 static void	iwn_fatal_intr(struct iwn_softc *);
154 static void	iwn_intr(void *);
155 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
156 		    uint16_t);
157 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
158 		    uint16_t);
159 #ifdef notyet
160 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
161 #endif
162 static uint8_t	iwn_plcp_signal(int);
163 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
164 		    struct ieee80211_node *, struct iwn_tx_ring *);
165 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
166 		    const struct ieee80211_bpf_params *);
167 static void	iwn_start(struct ifnet *);
168 static void	iwn_start_locked(struct ifnet *);
169 static void	iwn_watchdog(struct iwn_softc *sc);
170 static int	iwn_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
171 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
172 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
173 		    int);
174 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
175 		    int);
176 static int	iwn_set_link_quality(struct iwn_softc *, uint8_t, int);
177 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
178 static int	iwn_wme_update(struct ieee80211com *);
179 static void	iwn_update_mcast(struct ifnet *);
180 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
181 static int	iwn_set_critical_temp(struct iwn_softc *);
182 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
183 static void	iwn4965_power_calibration(struct iwn_softc *, int);
184 static int	iwn4965_set_txpower(struct iwn_softc *,
185 		    struct ieee80211_channel *, int);
186 static int	iwn5000_set_txpower(struct iwn_softc *,
187 		    struct ieee80211_channel *, int);
188 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
189 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
190 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
191 static int	iwn4965_get_temperature(struct iwn_softc *);
192 static int	iwn5000_get_temperature(struct iwn_softc *);
193 static int	iwn_init_sensitivity(struct iwn_softc *);
194 static void	iwn_collect_noise(struct iwn_softc *,
195 		    const struct iwn_rx_general_stats *);
196 static int	iwn4965_init_gains(struct iwn_softc *);
197 static int	iwn5000_init_gains(struct iwn_softc *);
198 static int	iwn4965_set_gains(struct iwn_softc *);
199 static int	iwn5000_set_gains(struct iwn_softc *);
200 static void	iwn_tune_sensitivity(struct iwn_softc *,
201 		    const struct iwn_rx_stats *);
202 static int	iwn_send_sensitivity(struct iwn_softc *);
203 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
204 static int	iwn_config(struct iwn_softc *);
205 static int	iwn_scan(struct iwn_softc *);
206 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
207 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
208 #if 0	/* HT */
209 static int	iwn_ampdu_rx_start(struct ieee80211com *,
210 		    struct ieee80211_node *, uint8_t);
211 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
212 		    struct ieee80211_node *, uint8_t);
213 static int	iwn_ampdu_tx_start(struct ieee80211com *,
214 		    struct ieee80211_node *, uint8_t);
215 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
216 		    struct ieee80211_node *, uint8_t);
217 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
218 		    struct ieee80211_node *, uint8_t, uint16_t);
219 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, uint8_t, uint16_t);
220 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
221 		    struct ieee80211_node *, uint8_t, uint16_t);
222 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, uint8_t, uint16_t);
223 #endif
224 static int	iwn5000_query_calibration(struct iwn_softc *);
225 static int	iwn5000_send_calibration(struct iwn_softc *);
226 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
227 static int	iwn4965_post_alive(struct iwn_softc *);
228 static int	iwn5000_post_alive(struct iwn_softc *);
229 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
230 		    int);
231 static int	iwn4965_load_firmware(struct iwn_softc *);
232 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
233 		    const uint8_t *, int);
234 static int	iwn5000_load_firmware(struct iwn_softc *);
235 static int	iwn_read_firmware(struct iwn_softc *);
236 static int	iwn_clock_wait(struct iwn_softc *);
237 static int	iwn_apm_init(struct iwn_softc *);
238 static void	iwn_apm_stop_master(struct iwn_softc *);
239 static void	iwn_apm_stop(struct iwn_softc *);
240 static int	iwn4965_nic_config(struct iwn_softc *);
241 static int	iwn5000_nic_config(struct iwn_softc *);
242 static int	iwn_hw_prepare(struct iwn_softc *);
243 static int	iwn_hw_init(struct iwn_softc *);
244 static void	iwn_hw_stop(struct iwn_softc *);
245 static void	iwn_init_locked(struct iwn_softc *);
246 static void	iwn_init(void *);
247 static void	iwn_stop_locked(struct iwn_softc *);
248 static void	iwn_stop(struct iwn_softc *);
249 static void 	iwn_scan_start(struct ieee80211com *);
250 static void 	iwn_scan_end(struct ieee80211com *);
251 static void 	iwn_set_channel(struct ieee80211com *);
252 static void 	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
253 static void 	iwn_scan_mindwell(struct ieee80211_scan_state *);
254 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
255 		    struct ieee80211_channel *);
256 static int	iwn_setregdomain(struct ieee80211com *,
257 		    struct ieee80211_regdomain *, int,
258 		    struct ieee80211_channel []);
259 static void	iwn_hw_reset_task(void *, int);
260 static void	iwn_radio_on_task(void *, int);
261 static void	iwn_radio_off_task(void *, int);
262 static void	iwn_sysctlattach(struct iwn_softc *);
263 static int	iwn_pci_shutdown(device_t);
264 static int	iwn_pci_suspend(device_t);
265 static int	iwn_pci_resume(device_t);
266 
267 #define IWN_DEBUG
268 #ifdef IWN_DEBUG
269 enum {
270 	IWN_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
271 	IWN_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
272 	IWN_DEBUG_STATE		= 0x00000004,	/* 802.11 state transitions */
273 	IWN_DEBUG_TXPOW		= 0x00000008,	/* tx power processing */
274 	IWN_DEBUG_RESET		= 0x00000010,	/* reset processing */
275 	IWN_DEBUG_OPS		= 0x00000020,	/* iwn_ops processing */
276 	IWN_DEBUG_BEACON 	= 0x00000040,	/* beacon handling */
277 	IWN_DEBUG_WATCHDOG 	= 0x00000080,	/* watchdog timeout */
278 	IWN_DEBUG_INTR		= 0x00000100,	/* ISR */
279 	IWN_DEBUG_CALIBRATE	= 0x00000200,	/* periodic calibration */
280 	IWN_DEBUG_NODE		= 0x00000400,	/* node management */
281 	IWN_DEBUG_LED		= 0x00000800,	/* led management */
282 	IWN_DEBUG_CMD		= 0x00001000,	/* cmd submission */
283 	IWN_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
284 	IWN_DEBUG_ANY		= 0xffffffff
285 };
286 
287 #define DPRINTF(sc, m, fmt, ...) do {			\
288 	if (sc->sc_debug & (m))				\
289 		kprintf(fmt, __VA_ARGS__);		\
290 } while (0)
291 
292 static const char *iwn_intr_str(uint8_t);
293 #else
294 #define DPRINTF(sc, m, fmt, ...) do { (void) sc; } while (0)
295 #endif
296 
297 struct iwn_ident {
298 	uint16_t	vendor;
299 	uint16_t	device;
300 	const char	*name;
301 };
302 
303 static const struct iwn_ident iwn_ident_table [] = {
304 	{ 0x8086, 0x4229, "Intel(R) PRO/Wireless 4965BGN" },
305 	{ 0x8086, 0x422D, "Intel(R) PRO/Wireless 4965BGN" },
306 	{ 0x8086, 0x4230, "Intel(R) PRO/Wireless 4965BGN" },
307 	{ 0x8086, 0x4233, "Intel(R) PRO/Wireless 4965BGN" },
308 	{ 0x8086, 0x4232, "Intel(R) PRO/Wireless 5100" },
309 	{ 0x8086, 0x4237, "Intel(R) PRO/Wireless 5100" },
310 	{ 0x8086, 0x423C, "Intel(R) PRO/Wireless 5150" },
311 	{ 0x8086, 0x423D, "Intel(R) PRO/Wireless 5150" },
312 	{ 0x8086, 0x4235, "Intel(R) PRO/Wireless 5300" },
313 	{ 0x8086, 0x4236, "Intel(R) PRO/Wireless 5300" },
314 	{ 0x8086, 0x423A, "Intel(R) PRO/Wireless 5350" },
315 	{ 0x8086, 0x423B, "Intel(R) PRO/Wireless 5350" },
316 	{ 0x8086, 0x0083, "Intel(R) PRO/Wireless 1000" },
317 	{ 0x8086, 0x0084, "Intel(R) PRO/Wireless 1000" },
318 	{ 0x8086, 0x008D, "Intel(R) PRO/Wireless 6000" },
319 	{ 0x8086, 0x008E, "Intel(R) PRO/Wireless 6000" },
320 	{ 0x8086, 0x4238, "Intel(R) PRO/Wireless 6000" },
321 	{ 0x8086, 0x4239, "Intel(R) PRO/Wireless 6000" },
322 	{ 0x8086, 0x422B, "Intel(R) PRO/Wireless 6000" },
323 	{ 0x8086, 0x422C, "Intel(R) PRO/Wireless 6000" },
324 	{ 0x8086, 0x0086, "Intel(R) PRO/Wireless 6050" },
325 	{ 0x8086, 0x0087, "Intel(R) PRO/Wireless 6050" },
326 	{ 0, 0, NULL }
327 };
328 
329 static const struct iwn_hal iwn4965_hal = {
330 	iwn4965_load_firmware,
331 	iwn4965_read_eeprom,
332 	iwn4965_post_alive,
333 	iwn4965_nic_config,
334 	iwn4965_update_sched,
335 	iwn4965_get_temperature,
336 	iwn4965_get_rssi,
337 	iwn4965_set_txpower,
338 	iwn4965_init_gains,
339 	iwn4965_set_gains,
340 	iwn4965_add_node,
341 	iwn4965_tx_done,
342 #if 0	/* HT */
343 	iwn4965_ampdu_tx_start,
344 	iwn4965_ampdu_tx_stop,
345 #endif
346 	IWN4965_NTXQUEUES,
347 	IWN4965_NDMACHNLS,
348 	IWN4965_ID_BROADCAST,
349 	IWN4965_RXONSZ,
350 	IWN4965_SCHEDSZ,
351 	IWN4965_FW_TEXT_MAXSZ,
352 	IWN4965_FW_DATA_MAXSZ,
353 	IWN4965_FWSZ,
354 	IWN4965_SCHED_TXFACT
355 };
356 
357 static const struct iwn_hal iwn5000_hal = {
358 	iwn5000_load_firmware,
359 	iwn5000_read_eeprom,
360 	iwn5000_post_alive,
361 	iwn5000_nic_config,
362 	iwn5000_update_sched,
363 	iwn5000_get_temperature,
364 	iwn5000_get_rssi,
365 	iwn5000_set_txpower,
366 	iwn5000_init_gains,
367 	iwn5000_set_gains,
368 	iwn5000_add_node,
369 	iwn5000_tx_done,
370 #if 0	/* HT */
371 	iwn5000_ampdu_tx_start,
372 	iwn5000_ampdu_tx_stop,
373 #endif
374 	IWN5000_NTXQUEUES,
375 	IWN5000_NDMACHNLS,
376 	IWN5000_ID_BROADCAST,
377 	IWN5000_RXONSZ,
378 	IWN5000_SCHEDSZ,
379 	IWN5000_FW_TEXT_MAXSZ,
380 	IWN5000_FW_DATA_MAXSZ,
381 	IWN5000_FWSZ,
382 	IWN5000_SCHED_TXFACT
383 };
384 
385 static int
386 iwn_pci_probe(device_t dev)
387 {
388 	const struct iwn_ident *ident;
389 
390 	/* no wlan serializer needed */
391 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
392 		if (pci_get_vendor(dev) == ident->vendor &&
393 		    pci_get_device(dev) == ident->device) {
394 			device_set_desc(dev, ident->name);
395 			return 0;
396 		}
397 	}
398 	return ENXIO;
399 }
400 
401 static int
402 iwn_pci_attach(device_t dev)
403 {
404 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
405 	struct ieee80211com *ic;
406 	struct ifnet *ifp;
407 	const struct iwn_hal *hal;
408 	uint32_t tmp;
409 	int i, error;
410 #ifdef OLD_MSI
411 	int result;
412 #endif
413 	uint8_t macaddr[IEEE80211_ADDR_LEN];
414 
415 	wlan_serialize_enter();
416 
417 	sc->sc_dev = dev;
418 	sc->sc_dmat = NULL;
419 
420 	if (bus_dma_tag_create(sc->sc_dmat,
421 			1, 0,
422 			BUS_SPACE_MAXADDR_32BIT,
423 			BUS_SPACE_MAXADDR,
424 			NULL, NULL,
425 			BUS_SPACE_MAXSIZE,
426 			IWN_MAX_SCATTER,
427 			BUS_SPACE_MAXSIZE,
428 			BUS_DMA_ALLOCNOW,
429 			&sc->sc_dmat)) {
430 		device_printf(dev, "cannot allocate DMA tag\n");
431 		error = ENOMEM;
432 		goto fail;
433 	}
434 
435 
436 
437 	/* prepare sysctl tree for use in sub modules */
438 	sysctl_ctx_init(&sc->sc_sysctl_ctx);
439 	sc->sc_sysctl_tree = SYSCTL_ADD_NODE(&sc->sc_sysctl_ctx,
440 		SYSCTL_STATIC_CHILDREN(_hw),
441 		OID_AUTO,
442 		device_get_nameunit(sc->sc_dev),
443 		CTLFLAG_RD, 0, "");
444 
445 	/*
446 	 * Get the offset of the PCI Express Capability Structure in PCI
447 	 * Configuration Space.
448 	 */
449 	error = pci_find_extcap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
450 	if (error != 0) {
451 		device_printf(dev, "PCIe capability structure not found!\n");
452 		goto fail2;
453 	}
454 
455 	/* Clear device-specific "PCI retry timeout" register (41h). */
456 	pci_write_config(dev, 0x41, 0, 1);
457 
458 	/* Hardware bug workaround. */
459 	tmp = pci_read_config(dev, PCIR_COMMAND, 1);
460 	if (tmp & PCIM_CMD_INTxDIS) {
461 		DPRINTF(sc, IWN_DEBUG_RESET, "%s: PCIe INTx Disable set\n",
462 		    __func__);
463 		tmp &= ~PCIM_CMD_INTxDIS;
464 		pci_write_config(dev, PCIR_COMMAND, tmp, 1);
465 	}
466 
467 	/* Enable bus-mastering. */
468 	pci_enable_busmaster(dev);
469 
470 	sc->mem_rid = PCIR_BAR(0);
471 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
472 	    RF_ACTIVE);
473 	if (sc->mem == NULL ) {
474 		device_printf(dev, "could not allocate memory resources\n");
475 		error = ENOMEM;
476 		goto fail2;
477 	}
478 
479 	sc->sc_st = rman_get_bustag(sc->mem);
480 	sc->sc_sh = rman_get_bushandle(sc->mem);
481 	sc->irq_rid = 0;
482 #ifdef OLD_MSI
483 	if ((result = pci_msi_count(dev)) == 1 &&
484 	    pci_alloc_msi(dev, &result) == 0)
485 		sc->irq_rid = 1;
486 #endif
487 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
488 	    RF_ACTIVE | RF_SHAREABLE);
489 	if (sc->irq == NULL) {
490 		device_printf(dev, "could not allocate interrupt resource\n");
491 		error = ENOMEM;
492 		goto fail;
493 	}
494 
495 	callout_init(&sc->sc_timer_to);
496 	TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset_task, sc );
497 	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on_task, sc );
498 	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off_task, sc );
499 
500 	/* Attach Hardware Abstraction Layer. */
501 	hal = iwn_hal_attach(sc);
502 	if (hal == NULL) {
503 		error = ENXIO;	/* XXX: Wrong error code? */
504 		goto fail;
505 	}
506 
507 	error = iwn_hw_prepare(sc);
508 	if (error != 0) {
509 		device_printf(dev, "hardware not ready, error %d\n", error);
510 		goto fail;
511 	}
512 
513 	/* Allocate DMA memory for firmware transfers. */
514 	error = iwn_alloc_fwmem(sc);
515 	if (error != 0) {
516 		device_printf(dev,
517 		    "could not allocate memory for firmware, error %d\n",
518 		    error);
519 		goto fail;
520 	}
521 
522 	/* Allocate "Keep Warm" page. */
523 	error = iwn_alloc_kw(sc);
524 	if (error != 0) {
525 		device_printf(dev,
526 		    "could not allocate \"Keep Warm\" page, error %d\n", error);
527 		goto fail;
528 	}
529 
530 	/* Allocate ICT table for 5000 Series. */
531 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
532 	    (error = iwn_alloc_ict(sc)) != 0) {
533 		device_printf(dev,
534 		    "%s: could not allocate ICT table, error %d\n",
535 		    __func__, error);
536 		goto fail;
537 	}
538 
539 	/* Allocate TX scheduler "rings". */
540 	error = iwn_alloc_sched(sc);
541 	if (error != 0) {
542 		device_printf(dev,
543 		    "could not allocate TX scheduler rings, error %d\n",
544 		    error);
545 		goto fail;
546 	}
547 
548 	/* Allocate TX rings (16 on 4965AGN, 20 on 5000). */
549 	for (i = 0; i < hal->ntxqs; i++) {
550 		error = iwn_alloc_tx_ring(sc, &sc->txq[i], i);
551 		if (error != 0) {
552 			device_printf(dev,
553 			    "could not allocate Tx ring %d, error %d\n",
554 			    i, error);
555 			goto fail;
556 		}
557 	}
558 
559 	/* Allocate RX ring. */
560 	error = iwn_alloc_rx_ring(sc, &sc->rxq);
561 	if (error != 0 ){
562 		device_printf(dev,
563 		    "could not allocate Rx ring, error %d\n", error);
564 		goto fail;
565 	}
566 
567 	/* Clear pending interrupts. */
568 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
569 
570 	/* Count the number of available chains. */
571 	sc->ntxchains =
572 	    ((sc->txchainmask >> 2) & 1) +
573 	    ((sc->txchainmask >> 1) & 1) +
574 	    ((sc->txchainmask >> 0) & 1);
575 	sc->nrxchains =
576 	    ((sc->rxchainmask >> 2) & 1) +
577 	    ((sc->rxchainmask >> 1) & 1) +
578 	    ((sc->rxchainmask >> 0) & 1);
579 
580 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
581 	if (ifp == NULL) {
582 		device_printf(dev, "can not allocate ifnet structure\n");
583 		goto fail;
584 	}
585 	ic = ifp->if_l2com;
586 
587 	ic->ic_ifp = ifp;
588 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
589 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
590 
591 	/* Set device capabilities. */
592 	ic->ic_caps =
593 		  IEEE80211_C_STA		/* station mode supported */
594 		| IEEE80211_C_MONITOR		/* monitor mode supported */
595 		| IEEE80211_C_TXPMGT		/* tx power management */
596 		| IEEE80211_C_SHSLOT		/* short slot time supported */
597 		| IEEE80211_C_WPA
598 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
599 		| IEEE80211_C_BGSCAN		/* background scanning */
600 #if 0
601 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
602 #endif
603 		| IEEE80211_C_WME		/* WME */
604 		;
605 #if 0	/* HT */
606 	/* XXX disable until HT channel setup works */
607 	ic->ic_htcaps =
608 		  IEEE80211_HTCAP_SMPS_ENA	/* SM PS mode enabled */
609 		| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width */
610 		| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
611 		| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
612 		| IEEE80211_HTCAP_RXSTBC_2STREAM/* 1-2 spatial streams */
613 		| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
614 		/* s/w capabilities */
615 		| IEEE80211_HTC_HT		/* HT operation */
616 		| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
617 		| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
618 		;
619 
620 	/* Set HT capabilities. */
621 	ic->ic_htcaps =
622 #if IWN_RBUF_SIZE == 8192
623 	    IEEE80211_HTCAP_AMSDU7935 |
624 #endif
625 	    IEEE80211_HTCAP_CBW20_40 |
626 	    IEEE80211_HTCAP_SGI20 |
627 	    IEEE80211_HTCAP_SGI40;
628 	if (sc->hw_type != IWN_HW_REV_TYPE_4965)
629 		ic->ic_htcaps |= IEEE80211_HTCAP_GF;
630 	if (sc->hw_type == IWN_HW_REV_TYPE_6050)
631 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
632 	else
633 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
634 #endif
635 
636 	/* Read MAC address, channels, etc from EEPROM. */
637 	error = iwn_read_eeprom(sc, macaddr);
638 	if (error != 0) {
639 		device_printf(dev, "could not read EEPROM, error %d\n",
640 		    error);
641 		goto fail;
642 	}
643 
644 	device_printf(sc->sc_dev, "MIMO %dT%dR, %.4s, address %6D\n",
645 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
646 	    macaddr, ":");
647 
648 #if 0	/* HT */
649 	/* Set supported HT rates. */
650 	ic->ic_sup_mcs[0] = 0xff;
651 	if (sc->nrxchains > 1)
652 		ic->ic_sup_mcs[1] = 0xff;
653 	if (sc->nrxchains > 2)
654 		ic->ic_sup_mcs[2] = 0xff;
655 #endif
656 
657 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
658 	ifp->if_softc = sc;
659 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
660 	ifp->if_init = iwn_init;
661 	ifp->if_ioctl = iwn_ioctl;
662 	ifp->if_start = iwn_start;
663 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
664 	ifq_set_ready(&ifp->if_snd);
665 
666 	ieee80211_ifattach(ic, macaddr);
667 	ic->ic_vap_create = iwn_vap_create;
668 	ic->ic_vap_delete = iwn_vap_delete;
669 	ic->ic_raw_xmit = iwn_raw_xmit;
670 	ic->ic_node_alloc = iwn_node_alloc;
671 	ic->ic_newassoc = iwn_newassoc;
672 	ic->ic_wme.wme_update = iwn_wme_update;
673 	ic->ic_update_mcast = iwn_update_mcast;
674 	ic->ic_scan_start = iwn_scan_start;
675 	ic->ic_scan_end = iwn_scan_end;
676 	ic->ic_set_channel = iwn_set_channel;
677 	ic->ic_scan_curchan = iwn_scan_curchan;
678 	ic->ic_scan_mindwell = iwn_scan_mindwell;
679 	ic->ic_setregdomain = iwn_setregdomain;
680 #if 0	/* HT */
681 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
682 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
683 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
684 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
685 #endif
686 
687 	iwn_radiotap_attach(sc);
688 	iwn_sysctlattach(sc);
689 
690 	/*
691 	 * Hook our interrupt after all initialization is complete.
692 	 */
693 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
694 			       iwn_intr, sc, &sc->sc_ih,
695 			       &wlan_global_serializer);
696 	if (error != 0) {
697 		device_printf(dev, "could not set up interrupt, error %d\n",
698 		    error);
699 		goto fail;
700 	}
701 
702 	ieee80211_announce(ic);
703 	wlan_serialize_exit();
704 	return 0;
705 fail:
706 	iwn_cleanup(dev);
707 fail2:
708 	wlan_serialize_exit();
709 	return error;
710 }
711 
712 static const struct iwn_hal *
713 iwn_hal_attach(struct iwn_softc *sc)
714 {
715 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
716 
717 	switch (sc->hw_type) {
718 	case IWN_HW_REV_TYPE_4965:
719 		sc->sc_hal = &iwn4965_hal;
720 		sc->limits = &iwn4965_sensitivity_limits;
721 		sc->fwname = "iwn4965fw";
722 		sc->txchainmask = IWN_ANT_AB;
723 		sc->rxchainmask = IWN_ANT_ABC;
724 		break;
725 	case IWN_HW_REV_TYPE_5100:
726 		sc->sc_hal = &iwn5000_hal;
727 		sc->limits = &iwn5000_sensitivity_limits;
728 		sc->fwname = "iwn5000fw";
729 		sc->txchainmask = IWN_ANT_B;
730 		sc->rxchainmask = IWN_ANT_AB;
731 		break;
732 	case IWN_HW_REV_TYPE_5150:
733 		sc->sc_hal = &iwn5000_hal;
734 		sc->limits = &iwn5150_sensitivity_limits;
735 		sc->fwname = "iwn5150fw";
736 		sc->txchainmask = IWN_ANT_A;
737 		sc->rxchainmask = IWN_ANT_AB;
738 		break;
739 	case IWN_HW_REV_TYPE_5300:
740 	case IWN_HW_REV_TYPE_5350:
741 		sc->sc_hal = &iwn5000_hal;
742 		sc->limits = &iwn5000_sensitivity_limits;
743 		sc->fwname = "iwn5000fw";
744 		sc->txchainmask = IWN_ANT_ABC;
745 		sc->rxchainmask = IWN_ANT_ABC;
746 		break;
747 	case IWN_HW_REV_TYPE_1000:
748 		sc->sc_hal = &iwn5000_hal;
749 		sc->limits = &iwn1000_sensitivity_limits;
750 		sc->fwname = "iwn1000fw";
751 		sc->txchainmask = IWN_ANT_A;
752 		sc->rxchainmask = IWN_ANT_AB;
753 		break;
754 	case IWN_HW_REV_TYPE_6000:
755 		sc->sc_hal = &iwn5000_hal;
756 		sc->limits = &iwn6000_sensitivity_limits;
757 		sc->fwname = "iwn6000fw";
758 		switch (pci_get_device(sc->sc_dev)) {
759 		case 0x422C:
760 		case 0x4239:
761 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
762 			sc->txchainmask = IWN_ANT_BC;
763 			sc->rxchainmask = IWN_ANT_BC;
764 			break;
765 		default:
766 			sc->txchainmask = IWN_ANT_ABC;
767 			sc->rxchainmask = IWN_ANT_ABC;
768 			break;
769 		}
770 		break;
771 	case IWN_HW_REV_TYPE_6050:
772 		sc->sc_hal = &iwn5000_hal;
773 		sc->limits = &iwn6000_sensitivity_limits;
774 		sc->fwname = "iwn6000fw";
775 		sc->txchainmask = IWN_ANT_AB;
776 		sc->rxchainmask = IWN_ANT_AB;
777 		break;
778 	default:
779 		device_printf(sc->sc_dev, "adapter type %d not supported\n",
780 		    sc->hw_type);
781 		return NULL;
782 	}
783 	return sc->sc_hal;
784 }
785 
786 /*
787  * Attach the interface to 802.11 radiotap.
788  */
789 static void
790 iwn_radiotap_attach(struct iwn_softc *sc)
791 {
792 	struct ifnet *ifp = sc->sc_ifp;
793 	struct ieee80211com *ic = ifp->if_l2com;
794 
795 	ieee80211_radiotap_attach(ic,
796 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
797 		IWN_TX_RADIOTAP_PRESENT,
798 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
799 		IWN_RX_RADIOTAP_PRESENT);
800 }
801 
802 static struct ieee80211vap *
803 iwn_vap_create(struct ieee80211com *ic,
804 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
805 	const uint8_t bssid[IEEE80211_ADDR_LEN],
806 	const uint8_t mac[IEEE80211_ADDR_LEN])
807 {
808 	struct iwn_vap *ivp;
809 	struct ieee80211vap *vap;
810 
811 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
812 		return NULL;
813 	ivp = (struct iwn_vap *) kmalloc(sizeof(struct iwn_vap),
814 	    M_80211_VAP, M_INTWAIT | M_ZERO);
815 	if (ivp == NULL)
816 		return NULL;
817 	vap = &ivp->iv_vap;
818 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
819 	vap->iv_bmissthreshold = 10;		/* override default */
820 	/* Override with driver methods. */
821 	ivp->iv_newstate = vap->iv_newstate;
822 	vap->iv_newstate = iwn_newstate;
823 
824 	ieee80211_ratectl_init(vap);
825 	/* Complete setup. */
826 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status);
827 	ic->ic_opmode = opmode;
828 	return vap;
829 }
830 
831 static void
832 iwn_vap_delete(struct ieee80211vap *vap)
833 {
834 	struct iwn_vap *ivp = IWN_VAP(vap);
835 
836 	ieee80211_ratectl_deinit(vap);
837 	ieee80211_vap_detach(vap);
838 	kfree(ivp, M_80211_VAP);
839 }
840 
841 static int
842 iwn_cleanup(device_t dev)
843 {
844 	struct iwn_softc *sc = device_get_softc(dev);
845 	struct ifnet *ifp = sc->sc_ifp;
846 	struct ieee80211com *ic;
847 	int i;
848 
849 	if (ifp != NULL) {
850 		ic = ifp->if_l2com;
851 
852 		ieee80211_draintask(ic, &sc->sc_reinit_task);
853 		ieee80211_draintask(ic, &sc->sc_radioon_task);
854 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
855 
856 		iwn_stop(sc);
857 		callout_stop(&sc->sc_timer_to);
858 		ieee80211_ifdetach(ic);
859 	}
860 
861 	/* cleanup sysctl nodes */
862 	sysctl_ctx_free(&sc->sc_sysctl_ctx);
863 
864 	/* Free DMA resources. */
865 	iwn_free_rx_ring(sc, &sc->rxq);
866 	if (sc->sc_hal != NULL)
867 		for (i = 0; i < sc->sc_hal->ntxqs; i++)
868 			iwn_free_tx_ring(sc, &sc->txq[i]);
869 	iwn_free_sched(sc);
870 	iwn_free_kw(sc);
871 	if (sc->ict != NULL) {
872 		iwn_free_ict(sc);
873 		sc->ict = NULL;
874 	}
875 	iwn_free_fwmem(sc);
876 
877 	if (sc->irq != NULL) {
878 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
879 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
880 		if (sc->irq_rid == 1)
881 			pci_release_msi(dev);
882 		sc->irq = NULL;
883 	}
884 
885 	if (sc->mem != NULL) {
886 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
887 		sc->mem = NULL;
888 	}
889 
890 	if (ifp != NULL) {
891 		if_free(ifp);
892 		sc->sc_ifp = NULL;
893 	}
894 
895 	return 0;
896 }
897 
898 static int
899 iwn_pci_detach(device_t dev)
900 {
901 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
902 
903 	wlan_serialize_enter();
904 	iwn_cleanup(dev);
905 	bus_dma_tag_destroy(sc->sc_dmat);
906 	wlan_serialize_exit();
907 
908 	return 0;
909 }
910 
911 static int
912 iwn_nic_lock(struct iwn_softc *sc)
913 {
914 	int ntries;
915 
916 	/* Request exclusive access to NIC. */
917 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
918 
919 	/* Spin until we actually get the lock. */
920 	for (ntries = 0; ntries < 1000; ntries++) {
921 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
922 		    (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
923 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
924 			return 0;
925 		DELAY(10);
926 	}
927 	return ETIMEDOUT;
928 }
929 
930 static __inline void
931 iwn_nic_unlock(struct iwn_softc *sc)
932 {
933 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
934 }
935 
936 static __inline uint32_t
937 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
938 {
939 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
940 	IWN_BARRIER_READ_WRITE(sc);
941 	return IWN_READ(sc, IWN_PRPH_RDATA);
942 }
943 
944 static __inline void
945 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
946 {
947 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
948 	IWN_BARRIER_WRITE(sc);
949 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
950 }
951 
952 static __inline void
953 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
954 {
955 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
956 }
957 
958 static __inline void
959 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
960 {
961 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
962 }
963 
964 static __inline void
965 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
966     const uint32_t *data, int count)
967 {
968 	for (; count > 0; count--, data++, addr += 4)
969 		iwn_prph_write(sc, addr, *data);
970 }
971 
972 static __inline uint32_t
973 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
974 {
975 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
976 	IWN_BARRIER_READ_WRITE(sc);
977 	return IWN_READ(sc, IWN_MEM_RDATA);
978 }
979 
980 static __inline void
981 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
982 {
983 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
984 	IWN_BARRIER_WRITE(sc);
985 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
986 }
987 
988 static __inline void
989 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
990 {
991 	uint32_t tmp;
992 
993 	tmp = iwn_mem_read(sc, addr & ~3);
994 	if (addr & 3)
995 		tmp = (tmp & 0x0000ffff) | data << 16;
996 	else
997 		tmp = (tmp & 0xffff0000) | data;
998 	iwn_mem_write(sc, addr & ~3, tmp);
999 }
1000 
1001 static __inline void
1002 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1003     int count)
1004 {
1005 	for (; count > 0; count--, addr += 4)
1006 		*data++ = iwn_mem_read(sc, addr);
1007 }
1008 
1009 static __inline void
1010 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1011     int count)
1012 {
1013 	for (; count > 0; count--, addr += 4)
1014 		iwn_mem_write(sc, addr, val);
1015 }
1016 
1017 static int
1018 iwn_eeprom_lock(struct iwn_softc *sc)
1019 {
1020 	int i, ntries;
1021 
1022 	for (i = 0; i < 100; i++) {
1023 		/* Request exclusive access to EEPROM. */
1024 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1025 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1026 
1027 		/* Spin until we actually get the lock. */
1028 		for (ntries = 0; ntries < 100; ntries++) {
1029 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1030 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1031 				return 0;
1032 			DELAY(10);
1033 		}
1034 	}
1035 	return ETIMEDOUT;
1036 }
1037 
1038 static __inline void
1039 iwn_eeprom_unlock(struct iwn_softc *sc)
1040 {
1041 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1042 }
1043 
1044 /*
1045  * Initialize access by host to One Time Programmable ROM.
1046  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1047  */
1048 static int
1049 iwn_init_otprom(struct iwn_softc *sc)
1050 {
1051 	uint16_t prev, base, next;
1052 	int count, error;
1053 
1054 	/* Wait for clock stabilization before accessing prph. */
1055 	error = iwn_clock_wait(sc);
1056 	if (error != 0)
1057 		return error;
1058 
1059 	error = iwn_nic_lock(sc);
1060 	if (error != 0)
1061 		return error;
1062 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1063 	DELAY(5);
1064 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1065 	iwn_nic_unlock(sc);
1066 
1067 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1068 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1069 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1070 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1071 	}
1072 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1073 	/* Clear ECC status. */
1074 	IWN_SETBITS(sc, IWN_OTP_GP,
1075 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1076 
1077 	/*
1078 	 * Find the block before last block (contains the EEPROM image)
1079 	 * for HW without OTP shadow RAM.
1080 	 */
1081 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1082 		/* Switch to absolute addressing mode. */
1083 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1084 		base = prev = 0;
1085 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1086 			error = iwn_read_prom_data(sc, base, &next, 2);
1087 			if (error != 0)
1088 				return error;
1089 			if (next == 0)	/* End of linked-list. */
1090 				break;
1091 			prev = base;
1092 			base = le16toh(next);
1093 		}
1094 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1095 			return EIO;
1096 		/* Skip "next" word. */
1097 		sc->prom_base = prev + 1;
1098 	}
1099 	return 0;
1100 }
1101 
1102 static int
1103 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1104 {
1105 	uint32_t val, tmp;
1106 	int ntries;
1107 	uint8_t *out = data;
1108 
1109 	addr += sc->prom_base;
1110 	for (; count > 0; count -= 2, addr++) {
1111 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1112 		for (ntries = 0; ntries < 10; ntries++) {
1113 			val = IWN_READ(sc, IWN_EEPROM);
1114 			if (val & IWN_EEPROM_READ_VALID)
1115 				break;
1116 			DELAY(5);
1117 		}
1118 		if (ntries == 10) {
1119 			device_printf(sc->sc_dev,
1120 			    "timeout reading ROM at 0x%x\n", addr);
1121 			return ETIMEDOUT;
1122 		}
1123 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1124 			/* OTPROM, check for ECC errors. */
1125 			tmp = IWN_READ(sc, IWN_OTP_GP);
1126 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1127 				device_printf(sc->sc_dev,
1128 				    "OTPROM ECC error at 0x%x\n", addr);
1129 				return EIO;
1130 			}
1131 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1132 				/* Correctable ECC error, clear bit. */
1133 				IWN_SETBITS(sc, IWN_OTP_GP,
1134 				    IWN_OTP_GP_ECC_CORR_STTS);
1135 			}
1136 		}
1137 		*out++ = val >> 16;
1138 		if (count > 1)
1139 			*out++ = val >> 24;
1140 	}
1141 	return 0;
1142 }
1143 
1144 static void
1145 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1146 {
1147 	if (error != 0)
1148 		return;
1149 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1150 	*(bus_addr_t *)arg = segs[0].ds_addr;
1151 }
1152 
1153 static int
1154 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1155 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
1156 {
1157 	int error;
1158 
1159 	dma->size = size;
1160 	dma->tag = NULL;
1161 
1162 	error = bus_dma_tag_create(sc->sc_dmat, alignment,
1163 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1164 	    1, size, flags, &dma->tag);
1165 	if (error != 0) {
1166 		device_printf(sc->sc_dev,
1167 		    "%s: bus_dma_tag_create failed, error %d\n",
1168 		    __func__, error);
1169 		goto fail;
1170 	}
1171 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1172 	    flags | BUS_DMA_ZERO, &dma->map);
1173 	if (error != 0) {
1174 		device_printf(sc->sc_dev,
1175 		    "%s: bus_dmamem_alloc failed, error %d\n", __func__, error);
1176 		goto fail;
1177 	}
1178 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
1179 	    size, iwn_dma_map_addr, &dma->paddr, flags);
1180 	if (error != 0) {
1181 		device_printf(sc->sc_dev,
1182 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1183 		goto fail;
1184 	}
1185 
1186 	if (kvap != NULL)
1187 		*kvap = dma->vaddr;
1188 	return 0;
1189 fail:
1190 	iwn_dma_contig_free(dma);
1191 	return error;
1192 }
1193 
1194 static void
1195 iwn_dma_contig_free(struct iwn_dma_info *dma)
1196 {
1197 	if (dma->tag != NULL) {
1198 		if (dma->map != NULL) {
1199 			if (dma->paddr == 0) {
1200 				bus_dmamap_sync(dma->tag, dma->map,
1201 				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1202 				bus_dmamap_unload(dma->tag, dma->map);
1203 			}
1204 			bus_dmamap_destroy(dma->tag, dma->map);
1205 		}
1206 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1207 		bus_dma_tag_destroy(dma->tag);
1208 	}
1209 }
1210 
1211 static int
1212 iwn_alloc_sched(struct iwn_softc *sc)
1213 {
1214 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1215 	return iwn_dma_contig_alloc(sc, &sc->sched_dma,
1216 	    (void **)&sc->sched, sc->sc_hal->schedsz, 1024, BUS_DMA_NOWAIT);
1217 }
1218 
1219 static void
1220 iwn_free_sched(struct iwn_softc *sc)
1221 {
1222 	iwn_dma_contig_free(&sc->sched_dma);
1223 }
1224 
1225 static int
1226 iwn_alloc_kw(struct iwn_softc *sc)
1227 {
1228 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1229 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096,
1230 	    BUS_DMA_NOWAIT);
1231 }
1232 
1233 static void
1234 iwn_free_kw(struct iwn_softc *sc)
1235 {
1236 	iwn_dma_contig_free(&sc->kw_dma);
1237 }
1238 
1239 static int
1240 iwn_alloc_ict(struct iwn_softc *sc)
1241 {
1242 	/* ICT table must be aligned on a 4KB boundary. */
1243 	return iwn_dma_contig_alloc(sc, &sc->ict_dma,
1244 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096, BUS_DMA_NOWAIT);
1245 }
1246 
1247 static void
1248 iwn_free_ict(struct iwn_softc *sc)
1249 {
1250 	iwn_dma_contig_free(&sc->ict_dma);
1251 }
1252 
1253 static int
1254 iwn_alloc_fwmem(struct iwn_softc *sc)
1255 {
1256 	/* Must be aligned on a 16-byte boundary. */
1257 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL,
1258 	    sc->sc_hal->fwsz, 16, BUS_DMA_NOWAIT);
1259 }
1260 
1261 static void
1262 iwn_free_fwmem(struct iwn_softc *sc)
1263 {
1264 	iwn_dma_contig_free(&sc->fw_dma);
1265 }
1266 
1267 static int
1268 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1269 {
1270 	bus_size_t size;
1271 	int i, error;
1272 
1273 	ring->cur = 0;
1274 
1275 	/* Allocate RX descriptors (256-byte aligned). */
1276 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1277 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
1278 	    (void **)&ring->desc, size, 256, BUS_DMA_NOWAIT);
1279 	if (error != 0) {
1280 		device_printf(sc->sc_dev,
1281 		    "%s: could not allocate Rx ring DMA memory, error %d\n",
1282 		    __func__, error);
1283 		goto fail;
1284 	}
1285 
1286 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
1287 	    BUS_SPACE_MAXADDR_32BIT,
1288 	    BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
1289 	    MJUMPAGESIZE, BUS_DMA_NOWAIT, &ring->data_dmat);
1290 	if (error != 0) {
1291 		device_printf(sc->sc_dev,
1292 		    "%s: bus_dma_tag_create_failed, error %d\n",
1293 		    __func__, error);
1294 		goto fail;
1295 	}
1296 
1297 	/* Allocate RX status area (16-byte aligned). */
1298 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma,
1299 	    (void **)&ring->stat, sizeof (struct iwn_rx_status),
1300 	    16, BUS_DMA_NOWAIT);
1301 	if (error != 0) {
1302 		device_printf(sc->sc_dev,
1303 		    "%s: could not allocate Rx status DMA memory, error %d\n",
1304 		    __func__, error);
1305 		goto fail;
1306 	}
1307 
1308 	/*
1309 	 * Allocate and map RX buffers.
1310 	 */
1311 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1312 		struct iwn_rx_data *data = &ring->data[i];
1313 		bus_addr_t paddr;
1314 
1315 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1316 		if (error != 0) {
1317 			device_printf(sc->sc_dev,
1318 			    "%s: bus_dmamap_create failed, error %d\n",
1319 			    __func__, error);
1320 			goto fail;
1321 		}
1322 
1323 		data->m = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR,
1324 				   MJUMPAGESIZE);
1325 		if (data->m == NULL) {
1326 			device_printf(sc->sc_dev,
1327 			    "%s: could not allocate rx mbuf\n", __func__);
1328 			error = ENOMEM;
1329 			goto fail;
1330 		}
1331 
1332 		/* Map page. */
1333 		error = bus_dmamap_load(ring->data_dmat, data->map,
1334 		    mtod(data->m, caddr_t), MJUMPAGESIZE,
1335 		    iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1336 		if (error != 0 && error != EFBIG) {
1337 			device_printf(sc->sc_dev,
1338 			    "%s: bus_dmamap_load failed, error %d\n",
1339 			    __func__, error);
1340 			m_freem(data->m);
1341 			error = ENOMEM;	/* XXX unique code */
1342 			goto fail;
1343 		}
1344 		bus_dmamap_sync(ring->data_dmat, data->map,
1345 		    BUS_DMASYNC_PREWRITE);
1346 
1347 		/* Set physical address of RX buffer (256-byte aligned). */
1348 		ring->desc[i] = htole32(paddr >> 8);
1349 	}
1350 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1351 	    BUS_DMASYNC_PREWRITE);
1352 	return 0;
1353 fail:
1354 	iwn_free_rx_ring(sc, ring);
1355 	return error;
1356 }
1357 
1358 static void
1359 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1360 {
1361 	int ntries;
1362 
1363 	if (iwn_nic_lock(sc) == 0) {
1364 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1365 		for (ntries = 0; ntries < 1000; ntries++) {
1366 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1367 			    IWN_FH_RX_STATUS_IDLE)
1368 				break;
1369 			DELAY(10);
1370 		}
1371 		iwn_nic_unlock(sc);
1372 #ifdef IWN_DEBUG
1373 		if (ntries == 1000)
1374 			DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
1375 			    "timeout resetting Rx ring");
1376 #endif
1377 	}
1378 	ring->cur = 0;
1379 	sc->last_rx_valid = 0;
1380 }
1381 
1382 static void
1383 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1384 {
1385 	int i;
1386 
1387 	iwn_dma_contig_free(&ring->desc_dma);
1388 	iwn_dma_contig_free(&ring->stat_dma);
1389 
1390 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1391 		struct iwn_rx_data *data = &ring->data[i];
1392 
1393 		if (data->m != NULL) {
1394 			bus_dmamap_sync(ring->data_dmat, data->map,
1395 			    BUS_DMASYNC_POSTREAD);
1396 			bus_dmamap_unload(ring->data_dmat, data->map);
1397 			m_freem(data->m);
1398 		}
1399 		if (data->map != NULL)
1400 			bus_dmamap_destroy(ring->data_dmat, data->map);
1401 	}
1402 }
1403 
1404 static int
1405 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1406 {
1407 	bus_size_t size;
1408 	bus_addr_t paddr;
1409 	int i, error;
1410 
1411 	ring->qid = qid;
1412 	ring->queued = 0;
1413 	ring->cur = 0;
1414 
1415 	/* Allocate TX descriptors (256-byte aligned.) */
1416 	size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_desc);
1417 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
1418 	    (void **)&ring->desc, size, 256, BUS_DMA_NOWAIT);
1419 	if (error != 0) {
1420 		device_printf(sc->sc_dev,
1421 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1422 		    __func__, error);
1423 		goto fail;
1424 	}
1425 
1426 	/*
1427 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1428 	 * to allocate commands space for other rings.
1429 	 */
1430 	if (qid > 4)
1431 		return 0;
1432 
1433 	size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_cmd);
1434 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma,
1435 	    (void **)&ring->cmd, size, 4, BUS_DMA_NOWAIT);
1436 	if (error != 0) {
1437 		device_printf(sc->sc_dev,
1438 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1439 		    __func__, error);
1440 		goto fail;
1441 	}
1442 
1443 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
1444 	    BUS_SPACE_MAXADDR_32BIT,
1445 	    BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, IWN_MAX_SCATTER - 1,
1446 	    MJUMPAGESIZE, BUS_DMA_NOWAIT, &ring->data_dmat);
1447 	if (error != 0) {
1448 		device_printf(sc->sc_dev,
1449 		    "%s: bus_dma_tag_create_failed, error %d\n",
1450 		    __func__, error);
1451 		goto fail;
1452 	}
1453 
1454 	paddr = ring->cmd_dma.paddr;
1455 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1456 		struct iwn_tx_data *data = &ring->data[i];
1457 
1458 		data->cmd_paddr = paddr;
1459 		data->scratch_paddr = paddr + 12;
1460 		paddr += sizeof (struct iwn_tx_cmd);
1461 
1462 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1463 		if (error != 0) {
1464 			device_printf(sc->sc_dev,
1465 			    "%s: bus_dmamap_create failed, error %d\n",
1466 			    __func__, error);
1467 			goto fail;
1468 		}
1469 		bus_dmamap_sync(ring->data_dmat, data->map,
1470 		    BUS_DMASYNC_PREWRITE);
1471 	}
1472 	return 0;
1473 fail:
1474 	iwn_free_tx_ring(sc, ring);
1475 	return error;
1476 }
1477 
1478 static void
1479 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1480 {
1481 	int i;
1482 
1483 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1484 		struct iwn_tx_data *data = &ring->data[i];
1485 
1486 		if (data->m != NULL) {
1487 			bus_dmamap_unload(ring->data_dmat, data->map);
1488 			m_freem(data->m);
1489 			data->m = NULL;
1490 		}
1491 	}
1492 	/* Clear TX descriptors. */
1493 	memset(ring->desc, 0, ring->desc_dma.size);
1494 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1495 	    BUS_DMASYNC_PREWRITE);
1496 	sc->qfullmsk &= ~(1 << ring->qid);
1497 	ring->queued = 0;
1498 	ring->cur = 0;
1499 }
1500 
1501 static void
1502 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1503 {
1504 	int i;
1505 
1506 	iwn_dma_contig_free(&ring->desc_dma);
1507 	iwn_dma_contig_free(&ring->cmd_dma);
1508 
1509 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1510 		struct iwn_tx_data *data = &ring->data[i];
1511 
1512 		if (data->m != NULL) {
1513 			bus_dmamap_sync(ring->data_dmat, data->map,
1514 			    BUS_DMASYNC_POSTWRITE);
1515 			bus_dmamap_unload(ring->data_dmat, data->map);
1516 			m_freem(data->m);
1517 		}
1518 		if (data->map != NULL)
1519 			bus_dmamap_destroy(ring->data_dmat, data->map);
1520 	}
1521 }
1522 
1523 static void
1524 iwn5000_ict_reset(struct iwn_softc *sc)
1525 {
1526 	/* Disable interrupts. */
1527 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1528 
1529 	/* Reset ICT table. */
1530 	memset(sc->ict, 0, IWN_ICT_SIZE);
1531 	sc->ict_cur = 0;
1532 
1533 	/* Set physical address of ICT table (4KB aligned.) */
1534 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
1535 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1536 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1537 
1538 	/* Enable periodic RX interrupt. */
1539 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1540 	/* Switch to ICT interrupt mode in driver. */
1541 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1542 
1543 	/* Re-enable interrupts. */
1544 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1545 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1546 }
1547 
1548 static int
1549 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1550 {
1551 	const struct iwn_hal *hal = sc->sc_hal;
1552 	int error;
1553 	uint16_t val;
1554 
1555 	/* Check whether adapter has an EEPROM or an OTPROM. */
1556 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1557 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1558 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1559 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
1560 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
1561 
1562 	/* Adapter has to be powered on for EEPROM access to work. */
1563 	error = iwn_apm_init(sc);
1564 	if (error != 0) {
1565 		device_printf(sc->sc_dev,
1566 		    "%s: could not power ON adapter, error %d\n",
1567 		    __func__, error);
1568 		return error;
1569 	}
1570 
1571 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1572 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
1573 		return EIO;
1574 	}
1575 	error = iwn_eeprom_lock(sc);
1576 	if (error != 0) {
1577 		device_printf(sc->sc_dev,
1578 		    "%s: could not lock ROM, error %d\n",
1579 		    __func__, error);
1580 		return error;
1581 	}
1582 
1583 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1584 		error = iwn_init_otprom(sc);
1585 		if (error != 0) {
1586 			device_printf(sc->sc_dev,
1587 			    "%s: could not initialize OTPROM, error %d\n",
1588 			    __func__, error);
1589 			return error;
1590 		}
1591 	}
1592 
1593 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1594 	sc->rfcfg = le16toh(val);
1595 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
1596 
1597 	/* Read MAC address. */
1598 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
1599 
1600 	/* Read adapter-specific information from EEPROM. */
1601 	hal->read_eeprom(sc);
1602 
1603 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1604 
1605 	iwn_eeprom_unlock(sc);
1606 	return 0;
1607 }
1608 
1609 static void
1610 iwn4965_read_eeprom(struct iwn_softc *sc)
1611 {
1612 	uint32_t addr;
1613 	int i;
1614 	uint16_t val;
1615 
1616 	/* Read regulatory domain (4 ASCII characters.) */
1617 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1618 
1619 	/* Read the list of authorized channels (20MHz ones only.) */
1620 	for (i = 0; i < 5; i++) {
1621 		addr = iwn4965_regulatory_bands[i];
1622 		iwn_read_eeprom_channels(sc, i, addr);
1623 	}
1624 
1625 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1626 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1627 	sc->maxpwr2GHz = val & 0xff;
1628 	sc->maxpwr5GHz = val >> 8;
1629 	/* Check that EEPROM values are within valid range. */
1630 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1631 		sc->maxpwr5GHz = 38;
1632 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1633 		sc->maxpwr2GHz = 38;
1634 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
1635 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
1636 
1637 	/* Read samples for each TX power group. */
1638 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1639 	    sizeof sc->bands);
1640 
1641 	/* Read voltage at which samples were taken. */
1642 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1643 	sc->eeprom_voltage = (int16_t)le16toh(val);
1644 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
1645 	    sc->eeprom_voltage);
1646 
1647 #ifdef IWN_DEBUG
1648 	/* Print samples. */
1649 	if (sc->sc_debug & IWN_DEBUG_ANY) {
1650 		for (i = 0; i < IWN_NBANDS; i++)
1651 			iwn4965_print_power_group(sc, i);
1652 	}
1653 #endif
1654 }
1655 
1656 #ifdef IWN_DEBUG
1657 static void
1658 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1659 {
1660 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1661 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1662 	int j, c;
1663 
1664 	kprintf("===band %d===\n", i);
1665 	kprintf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1666 	kprintf("chan1 num=%d\n", chans[0].num);
1667 	for (c = 0; c < 2; c++) {
1668 		for (j = 0; j < IWN_NSAMPLES; j++) {
1669 			kprintf("chain %d, sample %d: temp=%d gain=%d "
1670 			    "power=%d pa_det=%d\n", c, j,
1671 			    chans[0].samples[c][j].temp,
1672 			    chans[0].samples[c][j].gain,
1673 			    chans[0].samples[c][j].power,
1674 			    chans[0].samples[c][j].pa_det);
1675 		}
1676 	}
1677 	kprintf("chan2 num=%d\n", chans[1].num);
1678 	for (c = 0; c < 2; c++) {
1679 		for (j = 0; j < IWN_NSAMPLES; j++) {
1680 			kprintf("chain %d, sample %d: temp=%d gain=%d "
1681 			    "power=%d pa_det=%d\n", c, j,
1682 			    chans[1].samples[c][j].temp,
1683 			    chans[1].samples[c][j].gain,
1684 			    chans[1].samples[c][j].power,
1685 			    chans[1].samples[c][j].pa_det);
1686 		}
1687 	}
1688 }
1689 #endif
1690 
1691 static void
1692 iwn5000_read_eeprom(struct iwn_softc *sc)
1693 {
1694 	struct iwn5000_eeprom_calib_hdr hdr;
1695 	int32_t temp, volt;
1696 	uint32_t addr, base;
1697 	int i;
1698 	uint16_t val;
1699 
1700 	/* Read regulatory domain (4 ASCII characters.) */
1701 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1702 	base = le16toh(val);
1703 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1704 	    sc->eeprom_domain, 4);
1705 
1706 	/* Read the list of authorized channels (20MHz ones only.) */
1707 	for (i = 0; i < 5; i++) {
1708 		addr = base + iwn5000_regulatory_bands[i];
1709 		iwn_read_eeprom_channels(sc, i, addr);
1710 	}
1711 
1712 	/* Read enhanced TX power information for 6000 Series. */
1713 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1714 		iwn_read_eeprom_enhinfo(sc);
1715 
1716 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1717 	base = le16toh(val);
1718 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1719 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
1720 	    "%s: calib version=%u pa type=%u voltage=%u\n",
1721 	    __func__, hdr.version, hdr.pa_type, le16toh(hdr.volt));
1722 	    sc->calib_ver = hdr.version;
1723 
1724 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1725 		/* Compute temperature offset. */
1726 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1727 		temp = le16toh(val);
1728 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1729 		volt = le16toh(val);
1730 		sc->temp_off = temp - (volt / -5);
1731 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
1732 		    temp, volt, sc->temp_off);
1733 	} else {
1734 		/* Read crystal calibration. */
1735 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1736 		    &sc->eeprom_crystal, sizeof (uint32_t));
1737 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
1738 		le32toh(sc->eeprom_crystal));
1739 	}
1740 }
1741 
1742 /*
1743  * Translate EEPROM flags to net80211.
1744  */
1745 static uint32_t
1746 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
1747 {
1748 	uint32_t nflags;
1749 
1750 	nflags = 0;
1751 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
1752 		nflags |= IEEE80211_CHAN_PASSIVE;
1753 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
1754 		nflags |= IEEE80211_CHAN_NOADHOC;
1755 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
1756 		nflags |= IEEE80211_CHAN_DFS;
1757 		/* XXX apparently IBSS may still be marked */
1758 		nflags |= IEEE80211_CHAN_NOADHOC;
1759 	}
1760 
1761 	return nflags;
1762 }
1763 
1764 static void
1765 iwn_read_eeprom_band(struct iwn_softc *sc, int n)
1766 {
1767 	struct ifnet *ifp = sc->sc_ifp;
1768 	struct ieee80211com *ic = ifp->if_l2com;
1769 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1770 	const struct iwn_chan_band *band = &iwn_bands[n];
1771 	struct ieee80211_channel *c;
1772 	int i, chan, nflags;
1773 
1774 	for (i = 0; i < band->nchan; i++) {
1775 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
1776 			DPRINTF(sc, IWN_DEBUG_RESET,
1777 			    "skip chan %d flags 0x%x maxpwr %d\n",
1778 			    band->chan[i], channels[i].flags,
1779 			    channels[i].maxpwr);
1780 			continue;
1781 		}
1782 		chan = band->chan[i];
1783 		nflags = iwn_eeprom_channel_flags(&channels[i]);
1784 
1785 		DPRINTF(sc, IWN_DEBUG_RESET,
1786 		    "add chan %d flags 0x%x maxpwr %d\n",
1787 		    chan, channels[i].flags, channels[i].maxpwr);
1788 
1789 		c = &ic->ic_channels[ic->ic_nchans++];
1790 		c->ic_ieee = chan;
1791 		c->ic_maxregpower = channels[i].maxpwr;
1792 		c->ic_maxpower = 2*c->ic_maxregpower;
1793 
1794 		/* Save maximum allowed TX power for this channel. */
1795 		sc->maxpwr[chan] = channels[i].maxpwr;
1796 
1797 		if (n == 0) {	/* 2GHz band */
1798 			c->ic_freq = ieee80211_ieee2mhz(chan,
1799 			    IEEE80211_CHAN_G);
1800 
1801 			/* G =>'s B is supported */
1802 			c->ic_flags = IEEE80211_CHAN_B | nflags;
1803 
1804 			c = &ic->ic_channels[ic->ic_nchans++];
1805 			c[0] = c[-1];
1806 			c->ic_flags = IEEE80211_CHAN_G | nflags;
1807 		} else {	/* 5GHz band */
1808 			c->ic_freq = ieee80211_ieee2mhz(chan,
1809 			    IEEE80211_CHAN_A);
1810 			c->ic_flags = IEEE80211_CHAN_A | nflags;
1811 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1812 		}
1813 #if 0	/* HT */
1814 		/* XXX no constraints on using HT20 */
1815 		/* add HT20, HT40 added separately */
1816 		c = &ic->ic_channels[ic->ic_nchans++];
1817 		c[0] = c[-1];
1818 		c->ic_flags |= IEEE80211_CHAN_HT20;
1819 		/* XXX NARROW =>'s 1/2 and 1/4 width? */
1820 #endif
1821 	}
1822 }
1823 
1824 #if 0	/* HT */
1825 static void
1826 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n)
1827 {
1828 	struct ifnet *ifp = sc->sc_ifp;
1829 	struct ieee80211com *ic = ifp->if_l2com;
1830 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1831 	const struct iwn_chan_band *band = &iwn_bands[n];
1832 	struct ieee80211_channel *c, *cent, *extc;
1833 	int i;
1834 
1835 	for (i = 0; i < band->nchan; i++) {
1836 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID) ||
1837 		    !(channels[i].flags & IWN_EEPROM_CHAN_WIDE)) {
1838 			DPRINTF(sc, IWN_DEBUG_RESET,
1839 			    "skip chan %d flags 0x%x maxpwr %d\n",
1840 			    band->chan[i], channels[i].flags,
1841 			    channels[i].maxpwr);
1842 			continue;
1843 		}
1844 		/*
1845 		 * Each entry defines an HT40 channel pair; find the
1846 		 * center channel, then the extension channel above.
1847 		 */
1848 		cent = ieee80211_find_channel_byieee(ic, band->chan[i],
1849 		    band->flags & ~IEEE80211_CHAN_HT);
1850 		if (cent == NULL) {	/* XXX shouldn't happen */
1851 			device_printf(sc->sc_dev,
1852 			    "%s: no entry for channel %d\n",
1853 			    __func__, band->chan[i]);
1854 			continue;
1855 		}
1856 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
1857 		    band->flags & ~IEEE80211_CHAN_HT);
1858 		if (extc == NULL) {
1859 			DPRINTF(sc, IWN_DEBUG_RESET,
1860 			    "skip chan %d, extension channel not found\n",
1861 			    band->chan[i]);
1862 			continue;
1863 		}
1864 
1865 		DPRINTF(sc, IWN_DEBUG_RESET,
1866 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
1867 		    band->chan[i], channels[i].flags, channels[i].maxpwr);
1868 
1869 		c = &ic->ic_channels[ic->ic_nchans++];
1870 		c[0] = cent[0];
1871 		c->ic_extieee = extc->ic_ieee;
1872 		c->ic_flags &= ~IEEE80211_CHAN_HT;
1873 		c->ic_flags |= IEEE80211_CHAN_HT40U;
1874 		c = &ic->ic_channels[ic->ic_nchans++];
1875 		c[0] = extc[0];
1876 		c->ic_extieee = cent->ic_ieee;
1877 		c->ic_flags &= ~IEEE80211_CHAN_HT;
1878 		c->ic_flags |= IEEE80211_CHAN_HT40D;
1879 	}
1880 }
1881 #endif
1882 
1883 static void
1884 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1885 {
1886 	struct ifnet *ifp = sc->sc_ifp;
1887 	struct ieee80211com *ic = ifp->if_l2com;
1888 
1889 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
1890 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
1891 
1892 	if (n < 5)
1893 		iwn_read_eeprom_band(sc, n);
1894 #if 0	/* HT */
1895 	else
1896 		iwn_read_eeprom_ht40(sc, n);
1897 #endif
1898 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1899 }
1900 
1901 static void
1902 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1903 {
1904 	struct iwn_eeprom_enhinfo enhinfo[35];
1905 	uint16_t val, base;
1906 	int8_t maxpwr;
1907 	int i;
1908 
1909 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1910 	base = le16toh(val);
1911 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1912 	    enhinfo, sizeof enhinfo);
1913 
1914 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1915 	for (i = 0; i < NELEM(enhinfo); i++) {
1916 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1917 			continue;	/* Skip invalid entries. */
1918 
1919 		maxpwr = 0;
1920 		if (sc->txchainmask & IWN_ANT_A)
1921 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1922 		if (sc->txchainmask & IWN_ANT_B)
1923 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1924 		if (sc->txchainmask & IWN_ANT_C)
1925 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1926 		if (sc->ntxchains == 2)
1927 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1928 		else if (sc->ntxchains == 3)
1929 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1930 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1931 
1932 		DPRINTF(sc, IWN_DEBUG_RESET, "enhinfo %d, maxpwr=%d\n", i,
1933 		    maxpwr);
1934 		sc->enh_maxpwr[i] = maxpwr;
1935 	}
1936 }
1937 
1938 static struct ieee80211_node *
1939 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1940 {
1941 	return kmalloc(sizeof (struct iwn_node), M_80211_NODE,M_INTWAIT | M_ZERO);
1942 }
1943 
1944 static void
1945 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1946 {
1947 	/* XXX move */
1948 	//if (!isnew) {
1949 		ieee80211_ratectl_node_deinit(ni);
1950 	//}
1951 
1952 	ieee80211_ratectl_node_init(ni);
1953 }
1954 
1955 static int
1956 iwn_media_change(struct ifnet *ifp)
1957 {
1958 	int error = ieee80211_media_change(ifp);
1959 	/* NB: only the fixed rate can change and that doesn't need a reset */
1960 	return (error == ENETRESET ? 0 : error);
1961 }
1962 
1963 static int
1964 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1965 {
1966 	struct iwn_vap *ivp = IWN_VAP(vap);
1967 	struct ieee80211com *ic = vap->iv_ic;
1968 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
1969 	int error;
1970 
1971 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1972 		ieee80211_state_name[vap->iv_state],
1973 		ieee80211_state_name[nstate]);
1974 
1975 	callout_stop(&sc->sc_timer_to);
1976 
1977 	if (nstate == IEEE80211_S_AUTH && vap->iv_state != IEEE80211_S_AUTH) {
1978 		/* !AUTH -> AUTH requires adapter config */
1979 		/* Reset state to handle reassociations correctly. */
1980 		sc->rxon.associd = 0;
1981 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1982 		iwn_calib_reset(sc);
1983 		error = iwn_auth(sc, vap);
1984 	}
1985 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1986 		/*
1987 		 * !RUN -> RUN requires setting the association id
1988 		 * which is done with a firmware cmd.  We also defer
1989 		 * starting the timers until that work is done.
1990 		 */
1991 		error = iwn_run(sc, vap);
1992 	}
1993 	if (nstate == IEEE80211_S_RUN) {
1994 		/*
1995 		 * RUN -> RUN transition; just restart the timers.
1996 		 */
1997 		iwn_calib_reset(sc);
1998 	}
1999 	return ivp->iv_newstate(vap, nstate, arg);
2000 }
2001 
2002 /*
2003  * Process an RX_PHY firmware notification.  This is usually immediately
2004  * followed by an MPDU_RX_DONE notification.
2005  */
2006 static void
2007 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2008     struct iwn_rx_data *data)
2009 {
2010 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2011 
2012 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2013 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2014 
2015 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2016 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2017 	sc->last_rx_valid = 1;
2018 }
2019 
2020 static void
2021 iwn_timer_callout(void *arg)
2022 {
2023 	struct iwn_softc *sc = arg;
2024 	uint32_t flags = 0;
2025 
2026 	wlan_serialize_enter();
2027 	if (sc->calib_cnt && --sc->calib_cnt == 0) {
2028 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2029 		    "send statistics request");
2030 		(void) iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2031 		    sizeof flags, 1);
2032 		sc->calib_cnt = 60;	/* do calibration every 60s */
2033 	}
2034 	iwn_watchdog(sc);		/* NB: piggyback tx watchdog */
2035 	callout_reset(&sc->sc_timer_to, hz, iwn_timer_callout, sc);
2036 	wlan_serialize_exit();
2037 }
2038 
2039 static void
2040 iwn_calib_reset(struct iwn_softc *sc)
2041 {
2042 	callout_reset(&sc->sc_timer_to, hz, iwn_timer_callout, sc);
2043 	sc->calib_cnt = 60;		/* do calibration every 60s */
2044 }
2045 
2046 /*
2047  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2048  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2049  */
2050 static void
2051 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2052     struct iwn_rx_data *data)
2053 {
2054 	const struct iwn_hal *hal = sc->sc_hal;
2055 	struct ifnet *ifp = sc->sc_ifp;
2056 	struct ieee80211com *ic = ifp->if_l2com;
2057 	struct iwn_rx_ring *ring = &sc->rxq;
2058 	struct ieee80211_frame *wh;
2059 	struct ieee80211_node *ni;
2060 	struct mbuf *m, *m1;
2061 	struct iwn_rx_stat *stat;
2062 	caddr_t head;
2063 	bus_addr_t paddr;
2064 	uint32_t flags;
2065 	int error, len, rssi, nf;
2066 
2067 	if (desc->type == IWN_MPDU_RX_DONE) {
2068 		/* Check for prior RX_PHY notification. */
2069 		if (!sc->last_rx_valid) {
2070 			DPRINTF(sc, IWN_DEBUG_ANY,
2071 			    "%s: missing RX_PHY\n", __func__);
2072 			ifp->if_ierrors++;
2073 			return;
2074 		}
2075 		sc->last_rx_valid = 0;
2076 		stat = &sc->last_rx_stat;
2077 	} else
2078 		stat = (struct iwn_rx_stat *)(desc + 1);
2079 
2080 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2081 
2082 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2083 		device_printf(sc->sc_dev,
2084 		    "%s: invalid rx statistic header, len %d\n",
2085 		    __func__, stat->cfg_phy_len);
2086 		ifp->if_ierrors++;
2087 		return;
2088 	}
2089 	if (desc->type == IWN_MPDU_RX_DONE) {
2090 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2091 		head = (caddr_t)(mpdu + 1);
2092 		len = le16toh(mpdu->len);
2093 	} else {
2094 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
2095 		len = le16toh(stat->len);
2096 	}
2097 
2098 	flags = le32toh(*(uint32_t *)(head + len));
2099 
2100 	/* Discard frames with a bad FCS early. */
2101 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2102 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: rx flags error %x\n",
2103 		    __func__, flags);
2104 		ifp->if_ierrors++;
2105 		return;
2106 	}
2107 	/* Discard frames that are too short. */
2108 	if (len < sizeof (*wh)) {
2109 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
2110 		    __func__, len);
2111 		ifp->if_ierrors++;
2112 		return;
2113 	}
2114 
2115 	/* XXX don't need mbuf, just dma buffer */
2116 	m1 = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
2117 	if (m1 == NULL) {
2118 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
2119 		    __func__);
2120 		ifp->if_ierrors++;
2121 		return;
2122 	}
2123 	bus_dmamap_unload(ring->data_dmat, data->map);
2124 
2125 	error = bus_dmamap_load(ring->data_dmat, data->map,
2126 	    mtod(m1, caddr_t), MJUMPAGESIZE,
2127 	    iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2128 	if (error != 0 && error != EFBIG) {
2129 		device_printf(sc->sc_dev,
2130 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
2131 		m_freem(m1);
2132 		ifp->if_ierrors++;
2133 		return;
2134 	}
2135 
2136 	m = data->m;
2137 	data->m = m1;
2138 	/* Update RX descriptor. */
2139 	ring->desc[ring->cur] = htole32(paddr >> 8);
2140 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2141 	    BUS_DMASYNC_PREWRITE);
2142 
2143 	/* Finalize mbuf. */
2144 	m->m_pkthdr.rcvif = ifp;
2145 	m->m_data = head;
2146 	m->m_pkthdr.len = m->m_len = len;
2147 
2148 	rssi = hal->get_rssi(sc, stat);
2149 
2150 	/* Grab a reference to the source node. */
2151 	wh = mtod(m, struct ieee80211_frame *);
2152 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2153 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
2154 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
2155 
2156 	if (ieee80211_radiotap_active(ic)) {
2157 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2158 
2159 		tap->wr_tsft = htole64(stat->tstamp);
2160 		tap->wr_flags = 0;
2161 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2162 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2163 		switch (stat->rate) {
2164 		/* CCK rates. */
2165 		case  10: tap->wr_rate =   2; break;
2166 		case  20: tap->wr_rate =   4; break;
2167 		case  55: tap->wr_rate =  11; break;
2168 		case 110: tap->wr_rate =  22; break;
2169 		/* OFDM rates. */
2170 		case 0xd: tap->wr_rate =  12; break;
2171 		case 0xf: tap->wr_rate =  18; break;
2172 		case 0x5: tap->wr_rate =  24; break;
2173 		case 0x7: tap->wr_rate =  36; break;
2174 		case 0x9: tap->wr_rate =  48; break;
2175 		case 0xb: tap->wr_rate =  72; break;
2176 		case 0x1: tap->wr_rate =  96; break;
2177 		case 0x3: tap->wr_rate = 108; break;
2178 		/* Unknown rate: should not happen. */
2179 		default:  tap->wr_rate =   0;
2180 		}
2181 		tap->wr_dbm_antsignal = rssi;
2182 		tap->wr_dbm_antnoise = nf;
2183 	}
2184 
2185 	/* Send the frame to the 802.11 layer. */
2186 	if (ni != NULL) {
2187 		(void) ieee80211_input(ni, m, rssi - nf, nf);
2188 		/* Node is no longer needed. */
2189 		ieee80211_free_node(ni);
2190 	} else {
2191 		(void) ieee80211_input_all(ic, m, rssi - nf, nf);
2192 	}
2193 }
2194 
2195 #if 0	/* HT */
2196 /* Process an incoming Compressed BlockAck. */
2197 static void
2198 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2199     struct iwn_rx_data *data)
2200 {
2201 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2202 	struct iwn_tx_ring *txq;
2203 
2204 	txq = &sc->txq[letoh16(ba->qid)];
2205 	/* XXX TBD */
2206 }
2207 #endif
2208 
2209 /*
2210  * Process a CALIBRATION_RESULT notification sent by the initialization
2211  * firmware on response to a CMD_CALIB_CONFIG command (5000 only.)
2212  */
2213 static void
2214 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2215     struct iwn_rx_data *data)
2216 {
2217 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2218 	int len, idx = -1;
2219 
2220 	/* Runtime firmware should not send such a notification. */
2221 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2222 		return;
2223 
2224 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2225 	len = (le32toh(desc->len) & 0x3fff) - 4;
2226 
2227 	switch (calib->code) {
2228 	case IWN5000_PHY_CALIB_DC:
2229 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2230 		    sc->hw_type == IWN_HW_REV_TYPE_6050)
2231 			idx = 0;
2232 		break;
2233 	case IWN5000_PHY_CALIB_LO:
2234 		idx = 1;
2235 		break;
2236 	case IWN5000_PHY_CALIB_TX_IQ:
2237 		idx = 2;
2238 		break;
2239 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2240 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2241 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2242 			idx = 3;
2243 		break;
2244 	case IWN5000_PHY_CALIB_BASE_BAND:
2245 		idx = 4;
2246 		break;
2247 	}
2248 	if (idx == -1)	/* Ignore other results. */
2249 		return;
2250 
2251 	/* Save calibration result. */
2252 	if (sc->calibcmd[idx].buf != NULL)
2253 		kfree(sc->calibcmd[idx].buf, M_DEVBUF);
2254 	sc->calibcmd[idx].buf = kmalloc(len, M_DEVBUF, M_INTWAIT);
2255 	if (sc->calibcmd[idx].buf == NULL) {
2256 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2257 		    "not enough memory for calibration result %d\n",
2258 		    calib->code);
2259 		return;
2260 	}
2261 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2262 	    "saving calibration result code=%d len=%d\n", calib->code, len);
2263 	sc->calibcmd[idx].len = len;
2264 	memcpy(sc->calibcmd[idx].buf, calib, len);
2265 }
2266 
2267 /*
2268  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2269  * The latter is sent by the firmware after each received beacon.
2270  */
2271 static void
2272 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2273     struct iwn_rx_data *data)
2274 {
2275 	const struct iwn_hal *hal = sc->sc_hal;
2276 	struct ifnet *ifp = sc->sc_ifp;
2277 	struct ieee80211com *ic = ifp->if_l2com;
2278 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2279 	struct iwn_calib_state *calib = &sc->calib;
2280 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2281 	int temp;
2282 
2283 	/* Beacon stats are meaningful only when associated and not scanning. */
2284 	if (vap->iv_state != IEEE80211_S_RUN ||
2285 	    (ic->ic_flags & IEEE80211_F_SCAN))
2286 		return;
2287 
2288 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2289 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: cmd %d\n", __func__, desc->type);
2290 	iwn_calib_reset(sc);	/* Reset TX power calibration timeout. */
2291 
2292 	/* Test if temperature has changed. */
2293 	if (stats->general.temp != sc->rawtemp) {
2294 		/* Convert "raw" temperature to degC. */
2295 		sc->rawtemp = stats->general.temp;
2296 		temp = hal->get_temperature(sc);
2297 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
2298 		    __func__, temp);
2299 
2300 		/* Update TX power if need be (4965AGN only.) */
2301 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2302 			iwn4965_power_calibration(sc, temp);
2303 	}
2304 
2305 	if (desc->type != IWN_BEACON_STATISTICS)
2306 		return;	/* Reply to a statistics request. */
2307 
2308 	sc->noise = iwn_get_noise(&stats->rx.general);
2309 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
2310 
2311 	/* Test that RSSI and noise are present in stats report. */
2312 	if (le32toh(stats->rx.general.flags) != 1) {
2313 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
2314 		    "received statistics without RSSI");
2315 		return;
2316 	}
2317 
2318 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2319 		iwn_collect_noise(sc, &stats->rx.general);
2320 	else if (calib->state == IWN_CALIB_STATE_RUN)
2321 		iwn_tune_sensitivity(sc, &stats->rx);
2322 }
2323 
2324 /*
2325  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2326  * and 5000 adapters have different incompatible TX status formats.
2327  */
2328 static void
2329 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2330     struct iwn_rx_data *data)
2331 {
2332 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2333 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2334 
2335 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2336 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2337 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2338 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2339 	    le32toh(stat->status));
2340 
2341 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2342 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2343 }
2344 
2345 static void
2346 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2347     struct iwn_rx_data *data)
2348 {
2349 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2350 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2351 
2352 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2353 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2354 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2355 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2356 	    le32toh(stat->status));
2357 
2358 #ifdef notyet
2359 	/* Reset TX scheduler slot. */
2360 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2361 #endif
2362 
2363 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2364 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2365 }
2366 
2367 /*
2368  * Adapter-independent backend for TX_DONE firmware notifications.
2369  */
2370 static void
2371 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2372     uint8_t status)
2373 {
2374 	struct ifnet *ifp = sc->sc_ifp;
2375 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2376 	struct iwn_tx_data *data = &ring->data[desc->idx];
2377 	struct mbuf *m;
2378 	struct ieee80211_node *ni;
2379 	struct ieee80211vap *vap;
2380 
2381 	KASSERT(data->ni != NULL, ("no node"));
2382 
2383 	/* Unmap and free mbuf. */
2384 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2385 	bus_dmamap_unload(ring->data_dmat, data->map);
2386 	m = data->m, data->m = NULL;
2387 	ni = data->ni, data->ni = NULL;
2388 	vap = ni->ni_vap;
2389 
2390 	if (m->m_flags & M_TXCB) {
2391 		/*
2392 		 * Channels marked for "radar" require traffic to be received
2393 		 * to unlock before we can transmit.  Until traffic is seen
2394 		 * any attempt to transmit is returned immediately with status
2395 		 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
2396 		 * happen on first authenticate after scanning.  To workaround
2397 		 * this we ignore a failure of this sort in AUTH state so the
2398 		 * 802.11 layer will fall back to using a timeout to wait for
2399 		 * the AUTH reply.  This allows the firmware time to see
2400 		 * traffic so a subsequent retry of AUTH succeeds.  It's
2401 		 * unclear why the firmware does not maintain state for
2402 		 * channels recently visited as this would allow immediate
2403 		 * use of the channel after a scan (where we see traffic).
2404 		 */
2405 		if (status == IWN_TX_FAIL_TX_LOCKED &&
2406 		    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
2407 			ieee80211_process_callback(ni, m, 0);
2408 		else
2409 			ieee80211_process_callback(ni, m,
2410 			    (status & IWN_TX_FAIL) != 0);
2411 	}
2412 
2413 	/*
2414 	 * Update rate control statistics for the node.
2415 	 */
2416 	if (status & 0x80) {
2417 		ifp->if_oerrors++;
2418 		ieee80211_ratectl_tx_complete(vap, ni,
2419 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2420 	} else {
2421 		ieee80211_ratectl_tx_complete(vap, ni,
2422 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2423 	}
2424 	m_freem(m);
2425 	ieee80211_free_node(ni);
2426 
2427 	sc->sc_tx_timer = 0;
2428 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2429 		sc->qfullmsk &= ~(1 << ring->qid);
2430 		if (sc->qfullmsk == 0 &&
2431 		    (ifp->if_flags & IFF_OACTIVE)) {
2432 			ifp->if_flags &= ~IFF_OACTIVE;
2433 			iwn_start_locked(ifp);
2434 		}
2435 	}
2436 }
2437 
2438 /*
2439  * Process a "command done" firmware notification.  This is where we wakeup
2440  * processes waiting for a synchronous command completion.
2441  */
2442 static void
2443 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2444 {
2445 	struct iwn_tx_ring *ring = &sc->txq[4];
2446 	struct iwn_tx_data *data;
2447 
2448 	if ((desc->qid & 0xf) != 4)
2449 		return;	/* Not a command ack. */
2450 
2451 	data = &ring->data[desc->idx];
2452 
2453 	/* If the command was mapped in an mbuf, free it. */
2454 	if (data->m != NULL) {
2455 		bus_dmamap_unload(ring->data_dmat, data->map);
2456 		m_freem(data->m);
2457 		data->m = NULL;
2458 	}
2459 	wakeup(&ring->desc[desc->idx]);
2460 }
2461 
2462 /*
2463  * Process an INT_FH_RX or INT_SW_RX interrupt.
2464  */
2465 static void
2466 iwn_notif_intr(struct iwn_softc *sc)
2467 {
2468 	struct ifnet *ifp = sc->sc_ifp;
2469 	struct ieee80211com *ic = ifp->if_l2com;
2470 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2471 	uint16_t hw;
2472 
2473 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
2474 	    BUS_DMASYNC_POSTREAD);
2475 
2476 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2477 	while (sc->rxq.cur != hw) {
2478 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2479 		struct iwn_rx_desc *desc;
2480 
2481 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2482 		    BUS_DMASYNC_POSTREAD);
2483 		desc = mtod(data->m, struct iwn_rx_desc *);
2484 
2485 		DPRINTF(sc, IWN_DEBUG_RECV,
2486 		    "%s: qid %x idx %d flags %x type %d(%s) len %d\n",
2487 		    __func__, desc->qid & 0xf, desc->idx, desc->flags,
2488 		    desc->type, iwn_intr_str(desc->type),
2489 		    le16toh(desc->len));
2490 
2491 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2492 			iwn_cmd_done(sc, desc);
2493 
2494 		switch (desc->type) {
2495 		case IWN_RX_PHY:
2496 			iwn_rx_phy(sc, desc, data);
2497 			break;
2498 
2499 		case IWN_RX_DONE:		/* 4965AGN only. */
2500 		case IWN_MPDU_RX_DONE:
2501 			/* An 802.11 frame has been received. */
2502 			iwn_rx_done(sc, desc, data);
2503 			break;
2504 
2505 #if 0	/* HT */
2506 		case IWN_RX_COMPRESSED_BA:
2507 			/* A Compressed BlockAck has been received. */
2508 			iwn_rx_compressed_ba(sc, desc, data);
2509 			break;
2510 #endif
2511 
2512 		case IWN_TX_DONE:
2513 			/* An 802.11 frame has been transmitted. */
2514 			sc->sc_hal->tx_done(sc, desc, data);
2515 			break;
2516 
2517 		case IWN_RX_STATISTICS:
2518 		case IWN_BEACON_STATISTICS:
2519 			iwn_rx_statistics(sc, desc, data);
2520 			break;
2521 
2522 		case IWN_BEACON_MISSED:
2523 		{
2524 			struct iwn_beacon_missed *miss =
2525 			    (struct iwn_beacon_missed *)(desc + 1);
2526 			int misses;
2527 
2528 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2529 			    BUS_DMASYNC_POSTREAD);
2530 			misses = le32toh(miss->consecutive);
2531 
2532 			/* XXX not sure why we're notified w/ zero */
2533 			if (misses == 0)
2534 				break;
2535 			DPRINTF(sc, IWN_DEBUG_STATE,
2536 			    "%s: beacons missed %d/%d\n", __func__,
2537 			    misses, le32toh(miss->total));
2538 
2539 			/*
2540 			 * If more than 5 consecutive beacons are missed,
2541 			 * reinitialize the sensitivity state machine.
2542 			 */
2543 			if (vap->iv_state == IEEE80211_S_RUN && misses > 5)
2544 				(void) iwn_init_sensitivity(sc);
2545 			if (misses >= vap->iv_bmissthreshold)
2546 				ieee80211_beacon_miss(ic);
2547 			break;
2548 		}
2549 		case IWN_UC_READY:
2550 		{
2551 			struct iwn_ucode_info *uc =
2552 			    (struct iwn_ucode_info *)(desc + 1);
2553 
2554 			/* The microcontroller is ready. */
2555 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2556 			    BUS_DMASYNC_POSTREAD);
2557 			DPRINTF(sc, IWN_DEBUG_RESET,
2558 			    "microcode alive notification version=%d.%d "
2559 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2560 			    uc->subtype, le32toh(uc->valid));
2561 
2562 			if (le32toh(uc->valid) != 1) {
2563 				device_printf(sc->sc_dev,
2564 				    "microcontroller initialization failed");
2565 				break;
2566 			}
2567 			if (uc->subtype == IWN_UCODE_INIT) {
2568 				/* Save microcontroller report. */
2569 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2570 			}
2571 			/* Save the address of the error log in SRAM. */
2572 			sc->errptr = le32toh(uc->errptr);
2573 			break;
2574 		}
2575 		case IWN_STATE_CHANGED:
2576 		{
2577 			uint32_t *status = (uint32_t *)(desc + 1);
2578 
2579 			/*
2580 			 * State change allows hardware switch change to be
2581 			 * noted. However, we handle this in iwn_intr as we
2582 			 * get both the enable/disble intr.
2583 			 */
2584 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2585 			    BUS_DMASYNC_POSTREAD);
2586 			DPRINTF(sc, IWN_DEBUG_INTR, "state changed to %x\n",
2587 			    le32toh(*status));
2588 			break;
2589 		}
2590 		case IWN_START_SCAN:
2591 		{
2592 			struct iwn_start_scan *scan =
2593 			    (struct iwn_start_scan *)(desc + 1);
2594 
2595 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2596 			    BUS_DMASYNC_POSTREAD);
2597 			DPRINTF(sc, IWN_DEBUG_ANY,
2598 			    "%s: scanning channel %d status %x\n",
2599 			    __func__, scan->chan, le32toh(scan->status));
2600 			break;
2601 		}
2602 		case IWN_STOP_SCAN:
2603 		{
2604 			struct iwn_stop_scan *scan =
2605 			    (struct iwn_stop_scan *)(desc + 1);
2606 
2607 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2608 			    BUS_DMASYNC_POSTREAD);
2609 			DPRINTF(sc, IWN_DEBUG_STATE,
2610 			    "scan finished nchan=%d status=%d chan=%d\n",
2611 			    scan->nchan, scan->status, scan->chan);
2612 
2613 			ieee80211_scan_next(vap);
2614 			break;
2615 		}
2616 		case IWN5000_CALIBRATION_RESULT:
2617 			iwn5000_rx_calib_results(sc, desc, data);
2618 			break;
2619 
2620 		case IWN5000_CALIBRATION_DONE:
2621 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2622 			wakeup(sc);
2623 			break;
2624 		}
2625 
2626 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2627 	}
2628 
2629 	/* Tell the firmware what we have processed. */
2630 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2631 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2632 }
2633 
2634 /*
2635  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2636  * from power-down sleep mode.
2637  */
2638 static void
2639 iwn_wakeup_intr(struct iwn_softc *sc)
2640 {
2641 	int qid;
2642 
2643 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
2644 	    __func__);
2645 
2646 	/* Wakeup RX and TX rings. */
2647 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2648 	for (qid = 0; qid < sc->sc_hal->ntxqs; qid++) {
2649 		struct iwn_tx_ring *ring = &sc->txq[qid];
2650 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2651 	}
2652 }
2653 
2654 static void
2655 iwn_rftoggle_intr(struct iwn_softc *sc)
2656 {
2657 	struct ifnet *ifp = sc->sc_ifp;
2658 	struct ieee80211com *ic = ifp->if_l2com;
2659 	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
2660 
2661 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
2662 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2663 	if (tmp & IWN_GP_CNTRL_RFKILL)
2664 		ieee80211_runtask(ic, &sc->sc_radioon_task);
2665 	else
2666 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
2667 }
2668 
2669 /*
2670  * Dump the error log of the firmware when a firmware panic occurs.  Although
2671  * we can't debug the firmware because it is neither open source nor free, it
2672  * can help us to identify certain classes of problems.
2673  */
2674 static void
2675 iwn_fatal_intr(struct iwn_softc *sc)
2676 {
2677 	const struct iwn_hal *hal = sc->sc_hal;
2678 	struct iwn_fw_dump dump;
2679 	int i;
2680 
2681 	/* Force a complete recalibration on next init. */
2682 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2683 
2684 	/* Check that the error log address is valid. */
2685 	if (sc->errptr < IWN_FW_DATA_BASE ||
2686 	    sc->errptr + sizeof (dump) >
2687 	    IWN_FW_DATA_BASE + hal->fw_data_maxsz) {
2688 		kprintf("%s: bad firmware error log address 0x%08x\n",
2689 		    __func__, sc->errptr);
2690 		return;
2691 	}
2692 	if (iwn_nic_lock(sc) != 0) {
2693 		kprintf("%s: could not read firmware error log\n",
2694 		    __func__);
2695 		return;
2696 	}
2697 	/* Read firmware error log from SRAM. */
2698 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2699 	    sizeof (dump) / sizeof (uint32_t));
2700 	iwn_nic_unlock(sc);
2701 
2702 	if (dump.valid == 0) {
2703 		kprintf("%s: firmware error log is empty\n",
2704 		    __func__);
2705 		return;
2706 	}
2707 	kprintf("firmware error log:\n");
2708 	kprintf("  error type      = \"%s\" (0x%08X)\n",
2709 	    (dump.id < NELEM(iwn_fw_errmsg)) ?
2710 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2711 	    dump.id);
2712 	kprintf("  program counter = 0x%08X\n", dump.pc);
2713 	kprintf("  source line     = 0x%08X\n", dump.src_line);
2714 	kprintf("  error data      = 0x%08X%08X\n",
2715 	    dump.error_data[0], dump.error_data[1]);
2716 	kprintf("  branch link     = 0x%08X%08X\n",
2717 	    dump.branch_link[0], dump.branch_link[1]);
2718 	kprintf("  interrupt link  = 0x%08X%08X\n",
2719 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2720 	kprintf("  time            = %u\n", dump.time[0]);
2721 
2722 	/* Dump driver status (TX and RX rings) while we're here. */
2723 	kprintf("driver status:\n");
2724 	for (i = 0; i < hal->ntxqs; i++) {
2725 		struct iwn_tx_ring *ring = &sc->txq[i];
2726 		kprintf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2727 		    i, ring->qid, ring->cur, ring->queued);
2728 	}
2729 	kprintf("  rx ring: cur=%d\n", sc->rxq.cur);
2730 }
2731 
2732 static void
2733 iwn_intr(void *arg)
2734 {
2735 	struct iwn_softc *sc = arg;
2736 	struct ifnet *ifp = sc->sc_ifp;
2737 	uint32_t r1, r2, tmp;
2738 
2739 	/* Disable interrupts. */
2740 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2741 
2742 	/* Read interrupts from ICT (fast) or from registers (slow). */
2743 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2744 		tmp = 0;
2745 		while (sc->ict[sc->ict_cur] != 0) {
2746 			tmp |= sc->ict[sc->ict_cur];
2747 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
2748 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2749 		}
2750 		tmp = le32toh(tmp);
2751 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
2752 			tmp = 0;
2753 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
2754 			tmp |= 0x8000;
2755 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2756 		r2 = 0;	/* Unused. */
2757 	} else {
2758 		r1 = IWN_READ(sc, IWN_INT);
2759 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2760 			return;	/* Hardware gone! */
2761 		r2 = IWN_READ(sc, IWN_FH_INT);
2762 	}
2763 
2764 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=%x reg2=%x\n", r1, r2);
2765 
2766 	if (r1 == 0 && r2 == 0)
2767 		goto done;	/* Interrupt not for us. */
2768 
2769 	/* Acknowledge interrupts. */
2770 	IWN_WRITE(sc, IWN_INT, r1);
2771 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2772 		IWN_WRITE(sc, IWN_FH_INT, r2);
2773 
2774 	if (r1 & IWN_INT_RF_TOGGLED) {
2775 		iwn_rftoggle_intr(sc);
2776 		goto done;
2777 	}
2778 	if (r1 & IWN_INT_CT_REACHED) {
2779 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
2780 		    __func__);
2781 	}
2782 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2783 		iwn_fatal_intr(sc);
2784 		ifp->if_flags &= ~IFF_UP;
2785 		iwn_stop_locked(sc);
2786 		goto done;
2787 	}
2788 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2789 	    (r2 & IWN_FH_INT_RX)) {
2790 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2791 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2792 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2793 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2794 			    IWN_INT_PERIODIC_DIS);
2795 			iwn_notif_intr(sc);
2796 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2797 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2798 				    IWN_INT_PERIODIC_ENA);
2799 			}
2800 		} else
2801 			iwn_notif_intr(sc);
2802 	}
2803 
2804 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2805 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
2806 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2807 		wakeup(sc);	/* FH DMA transfer completed. */
2808 	}
2809 
2810 	if (r1 & IWN_INT_ALIVE)
2811 		wakeup(sc);	/* Firmware is alive. */
2812 
2813 	if (r1 & IWN_INT_WAKEUP)
2814 		iwn_wakeup_intr(sc);
2815 
2816 done:
2817 	/* Re-enable interrupts. */
2818 	if (ifp->if_flags & IFF_UP)
2819 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2820 }
2821 
2822 /*
2823  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2824  * 5000 adapters use a slightly different format.)
2825  */
2826 static void
2827 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2828     uint16_t len)
2829 {
2830 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2831 
2832 	*w = htole16(len + 8);
2833 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2834 	    BUS_DMASYNC_PREWRITE);
2835 	if (idx < IWN_SCHED_WINSZ) {
2836 		*(w + IWN_TX_RING_COUNT) = *w;
2837 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2838 		    BUS_DMASYNC_PREWRITE);
2839 	}
2840 }
2841 
2842 static void
2843 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2844     uint16_t len)
2845 {
2846 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2847 
2848 	*w = htole16(id << 12 | (len + 8));
2849 
2850 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2851 	    BUS_DMASYNC_PREWRITE);
2852 	if (idx < IWN_SCHED_WINSZ) {
2853 		*(w + IWN_TX_RING_COUNT) = *w;
2854 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2855 		    BUS_DMASYNC_PREWRITE);
2856 	}
2857 }
2858 
2859 #ifdef notyet
2860 static void
2861 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2862 {
2863 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2864 
2865 	*w = (*w & htole16(0xf000)) | htole16(1);
2866 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2867 	    BUS_DMASYNC_PREWRITE);
2868 	if (idx < IWN_SCHED_WINSZ) {
2869 		*(w + IWN_TX_RING_COUNT) = *w;
2870 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2871 		    BUS_DMASYNC_PREWRITE);
2872 	}
2873 }
2874 #endif
2875 
2876 static uint8_t
2877 iwn_plcp_signal(int rate) {
2878 	int i;
2879 
2880 	for (i = 0; i < IWN_RIDX_MAX + 1; i++) {
2881 		if (rate == iwn_rates[i].rate)
2882 			return i;
2883 	}
2884 
2885 	return 0;
2886 }
2887 
2888 static int
2889 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
2890     struct iwn_tx_ring *ring)
2891 {
2892 	const struct iwn_hal *hal = sc->sc_hal;
2893 	const struct ieee80211_txparam *tp;
2894 	const struct iwn_rate *rinfo;
2895 	struct ieee80211vap *vap = ni->ni_vap;
2896 	struct ieee80211com *ic = ni->ni_ic;
2897 	struct iwn_node *wn = (void *)ni;
2898 	struct iwn_tx_desc *desc;
2899 	struct iwn_tx_data *data;
2900 	struct iwn_tx_cmd *cmd;
2901 	struct iwn_cmd_data *tx;
2902 	struct ieee80211_frame *wh;
2903 	struct ieee80211_key *k = NULL;
2904 	struct mbuf *mnew;
2905 	bus_dma_segment_t segs[IWN_MAX_SCATTER];
2906 	uint32_t flags;
2907 	u_int hdrlen;
2908 	int totlen, error, pad, nsegs = 0, i, rate;
2909 	uint8_t ridx, type, txant;
2910 
2911 	wh = mtod(m, struct ieee80211_frame *);
2912 	hdrlen = ieee80211_anyhdrsize(wh);
2913 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2914 
2915 	desc = &ring->desc[ring->cur];
2916 	data = &ring->data[ring->cur];
2917 
2918 	/* Choose a TX rate index. */
2919 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
2920 	if (type == IEEE80211_FC0_TYPE_MGT)
2921 		rate = tp->mgmtrate;
2922 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
2923 		rate = tp->mcastrate;
2924 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2925 		rate = tp->ucastrate;
2926 	else {
2927 		/* XXX pass pktlen */
2928 		ieee80211_ratectl_rate(ni, NULL, 0);
2929 
2930 		rate = ni->ni_txrate;
2931 	}
2932 	ridx = iwn_plcp_signal(rate);
2933 	rinfo = &iwn_rates[ridx];
2934 
2935 	/* Encrypt the frame if need be. */
2936 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2937 		k = ieee80211_crypto_encap(ni, m);
2938 		if (k == NULL) {
2939 			m_freem(m);
2940 			return ENOBUFS;
2941 		}
2942 		/* Packet header may have moved, reset our local pointer. */
2943 		wh = mtod(m, struct ieee80211_frame *);
2944 	}
2945 	totlen = m->m_pkthdr.len;
2946 
2947 	if (ieee80211_radiotap_active_vap(vap)) {
2948 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2949 
2950 		tap->wt_flags = 0;
2951 		tap->wt_rate = rinfo->rate;
2952 		if (k != NULL)
2953 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2954 
2955 		ieee80211_radiotap_tx(vap, m);
2956 	}
2957 
2958 	/* Prepare TX firmware command. */
2959 	cmd = &ring->cmd[ring->cur];
2960 	cmd->code = IWN_CMD_TX_DATA;
2961 	cmd->flags = 0;
2962 	cmd->qid = ring->qid;
2963 	cmd->idx = ring->cur;
2964 
2965 	tx = (struct iwn_cmd_data *)cmd->data;
2966 	/* NB: No need to clear tx, all fields are reinitialized here. */
2967 	tx->scratch = 0;	/* clear "scratch" area */
2968 
2969 	flags = 0;
2970 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1))
2971 		flags |= IWN_TX_NEED_ACK;
2972 	if ((wh->i_fc[0] &
2973 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2974 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2975 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
2976 
2977 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2978 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
2979 
2980 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2981 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2982 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2983 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2984 			flags |= IWN_TX_NEED_RTS;
2985 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2986 		    ridx >= IWN_RIDX_OFDM6) {
2987 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2988 				flags |= IWN_TX_NEED_CTS;
2989 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2990 				flags |= IWN_TX_NEED_RTS;
2991 		}
2992 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2993 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2994 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
2995 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2996 				flags |= IWN_TX_NEED_PROTECTION;
2997 			} else
2998 				flags |= IWN_TX_FULL_TXOP;
2999 		}
3000 	}
3001 
3002 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3003 	    type != IEEE80211_FC0_TYPE_DATA)
3004 		tx->id = hal->broadcast_id;
3005 	else
3006 		tx->id = wn->id;
3007 
3008 	if (type == IEEE80211_FC0_TYPE_MGT) {
3009 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3010 
3011 		/* Tell HW to set timestamp in probe responses. */
3012 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3013 			flags |= IWN_TX_INSERT_TSTAMP;
3014 
3015 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3016 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3017 			tx->timeout = htole16(3);
3018 		else
3019 			tx->timeout = htole16(2);
3020 	} else
3021 		tx->timeout = htole16(0);
3022 
3023 	if (hdrlen & 3) {
3024 		/* First segment length must be a multiple of 4. */
3025 		flags |= IWN_TX_NEED_PADDING;
3026 		pad = 4 - (hdrlen & 3);
3027 	} else
3028 		pad = 0;
3029 
3030 	tx->len = htole16(totlen);
3031 	tx->tid = 0;
3032 	tx->rts_ntries = 60;
3033 	tx->data_ntries = 15;
3034 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3035 	tx->plcp = rinfo->plcp;
3036 	tx->rflags = rinfo->flags;
3037 	if (tx->id == hal->broadcast_id) {
3038 		/* Group or management frame. */
3039 		tx->linkq = 0;
3040 		/* XXX Alternate between antenna A and B? */
3041 		txant = IWN_LSB(sc->txchainmask);
3042 		tx->rflags |= IWN_RFLAG_ANT(txant);
3043 	} else {
3044 		tx->linkq = IWN_RIDX_OFDM54 - ridx;
3045 		flags |= IWN_TX_LINKQ;	/* enable MRR */
3046 	}
3047 
3048 	/* Set physical address of "scratch area". */
3049 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3050 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3051 
3052 	/* Copy 802.11 header in TX command. */
3053 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3054 
3055 	/* Trim 802.11 header. */
3056 	m_adj(m, hdrlen);
3057 	tx->security = 0;
3058 	tx->flags = htole32(flags);
3059 
3060 	if (m->m_len > 0) {
3061 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
3062 		    m, segs, IWN_MAX_SCATTER - 1, &nsegs, BUS_DMA_NOWAIT);
3063 		if (error == EFBIG) {
3064 			/* too many fragments, linearize */
3065 			mnew = m_defrag(m, MB_DONTWAIT);
3066 			if (mnew == NULL) {
3067 				device_printf(sc->sc_dev,
3068 				    "%s: could not defrag mbuf\n", __func__);
3069 				m_freem(m);
3070 				return ENOBUFS;
3071 			}
3072 			m = mnew;
3073 			error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
3074 			    data->map, m, segs, IWN_MAX_SCATTER - 1, &nsegs, BUS_DMA_NOWAIT);
3075 		}
3076 		if (error != 0) {
3077 			device_printf(sc->sc_dev,
3078 			    "%s: bus_dmamap_load_mbuf_segment failed, error %d\n",
3079 			    __func__, error);
3080 			m_freem(m);
3081 			return error;
3082 		}
3083 	}
3084 
3085 	data->m = m;
3086 	data->ni = ni;
3087 
3088 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3089 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3090 
3091 	/* Fill TX descriptor. */
3092 	desc->nsegs = 1 + nsegs;
3093 	/* First DMA segment is used by the TX command. */
3094 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3095 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3096 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3097 	/* Other DMA segments are for data payload. */
3098 	for (i = 1; i <= nsegs; i++) {
3099 		desc->segs[i].addr = htole32(IWN_LOADDR(segs[i - 1].ds_addr));
3100 		desc->segs[i].len  = htole16(IWN_HIADDR(segs[i - 1].ds_addr) |
3101 		    segs[i - 1].ds_len << 4);
3102 	}
3103 
3104 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3105 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3106 	    BUS_DMASYNC_PREWRITE);
3107 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3108 	    BUS_DMASYNC_PREWRITE);
3109 
3110 #ifdef notyet
3111 	/* Update TX scheduler. */
3112 	hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3113 #endif
3114 
3115 	/* Kick TX ring. */
3116 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3117 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3118 
3119 	/* Mark TX ring as full if we reach a certain threshold. */
3120 	if (++ring->queued > IWN_TX_RING_HIMARK)
3121 		sc->qfullmsk |= 1 << ring->qid;
3122 
3123 	return 0;
3124 }
3125 
3126 static int
3127 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
3128     struct ieee80211_node *ni, struct iwn_tx_ring *ring,
3129     const struct ieee80211_bpf_params *params)
3130 {
3131 	const struct iwn_hal *hal = sc->sc_hal;
3132 	const struct iwn_rate *rinfo;
3133 	struct ifnet *ifp = sc->sc_ifp;
3134 	struct ieee80211vap *vap = ni->ni_vap;
3135 	struct ieee80211com *ic = ifp->if_l2com;
3136 	struct iwn_tx_cmd *cmd;
3137 	struct iwn_cmd_data *tx;
3138 	struct ieee80211_frame *wh;
3139 	struct iwn_tx_desc *desc;
3140 	struct iwn_tx_data *data;
3141 	struct mbuf *mnew;
3142 	bus_addr_t paddr;
3143 	bus_dma_segment_t segs[IWN_MAX_SCATTER];
3144 	uint32_t flags;
3145 	u_int hdrlen;
3146 	int totlen, error, pad, nsegs = 0, i, rate;
3147 	uint8_t ridx, type, txant;
3148 
3149 	wh = mtod(m, struct ieee80211_frame *);
3150 	hdrlen = ieee80211_anyhdrsize(wh);
3151 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3152 
3153 	desc = &ring->desc[ring->cur];
3154 	data = &ring->data[ring->cur];
3155 
3156 	/* Choose a TX rate index. */
3157 	rate = params->ibp_rate0;
3158 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3159 		/* XXX fall back to mcast/mgmt rate? */
3160 		m_freem(m);
3161 		return EINVAL;
3162 	}
3163 	ridx = iwn_plcp_signal(rate);
3164 	rinfo = &iwn_rates[ridx];
3165 
3166 	totlen = m->m_pkthdr.len;
3167 
3168 	/* Prepare TX firmware command. */
3169 	cmd = &ring->cmd[ring->cur];
3170 	cmd->code = IWN_CMD_TX_DATA;
3171 	cmd->flags = 0;
3172 	cmd->qid = ring->qid;
3173 	cmd->idx = ring->cur;
3174 
3175 	tx = (struct iwn_cmd_data *)cmd->data;
3176 	/* NB: No need to clear tx, all fields are reinitialized here. */
3177 	tx->scratch = 0;	/* clear "scratch" area */
3178 
3179 	flags = 0;
3180 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
3181 		flags |= IWN_TX_NEED_ACK;
3182 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
3183 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3184 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3185 			flags &= ~IWN_TX_NEED_RTS;
3186 			flags |= IWN_TX_NEED_PROTECTION;
3187 		} else
3188 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
3189 	}
3190 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
3191 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3192 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3193 			flags &= ~IWN_TX_NEED_CTS;
3194 			flags |= IWN_TX_NEED_PROTECTION;
3195 		} else
3196 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
3197 	}
3198 	if (type == IEEE80211_FC0_TYPE_MGT) {
3199 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3200 
3201 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3202 			flags |= IWN_TX_INSERT_TSTAMP;
3203 
3204 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3205 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3206 			tx->timeout = htole16(3);
3207 		else
3208 			tx->timeout = htole16(2);
3209 	} else
3210 		tx->timeout = htole16(0);
3211 
3212 	if (hdrlen & 3) {
3213 		/* First segment length must be a multiple of 4. */
3214 		flags |= IWN_TX_NEED_PADDING;
3215 		pad = 4 - (hdrlen & 3);
3216 	} else
3217 		pad = 0;
3218 
3219 	if (ieee80211_radiotap_active_vap(vap)) {
3220 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3221 
3222 		tap->wt_flags = 0;
3223 		tap->wt_rate = rate;
3224 
3225 		ieee80211_radiotap_tx(vap, m);
3226 	}
3227 
3228 	tx->len = htole16(totlen);
3229 	tx->tid = 0;
3230 	tx->id = hal->broadcast_id;
3231 	tx->rts_ntries = params->ibp_try1;
3232 	tx->data_ntries = params->ibp_try0;
3233 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3234 	tx->plcp = rinfo->plcp;
3235 	tx->rflags = rinfo->flags;
3236 	/* Group or management frame. */
3237 	tx->linkq = 0;
3238 	txant = IWN_LSB(sc->txchainmask);
3239 	tx->rflags |= IWN_RFLAG_ANT(txant);
3240 	/* Set physical address of "scratch area". */
3241 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
3242 	tx->loaddr = htole32(IWN_LOADDR(paddr));
3243 	tx->hiaddr = IWN_HIADDR(paddr);
3244 
3245 	/* Copy 802.11 header in TX command. */
3246 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3247 
3248 	/* Trim 802.11 header. */
3249 	m_adj(m, hdrlen);
3250 	tx->security = 0;
3251 	tx->flags = htole32(flags);
3252 
3253 	if (m->m_len > 0) {
3254 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
3255 		    m, segs, IWN_MAX_SCATTER - 1, &nsegs, BUS_DMA_NOWAIT);
3256 		if (error == EFBIG) {
3257 			/* Too many fragments, linearize. */
3258 			mnew = m_defrag(m, MB_DONTWAIT);
3259 			if (mnew == NULL) {
3260 				device_printf(sc->sc_dev,
3261 				    "%s: could not defrag mbuf\n", __func__);
3262 				m_freem(m);
3263 				return ENOBUFS;
3264 			}
3265 			m = mnew;
3266 			error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
3267 			    data->map, m, segs, IWN_MAX_SCATTER - 1, &nsegs, BUS_DMA_NOWAIT);
3268 		}
3269 		if (error != 0) {
3270 			device_printf(sc->sc_dev,
3271 			    "%s: bus_dmamap_load_mbuf_segment failed, error %d\n",
3272 			    __func__, error);
3273 			m_freem(m);
3274 			return error;
3275 		}
3276 	}
3277 
3278 	data->m = m;
3279 	data->ni = ni;
3280 
3281 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3282 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3283 
3284 	/* Fill TX descriptor. */
3285 	desc->nsegs = 1 + nsegs;
3286 	/* First DMA segment is used by the TX command. */
3287 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3288 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3289 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3290 	/* Other DMA segments are for data payload. */
3291 	for (i = 1; i <= nsegs; i++) {
3292 		desc->segs[i].addr = htole32(IWN_LOADDR(segs[i - 1].ds_addr));
3293 		desc->segs[i].len  = htole16(IWN_HIADDR(segs[i - 1].ds_addr) |
3294 		    segs[i - 1].ds_len << 4);
3295 	}
3296 
3297 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3298 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3299 	    BUS_DMASYNC_PREWRITE);
3300 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3301 	    BUS_DMASYNC_PREWRITE);
3302 
3303 #ifdef notyet
3304 	/* Update TX scheduler. */
3305 	hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3306 #endif
3307 
3308 	/* Kick TX ring. */
3309 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3310 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3311 
3312 	/* Mark TX ring as full if we reach a certain threshold. */
3313 	if (++ring->queued > IWN_TX_RING_HIMARK)
3314 		sc->qfullmsk |= 1 << ring->qid;
3315 
3316 	return 0;
3317 }
3318 
3319 static int
3320 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3321 	const struct ieee80211_bpf_params *params)
3322 {
3323 	struct ieee80211com *ic = ni->ni_ic;
3324 	struct ifnet *ifp = ic->ic_ifp;
3325 	struct iwn_softc *sc = ifp->if_softc;
3326 	struct iwn_tx_ring *txq;
3327 	int error = 0;
3328 
3329 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
3330 		ieee80211_free_node(ni);
3331 		m_freem(m);
3332 		return ENETDOWN;
3333 	}
3334 
3335 	if (params == NULL)
3336 		txq = &sc->txq[M_WME_GETAC(m)];
3337 	else
3338 		txq = &sc->txq[params->ibp_pri & 3];
3339 
3340 	if (params == NULL) {
3341 		/*
3342 		 * Legacy path; interpret frame contents to decide
3343 		 * precisely how to send the frame.
3344 		 */
3345 		error = iwn_tx_data(sc, m, ni, txq);
3346 	} else {
3347 		/*
3348 		 * Caller supplied explicit parameters to use in
3349 		 * sending the frame.
3350 		 */
3351 		error = iwn_tx_data_raw(sc, m, ni, txq, params);
3352 	}
3353 	if (error != 0) {
3354 		/* NB: m is reclaimed on tx failure */
3355 		ieee80211_free_node(ni);
3356 		ifp->if_oerrors++;
3357 	}
3358 	return error;
3359 }
3360 
3361 static void
3362 iwn_start(struct ifnet *ifp)
3363 {
3364 	struct iwn_softc *sc;
3365 
3366 	sc = ifp->if_softc;
3367 
3368 	wlan_serialize_enter();
3369 	iwn_start_locked(ifp);
3370 	wlan_serialize_exit();
3371 }
3372 
3373 static void
3374 iwn_start_locked(struct ifnet *ifp)
3375 {
3376 	struct iwn_softc *sc = ifp->if_softc;
3377 	struct ieee80211_node *ni;
3378 	struct iwn_tx_ring *txq;
3379 	struct mbuf *m;
3380 	int pri;
3381 
3382 	for (;;) {
3383 		if (sc->qfullmsk != 0) {
3384 			ifp->if_flags |= IFF_OACTIVE;
3385 			break;
3386 		}
3387 		m = ifq_dequeue(&ifp->if_snd, NULL);
3388 		if (m == NULL)
3389 			break;
3390 		KKASSERT(M_TRAILINGSPACE(m) >= 0);
3391 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3392 		pri = M_WME_GETAC(m);
3393 		txq = &sc->txq[pri];
3394 		if (iwn_tx_data(sc, m, ni, txq) != 0) {
3395 			ifp->if_oerrors++;
3396 			ieee80211_free_node(ni);
3397 			break;
3398 		}
3399 		sc->sc_tx_timer = 5;
3400 	}
3401 }
3402 
3403 static void
3404 iwn_watchdog(struct iwn_softc *sc)
3405 {
3406 	if (sc->sc_tx_timer > 0 && --sc->sc_tx_timer == 0) {
3407 		struct ifnet *ifp = sc->sc_ifp;
3408 		struct ieee80211com *ic = ifp->if_l2com;
3409 
3410 		if_printf(ifp, "device timeout\n");
3411 		ieee80211_runtask(ic, &sc->sc_reinit_task);
3412 	}
3413 }
3414 
3415 static int
3416 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *ucred)
3417 {
3418 	struct iwn_softc *sc = ifp->if_softc;
3419 	struct ieee80211com *ic = ifp->if_l2com;
3420 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3421 	struct ifreq *ifr = (struct ifreq *) data;
3422 	int error = 0, startall = 0, stop = 0;
3423 
3424 	switch (cmd) {
3425 	case SIOCSIFFLAGS:
3426 		if (ifp->if_flags & IFF_UP) {
3427 			if (!(ifp->if_flags & IFF_RUNNING)) {
3428 				iwn_init_locked(sc);
3429 				if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
3430 					startall = 1;
3431 				else
3432 					stop = 1;
3433 			}
3434 		} else {
3435 			if (ifp->if_flags & IFF_RUNNING)
3436 				iwn_stop_locked(sc);
3437 		}
3438 		if (startall)
3439 			ieee80211_start_all(ic);
3440 		else if (vap != NULL && stop)
3441 			ieee80211_stop(vap);
3442 		break;
3443 	case SIOCGIFMEDIA:
3444 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
3445 		break;
3446 	case SIOCGIFADDR:
3447 		error = ether_ioctl(ifp, cmd, data);
3448 		break;
3449 	default:
3450 		error = EINVAL;
3451 		break;
3452 	}
3453 	return error;
3454 }
3455 
3456 /*
3457  * Send a command to the firmware.
3458  */
3459 static int
3460 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3461 {
3462 	struct iwn_tx_ring *ring = &sc->txq[4];
3463 	struct iwn_tx_desc *desc;
3464 	struct iwn_tx_data *data;
3465 	struct iwn_tx_cmd *cmd;
3466 	struct mbuf *m;
3467 	bus_addr_t paddr;
3468 	int totlen, error;
3469 
3470 	desc = &ring->desc[ring->cur];
3471 	data = &ring->data[ring->cur];
3472 	totlen = 4 + size;
3473 
3474 	if (size > sizeof cmd->data) {
3475 		/* Command is too large to fit in a descriptor. */
3476 		if (totlen > MJUMPAGESIZE)
3477 			return EINVAL;
3478 		m = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3479 		if (m == NULL)
3480 			return ENOMEM;
3481 		cmd = mtod(m, struct iwn_tx_cmd *);
3482 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3483 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3484 		if (error != 0) {
3485 			m_freem(m);
3486 			return error;
3487 		}
3488 		data->m = m;
3489 	} else {
3490 		cmd = &ring->cmd[ring->cur];
3491 		paddr = data->cmd_paddr;
3492 	}
3493 
3494 	cmd->code = code;
3495 	cmd->flags = 0;
3496 	cmd->qid = ring->qid;
3497 	cmd->idx = ring->cur;
3498 	memcpy(cmd->data, buf, size);
3499 
3500 	desc->nsegs = 1;
3501 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3502 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3503 
3504 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
3505 	    __func__, iwn_intr_str(cmd->code), cmd->code,
3506 	    cmd->flags, cmd->qid, cmd->idx);
3507 
3508 	if (size > sizeof cmd->data) {
3509 		bus_dmamap_sync(ring->data_dmat, data->map,
3510 		    BUS_DMASYNC_PREWRITE);
3511 	} else {
3512 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3513 		    BUS_DMASYNC_PREWRITE);
3514 	}
3515 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3516 	    BUS_DMASYNC_PREWRITE);
3517 
3518 #ifdef notyet
3519 	/* Update TX scheduler. */
3520 	sc->sc_hal->update_sched(sc, ring->qid, ring->cur, 0, 0);
3521 #endif
3522 
3523 	/* Kick command ring. */
3524 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3525 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3526 
3527 	if (async)
3528 		error = 0;
3529 	else
3530 		error = zsleep(desc, &wlan_global_serializer, 0, "iwncmd", hz);
3531 	return error;
3532 }
3533 
3534 static int
3535 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3536 {
3537 	struct iwn4965_node_info hnode;
3538 	caddr_t src, dst;
3539 
3540 	/*
3541 	 * We use the node structure for 5000 Series internally (it is
3542 	 * a superset of the one for 4965AGN). We thus copy the common
3543 	 * fields before sending the command.
3544 	 */
3545 	src = (caddr_t)node;
3546 	dst = (caddr_t)&hnode;
3547 	memcpy(dst, src, 48);
3548 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3549 	memcpy(dst + 48, src + 72, 20);
3550 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3551 }
3552 
3553 static int
3554 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3555 {
3556 	/* Direct mapping. */
3557 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3558 }
3559 
3560 #if 0	/* HT */
3561 static const uint8_t iwn_ridx_to_plcp[] = {
3562 	10, 20, 55, 110, /* CCK */
3563 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 0x3 /* OFDM R1-R4 */
3564 };
3565 static const uint8_t iwn_siso_mcs_to_plcp[] = {
3566 	0, 0, 0, 0, 			/* CCK */
3567 	0, 0, 1, 2, 3, 4, 5, 6, 7	/* HT */
3568 };
3569 static const uint8_t iwn_mimo_mcs_to_plcp[] = {
3570 	0, 0, 0, 0, 			/* CCK */
3571 	8, 8, 9, 10, 11, 12, 13, 14, 15	/* HT */
3572 };
3573 #endif
3574 static const uint8_t iwn_prev_ridx[] = {
3575 	/* NB: allow fallback from CCK11 to OFDM9 and from OFDM6 to CCK5 */
3576 	0, 0, 1, 5,			/* CCK */
3577 	2, 4, 3, 6, 7, 8, 9, 10, 10	/* OFDM */
3578 };
3579 
3580 /*
3581  * Configure hardware link parameters for the specified
3582  * node operating on the specified channel.
3583  */
3584 static int
3585 iwn_set_link_quality(struct iwn_softc *sc, uint8_t id, int async)
3586 {
3587 	struct ifnet *ifp = sc->sc_ifp;
3588 	struct ieee80211com *ic = ifp->if_l2com;
3589 	struct iwn_cmd_link_quality linkq;
3590 	const struct iwn_rate *rinfo;
3591 	int i;
3592 	uint8_t txant, ridx;
3593 
3594 	/* Use the first valid TX antenna. */
3595 	txant = IWN_LSB(sc->txchainmask);
3596 
3597 	memset(&linkq, 0, sizeof linkq);
3598 	linkq.id = id;
3599 	linkq.antmsk_1stream = txant;
3600 	linkq.antmsk_2stream = IWN_ANT_AB;
3601 	linkq.ampdu_max = 31;
3602 	linkq.ampdu_threshold = 3;
3603 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3604 
3605 #if 0	/* HT */
3606 	if (IEEE80211_IS_CHAN_HT(c))
3607 		linkq.mimo = 1;
3608 #endif
3609 
3610 	if (id == IWN_ID_BSS)
3611 		ridx = IWN_RIDX_OFDM54;
3612 	else if (IEEE80211_IS_CHAN_A(ic->ic_curchan))
3613 		ridx = IWN_RIDX_OFDM6;
3614 	else
3615 		ridx = IWN_RIDX_CCK1;
3616 
3617 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3618 		rinfo = &iwn_rates[ridx];
3619 #if 0	/* HT */
3620 		if (IEEE80211_IS_CHAN_HT40(c)) {
3621 			linkq.retry[i].plcp = iwn_mimo_mcs_to_plcp[ridx]
3622 					 | IWN_RIDX_MCS;
3623 			linkq.retry[i].rflags = IWN_RFLAG_HT
3624 					 | IWN_RFLAG_HT40;
3625 			/* XXX shortGI */
3626 		} else if (IEEE80211_IS_CHAN_HT(c)) {
3627 			linkq.retry[i].plcp = iwn_siso_mcs_to_plcp[ridx]
3628 					 | IWN_RIDX_MCS;
3629 			linkq.retry[i].rflags = IWN_RFLAG_HT;
3630 			/* XXX shortGI */
3631 		} else
3632 #endif
3633 		{
3634 			linkq.retry[i].plcp = rinfo->plcp;
3635 			linkq.retry[i].rflags = rinfo->flags;
3636 		}
3637 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3638 		ridx = iwn_prev_ridx[ridx];
3639 	}
3640 #ifdef IWN_DEBUG
3641 	if (sc->sc_debug & IWN_DEBUG_STATE) {
3642 		kprintf("%s: set link quality for node %d, mimo %d ssmask %d\n",
3643 		    __func__, id, linkq.mimo, linkq.antmsk_1stream);
3644 		kprintf("%s:", __func__);
3645 		for (i = 0; i < IWN_MAX_TX_RETRIES; i++)
3646 			kprintf(" %d:%x", linkq.retry[i].plcp,
3647 			    linkq.retry[i].rflags);
3648 		kprintf("\n");
3649 	}
3650 #endif
3651 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3652 }
3653 
3654 /*
3655  * Broadcast node is used to send group-addressed and management frames.
3656  */
3657 static int
3658 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3659 {
3660 	const struct iwn_hal *hal = sc->sc_hal;
3661 	struct ifnet *ifp = sc->sc_ifp;
3662 	struct iwn_node_info node;
3663 	int error;
3664 
3665 	memset(&node, 0, sizeof node);
3666 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
3667 	node.id = hal->broadcast_id;
3668 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
3669 	error = hal->add_node(sc, &node, async);
3670 	if (error != 0)
3671 		return error;
3672 
3673 	error = iwn_set_link_quality(sc, hal->broadcast_id, async);
3674 	return error;
3675 }
3676 
3677 static int
3678 iwn_wme_update(struct ieee80211com *ic)
3679 {
3680 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3681 #define	IWN_TXOP_TO_US(v)		(v<<5)
3682 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
3683 	struct iwn_edca_params cmd;
3684 	int i;
3685 
3686 	memset(&cmd, 0, sizeof cmd);
3687 	cmd.flags = htole32(IWN_EDCA_UPDATE);
3688 	for (i = 0; i < WME_NUM_AC; i++) {
3689 		const struct wmeParams *wmep =
3690 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[i];
3691 		cmd.ac[i].aifsn = wmep->wmep_aifsn;
3692 		cmd.ac[i].cwmin = htole16(IWN_EXP2(wmep->wmep_logcwmin));
3693 		cmd.ac[i].cwmax = htole16(IWN_EXP2(wmep->wmep_logcwmax));
3694 		cmd.ac[i].txoplimit =
3695 		    htole16(IWN_TXOP_TO_US(wmep->wmep_txopLimit));
3696 	}
3697 	(void) iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1 /*async*/);
3698 	return 0;
3699 #undef IWN_TXOP_TO_US
3700 #undef IWN_EXP2
3701 }
3702 
3703 static void
3704 iwn_update_mcast(struct ifnet *ifp)
3705 {
3706 	/* Ignore */
3707 }
3708 
3709 static void
3710 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3711 {
3712 	struct iwn_cmd_led led;
3713 
3714 	/* Clear microcode LED ownership. */
3715 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3716 
3717 	led.which = which;
3718 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3719 	led.off = off;
3720 	led.on = on;
3721 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3722 }
3723 
3724 /*
3725  * Set the critical temperature at which the firmware will stop the radio
3726  * and notify us.
3727  */
3728 static int
3729 iwn_set_critical_temp(struct iwn_softc *sc)
3730 {
3731 	struct iwn_critical_temp crit;
3732 	int32_t temp;
3733 
3734 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3735 
3736 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3737 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3738 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3739 		temp = IWN_CTOK(110);
3740 	else
3741 		temp = 110;
3742 	memset(&crit, 0, sizeof crit);
3743 	crit.tempR = htole32(temp);
3744 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n",
3745 	    temp);
3746 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3747 }
3748 
3749 static int
3750 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3751 {
3752 	struct iwn_cmd_timing cmd;
3753 	uint64_t val, mod;
3754 
3755 	memset(&cmd, 0, sizeof cmd);
3756 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3757 	cmd.bintval = htole16(ni->ni_intval);
3758 	cmd.lintval = htole16(10);
3759 
3760 	/* Compute remaining time until next beacon. */
3761 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3762 	mod = le64toh(cmd.tstamp) % val;
3763 	cmd.binitval = htole32((uint32_t)(val - mod));
3764 
3765 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3766 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3767 
3768 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3769 }
3770 
3771 static void
3772 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3773 {
3774 	struct ifnet *ifp = sc->sc_ifp;
3775 	struct ieee80211com *ic = ifp->if_l2com;
3776 
3777 	/* Adjust TX power if need be (delta >= 3 degC.) */
3778 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
3779 	    __func__, sc->temp, temp);
3780 	if (abs(temp - sc->temp) >= 3) {
3781 		/* Record temperature of last calibration. */
3782 		sc->temp = temp;
3783 		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
3784 	}
3785 }
3786 
3787 /*
3788  * Set TX power for current channel (each rate has its own power settings).
3789  * This function takes into account the regulatory information from EEPROM,
3790  * the current temperature and the current voltage.
3791  */
3792 static int
3793 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
3794     int async)
3795 {
3796 /* Fixed-point arithmetic division using a n-bit fractional part. */
3797 #define fdivround(a, b, n)	\
3798 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3799 /* Linear interpolation. */
3800 #define interpolate(x, x1, y1, x2, y2, n)	\
3801 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3802 
3803 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3804 	struct ifnet *ifp = sc->sc_ifp;
3805 	struct ieee80211com *ic = ifp->if_l2com;
3806 	struct iwn_ucode_info *uc = &sc->ucode_info;
3807 	struct iwn4965_cmd_txpower cmd;
3808 	struct iwn4965_eeprom_chan_samples *chans;
3809 	int32_t vdiff, tdiff;
3810 	int i, c, grp, maxpwr;
3811 	const uint8_t *rf_gain, *dsp_gain;
3812 	uint8_t chan;
3813 
3814 	/* Retrieve channel number. */
3815 	chan = ieee80211_chan2ieee(ic, ch);
3816 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
3817 	    chan);
3818 
3819 	memset(&cmd, 0, sizeof cmd);
3820 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3821 	cmd.chan = chan;
3822 
3823 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3824 		maxpwr   = sc->maxpwr5GHz;
3825 		rf_gain  = iwn4965_rf_gain_5ghz;
3826 		dsp_gain = iwn4965_dsp_gain_5ghz;
3827 	} else {
3828 		maxpwr   = sc->maxpwr2GHz;
3829 		rf_gain  = iwn4965_rf_gain_2ghz;
3830 		dsp_gain = iwn4965_dsp_gain_2ghz;
3831 	}
3832 
3833 	/* Compute voltage compensation. */
3834 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3835 	if (vdiff > 0)
3836 		vdiff *= 2;
3837 	if (abs(vdiff) > 2)
3838 		vdiff = 0;
3839 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3840 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3841 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
3842 
3843 	/* Get channel attenuation group. */
3844 	if (chan <= 20)		/* 1-20 */
3845 		grp = 4;
3846 	else if (chan <= 43)	/* 34-43 */
3847 		grp = 0;
3848 	else if (chan <= 70)	/* 44-70 */
3849 		grp = 1;
3850 	else if (chan <= 124)	/* 71-124 */
3851 		grp = 2;
3852 	else			/* 125-200 */
3853 		grp = 3;
3854 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3855 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
3856 
3857 	/* Get channel sub-band. */
3858 	for (i = 0; i < IWN_NBANDS; i++)
3859 		if (sc->bands[i].lo != 0 &&
3860 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3861 			break;
3862 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
3863 		return EINVAL;
3864 	chans = sc->bands[i].chans;
3865 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3866 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
3867 
3868 	for (c = 0; c < 2; c++) {
3869 		uint8_t power, gain, temp;
3870 		int maxchpwr, pwr, ridx, idx;
3871 
3872 		power = interpolate(chan,
3873 		    chans[0].num, chans[0].samples[c][1].power,
3874 		    chans[1].num, chans[1].samples[c][1].power, 1);
3875 		gain  = interpolate(chan,
3876 		    chans[0].num, chans[0].samples[c][1].gain,
3877 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3878 		temp  = interpolate(chan,
3879 		    chans[0].num, chans[0].samples[c][1].temp,
3880 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3881 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3882 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
3883 		    __func__, c, power, gain, temp);
3884 
3885 		/* Compute temperature compensation. */
3886 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3887 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3888 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
3889 		    __func__, tdiff, sc->temp, temp);
3890 
3891 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3892 			/* Convert dBm to half-dBm. */
3893 			maxchpwr = sc->maxpwr[chan] * 2;
3894 			if ((ridx / 8) & 1)
3895 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3896 
3897 			pwr = maxpwr;
3898 
3899 			/* Adjust TX power based on rate. */
3900 			if ((ridx % 8) == 5)
3901 				pwr -= 15;	/* OFDM48: -7.5dB */
3902 			else if ((ridx % 8) == 6)
3903 				pwr -= 17;	/* OFDM54: -8.5dB */
3904 			else if ((ridx % 8) == 7)
3905 				pwr -= 20;	/* OFDM60: -10dB */
3906 			else
3907 				pwr -= 10;	/* Others: -5dB */
3908 
3909 			/* Do not exceed channel max TX power. */
3910 			if (pwr > maxchpwr)
3911 				pwr = maxchpwr;
3912 
3913 			idx = gain - (pwr - power) - tdiff - vdiff;
3914 			if ((ridx / 8) & 1)	/* MIMO */
3915 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3916 
3917 			if (cmd.band == 0)
3918 				idx += 9;	/* 5GHz */
3919 			if (ridx == IWN_RIDX_MAX)
3920 				idx += 5;	/* CCK */
3921 
3922 			/* Make sure idx stays in a valid range. */
3923 			if (idx < 0)
3924 				idx = 0;
3925 			else if (idx > IWN4965_MAX_PWR_INDEX)
3926 				idx = IWN4965_MAX_PWR_INDEX;
3927 
3928 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3929 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
3930 			    __func__, c, ridx, idx);
3931 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3932 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3933 		}
3934 	}
3935 
3936 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3937 	    "%s: set tx power for chan %d\n", __func__, chan);
3938 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3939 
3940 #undef interpolate
3941 #undef fdivround
3942 }
3943 
3944 static int
3945 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
3946     int async)
3947 {
3948 	struct iwn5000_cmd_txpower cmd;
3949 
3950 	/*
3951 	 * TX power calibration is handled automatically by the firmware
3952 	 * for 5000 Series.
3953 	 */
3954 	memset(&cmd, 0, sizeof cmd);
3955 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3956 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3957 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3958 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting TX power\n", __func__);
3959 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3960 }
3961 
3962 /*
3963  * Retrieve the maximum RSSI (in dBm) among receivers.
3964  */
3965 static int
3966 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
3967 {
3968 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
3969 	uint8_t mask, agc;
3970 	int rssi;
3971 
3972 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3973 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
3974 
3975 	rssi = 0;
3976 #if 0
3977 	if (mask & IWN_ANT_A)	/* Ant A */
3978 		rssi = max(rssi, phy->rssi[0]);
3979 	if (mask & IWN_ATH_B)	/* Ant B */
3980 		rssi = max(rssi, phy->rssi[2]);
3981 	if (mask & IWN_ANT_C)	/* Ant C */
3982 		rssi = max(rssi, phy->rssi[4]);
3983 #else
3984 	rssi = max(rssi, phy->rssi[0]);
3985 	rssi = max(rssi, phy->rssi[2]);
3986 	rssi = max(rssi, phy->rssi[4]);
3987 #endif
3988 
3989 	DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d mask 0x%x rssi %d %d %d "
3990 	    "result %d\n", __func__, agc, mask,
3991 	    phy->rssi[0], phy->rssi[2], phy->rssi[4],
3992 	    rssi - agc - IWN_RSSI_TO_DBM);
3993 	return rssi - agc - IWN_RSSI_TO_DBM;
3994 }
3995 
3996 static int
3997 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
3998 {
3999 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
4000 	int rssi;
4001 	uint8_t agc;
4002 
4003 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
4004 
4005 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
4006 		   le16toh(phy->rssi[1]) & 0xff);
4007 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
4008 
4009 	DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d rssi %d %d %d "
4010 	    "result %d\n", __func__, agc,
4011 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
4012 	    rssi - agc - IWN_RSSI_TO_DBM);
4013 	return rssi - agc - IWN_RSSI_TO_DBM;
4014 }
4015 
4016 /*
4017  * Retrieve the average noise (in dBm) among receivers.
4018  */
4019 static int
4020 iwn_get_noise(const struct iwn_rx_general_stats *stats)
4021 {
4022 	int i, total, nbant, noise;
4023 
4024 	total = nbant = 0;
4025 	for (i = 0; i < 3; i++) {
4026 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
4027 			continue;
4028 		total += noise;
4029 		nbant++;
4030 	}
4031 	/* There should be at least one antenna but check anyway. */
4032 	return (nbant == 0) ? -127 : (total / nbant) - 107;
4033 }
4034 
4035 /*
4036  * Compute temperature (in degC) from last received statistics.
4037  */
4038 static int
4039 iwn4965_get_temperature(struct iwn_softc *sc)
4040 {
4041 	struct iwn_ucode_info *uc = &sc->ucode_info;
4042 	int32_t r1, r2, r3, r4, temp;
4043 
4044 	r1 = le32toh(uc->temp[0].chan20MHz);
4045 	r2 = le32toh(uc->temp[1].chan20MHz);
4046 	r3 = le32toh(uc->temp[2].chan20MHz);
4047 	r4 = le32toh(sc->rawtemp);
4048 
4049 	if (r1 == r3)	/* Prevents division by 0 (should not happen.) */
4050 		return 0;
4051 
4052 	/* Sign-extend 23-bit R4 value to 32-bit. */
4053 	r4 = (r4 << 8) >> 8;
4054 	/* Compute temperature in Kelvin. */
4055 	temp = (259 * (r4 - r2)) / (r3 - r1);
4056 	temp = (temp * 97) / 100 + 8;
4057 
4058 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
4059 	    IWN_KTOC(temp));
4060 	return IWN_KTOC(temp);
4061 }
4062 
4063 static int
4064 iwn5000_get_temperature(struct iwn_softc *sc)
4065 {
4066 	int32_t temp;
4067 
4068 	/*
4069 	 * Temperature is not used by the driver for 5000 Series because
4070 	 * TX power calibration is handled by firmware.  We export it to
4071 	 * users through the sensor framework though.
4072 	 */
4073 	temp = le32toh(sc->rawtemp);
4074 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
4075 		temp = (temp / -5) + sc->temp_off;
4076 		temp = IWN_KTOC(temp);
4077 	}
4078 	return temp;
4079 }
4080 
4081 /*
4082  * Initialize sensitivity calibration state machine.
4083  */
4084 static int
4085 iwn_init_sensitivity(struct iwn_softc *sc)
4086 {
4087 	const struct iwn_hal *hal = sc->sc_hal;
4088 	struct iwn_calib_state *calib = &sc->calib;
4089 	uint32_t flags;
4090 	int error;
4091 
4092 	/* Reset calibration state machine. */
4093 	memset(calib, 0, sizeof (*calib));
4094 	calib->state = IWN_CALIB_STATE_INIT;
4095 	calib->cck_state = IWN_CCK_STATE_HIFA;
4096 	/* Set initial correlation values. */
4097 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
4098 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
4099 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
4100 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
4101 	calib->cck_x4      = 125;
4102 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
4103 	calib->energy_cck  = sc->limits->energy_cck;
4104 
4105 	/* Write initial sensitivity. */
4106 	error = iwn_send_sensitivity(sc);
4107 	if (error != 0)
4108 		return error;
4109 
4110 	/* Write initial gains. */
4111 	error = hal->init_gains(sc);
4112 	if (error != 0)
4113 		return error;
4114 
4115 	/* Request statistics at each beacon interval. */
4116 	flags = 0;
4117 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: calibrate phy\n", __func__);
4118 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
4119 }
4120 
4121 /*
4122  * Collect noise and RSSI statistics for the first 20 beacons received
4123  * after association and use them to determine connected antennas and
4124  * to set differential gains.
4125  */
4126 static void
4127 iwn_collect_noise(struct iwn_softc *sc,
4128     const struct iwn_rx_general_stats *stats)
4129 {
4130 	const struct iwn_hal *hal = sc->sc_hal;
4131 	struct iwn_calib_state *calib = &sc->calib;
4132 	uint32_t val;
4133 	int i;
4134 
4135 	/* Accumulate RSSI and noise for all 3 antennas. */
4136 	for (i = 0; i < 3; i++) {
4137 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
4138 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
4139 	}
4140 	/* NB: We update differential gains only once after 20 beacons. */
4141 	if (++calib->nbeacons < 20)
4142 		return;
4143 
4144 	/* Determine highest average RSSI. */
4145 	val = MAX(calib->rssi[0], calib->rssi[1]);
4146 	val = MAX(calib->rssi[2], val);
4147 
4148 	/* Determine which antennas are connected. */
4149 	sc->chainmask = sc->rxchainmask;
4150 	for (i = 0; i < 3; i++)
4151 		if (val - calib->rssi[i] > 15 * 20)
4152 			sc->chainmask &= ~(1 << i);
4153 
4154 	/* If none of the TX antennas are connected, keep at least one. */
4155 	if ((sc->chainmask & sc->txchainmask) == 0)
4156 		sc->chainmask |= IWN_LSB(sc->txchainmask);
4157 
4158 	(void)hal->set_gains(sc);
4159 	calib->state = IWN_CALIB_STATE_RUN;
4160 
4161 #ifdef notyet
4162 	/* XXX Disable RX chains with no antennas connected. */
4163 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
4164 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4165 #endif
4166 
4167 #if 0
4168 	/* XXX: not yet */
4169 	/* Enable power-saving mode if requested by user. */
4170 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
4171 		(void)iwn_set_pslevel(sc, 0, 3, 1);
4172 #endif
4173 }
4174 
4175 static int
4176 iwn4965_init_gains(struct iwn_softc *sc)
4177 {
4178 	struct iwn_phy_calib_gain cmd;
4179 
4180 	memset(&cmd, 0, sizeof cmd);
4181 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4182 	/* Differential gains initially set to 0 for all 3 antennas. */
4183 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4184 	    "%s: setting initial differential gains\n", __func__);
4185 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4186 }
4187 
4188 static int
4189 iwn5000_init_gains(struct iwn_softc *sc)
4190 {
4191 	struct iwn_phy_calib cmd;
4192 
4193 	memset(&cmd, 0, sizeof cmd);
4194 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
4195 	cmd.ngroups = 1;
4196 	cmd.isvalid = 1;
4197 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4198 	    "%s: setting initial differential gains\n", __func__);
4199 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4200 }
4201 
4202 static int
4203 iwn4965_set_gains(struct iwn_softc *sc)
4204 {
4205 	struct iwn_calib_state *calib = &sc->calib;
4206 	struct iwn_phy_calib_gain cmd;
4207 	int i, delta, noise;
4208 
4209 	/* Get minimal noise among connected antennas. */
4210 	noise = INT_MAX;	/* NB: There's at least one antenna. */
4211 	for (i = 0; i < 3; i++)
4212 		if (sc->chainmask & (1 << i))
4213 			noise = MIN(calib->noise[i], noise);
4214 
4215 	memset(&cmd, 0, sizeof cmd);
4216 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4217 	/* Set differential gains for connected antennas. */
4218 	for (i = 0; i < 3; i++) {
4219 		if (sc->chainmask & (1 << i)) {
4220 			/* Compute attenuation (in unit of 1.5dB). */
4221 			delta = (noise - (int32_t)calib->noise[i]) / 30;
4222 			/* NB: delta <= 0 */
4223 			/* Limit to [-4.5dB,0]. */
4224 			cmd.gain[i] = MIN(abs(delta), 3);
4225 			if (delta < 0)
4226 				cmd.gain[i] |= 1 << 2;	/* sign bit */
4227 		}
4228 	}
4229 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4230 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4231 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
4232 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4233 }
4234 
4235 static int
4236 iwn5000_set_gains(struct iwn_softc *sc)
4237 {
4238 	struct iwn_calib_state *calib = &sc->calib;
4239 	struct iwn_phy_calib_gain cmd;
4240 	int i, ant, delta, div;
4241 
4242 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
4243 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4244 
4245 	memset(&cmd, 0, sizeof cmd);
4246 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
4247 	cmd.ngroups = 1;
4248 	cmd.isvalid = 1;
4249 	/* Get first available RX antenna as referential. */
4250 	ant = IWN_LSB(sc->rxchainmask);
4251 	/* Set differential gains for other antennas. */
4252 	for (i = ant + 1; i < 3; i++) {
4253 		if (sc->chainmask & (1 << i)) {
4254 			/* The delta is relative to antenna "ant". */
4255 			delta = ((int32_t)calib->noise[ant] -
4256 			    (int32_t)calib->noise[i]) / div;
4257 			/* Limit to [-4.5dB,+4.5dB]. */
4258 			cmd.gain[i - 1] = MIN(abs(delta), 3);
4259 			if (delta < 0)
4260 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
4261 		}
4262 	}
4263 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4264 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
4265 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
4266 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4267 }
4268 
4269 /*
4270  * Tune RF RX sensitivity based on the number of false alarms detected
4271  * during the last beacon period.
4272  */
4273 static void
4274 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4275 {
4276 #define inc(val, inc, max)			\
4277 	if ((val) < (max)) {			\
4278 		if ((val) < (max) - (inc))	\
4279 			(val) += (inc);		\
4280 		else				\
4281 			(val) = (max);		\
4282 		needs_update = 1;		\
4283 	}
4284 #define dec(val, dec, min)			\
4285 	if ((val) > (min)) {			\
4286 		if ((val) > (min) + (dec))	\
4287 			(val) -= (dec);		\
4288 		else				\
4289 			(val) = (min);		\
4290 		needs_update = 1;		\
4291 	}
4292 
4293 	const struct iwn_sensitivity_limits *limits = sc->limits;
4294 	struct iwn_calib_state *calib = &sc->calib;
4295 	uint32_t val, rxena, fa;
4296 	uint32_t energy[3], energy_min;
4297 	uint8_t noise[3], noise_ref;
4298 	int i, needs_update = 0;
4299 
4300 	/* Check that we've been enabled long enough. */
4301 	rxena = le32toh(stats->general.load);
4302 	if (rxena == 0)
4303 		return;
4304 
4305 	/* Compute number of false alarms since last call for OFDM. */
4306 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4307 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4308 	fa *= 200 * 1024;	/* 200TU */
4309 
4310 	/* Save counters values for next call. */
4311 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4312 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
4313 
4314 	if (fa > 50 * rxena) {
4315 		/* High false alarm count, decrease sensitivity. */
4316 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4317 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
4318 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
4319 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4320 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
4321 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4322 
4323 	} else if (fa < 5 * rxena) {
4324 		/* Low false alarm count, increase sensitivity. */
4325 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4326 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
4327 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4328 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4329 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4330 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4331 	}
4332 
4333 	/* Compute maximum noise among 3 receivers. */
4334 	for (i = 0; i < 3; i++)
4335 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4336 	val = MAX(noise[0], noise[1]);
4337 	val = MAX(noise[2], val);
4338 	/* Insert it into our samples table. */
4339 	calib->noise_samples[calib->cur_noise_sample] = val;
4340 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4341 
4342 	/* Compute maximum noise among last 20 samples. */
4343 	noise_ref = calib->noise_samples[0];
4344 	for (i = 1; i < 20; i++)
4345 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4346 
4347 	/* Compute maximum energy among 3 receivers. */
4348 	for (i = 0; i < 3; i++)
4349 		energy[i] = le32toh(stats->general.energy[i]);
4350 	val = MIN(energy[0], energy[1]);
4351 	val = MIN(energy[2], val);
4352 	/* Insert it into our samples table. */
4353 	calib->energy_samples[calib->cur_energy_sample] = val;
4354 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4355 
4356 	/* Compute minimum energy among last 10 samples. */
4357 	energy_min = calib->energy_samples[0];
4358 	for (i = 1; i < 10; i++)
4359 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4360 	energy_min += 6;
4361 
4362 	/* Compute number of false alarms since last call for CCK. */
4363 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4364 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4365 	fa *= 200 * 1024;	/* 200TU */
4366 
4367 	/* Save counters values for next call. */
4368 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4369 	calib->fa_cck = le32toh(stats->cck.fa);
4370 
4371 	if (fa > 50 * rxena) {
4372 		/* High false alarm count, decrease sensitivity. */
4373 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4374 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
4375 		calib->cck_state = IWN_CCK_STATE_HIFA;
4376 		calib->low_fa = 0;
4377 
4378 		if (calib->cck_x4 > 160) {
4379 			calib->noise_ref = noise_ref;
4380 			if (calib->energy_cck > 2)
4381 				dec(calib->energy_cck, 2, energy_min);
4382 		}
4383 		if (calib->cck_x4 < 160) {
4384 			calib->cck_x4 = 161;
4385 			needs_update = 1;
4386 		} else
4387 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4388 
4389 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4390 
4391 	} else if (fa < 5 * rxena) {
4392 		/* Low false alarm count, increase sensitivity. */
4393 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4394 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
4395 		calib->cck_state = IWN_CCK_STATE_LOFA;
4396 		calib->low_fa++;
4397 
4398 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4399 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4400 		    calib->low_fa > 100)) {
4401 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4402 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4403 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4404 		}
4405 	} else {
4406 		/* Not worth to increase or decrease sensitivity. */
4407 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4408 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
4409 		calib->low_fa = 0;
4410 		calib->noise_ref = noise_ref;
4411 
4412 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4413 			/* Previous interval had many false alarms. */
4414 			dec(calib->energy_cck, 8, energy_min);
4415 		}
4416 		calib->cck_state = IWN_CCK_STATE_INIT;
4417 	}
4418 
4419 	if (needs_update)
4420 		(void)iwn_send_sensitivity(sc);
4421 #undef dec
4422 #undef inc
4423 }
4424 
4425 static int
4426 iwn_send_sensitivity(struct iwn_softc *sc)
4427 {
4428 	struct iwn_calib_state *calib = &sc->calib;
4429 	struct iwn_sensitivity_cmd cmd;
4430 
4431 	memset(&cmd, 0, sizeof cmd);
4432 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4433 	/* OFDM modulation. */
4434 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
4435 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4436 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
4437 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4438 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
4439 	cmd.energy_ofdm_th   = htole16(62);
4440 	/* CCK modulation. */
4441 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
4442 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
4443 	cmd.energy_cck       = htole16(calib->energy_cck);
4444 	/* Barker modulation: use default values. */
4445 	cmd.corr_barker      = htole16(190);
4446 	cmd.corr_barker_mrc  = htole16(390);
4447 
4448 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4449 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
4450 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4451 	    calib->ofdm_mrc_x4, calib->cck_x4,
4452 	    calib->cck_mrc_x4, calib->energy_cck);
4453 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
4454 }
4455 
4456 /*
4457  * Set STA mode power saving level (between 0 and 5).
4458  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4459  */
4460 static int
4461 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4462 {
4463 	const struct iwn_pmgt *pmgt;
4464 	struct iwn_pmgt_cmd cmd;
4465 	uint32_t max, skip_dtim;
4466 	uint32_t tmp;
4467 	int i;
4468 
4469 	/* Select which PS parameters to use. */
4470 	if (dtim <= 2)
4471 		pmgt = &iwn_pmgt[0][level];
4472 	else if (dtim <= 10)
4473 		pmgt = &iwn_pmgt[1][level];
4474 	else
4475 		pmgt = &iwn_pmgt[2][level];
4476 
4477 	memset(&cmd, 0, sizeof cmd);
4478 	if (level != 0)	/* not CAM */
4479 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4480 	if (level == 5)
4481 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4482 	/* Retrieve PCIe Active State Power Management (ASPM). */
4483 	tmp = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
4484 	if (!(tmp & 0x1))	/* L0s Entry disabled. */
4485 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4486 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4487 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4488 
4489 	if (dtim == 0) {
4490 		dtim = 1;
4491 		skip_dtim = 0;
4492 	} else
4493 		skip_dtim = pmgt->skip_dtim;
4494 	if (skip_dtim != 0) {
4495 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4496 		max = pmgt->intval[4];
4497 		if (max == (uint32_t)-1)
4498 			max = dtim * (skip_dtim + 1);
4499 		else if (max > dtim)
4500 			max = (max / dtim) * dtim;
4501 	} else
4502 		max = dtim;
4503 	for (i = 0; i < 5; i++)
4504 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
4505 
4506 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
4507 	    level);
4508 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4509 }
4510 
4511 static int
4512 iwn_config(struct iwn_softc *sc)
4513 {
4514 	const struct iwn_hal *hal = sc->sc_hal;
4515 	struct ifnet *ifp = sc->sc_ifp;
4516 	struct ieee80211com *ic = ifp->if_l2com;
4517 	struct iwn_bluetooth bluetooth;
4518 	uint32_t txmask;
4519 	int error;
4520 	uint16_t rxchain;
4521 
4522 	/* Configure valid TX chains for 5000 Series. */
4523 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4524 		txmask = htole32(sc->txchainmask);
4525 		DPRINTF(sc, IWN_DEBUG_RESET,
4526 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
4527 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4528 		    sizeof txmask, 0);
4529 		if (error != 0) {
4530 			device_printf(sc->sc_dev,
4531 			    "%s: could not configure valid TX chains, "
4532 			    "error %d\n", __func__, error);
4533 			return error;
4534 		}
4535 	}
4536 
4537 	/* Configure bluetooth coexistence. */
4538 	memset(&bluetooth, 0, sizeof bluetooth);
4539 	bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
4540 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4541 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4542 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: config bluetooth coexistence\n",
4543 	    __func__);
4544 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4545 	if (error != 0) {
4546 		device_printf(sc->sc_dev,
4547 		    "%s: could not configure bluetooth coexistence, error %d\n",
4548 		    __func__, error);
4549 		return error;
4550 	}
4551 
4552 	/* Set mode, channel, RX filter and enable RX. */
4553 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4554 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, IF_LLADDR(ifp));
4555 	IEEE80211_ADDR_COPY(sc->rxon.wlap, IF_LLADDR(ifp));
4556 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
4557 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4558 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
4559 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4560 	switch (ic->ic_opmode) {
4561 	case IEEE80211_M_STA:
4562 		sc->rxon.mode = IWN_MODE_STA;
4563 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4564 		break;
4565 	case IEEE80211_M_MONITOR:
4566 		sc->rxon.mode = IWN_MODE_MONITOR;
4567 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4568 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4569 		break;
4570 	default:
4571 		/* Should not get there. */
4572 		break;
4573 	}
4574 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4575 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4576 	sc->rxon.ht_single_mask = 0xff;
4577 	sc->rxon.ht_dual_mask = 0xff;
4578 	sc->rxon.ht_triple_mask = 0xff;
4579 	rxchain =
4580 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4581 	    IWN_RXCHAIN_MIMO_COUNT(2) |
4582 	    IWN_RXCHAIN_IDLE_COUNT(2);
4583 	sc->rxon.rxchain = htole16(rxchain);
4584 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__);
4585 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 0);
4586 	if (error != 0) {
4587 		device_printf(sc->sc_dev,
4588 		    "%s: RXON command failed\n", __func__);
4589 		return error;
4590 	}
4591 
4592 	error = iwn_add_broadcast_node(sc, 0);
4593 	if (error != 0) {
4594 		device_printf(sc->sc_dev,
4595 		    "%s: could not add broadcast node\n", __func__);
4596 		return error;
4597 	}
4598 
4599 	/* Configuration has changed, set TX power accordingly. */
4600 	error = hal->set_txpower(sc, ic->ic_curchan, 0);
4601 	if (error != 0) {
4602 		device_printf(sc->sc_dev,
4603 		    "%s: could not set TX power\n", __func__);
4604 		return error;
4605 	}
4606 
4607 	error = iwn_set_critical_temp(sc);
4608 	if (error != 0) {
4609 		device_printf(sc->sc_dev,
4610 		    "%s: ccould not set critical temperature\n", __func__);
4611 		return error;
4612 	}
4613 
4614 	/* Set power saving level to CAM during initialization. */
4615 	error = iwn_set_pslevel(sc, 0, 0, 0);
4616 	if (error != 0) {
4617 		device_printf(sc->sc_dev,
4618 		    "%s: could not set power saving level\n", __func__);
4619 		return error;
4620 	}
4621 	return 0;
4622 }
4623 
4624 static int
4625 iwn_scan(struct iwn_softc *sc)
4626 {
4627 	struct ifnet *ifp = sc->sc_ifp;
4628 	struct ieee80211com *ic = ifp->if_l2com;
4629 	struct ieee80211_scan_state *ss = ic->ic_scan;	/*XXX*/
4630 	struct iwn_scan_hdr *hdr;
4631 	struct iwn_cmd_data *tx;
4632 	struct iwn_scan_essid *essid;
4633 	struct iwn_scan_chan *chan;
4634 	struct ieee80211_frame *wh;
4635 	struct ieee80211_rateset *rs;
4636 	struct ieee80211_channel *c;
4637 	int buflen, error, nrates;
4638 	uint16_t rxchain;
4639 	uint8_t *buf, *frm, txant;
4640 
4641 	buf = kmalloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_INTWAIT | M_ZERO);
4642 	if (buf == NULL) {
4643 		device_printf(sc->sc_dev,
4644 		    "%s: could not allocate buffer for scan command\n",
4645 		    __func__);
4646 		return ENOMEM;
4647 	}
4648 	hdr = (struct iwn_scan_hdr *)buf;
4649 
4650 	/*
4651 	 * Move to the next channel if no frames are received within 10ms
4652 	 * after sending the probe request.
4653 	 */
4654 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4655 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4656 
4657 	/* Select antennas for scanning. */
4658 	rxchain =
4659 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4660 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4661 	    IWN_RXCHAIN_DRIVER_FORCE;
4662 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) &&
4663 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4664 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4665 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4666 	} else	/* Use all available RX antennas. */
4667 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4668 	hdr->rxchain = htole16(rxchain);
4669 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4670 
4671 	tx = (struct iwn_cmd_data *)(hdr + 1);
4672 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4673 	tx->id = sc->sc_hal->broadcast_id;
4674 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4675 
4676 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
4677 		/* Send probe requests at 6Mbps. */
4678 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4679 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4680 	} else {
4681 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4682 		/* Send probe requests at 1Mbps. */
4683 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4684 		tx->rflags = IWN_RFLAG_CCK;
4685 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4686 	}
4687 	/* Use the first valid TX antenna. */
4688 	txant = IWN_LSB(sc->txchainmask);
4689 	tx->rflags |= IWN_RFLAG_ANT(txant);
4690 
4691 	essid = (struct iwn_scan_essid *)(tx + 1);
4692 	if (ss->ss_ssid[0].len != 0) {
4693 		essid[0].id = IEEE80211_ELEMID_SSID;
4694 		essid[0].len = ss->ss_ssid[0].len;
4695 		memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
4696 	}
4697 
4698 	/*
4699 	 * Build a probe request frame.  Most of the following code is a
4700 	 * copy & paste of what is done in net80211.
4701 	 */
4702 	wh = (struct ieee80211_frame *)(essid + 20);
4703 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4704 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4705 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4706 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
4707 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
4708 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
4709 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4710 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4711 
4712 	frm = (uint8_t *)(wh + 1);
4713 
4714 	/* Add SSID IE. */
4715 	*frm++ = IEEE80211_ELEMID_SSID;
4716 	*frm++ = ss->ss_ssid[0].len;
4717 	memcpy(frm, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
4718 	frm += ss->ss_ssid[0].len;
4719 
4720 	/* Add supported rates IE. */
4721 	*frm++ = IEEE80211_ELEMID_RATES;
4722 	nrates = rs->rs_nrates;
4723 	if (nrates > IEEE80211_RATE_SIZE)
4724 		nrates = IEEE80211_RATE_SIZE;
4725 	*frm++ = nrates;
4726 	memcpy(frm, rs->rs_rates, nrates);
4727 	frm += nrates;
4728 
4729 	/* Add supported xrates IE. */
4730 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
4731 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
4732 		*frm++ = IEEE80211_ELEMID_XRATES;
4733 		*frm++ = (uint8_t)nrates;
4734 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
4735 		frm += nrates;
4736 	}
4737 
4738 	/* Set length of probe request. */
4739 	tx->len = htole16(frm - (uint8_t *)wh);
4740 
4741 	c = ic->ic_curchan;
4742 	chan = (struct iwn_scan_chan *)frm;
4743 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4744 	chan->flags = 0;
4745 	if (ss->ss_nssid > 0)
4746 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4747 	chan->dsp_gain = 0x6e;
4748 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
4749 	    !(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
4750 		chan->rf_gain = 0x3b;
4751 		chan->active  = htole16(24);
4752 		chan->passive = htole16(110);
4753 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
4754 	} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
4755 		chan->rf_gain = 0x3b;
4756 		chan->active  = htole16(24);
4757 		if (sc->rxon.associd)
4758 			chan->passive = htole16(78);
4759 		else
4760 			chan->passive = htole16(110);
4761 		hdr->crc_threshold = 0xffff;
4762 	} else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
4763 		chan->rf_gain = 0x28;
4764 		chan->active  = htole16(36);
4765 		chan->passive = htole16(120);
4766 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
4767 	} else {
4768 		chan->rf_gain = 0x28;
4769 		chan->active  = htole16(36);
4770 		if (sc->rxon.associd)
4771 			chan->passive = htole16(88);
4772 		else
4773 			chan->passive = htole16(120);
4774 		hdr->crc_threshold = 0xffff;
4775 	}
4776 
4777 	DPRINTF(sc, IWN_DEBUG_STATE,
4778 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
4779 	    "dsp_gain 0x%x active 0x%x passive 0x%x\n", __func__,
4780 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
4781 	    chan->active, chan->passive);
4782 
4783 	hdr->nchan++;
4784 	chan++;
4785 	buflen = (uint8_t *)chan - buf;
4786 	hdr->len = htole16(buflen);
4787 
4788 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
4789 	    hdr->nchan);
4790 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4791 	kfree(buf, M_DEVBUF);
4792 	return error;
4793 }
4794 
4795 static int
4796 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
4797 {
4798 	const struct iwn_hal *hal = sc->sc_hal;
4799 	struct ifnet *ifp = sc->sc_ifp;
4800 	struct ieee80211com *ic = ifp->if_l2com;
4801 	struct ieee80211_node *ni = vap->iv_bss;
4802 	int error;
4803 
4804 	sc->calib.state = IWN_CALIB_STATE_INIT;
4805 
4806 	/* Update adapter configuration. */
4807 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4808 	sc->rxon.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan));
4809 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4810 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4811 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4812 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4813 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4814 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4815 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4816 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
4817 		sc->rxon.cck_mask  = 0;
4818 		sc->rxon.ofdm_mask = 0x15;
4819 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
4820 		sc->rxon.cck_mask  = 0x03;
4821 		sc->rxon.ofdm_mask = 0;
4822 	} else {
4823 		/* XXX assume 802.11b/g */
4824 		sc->rxon.cck_mask  = 0x0f;
4825 		sc->rxon.ofdm_mask = 0x15;
4826 	}
4827 	DPRINTF(sc, IWN_DEBUG_STATE,
4828 	    "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
4829 	    "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
4830 	    "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
4831 	    __func__,
4832 	    le16toh(sc->rxon.chan), sc->rxon.mode, le32toh(sc->rxon.flags),
4833 	    sc->rxon.cck_mask, sc->rxon.ofdm_mask,
4834 	    sc->rxon.ht_single_mask, sc->rxon.ht_dual_mask,
4835 	    le16toh(sc->rxon.rxchain),
4836 	    sc->rxon.myaddr, ":", sc->rxon.wlap, ":", sc->rxon.bssid, ":",
4837 	    le16toh(sc->rxon.associd), le32toh(sc->rxon.filter));
4838 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4839 	if (error != 0) {
4840 		device_printf(sc->sc_dev,
4841 		    "%s: RXON command failed, error %d\n", __func__, error);
4842 		return error;
4843 	}
4844 
4845 	/* Configuration has changed, set TX power accordingly. */
4846 	error = hal->set_txpower(sc, ni->ni_chan, 1);
4847 	if (error != 0) {
4848 		device_printf(sc->sc_dev,
4849 		    "%s: could not set Tx power, error %d\n", __func__, error);
4850 		return error;
4851 	}
4852 	/*
4853 	 * Reconfiguring RXON clears the firmware nodes table so we must
4854 	 * add the broadcast node again.
4855 	 */
4856 	error = iwn_add_broadcast_node(sc, 1);
4857 	if (error != 0) {
4858 		device_printf(sc->sc_dev,
4859 		    "%s: could not add broadcast node, error %d\n",
4860 		    __func__, error);
4861 		return error;
4862 	}
4863 	return 0;
4864 }
4865 
4866 /*
4867  * Configure the adapter for associated state.
4868  */
4869 static int
4870 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
4871 {
4872 #define	MS(v,x)	(((v) & x) >> x##_S)
4873 	const struct iwn_hal *hal = sc->sc_hal;
4874 	struct ifnet *ifp = sc->sc_ifp;
4875 	struct ieee80211com *ic = ifp->if_l2com;
4876 	struct ieee80211_node *ni = vap->iv_bss;
4877 	struct iwn_node_info node;
4878 	int error;
4879 
4880 	sc->calib.state = IWN_CALIB_STATE_INIT;
4881 
4882 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4883 		/* Link LED blinks while monitoring. */
4884 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4885 		return 0;
4886 	}
4887 	error = iwn_set_timing(sc, ni);
4888 	if (error != 0) {
4889 		device_printf(sc->sc_dev,
4890 		    "%s: could not set timing, error %d\n", __func__, error);
4891 		return error;
4892 	}
4893 
4894 	/* Update adapter configuration. */
4895 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4896 	sc->rxon.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan));
4897 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4898 	/* Short preamble and slot time are negotiated when associating. */
4899 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4900 	sc->rxon.flags |= htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4901 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4902 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4903 	else
4904 		sc->rxon.flags &= ~htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4905 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4906 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4907 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4908 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4909 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
4910 		sc->rxon.cck_mask  = 0;
4911 		sc->rxon.ofdm_mask = 0x15;
4912 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
4913 		sc->rxon.cck_mask  = 0x03;
4914 		sc->rxon.ofdm_mask = 0;
4915 	} else {
4916 		/* XXX assume 802.11b/g */
4917 		sc->rxon.cck_mask  = 0x0f;
4918 		sc->rxon.ofdm_mask = 0x15;
4919 	}
4920 #if 0	/* HT */
4921 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
4922 		sc->rxon.flags &= ~htole32(IWN_RXON_HT);
4923 		if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
4924 			sc->rxon.flags |= htole32(IWN_RXON_HT40U);
4925 		else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
4926 			sc->rxon.flags |= htole32(IWN_RXON_HT40D);
4927 		else
4928 			sc->rxon.flags |= htole32(IWN_RXON_HT20);
4929 		sc->rxon.rxchain = htole16(
4930 			  IWN_RXCHAIN_VALID(3)
4931 			| IWN_RXCHAIN_MIMO_COUNT(3)
4932 			| IWN_RXCHAIN_IDLE_COUNT(1)
4933 			| IWN_RXCHAIN_MIMO_FORCE);
4934 
4935 		maxrxampdu = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU);
4936 		ampdudensity = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY);
4937 	} else
4938 		maxrxampdu = ampdudensity = 0;
4939 #endif
4940 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4941 
4942 	DPRINTF(sc, IWN_DEBUG_STATE,
4943 	    "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
4944 	    "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
4945 	    "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
4946 	    __func__,
4947 	    le16toh(sc->rxon.chan), sc->rxon.mode, le32toh(sc->rxon.flags),
4948 	    sc->rxon.cck_mask, sc->rxon.ofdm_mask,
4949 	    sc->rxon.ht_single_mask, sc->rxon.ht_dual_mask,
4950 	    le16toh(sc->rxon.rxchain),
4951 	    sc->rxon.myaddr, ":", sc->rxon.wlap, ":", sc->rxon.bssid, ":",
4952 	    le16toh(sc->rxon.associd), le32toh(sc->rxon.filter));
4953 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4954 	if (error != 0) {
4955 		device_printf(sc->sc_dev,
4956 		    "%s: could not update configuration, error %d\n",
4957 		    __func__, error);
4958 		return error;
4959 	}
4960 
4961 	/* Configuration has changed, set TX power accordingly. */
4962 	error = hal->set_txpower(sc, ni->ni_chan, 1);
4963 	if (error != 0) {
4964 		device_printf(sc->sc_dev,
4965 		    "%s: could not set Tx power, error %d\n", __func__, error);
4966 		return error;
4967 	}
4968 
4969 	/* Add BSS node. */
4970 	memset(&node, 0, sizeof node);
4971 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4972 	node.id = IWN_ID_BSS;
4973 #ifdef notyet
4974 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4975 	    IWN_AMDPU_DENSITY(5));	/* 2us */
4976 #endif
4977 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: add BSS node, id %d htflags 0x%x\n",
4978 	    __func__, node.id, le32toh(node.htflags));
4979 	error = hal->add_node(sc, &node, 1);
4980 	if (error != 0) {
4981 		device_printf(sc->sc_dev, "could not add BSS node\n");
4982 		return error;
4983 	}
4984 	DPRINTF(sc, IWN_DEBUG_STATE, "setting link quality for node %d\n",
4985 	    node.id);
4986 	error = iwn_set_link_quality(sc, node.id, 1);
4987 	if (error != 0) {
4988 		device_printf(sc->sc_dev,
4989 		    "%s: could not setup MRR for node %d, error %d\n",
4990 		    __func__, node.id, error);
4991 		return error;
4992 	}
4993 
4994 	error = iwn_init_sensitivity(sc);
4995 	if (error != 0) {
4996 		device_printf(sc->sc_dev,
4997 		    "%s: could not set sensitivity, error %d\n",
4998 		    __func__, error);
4999 		return error;
5000 	}
5001 
5002 	/* Start periodic calibration timer. */
5003 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
5004 	iwn_calib_reset(sc);
5005 
5006 	/* Link LED always on while associated. */
5007 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
5008 
5009 	return 0;
5010 #undef MS
5011 }
5012 
5013 #if 0	/* HT */
5014 /*
5015  * This function is called by upper layer when an ADDBA request is received
5016  * from another STA and before the ADDBA response is sent.
5017  */
5018 static int
5019 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5020     uint8_t tid)
5021 {
5022 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
5023 	struct iwn_softc *sc = ic->ic_softc;
5024 	struct iwn_node *wn = (void *)ni;
5025 	struct iwn_node_info node;
5026 
5027 	memset(&node, 0, sizeof node);
5028 	node.id = wn->id;
5029 	node.control = IWN_NODE_UPDATE;
5030 	node.flags = IWN_FLAG_SET_ADDBA;
5031 	node.addba_tid = tid;
5032 	node.addba_ssn = htole16(ba->ba_winstart);
5033 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
5034 	    wn->id, tid, ba->ba_winstart));
5035 	return sc->sc_hal->add_node(sc, &node, 1);
5036 }
5037 
5038 /*
5039  * This function is called by upper layer on teardown of an HT-immediate
5040  * Block Ack agreement (eg. uppon receipt of a DELBA frame.)
5041  */
5042 static void
5043 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5044     uint8_t tid)
5045 {
5046 	struct iwn_softc *sc = ic->ic_softc;
5047 	struct iwn_node *wn = (void *)ni;
5048 	struct iwn_node_info node;
5049 
5050 	memset(&node, 0, sizeof node);
5051 	node.id = wn->id;
5052 	node.control = IWN_NODE_UPDATE;
5053 	node.flags = IWN_FLAG_SET_DELBA;
5054 	node.delba_tid = tid;
5055 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
5056 	(void)sc->sc_hal->add_node(sc, &node, 1);
5057 }
5058 
5059 /*
5060  * This function is called by upper layer when an ADDBA response is received
5061  * from another STA.
5062  */
5063 static int
5064 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5065     uint8_t tid)
5066 {
5067 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5068 	struct iwn_softc *sc = ic->ic_softc;
5069 	const struct iwn_hal *hal = sc->sc_hal;
5070 	struct iwn_node *wn = (void *)ni;
5071 	struct iwn_node_info node;
5072 	int error;
5073 
5074 	/* Enable TX for the specified RA/TID. */
5075 	wn->disable_tid &= ~(1 << tid);
5076 	memset(&node, 0, sizeof node);
5077 	node.id = wn->id;
5078 	node.control = IWN_NODE_UPDATE;
5079 	node.flags = IWN_FLAG_SET_DISABLE_TID;
5080 	node.disable_tid = htole16(wn->disable_tid);
5081 	error = hal->add_node(sc, &node, 1);
5082 	if (error != 0)
5083 		return error;
5084 
5085 	if ((error = iwn_nic_lock(sc)) != 0)
5086 		return error;
5087 	hal->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5088 	iwn_nic_unlock(sc);
5089 	return 0;
5090 }
5091 
5092 static void
5093 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5094     uint8_t tid)
5095 {
5096 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5097 	struct iwn_softc *sc = ic->ic_softc;
5098 	int error;
5099 
5100 	error = iwn_nic_lock(sc);
5101 	if (error != 0)
5102 		return;
5103 	sc->sc_hal->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5104 	iwn_nic_unlock(sc);
5105 }
5106 
5107 static void
5108 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5109     uint8_t tid, uint16_t ssn)
5110 {
5111 	struct iwn_node *wn = (void *)ni;
5112 	int qid = 7 + tid;
5113 
5114 	/* Stop TX scheduler while we're changing its configuration. */
5115 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5116 	    IWN4965_TXQ_STATUS_CHGACT);
5117 
5118 	/* Assign RA/TID translation to the queue. */
5119 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5120 	    wn->id << 4 | tid);
5121 
5122 	/* Enable chain-building mode for the queue. */
5123 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5124 
5125 	/* Set starting sequence number from the ADDBA request. */
5126 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5127 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5128 
5129 	/* Set scheduler window size. */
5130 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5131 	    IWN_SCHED_WINSZ);
5132 	/* Set scheduler frame limit. */
5133 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5134 	    IWN_SCHED_LIMIT << 16);
5135 
5136 	/* Enable interrupts for the queue. */
5137 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5138 
5139 	/* Mark the queue as active. */
5140 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5141 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5142 	    iwn_tid2fifo[tid] << 1);
5143 }
5144 
5145 static void
5146 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5147 {
5148 	int qid = 7 + tid;
5149 
5150 	/* Stop TX scheduler while we're changing its configuration. */
5151 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5152 	    IWN4965_TXQ_STATUS_CHGACT);
5153 
5154 	/* Set starting sequence number from the ADDBA request. */
5155 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5156 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5157 
5158 	/* Disable interrupts for the queue. */
5159 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5160 
5161 	/* Mark the queue as inactive. */
5162 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5163 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5164 }
5165 
5166 static void
5167 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5168     uint8_t tid, uint16_t ssn)
5169 {
5170 	struct iwn_node *wn = (void *)ni;
5171 	int qid = 10 + tid;
5172 
5173 	/* Stop TX scheduler while we're changing its configuration. */
5174 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5175 	    IWN5000_TXQ_STATUS_CHGACT);
5176 
5177 	/* Assign RA/TID translation to the queue. */
5178 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5179 	    wn->id << 4 | tid);
5180 
5181 	/* Enable chain-building mode for the queue. */
5182 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5183 
5184 	/* Enable aggregation for the queue. */
5185 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5186 
5187 	/* Set starting sequence number from the ADDBA request. */
5188 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5189 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5190 
5191 	/* Set scheduler window size and frame limit. */
5192 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5193 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5194 
5195 	/* Enable interrupts for the queue. */
5196 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5197 
5198 	/* Mark the queue as active. */
5199 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5200 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5201 }
5202 
5203 static void
5204 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5205 {
5206 	int qid = 10 + tid;
5207 
5208 	/* Stop TX scheduler while we're changing its configuration. */
5209 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5210 	    IWN5000_TXQ_STATUS_CHGACT);
5211 
5212 	/* Disable aggregation for the queue. */
5213 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5214 
5215 	/* Set starting sequence number from the ADDBA request. */
5216 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5217 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5218 
5219 	/* Disable interrupts for the queue. */
5220 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5221 
5222 	/* Mark the queue as inactive. */
5223 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5224 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5225 }
5226 #endif
5227 
5228 /*
5229  * Query calibration tables from the initialization firmware.  We do this
5230  * only once at first boot.  Called from a process context.
5231  */
5232 static int
5233 iwn5000_query_calibration(struct iwn_softc *sc)
5234 {
5235 	struct iwn5000_calib_config cmd;
5236 	int error;
5237 
5238 	memset(&cmd, 0, sizeof cmd);
5239 	cmd.ucode.once.enable = 0xffffffff;
5240 	cmd.ucode.once.start  = 0xffffffff;
5241 	cmd.ucode.once.send   = 0xffffffff;
5242 	cmd.ucode.flags       = 0xffffffff;
5243 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
5244 	    __func__);
5245 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5246 	if (error != 0)
5247 		return error;
5248 
5249 	/* Wait at most two seconds for calibration to complete. */
5250 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5251 		error = zsleep(sc, &wlan_global_serializer,
5252 			       0, "iwninit", 2 * hz);
5253 	}
5254 	return error;
5255 }
5256 
5257 /*
5258  * Send calibration results to the runtime firmware.  These results were
5259  * obtained on first boot from the initialization firmware.
5260  */
5261 static int
5262 iwn5000_send_calibration(struct iwn_softc *sc)
5263 {
5264 	int idx, error;
5265 
5266 	for (idx = 0; idx < 5; idx++) {
5267 		if (sc->calibcmd[idx].buf == NULL)
5268 			continue;	/* No results available. */
5269 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5270 		    "send calibration result idx=%d len=%d\n",
5271 		    idx, sc->calibcmd[idx].len);
5272 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5273 		    sc->calibcmd[idx].len, 0);
5274 		if (error != 0) {
5275 			device_printf(sc->sc_dev,
5276 			    "%s: could not send calibration result, error %d\n",
5277 			    __func__, error);
5278 			return error;
5279 		}
5280 	}
5281 	return 0;
5282 }
5283 
5284 static int
5285 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5286 {
5287 	struct iwn5000_wimax_coex wimax;
5288 
5289 #ifdef notyet
5290 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5291 		/* Enable WiMAX coexistence for combo adapters. */
5292 		wimax.flags =
5293 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5294 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5295 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
5296 		    IWN_WIMAX_COEX_ENABLE;
5297 		memcpy(wimax.events, iwn6050_wimax_events,
5298 		    sizeof iwn6050_wimax_events);
5299 	} else
5300 #endif
5301 	{
5302 		/* Disable WiMAX coexistence. */
5303 		wimax.flags = 0;
5304 		memset(wimax.events, 0, sizeof wimax.events);
5305 	}
5306 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
5307 	    __func__);
5308 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5309 }
5310 
5311 /*
5312  * This function is called after the runtime firmware notifies us of its
5313  * readiness (called in a process context.)
5314  */
5315 static int
5316 iwn4965_post_alive(struct iwn_softc *sc)
5317 {
5318 	int error, qid;
5319 
5320 	if ((error = iwn_nic_lock(sc)) != 0)
5321 		return error;
5322 
5323 	/* Clear TX scheduler state in SRAM. */
5324 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5325 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5326 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5327 
5328 	/* Set physical address of TX scheduler rings (1KB aligned.) */
5329 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5330 
5331 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5332 
5333 	/* Disable chain mode for all our 16 queues. */
5334 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5335 
5336 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5337 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5338 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5339 
5340 		/* Set scheduler window size. */
5341 		iwn_mem_write(sc, sc->sched_base +
5342 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5343 		/* Set scheduler frame limit. */
5344 		iwn_mem_write(sc, sc->sched_base +
5345 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5346 		    IWN_SCHED_LIMIT << 16);
5347 	}
5348 
5349 	/* Enable interrupts for all our 16 queues. */
5350 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5351 	/* Identify TX FIFO rings (0-7). */
5352 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5353 
5354 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5355 	for (qid = 0; qid < 7; qid++) {
5356 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5357 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5358 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5359 	}
5360 	iwn_nic_unlock(sc);
5361 	return 0;
5362 }
5363 
5364 /*
5365  * This function is called after the initialization or runtime firmware
5366  * notifies us of its readiness (called in a process context.)
5367  */
5368 static int
5369 iwn5000_post_alive(struct iwn_softc *sc)
5370 {
5371 	int error, qid;
5372 
5373 	/* Switch to using ICT interrupt mode. */
5374 	iwn5000_ict_reset(sc);
5375 
5376 	error = iwn_nic_lock(sc);
5377 	if (error != 0)
5378 		return error;
5379 
5380 	/* Clear TX scheduler state in SRAM. */
5381 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5382 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5383 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5384 
5385 	/* Set physical address of TX scheduler rings (1KB aligned.) */
5386 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5387 
5388 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5389 
5390 	/* Enable chain mode for all queues, except command queue. */
5391 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5392 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5393 
5394 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5395 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5396 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5397 
5398 		iwn_mem_write(sc, sc->sched_base +
5399 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5400 		/* Set scheduler window size and frame limit. */
5401 		iwn_mem_write(sc, sc->sched_base +
5402 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5403 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5404 	}
5405 
5406 	/* Enable interrupts for all our 20 queues. */
5407 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5408 	/* Identify TX FIFO rings (0-7). */
5409 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5410 
5411 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5412 	for (qid = 0; qid < 7; qid++) {
5413 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5414 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5415 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5416 	}
5417 	iwn_nic_unlock(sc);
5418 
5419 	/* Configure WiMAX coexistence for combo adapters. */
5420 	error = iwn5000_send_wimax_coex(sc);
5421 	if (error != 0) {
5422 		device_printf(sc->sc_dev,
5423 		    "%s: could not configure WiMAX coexistence, error %d\n",
5424 		    __func__, error);
5425 		return error;
5426 	}
5427 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5428 		struct iwn5000_phy_calib_crystal cmd;
5429 
5430 		/* Perform crystal calibration. */
5431 		memset(&cmd, 0, sizeof cmd);
5432 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5433 		cmd.ngroups = 1;
5434 		cmd.isvalid = 1;
5435 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5436 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5437 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5438 		    "sending crystal calibration %d, %d\n",
5439 		    cmd.cap_pin[0], cmd.cap_pin[1]);
5440 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5441 		if (error != 0) {
5442 			device_printf(sc->sc_dev,
5443 			    "%s: crystal calibration failed, error %d\n",
5444 			    __func__, error);
5445 			return error;
5446 		}
5447 	}
5448 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5449 		/* Query calibration from the initialization firmware. */
5450 		error = iwn5000_query_calibration(sc);
5451 		if (error != 0) {
5452 			device_printf(sc->sc_dev,
5453 			    "%s: could not query calibration, error %d\n",
5454 			    __func__, error);
5455 			return error;
5456 		}
5457 		/*
5458 		 * We have the calibration results now, reboot with the
5459 		 * runtime firmware (call ourselves recursively!)
5460 		 */
5461 		iwn_hw_stop(sc);
5462 		error = iwn_hw_init(sc);
5463 	} else {
5464 		/* Send calibration results to runtime firmware. */
5465 		error = iwn5000_send_calibration(sc);
5466 	}
5467 	return error;
5468 }
5469 
5470 /*
5471  * The firmware boot code is small and is intended to be copied directly into
5472  * the NIC internal memory (no DMA transfer.)
5473  */
5474 static int
5475 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5476 {
5477 	int error, ntries;
5478 
5479 	size /= sizeof (uint32_t);
5480 
5481 	error = iwn_nic_lock(sc);
5482 	if (error != 0)
5483 		return error;
5484 
5485 	/* Copy microcode image into NIC memory. */
5486 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5487 	    (const uint32_t *)ucode, size);
5488 
5489 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5490 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5491 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5492 
5493 	/* Start boot load now. */
5494 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5495 
5496 	/* Wait for transfer to complete. */
5497 	for (ntries = 0; ntries < 1000; ntries++) {
5498 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5499 		    IWN_BSM_WR_CTRL_START))
5500 			break;
5501 		DELAY(10);
5502 	}
5503 	if (ntries == 1000) {
5504 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
5505 		    __func__);
5506 		iwn_nic_unlock(sc);
5507 		return ETIMEDOUT;
5508 	}
5509 
5510 	/* Enable boot after power up. */
5511 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5512 
5513 	iwn_nic_unlock(sc);
5514 	return 0;
5515 }
5516 
5517 static int
5518 iwn4965_load_firmware(struct iwn_softc *sc)
5519 {
5520 	struct iwn_fw_info *fw = &sc->fw;
5521 	struct iwn_dma_info *dma = &sc->fw_dma;
5522 	int error;
5523 
5524 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5525 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5526 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5527 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5528 	    fw->init.text, fw->init.textsz);
5529 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5530 
5531 	/* Tell adapter where to find initialization sections. */
5532 	error = iwn_nic_lock(sc);
5533 	if (error != 0)
5534 		return error;
5535 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5536 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5537 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5538 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5539 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5540 	iwn_nic_unlock(sc);
5541 
5542 	/* Load firmware boot code. */
5543 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5544 	if (error != 0) {
5545 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
5546 		    __func__);
5547 		return error;
5548 	}
5549 	/* Now press "execute". */
5550 	IWN_WRITE(sc, IWN_RESET, 0);
5551 
5552 	/* Wait at most one second for first alive notification. */
5553 	error = zsleep(sc, &wlan_global_serializer, 0, "iwninit", hz);
5554 	if (error) {
5555 		device_printf(sc->sc_dev,
5556 		    "%s: timeout waiting for adapter to initialize, error %d\n",
5557 		    __func__, error);
5558 		return error;
5559 	}
5560 
5561 	/* Retrieve current temperature for initial TX power calibration. */
5562 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5563 	sc->temp = iwn4965_get_temperature(sc);
5564 
5565 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5566 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5567 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5568 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5569 	    fw->main.text, fw->main.textsz);
5570 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5571 
5572 	/* Tell adapter where to find runtime sections. */
5573 	error = iwn_nic_lock(sc);
5574 	if (error != 0)
5575 		return error;
5576 
5577 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5578 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5579 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5580 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5581 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5582 	    IWN_FW_UPDATED | fw->main.textsz);
5583 	iwn_nic_unlock(sc);
5584 
5585 	return 0;
5586 }
5587 
5588 static int
5589 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5590     const uint8_t *section, int size)
5591 {
5592 	struct iwn_dma_info *dma = &sc->fw_dma;
5593 	int error;
5594 
5595 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5596 	memcpy(dma->vaddr, section, size);
5597 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5598 
5599 	error = iwn_nic_lock(sc);
5600 	if (error != 0)
5601 		return error;
5602 
5603 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5604 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5605 
5606 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5607 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5608 	    IWN_LOADDR(dma->paddr));
5609 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5610 	    IWN_HIADDR(dma->paddr) << 28 | size);
5611 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5612 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5613 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5614 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5615 
5616 	/* Kick Flow Handler to start DMA transfer. */
5617 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5618 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5619 
5620 	iwn_nic_unlock(sc);
5621 
5622 	/*
5623 	 * Wait at most five seconds for FH DMA transfer to complete.
5624 	 */
5625 	error = zsleep(sc, &wlan_global_serializer, 0, "iwninit", hz);
5626 	return (error);
5627 }
5628 
5629 static int
5630 iwn5000_load_firmware(struct iwn_softc *sc)
5631 {
5632 	struct iwn_fw_part *fw;
5633 	int error;
5634 
5635 	/* Load the initialization firmware on first boot only. */
5636 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5637 	    &sc->fw.main : &sc->fw.init;
5638 
5639 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5640 	    fw->text, fw->textsz);
5641 	if (error != 0) {
5642 		device_printf(sc->sc_dev,
5643 		    "%s: could not load firmware %s section, error %d\n",
5644 		    __func__, ".text", error);
5645 		return error;
5646 	}
5647 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5648 	    fw->data, fw->datasz);
5649 	if (error != 0) {
5650 		device_printf(sc->sc_dev,
5651 		    "%s: could not load firmware %s section, error %d\n",
5652 		    __func__, ".data", error);
5653 		return error;
5654 	}
5655 
5656 	/* Now press "execute". */
5657 	IWN_WRITE(sc, IWN_RESET, 0);
5658 	return 0;
5659 }
5660 
5661 static int
5662 iwn_read_firmware(struct iwn_softc *sc)
5663 {
5664 	const struct iwn_hal *hal = sc->sc_hal;
5665 	struct iwn_fw_info *fw = &sc->fw;
5666 	const uint32_t *ptr;
5667 	uint32_t rev;
5668 	size_t size;
5669 	int wlan_serialized;
5670 
5671 	/*
5672 	 * Read firmware image from filesystem.  The firmware can block
5673 	 * in a taskq and deadlock against our serializer so unlock
5674 	 * while we do tihs.
5675 	 */
5676 	wlan_serialized = IS_SERIALIZED(&wlan_global_serializer);
5677 	if (wlan_serialized)
5678 		wlan_serialize_exit();
5679 	sc->fw_fp = firmware_get(sc->fwname);
5680 	if (wlan_serialized)
5681 		wlan_serialize_enter();
5682 	if (sc->fw_fp == NULL) {
5683 		device_printf(sc->sc_dev,
5684 		    "%s: could not load firmare image \"%s\"\n", __func__,
5685 		    sc->fwname);
5686 		return EINVAL;
5687 	}
5688 
5689 	size = sc->fw_fp->datasize;
5690 	if (size < 28) {
5691 		device_printf(sc->sc_dev,
5692 		    "%s: truncated firmware header: %zu bytes\n",
5693 		    __func__, size);
5694 		return EINVAL;
5695 	}
5696 
5697 	/* Process firmware header. */
5698 	ptr = (const uint32_t *)sc->fw_fp->data;
5699 	rev = le32toh(*ptr++);
5700 	/* Check firmware API version. */
5701 	if (IWN_FW_API(rev) <= 1) {
5702 		device_printf(sc->sc_dev,
5703 		    "%s: bad firmware, need API version >=2\n", __func__);
5704 		return EINVAL;
5705 	}
5706 	if (IWN_FW_API(rev) >= 3) {
5707 		/* Skip build number (version 2 header). */
5708 		size -= 4;
5709 		ptr++;
5710 	}
5711 	fw->main.textsz = le32toh(*ptr++);
5712 	fw->main.datasz = le32toh(*ptr++);
5713 	fw->init.textsz = le32toh(*ptr++);
5714 	fw->init.datasz = le32toh(*ptr++);
5715 	fw->boot.textsz = le32toh(*ptr++);
5716 	size -= 24;
5717 
5718 	/* Sanity-check firmware header. */
5719 	if (fw->main.textsz > hal->fw_text_maxsz ||
5720 	    fw->main.datasz > hal->fw_data_maxsz ||
5721 	    fw->init.textsz > hal->fw_text_maxsz ||
5722 	    fw->init.datasz > hal->fw_data_maxsz ||
5723 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5724 	    (fw->boot.textsz & 3) != 0) {
5725 		device_printf(sc->sc_dev, "%s: invalid firmware header\n",
5726 		    __func__);
5727 		return EINVAL;
5728 	}
5729 
5730 	/* Check that all firmware sections fit. */
5731 	if (fw->main.textsz + fw->main.datasz + fw->init.textsz +
5732 	    fw->init.datasz + fw->boot.textsz > size) {
5733 		device_printf(sc->sc_dev,
5734 		    "%s: firmware file too short: %zu bytes\n",
5735 		    __func__, size);
5736 		return EINVAL;
5737 	}
5738 
5739 	/* Get pointers to firmware sections. */
5740 	fw->main.text = (const uint8_t *)ptr;
5741 	fw->main.data = fw->main.text + fw->main.textsz;
5742 	fw->init.text = fw->main.data + fw->main.datasz;
5743 	fw->init.data = fw->init.text + fw->init.textsz;
5744 	fw->boot.text = fw->init.data + fw->init.datasz;
5745 
5746 	return 0;
5747 }
5748 
5749 static int
5750 iwn_clock_wait(struct iwn_softc *sc)
5751 {
5752 	int ntries;
5753 
5754 	/* Set "initialization complete" bit. */
5755 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5756 
5757 	/* Wait for clock stabilization. */
5758 	for (ntries = 0; ntries < 2500; ntries++) {
5759 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5760 			return 0;
5761 		DELAY(10);
5762 	}
5763 	device_printf(sc->sc_dev,
5764 	    "%s: timeout waiting for clock stabilization\n", __func__);
5765 	return ETIMEDOUT;
5766 }
5767 
5768 static int
5769 iwn_apm_init(struct iwn_softc *sc)
5770 {
5771 	uint32_t tmp;
5772 	int error;
5773 
5774 	/* Disable L0s exit timer (NMI bug workaround.) */
5775 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5776 	/* Don't wait for ICH L0s (ICH bug workaround.) */
5777 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5778 
5779 	/* Set FH wait threshold to max (HW bug under stress workaround.) */
5780 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5781 
5782 	/* Enable HAP INTA to move adapter from L1a to L0s. */
5783 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5784 
5785 	/* Retrieve PCIe Active State Power Management (ASPM). */
5786 	tmp = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
5787 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5788 	if (tmp & 0x02)	/* L1 Entry enabled. */
5789 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5790 	else
5791 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5792 
5793 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5794 	    sc->hw_type != IWN_HW_REV_TYPE_6000 &&
5795 	    sc->hw_type != IWN_HW_REV_TYPE_6050)
5796 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5797 
5798 	/* Wait for clock stabilization before accessing prph. */
5799 	error = iwn_clock_wait(sc);
5800 	if (error != 0)
5801 		return error;
5802 
5803 	error = iwn_nic_lock(sc);
5804 	if (error != 0)
5805 		return error;
5806 
5807 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5808 		/* Enable DMA and BSM (Bootstrap State Machine.) */
5809 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5810 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5811 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5812 	} else {
5813 		/* Enable DMA. */
5814 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5815 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5816 	}
5817 	DELAY(20);
5818 
5819 	/* Disable L1-Active. */
5820 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5821 	iwn_nic_unlock(sc);
5822 
5823 	return 0;
5824 }
5825 
5826 static void
5827 iwn_apm_stop_master(struct iwn_softc *sc)
5828 {
5829 	int ntries;
5830 
5831 	/* Stop busmaster DMA activity. */
5832 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5833 	for (ntries = 0; ntries < 100; ntries++) {
5834 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5835 			return;
5836 		DELAY(10);
5837 	}
5838 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
5839 	    __func__);
5840 }
5841 
5842 static void
5843 iwn_apm_stop(struct iwn_softc *sc)
5844 {
5845 	iwn_apm_stop_master(sc);
5846 
5847 	/* Reset the entire device. */
5848 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5849 	DELAY(10);
5850 	/* Clear "initialization complete" bit. */
5851 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5852 }
5853 
5854 static int
5855 iwn4965_nic_config(struct iwn_softc *sc)
5856 {
5857 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5858 		/*
5859 		 * I don't believe this to be correct but this is what the
5860 		 * vendor driver is doing. Probably the bits should not be
5861 		 * shifted in IWN_RFCFG_*.
5862 		 */
5863 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5864 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5865 		    IWN_RFCFG_STEP(sc->rfcfg) |
5866 		    IWN_RFCFG_DASH(sc->rfcfg));
5867 	}
5868 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5869 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5870 	return 0;
5871 }
5872 
5873 static int
5874 iwn5000_nic_config(struct iwn_softc *sc)
5875 {
5876 	uint32_t tmp;
5877 	int error;
5878 
5879 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5880 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5881 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5882 		    IWN_RFCFG_STEP(sc->rfcfg) |
5883 		    IWN_RFCFG_DASH(sc->rfcfg));
5884 	}
5885 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5886 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5887 
5888 	error = iwn_nic_lock(sc);
5889 	if (error != 0)
5890 		return error;
5891 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
5892 
5893 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
5894 		/*
5895 		 * Select first Switching Voltage Regulator (1.32V) to
5896 		 * solve a stability issue related to noisy DC2DC line
5897 		 * in the silicon of 1000 Series.
5898 		 */
5899 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
5900 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
5901 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
5902 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
5903 	}
5904 	iwn_nic_unlock(sc);
5905 
5906 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
5907 		/* Use internal power amplifier only. */
5908 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
5909 	}
5910 	 if (sc->hw_type == IWN_HW_REV_TYPE_6050 && sc->calib_ver >= 6) {
5911 		 /* Indicate that ROM calibration version is >=6. */
5912 		 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
5913 	}
5914 	return 0;
5915 }
5916 
5917 /*
5918  * Take NIC ownership over Intel Active Management Technology (AMT).
5919  */
5920 static int
5921 iwn_hw_prepare(struct iwn_softc *sc)
5922 {
5923 	int ntries;
5924 
5925 	/* Check if hardware is ready. */
5926 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5927 	for (ntries = 0; ntries < 5; ntries++) {
5928 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5929 		    IWN_HW_IF_CONFIG_NIC_READY)
5930 			return 0;
5931 		DELAY(10);
5932 	}
5933 
5934 	/* Hardware not ready, force into ready state. */
5935 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
5936 	for (ntries = 0; ntries < 15000; ntries++) {
5937 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
5938 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
5939 			break;
5940 		DELAY(10);
5941 	}
5942 	if (ntries == 15000)
5943 		return ETIMEDOUT;
5944 
5945 	/* Hardware should be ready now. */
5946 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5947 	for (ntries = 0; ntries < 5; ntries++) {
5948 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5949 		    IWN_HW_IF_CONFIG_NIC_READY)
5950 			return 0;
5951 		DELAY(10);
5952 	}
5953 	return ETIMEDOUT;
5954 }
5955 
5956 static int
5957 iwn_hw_init(struct iwn_softc *sc)
5958 {
5959 	const struct iwn_hal *hal = sc->sc_hal;
5960 	int error, chnl, qid;
5961 
5962 	/* Clear pending interrupts. */
5963 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5964 
5965 	error = iwn_apm_init(sc);
5966 	if (error != 0) {
5967 		device_printf(sc->sc_dev,
5968 		    "%s: could not power ON adapter, error %d\n",
5969 		    __func__, error);
5970 		goto done;
5971 	}
5972 
5973 	/* Select VMAIN power source. */
5974 	error = iwn_nic_lock(sc);
5975 	if (error != 0)
5976 		goto done;
5977 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
5978 	iwn_nic_unlock(sc);
5979 
5980 	/* Perform adapter-specific initialization. */
5981 	error = hal->nic_config(sc);
5982 	if (error != 0)
5983 		goto done;
5984 
5985 	/* Initialize RX ring. */
5986 	error = iwn_nic_lock(sc);
5987 	if (error != 0)
5988 		goto done;
5989 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
5990 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
5991 	/* Set physical address of RX ring (256-byte aligned.) */
5992 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
5993 	/* Set physical address of RX status (16-byte aligned.) */
5994 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
5995 	/* Enable RX. */
5996 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
5997 	    IWN_FH_RX_CONFIG_ENA           |
5998 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
5999 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
6000 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
6001 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
6002 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
6003 	iwn_nic_unlock(sc);
6004 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6005 
6006 	error = iwn_nic_lock(sc);
6007 	if (error != 0)
6008 		goto done;
6009 
6010 	/* Initialize TX scheduler. */
6011 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
6012 
6013 	/* Set physical address of "keep warm" page (16-byte aligned.) */
6014 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6015 
6016 	/* Initialize TX rings. */
6017 	for (qid = 0; qid < hal->ntxqs; qid++) {
6018 		struct iwn_tx_ring *txq = &sc->txq[qid];
6019 
6020 		/* Set physical address of TX ring (256-byte aligned.) */
6021 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6022 		    txq->desc_dma.paddr >> 8);
6023 	}
6024 	iwn_nic_unlock(sc);
6025 
6026 	/* Enable DMA channels. */
6027 	for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
6028 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6029 		    IWN_FH_TX_CONFIG_DMA_ENA |
6030 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6031 	}
6032 
6033 	/* Clear "radio off" and "commands blocked" bits. */
6034 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6035 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6036 
6037 	/* Clear pending interrupts. */
6038 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6039 	/* Enable interrupt coalescing. */
6040 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6041 	/* Enable interrupts. */
6042 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6043 
6044 	/* _Really_ make sure "radio off" bit is cleared! */
6045 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6046 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6047 
6048 	error = hal->load_firmware(sc);
6049 	if (error != 0) {
6050 		device_printf(sc->sc_dev,
6051 		    "%s: could not load firmware, error %d\n",
6052 		    __func__, error);
6053 		goto done;
6054 	}
6055 	/* Wait at most one second for firmware alive notification. */
6056 	error = zsleep(sc, &wlan_global_serializer, 0, "iwninit", hz);
6057 	if (error != 0) {
6058 		device_printf(sc->sc_dev,
6059 		    "%s: timeout waiting for adapter to initialize, error %d\n",
6060 		    __func__, error);
6061 		goto done;
6062 	}
6063 	/* Do post-firmware initialization. */
6064 	error = hal->post_alive(sc);
6065 done:
6066 	return error;
6067 }
6068 
6069 static void
6070 iwn_hw_stop(struct iwn_softc *sc)
6071 {
6072 	const struct iwn_hal *hal = sc->sc_hal;
6073 	uint32_t tmp;
6074 	int chnl, qid, ntries;
6075 
6076 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6077 
6078 	/* Disable interrupts. */
6079 	IWN_WRITE(sc, IWN_INT_MASK, 0);
6080 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6081 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6082 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6083 
6084 	/* Make sure we no longer hold the NIC lock. */
6085 	iwn_nic_unlock(sc);
6086 
6087 	/* Stop TX scheduler. */
6088 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
6089 
6090 	/* Stop all DMA channels. */
6091 	if (iwn_nic_lock(sc) == 0) {
6092 		for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
6093 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6094 			for (ntries = 0; ntries < 200; ntries++) {
6095 				tmp = IWN_READ(sc, IWN_FH_TX_STATUS);
6096 				if ((tmp & IWN_FH_TX_STATUS_IDLE(chnl)) ==
6097 				    IWN_FH_TX_STATUS_IDLE(chnl))
6098 					break;
6099 				DELAY(10);
6100 			}
6101 		}
6102 		iwn_nic_unlock(sc);
6103 	}
6104 
6105 	/* Stop RX ring. */
6106 	iwn_reset_rx_ring(sc, &sc->rxq);
6107 
6108 	/* Reset all TX rings. */
6109 	for (qid = 0; qid < hal->ntxqs; qid++)
6110 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
6111 
6112 	if (iwn_nic_lock(sc) == 0) {
6113 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6114 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6115 		iwn_nic_unlock(sc);
6116 	}
6117 	DELAY(5);
6118 
6119 	/* Power OFF adapter. */
6120 	iwn_apm_stop(sc);
6121 }
6122 
6123 static void
6124 iwn_init_locked(struct iwn_softc *sc)
6125 {
6126 	struct ifnet *ifp = sc->sc_ifp;
6127 	int error;
6128 	int wlan_serializer_needed;
6129 
6130 	/*
6131 	 * The kernel generic firmware loader can wind up calling this
6132 	 * without the wlan serializer, while the wlan subsystem will
6133 	 * call it with the serializer.
6134 	 *
6135 	 * Make sure we hold the serializer or we will have timing issues
6136 	 * with the wlan subsystem.
6137 	 */
6138 	wlan_serializer_needed = !IS_SERIALIZED(&wlan_global_serializer);
6139 	if (wlan_serializer_needed)
6140 		wlan_serialize_enter();
6141 
6142 	error = iwn_hw_prepare(sc);
6143 	if (error != 0) {
6144 		device_printf(sc->sc_dev, "%s: hardware not ready, eror %d\n",
6145 		    __func__, error);
6146 		goto fail;
6147 	}
6148 
6149 	/* Initialize interrupt mask to default value. */
6150 	sc->int_mask = IWN_INT_MASK_DEF;
6151 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6152 
6153 	/* Check that the radio is not disabled by hardware switch. */
6154 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6155 		device_printf(sc->sc_dev,
6156 		    "radio is disabled by hardware switch\n");
6157 
6158 		/* Enable interrupts to get RF toggle notifications. */
6159 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
6160 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6161 		if (wlan_serializer_needed)
6162 			wlan_serialize_exit();
6163 		return;
6164 	}
6165 
6166 	/* Read firmware images from the filesystem. */
6167 	error = iwn_read_firmware(sc);
6168 	if (error != 0) {
6169 		device_printf(sc->sc_dev,
6170 		    "%s: could not read firmware, error %d\n",
6171 		    __func__, error);
6172 		goto fail;
6173 	}
6174 
6175 	/* Initialize hardware and upload firmware. */
6176 	error = iwn_hw_init(sc);
6177 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6178 	sc->fw_fp = NULL;
6179 	if (error != 0) {
6180 		device_printf(sc->sc_dev,
6181 		    "%s: could not initialize hardware, error %d\n",
6182 		    __func__, error);
6183 		goto fail;
6184 	}
6185 
6186 	/* Configure adapter now that it is ready. */
6187 	error = iwn_config(sc);
6188 	if (error != 0) {
6189 		device_printf(sc->sc_dev,
6190 		    "%s: could not configure device, error %d\n",
6191 		    __func__, error);
6192 		goto fail;
6193 	}
6194 
6195 	ifp->if_flags &= ~IFF_OACTIVE;
6196 	ifp->if_flags |= IFF_RUNNING;
6197 	if (wlan_serializer_needed)
6198 		wlan_serialize_exit();
6199 	return;
6200 
6201 fail:
6202 	iwn_stop_locked(sc);
6203 	if (wlan_serializer_needed)
6204 		wlan_serialize_exit();
6205 }
6206 
6207 static void
6208 iwn_init(void *arg)
6209 {
6210 	struct iwn_softc *sc = arg;
6211 	struct ifnet *ifp = sc->sc_ifp;
6212 	struct ieee80211com *ic = ifp->if_l2com;
6213 
6214 	wlan_serialize_enter();
6215 	iwn_init_locked(sc);
6216 	wlan_serialize_exit();
6217 
6218 	if (ifp->if_flags & IFF_RUNNING)
6219 		ieee80211_start_all(ic);
6220 }
6221 
6222 static void
6223 iwn_stop_locked(struct iwn_softc *sc)
6224 {
6225 	struct ifnet *ifp = sc->sc_ifp;
6226 
6227 	sc->sc_tx_timer = 0;
6228 	callout_stop(&sc->sc_timer_to);
6229 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6230 
6231 	/* Power OFF hardware. */
6232 	iwn_hw_stop(sc);
6233 }
6234 
6235 static void
6236 iwn_stop(struct iwn_softc *sc)
6237 {
6238 	wlan_serialize_enter();
6239 	iwn_stop_locked(sc);
6240 	wlan_serialize_exit();
6241 }
6242 
6243 /*
6244  * Callback from net80211 to start a scan.
6245  */
6246 static void
6247 iwn_scan_start(struct ieee80211com *ic)
6248 {
6249 	struct ifnet *ifp = ic->ic_ifp;
6250 	struct iwn_softc *sc = ifp->if_softc;
6251 
6252 	/* make the link LED blink while we're scanning */
6253 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
6254 }
6255 
6256 /*
6257  * Callback from net80211 to terminate a scan.
6258  */
6259 static void
6260 iwn_scan_end(struct ieee80211com *ic)
6261 {
6262 	struct ifnet *ifp = ic->ic_ifp;
6263 	struct iwn_softc *sc = ifp->if_softc;
6264 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6265 
6266 	if (vap->iv_state == IEEE80211_S_RUN) {
6267 		/* Set link LED to ON status if we are associated */
6268 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
6269 	}
6270 }
6271 
6272 /*
6273  * Callback from net80211 to force a channel change.
6274  */
6275 static void
6276 iwn_set_channel(struct ieee80211com *ic)
6277 {
6278 	const struct ieee80211_channel *c = ic->ic_curchan;
6279 	struct ifnet *ifp = ic->ic_ifp;
6280 	struct iwn_softc *sc = ifp->if_softc;
6281 
6282 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
6283 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
6284 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
6285 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
6286 }
6287 
6288 /*
6289  * Callback from net80211 to start scanning of the current channel.
6290  */
6291 static void
6292 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
6293 {
6294 	struct ieee80211vap *vap = ss->ss_vap;
6295 	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6296 	int error;
6297 
6298 	error = iwn_scan(sc);
6299 	if (error != 0)
6300 		ieee80211_cancel_scan(vap);
6301 }
6302 
6303 /*
6304  * Callback from net80211 to handle the minimum dwell time being met.
6305  * The intent is to terminate the scan but we just let the firmware
6306  * notify us when it's finished as we have no safe way to abort it.
6307  */
6308 static void
6309 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
6310 {
6311 	/* NB: don't try to abort scan; wait for firmware to finish */
6312 }
6313 
6314 static struct iwn_eeprom_chan *
6315 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
6316 {
6317 	int i, j;
6318 
6319 	for (j = 0; j < 7; j++) {
6320 		for (i = 0; i < iwn_bands[j].nchan; i++) {
6321 			if (iwn_bands[j].chan[i] == c->ic_ieee)
6322 				return &sc->eeprom_channels[j][i];
6323 		}
6324 	}
6325 
6326 	return NULL;
6327 }
6328 
6329 /*
6330  * Enforce flags read from EEPROM.
6331  */
6332 static int
6333 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
6334     int nchan, struct ieee80211_channel chans[])
6335 {
6336 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
6337 	int i;
6338 
6339 	for (i = 0; i < nchan; i++) {
6340 		struct ieee80211_channel *c = &chans[i];
6341 		struct iwn_eeprom_chan *channel;
6342 
6343 		channel = iwn_find_eeprom_channel(sc, c);
6344 		if (channel == NULL) {
6345 			if_printf(ic->ic_ifp,
6346 			    "%s: invalid channel %u freq %u/0x%x\n",
6347 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
6348 			return EINVAL;
6349 		}
6350 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
6351 	}
6352 
6353 	return 0;
6354 }
6355 
6356 static void
6357 iwn_hw_reset_task(void *arg0, int pending)
6358 {
6359 	struct iwn_softc *sc = arg0;
6360 	struct ifnet *ifp;
6361 	struct ieee80211com *ic;
6362 
6363 	wlan_serialize_enter();
6364 	ifp = sc->sc_ifp;
6365 	ic = ifp->if_l2com;
6366 	iwn_stop_locked(sc);
6367 	iwn_init_locked(sc);
6368 	ieee80211_notify_radio(ic, 1);
6369 	wlan_serialize_exit();
6370 }
6371 
6372 static void
6373 iwn_radio_on_task(void *arg0, int pending)
6374 {
6375 	struct iwn_softc *sc = arg0;
6376 	struct ifnet *ifp;
6377 	struct ieee80211com *ic;
6378 	struct ieee80211vap *vap;
6379 
6380 	wlan_serialize_enter();
6381 	ifp = sc->sc_ifp;
6382 	ic = ifp->if_l2com;
6383 	vap = TAILQ_FIRST(&ic->ic_vaps);
6384 	if (vap != NULL) {
6385 		iwn_init_locked(sc);
6386 		ieee80211_init(vap);
6387 	}
6388 	wlan_serialize_exit();
6389 }
6390 
6391 static void
6392 iwn_radio_off_task(void *arg0, int pending)
6393 {
6394 	struct iwn_softc *sc = arg0;
6395 	struct ifnet *ifp;
6396 	struct ieee80211com *ic;
6397 	struct ieee80211vap *vap;
6398 
6399 	wlan_serialize_enter();
6400 	ifp = sc->sc_ifp;
6401 	ic = ifp->if_l2com;
6402 	vap = TAILQ_FIRST(&ic->ic_vaps);
6403 	iwn_stop_locked(sc);
6404 	if (vap != NULL)
6405 		ieee80211_stop(vap);
6406 
6407 	/* Enable interrupts to get RF toggle notification. */
6408 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6409 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6410 	wlan_serialize_exit();
6411 }
6412 
6413 static void
6414 iwn_sysctlattach(struct iwn_softc *sc)
6415 {
6416 	struct sysctl_ctx_list *ctx;
6417 	struct sysctl_oid *tree;
6418 
6419 	ctx = &sc->sc_sysctl_ctx;
6420 	tree = sc->sc_sysctl_tree;
6421 	if (tree == NULL) {
6422 		device_printf(sc->sc_dev, "can't add sysctl node\n");
6423 		return;
6424 	}
6425 
6426 #ifdef IWN_DEBUG
6427 	sc->sc_debug = 0;
6428 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6429 	    "debug", CTLFLAG_RW, &sc->sc_debug, 0, "control debugging printfs");
6430 #endif
6431 }
6432 
6433 static int
6434 iwn_pci_shutdown(device_t dev)
6435 {
6436 	struct iwn_softc *sc = device_get_softc(dev);
6437 
6438 	wlan_serialize_enter();
6439 	iwn_stop_locked(sc);
6440 	wlan_serialize_exit();
6441 
6442 	return 0;
6443 }
6444 
6445 static int
6446 iwn_pci_suspend(device_t dev)
6447 {
6448 	struct iwn_softc *sc = device_get_softc(dev);
6449 	struct ifnet *ifp = sc->sc_ifp;
6450 	struct ieee80211com *ic = ifp->if_l2com;
6451 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6452 
6453 	wlan_serialize_enter();
6454 	iwn_stop_locked(sc);
6455 	if (vap != NULL)
6456 		ieee80211_stop(vap);
6457 	wlan_serialize_exit();
6458 
6459 	return 0;
6460 }
6461 
6462 static int
6463 iwn_pci_resume(device_t dev)
6464 {
6465 	struct iwn_softc *sc = device_get_softc(dev);
6466 	struct ifnet *ifp;
6467 	struct ieee80211com *ic;
6468 	struct ieee80211vap *vap;
6469 
6470 	wlan_serialize_enter();
6471 	ifp = sc->sc_ifp;
6472 	ic = ifp->if_l2com;
6473 	vap = TAILQ_FIRST(&ic->ic_vaps);
6474 	/* Clear device-specific "PCI retry timeout" register (41h). */
6475 	pci_write_config(dev, 0x41, 0, 1);
6476 
6477 	if (ifp->if_flags & IFF_UP) {
6478 		iwn_init_locked(sc);
6479 		if (vap != NULL)
6480 			ieee80211_init(vap);
6481 		if (ifp->if_flags & IFF_RUNNING)
6482 			iwn_start_locked(ifp);
6483 	}
6484 	wlan_serialize_exit();
6485 
6486 	return 0;
6487 }
6488 
6489 #ifdef IWN_DEBUG
6490 static const char *
6491 iwn_intr_str(uint8_t cmd)
6492 {
6493 	switch (cmd) {
6494 	/* Notifications */
6495 	case IWN_UC_READY:		return "UC_READY";
6496 	case IWN_ADD_NODE_DONE:		return "ADD_NODE_DONE";
6497 	case IWN_TX_DONE:		return "TX_DONE";
6498 	case IWN_START_SCAN:		return "START_SCAN";
6499 	case IWN_STOP_SCAN:		return "STOP_SCAN";
6500 	case IWN_RX_STATISTICS:		return "RX_STATS";
6501 	case IWN_BEACON_STATISTICS:	return "BEACON_STATS";
6502 	case IWN_STATE_CHANGED:		return "STATE_CHANGED";
6503 	case IWN_BEACON_MISSED:		return "BEACON_MISSED";
6504 	case IWN_RX_PHY:		return "RX_PHY";
6505 	case IWN_MPDU_RX_DONE:		return "MPDU_RX_DONE";
6506 	case IWN_RX_DONE:		return "RX_DONE";
6507 
6508 	/* Command Notifications */
6509 	case IWN_CMD_RXON:		return "IWN_CMD_RXON";
6510 	case IWN_CMD_RXON_ASSOC:	return "IWN_CMD_RXON_ASSOC";
6511 	case IWN_CMD_EDCA_PARAMS:	return "IWN_CMD_EDCA_PARAMS";
6512 	case IWN_CMD_TIMING:		return "IWN_CMD_TIMING";
6513 	case IWN_CMD_LINK_QUALITY:	return "IWN_CMD_LINK_QUALITY";
6514 	case IWN_CMD_SET_LED:		return "IWN_CMD_SET_LED";
6515 	case IWN5000_CMD_WIMAX_COEX:	return "IWN5000_CMD_WIMAX_COEX";
6516 	case IWN5000_CMD_CALIB_CONFIG:	return "IWN5000_CMD_CALIB_CONFIG";
6517 	case IWN5000_CMD_CALIB_RESULT:	return "IWN5000_CMD_CALIB_RESULT";
6518 	case IWN5000_CMD_CALIB_COMPLETE: return "IWN5000_CMD_CALIB_COMPLETE";
6519 	case IWN_CMD_SET_POWER_MODE:	return "IWN_CMD_SET_POWER_MODE";
6520 	case IWN_CMD_SCAN:		return "IWN_CMD_SCAN";
6521 	case IWN_CMD_SCAN_RESULTS:	return "IWN_CMD_SCAN_RESULTS";
6522 	case IWN_CMD_TXPOWER:		return "IWN_CMD_TXPOWER";
6523 	case IWN_CMD_TXPOWER_DBM:	return "IWN_CMD_TXPOWER_DBM";
6524 	case IWN5000_CMD_TX_ANT_CONFIG:	return "IWN5000_CMD_TX_ANT_CONFIG";
6525 	case IWN_CMD_BT_COEX:		return "IWN_CMD_BT_COEX";
6526 	case IWN_CMD_SET_CRITICAL_TEMP:	return "IWN_CMD_SET_CRITICAL_TEMP";
6527 	case IWN_CMD_SET_SENSITIVITY:	return "IWN_CMD_SET_SENSITIVITY";
6528 	case IWN_CMD_PHY_CALIB:		return "IWN_CMD_PHY_CALIB";
6529 	}
6530 	return "UNKNOWN INTR NOTIF/CMD";
6531 }
6532 #endif /* IWN_DEBUG */
6533 
6534 static device_method_t iwn_methods[] = {
6535 	/* Device interface */
6536 	DEVMETHOD(device_probe,		iwn_pci_probe),
6537 	DEVMETHOD(device_attach,	iwn_pci_attach),
6538 	DEVMETHOD(device_detach,	iwn_pci_detach),
6539 	DEVMETHOD(device_shutdown,	iwn_pci_shutdown),
6540 	DEVMETHOD(device_suspend,	iwn_pci_suspend),
6541 	DEVMETHOD(device_resume,	iwn_pci_resume),
6542 	{ 0, 0 }
6543 };
6544 
6545 static driver_t iwn_driver = {
6546 	"iwn",
6547 	iwn_methods,
6548 	sizeof (struct iwn_softc)
6549 };
6550 static devclass_t iwn_devclass;
6551 
6552 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL);
6553 MODULE_DEPEND(iwn, pci, 1, 1, 1);
6554 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
6555 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
6556 MODULE_DEPEND(iwn, wlan_amrr, 1, 1, 1);
6557