xref: /dragonfly/sys/dev/netif/iwn/if_iwn.c (revision a32bc35d)
1 /*-
2  * Copyright (c) 2007-2009
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  * Copyright (c) 2008
5  *	Benjamin Close <benjsc@FreeBSD.org>
6  * Copyright (c) 2008 Sam Leffler, Errno Consulting
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
23  * adapters.
24  */
25 
26 /* $FreeBSD$ */
27 
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/bus.h>
37 #include <sys/rman.h>
38 #include <sys/endian.h>
39 #include <sys/firmware.h>
40 #include <sys/limits.h>
41 #include <sys/module.h>
42 #include <sys/queue.h>
43 #include <sys/taskqueue.h>
44 #include <sys/libkern.h>
45 
46 #include <sys/bus.h>
47 #include <sys/resource.h>
48 #include <machine/clock.h>
49 
50 #include <bus/pci/pcireg.h>
51 #include <bus/pci/pcivar.h>
52 
53 #include <net/bpf.h>
54 #include <net/if.h>
55 #include <net/if_arp.h>
56 #include <net/ifq_var.h>
57 #include <net/ethernet.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_types.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/if_ether.h>
66 #include <netinet/ip.h>
67 
68 #include <netproto/802_11/ieee80211_var.h>
69 #include <netproto/802_11/ieee80211_radiotap.h>
70 #include <netproto/802_11/ieee80211_regdomain.h>
71 #include <netproto/802_11/ieee80211_ratectl.h>
72 
73 #include "if_iwnreg.h"
74 #include "if_iwnvar.h"
75 
76 static int	iwn_pci_probe(device_t);
77 static int	iwn_pci_attach(device_t);
78 static const struct iwn_hal *iwn_hal_attach(struct iwn_softc *);
79 static void	iwn_radiotap_attach(struct iwn_softc *);
80 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
81 		    const char name[IFNAMSIZ], int unit, int opmode,
82 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
83 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
84 static void	iwn_vap_delete(struct ieee80211vap *);
85 static int	iwn_cleanup(device_t);
86 static int	iwn_pci_detach(device_t);
87 static int	iwn_nic_lock(struct iwn_softc *);
88 static int	iwn_eeprom_lock(struct iwn_softc *);
89 static int	iwn_init_otprom(struct iwn_softc *);
90 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
91 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
92 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
93 		    void **, bus_size_t, bus_size_t, int);
94 static void	iwn_dma_contig_free(struct iwn_dma_info *);
95 static int	iwn_alloc_sched(struct iwn_softc *);
96 static void	iwn_free_sched(struct iwn_softc *);
97 static int	iwn_alloc_kw(struct iwn_softc *);
98 static void	iwn_free_kw(struct iwn_softc *);
99 static int	iwn_alloc_ict(struct iwn_softc *);
100 static void	iwn_free_ict(struct iwn_softc *);
101 static int	iwn_alloc_fwmem(struct iwn_softc *);
102 static void	iwn_free_fwmem(struct iwn_softc *);
103 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
104 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
105 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
106 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
107 		    int);
108 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
109 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
110 static void	iwn5000_ict_reset(struct iwn_softc *);
111 static int	iwn_read_eeprom(struct iwn_softc *,
112 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
113 static void	iwn4965_read_eeprom(struct iwn_softc *);
114 static void	iwn4965_print_power_group(struct iwn_softc *, int);
115 static void	iwn5000_read_eeprom(struct iwn_softc *);
116 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
117 static void	iwn_read_eeprom_band(struct iwn_softc *, int);
118 #if 0	/* HT */
119 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int);
120 #endif
121 static void	iwn_read_eeprom_channels(struct iwn_softc *, int,
122 		    uint32_t);
123 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
124 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
125 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
126 static void	iwn_newassoc(struct ieee80211_node *, int);
127 static int	iwn_media_change(struct ifnet *);
128 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
129 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
130 		    struct iwn_rx_data *);
131 static void	iwn_timer_callout(void *);
132 static void	iwn_calib_reset(struct iwn_softc *);
133 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
134 		    struct iwn_rx_data *);
135 #if 0	/* HT */
136 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
137 		    struct iwn_rx_data *);
138 #endif
139 static void	iwn5000_rx_calib_results(struct iwn_softc *,
140 		    struct iwn_rx_desc *, struct iwn_rx_data *);
141 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
142 		    struct iwn_rx_data *);
143 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
144 		    struct iwn_rx_data *);
145 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
146 		    struct iwn_rx_data *);
147 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
148 		    uint8_t);
149 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
150 static void	iwn_notif_intr(struct iwn_softc *);
151 static void	iwn_wakeup_intr(struct iwn_softc *);
152 static void	iwn_rftoggle_intr(struct iwn_softc *);
153 static void	iwn_fatal_intr(struct iwn_softc *);
154 static void	iwn_intr(void *);
155 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
156 		    uint16_t);
157 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
158 		    uint16_t);
159 #ifdef notyet
160 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
161 #endif
162 static uint8_t	iwn_plcp_signal(int);
163 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
164 		    struct ieee80211_node *, struct iwn_tx_ring *);
165 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
166 		    const struct ieee80211_bpf_params *);
167 static void	iwn_start(struct ifnet *);
168 static void	iwn_start_locked(struct ifnet *);
169 static void	iwn_watchdog(struct iwn_softc *sc);
170 static int	iwn_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
171 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
172 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
173 		    int);
174 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
175 		    int);
176 static int	iwn_set_link_quality(struct iwn_softc *, uint8_t, int);
177 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
178 static int	iwn_wme_update(struct ieee80211com *);
179 static void	iwn_update_mcast(struct ifnet *);
180 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
181 static int	iwn_set_critical_temp(struct iwn_softc *);
182 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
183 static void	iwn4965_power_calibration(struct iwn_softc *, int);
184 static int	iwn4965_set_txpower(struct iwn_softc *,
185 		    struct ieee80211_channel *, int);
186 static int	iwn5000_set_txpower(struct iwn_softc *,
187 		    struct ieee80211_channel *, int);
188 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
189 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
190 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
191 static int	iwn4965_get_temperature(struct iwn_softc *);
192 static int	iwn5000_get_temperature(struct iwn_softc *);
193 static int	iwn_init_sensitivity(struct iwn_softc *);
194 static void	iwn_collect_noise(struct iwn_softc *,
195 		    const struct iwn_rx_general_stats *);
196 static int	iwn4965_init_gains(struct iwn_softc *);
197 static int	iwn5000_init_gains(struct iwn_softc *);
198 static int	iwn4965_set_gains(struct iwn_softc *);
199 static int	iwn5000_set_gains(struct iwn_softc *);
200 static void	iwn_tune_sensitivity(struct iwn_softc *,
201 		    const struct iwn_rx_stats *);
202 static int	iwn_send_sensitivity(struct iwn_softc *);
203 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
204 static int	iwn_config(struct iwn_softc *);
205 static int	iwn_scan(struct iwn_softc *);
206 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
207 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
208 #if 0	/* HT */
209 static int	iwn_ampdu_rx_start(struct ieee80211com *,
210 		    struct ieee80211_node *, uint8_t);
211 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
212 		    struct ieee80211_node *, uint8_t);
213 static int	iwn_ampdu_tx_start(struct ieee80211com *,
214 		    struct ieee80211_node *, uint8_t);
215 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
216 		    struct ieee80211_node *, uint8_t);
217 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
218 		    struct ieee80211_node *, uint8_t, uint16_t);
219 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, uint8_t, uint16_t);
220 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
221 		    struct ieee80211_node *, uint8_t, uint16_t);
222 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, uint8_t, uint16_t);
223 #endif
224 static int	iwn5000_query_calibration(struct iwn_softc *);
225 static int	iwn5000_send_calibration(struct iwn_softc *);
226 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
227 static int	iwn4965_post_alive(struct iwn_softc *);
228 static int	iwn5000_post_alive(struct iwn_softc *);
229 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
230 		    int);
231 static int	iwn4965_load_firmware(struct iwn_softc *);
232 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
233 		    const uint8_t *, int);
234 static int	iwn5000_load_firmware(struct iwn_softc *);
235 static int	iwn_read_firmware(struct iwn_softc *);
236 static int	iwn_clock_wait(struct iwn_softc *);
237 static int	iwn_apm_init(struct iwn_softc *);
238 static void	iwn_apm_stop_master(struct iwn_softc *);
239 static void	iwn_apm_stop(struct iwn_softc *);
240 static int	iwn4965_nic_config(struct iwn_softc *);
241 static int	iwn5000_nic_config(struct iwn_softc *);
242 static int	iwn_hw_prepare(struct iwn_softc *);
243 static int	iwn_hw_init(struct iwn_softc *);
244 static void	iwn_hw_stop(struct iwn_softc *);
245 static void	iwn_init_locked(struct iwn_softc *);
246 static void	iwn_init(void *);
247 static void	iwn_stop_locked(struct iwn_softc *);
248 static void	iwn_stop(struct iwn_softc *);
249 static void 	iwn_scan_start(struct ieee80211com *);
250 static void 	iwn_scan_end(struct ieee80211com *);
251 static void 	iwn_set_channel(struct ieee80211com *);
252 static void 	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
253 static void 	iwn_scan_mindwell(struct ieee80211_scan_state *);
254 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
255 		    struct ieee80211_channel *);
256 static int	iwn_setregdomain(struct ieee80211com *,
257 		    struct ieee80211_regdomain *, int,
258 		    struct ieee80211_channel []);
259 static void	iwn_hw_reset_task(void *, int);
260 static void	iwn_radio_on_task(void *, int);
261 static void	iwn_radio_off_task(void *, int);
262 static void	iwn_sysctlattach(struct iwn_softc *);
263 static int	iwn_pci_shutdown(device_t);
264 static int	iwn_pci_suspend(device_t);
265 static int	iwn_pci_resume(device_t);
266 
267 #define IWN_DEBUG
268 #ifdef IWN_DEBUG
269 enum {
270 	IWN_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
271 	IWN_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
272 	IWN_DEBUG_STATE		= 0x00000004,	/* 802.11 state transitions */
273 	IWN_DEBUG_TXPOW		= 0x00000008,	/* tx power processing */
274 	IWN_DEBUG_RESET		= 0x00000010,	/* reset processing */
275 	IWN_DEBUG_OPS		= 0x00000020,	/* iwn_ops processing */
276 	IWN_DEBUG_BEACON 	= 0x00000040,	/* beacon handling */
277 	IWN_DEBUG_WATCHDOG 	= 0x00000080,	/* watchdog timeout */
278 	IWN_DEBUG_INTR		= 0x00000100,	/* ISR */
279 	IWN_DEBUG_CALIBRATE	= 0x00000200,	/* periodic calibration */
280 	IWN_DEBUG_NODE		= 0x00000400,	/* node management */
281 	IWN_DEBUG_LED		= 0x00000800,	/* led management */
282 	IWN_DEBUG_CMD		= 0x00001000,	/* cmd submission */
283 	IWN_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
284 	IWN_DEBUG_ANY		= 0xffffffff
285 };
286 
287 #define DPRINTF(sc, m, fmt, ...) do {			\
288 	if (sc->sc_debug & (m))				\
289 		kprintf(fmt, __VA_ARGS__);		\
290 } while (0)
291 
292 static const char *iwn_intr_str(uint8_t);
293 #else
294 #define DPRINTF(sc, m, fmt, ...) do { (void) sc; } while (0)
295 #endif
296 
297 struct iwn_ident {
298 	uint16_t	vendor;
299 	uint16_t	device;
300 	const char	*name;
301 };
302 
303 static const struct iwn_ident iwn_ident_table [] = {
304 	{ 0x8086, 0x4229, "Intel(R) PRO/Wireless 4965BGN" },
305 	{ 0x8086, 0x422D, "Intel(R) PRO/Wireless 4965BGN" },
306 	{ 0x8086, 0x4230, "Intel(R) PRO/Wireless 4965BGN" },
307 	{ 0x8086, 0x4233, "Intel(R) PRO/Wireless 4965BGN" },
308 	{ 0x8086, 0x4232, "Intel(R) PRO/Wireless 5100" },
309 	{ 0x8086, 0x4237, "Intel(R) PRO/Wireless 5100" },
310 	{ 0x8086, 0x423C, "Intel(R) PRO/Wireless 5150" },
311 	{ 0x8086, 0x423D, "Intel(R) PRO/Wireless 5150" },
312 	{ 0x8086, 0x4235, "Intel(R) PRO/Wireless 5300" },
313 	{ 0x8086, 0x4236, "Intel(R) PRO/Wireless 5300" },
314 	{ 0x8086, 0x423A, "Intel(R) PRO/Wireless 5350" },
315 	{ 0x8086, 0x423B, "Intel(R) PRO/Wireless 5350" },
316 	{ 0x8086, 0x0083, "Intel(R) PRO/Wireless 1000" },
317 	{ 0x8086, 0x0084, "Intel(R) PRO/Wireless 1000" },
318 	{ 0x8086, 0x008D, "Intel(R) PRO/Wireless 6000" },
319 	{ 0x8086, 0x008E, "Intel(R) PRO/Wireless 6000" },
320 	{ 0x8086, 0x4238, "Intel(R) PRO/Wireless 6000" },
321 	{ 0x8086, 0x4239, "Intel(R) PRO/Wireless 6000" },
322 	{ 0x8086, 0x422B, "Intel(R) PRO/Wireless 6000" },
323 	{ 0x8086, 0x422C, "Intel(R) PRO/Wireless 6000" },
324 	{ 0x8086, 0x0086, "Intel(R) PRO/Wireless 6050" },
325 	{ 0x8086, 0x0087, "Intel(R) PRO/Wireless 6050" },
326 	{ 0x8086, 0x08AE, "Intel(R) Centrino Wireless-N 100" },
327 	{ 0, 0, NULL }
328 };
329 
330 static const struct iwn_hal iwn4965_hal = {
331 	iwn4965_load_firmware,
332 	iwn4965_read_eeprom,
333 	iwn4965_post_alive,
334 	iwn4965_nic_config,
335 	iwn4965_update_sched,
336 	iwn4965_get_temperature,
337 	iwn4965_get_rssi,
338 	iwn4965_set_txpower,
339 	iwn4965_init_gains,
340 	iwn4965_set_gains,
341 	iwn4965_add_node,
342 	iwn4965_tx_done,
343 #if 0	/* HT */
344 	iwn4965_ampdu_tx_start,
345 	iwn4965_ampdu_tx_stop,
346 #endif
347 	IWN4965_NTXQUEUES,
348 	IWN4965_NDMACHNLS,
349 	IWN4965_ID_BROADCAST,
350 	IWN4965_RXONSZ,
351 	IWN4965_SCHEDSZ,
352 	IWN4965_FW_TEXT_MAXSZ,
353 	IWN4965_FW_DATA_MAXSZ,
354 	IWN4965_FWSZ,
355 	IWN4965_SCHED_TXFACT
356 };
357 
358 static const struct iwn_hal iwn5000_hal = {
359 	iwn5000_load_firmware,
360 	iwn5000_read_eeprom,
361 	iwn5000_post_alive,
362 	iwn5000_nic_config,
363 	iwn5000_update_sched,
364 	iwn5000_get_temperature,
365 	iwn5000_get_rssi,
366 	iwn5000_set_txpower,
367 	iwn5000_init_gains,
368 	iwn5000_set_gains,
369 	iwn5000_add_node,
370 	iwn5000_tx_done,
371 #if 0	/* HT */
372 	iwn5000_ampdu_tx_start,
373 	iwn5000_ampdu_tx_stop,
374 #endif
375 	IWN5000_NTXQUEUES,
376 	IWN5000_NDMACHNLS,
377 	IWN5000_ID_BROADCAST,
378 	IWN5000_RXONSZ,
379 	IWN5000_SCHEDSZ,
380 	IWN5000_FW_TEXT_MAXSZ,
381 	IWN5000_FW_DATA_MAXSZ,
382 	IWN5000_FWSZ,
383 	IWN5000_SCHED_TXFACT
384 };
385 
386 static int
387 iwn_pci_probe(device_t dev)
388 {
389 	const struct iwn_ident *ident;
390 
391 	/* no wlan serializer needed */
392 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
393 		if (pci_get_vendor(dev) == ident->vendor &&
394 		    pci_get_device(dev) == ident->device) {
395 			device_set_desc(dev, ident->name);
396 			return 0;
397 		}
398 	}
399 	return ENXIO;
400 }
401 
402 static int
403 iwn_pci_attach(device_t dev)
404 {
405 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
406 	struct ieee80211com *ic;
407 	struct ifnet *ifp;
408 	const struct iwn_hal *hal;
409 	uint32_t tmp;
410 	int i, error;
411 #ifdef OLD_MSI
412 	int result;
413 #endif
414 	uint8_t macaddr[IEEE80211_ADDR_LEN];
415 
416 	wlan_serialize_enter();
417 
418 	sc->sc_dev = dev;
419 	sc->sc_dmat = NULL;
420 
421 	if (bus_dma_tag_create(sc->sc_dmat,
422 			1, 0,
423 			BUS_SPACE_MAXADDR_32BIT,
424 			BUS_SPACE_MAXADDR,
425 			NULL, NULL,
426 			BUS_SPACE_MAXSIZE,
427 			IWN_MAX_SCATTER,
428 			BUS_SPACE_MAXSIZE,
429 			BUS_DMA_ALLOCNOW,
430 			&sc->sc_dmat)) {
431 		device_printf(dev, "cannot allocate DMA tag\n");
432 		error = ENOMEM;
433 		goto fail;
434 	}
435 
436 
437 
438 	/* prepare sysctl tree for use in sub modules */
439 	sysctl_ctx_init(&sc->sc_sysctl_ctx);
440 	sc->sc_sysctl_tree = SYSCTL_ADD_NODE(&sc->sc_sysctl_ctx,
441 		SYSCTL_STATIC_CHILDREN(_hw),
442 		OID_AUTO,
443 		device_get_nameunit(sc->sc_dev),
444 		CTLFLAG_RD, 0, "");
445 
446 	/*
447 	 * Get the offset of the PCI Express Capability Structure in PCI
448 	 * Configuration Space.
449 	 */
450 	error = pci_find_extcap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
451 	if (error != 0) {
452 		device_printf(dev, "PCIe capability structure not found!\n");
453 		goto fail2;
454 	}
455 
456 	/* Clear device-specific "PCI retry timeout" register (41h). */
457 	pci_write_config(dev, 0x41, 0, 1);
458 
459 	/* Hardware bug workaround. */
460 	tmp = pci_read_config(dev, PCIR_COMMAND, 1);
461 	if (tmp & PCIM_CMD_INTxDIS) {
462 		DPRINTF(sc, IWN_DEBUG_RESET, "%s: PCIe INTx Disable set\n",
463 		    __func__);
464 		tmp &= ~PCIM_CMD_INTxDIS;
465 		pci_write_config(dev, PCIR_COMMAND, tmp, 1);
466 	}
467 
468 	/* Enable bus-mastering. */
469 	pci_enable_busmaster(dev);
470 
471 	sc->mem_rid = PCIR_BAR(0);
472 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
473 	    RF_ACTIVE);
474 	if (sc->mem == NULL ) {
475 		device_printf(dev, "could not allocate memory resources\n");
476 		error = ENOMEM;
477 		goto fail2;
478 	}
479 
480 	sc->sc_st = rman_get_bustag(sc->mem);
481 	sc->sc_sh = rman_get_bushandle(sc->mem);
482 	sc->irq_rid = 0;
483 #ifdef OLD_MSI
484 	if ((result = pci_msi_count(dev)) == 1 &&
485 	    pci_alloc_msi(dev, &result) == 0)
486 		sc->irq_rid = 1;
487 #endif
488 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
489 	    RF_ACTIVE | RF_SHAREABLE);
490 	if (sc->irq == NULL) {
491 		device_printf(dev, "could not allocate interrupt resource\n");
492 		error = ENOMEM;
493 		goto fail;
494 	}
495 
496 	callout_init(&sc->sc_timer_to);
497 	TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset_task, sc );
498 	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on_task, sc );
499 	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off_task, sc );
500 
501 	/* Attach Hardware Abstraction Layer. */
502 	hal = iwn_hal_attach(sc);
503 	if (hal == NULL) {
504 		error = ENXIO;	/* XXX: Wrong error code? */
505 		goto fail;
506 	}
507 
508 	error = iwn_hw_prepare(sc);
509 	if (error != 0) {
510 		device_printf(dev, "hardware not ready, error %d\n", error);
511 		goto fail;
512 	}
513 
514 	/* Allocate DMA memory for firmware transfers. */
515 	error = iwn_alloc_fwmem(sc);
516 	if (error != 0) {
517 		device_printf(dev,
518 		    "could not allocate memory for firmware, error %d\n",
519 		    error);
520 		goto fail;
521 	}
522 
523 	/* Allocate "Keep Warm" page. */
524 	error = iwn_alloc_kw(sc);
525 	if (error != 0) {
526 		device_printf(dev,
527 		    "could not allocate \"Keep Warm\" page, error %d\n", error);
528 		goto fail;
529 	}
530 
531 	/* Allocate ICT table for 5000 Series. */
532 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
533 	    (error = iwn_alloc_ict(sc)) != 0) {
534 		device_printf(dev,
535 		    "%s: could not allocate ICT table, error %d\n",
536 		    __func__, error);
537 		goto fail;
538 	}
539 
540 	/* Allocate TX scheduler "rings". */
541 	error = iwn_alloc_sched(sc);
542 	if (error != 0) {
543 		device_printf(dev,
544 		    "could not allocate TX scheduler rings, error %d\n",
545 		    error);
546 		goto fail;
547 	}
548 
549 	/* Allocate TX rings (16 on 4965AGN, 20 on 5000). */
550 	for (i = 0; i < hal->ntxqs; i++) {
551 		error = iwn_alloc_tx_ring(sc, &sc->txq[i], i);
552 		if (error != 0) {
553 			device_printf(dev,
554 			    "could not allocate Tx ring %d, error %d\n",
555 			    i, error);
556 			goto fail;
557 		}
558 	}
559 
560 	/* Allocate RX ring. */
561 	error = iwn_alloc_rx_ring(sc, &sc->rxq);
562 	if (error != 0 ){
563 		device_printf(dev,
564 		    "could not allocate Rx ring, error %d\n", error);
565 		goto fail;
566 	}
567 
568 	/* Clear pending interrupts. */
569 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
570 
571 	/* Count the number of available chains. */
572 	sc->ntxchains =
573 	    ((sc->txchainmask >> 2) & 1) +
574 	    ((sc->txchainmask >> 1) & 1) +
575 	    ((sc->txchainmask >> 0) & 1);
576 	sc->nrxchains =
577 	    ((sc->rxchainmask >> 2) & 1) +
578 	    ((sc->rxchainmask >> 1) & 1) +
579 	    ((sc->rxchainmask >> 0) & 1);
580 
581 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
582 	if (ifp == NULL) {
583 		device_printf(dev, "can not allocate ifnet structure\n");
584 		goto fail;
585 	}
586 	ic = ifp->if_l2com;
587 
588 	ic->ic_ifp = ifp;
589 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
590 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
591 
592 	/* Set device capabilities. */
593 	ic->ic_caps =
594 		  IEEE80211_C_STA		/* station mode supported */
595 		| IEEE80211_C_MONITOR		/* monitor mode supported */
596 		| IEEE80211_C_TXPMGT		/* tx power management */
597 		| IEEE80211_C_SHSLOT		/* short slot time supported */
598 		| IEEE80211_C_WPA
599 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
600 		| IEEE80211_C_BGSCAN		/* background scanning */
601 #if 0
602 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
603 #endif
604 		| IEEE80211_C_WME		/* WME */
605 		;
606 #if 0	/* HT */
607 	/* XXX disable until HT channel setup works */
608 	ic->ic_htcaps =
609 		  IEEE80211_HTCAP_SMPS_ENA	/* SM PS mode enabled */
610 		| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width */
611 		| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
612 		| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
613 		| IEEE80211_HTCAP_RXSTBC_2STREAM/* 1-2 spatial streams */
614 		| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
615 		/* s/w capabilities */
616 		| IEEE80211_HTC_HT		/* HT operation */
617 		| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
618 		| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
619 		;
620 
621 	/* Set HT capabilities. */
622 	ic->ic_htcaps =
623 #if IWN_RBUF_SIZE == 8192
624 	    IEEE80211_HTCAP_AMSDU7935 |
625 #endif
626 	    IEEE80211_HTCAP_CBW20_40 |
627 	    IEEE80211_HTCAP_SGI20 |
628 	    IEEE80211_HTCAP_SGI40;
629 	if (sc->hw_type != IWN_HW_REV_TYPE_4965)
630 		ic->ic_htcaps |= IEEE80211_HTCAP_GF;
631 	if (sc->hw_type == IWN_HW_REV_TYPE_6050)
632 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
633 	else
634 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
635 #endif
636 
637 	/* Read MAC address, channels, etc from EEPROM. */
638 	error = iwn_read_eeprom(sc, macaddr);
639 	if (error != 0) {
640 		device_printf(dev, "could not read EEPROM, error %d\n",
641 		    error);
642 		goto fail;
643 	}
644 
645 	device_printf(sc->sc_dev, "MIMO %dT%dR, %.4s, address %6D\n",
646 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
647 	    macaddr, ":");
648 
649 #if 0	/* HT */
650 	/* Set supported HT rates. */
651 	ic->ic_sup_mcs[0] = 0xff;
652 	if (sc->nrxchains > 1)
653 		ic->ic_sup_mcs[1] = 0xff;
654 	if (sc->nrxchains > 2)
655 		ic->ic_sup_mcs[2] = 0xff;
656 #endif
657 
658 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
659 	ifp->if_softc = sc;
660 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
661 	ifp->if_init = iwn_init;
662 	ifp->if_ioctl = iwn_ioctl;
663 	ifp->if_start = iwn_start;
664 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
665 	ifq_set_ready(&ifp->if_snd);
666 
667 	ieee80211_ifattach(ic, macaddr);
668 	ic->ic_vap_create = iwn_vap_create;
669 	ic->ic_vap_delete = iwn_vap_delete;
670 	ic->ic_raw_xmit = iwn_raw_xmit;
671 	ic->ic_node_alloc = iwn_node_alloc;
672 	ic->ic_newassoc = iwn_newassoc;
673 	ic->ic_wme.wme_update = iwn_wme_update;
674 	ic->ic_update_mcast = iwn_update_mcast;
675 	ic->ic_scan_start = iwn_scan_start;
676 	ic->ic_scan_end = iwn_scan_end;
677 	ic->ic_set_channel = iwn_set_channel;
678 	ic->ic_scan_curchan = iwn_scan_curchan;
679 	ic->ic_scan_mindwell = iwn_scan_mindwell;
680 	ic->ic_setregdomain = iwn_setregdomain;
681 #if 0	/* HT */
682 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
683 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
684 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
685 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
686 #endif
687 
688 	iwn_radiotap_attach(sc);
689 	iwn_sysctlattach(sc);
690 
691 	/*
692 	 * Hook our interrupt after all initialization is complete.
693 	 */
694 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
695 			       iwn_intr, sc, &sc->sc_ih,
696 			       &wlan_global_serializer);
697 	if (error != 0) {
698 		device_printf(dev, "could not set up interrupt, error %d\n",
699 		    error);
700 		goto fail;
701 	}
702 
703 	ieee80211_announce(ic);
704 	wlan_serialize_exit();
705 	return 0;
706 fail:
707 	iwn_cleanup(dev);
708 fail2:
709 	wlan_serialize_exit();
710 	return error;
711 }
712 
713 static const struct iwn_hal *
714 iwn_hal_attach(struct iwn_softc *sc)
715 {
716 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
717 
718 	switch (sc->hw_type) {
719 	case IWN_HW_REV_TYPE_4965:
720 		sc->sc_hal = &iwn4965_hal;
721 		sc->limits = &iwn4965_sensitivity_limits;
722 		sc->fwname = "iwn4965fw";
723 		sc->txchainmask = IWN_ANT_AB;
724 		sc->rxchainmask = IWN_ANT_ABC;
725 		break;
726 	case IWN_HW_REV_TYPE_5100:
727 		sc->sc_hal = &iwn5000_hal;
728 		sc->limits = &iwn5000_sensitivity_limits;
729 		sc->fwname = "iwn5000fw";
730 		sc->txchainmask = IWN_ANT_B;
731 		sc->rxchainmask = IWN_ANT_AB;
732 		break;
733 	case IWN_HW_REV_TYPE_5150:
734 		sc->sc_hal = &iwn5000_hal;
735 		sc->limits = &iwn5150_sensitivity_limits;
736 		sc->fwname = "iwn5150fw";
737 		sc->txchainmask = IWN_ANT_A;
738 		sc->rxchainmask = IWN_ANT_AB;
739 		break;
740 	case IWN_HW_REV_TYPE_5300:
741 	case IWN_HW_REV_TYPE_5350:
742 		sc->sc_hal = &iwn5000_hal;
743 		sc->limits = &iwn5000_sensitivity_limits;
744 		sc->fwname = "iwn5000fw";
745 		sc->txchainmask = IWN_ANT_ABC;
746 		sc->rxchainmask = IWN_ANT_ABC;
747 		break;
748 	case IWN_HW_REV_TYPE_1000:
749 		sc->sc_hal = &iwn5000_hal;
750 		sc->limits = &iwn1000_sensitivity_limits;
751 		sc->fwname = "iwn1000fw";
752 		sc->txchainmask = IWN_ANT_A;
753 		sc->rxchainmask = IWN_ANT_AB;
754 		break;
755 	case IWN_HW_REV_TYPE_6000:
756 		sc->sc_hal = &iwn5000_hal;
757 		sc->limits = &iwn6000_sensitivity_limits;
758 		sc->fwname = "iwn6000fw";
759 		switch (pci_get_device(sc->sc_dev)) {
760 		case 0x422C:
761 		case 0x4239:
762 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
763 			sc->txchainmask = IWN_ANT_BC;
764 			sc->rxchainmask = IWN_ANT_BC;
765 			break;
766 		default:
767 			sc->txchainmask = IWN_ANT_ABC;
768 			sc->rxchainmask = IWN_ANT_ABC;
769 			break;
770 		}
771 		break;
772 	case IWN_HW_REV_TYPE_6050:
773 		sc->sc_hal = &iwn5000_hal;
774 		sc->limits = &iwn6000_sensitivity_limits;
775 		sc->fwname = "iwn6000fw";
776 		sc->txchainmask = IWN_ANT_AB;
777 		sc->rxchainmask = IWN_ANT_AB;
778 		break;
779 	default:
780 		device_printf(sc->sc_dev, "adapter type %d not supported\n",
781 		    sc->hw_type);
782 		return NULL;
783 	}
784 	return sc->sc_hal;
785 }
786 
787 /*
788  * Attach the interface to 802.11 radiotap.
789  */
790 static void
791 iwn_radiotap_attach(struct iwn_softc *sc)
792 {
793 	struct ifnet *ifp = sc->sc_ifp;
794 	struct ieee80211com *ic = ifp->if_l2com;
795 
796 	ieee80211_radiotap_attach(ic,
797 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
798 		IWN_TX_RADIOTAP_PRESENT,
799 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
800 		IWN_RX_RADIOTAP_PRESENT);
801 }
802 
803 static struct ieee80211vap *
804 iwn_vap_create(struct ieee80211com *ic,
805 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
806 	const uint8_t bssid[IEEE80211_ADDR_LEN],
807 	const uint8_t mac[IEEE80211_ADDR_LEN])
808 {
809 	struct iwn_vap *ivp;
810 	struct ieee80211vap *vap;
811 
812 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
813 		return NULL;
814 	ivp = (struct iwn_vap *) kmalloc(sizeof(struct iwn_vap),
815 	    M_80211_VAP, M_INTWAIT | M_ZERO);
816 	if (ivp == NULL)
817 		return NULL;
818 	vap = &ivp->iv_vap;
819 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
820 	vap->iv_bmissthreshold = 10;		/* override default */
821 	/* Override with driver methods. */
822 	ivp->iv_newstate = vap->iv_newstate;
823 	vap->iv_newstate = iwn_newstate;
824 
825 	ieee80211_ratectl_init(vap);
826 	/* Complete setup. */
827 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status);
828 	ic->ic_opmode = opmode;
829 	return vap;
830 }
831 
832 static void
833 iwn_vap_delete(struct ieee80211vap *vap)
834 {
835 	struct iwn_vap *ivp = IWN_VAP(vap);
836 
837 	ieee80211_ratectl_deinit(vap);
838 	ieee80211_vap_detach(vap);
839 	kfree(ivp, M_80211_VAP);
840 }
841 
842 static int
843 iwn_cleanup(device_t dev)
844 {
845 	struct iwn_softc *sc = device_get_softc(dev);
846 	struct ifnet *ifp = sc->sc_ifp;
847 	struct ieee80211com *ic;
848 	int i;
849 
850 	if (ifp != NULL) {
851 		ic = ifp->if_l2com;
852 
853 		ieee80211_draintask(ic, &sc->sc_reinit_task);
854 		ieee80211_draintask(ic, &sc->sc_radioon_task);
855 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
856 
857 		iwn_stop(sc);
858 		callout_stop(&sc->sc_timer_to);
859 		ieee80211_ifdetach(ic);
860 	}
861 
862 	/* cleanup sysctl nodes */
863 	sysctl_ctx_free(&sc->sc_sysctl_ctx);
864 
865 	/* Free DMA resources. */
866 	iwn_free_rx_ring(sc, &sc->rxq);
867 	if (sc->sc_hal != NULL)
868 		for (i = 0; i < sc->sc_hal->ntxqs; i++)
869 			iwn_free_tx_ring(sc, &sc->txq[i]);
870 	iwn_free_sched(sc);
871 	iwn_free_kw(sc);
872 	if (sc->ict != NULL) {
873 		iwn_free_ict(sc);
874 		sc->ict = NULL;
875 	}
876 	iwn_free_fwmem(sc);
877 
878 	if (sc->irq != NULL) {
879 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
880 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
881 		if (sc->irq_rid == 1)
882 			pci_release_msi(dev);
883 		sc->irq = NULL;
884 	}
885 
886 	if (sc->mem != NULL) {
887 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
888 		sc->mem = NULL;
889 	}
890 
891 	if (ifp != NULL) {
892 		if_free(ifp);
893 		sc->sc_ifp = NULL;
894 	}
895 
896 	return 0;
897 }
898 
899 static int
900 iwn_pci_detach(device_t dev)
901 {
902 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
903 
904 	wlan_serialize_enter();
905 	iwn_cleanup(dev);
906 	bus_dma_tag_destroy(sc->sc_dmat);
907 	wlan_serialize_exit();
908 
909 	return 0;
910 }
911 
912 static int
913 iwn_nic_lock(struct iwn_softc *sc)
914 {
915 	int ntries;
916 
917 	/* Request exclusive access to NIC. */
918 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
919 
920 	/* Spin until we actually get the lock. */
921 	for (ntries = 0; ntries < 1000; ntries++) {
922 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
923 		    (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
924 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
925 			return 0;
926 		DELAY(10);
927 	}
928 	return ETIMEDOUT;
929 }
930 
931 static __inline void
932 iwn_nic_unlock(struct iwn_softc *sc)
933 {
934 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
935 }
936 
937 static __inline uint32_t
938 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
939 {
940 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
941 	IWN_BARRIER_READ_WRITE(sc);
942 	return IWN_READ(sc, IWN_PRPH_RDATA);
943 }
944 
945 static __inline void
946 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
947 {
948 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
949 	IWN_BARRIER_WRITE(sc);
950 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
951 }
952 
953 static __inline void
954 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
955 {
956 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
957 }
958 
959 static __inline void
960 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
961 {
962 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
963 }
964 
965 static __inline void
966 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
967     const uint32_t *data, int count)
968 {
969 	for (; count > 0; count--, data++, addr += 4)
970 		iwn_prph_write(sc, addr, *data);
971 }
972 
973 static __inline uint32_t
974 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
975 {
976 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
977 	IWN_BARRIER_READ_WRITE(sc);
978 	return IWN_READ(sc, IWN_MEM_RDATA);
979 }
980 
981 static __inline void
982 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
983 {
984 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
985 	IWN_BARRIER_WRITE(sc);
986 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
987 }
988 
989 static __inline void
990 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
991 {
992 	uint32_t tmp;
993 
994 	tmp = iwn_mem_read(sc, addr & ~3);
995 	if (addr & 3)
996 		tmp = (tmp & 0x0000ffff) | data << 16;
997 	else
998 		tmp = (tmp & 0xffff0000) | data;
999 	iwn_mem_write(sc, addr & ~3, tmp);
1000 }
1001 
1002 static __inline void
1003 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1004     int count)
1005 {
1006 	for (; count > 0; count--, addr += 4)
1007 		*data++ = iwn_mem_read(sc, addr);
1008 }
1009 
1010 static __inline void
1011 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1012     int count)
1013 {
1014 	for (; count > 0; count--, addr += 4)
1015 		iwn_mem_write(sc, addr, val);
1016 }
1017 
1018 static int
1019 iwn_eeprom_lock(struct iwn_softc *sc)
1020 {
1021 	int i, ntries;
1022 
1023 	for (i = 0; i < 100; i++) {
1024 		/* Request exclusive access to EEPROM. */
1025 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1026 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1027 
1028 		/* Spin until we actually get the lock. */
1029 		for (ntries = 0; ntries < 100; ntries++) {
1030 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1031 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1032 				return 0;
1033 			DELAY(10);
1034 		}
1035 	}
1036 	return ETIMEDOUT;
1037 }
1038 
1039 static __inline void
1040 iwn_eeprom_unlock(struct iwn_softc *sc)
1041 {
1042 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1043 }
1044 
1045 /*
1046  * Initialize access by host to One Time Programmable ROM.
1047  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1048  */
1049 static int
1050 iwn_init_otprom(struct iwn_softc *sc)
1051 {
1052 	uint16_t prev, base, next;
1053 	int count, error;
1054 
1055 	/* Wait for clock stabilization before accessing prph. */
1056 	error = iwn_clock_wait(sc);
1057 	if (error != 0)
1058 		return error;
1059 
1060 	error = iwn_nic_lock(sc);
1061 	if (error != 0)
1062 		return error;
1063 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1064 	DELAY(5);
1065 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1066 	iwn_nic_unlock(sc);
1067 
1068 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1069 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1070 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1071 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1072 	}
1073 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1074 	/* Clear ECC status. */
1075 	IWN_SETBITS(sc, IWN_OTP_GP,
1076 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1077 
1078 	/*
1079 	 * Find the block before last block (contains the EEPROM image)
1080 	 * for HW without OTP shadow RAM.
1081 	 */
1082 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1083 		/* Switch to absolute addressing mode. */
1084 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1085 		base = prev = 0;
1086 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1087 			error = iwn_read_prom_data(sc, base, &next, 2);
1088 			if (error != 0)
1089 				return error;
1090 			if (next == 0)	/* End of linked-list. */
1091 				break;
1092 			prev = base;
1093 			base = le16toh(next);
1094 		}
1095 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1096 			return EIO;
1097 		/* Skip "next" word. */
1098 		sc->prom_base = prev + 1;
1099 	}
1100 	return 0;
1101 }
1102 
1103 static int
1104 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1105 {
1106 	uint32_t val, tmp;
1107 	int ntries;
1108 	uint8_t *out = data;
1109 
1110 	addr += sc->prom_base;
1111 	for (; count > 0; count -= 2, addr++) {
1112 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1113 		for (ntries = 0; ntries < 10; ntries++) {
1114 			val = IWN_READ(sc, IWN_EEPROM);
1115 			if (val & IWN_EEPROM_READ_VALID)
1116 				break;
1117 			DELAY(5);
1118 		}
1119 		if (ntries == 10) {
1120 			device_printf(sc->sc_dev,
1121 			    "timeout reading ROM at 0x%x\n", addr);
1122 			return ETIMEDOUT;
1123 		}
1124 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1125 			/* OTPROM, check for ECC errors. */
1126 			tmp = IWN_READ(sc, IWN_OTP_GP);
1127 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1128 				device_printf(sc->sc_dev,
1129 				    "OTPROM ECC error at 0x%x\n", addr);
1130 				return EIO;
1131 			}
1132 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1133 				/* Correctable ECC error, clear bit. */
1134 				IWN_SETBITS(sc, IWN_OTP_GP,
1135 				    IWN_OTP_GP_ECC_CORR_STTS);
1136 			}
1137 		}
1138 		*out++ = val >> 16;
1139 		if (count > 1)
1140 			*out++ = val >> 24;
1141 	}
1142 	return 0;
1143 }
1144 
1145 static void
1146 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1147 {
1148 	if (error != 0)
1149 		return;
1150 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1151 	*(bus_addr_t *)arg = segs[0].ds_addr;
1152 }
1153 
1154 static int
1155 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1156 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
1157 {
1158 	int error;
1159 
1160 	dma->size = size;
1161 	dma->tag = NULL;
1162 
1163 	error = bus_dma_tag_create(sc->sc_dmat, alignment,
1164 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1165 	    1, size, flags, &dma->tag);
1166 	if (error != 0) {
1167 		device_printf(sc->sc_dev,
1168 		    "%s: bus_dma_tag_create failed, error %d\n",
1169 		    __func__, error);
1170 		goto fail;
1171 	}
1172 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1173 	    flags | BUS_DMA_ZERO, &dma->map);
1174 	if (error != 0) {
1175 		device_printf(sc->sc_dev,
1176 		    "%s: bus_dmamem_alloc failed, error %d\n", __func__, error);
1177 		goto fail;
1178 	}
1179 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
1180 	    size, iwn_dma_map_addr, &dma->paddr, flags);
1181 	if (error != 0) {
1182 		device_printf(sc->sc_dev,
1183 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1184 		goto fail;
1185 	}
1186 
1187 	if (kvap != NULL)
1188 		*kvap = dma->vaddr;
1189 	return 0;
1190 fail:
1191 	iwn_dma_contig_free(dma);
1192 	return error;
1193 }
1194 
1195 static void
1196 iwn_dma_contig_free(struct iwn_dma_info *dma)
1197 {
1198 	if (dma->tag != NULL) {
1199 		if (dma->map != NULL) {
1200 			if (dma->paddr == 0) {
1201 				bus_dmamap_sync(dma->tag, dma->map,
1202 				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1203 				bus_dmamap_unload(dma->tag, dma->map);
1204 			}
1205 			bus_dmamap_destroy(dma->tag, dma->map);
1206 		}
1207 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1208 		bus_dma_tag_destroy(dma->tag);
1209 	}
1210 }
1211 
1212 static int
1213 iwn_alloc_sched(struct iwn_softc *sc)
1214 {
1215 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1216 	return iwn_dma_contig_alloc(sc, &sc->sched_dma,
1217 	    (void **)&sc->sched, sc->sc_hal->schedsz, 1024, BUS_DMA_NOWAIT);
1218 }
1219 
1220 static void
1221 iwn_free_sched(struct iwn_softc *sc)
1222 {
1223 	iwn_dma_contig_free(&sc->sched_dma);
1224 }
1225 
1226 static int
1227 iwn_alloc_kw(struct iwn_softc *sc)
1228 {
1229 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1230 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096,
1231 	    BUS_DMA_NOWAIT);
1232 }
1233 
1234 static void
1235 iwn_free_kw(struct iwn_softc *sc)
1236 {
1237 	iwn_dma_contig_free(&sc->kw_dma);
1238 }
1239 
1240 static int
1241 iwn_alloc_ict(struct iwn_softc *sc)
1242 {
1243 	/* ICT table must be aligned on a 4KB boundary. */
1244 	return iwn_dma_contig_alloc(sc, &sc->ict_dma,
1245 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096, BUS_DMA_NOWAIT);
1246 }
1247 
1248 static void
1249 iwn_free_ict(struct iwn_softc *sc)
1250 {
1251 	iwn_dma_contig_free(&sc->ict_dma);
1252 }
1253 
1254 static int
1255 iwn_alloc_fwmem(struct iwn_softc *sc)
1256 {
1257 	/* Must be aligned on a 16-byte boundary. */
1258 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL,
1259 	    sc->sc_hal->fwsz, 16, BUS_DMA_NOWAIT);
1260 }
1261 
1262 static void
1263 iwn_free_fwmem(struct iwn_softc *sc)
1264 {
1265 	iwn_dma_contig_free(&sc->fw_dma);
1266 }
1267 
1268 static int
1269 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1270 {
1271 	bus_size_t size;
1272 	int i, error;
1273 
1274 	ring->cur = 0;
1275 
1276 	/* Allocate RX descriptors (256-byte aligned). */
1277 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1278 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
1279 	    (void **)&ring->desc, size, 256, BUS_DMA_NOWAIT);
1280 	if (error != 0) {
1281 		device_printf(sc->sc_dev,
1282 		    "%s: could not allocate Rx ring DMA memory, error %d\n",
1283 		    __func__, error);
1284 		goto fail;
1285 	}
1286 
1287 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
1288 	    BUS_SPACE_MAXADDR_32BIT,
1289 	    BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
1290 	    MJUMPAGESIZE, BUS_DMA_NOWAIT, &ring->data_dmat);
1291 	if (error != 0) {
1292 		device_printf(sc->sc_dev,
1293 		    "%s: bus_dma_tag_create_failed, error %d\n",
1294 		    __func__, error);
1295 		goto fail;
1296 	}
1297 
1298 	/* Allocate RX status area (16-byte aligned). */
1299 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma,
1300 	    (void **)&ring->stat, sizeof (struct iwn_rx_status),
1301 	    16, BUS_DMA_NOWAIT);
1302 	if (error != 0) {
1303 		device_printf(sc->sc_dev,
1304 		    "%s: could not allocate Rx status DMA memory, error %d\n",
1305 		    __func__, error);
1306 		goto fail;
1307 	}
1308 
1309 	/*
1310 	 * Allocate and map RX buffers.
1311 	 */
1312 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1313 		struct iwn_rx_data *data = &ring->data[i];
1314 		bus_addr_t paddr;
1315 
1316 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1317 		if (error != 0) {
1318 			device_printf(sc->sc_dev,
1319 			    "%s: bus_dmamap_create failed, error %d\n",
1320 			    __func__, error);
1321 			goto fail;
1322 		}
1323 
1324 		data->m = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR,
1325 				   MJUMPAGESIZE);
1326 		if (data->m == NULL) {
1327 			device_printf(sc->sc_dev,
1328 			    "%s: could not allocate rx mbuf\n", __func__);
1329 			error = ENOMEM;
1330 			goto fail;
1331 		}
1332 
1333 		/* Map page. */
1334 		error = bus_dmamap_load(ring->data_dmat, data->map,
1335 		    mtod(data->m, caddr_t), MJUMPAGESIZE,
1336 		    iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1337 		if (error != 0 && error != EFBIG) {
1338 			device_printf(sc->sc_dev,
1339 			    "%s: bus_dmamap_load failed, error %d\n",
1340 			    __func__, error);
1341 			m_freem(data->m);
1342 			error = ENOMEM;	/* XXX unique code */
1343 			goto fail;
1344 		}
1345 		bus_dmamap_sync(ring->data_dmat, data->map,
1346 		    BUS_DMASYNC_PREWRITE);
1347 
1348 		/* Set physical address of RX buffer (256-byte aligned). */
1349 		ring->desc[i] = htole32(paddr >> 8);
1350 	}
1351 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1352 	    BUS_DMASYNC_PREWRITE);
1353 	return 0;
1354 fail:
1355 	iwn_free_rx_ring(sc, ring);
1356 	return error;
1357 }
1358 
1359 static void
1360 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1361 {
1362 	int ntries;
1363 
1364 	if (iwn_nic_lock(sc) == 0) {
1365 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1366 		for (ntries = 0; ntries < 1000; ntries++) {
1367 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1368 			    IWN_FH_RX_STATUS_IDLE)
1369 				break;
1370 			DELAY(10);
1371 		}
1372 		iwn_nic_unlock(sc);
1373 #ifdef IWN_DEBUG
1374 		if (ntries == 1000)
1375 			DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
1376 			    "timeout resetting Rx ring");
1377 #endif
1378 	}
1379 	ring->cur = 0;
1380 	sc->last_rx_valid = 0;
1381 }
1382 
1383 static void
1384 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1385 {
1386 	int i;
1387 
1388 	iwn_dma_contig_free(&ring->desc_dma);
1389 	iwn_dma_contig_free(&ring->stat_dma);
1390 
1391 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1392 		struct iwn_rx_data *data = &ring->data[i];
1393 
1394 		if (data->m != NULL) {
1395 			bus_dmamap_sync(ring->data_dmat, data->map,
1396 			    BUS_DMASYNC_POSTREAD);
1397 			bus_dmamap_unload(ring->data_dmat, data->map);
1398 			m_freem(data->m);
1399 		}
1400 		if (data->map != NULL)
1401 			bus_dmamap_destroy(ring->data_dmat, data->map);
1402 	}
1403 }
1404 
1405 static int
1406 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1407 {
1408 	bus_size_t size;
1409 	bus_addr_t paddr;
1410 	int i, error;
1411 
1412 	ring->qid = qid;
1413 	ring->queued = 0;
1414 	ring->cur = 0;
1415 
1416 	/* Allocate TX descriptors (256-byte aligned.) */
1417 	size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_desc);
1418 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
1419 	    (void **)&ring->desc, size, 256, BUS_DMA_NOWAIT);
1420 	if (error != 0) {
1421 		device_printf(sc->sc_dev,
1422 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1423 		    __func__, error);
1424 		goto fail;
1425 	}
1426 
1427 	/*
1428 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1429 	 * to allocate commands space for other rings.
1430 	 */
1431 	if (qid > 4)
1432 		return 0;
1433 
1434 	size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_cmd);
1435 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma,
1436 	    (void **)&ring->cmd, size, 4, BUS_DMA_NOWAIT);
1437 	if (error != 0) {
1438 		device_printf(sc->sc_dev,
1439 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1440 		    __func__, error);
1441 		goto fail;
1442 	}
1443 
1444 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
1445 	    BUS_SPACE_MAXADDR_32BIT,
1446 	    BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, IWN_MAX_SCATTER - 1,
1447 	    MJUMPAGESIZE, BUS_DMA_NOWAIT, &ring->data_dmat);
1448 	if (error != 0) {
1449 		device_printf(sc->sc_dev,
1450 		    "%s: bus_dma_tag_create_failed, error %d\n",
1451 		    __func__, error);
1452 		goto fail;
1453 	}
1454 
1455 	paddr = ring->cmd_dma.paddr;
1456 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1457 		struct iwn_tx_data *data = &ring->data[i];
1458 
1459 		data->cmd_paddr = paddr;
1460 		data->scratch_paddr = paddr + 12;
1461 		paddr += sizeof (struct iwn_tx_cmd);
1462 
1463 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1464 		if (error != 0) {
1465 			device_printf(sc->sc_dev,
1466 			    "%s: bus_dmamap_create failed, error %d\n",
1467 			    __func__, error);
1468 			goto fail;
1469 		}
1470 		bus_dmamap_sync(ring->data_dmat, data->map,
1471 		    BUS_DMASYNC_PREWRITE);
1472 	}
1473 	return 0;
1474 fail:
1475 	iwn_free_tx_ring(sc, ring);
1476 	return error;
1477 }
1478 
1479 static void
1480 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1481 {
1482 	int i;
1483 
1484 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1485 		struct iwn_tx_data *data = &ring->data[i];
1486 
1487 		if (data->m != NULL) {
1488 			bus_dmamap_unload(ring->data_dmat, data->map);
1489 			m_freem(data->m);
1490 			data->m = NULL;
1491 		}
1492 	}
1493 	/* Clear TX descriptors. */
1494 	memset(ring->desc, 0, ring->desc_dma.size);
1495 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1496 	    BUS_DMASYNC_PREWRITE);
1497 	sc->qfullmsk &= ~(1 << ring->qid);
1498 	ring->queued = 0;
1499 	ring->cur = 0;
1500 }
1501 
1502 static void
1503 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1504 {
1505 	int i;
1506 
1507 	iwn_dma_contig_free(&ring->desc_dma);
1508 	iwn_dma_contig_free(&ring->cmd_dma);
1509 
1510 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1511 		struct iwn_tx_data *data = &ring->data[i];
1512 
1513 		if (data->m != NULL) {
1514 			bus_dmamap_sync(ring->data_dmat, data->map,
1515 			    BUS_DMASYNC_POSTWRITE);
1516 			bus_dmamap_unload(ring->data_dmat, data->map);
1517 			m_freem(data->m);
1518 		}
1519 		if (data->map != NULL)
1520 			bus_dmamap_destroy(ring->data_dmat, data->map);
1521 	}
1522 }
1523 
1524 static void
1525 iwn5000_ict_reset(struct iwn_softc *sc)
1526 {
1527 	/* Disable interrupts. */
1528 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1529 
1530 	/* Reset ICT table. */
1531 	memset(sc->ict, 0, IWN_ICT_SIZE);
1532 	sc->ict_cur = 0;
1533 
1534 	/* Set physical address of ICT table (4KB aligned.) */
1535 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
1536 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1537 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1538 
1539 	/* Enable periodic RX interrupt. */
1540 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1541 	/* Switch to ICT interrupt mode in driver. */
1542 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1543 
1544 	/* Re-enable interrupts. */
1545 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1546 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1547 }
1548 
1549 static int
1550 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1551 {
1552 	const struct iwn_hal *hal = sc->sc_hal;
1553 	int error;
1554 	uint16_t val;
1555 
1556 	/* Check whether adapter has an EEPROM or an OTPROM. */
1557 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1558 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1559 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1560 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
1561 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
1562 
1563 	/* Adapter has to be powered on for EEPROM access to work. */
1564 	error = iwn_apm_init(sc);
1565 	if (error != 0) {
1566 		device_printf(sc->sc_dev,
1567 		    "%s: could not power ON adapter, error %d\n",
1568 		    __func__, error);
1569 		return error;
1570 	}
1571 
1572 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1573 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
1574 		return EIO;
1575 	}
1576 	error = iwn_eeprom_lock(sc);
1577 	if (error != 0) {
1578 		device_printf(sc->sc_dev,
1579 		    "%s: could not lock ROM, error %d\n",
1580 		    __func__, error);
1581 		return error;
1582 	}
1583 
1584 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1585 		error = iwn_init_otprom(sc);
1586 		if (error != 0) {
1587 			device_printf(sc->sc_dev,
1588 			    "%s: could not initialize OTPROM, error %d\n",
1589 			    __func__, error);
1590 			return error;
1591 		}
1592 	}
1593 
1594 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1595 	sc->rfcfg = le16toh(val);
1596 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
1597 
1598 	/* Read MAC address. */
1599 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
1600 
1601 	/* Read adapter-specific information from EEPROM. */
1602 	hal->read_eeprom(sc);
1603 
1604 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1605 
1606 	iwn_eeprom_unlock(sc);
1607 	return 0;
1608 }
1609 
1610 static void
1611 iwn4965_read_eeprom(struct iwn_softc *sc)
1612 {
1613 	uint32_t addr;
1614 	int i;
1615 	uint16_t val;
1616 
1617 	/* Read regulatory domain (4 ASCII characters.) */
1618 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1619 
1620 	/* Read the list of authorized channels (20MHz ones only.) */
1621 	for (i = 0; i < 5; i++) {
1622 		addr = iwn4965_regulatory_bands[i];
1623 		iwn_read_eeprom_channels(sc, i, addr);
1624 	}
1625 
1626 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1627 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1628 	sc->maxpwr2GHz = val & 0xff;
1629 	sc->maxpwr5GHz = val >> 8;
1630 	/* Check that EEPROM values are within valid range. */
1631 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1632 		sc->maxpwr5GHz = 38;
1633 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1634 		sc->maxpwr2GHz = 38;
1635 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
1636 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
1637 
1638 	/* Read samples for each TX power group. */
1639 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1640 	    sizeof sc->bands);
1641 
1642 	/* Read voltage at which samples were taken. */
1643 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1644 	sc->eeprom_voltage = (int16_t)le16toh(val);
1645 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
1646 	    sc->eeprom_voltage);
1647 
1648 #ifdef IWN_DEBUG
1649 	/* Print samples. */
1650 	if (sc->sc_debug & IWN_DEBUG_ANY) {
1651 		for (i = 0; i < IWN_NBANDS; i++)
1652 			iwn4965_print_power_group(sc, i);
1653 	}
1654 #endif
1655 }
1656 
1657 #ifdef IWN_DEBUG
1658 static void
1659 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1660 {
1661 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1662 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1663 	int j, c;
1664 
1665 	kprintf("===band %d===\n", i);
1666 	kprintf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1667 	kprintf("chan1 num=%d\n", chans[0].num);
1668 	for (c = 0; c < 2; c++) {
1669 		for (j = 0; j < IWN_NSAMPLES; j++) {
1670 			kprintf("chain %d, sample %d: temp=%d gain=%d "
1671 			    "power=%d pa_det=%d\n", c, j,
1672 			    chans[0].samples[c][j].temp,
1673 			    chans[0].samples[c][j].gain,
1674 			    chans[0].samples[c][j].power,
1675 			    chans[0].samples[c][j].pa_det);
1676 		}
1677 	}
1678 	kprintf("chan2 num=%d\n", chans[1].num);
1679 	for (c = 0; c < 2; c++) {
1680 		for (j = 0; j < IWN_NSAMPLES; j++) {
1681 			kprintf("chain %d, sample %d: temp=%d gain=%d "
1682 			    "power=%d pa_det=%d\n", c, j,
1683 			    chans[1].samples[c][j].temp,
1684 			    chans[1].samples[c][j].gain,
1685 			    chans[1].samples[c][j].power,
1686 			    chans[1].samples[c][j].pa_det);
1687 		}
1688 	}
1689 }
1690 #endif
1691 
1692 static void
1693 iwn5000_read_eeprom(struct iwn_softc *sc)
1694 {
1695 	struct iwn5000_eeprom_calib_hdr hdr;
1696 	int32_t temp, volt;
1697 	uint32_t addr, base;
1698 	int i;
1699 	uint16_t val;
1700 
1701 	/* Read regulatory domain (4 ASCII characters.) */
1702 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1703 	base = le16toh(val);
1704 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1705 	    sc->eeprom_domain, 4);
1706 
1707 	/* Read the list of authorized channels (20MHz ones only.) */
1708 	for (i = 0; i < 5; i++) {
1709 		addr = base + iwn5000_regulatory_bands[i];
1710 		iwn_read_eeprom_channels(sc, i, addr);
1711 	}
1712 
1713 	/* Read enhanced TX power information for 6000 Series. */
1714 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1715 		iwn_read_eeprom_enhinfo(sc);
1716 
1717 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1718 	base = le16toh(val);
1719 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1720 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
1721 	    "%s: calib version=%u pa type=%u voltage=%u\n",
1722 	    __func__, hdr.version, hdr.pa_type, le16toh(hdr.volt));
1723 	    sc->calib_ver = hdr.version;
1724 
1725 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1726 		/* Compute temperature offset. */
1727 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1728 		temp = le16toh(val);
1729 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1730 		volt = le16toh(val);
1731 		sc->temp_off = temp - (volt / -5);
1732 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
1733 		    temp, volt, sc->temp_off);
1734 	} else {
1735 		/* Read crystal calibration. */
1736 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1737 		    &sc->eeprom_crystal, sizeof (uint32_t));
1738 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
1739 		le32toh(sc->eeprom_crystal));
1740 	}
1741 }
1742 
1743 /*
1744  * Translate EEPROM flags to net80211.
1745  */
1746 static uint32_t
1747 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
1748 {
1749 	uint32_t nflags;
1750 
1751 	nflags = 0;
1752 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
1753 		nflags |= IEEE80211_CHAN_PASSIVE;
1754 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
1755 		nflags |= IEEE80211_CHAN_NOADHOC;
1756 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
1757 		nflags |= IEEE80211_CHAN_DFS;
1758 		/* XXX apparently IBSS may still be marked */
1759 		nflags |= IEEE80211_CHAN_NOADHOC;
1760 	}
1761 
1762 	return nflags;
1763 }
1764 
1765 static void
1766 iwn_read_eeprom_band(struct iwn_softc *sc, int n)
1767 {
1768 	struct ifnet *ifp = sc->sc_ifp;
1769 	struct ieee80211com *ic = ifp->if_l2com;
1770 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1771 	const struct iwn_chan_band *band = &iwn_bands[n];
1772 	struct ieee80211_channel *c;
1773 	int i, chan, nflags;
1774 
1775 	for (i = 0; i < band->nchan; i++) {
1776 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
1777 			DPRINTF(sc, IWN_DEBUG_RESET,
1778 			    "skip chan %d flags 0x%x maxpwr %d\n",
1779 			    band->chan[i], channels[i].flags,
1780 			    channels[i].maxpwr);
1781 			continue;
1782 		}
1783 		chan = band->chan[i];
1784 		nflags = iwn_eeprom_channel_flags(&channels[i]);
1785 
1786 		DPRINTF(sc, IWN_DEBUG_RESET,
1787 		    "add chan %d flags 0x%x maxpwr %d\n",
1788 		    chan, channels[i].flags, channels[i].maxpwr);
1789 
1790 		c = &ic->ic_channels[ic->ic_nchans++];
1791 		c->ic_ieee = chan;
1792 		c->ic_maxregpower = channels[i].maxpwr;
1793 		c->ic_maxpower = 2*c->ic_maxregpower;
1794 
1795 		/* Save maximum allowed TX power for this channel. */
1796 		sc->maxpwr[chan] = channels[i].maxpwr;
1797 
1798 		if (n == 0) {	/* 2GHz band */
1799 			c->ic_freq = ieee80211_ieee2mhz(chan,
1800 			    IEEE80211_CHAN_G);
1801 
1802 			/* G =>'s B is supported */
1803 			c->ic_flags = IEEE80211_CHAN_B | nflags;
1804 
1805 			c = &ic->ic_channels[ic->ic_nchans++];
1806 			c[0] = c[-1];
1807 			c->ic_flags = IEEE80211_CHAN_G | nflags;
1808 		} else {	/* 5GHz band */
1809 			c->ic_freq = ieee80211_ieee2mhz(chan,
1810 			    IEEE80211_CHAN_A);
1811 			c->ic_flags = IEEE80211_CHAN_A | nflags;
1812 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1813 		}
1814 #if 0	/* HT */
1815 		/* XXX no constraints on using HT20 */
1816 		/* add HT20, HT40 added separately */
1817 		c = &ic->ic_channels[ic->ic_nchans++];
1818 		c[0] = c[-1];
1819 		c->ic_flags |= IEEE80211_CHAN_HT20;
1820 		/* XXX NARROW =>'s 1/2 and 1/4 width? */
1821 #endif
1822 	}
1823 }
1824 
1825 #if 0	/* HT */
1826 static void
1827 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n)
1828 {
1829 	struct ifnet *ifp = sc->sc_ifp;
1830 	struct ieee80211com *ic = ifp->if_l2com;
1831 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1832 	const struct iwn_chan_band *band = &iwn_bands[n];
1833 	struct ieee80211_channel *c, *cent, *extc;
1834 	int i;
1835 
1836 	for (i = 0; i < band->nchan; i++) {
1837 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID) ||
1838 		    !(channels[i].flags & IWN_EEPROM_CHAN_WIDE)) {
1839 			DPRINTF(sc, IWN_DEBUG_RESET,
1840 			    "skip chan %d flags 0x%x maxpwr %d\n",
1841 			    band->chan[i], channels[i].flags,
1842 			    channels[i].maxpwr);
1843 			continue;
1844 		}
1845 		/*
1846 		 * Each entry defines an HT40 channel pair; find the
1847 		 * center channel, then the extension channel above.
1848 		 */
1849 		cent = ieee80211_find_channel_byieee(ic, band->chan[i],
1850 		    band->flags & ~IEEE80211_CHAN_HT);
1851 		if (cent == NULL) {	/* XXX shouldn't happen */
1852 			device_printf(sc->sc_dev,
1853 			    "%s: no entry for channel %d\n",
1854 			    __func__, band->chan[i]);
1855 			continue;
1856 		}
1857 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
1858 		    band->flags & ~IEEE80211_CHAN_HT);
1859 		if (extc == NULL) {
1860 			DPRINTF(sc, IWN_DEBUG_RESET,
1861 			    "skip chan %d, extension channel not found\n",
1862 			    band->chan[i]);
1863 			continue;
1864 		}
1865 
1866 		DPRINTF(sc, IWN_DEBUG_RESET,
1867 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
1868 		    band->chan[i], channels[i].flags, channels[i].maxpwr);
1869 
1870 		c = &ic->ic_channels[ic->ic_nchans++];
1871 		c[0] = cent[0];
1872 		c->ic_extieee = extc->ic_ieee;
1873 		c->ic_flags &= ~IEEE80211_CHAN_HT;
1874 		c->ic_flags |= IEEE80211_CHAN_HT40U;
1875 		c = &ic->ic_channels[ic->ic_nchans++];
1876 		c[0] = extc[0];
1877 		c->ic_extieee = cent->ic_ieee;
1878 		c->ic_flags &= ~IEEE80211_CHAN_HT;
1879 		c->ic_flags |= IEEE80211_CHAN_HT40D;
1880 	}
1881 }
1882 #endif
1883 
1884 static void
1885 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1886 {
1887 	struct ifnet *ifp = sc->sc_ifp;
1888 	struct ieee80211com *ic = ifp->if_l2com;
1889 
1890 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
1891 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
1892 
1893 	if (n < 5)
1894 		iwn_read_eeprom_band(sc, n);
1895 #if 0	/* HT */
1896 	else
1897 		iwn_read_eeprom_ht40(sc, n);
1898 #endif
1899 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1900 }
1901 
1902 static void
1903 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1904 {
1905 	struct iwn_eeprom_enhinfo enhinfo[35];
1906 	uint16_t val, base;
1907 	int8_t maxpwr;
1908 	int i;
1909 
1910 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1911 	base = le16toh(val);
1912 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1913 	    enhinfo, sizeof enhinfo);
1914 
1915 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1916 	for (i = 0; i < NELEM(enhinfo); i++) {
1917 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1918 			continue;	/* Skip invalid entries. */
1919 
1920 		maxpwr = 0;
1921 		if (sc->txchainmask & IWN_ANT_A)
1922 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1923 		if (sc->txchainmask & IWN_ANT_B)
1924 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1925 		if (sc->txchainmask & IWN_ANT_C)
1926 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1927 		if (sc->ntxchains == 2)
1928 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1929 		else if (sc->ntxchains == 3)
1930 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1931 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1932 
1933 		DPRINTF(sc, IWN_DEBUG_RESET, "enhinfo %d, maxpwr=%d\n", i,
1934 		    maxpwr);
1935 		sc->enh_maxpwr[i] = maxpwr;
1936 	}
1937 }
1938 
1939 static struct ieee80211_node *
1940 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1941 {
1942 	return kmalloc(sizeof (struct iwn_node), M_80211_NODE,M_INTWAIT | M_ZERO);
1943 }
1944 
1945 static void
1946 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1947 {
1948 	/* XXX move */
1949 	//if (!isnew) {
1950 		ieee80211_ratectl_node_deinit(ni);
1951 	//}
1952 
1953 	ieee80211_ratectl_node_init(ni);
1954 }
1955 
1956 static int
1957 iwn_media_change(struct ifnet *ifp)
1958 {
1959 	int error = ieee80211_media_change(ifp);
1960 	/* NB: only the fixed rate can change and that doesn't need a reset */
1961 	return (error == ENETRESET ? 0 : error);
1962 }
1963 
1964 static int
1965 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1966 {
1967 	struct iwn_vap *ivp = IWN_VAP(vap);
1968 	struct ieee80211com *ic = vap->iv_ic;
1969 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
1970 	int error;
1971 
1972 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1973 		ieee80211_state_name[vap->iv_state],
1974 		ieee80211_state_name[nstate]);
1975 
1976 	callout_stop(&sc->sc_timer_to);
1977 
1978 	if (nstate == IEEE80211_S_AUTH && vap->iv_state != IEEE80211_S_AUTH) {
1979 		/* !AUTH -> AUTH requires adapter config */
1980 		/* Reset state to handle reassociations correctly. */
1981 		sc->rxon.associd = 0;
1982 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1983 		iwn_calib_reset(sc);
1984 		error = iwn_auth(sc, vap);
1985 	}
1986 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1987 		/*
1988 		 * !RUN -> RUN requires setting the association id
1989 		 * which is done with a firmware cmd.  We also defer
1990 		 * starting the timers until that work is done.
1991 		 */
1992 		error = iwn_run(sc, vap);
1993 	}
1994 	if (nstate == IEEE80211_S_RUN) {
1995 		/*
1996 		 * RUN -> RUN transition; just restart the timers.
1997 		 */
1998 		iwn_calib_reset(sc);
1999 	}
2000 	return ivp->iv_newstate(vap, nstate, arg);
2001 }
2002 
2003 /*
2004  * Process an RX_PHY firmware notification.  This is usually immediately
2005  * followed by an MPDU_RX_DONE notification.
2006  */
2007 static void
2008 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2009     struct iwn_rx_data *data)
2010 {
2011 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2012 
2013 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2014 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2015 
2016 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2017 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2018 	sc->last_rx_valid = 1;
2019 }
2020 
2021 static void
2022 iwn_timer_callout(void *arg)
2023 {
2024 	struct iwn_softc *sc = arg;
2025 	uint32_t flags = 0;
2026 
2027 	wlan_serialize_enter();
2028 	if (sc->calib_cnt && --sc->calib_cnt == 0) {
2029 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2030 		    "send statistics request");
2031 		(void) iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2032 		    sizeof flags, 1);
2033 		sc->calib_cnt = 60;	/* do calibration every 60s */
2034 	}
2035 	iwn_watchdog(sc);		/* NB: piggyback tx watchdog */
2036 	callout_reset(&sc->sc_timer_to, hz, iwn_timer_callout, sc);
2037 	wlan_serialize_exit();
2038 }
2039 
2040 static void
2041 iwn_calib_reset(struct iwn_softc *sc)
2042 {
2043 	callout_reset(&sc->sc_timer_to, hz, iwn_timer_callout, sc);
2044 	sc->calib_cnt = 60;		/* do calibration every 60s */
2045 }
2046 
2047 /*
2048  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2049  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2050  */
2051 static void
2052 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2053     struct iwn_rx_data *data)
2054 {
2055 	const struct iwn_hal *hal = sc->sc_hal;
2056 	struct ifnet *ifp = sc->sc_ifp;
2057 	struct ieee80211com *ic = ifp->if_l2com;
2058 	struct iwn_rx_ring *ring = &sc->rxq;
2059 	struct ieee80211_frame *wh;
2060 	struct ieee80211_node *ni;
2061 	struct mbuf *m, *m1;
2062 	struct iwn_rx_stat *stat;
2063 	caddr_t head;
2064 	bus_addr_t paddr;
2065 	uint32_t flags;
2066 	int error, len, rssi, nf;
2067 
2068 	if (desc->type == IWN_MPDU_RX_DONE) {
2069 		/* Check for prior RX_PHY notification. */
2070 		if (!sc->last_rx_valid) {
2071 			DPRINTF(sc, IWN_DEBUG_ANY,
2072 			    "%s: missing RX_PHY\n", __func__);
2073 			ifp->if_ierrors++;
2074 			return;
2075 		}
2076 		sc->last_rx_valid = 0;
2077 		stat = &sc->last_rx_stat;
2078 	} else
2079 		stat = (struct iwn_rx_stat *)(desc + 1);
2080 
2081 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2082 
2083 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2084 		device_printf(sc->sc_dev,
2085 		    "%s: invalid rx statistic header, len %d\n",
2086 		    __func__, stat->cfg_phy_len);
2087 		ifp->if_ierrors++;
2088 		return;
2089 	}
2090 	if (desc->type == IWN_MPDU_RX_DONE) {
2091 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2092 		head = (caddr_t)(mpdu + 1);
2093 		len = le16toh(mpdu->len);
2094 	} else {
2095 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
2096 		len = le16toh(stat->len);
2097 	}
2098 
2099 	flags = le32toh(*(uint32_t *)(head + len));
2100 
2101 	/* Discard frames with a bad FCS early. */
2102 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2103 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: rx flags error %x\n",
2104 		    __func__, flags);
2105 		ifp->if_ierrors++;
2106 		return;
2107 	}
2108 	/* Discard frames that are too short. */
2109 	if (len < sizeof (*wh)) {
2110 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
2111 		    __func__, len);
2112 		ifp->if_ierrors++;
2113 		return;
2114 	}
2115 
2116 	/* XXX don't need mbuf, just dma buffer */
2117 	m1 = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
2118 	if (m1 == NULL) {
2119 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
2120 		    __func__);
2121 		ifp->if_ierrors++;
2122 		return;
2123 	}
2124 	bus_dmamap_unload(ring->data_dmat, data->map);
2125 
2126 	error = bus_dmamap_load(ring->data_dmat, data->map,
2127 	    mtod(m1, caddr_t), MJUMPAGESIZE,
2128 	    iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2129 	if (error != 0 && error != EFBIG) {
2130 		device_printf(sc->sc_dev,
2131 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
2132 		m_freem(m1);
2133 		ifp->if_ierrors++;
2134 		return;
2135 	}
2136 
2137 	m = data->m;
2138 	data->m = m1;
2139 	/* Update RX descriptor. */
2140 	ring->desc[ring->cur] = htole32(paddr >> 8);
2141 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2142 	    BUS_DMASYNC_PREWRITE);
2143 
2144 	/* Finalize mbuf. */
2145 	m->m_pkthdr.rcvif = ifp;
2146 	m->m_data = head;
2147 	m->m_pkthdr.len = m->m_len = len;
2148 
2149 	rssi = hal->get_rssi(sc, stat);
2150 
2151 	/* Grab a reference to the source node. */
2152 	wh = mtod(m, struct ieee80211_frame *);
2153 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2154 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
2155 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
2156 
2157 	if (ieee80211_radiotap_active(ic)) {
2158 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2159 
2160 		tap->wr_tsft = htole64(stat->tstamp);
2161 		tap->wr_flags = 0;
2162 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2163 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2164 		switch (stat->rate) {
2165 		/* CCK rates. */
2166 		case  10: tap->wr_rate =   2; break;
2167 		case  20: tap->wr_rate =   4; break;
2168 		case  55: tap->wr_rate =  11; break;
2169 		case 110: tap->wr_rate =  22; break;
2170 		/* OFDM rates. */
2171 		case 0xd: tap->wr_rate =  12; break;
2172 		case 0xf: tap->wr_rate =  18; break;
2173 		case 0x5: tap->wr_rate =  24; break;
2174 		case 0x7: tap->wr_rate =  36; break;
2175 		case 0x9: tap->wr_rate =  48; break;
2176 		case 0xb: tap->wr_rate =  72; break;
2177 		case 0x1: tap->wr_rate =  96; break;
2178 		case 0x3: tap->wr_rate = 108; break;
2179 		/* Unknown rate: should not happen. */
2180 		default:  tap->wr_rate =   0;
2181 		}
2182 		tap->wr_dbm_antsignal = rssi;
2183 		tap->wr_dbm_antnoise = nf;
2184 	}
2185 
2186 	/* Send the frame to the 802.11 layer. */
2187 	if (ni != NULL) {
2188 		(void) ieee80211_input(ni, m, rssi - nf, nf);
2189 		/* Node is no longer needed. */
2190 		ieee80211_free_node(ni);
2191 	} else {
2192 		(void) ieee80211_input_all(ic, m, rssi - nf, nf);
2193 	}
2194 }
2195 
2196 #if 0	/* HT */
2197 /* Process an incoming Compressed BlockAck. */
2198 static void
2199 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2200     struct iwn_rx_data *data)
2201 {
2202 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2203 	struct iwn_tx_ring *txq;
2204 
2205 	txq = &sc->txq[letoh16(ba->qid)];
2206 	/* XXX TBD */
2207 }
2208 #endif
2209 
2210 /*
2211  * Process a CALIBRATION_RESULT notification sent by the initialization
2212  * firmware on response to a CMD_CALIB_CONFIG command (5000 only.)
2213  */
2214 static void
2215 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2216     struct iwn_rx_data *data)
2217 {
2218 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2219 	int len, idx = -1;
2220 
2221 	/* Runtime firmware should not send such a notification. */
2222 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2223 		return;
2224 
2225 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2226 	len = (le32toh(desc->len) & 0x3fff) - 4;
2227 
2228 	switch (calib->code) {
2229 	case IWN5000_PHY_CALIB_DC:
2230 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2231 		    sc->hw_type == IWN_HW_REV_TYPE_6050)
2232 			idx = 0;
2233 		break;
2234 	case IWN5000_PHY_CALIB_LO:
2235 		idx = 1;
2236 		break;
2237 	case IWN5000_PHY_CALIB_TX_IQ:
2238 		idx = 2;
2239 		break;
2240 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2241 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2242 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2243 			idx = 3;
2244 		break;
2245 	case IWN5000_PHY_CALIB_BASE_BAND:
2246 		idx = 4;
2247 		break;
2248 	}
2249 	if (idx == -1)	/* Ignore other results. */
2250 		return;
2251 
2252 	/* Save calibration result. */
2253 	if (sc->calibcmd[idx].buf != NULL)
2254 		kfree(sc->calibcmd[idx].buf, M_DEVBUF);
2255 	sc->calibcmd[idx].buf = kmalloc(len, M_DEVBUF, M_INTWAIT);
2256 	if (sc->calibcmd[idx].buf == NULL) {
2257 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2258 		    "not enough memory for calibration result %d\n",
2259 		    calib->code);
2260 		return;
2261 	}
2262 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2263 	    "saving calibration result code=%d len=%d\n", calib->code, len);
2264 	sc->calibcmd[idx].len = len;
2265 	memcpy(sc->calibcmd[idx].buf, calib, len);
2266 }
2267 
2268 /*
2269  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2270  * The latter is sent by the firmware after each received beacon.
2271  */
2272 static void
2273 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2274     struct iwn_rx_data *data)
2275 {
2276 	const struct iwn_hal *hal = sc->sc_hal;
2277 	struct ifnet *ifp = sc->sc_ifp;
2278 	struct ieee80211com *ic = ifp->if_l2com;
2279 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2280 	struct iwn_calib_state *calib = &sc->calib;
2281 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2282 	int temp;
2283 
2284 	/* Beacon stats are meaningful only when associated and not scanning. */
2285 	if (vap->iv_state != IEEE80211_S_RUN ||
2286 	    (ic->ic_flags & IEEE80211_F_SCAN))
2287 		return;
2288 
2289 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2290 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: cmd %d\n", __func__, desc->type);
2291 	iwn_calib_reset(sc);	/* Reset TX power calibration timeout. */
2292 
2293 	/* Test if temperature has changed. */
2294 	if (stats->general.temp != sc->rawtemp) {
2295 		/* Convert "raw" temperature to degC. */
2296 		sc->rawtemp = stats->general.temp;
2297 		temp = hal->get_temperature(sc);
2298 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
2299 		    __func__, temp);
2300 
2301 		/* Update TX power if need be (4965AGN only.) */
2302 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2303 			iwn4965_power_calibration(sc, temp);
2304 	}
2305 
2306 	if (desc->type != IWN_BEACON_STATISTICS)
2307 		return;	/* Reply to a statistics request. */
2308 
2309 	sc->noise = iwn_get_noise(&stats->rx.general);
2310 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
2311 
2312 	/* Test that RSSI and noise are present in stats report. */
2313 	if (le32toh(stats->rx.general.flags) != 1) {
2314 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
2315 		    "received statistics without RSSI");
2316 		return;
2317 	}
2318 
2319 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2320 		iwn_collect_noise(sc, &stats->rx.general);
2321 	else if (calib->state == IWN_CALIB_STATE_RUN)
2322 		iwn_tune_sensitivity(sc, &stats->rx);
2323 }
2324 
2325 /*
2326  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2327  * and 5000 adapters have different incompatible TX status formats.
2328  */
2329 static void
2330 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2331     struct iwn_rx_data *data)
2332 {
2333 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2334 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2335 
2336 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2337 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2338 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2339 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2340 	    le32toh(stat->status));
2341 
2342 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2343 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2344 }
2345 
2346 static void
2347 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2348     struct iwn_rx_data *data)
2349 {
2350 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2351 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2352 
2353 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2354 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2355 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2356 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2357 	    le32toh(stat->status));
2358 
2359 #ifdef notyet
2360 	/* Reset TX scheduler slot. */
2361 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2362 #endif
2363 
2364 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2365 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2366 }
2367 
2368 /*
2369  * Adapter-independent backend for TX_DONE firmware notifications.
2370  */
2371 static void
2372 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2373     uint8_t status)
2374 {
2375 	struct ifnet *ifp = sc->sc_ifp;
2376 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2377 	struct iwn_tx_data *data = &ring->data[desc->idx];
2378 	struct mbuf *m;
2379 	struct ieee80211_node *ni;
2380 	struct ieee80211vap *vap;
2381 
2382 	KASSERT(data->ni != NULL, ("no node"));
2383 
2384 	/* Unmap and free mbuf. */
2385 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2386 	bus_dmamap_unload(ring->data_dmat, data->map);
2387 	m = data->m, data->m = NULL;
2388 	ni = data->ni, data->ni = NULL;
2389 	vap = ni->ni_vap;
2390 
2391 	if (m->m_flags & M_TXCB) {
2392 		/*
2393 		 * Channels marked for "radar" require traffic to be received
2394 		 * to unlock before we can transmit.  Until traffic is seen
2395 		 * any attempt to transmit is returned immediately with status
2396 		 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
2397 		 * happen on first authenticate after scanning.  To workaround
2398 		 * this we ignore a failure of this sort in AUTH state so the
2399 		 * 802.11 layer will fall back to using a timeout to wait for
2400 		 * the AUTH reply.  This allows the firmware time to see
2401 		 * traffic so a subsequent retry of AUTH succeeds.  It's
2402 		 * unclear why the firmware does not maintain state for
2403 		 * channels recently visited as this would allow immediate
2404 		 * use of the channel after a scan (where we see traffic).
2405 		 */
2406 		if (status == IWN_TX_FAIL_TX_LOCKED &&
2407 		    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
2408 			ieee80211_process_callback(ni, m, 0);
2409 		else
2410 			ieee80211_process_callback(ni, m,
2411 			    (status & IWN_TX_FAIL) != 0);
2412 	}
2413 
2414 	/*
2415 	 * Update rate control statistics for the node.
2416 	 */
2417 	if (status & 0x80) {
2418 		ifp->if_oerrors++;
2419 		ieee80211_ratectl_tx_complete(vap, ni,
2420 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2421 	} else {
2422 		ieee80211_ratectl_tx_complete(vap, ni,
2423 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2424 	}
2425 	m_freem(m);
2426 	ieee80211_free_node(ni);
2427 
2428 	sc->sc_tx_timer = 0;
2429 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2430 		sc->qfullmsk &= ~(1 << ring->qid);
2431 		if (sc->qfullmsk == 0 &&
2432 		    (ifp->if_flags & IFF_OACTIVE)) {
2433 			ifp->if_flags &= ~IFF_OACTIVE;
2434 			iwn_start_locked(ifp);
2435 		}
2436 	}
2437 }
2438 
2439 /*
2440  * Process a "command done" firmware notification.  This is where we wakeup
2441  * processes waiting for a synchronous command completion.
2442  */
2443 static void
2444 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2445 {
2446 	struct iwn_tx_ring *ring = &sc->txq[4];
2447 	struct iwn_tx_data *data;
2448 
2449 	if ((desc->qid & 0xf) != 4)
2450 		return;	/* Not a command ack. */
2451 
2452 	data = &ring->data[desc->idx];
2453 
2454 	/* If the command was mapped in an mbuf, free it. */
2455 	if (data->m != NULL) {
2456 		bus_dmamap_unload(ring->data_dmat, data->map);
2457 		m_freem(data->m);
2458 		data->m = NULL;
2459 	}
2460 	wakeup(&ring->desc[desc->idx]);
2461 }
2462 
2463 /*
2464  * Process an INT_FH_RX or INT_SW_RX interrupt.
2465  */
2466 static void
2467 iwn_notif_intr(struct iwn_softc *sc)
2468 {
2469 	struct ifnet *ifp = sc->sc_ifp;
2470 	struct ieee80211com *ic = ifp->if_l2com;
2471 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2472 	uint16_t hw;
2473 
2474 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
2475 	    BUS_DMASYNC_POSTREAD);
2476 
2477 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2478 	while (sc->rxq.cur != hw) {
2479 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2480 		struct iwn_rx_desc *desc;
2481 
2482 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2483 		    BUS_DMASYNC_POSTREAD);
2484 		desc = mtod(data->m, struct iwn_rx_desc *);
2485 
2486 		DPRINTF(sc, IWN_DEBUG_RECV,
2487 		    "%s: qid %x idx %d flags %x type %d(%s) len %d\n",
2488 		    __func__, desc->qid & 0xf, desc->idx, desc->flags,
2489 		    desc->type, iwn_intr_str(desc->type),
2490 		    le16toh(desc->len));
2491 
2492 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2493 			iwn_cmd_done(sc, desc);
2494 
2495 		switch (desc->type) {
2496 		case IWN_RX_PHY:
2497 			iwn_rx_phy(sc, desc, data);
2498 			break;
2499 
2500 		case IWN_RX_DONE:		/* 4965AGN only. */
2501 		case IWN_MPDU_RX_DONE:
2502 			/* An 802.11 frame has been received. */
2503 			iwn_rx_done(sc, desc, data);
2504 			break;
2505 
2506 #if 0	/* HT */
2507 		case IWN_RX_COMPRESSED_BA:
2508 			/* A Compressed BlockAck has been received. */
2509 			iwn_rx_compressed_ba(sc, desc, data);
2510 			break;
2511 #endif
2512 
2513 		case IWN_TX_DONE:
2514 			/* An 802.11 frame has been transmitted. */
2515 			sc->sc_hal->tx_done(sc, desc, data);
2516 			break;
2517 
2518 		case IWN_RX_STATISTICS:
2519 		case IWN_BEACON_STATISTICS:
2520 			iwn_rx_statistics(sc, desc, data);
2521 			break;
2522 
2523 		case IWN_BEACON_MISSED:
2524 		{
2525 			struct iwn_beacon_missed *miss =
2526 			    (struct iwn_beacon_missed *)(desc + 1);
2527 			int misses;
2528 
2529 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2530 			    BUS_DMASYNC_POSTREAD);
2531 			misses = le32toh(miss->consecutive);
2532 
2533 			/* XXX not sure why we're notified w/ zero */
2534 			if (misses == 0)
2535 				break;
2536 			DPRINTF(sc, IWN_DEBUG_STATE,
2537 			    "%s: beacons missed %d/%d\n", __func__,
2538 			    misses, le32toh(miss->total));
2539 
2540 			/*
2541 			 * If more than 5 consecutive beacons are missed,
2542 			 * reinitialize the sensitivity state machine.
2543 			 */
2544 			if (vap->iv_state == IEEE80211_S_RUN && misses > 5)
2545 				(void) iwn_init_sensitivity(sc);
2546 			if (misses >= vap->iv_bmissthreshold)
2547 				ieee80211_beacon_miss(ic);
2548 			break;
2549 		}
2550 		case IWN_UC_READY:
2551 		{
2552 			struct iwn_ucode_info *uc =
2553 			    (struct iwn_ucode_info *)(desc + 1);
2554 
2555 			/* The microcontroller is ready. */
2556 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2557 			    BUS_DMASYNC_POSTREAD);
2558 			DPRINTF(sc, IWN_DEBUG_RESET,
2559 			    "microcode alive notification version=%d.%d "
2560 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2561 			    uc->subtype, le32toh(uc->valid));
2562 
2563 			if (le32toh(uc->valid) != 1) {
2564 				device_printf(sc->sc_dev,
2565 				    "microcontroller initialization failed");
2566 				break;
2567 			}
2568 			if (uc->subtype == IWN_UCODE_INIT) {
2569 				/* Save microcontroller report. */
2570 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2571 			}
2572 			/* Save the address of the error log in SRAM. */
2573 			sc->errptr = le32toh(uc->errptr);
2574 			break;
2575 		}
2576 		case IWN_STATE_CHANGED:
2577 		{
2578 			uint32_t *status = (uint32_t *)(desc + 1);
2579 
2580 			/*
2581 			 * State change allows hardware switch change to be
2582 			 * noted. However, we handle this in iwn_intr as we
2583 			 * get both the enable/disble intr.
2584 			 */
2585 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2586 			    BUS_DMASYNC_POSTREAD);
2587 			DPRINTF(sc, IWN_DEBUG_INTR, "state changed to %x\n",
2588 			    le32toh(*status));
2589 			break;
2590 		}
2591 		case IWN_START_SCAN:
2592 		{
2593 			struct iwn_start_scan *scan =
2594 			    (struct iwn_start_scan *)(desc + 1);
2595 
2596 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2597 			    BUS_DMASYNC_POSTREAD);
2598 			DPRINTF(sc, IWN_DEBUG_ANY,
2599 			    "%s: scanning channel %d status %x\n",
2600 			    __func__, scan->chan, le32toh(scan->status));
2601 			break;
2602 		}
2603 		case IWN_STOP_SCAN:
2604 		{
2605 			struct iwn_stop_scan *scan =
2606 			    (struct iwn_stop_scan *)(desc + 1);
2607 
2608 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2609 			    BUS_DMASYNC_POSTREAD);
2610 			DPRINTF(sc, IWN_DEBUG_STATE,
2611 			    "scan finished nchan=%d status=%d chan=%d\n",
2612 			    scan->nchan, scan->status, scan->chan);
2613 
2614 			ieee80211_scan_next(vap);
2615 			break;
2616 		}
2617 		case IWN5000_CALIBRATION_RESULT:
2618 			iwn5000_rx_calib_results(sc, desc, data);
2619 			break;
2620 
2621 		case IWN5000_CALIBRATION_DONE:
2622 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2623 			wakeup(sc);
2624 			break;
2625 		}
2626 
2627 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2628 	}
2629 
2630 	/* Tell the firmware what we have processed. */
2631 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2632 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2633 }
2634 
2635 /*
2636  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2637  * from power-down sleep mode.
2638  */
2639 static void
2640 iwn_wakeup_intr(struct iwn_softc *sc)
2641 {
2642 	int qid;
2643 
2644 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
2645 	    __func__);
2646 
2647 	/* Wakeup RX and TX rings. */
2648 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2649 	for (qid = 0; qid < sc->sc_hal->ntxqs; qid++) {
2650 		struct iwn_tx_ring *ring = &sc->txq[qid];
2651 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2652 	}
2653 }
2654 
2655 static void
2656 iwn_rftoggle_intr(struct iwn_softc *sc)
2657 {
2658 	struct ifnet *ifp = sc->sc_ifp;
2659 	struct ieee80211com *ic = ifp->if_l2com;
2660 	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
2661 
2662 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
2663 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2664 	if (tmp & IWN_GP_CNTRL_RFKILL)
2665 		ieee80211_runtask(ic, &sc->sc_radioon_task);
2666 	else
2667 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
2668 }
2669 
2670 /*
2671  * Dump the error log of the firmware when a firmware panic occurs.  Although
2672  * we can't debug the firmware because it is neither open source nor free, it
2673  * can help us to identify certain classes of problems.
2674  */
2675 static void
2676 iwn_fatal_intr(struct iwn_softc *sc)
2677 {
2678 	const struct iwn_hal *hal = sc->sc_hal;
2679 	struct iwn_fw_dump dump;
2680 	int i;
2681 
2682 	/* Force a complete recalibration on next init. */
2683 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2684 
2685 	/* Check that the error log address is valid. */
2686 	if (sc->errptr < IWN_FW_DATA_BASE ||
2687 	    sc->errptr + sizeof (dump) >
2688 	    IWN_FW_DATA_BASE + hal->fw_data_maxsz) {
2689 		kprintf("%s: bad firmware error log address 0x%08x\n",
2690 		    __func__, sc->errptr);
2691 		return;
2692 	}
2693 	if (iwn_nic_lock(sc) != 0) {
2694 		kprintf("%s: could not read firmware error log\n",
2695 		    __func__);
2696 		return;
2697 	}
2698 	/* Read firmware error log from SRAM. */
2699 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2700 	    sizeof (dump) / sizeof (uint32_t));
2701 	iwn_nic_unlock(sc);
2702 
2703 	if (dump.valid == 0) {
2704 		kprintf("%s: firmware error log is empty\n",
2705 		    __func__);
2706 		return;
2707 	}
2708 	kprintf("firmware error log:\n");
2709 	kprintf("  error type      = \"%s\" (0x%08X)\n",
2710 	    (dump.id < NELEM(iwn_fw_errmsg)) ?
2711 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2712 	    dump.id);
2713 	kprintf("  program counter = 0x%08X\n", dump.pc);
2714 	kprintf("  source line     = 0x%08X\n", dump.src_line);
2715 	kprintf("  error data      = 0x%08X%08X\n",
2716 	    dump.error_data[0], dump.error_data[1]);
2717 	kprintf("  branch link     = 0x%08X%08X\n",
2718 	    dump.branch_link[0], dump.branch_link[1]);
2719 	kprintf("  interrupt link  = 0x%08X%08X\n",
2720 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2721 	kprintf("  time            = %u\n", dump.time[0]);
2722 
2723 	/* Dump driver status (TX and RX rings) while we're here. */
2724 	kprintf("driver status:\n");
2725 	for (i = 0; i < hal->ntxqs; i++) {
2726 		struct iwn_tx_ring *ring = &sc->txq[i];
2727 		kprintf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2728 		    i, ring->qid, ring->cur, ring->queued);
2729 	}
2730 	kprintf("  rx ring: cur=%d\n", sc->rxq.cur);
2731 }
2732 
2733 static void
2734 iwn_intr(void *arg)
2735 {
2736 	struct iwn_softc *sc = arg;
2737 	struct ifnet *ifp = sc->sc_ifp;
2738 	uint32_t r1, r2, tmp;
2739 
2740 	/* Disable interrupts. */
2741 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2742 
2743 	/* Read interrupts from ICT (fast) or from registers (slow). */
2744 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2745 		tmp = 0;
2746 		while (sc->ict[sc->ict_cur] != 0) {
2747 			tmp |= sc->ict[sc->ict_cur];
2748 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
2749 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2750 		}
2751 		tmp = le32toh(tmp);
2752 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
2753 			tmp = 0;
2754 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
2755 			tmp |= 0x8000;
2756 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2757 		r2 = 0;	/* Unused. */
2758 	} else {
2759 		r1 = IWN_READ(sc, IWN_INT);
2760 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2761 			return;	/* Hardware gone! */
2762 		r2 = IWN_READ(sc, IWN_FH_INT);
2763 	}
2764 
2765 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=%x reg2=%x\n", r1, r2);
2766 
2767 	if (r1 == 0 && r2 == 0)
2768 		goto done;	/* Interrupt not for us. */
2769 
2770 	/* Acknowledge interrupts. */
2771 	IWN_WRITE(sc, IWN_INT, r1);
2772 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2773 		IWN_WRITE(sc, IWN_FH_INT, r2);
2774 
2775 	if (r1 & IWN_INT_RF_TOGGLED) {
2776 		iwn_rftoggle_intr(sc);
2777 		goto done;
2778 	}
2779 	if (r1 & IWN_INT_CT_REACHED) {
2780 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
2781 		    __func__);
2782 	}
2783 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2784 		iwn_fatal_intr(sc);
2785 		ifp->if_flags &= ~IFF_UP;
2786 		iwn_stop_locked(sc);
2787 		goto done;
2788 	}
2789 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2790 	    (r2 & IWN_FH_INT_RX)) {
2791 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2792 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2793 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2794 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2795 			    IWN_INT_PERIODIC_DIS);
2796 			iwn_notif_intr(sc);
2797 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2798 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2799 				    IWN_INT_PERIODIC_ENA);
2800 			}
2801 		} else
2802 			iwn_notif_intr(sc);
2803 	}
2804 
2805 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2806 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
2807 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2808 		wakeup(sc);	/* FH DMA transfer completed. */
2809 	}
2810 
2811 	if (r1 & IWN_INT_ALIVE)
2812 		wakeup(sc);	/* Firmware is alive. */
2813 
2814 	if (r1 & IWN_INT_WAKEUP)
2815 		iwn_wakeup_intr(sc);
2816 
2817 done:
2818 	/* Re-enable interrupts. */
2819 	if (ifp->if_flags & IFF_UP)
2820 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2821 }
2822 
2823 /*
2824  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2825  * 5000 adapters use a slightly different format.)
2826  */
2827 static void
2828 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2829     uint16_t len)
2830 {
2831 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2832 
2833 	*w = htole16(len + 8);
2834 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2835 	    BUS_DMASYNC_PREWRITE);
2836 	if (idx < IWN_SCHED_WINSZ) {
2837 		*(w + IWN_TX_RING_COUNT) = *w;
2838 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2839 		    BUS_DMASYNC_PREWRITE);
2840 	}
2841 }
2842 
2843 static void
2844 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2845     uint16_t len)
2846 {
2847 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2848 
2849 	*w = htole16(id << 12 | (len + 8));
2850 
2851 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2852 	    BUS_DMASYNC_PREWRITE);
2853 	if (idx < IWN_SCHED_WINSZ) {
2854 		*(w + IWN_TX_RING_COUNT) = *w;
2855 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2856 		    BUS_DMASYNC_PREWRITE);
2857 	}
2858 }
2859 
2860 #ifdef notyet
2861 static void
2862 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2863 {
2864 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2865 
2866 	*w = (*w & htole16(0xf000)) | htole16(1);
2867 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2868 	    BUS_DMASYNC_PREWRITE);
2869 	if (idx < IWN_SCHED_WINSZ) {
2870 		*(w + IWN_TX_RING_COUNT) = *w;
2871 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2872 		    BUS_DMASYNC_PREWRITE);
2873 	}
2874 }
2875 #endif
2876 
2877 static uint8_t
2878 iwn_plcp_signal(int rate) {
2879 	int i;
2880 
2881 	for (i = 0; i < IWN_RIDX_MAX + 1; i++) {
2882 		if (rate == iwn_rates[i].rate)
2883 			return i;
2884 	}
2885 
2886 	return 0;
2887 }
2888 
2889 static int
2890 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
2891     struct iwn_tx_ring *ring)
2892 {
2893 	const struct iwn_hal *hal = sc->sc_hal;
2894 	const struct ieee80211_txparam *tp;
2895 	const struct iwn_rate *rinfo;
2896 	struct ieee80211vap *vap = ni->ni_vap;
2897 	struct ieee80211com *ic = ni->ni_ic;
2898 	struct iwn_node *wn = (void *)ni;
2899 	struct iwn_tx_desc *desc;
2900 	struct iwn_tx_data *data;
2901 	struct iwn_tx_cmd *cmd;
2902 	struct iwn_cmd_data *tx;
2903 	struct ieee80211_frame *wh;
2904 	struct ieee80211_key *k = NULL;
2905 	struct mbuf *mnew;
2906 	bus_dma_segment_t segs[IWN_MAX_SCATTER];
2907 	uint32_t flags;
2908 	u_int hdrlen;
2909 	int totlen, error, pad, nsegs = 0, i, rate;
2910 	uint8_t ridx, type, txant;
2911 
2912 	wh = mtod(m, struct ieee80211_frame *);
2913 	hdrlen = ieee80211_anyhdrsize(wh);
2914 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2915 
2916 	desc = &ring->desc[ring->cur];
2917 	data = &ring->data[ring->cur];
2918 
2919 	/* Choose a TX rate index. */
2920 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
2921 	if (type == IEEE80211_FC0_TYPE_MGT)
2922 		rate = tp->mgmtrate;
2923 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
2924 		rate = tp->mcastrate;
2925 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2926 		rate = tp->ucastrate;
2927 	else {
2928 		/* XXX pass pktlen */
2929 		ieee80211_ratectl_rate(ni, NULL, 0);
2930 
2931 		rate = ni->ni_txrate;
2932 	}
2933 	ridx = iwn_plcp_signal(rate);
2934 	rinfo = &iwn_rates[ridx];
2935 
2936 	/* Encrypt the frame if need be. */
2937 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2938 		k = ieee80211_crypto_encap(ni, m);
2939 		if (k == NULL) {
2940 			m_freem(m);
2941 			return ENOBUFS;
2942 		}
2943 		/* Packet header may have moved, reset our local pointer. */
2944 		wh = mtod(m, struct ieee80211_frame *);
2945 	}
2946 	totlen = m->m_pkthdr.len;
2947 
2948 	if (ieee80211_radiotap_active_vap(vap)) {
2949 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2950 
2951 		tap->wt_flags = 0;
2952 		tap->wt_rate = rinfo->rate;
2953 		if (k != NULL)
2954 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2955 
2956 		ieee80211_radiotap_tx(vap, m);
2957 	}
2958 
2959 	/* Prepare TX firmware command. */
2960 	cmd = &ring->cmd[ring->cur];
2961 	cmd->code = IWN_CMD_TX_DATA;
2962 	cmd->flags = 0;
2963 	cmd->qid = ring->qid;
2964 	cmd->idx = ring->cur;
2965 
2966 	tx = (struct iwn_cmd_data *)cmd->data;
2967 	/* NB: No need to clear tx, all fields are reinitialized here. */
2968 	tx->scratch = 0;	/* clear "scratch" area */
2969 
2970 	flags = 0;
2971 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1))
2972 		flags |= IWN_TX_NEED_ACK;
2973 	if ((wh->i_fc[0] &
2974 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2975 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2976 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
2977 
2978 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2979 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
2980 
2981 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2982 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2983 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2984 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2985 			flags |= IWN_TX_NEED_RTS;
2986 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2987 		    ridx >= IWN_RIDX_OFDM6) {
2988 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2989 				flags |= IWN_TX_NEED_CTS;
2990 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2991 				flags |= IWN_TX_NEED_RTS;
2992 		}
2993 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2994 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2995 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
2996 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2997 				flags |= IWN_TX_NEED_PROTECTION;
2998 			} else
2999 				flags |= IWN_TX_FULL_TXOP;
3000 		}
3001 	}
3002 
3003 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3004 	    type != IEEE80211_FC0_TYPE_DATA)
3005 		tx->id = hal->broadcast_id;
3006 	else
3007 		tx->id = wn->id;
3008 
3009 	if (type == IEEE80211_FC0_TYPE_MGT) {
3010 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3011 
3012 		/* Tell HW to set timestamp in probe responses. */
3013 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3014 			flags |= IWN_TX_INSERT_TSTAMP;
3015 
3016 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3017 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3018 			tx->timeout = htole16(3);
3019 		else
3020 			tx->timeout = htole16(2);
3021 	} else
3022 		tx->timeout = htole16(0);
3023 
3024 	if (hdrlen & 3) {
3025 		/* First segment length must be a multiple of 4. */
3026 		flags |= IWN_TX_NEED_PADDING;
3027 		pad = 4 - (hdrlen & 3);
3028 	} else
3029 		pad = 0;
3030 
3031 	tx->len = htole16(totlen);
3032 	tx->tid = 0;
3033 	tx->rts_ntries = 60;
3034 	tx->data_ntries = 15;
3035 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3036 	tx->plcp = rinfo->plcp;
3037 	tx->rflags = rinfo->flags;
3038 	if (tx->id == hal->broadcast_id) {
3039 		/* Group or management frame. */
3040 		tx->linkq = 0;
3041 		/* XXX Alternate between antenna A and B? */
3042 		txant = IWN_LSB(sc->txchainmask);
3043 		tx->rflags |= IWN_RFLAG_ANT(txant);
3044 	} else {
3045 		tx->linkq = IWN_RIDX_OFDM54 - ridx;
3046 		flags |= IWN_TX_LINKQ;	/* enable MRR */
3047 	}
3048 
3049 	/* Set physical address of "scratch area". */
3050 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3051 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3052 
3053 	/* Copy 802.11 header in TX command. */
3054 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3055 
3056 	/* Trim 802.11 header. */
3057 	m_adj(m, hdrlen);
3058 	tx->security = 0;
3059 	tx->flags = htole32(flags);
3060 
3061 	if (m->m_len > 0) {
3062 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
3063 		    m, segs, IWN_MAX_SCATTER - 1, &nsegs, BUS_DMA_NOWAIT);
3064 		if (error == EFBIG) {
3065 			/* too many fragments, linearize */
3066 			mnew = m_defrag(m, MB_DONTWAIT);
3067 			if (mnew == NULL) {
3068 				device_printf(sc->sc_dev,
3069 				    "%s: could not defrag mbuf\n", __func__);
3070 				m_freem(m);
3071 				return ENOBUFS;
3072 			}
3073 			m = mnew;
3074 			error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
3075 			    data->map, m, segs, IWN_MAX_SCATTER - 1, &nsegs, BUS_DMA_NOWAIT);
3076 		}
3077 		if (error != 0) {
3078 			device_printf(sc->sc_dev,
3079 			    "%s: bus_dmamap_load_mbuf_segment failed, error %d\n",
3080 			    __func__, error);
3081 			m_freem(m);
3082 			return error;
3083 		}
3084 	}
3085 
3086 	data->m = m;
3087 	data->ni = ni;
3088 
3089 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3090 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3091 
3092 	/* Fill TX descriptor. */
3093 	desc->nsegs = 1 + nsegs;
3094 	/* First DMA segment is used by the TX command. */
3095 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3096 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3097 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3098 	/* Other DMA segments are for data payload. */
3099 	for (i = 1; i <= nsegs; i++) {
3100 		desc->segs[i].addr = htole32(IWN_LOADDR(segs[i - 1].ds_addr));
3101 		desc->segs[i].len  = htole16(IWN_HIADDR(segs[i - 1].ds_addr) |
3102 		    segs[i - 1].ds_len << 4);
3103 	}
3104 
3105 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3106 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3107 	    BUS_DMASYNC_PREWRITE);
3108 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3109 	    BUS_DMASYNC_PREWRITE);
3110 
3111 #ifdef notyet
3112 	/* Update TX scheduler. */
3113 	hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3114 #endif
3115 
3116 	/* Kick TX ring. */
3117 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3118 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3119 
3120 	/* Mark TX ring as full if we reach a certain threshold. */
3121 	if (++ring->queued > IWN_TX_RING_HIMARK)
3122 		sc->qfullmsk |= 1 << ring->qid;
3123 
3124 	return 0;
3125 }
3126 
3127 static int
3128 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
3129     struct ieee80211_node *ni, struct iwn_tx_ring *ring,
3130     const struct ieee80211_bpf_params *params)
3131 {
3132 	const struct iwn_hal *hal = sc->sc_hal;
3133 	const struct iwn_rate *rinfo;
3134 	struct ifnet *ifp = sc->sc_ifp;
3135 	struct ieee80211vap *vap = ni->ni_vap;
3136 	struct ieee80211com *ic = ifp->if_l2com;
3137 	struct iwn_tx_cmd *cmd;
3138 	struct iwn_cmd_data *tx;
3139 	struct ieee80211_frame *wh;
3140 	struct iwn_tx_desc *desc;
3141 	struct iwn_tx_data *data;
3142 	struct mbuf *mnew;
3143 	bus_addr_t paddr;
3144 	bus_dma_segment_t segs[IWN_MAX_SCATTER];
3145 	uint32_t flags;
3146 	u_int hdrlen;
3147 	int totlen, error, pad, nsegs = 0, i, rate;
3148 	uint8_t ridx, type, txant;
3149 
3150 	wh = mtod(m, struct ieee80211_frame *);
3151 	hdrlen = ieee80211_anyhdrsize(wh);
3152 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3153 
3154 	desc = &ring->desc[ring->cur];
3155 	data = &ring->data[ring->cur];
3156 
3157 	/* Choose a TX rate index. */
3158 	rate = params->ibp_rate0;
3159 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3160 		/* XXX fall back to mcast/mgmt rate? */
3161 		m_freem(m);
3162 		return EINVAL;
3163 	}
3164 	ridx = iwn_plcp_signal(rate);
3165 	rinfo = &iwn_rates[ridx];
3166 
3167 	totlen = m->m_pkthdr.len;
3168 
3169 	/* Prepare TX firmware command. */
3170 	cmd = &ring->cmd[ring->cur];
3171 	cmd->code = IWN_CMD_TX_DATA;
3172 	cmd->flags = 0;
3173 	cmd->qid = ring->qid;
3174 	cmd->idx = ring->cur;
3175 
3176 	tx = (struct iwn_cmd_data *)cmd->data;
3177 	/* NB: No need to clear tx, all fields are reinitialized here. */
3178 	tx->scratch = 0;	/* clear "scratch" area */
3179 
3180 	flags = 0;
3181 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
3182 		flags |= IWN_TX_NEED_ACK;
3183 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
3184 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3185 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3186 			flags &= ~IWN_TX_NEED_RTS;
3187 			flags |= IWN_TX_NEED_PROTECTION;
3188 		} else
3189 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
3190 	}
3191 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
3192 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3193 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3194 			flags &= ~IWN_TX_NEED_CTS;
3195 			flags |= IWN_TX_NEED_PROTECTION;
3196 		} else
3197 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
3198 	}
3199 	if (type == IEEE80211_FC0_TYPE_MGT) {
3200 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3201 
3202 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3203 			flags |= IWN_TX_INSERT_TSTAMP;
3204 
3205 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3206 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3207 			tx->timeout = htole16(3);
3208 		else
3209 			tx->timeout = htole16(2);
3210 	} else
3211 		tx->timeout = htole16(0);
3212 
3213 	if (hdrlen & 3) {
3214 		/* First segment length must be a multiple of 4. */
3215 		flags |= IWN_TX_NEED_PADDING;
3216 		pad = 4 - (hdrlen & 3);
3217 	} else
3218 		pad = 0;
3219 
3220 	if (ieee80211_radiotap_active_vap(vap)) {
3221 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3222 
3223 		tap->wt_flags = 0;
3224 		tap->wt_rate = rate;
3225 
3226 		ieee80211_radiotap_tx(vap, m);
3227 	}
3228 
3229 	tx->len = htole16(totlen);
3230 	tx->tid = 0;
3231 	tx->id = hal->broadcast_id;
3232 	tx->rts_ntries = params->ibp_try1;
3233 	tx->data_ntries = params->ibp_try0;
3234 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3235 	tx->plcp = rinfo->plcp;
3236 	tx->rflags = rinfo->flags;
3237 	/* Group or management frame. */
3238 	tx->linkq = 0;
3239 	txant = IWN_LSB(sc->txchainmask);
3240 	tx->rflags |= IWN_RFLAG_ANT(txant);
3241 	/* Set physical address of "scratch area". */
3242 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
3243 	tx->loaddr = htole32(IWN_LOADDR(paddr));
3244 	tx->hiaddr = IWN_HIADDR(paddr);
3245 
3246 	/* Copy 802.11 header in TX command. */
3247 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3248 
3249 	/* Trim 802.11 header. */
3250 	m_adj(m, hdrlen);
3251 	tx->security = 0;
3252 	tx->flags = htole32(flags);
3253 
3254 	if (m->m_len > 0) {
3255 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
3256 		    m, segs, IWN_MAX_SCATTER - 1, &nsegs, BUS_DMA_NOWAIT);
3257 		if (error == EFBIG) {
3258 			/* Too many fragments, linearize. */
3259 			mnew = m_defrag(m, MB_DONTWAIT);
3260 			if (mnew == NULL) {
3261 				device_printf(sc->sc_dev,
3262 				    "%s: could not defrag mbuf\n", __func__);
3263 				m_freem(m);
3264 				return ENOBUFS;
3265 			}
3266 			m = mnew;
3267 			error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
3268 			    data->map, m, segs, IWN_MAX_SCATTER - 1, &nsegs, BUS_DMA_NOWAIT);
3269 		}
3270 		if (error != 0) {
3271 			device_printf(sc->sc_dev,
3272 			    "%s: bus_dmamap_load_mbuf_segment failed, error %d\n",
3273 			    __func__, error);
3274 			m_freem(m);
3275 			return error;
3276 		}
3277 	}
3278 
3279 	data->m = m;
3280 	data->ni = ni;
3281 
3282 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3283 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3284 
3285 	/* Fill TX descriptor. */
3286 	desc->nsegs = 1 + nsegs;
3287 	/* First DMA segment is used by the TX command. */
3288 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3289 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3290 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3291 	/* Other DMA segments are for data payload. */
3292 	for (i = 1; i <= nsegs; i++) {
3293 		desc->segs[i].addr = htole32(IWN_LOADDR(segs[i - 1].ds_addr));
3294 		desc->segs[i].len  = htole16(IWN_HIADDR(segs[i - 1].ds_addr) |
3295 		    segs[i - 1].ds_len << 4);
3296 	}
3297 
3298 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3299 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3300 	    BUS_DMASYNC_PREWRITE);
3301 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3302 	    BUS_DMASYNC_PREWRITE);
3303 
3304 #ifdef notyet
3305 	/* Update TX scheduler. */
3306 	hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3307 #endif
3308 
3309 	/* Kick TX ring. */
3310 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3311 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3312 
3313 	/* Mark TX ring as full if we reach a certain threshold. */
3314 	if (++ring->queued > IWN_TX_RING_HIMARK)
3315 		sc->qfullmsk |= 1 << ring->qid;
3316 
3317 	return 0;
3318 }
3319 
3320 static int
3321 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3322 	const struct ieee80211_bpf_params *params)
3323 {
3324 	struct ieee80211com *ic = ni->ni_ic;
3325 	struct ifnet *ifp = ic->ic_ifp;
3326 	struct iwn_softc *sc = ifp->if_softc;
3327 	struct iwn_tx_ring *txq;
3328 	int error = 0;
3329 
3330 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
3331 		ieee80211_free_node(ni);
3332 		m_freem(m);
3333 		return ENETDOWN;
3334 	}
3335 
3336 	if (params == NULL)
3337 		txq = &sc->txq[M_WME_GETAC(m)];
3338 	else
3339 		txq = &sc->txq[params->ibp_pri & 3];
3340 
3341 	if (params == NULL) {
3342 		/*
3343 		 * Legacy path; interpret frame contents to decide
3344 		 * precisely how to send the frame.
3345 		 */
3346 		error = iwn_tx_data(sc, m, ni, txq);
3347 	} else {
3348 		/*
3349 		 * Caller supplied explicit parameters to use in
3350 		 * sending the frame.
3351 		 */
3352 		error = iwn_tx_data_raw(sc, m, ni, txq, params);
3353 	}
3354 	if (error != 0) {
3355 		/* NB: m is reclaimed on tx failure */
3356 		ieee80211_free_node(ni);
3357 		ifp->if_oerrors++;
3358 	}
3359 	return error;
3360 }
3361 
3362 static void
3363 iwn_start(struct ifnet *ifp)
3364 {
3365 	struct iwn_softc *sc;
3366 
3367 	sc = ifp->if_softc;
3368 
3369 	wlan_serialize_enter();
3370 	iwn_start_locked(ifp);
3371 	wlan_serialize_exit();
3372 }
3373 
3374 static void
3375 iwn_start_locked(struct ifnet *ifp)
3376 {
3377 	struct iwn_softc *sc = ifp->if_softc;
3378 	struct ieee80211_node *ni;
3379 	struct iwn_tx_ring *txq;
3380 	struct mbuf *m;
3381 	int pri;
3382 
3383 	for (;;) {
3384 		if (sc->qfullmsk != 0) {
3385 			ifp->if_flags |= IFF_OACTIVE;
3386 			break;
3387 		}
3388 		m = ifq_dequeue(&ifp->if_snd, NULL);
3389 		if (m == NULL)
3390 			break;
3391 		KKASSERT(M_TRAILINGSPACE(m) >= 0);
3392 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3393 		pri = M_WME_GETAC(m);
3394 		txq = &sc->txq[pri];
3395 		if (iwn_tx_data(sc, m, ni, txq) != 0) {
3396 			ifp->if_oerrors++;
3397 			ieee80211_free_node(ni);
3398 			break;
3399 		}
3400 		sc->sc_tx_timer = 5;
3401 	}
3402 }
3403 
3404 static void
3405 iwn_watchdog(struct iwn_softc *sc)
3406 {
3407 	if (sc->sc_tx_timer > 0 && --sc->sc_tx_timer == 0) {
3408 		struct ifnet *ifp = sc->sc_ifp;
3409 		struct ieee80211com *ic = ifp->if_l2com;
3410 
3411 		if_printf(ifp, "device timeout\n");
3412 		ieee80211_runtask(ic, &sc->sc_reinit_task);
3413 	}
3414 }
3415 
3416 static int
3417 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *ucred)
3418 {
3419 	struct iwn_softc *sc = ifp->if_softc;
3420 	struct ieee80211com *ic = ifp->if_l2com;
3421 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3422 	struct ifreq *ifr = (struct ifreq *) data;
3423 	int error = 0, startall = 0, stop = 0;
3424 
3425 	switch (cmd) {
3426 	case SIOCSIFFLAGS:
3427 		if (ifp->if_flags & IFF_UP) {
3428 			if (!(ifp->if_flags & IFF_RUNNING)) {
3429 				iwn_init_locked(sc);
3430 				if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
3431 					startall = 1;
3432 				else
3433 					stop = 1;
3434 			}
3435 		} else {
3436 			if (ifp->if_flags & IFF_RUNNING)
3437 				iwn_stop_locked(sc);
3438 		}
3439 		if (startall)
3440 			ieee80211_start_all(ic);
3441 		else if (vap != NULL && stop)
3442 			ieee80211_stop(vap);
3443 		break;
3444 	case SIOCGIFMEDIA:
3445 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
3446 		break;
3447 	case SIOCGIFADDR:
3448 		error = ether_ioctl(ifp, cmd, data);
3449 		break;
3450 	default:
3451 		error = EINVAL;
3452 		break;
3453 	}
3454 	return error;
3455 }
3456 
3457 /*
3458  * Send a command to the firmware.
3459  */
3460 static int
3461 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3462 {
3463 	struct iwn_tx_ring *ring = &sc->txq[4];
3464 	struct iwn_tx_desc *desc;
3465 	struct iwn_tx_data *data;
3466 	struct iwn_tx_cmd *cmd;
3467 	struct mbuf *m;
3468 	bus_addr_t paddr;
3469 	int totlen, error;
3470 
3471 	desc = &ring->desc[ring->cur];
3472 	data = &ring->data[ring->cur];
3473 	totlen = 4 + size;
3474 
3475 	if (size > sizeof cmd->data) {
3476 		/* Command is too large to fit in a descriptor. */
3477 		if (totlen > MJUMPAGESIZE)
3478 			return EINVAL;
3479 		m = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3480 		if (m == NULL)
3481 			return ENOMEM;
3482 		cmd = mtod(m, struct iwn_tx_cmd *);
3483 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3484 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3485 		if (error != 0) {
3486 			m_freem(m);
3487 			return error;
3488 		}
3489 		data->m = m;
3490 	} else {
3491 		cmd = &ring->cmd[ring->cur];
3492 		paddr = data->cmd_paddr;
3493 	}
3494 
3495 	cmd->code = code;
3496 	cmd->flags = 0;
3497 	cmd->qid = ring->qid;
3498 	cmd->idx = ring->cur;
3499 	memcpy(cmd->data, buf, size);
3500 
3501 	desc->nsegs = 1;
3502 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3503 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3504 
3505 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
3506 	    __func__, iwn_intr_str(cmd->code), cmd->code,
3507 	    cmd->flags, cmd->qid, cmd->idx);
3508 
3509 	if (size > sizeof cmd->data) {
3510 		bus_dmamap_sync(ring->data_dmat, data->map,
3511 		    BUS_DMASYNC_PREWRITE);
3512 	} else {
3513 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3514 		    BUS_DMASYNC_PREWRITE);
3515 	}
3516 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3517 	    BUS_DMASYNC_PREWRITE);
3518 
3519 #ifdef notyet
3520 	/* Update TX scheduler. */
3521 	sc->sc_hal->update_sched(sc, ring->qid, ring->cur, 0, 0);
3522 #endif
3523 
3524 	/* Kick command ring. */
3525 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3526 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3527 
3528 	if (async)
3529 		error = 0;
3530 	else
3531 		error = zsleep(desc, &wlan_global_serializer, 0, "iwncmd", hz);
3532 	return error;
3533 }
3534 
3535 static int
3536 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3537 {
3538 	struct iwn4965_node_info hnode;
3539 	caddr_t src, dst;
3540 
3541 	/*
3542 	 * We use the node structure for 5000 Series internally (it is
3543 	 * a superset of the one for 4965AGN). We thus copy the common
3544 	 * fields before sending the command.
3545 	 */
3546 	src = (caddr_t)node;
3547 	dst = (caddr_t)&hnode;
3548 	memcpy(dst, src, 48);
3549 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3550 	memcpy(dst + 48, src + 72, 20);
3551 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3552 }
3553 
3554 static int
3555 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3556 {
3557 	/* Direct mapping. */
3558 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3559 }
3560 
3561 #if 0	/* HT */
3562 static const uint8_t iwn_ridx_to_plcp[] = {
3563 	10, 20, 55, 110, /* CCK */
3564 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 0x3 /* OFDM R1-R4 */
3565 };
3566 static const uint8_t iwn_siso_mcs_to_plcp[] = {
3567 	0, 0, 0, 0, 			/* CCK */
3568 	0, 0, 1, 2, 3, 4, 5, 6, 7	/* HT */
3569 };
3570 static const uint8_t iwn_mimo_mcs_to_plcp[] = {
3571 	0, 0, 0, 0, 			/* CCK */
3572 	8, 8, 9, 10, 11, 12, 13, 14, 15	/* HT */
3573 };
3574 #endif
3575 static const uint8_t iwn_prev_ridx[] = {
3576 	/* NB: allow fallback from CCK11 to OFDM9 and from OFDM6 to CCK5 */
3577 	0, 0, 1, 5,			/* CCK */
3578 	2, 4, 3, 6, 7, 8, 9, 10, 10	/* OFDM */
3579 };
3580 
3581 /*
3582  * Configure hardware link parameters for the specified
3583  * node operating on the specified channel.
3584  */
3585 static int
3586 iwn_set_link_quality(struct iwn_softc *sc, uint8_t id, int async)
3587 {
3588 	struct ifnet *ifp = sc->sc_ifp;
3589 	struct ieee80211com *ic = ifp->if_l2com;
3590 	struct iwn_cmd_link_quality linkq;
3591 	const struct iwn_rate *rinfo;
3592 	int i;
3593 	uint8_t txant, ridx;
3594 
3595 	/* Use the first valid TX antenna. */
3596 	txant = IWN_LSB(sc->txchainmask);
3597 
3598 	memset(&linkq, 0, sizeof linkq);
3599 	linkq.id = id;
3600 	linkq.antmsk_1stream = txant;
3601 	linkq.antmsk_2stream = IWN_ANT_AB;
3602 	linkq.ampdu_max = 31;
3603 	linkq.ampdu_threshold = 3;
3604 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3605 
3606 #if 0	/* HT */
3607 	if (IEEE80211_IS_CHAN_HT(c))
3608 		linkq.mimo = 1;
3609 #endif
3610 
3611 	if (id == IWN_ID_BSS)
3612 		ridx = IWN_RIDX_OFDM54;
3613 	else if (IEEE80211_IS_CHAN_A(ic->ic_curchan))
3614 		ridx = IWN_RIDX_OFDM6;
3615 	else
3616 		ridx = IWN_RIDX_CCK1;
3617 
3618 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3619 		rinfo = &iwn_rates[ridx];
3620 #if 0	/* HT */
3621 		if (IEEE80211_IS_CHAN_HT40(c)) {
3622 			linkq.retry[i].plcp = iwn_mimo_mcs_to_plcp[ridx]
3623 					 | IWN_RIDX_MCS;
3624 			linkq.retry[i].rflags = IWN_RFLAG_HT
3625 					 | IWN_RFLAG_HT40;
3626 			/* XXX shortGI */
3627 		} else if (IEEE80211_IS_CHAN_HT(c)) {
3628 			linkq.retry[i].plcp = iwn_siso_mcs_to_plcp[ridx]
3629 					 | IWN_RIDX_MCS;
3630 			linkq.retry[i].rflags = IWN_RFLAG_HT;
3631 			/* XXX shortGI */
3632 		} else
3633 #endif
3634 		{
3635 			linkq.retry[i].plcp = rinfo->plcp;
3636 			linkq.retry[i].rflags = rinfo->flags;
3637 		}
3638 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3639 		ridx = iwn_prev_ridx[ridx];
3640 	}
3641 #ifdef IWN_DEBUG
3642 	if (sc->sc_debug & IWN_DEBUG_STATE) {
3643 		kprintf("%s: set link quality for node %d, mimo %d ssmask %d\n",
3644 		    __func__, id, linkq.mimo, linkq.antmsk_1stream);
3645 		kprintf("%s:", __func__);
3646 		for (i = 0; i < IWN_MAX_TX_RETRIES; i++)
3647 			kprintf(" %d:%x", linkq.retry[i].plcp,
3648 			    linkq.retry[i].rflags);
3649 		kprintf("\n");
3650 	}
3651 #endif
3652 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3653 }
3654 
3655 /*
3656  * Broadcast node is used to send group-addressed and management frames.
3657  */
3658 static int
3659 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3660 {
3661 	const struct iwn_hal *hal = sc->sc_hal;
3662 	struct ifnet *ifp = sc->sc_ifp;
3663 	struct iwn_node_info node;
3664 	int error;
3665 
3666 	memset(&node, 0, sizeof node);
3667 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
3668 	node.id = hal->broadcast_id;
3669 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
3670 	error = hal->add_node(sc, &node, async);
3671 	if (error != 0)
3672 		return error;
3673 
3674 	error = iwn_set_link_quality(sc, hal->broadcast_id, async);
3675 	return error;
3676 }
3677 
3678 static int
3679 iwn_wme_update(struct ieee80211com *ic)
3680 {
3681 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3682 #define	IWN_TXOP_TO_US(v)		(v<<5)
3683 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
3684 	struct iwn_edca_params cmd;
3685 	int i;
3686 
3687 	memset(&cmd, 0, sizeof cmd);
3688 	cmd.flags = htole32(IWN_EDCA_UPDATE);
3689 	for (i = 0; i < WME_NUM_AC; i++) {
3690 		const struct wmeParams *wmep =
3691 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[i];
3692 		cmd.ac[i].aifsn = wmep->wmep_aifsn;
3693 		cmd.ac[i].cwmin = htole16(IWN_EXP2(wmep->wmep_logcwmin));
3694 		cmd.ac[i].cwmax = htole16(IWN_EXP2(wmep->wmep_logcwmax));
3695 		cmd.ac[i].txoplimit =
3696 		    htole16(IWN_TXOP_TO_US(wmep->wmep_txopLimit));
3697 	}
3698 	(void) iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1 /*async*/);
3699 	return 0;
3700 #undef IWN_TXOP_TO_US
3701 #undef IWN_EXP2
3702 }
3703 
3704 static void
3705 iwn_update_mcast(struct ifnet *ifp)
3706 {
3707 	/* Ignore */
3708 }
3709 
3710 static void
3711 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3712 {
3713 	struct iwn_cmd_led led;
3714 
3715 	/* Clear microcode LED ownership. */
3716 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3717 
3718 	led.which = which;
3719 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3720 	led.off = off;
3721 	led.on = on;
3722 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3723 }
3724 
3725 /*
3726  * Set the critical temperature at which the firmware will stop the radio
3727  * and notify us.
3728  */
3729 static int
3730 iwn_set_critical_temp(struct iwn_softc *sc)
3731 {
3732 	struct iwn_critical_temp crit;
3733 	int32_t temp;
3734 
3735 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3736 
3737 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3738 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3739 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3740 		temp = IWN_CTOK(110);
3741 	else
3742 		temp = 110;
3743 	memset(&crit, 0, sizeof crit);
3744 	crit.tempR = htole32(temp);
3745 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n",
3746 	    temp);
3747 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3748 }
3749 
3750 static int
3751 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3752 {
3753 	struct iwn_cmd_timing cmd;
3754 	uint64_t val, mod;
3755 
3756 	memset(&cmd, 0, sizeof cmd);
3757 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3758 	cmd.bintval = htole16(ni->ni_intval);
3759 	cmd.lintval = htole16(10);
3760 
3761 	/* Compute remaining time until next beacon. */
3762 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3763 	mod = le64toh(cmd.tstamp) % val;
3764 	cmd.binitval = htole32((uint32_t)(val - mod));
3765 
3766 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3767 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3768 
3769 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3770 }
3771 
3772 static void
3773 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3774 {
3775 	struct ifnet *ifp = sc->sc_ifp;
3776 	struct ieee80211com *ic = ifp->if_l2com;
3777 
3778 	/* Adjust TX power if need be (delta >= 3 degC.) */
3779 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
3780 	    __func__, sc->temp, temp);
3781 	if (abs(temp - sc->temp) >= 3) {
3782 		/* Record temperature of last calibration. */
3783 		sc->temp = temp;
3784 		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
3785 	}
3786 }
3787 
3788 /*
3789  * Set TX power for current channel (each rate has its own power settings).
3790  * This function takes into account the regulatory information from EEPROM,
3791  * the current temperature and the current voltage.
3792  */
3793 static int
3794 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
3795     int async)
3796 {
3797 /* Fixed-point arithmetic division using a n-bit fractional part. */
3798 #define fdivround(a, b, n)	\
3799 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3800 /* Linear interpolation. */
3801 #define interpolate(x, x1, y1, x2, y2, n)	\
3802 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3803 
3804 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3805 	struct ifnet *ifp = sc->sc_ifp;
3806 	struct ieee80211com *ic = ifp->if_l2com;
3807 	struct iwn_ucode_info *uc = &sc->ucode_info;
3808 	struct iwn4965_cmd_txpower cmd;
3809 	struct iwn4965_eeprom_chan_samples *chans;
3810 	int32_t vdiff, tdiff;
3811 	int i, c, grp, maxpwr;
3812 	const uint8_t *rf_gain, *dsp_gain;
3813 	uint8_t chan;
3814 
3815 	/* Retrieve channel number. */
3816 	chan = ieee80211_chan2ieee(ic, ch);
3817 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
3818 	    chan);
3819 
3820 	memset(&cmd, 0, sizeof cmd);
3821 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3822 	cmd.chan = chan;
3823 
3824 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3825 		maxpwr   = sc->maxpwr5GHz;
3826 		rf_gain  = iwn4965_rf_gain_5ghz;
3827 		dsp_gain = iwn4965_dsp_gain_5ghz;
3828 	} else {
3829 		maxpwr   = sc->maxpwr2GHz;
3830 		rf_gain  = iwn4965_rf_gain_2ghz;
3831 		dsp_gain = iwn4965_dsp_gain_2ghz;
3832 	}
3833 
3834 	/* Compute voltage compensation. */
3835 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3836 	if (vdiff > 0)
3837 		vdiff *= 2;
3838 	if (abs(vdiff) > 2)
3839 		vdiff = 0;
3840 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3841 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3842 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
3843 
3844 	/* Get channel attenuation group. */
3845 	if (chan <= 20)		/* 1-20 */
3846 		grp = 4;
3847 	else if (chan <= 43)	/* 34-43 */
3848 		grp = 0;
3849 	else if (chan <= 70)	/* 44-70 */
3850 		grp = 1;
3851 	else if (chan <= 124)	/* 71-124 */
3852 		grp = 2;
3853 	else			/* 125-200 */
3854 		grp = 3;
3855 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3856 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
3857 
3858 	/* Get channel sub-band. */
3859 	for (i = 0; i < IWN_NBANDS; i++)
3860 		if (sc->bands[i].lo != 0 &&
3861 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3862 			break;
3863 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
3864 		return EINVAL;
3865 	chans = sc->bands[i].chans;
3866 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3867 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
3868 
3869 	for (c = 0; c < 2; c++) {
3870 		uint8_t power, gain, temp;
3871 		int maxchpwr, pwr, ridx, idx;
3872 
3873 		power = interpolate(chan,
3874 		    chans[0].num, chans[0].samples[c][1].power,
3875 		    chans[1].num, chans[1].samples[c][1].power, 1);
3876 		gain  = interpolate(chan,
3877 		    chans[0].num, chans[0].samples[c][1].gain,
3878 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3879 		temp  = interpolate(chan,
3880 		    chans[0].num, chans[0].samples[c][1].temp,
3881 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3882 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3883 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
3884 		    __func__, c, power, gain, temp);
3885 
3886 		/* Compute temperature compensation. */
3887 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3888 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3889 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
3890 		    __func__, tdiff, sc->temp, temp);
3891 
3892 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3893 			/* Convert dBm to half-dBm. */
3894 			maxchpwr = sc->maxpwr[chan] * 2;
3895 			if ((ridx / 8) & 1)
3896 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3897 
3898 			pwr = maxpwr;
3899 
3900 			/* Adjust TX power based on rate. */
3901 			if ((ridx % 8) == 5)
3902 				pwr -= 15;	/* OFDM48: -7.5dB */
3903 			else if ((ridx % 8) == 6)
3904 				pwr -= 17;	/* OFDM54: -8.5dB */
3905 			else if ((ridx % 8) == 7)
3906 				pwr -= 20;	/* OFDM60: -10dB */
3907 			else
3908 				pwr -= 10;	/* Others: -5dB */
3909 
3910 			/* Do not exceed channel max TX power. */
3911 			if (pwr > maxchpwr)
3912 				pwr = maxchpwr;
3913 
3914 			idx = gain - (pwr - power) - tdiff - vdiff;
3915 			if ((ridx / 8) & 1)	/* MIMO */
3916 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3917 
3918 			if (cmd.band == 0)
3919 				idx += 9;	/* 5GHz */
3920 			if (ridx == IWN_RIDX_MAX)
3921 				idx += 5;	/* CCK */
3922 
3923 			/* Make sure idx stays in a valid range. */
3924 			if (idx < 0)
3925 				idx = 0;
3926 			else if (idx > IWN4965_MAX_PWR_INDEX)
3927 				idx = IWN4965_MAX_PWR_INDEX;
3928 
3929 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3930 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
3931 			    __func__, c, ridx, idx);
3932 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3933 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3934 		}
3935 	}
3936 
3937 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3938 	    "%s: set tx power for chan %d\n", __func__, chan);
3939 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3940 
3941 #undef interpolate
3942 #undef fdivround
3943 }
3944 
3945 static int
3946 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
3947     int async)
3948 {
3949 	struct iwn5000_cmd_txpower cmd;
3950 
3951 	/*
3952 	 * TX power calibration is handled automatically by the firmware
3953 	 * for 5000 Series.
3954 	 */
3955 	memset(&cmd, 0, sizeof cmd);
3956 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3957 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3958 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3959 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting TX power\n", __func__);
3960 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3961 }
3962 
3963 /*
3964  * Retrieve the maximum RSSI (in dBm) among receivers.
3965  */
3966 static int
3967 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
3968 {
3969 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
3970 	uint8_t mask, agc;
3971 	int rssi;
3972 
3973 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3974 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
3975 
3976 	rssi = 0;
3977 #if 0
3978 	if (mask & IWN_ANT_A)	/* Ant A */
3979 		rssi = max(rssi, phy->rssi[0]);
3980 	if (mask & IWN_ATH_B)	/* Ant B */
3981 		rssi = max(rssi, phy->rssi[2]);
3982 	if (mask & IWN_ANT_C)	/* Ant C */
3983 		rssi = max(rssi, phy->rssi[4]);
3984 #else
3985 	rssi = max(rssi, phy->rssi[0]);
3986 	rssi = max(rssi, phy->rssi[2]);
3987 	rssi = max(rssi, phy->rssi[4]);
3988 #endif
3989 
3990 	DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d mask 0x%x rssi %d %d %d "
3991 	    "result %d\n", __func__, agc, mask,
3992 	    phy->rssi[0], phy->rssi[2], phy->rssi[4],
3993 	    rssi - agc - IWN_RSSI_TO_DBM);
3994 	return rssi - agc - IWN_RSSI_TO_DBM;
3995 }
3996 
3997 static int
3998 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
3999 {
4000 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
4001 	int rssi;
4002 	uint8_t agc;
4003 
4004 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
4005 
4006 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
4007 		   le16toh(phy->rssi[1]) & 0xff);
4008 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
4009 
4010 	DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d rssi %d %d %d "
4011 	    "result %d\n", __func__, agc,
4012 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
4013 	    rssi - agc - IWN_RSSI_TO_DBM);
4014 	return rssi - agc - IWN_RSSI_TO_DBM;
4015 }
4016 
4017 /*
4018  * Retrieve the average noise (in dBm) among receivers.
4019  */
4020 static int
4021 iwn_get_noise(const struct iwn_rx_general_stats *stats)
4022 {
4023 	int i, total, nbant, noise;
4024 
4025 	total = nbant = 0;
4026 	for (i = 0; i < 3; i++) {
4027 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
4028 			continue;
4029 		total += noise;
4030 		nbant++;
4031 	}
4032 	/* There should be at least one antenna but check anyway. */
4033 	return (nbant == 0) ? -127 : (total / nbant) - 107;
4034 }
4035 
4036 /*
4037  * Compute temperature (in degC) from last received statistics.
4038  */
4039 static int
4040 iwn4965_get_temperature(struct iwn_softc *sc)
4041 {
4042 	struct iwn_ucode_info *uc = &sc->ucode_info;
4043 	int32_t r1, r2, r3, r4, temp;
4044 
4045 	r1 = le32toh(uc->temp[0].chan20MHz);
4046 	r2 = le32toh(uc->temp[1].chan20MHz);
4047 	r3 = le32toh(uc->temp[2].chan20MHz);
4048 	r4 = le32toh(sc->rawtemp);
4049 
4050 	if (r1 == r3)	/* Prevents division by 0 (should not happen.) */
4051 		return 0;
4052 
4053 	/* Sign-extend 23-bit R4 value to 32-bit. */
4054 	r4 = (r4 << 8) >> 8;
4055 	/* Compute temperature in Kelvin. */
4056 	temp = (259 * (r4 - r2)) / (r3 - r1);
4057 	temp = (temp * 97) / 100 + 8;
4058 
4059 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
4060 	    IWN_KTOC(temp));
4061 	return IWN_KTOC(temp);
4062 }
4063 
4064 static int
4065 iwn5000_get_temperature(struct iwn_softc *sc)
4066 {
4067 	int32_t temp;
4068 
4069 	/*
4070 	 * Temperature is not used by the driver for 5000 Series because
4071 	 * TX power calibration is handled by firmware.  We export it to
4072 	 * users through the sensor framework though.
4073 	 */
4074 	temp = le32toh(sc->rawtemp);
4075 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
4076 		temp = (temp / -5) + sc->temp_off;
4077 		temp = IWN_KTOC(temp);
4078 	}
4079 	return temp;
4080 }
4081 
4082 /*
4083  * Initialize sensitivity calibration state machine.
4084  */
4085 static int
4086 iwn_init_sensitivity(struct iwn_softc *sc)
4087 {
4088 	const struct iwn_hal *hal = sc->sc_hal;
4089 	struct iwn_calib_state *calib = &sc->calib;
4090 	uint32_t flags;
4091 	int error;
4092 
4093 	/* Reset calibration state machine. */
4094 	memset(calib, 0, sizeof (*calib));
4095 	calib->state = IWN_CALIB_STATE_INIT;
4096 	calib->cck_state = IWN_CCK_STATE_HIFA;
4097 	/* Set initial correlation values. */
4098 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
4099 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
4100 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
4101 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
4102 	calib->cck_x4      = 125;
4103 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
4104 	calib->energy_cck  = sc->limits->energy_cck;
4105 
4106 	/* Write initial sensitivity. */
4107 	error = iwn_send_sensitivity(sc);
4108 	if (error != 0)
4109 		return error;
4110 
4111 	/* Write initial gains. */
4112 	error = hal->init_gains(sc);
4113 	if (error != 0)
4114 		return error;
4115 
4116 	/* Request statistics at each beacon interval. */
4117 	flags = 0;
4118 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: calibrate phy\n", __func__);
4119 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
4120 }
4121 
4122 /*
4123  * Collect noise and RSSI statistics for the first 20 beacons received
4124  * after association and use them to determine connected antennas and
4125  * to set differential gains.
4126  */
4127 static void
4128 iwn_collect_noise(struct iwn_softc *sc,
4129     const struct iwn_rx_general_stats *stats)
4130 {
4131 	const struct iwn_hal *hal = sc->sc_hal;
4132 	struct iwn_calib_state *calib = &sc->calib;
4133 	uint32_t val;
4134 	int i;
4135 
4136 	/* Accumulate RSSI and noise for all 3 antennas. */
4137 	for (i = 0; i < 3; i++) {
4138 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
4139 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
4140 	}
4141 	/* NB: We update differential gains only once after 20 beacons. */
4142 	if (++calib->nbeacons < 20)
4143 		return;
4144 
4145 	/* Determine highest average RSSI. */
4146 	val = MAX(calib->rssi[0], calib->rssi[1]);
4147 	val = MAX(calib->rssi[2], val);
4148 
4149 	/* Determine which antennas are connected. */
4150 	sc->chainmask = sc->rxchainmask;
4151 	for (i = 0; i < 3; i++)
4152 		if (val - calib->rssi[i] > 15 * 20)
4153 			sc->chainmask &= ~(1 << i);
4154 
4155 	/* If none of the TX antennas are connected, keep at least one. */
4156 	if ((sc->chainmask & sc->txchainmask) == 0)
4157 		sc->chainmask |= IWN_LSB(sc->txchainmask);
4158 
4159 	(void)hal->set_gains(sc);
4160 	calib->state = IWN_CALIB_STATE_RUN;
4161 
4162 #ifdef notyet
4163 	/* XXX Disable RX chains with no antennas connected. */
4164 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
4165 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4166 #endif
4167 
4168 #if 0
4169 	/* XXX: not yet */
4170 	/* Enable power-saving mode if requested by user. */
4171 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
4172 		(void)iwn_set_pslevel(sc, 0, 3, 1);
4173 #endif
4174 }
4175 
4176 static int
4177 iwn4965_init_gains(struct iwn_softc *sc)
4178 {
4179 	struct iwn_phy_calib_gain cmd;
4180 
4181 	memset(&cmd, 0, sizeof cmd);
4182 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4183 	/* Differential gains initially set to 0 for all 3 antennas. */
4184 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4185 	    "%s: setting initial differential gains\n", __func__);
4186 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4187 }
4188 
4189 static int
4190 iwn5000_init_gains(struct iwn_softc *sc)
4191 {
4192 	struct iwn_phy_calib cmd;
4193 
4194 	memset(&cmd, 0, sizeof cmd);
4195 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
4196 	cmd.ngroups = 1;
4197 	cmd.isvalid = 1;
4198 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4199 	    "%s: setting initial differential gains\n", __func__);
4200 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4201 }
4202 
4203 static int
4204 iwn4965_set_gains(struct iwn_softc *sc)
4205 {
4206 	struct iwn_calib_state *calib = &sc->calib;
4207 	struct iwn_phy_calib_gain cmd;
4208 	int i, delta, noise;
4209 
4210 	/* Get minimal noise among connected antennas. */
4211 	noise = INT_MAX;	/* NB: There's at least one antenna. */
4212 	for (i = 0; i < 3; i++)
4213 		if (sc->chainmask & (1 << i))
4214 			noise = MIN(calib->noise[i], noise);
4215 
4216 	memset(&cmd, 0, sizeof cmd);
4217 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4218 	/* Set differential gains for connected antennas. */
4219 	for (i = 0; i < 3; i++) {
4220 		if (sc->chainmask & (1 << i)) {
4221 			/* Compute attenuation (in unit of 1.5dB). */
4222 			delta = (noise - (int32_t)calib->noise[i]) / 30;
4223 			/* NB: delta <= 0 */
4224 			/* Limit to [-4.5dB,0]. */
4225 			cmd.gain[i] = MIN(abs(delta), 3);
4226 			if (delta < 0)
4227 				cmd.gain[i] |= 1 << 2;	/* sign bit */
4228 		}
4229 	}
4230 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4231 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4232 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
4233 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4234 }
4235 
4236 static int
4237 iwn5000_set_gains(struct iwn_softc *sc)
4238 {
4239 	struct iwn_calib_state *calib = &sc->calib;
4240 	struct iwn_phy_calib_gain cmd;
4241 	int i, ant, delta, div;
4242 
4243 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
4244 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4245 
4246 	memset(&cmd, 0, sizeof cmd);
4247 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
4248 	cmd.ngroups = 1;
4249 	cmd.isvalid = 1;
4250 	/* Get first available RX antenna as referential. */
4251 	ant = IWN_LSB(sc->rxchainmask);
4252 	/* Set differential gains for other antennas. */
4253 	for (i = ant + 1; i < 3; i++) {
4254 		if (sc->chainmask & (1 << i)) {
4255 			/* The delta is relative to antenna "ant". */
4256 			delta = ((int32_t)calib->noise[ant] -
4257 			    (int32_t)calib->noise[i]) / div;
4258 			/* Limit to [-4.5dB,+4.5dB]. */
4259 			cmd.gain[i - 1] = MIN(abs(delta), 3);
4260 			if (delta < 0)
4261 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
4262 		}
4263 	}
4264 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4265 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
4266 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
4267 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4268 }
4269 
4270 /*
4271  * Tune RF RX sensitivity based on the number of false alarms detected
4272  * during the last beacon period.
4273  */
4274 static void
4275 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4276 {
4277 #define inc(val, inc, max)			\
4278 	if ((val) < (max)) {			\
4279 		if ((val) < (max) - (inc))	\
4280 			(val) += (inc);		\
4281 		else				\
4282 			(val) = (max);		\
4283 		needs_update = 1;		\
4284 	}
4285 #define dec(val, dec, min)			\
4286 	if ((val) > (min)) {			\
4287 		if ((val) > (min) + (dec))	\
4288 			(val) -= (dec);		\
4289 		else				\
4290 			(val) = (min);		\
4291 		needs_update = 1;		\
4292 	}
4293 
4294 	const struct iwn_sensitivity_limits *limits = sc->limits;
4295 	struct iwn_calib_state *calib = &sc->calib;
4296 	uint32_t val, rxena, fa;
4297 	uint32_t energy[3], energy_min;
4298 	uint8_t noise[3], noise_ref;
4299 	int i, needs_update = 0;
4300 
4301 	/* Check that we've been enabled long enough. */
4302 	rxena = le32toh(stats->general.load);
4303 	if (rxena == 0)
4304 		return;
4305 
4306 	/* Compute number of false alarms since last call for OFDM. */
4307 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4308 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4309 	fa *= 200 * 1024;	/* 200TU */
4310 
4311 	/* Save counters values for next call. */
4312 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4313 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
4314 
4315 	if (fa > 50 * rxena) {
4316 		/* High false alarm count, decrease sensitivity. */
4317 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4318 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
4319 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
4320 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4321 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
4322 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4323 
4324 	} else if (fa < 5 * rxena) {
4325 		/* Low false alarm count, increase sensitivity. */
4326 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4327 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
4328 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4329 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4330 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4331 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4332 	}
4333 
4334 	/* Compute maximum noise among 3 receivers. */
4335 	for (i = 0; i < 3; i++)
4336 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4337 	val = MAX(noise[0], noise[1]);
4338 	val = MAX(noise[2], val);
4339 	/* Insert it into our samples table. */
4340 	calib->noise_samples[calib->cur_noise_sample] = val;
4341 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4342 
4343 	/* Compute maximum noise among last 20 samples. */
4344 	noise_ref = calib->noise_samples[0];
4345 	for (i = 1; i < 20; i++)
4346 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4347 
4348 	/* Compute maximum energy among 3 receivers. */
4349 	for (i = 0; i < 3; i++)
4350 		energy[i] = le32toh(stats->general.energy[i]);
4351 	val = MIN(energy[0], energy[1]);
4352 	val = MIN(energy[2], val);
4353 	/* Insert it into our samples table. */
4354 	calib->energy_samples[calib->cur_energy_sample] = val;
4355 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4356 
4357 	/* Compute minimum energy among last 10 samples. */
4358 	energy_min = calib->energy_samples[0];
4359 	for (i = 1; i < 10; i++)
4360 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4361 	energy_min += 6;
4362 
4363 	/* Compute number of false alarms since last call for CCK. */
4364 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4365 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4366 	fa *= 200 * 1024;	/* 200TU */
4367 
4368 	/* Save counters values for next call. */
4369 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4370 	calib->fa_cck = le32toh(stats->cck.fa);
4371 
4372 	if (fa > 50 * rxena) {
4373 		/* High false alarm count, decrease sensitivity. */
4374 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4375 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
4376 		calib->cck_state = IWN_CCK_STATE_HIFA;
4377 		calib->low_fa = 0;
4378 
4379 		if (calib->cck_x4 > 160) {
4380 			calib->noise_ref = noise_ref;
4381 			if (calib->energy_cck > 2)
4382 				dec(calib->energy_cck, 2, energy_min);
4383 		}
4384 		if (calib->cck_x4 < 160) {
4385 			calib->cck_x4 = 161;
4386 			needs_update = 1;
4387 		} else
4388 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4389 
4390 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4391 
4392 	} else if (fa < 5 * rxena) {
4393 		/* Low false alarm count, increase sensitivity. */
4394 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4395 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
4396 		calib->cck_state = IWN_CCK_STATE_LOFA;
4397 		calib->low_fa++;
4398 
4399 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4400 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4401 		    calib->low_fa > 100)) {
4402 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4403 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4404 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4405 		}
4406 	} else {
4407 		/* Not worth to increase or decrease sensitivity. */
4408 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4409 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
4410 		calib->low_fa = 0;
4411 		calib->noise_ref = noise_ref;
4412 
4413 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4414 			/* Previous interval had many false alarms. */
4415 			dec(calib->energy_cck, 8, energy_min);
4416 		}
4417 		calib->cck_state = IWN_CCK_STATE_INIT;
4418 	}
4419 
4420 	if (needs_update)
4421 		(void)iwn_send_sensitivity(sc);
4422 #undef dec
4423 #undef inc
4424 }
4425 
4426 static int
4427 iwn_send_sensitivity(struct iwn_softc *sc)
4428 {
4429 	struct iwn_calib_state *calib = &sc->calib;
4430 	struct iwn_sensitivity_cmd cmd;
4431 
4432 	memset(&cmd, 0, sizeof cmd);
4433 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4434 	/* OFDM modulation. */
4435 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
4436 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4437 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
4438 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4439 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
4440 	cmd.energy_ofdm_th   = htole16(62);
4441 	/* CCK modulation. */
4442 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
4443 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
4444 	cmd.energy_cck       = htole16(calib->energy_cck);
4445 	/* Barker modulation: use default values. */
4446 	cmd.corr_barker      = htole16(190);
4447 	cmd.corr_barker_mrc  = htole16(390);
4448 
4449 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4450 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
4451 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4452 	    calib->ofdm_mrc_x4, calib->cck_x4,
4453 	    calib->cck_mrc_x4, calib->energy_cck);
4454 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
4455 }
4456 
4457 /*
4458  * Set STA mode power saving level (between 0 and 5).
4459  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4460  */
4461 static int
4462 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4463 {
4464 	const struct iwn_pmgt *pmgt;
4465 	struct iwn_pmgt_cmd cmd;
4466 	uint32_t max, skip_dtim;
4467 	uint32_t tmp;
4468 	int i;
4469 
4470 	/* Select which PS parameters to use. */
4471 	if (dtim <= 2)
4472 		pmgt = &iwn_pmgt[0][level];
4473 	else if (dtim <= 10)
4474 		pmgt = &iwn_pmgt[1][level];
4475 	else
4476 		pmgt = &iwn_pmgt[2][level];
4477 
4478 	memset(&cmd, 0, sizeof cmd);
4479 	if (level != 0)	/* not CAM */
4480 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4481 	if (level == 5)
4482 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4483 	/* Retrieve PCIe Active State Power Management (ASPM). */
4484 	tmp = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
4485 	if (!(tmp & 0x1))	/* L0s Entry disabled. */
4486 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4487 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4488 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4489 
4490 	if (dtim == 0) {
4491 		dtim = 1;
4492 		skip_dtim = 0;
4493 	} else
4494 		skip_dtim = pmgt->skip_dtim;
4495 	if (skip_dtim != 0) {
4496 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4497 		max = pmgt->intval[4];
4498 		if (max == (uint32_t)-1)
4499 			max = dtim * (skip_dtim + 1);
4500 		else if (max > dtim)
4501 			max = (max / dtim) * dtim;
4502 	} else
4503 		max = dtim;
4504 	for (i = 0; i < 5; i++)
4505 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
4506 
4507 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
4508 	    level);
4509 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4510 }
4511 
4512 static int
4513 iwn_config(struct iwn_softc *sc)
4514 {
4515 	const struct iwn_hal *hal = sc->sc_hal;
4516 	struct ifnet *ifp = sc->sc_ifp;
4517 	struct ieee80211com *ic = ifp->if_l2com;
4518 	struct iwn_bluetooth bluetooth;
4519 	uint32_t txmask;
4520 	int error;
4521 	uint16_t rxchain;
4522 
4523 	/* Configure valid TX chains for 5000 Series. */
4524 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4525 		txmask = htole32(sc->txchainmask);
4526 		DPRINTF(sc, IWN_DEBUG_RESET,
4527 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
4528 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4529 		    sizeof txmask, 0);
4530 		if (error != 0) {
4531 			device_printf(sc->sc_dev,
4532 			    "%s: could not configure valid TX chains, "
4533 			    "error %d\n", __func__, error);
4534 			return error;
4535 		}
4536 	}
4537 
4538 	/* Configure bluetooth coexistence. */
4539 	memset(&bluetooth, 0, sizeof bluetooth);
4540 	bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
4541 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4542 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4543 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: config bluetooth coexistence\n",
4544 	    __func__);
4545 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4546 	if (error != 0) {
4547 		device_printf(sc->sc_dev,
4548 		    "%s: could not configure bluetooth coexistence, error %d\n",
4549 		    __func__, error);
4550 		return error;
4551 	}
4552 
4553 	/* Set mode, channel, RX filter and enable RX. */
4554 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4555 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, IF_LLADDR(ifp));
4556 	IEEE80211_ADDR_COPY(sc->rxon.wlap, IF_LLADDR(ifp));
4557 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
4558 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4559 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
4560 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4561 	switch (ic->ic_opmode) {
4562 	case IEEE80211_M_STA:
4563 		sc->rxon.mode = IWN_MODE_STA;
4564 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4565 		break;
4566 	case IEEE80211_M_MONITOR:
4567 		sc->rxon.mode = IWN_MODE_MONITOR;
4568 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4569 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4570 		break;
4571 	default:
4572 		/* Should not get there. */
4573 		break;
4574 	}
4575 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4576 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4577 	sc->rxon.ht_single_mask = 0xff;
4578 	sc->rxon.ht_dual_mask = 0xff;
4579 	sc->rxon.ht_triple_mask = 0xff;
4580 	rxchain =
4581 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4582 	    IWN_RXCHAIN_MIMO_COUNT(2) |
4583 	    IWN_RXCHAIN_IDLE_COUNT(2);
4584 	sc->rxon.rxchain = htole16(rxchain);
4585 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__);
4586 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 0);
4587 	if (error != 0) {
4588 		device_printf(sc->sc_dev,
4589 		    "%s: RXON command failed\n", __func__);
4590 		return error;
4591 	}
4592 
4593 	error = iwn_add_broadcast_node(sc, 0);
4594 	if (error != 0) {
4595 		device_printf(sc->sc_dev,
4596 		    "%s: could not add broadcast node\n", __func__);
4597 		return error;
4598 	}
4599 
4600 	/* Configuration has changed, set TX power accordingly. */
4601 	error = hal->set_txpower(sc, ic->ic_curchan, 0);
4602 	if (error != 0) {
4603 		device_printf(sc->sc_dev,
4604 		    "%s: could not set TX power\n", __func__);
4605 		return error;
4606 	}
4607 
4608 	error = iwn_set_critical_temp(sc);
4609 	if (error != 0) {
4610 		device_printf(sc->sc_dev,
4611 		    "%s: ccould not set critical temperature\n", __func__);
4612 		return error;
4613 	}
4614 
4615 	/* Set power saving level to CAM during initialization. */
4616 	error = iwn_set_pslevel(sc, 0, 0, 0);
4617 	if (error != 0) {
4618 		device_printf(sc->sc_dev,
4619 		    "%s: could not set power saving level\n", __func__);
4620 		return error;
4621 	}
4622 	return 0;
4623 }
4624 
4625 static int
4626 iwn_scan(struct iwn_softc *sc)
4627 {
4628 	struct ifnet *ifp = sc->sc_ifp;
4629 	struct ieee80211com *ic = ifp->if_l2com;
4630 	struct ieee80211_scan_state *ss = ic->ic_scan;	/*XXX*/
4631 	struct iwn_scan_hdr *hdr;
4632 	struct iwn_cmd_data *tx;
4633 	struct iwn_scan_essid *essid;
4634 	struct iwn_scan_chan *chan;
4635 	struct ieee80211_frame *wh;
4636 	struct ieee80211_rateset *rs;
4637 	struct ieee80211_channel *c;
4638 	int buflen, error, nrates;
4639 	uint16_t rxchain;
4640 	uint8_t *buf, *frm, txant;
4641 
4642 	buf = kmalloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_INTWAIT | M_ZERO);
4643 	if (buf == NULL) {
4644 		device_printf(sc->sc_dev,
4645 		    "%s: could not allocate buffer for scan command\n",
4646 		    __func__);
4647 		return ENOMEM;
4648 	}
4649 	hdr = (struct iwn_scan_hdr *)buf;
4650 
4651 	/*
4652 	 * Move to the next channel if no frames are received within 10ms
4653 	 * after sending the probe request.
4654 	 */
4655 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4656 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4657 
4658 	/* Select antennas for scanning. */
4659 	rxchain =
4660 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4661 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4662 	    IWN_RXCHAIN_DRIVER_FORCE;
4663 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) &&
4664 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4665 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4666 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4667 	} else	/* Use all available RX antennas. */
4668 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4669 	hdr->rxchain = htole16(rxchain);
4670 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4671 
4672 	tx = (struct iwn_cmd_data *)(hdr + 1);
4673 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4674 	tx->id = sc->sc_hal->broadcast_id;
4675 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4676 
4677 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
4678 		/* Send probe requests at 6Mbps. */
4679 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4680 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4681 	} else {
4682 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4683 		/* Send probe requests at 1Mbps. */
4684 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4685 		tx->rflags = IWN_RFLAG_CCK;
4686 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4687 	}
4688 	/* Use the first valid TX antenna. */
4689 	txant = IWN_LSB(sc->txchainmask);
4690 	tx->rflags |= IWN_RFLAG_ANT(txant);
4691 
4692 	essid = (struct iwn_scan_essid *)(tx + 1);
4693 	if (ss->ss_ssid[0].len != 0) {
4694 		essid[0].id = IEEE80211_ELEMID_SSID;
4695 		essid[0].len = ss->ss_ssid[0].len;
4696 		memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
4697 	}
4698 
4699 	/*
4700 	 * Build a probe request frame.  Most of the following code is a
4701 	 * copy & paste of what is done in net80211.
4702 	 */
4703 	wh = (struct ieee80211_frame *)(essid + 20);
4704 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4705 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4706 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4707 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
4708 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
4709 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
4710 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4711 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4712 
4713 	frm = (uint8_t *)(wh + 1);
4714 
4715 	/* Add SSID IE. */
4716 	*frm++ = IEEE80211_ELEMID_SSID;
4717 	*frm++ = ss->ss_ssid[0].len;
4718 	memcpy(frm, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
4719 	frm += ss->ss_ssid[0].len;
4720 
4721 	/* Add supported rates IE. */
4722 	*frm++ = IEEE80211_ELEMID_RATES;
4723 	nrates = rs->rs_nrates;
4724 	if (nrates > IEEE80211_RATE_SIZE)
4725 		nrates = IEEE80211_RATE_SIZE;
4726 	*frm++ = nrates;
4727 	memcpy(frm, rs->rs_rates, nrates);
4728 	frm += nrates;
4729 
4730 	/* Add supported xrates IE. */
4731 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
4732 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
4733 		*frm++ = IEEE80211_ELEMID_XRATES;
4734 		*frm++ = (uint8_t)nrates;
4735 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
4736 		frm += nrates;
4737 	}
4738 
4739 	/* Set length of probe request. */
4740 	tx->len = htole16(frm - (uint8_t *)wh);
4741 
4742 	c = ic->ic_curchan;
4743 	chan = (struct iwn_scan_chan *)frm;
4744 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4745 	chan->flags = 0;
4746 	if (ss->ss_nssid > 0)
4747 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4748 	chan->dsp_gain = 0x6e;
4749 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
4750 	    !(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
4751 		chan->rf_gain = 0x3b;
4752 		chan->active  = htole16(24);
4753 		chan->passive = htole16(110);
4754 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
4755 	} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
4756 		chan->rf_gain = 0x3b;
4757 		chan->active  = htole16(24);
4758 		if (sc->rxon.associd)
4759 			chan->passive = htole16(78);
4760 		else
4761 			chan->passive = htole16(110);
4762 		hdr->crc_threshold = 0xffff;
4763 	} else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
4764 		chan->rf_gain = 0x28;
4765 		chan->active  = htole16(36);
4766 		chan->passive = htole16(120);
4767 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
4768 	} else {
4769 		chan->rf_gain = 0x28;
4770 		chan->active  = htole16(36);
4771 		if (sc->rxon.associd)
4772 			chan->passive = htole16(88);
4773 		else
4774 			chan->passive = htole16(120);
4775 		hdr->crc_threshold = 0xffff;
4776 	}
4777 
4778 	DPRINTF(sc, IWN_DEBUG_STATE,
4779 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
4780 	    "dsp_gain 0x%x active 0x%x passive 0x%x\n", __func__,
4781 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
4782 	    chan->active, chan->passive);
4783 
4784 	hdr->nchan++;
4785 	chan++;
4786 	buflen = (uint8_t *)chan - buf;
4787 	hdr->len = htole16(buflen);
4788 
4789 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
4790 	    hdr->nchan);
4791 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4792 	kfree(buf, M_DEVBUF);
4793 	return error;
4794 }
4795 
4796 static int
4797 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
4798 {
4799 	const struct iwn_hal *hal = sc->sc_hal;
4800 	struct ifnet *ifp = sc->sc_ifp;
4801 	struct ieee80211com *ic = ifp->if_l2com;
4802 	struct ieee80211_node *ni = vap->iv_bss;
4803 	int error;
4804 
4805 	sc->calib.state = IWN_CALIB_STATE_INIT;
4806 
4807 	/* Update adapter configuration. */
4808 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4809 	sc->rxon.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan));
4810 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4811 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4812 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4813 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4814 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4815 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4816 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4817 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
4818 		sc->rxon.cck_mask  = 0;
4819 		sc->rxon.ofdm_mask = 0x15;
4820 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
4821 		sc->rxon.cck_mask  = 0x03;
4822 		sc->rxon.ofdm_mask = 0;
4823 	} else {
4824 		/* XXX assume 802.11b/g */
4825 		sc->rxon.cck_mask  = 0x0f;
4826 		sc->rxon.ofdm_mask = 0x15;
4827 	}
4828 	DPRINTF(sc, IWN_DEBUG_STATE,
4829 	    "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
4830 	    "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
4831 	    "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
4832 	    __func__,
4833 	    le16toh(sc->rxon.chan), sc->rxon.mode, le32toh(sc->rxon.flags),
4834 	    sc->rxon.cck_mask, sc->rxon.ofdm_mask,
4835 	    sc->rxon.ht_single_mask, sc->rxon.ht_dual_mask,
4836 	    le16toh(sc->rxon.rxchain),
4837 	    sc->rxon.myaddr, ":", sc->rxon.wlap, ":", sc->rxon.bssid, ":",
4838 	    le16toh(sc->rxon.associd), le32toh(sc->rxon.filter));
4839 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4840 	if (error != 0) {
4841 		device_printf(sc->sc_dev,
4842 		    "%s: RXON command failed, error %d\n", __func__, error);
4843 		return error;
4844 	}
4845 
4846 	/* Configuration has changed, set TX power accordingly. */
4847 	error = hal->set_txpower(sc, ni->ni_chan, 1);
4848 	if (error != 0) {
4849 		device_printf(sc->sc_dev,
4850 		    "%s: could not set Tx power, error %d\n", __func__, error);
4851 		return error;
4852 	}
4853 	/*
4854 	 * Reconfiguring RXON clears the firmware nodes table so we must
4855 	 * add the broadcast node again.
4856 	 */
4857 	error = iwn_add_broadcast_node(sc, 1);
4858 	if (error != 0) {
4859 		device_printf(sc->sc_dev,
4860 		    "%s: could not add broadcast node, error %d\n",
4861 		    __func__, error);
4862 		return error;
4863 	}
4864 	return 0;
4865 }
4866 
4867 /*
4868  * Configure the adapter for associated state.
4869  */
4870 static int
4871 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
4872 {
4873 #define	MS(v,x)	(((v) & x) >> x##_S)
4874 	const struct iwn_hal *hal = sc->sc_hal;
4875 	struct ifnet *ifp = sc->sc_ifp;
4876 	struct ieee80211com *ic = ifp->if_l2com;
4877 	struct ieee80211_node *ni = vap->iv_bss;
4878 	struct iwn_node_info node;
4879 	int error;
4880 
4881 	sc->calib.state = IWN_CALIB_STATE_INIT;
4882 
4883 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4884 		/* Link LED blinks while monitoring. */
4885 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4886 		return 0;
4887 	}
4888 	error = iwn_set_timing(sc, ni);
4889 	if (error != 0) {
4890 		device_printf(sc->sc_dev,
4891 		    "%s: could not set timing, error %d\n", __func__, error);
4892 		return error;
4893 	}
4894 
4895 	/* Update adapter configuration. */
4896 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4897 	sc->rxon.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan));
4898 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4899 	/* Short preamble and slot time are negotiated when associating. */
4900 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4901 	sc->rxon.flags |= htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4902 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4903 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4904 	else
4905 		sc->rxon.flags &= ~htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4906 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4907 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4908 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4909 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4910 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
4911 		sc->rxon.cck_mask  = 0;
4912 		sc->rxon.ofdm_mask = 0x15;
4913 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
4914 		sc->rxon.cck_mask  = 0x03;
4915 		sc->rxon.ofdm_mask = 0;
4916 	} else {
4917 		/* XXX assume 802.11b/g */
4918 		sc->rxon.cck_mask  = 0x0f;
4919 		sc->rxon.ofdm_mask = 0x15;
4920 	}
4921 #if 0	/* HT */
4922 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
4923 		sc->rxon.flags &= ~htole32(IWN_RXON_HT);
4924 		if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
4925 			sc->rxon.flags |= htole32(IWN_RXON_HT40U);
4926 		else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
4927 			sc->rxon.flags |= htole32(IWN_RXON_HT40D);
4928 		else
4929 			sc->rxon.flags |= htole32(IWN_RXON_HT20);
4930 		sc->rxon.rxchain = htole16(
4931 			  IWN_RXCHAIN_VALID(3)
4932 			| IWN_RXCHAIN_MIMO_COUNT(3)
4933 			| IWN_RXCHAIN_IDLE_COUNT(1)
4934 			| IWN_RXCHAIN_MIMO_FORCE);
4935 
4936 		maxrxampdu = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU);
4937 		ampdudensity = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY);
4938 	} else
4939 		maxrxampdu = ampdudensity = 0;
4940 #endif
4941 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4942 
4943 	DPRINTF(sc, IWN_DEBUG_STATE,
4944 	    "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
4945 	    "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
4946 	    "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
4947 	    __func__,
4948 	    le16toh(sc->rxon.chan), sc->rxon.mode, le32toh(sc->rxon.flags),
4949 	    sc->rxon.cck_mask, sc->rxon.ofdm_mask,
4950 	    sc->rxon.ht_single_mask, sc->rxon.ht_dual_mask,
4951 	    le16toh(sc->rxon.rxchain),
4952 	    sc->rxon.myaddr, ":", sc->rxon.wlap, ":", sc->rxon.bssid, ":",
4953 	    le16toh(sc->rxon.associd), le32toh(sc->rxon.filter));
4954 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4955 	if (error != 0) {
4956 		device_printf(sc->sc_dev,
4957 		    "%s: could not update configuration, error %d\n",
4958 		    __func__, error);
4959 		return error;
4960 	}
4961 
4962 	/* Configuration has changed, set TX power accordingly. */
4963 	error = hal->set_txpower(sc, ni->ni_chan, 1);
4964 	if (error != 0) {
4965 		device_printf(sc->sc_dev,
4966 		    "%s: could not set Tx power, error %d\n", __func__, error);
4967 		return error;
4968 	}
4969 
4970 	/* Add BSS node. */
4971 	memset(&node, 0, sizeof node);
4972 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4973 	node.id = IWN_ID_BSS;
4974 #ifdef notyet
4975 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4976 	    IWN_AMDPU_DENSITY(5));	/* 2us */
4977 #endif
4978 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: add BSS node, id %d htflags 0x%x\n",
4979 	    __func__, node.id, le32toh(node.htflags));
4980 	error = hal->add_node(sc, &node, 1);
4981 	if (error != 0) {
4982 		device_printf(sc->sc_dev, "could not add BSS node\n");
4983 		return error;
4984 	}
4985 	DPRINTF(sc, IWN_DEBUG_STATE, "setting link quality for node %d\n",
4986 	    node.id);
4987 	error = iwn_set_link_quality(sc, node.id, 1);
4988 	if (error != 0) {
4989 		device_printf(sc->sc_dev,
4990 		    "%s: could not setup MRR for node %d, error %d\n",
4991 		    __func__, node.id, error);
4992 		return error;
4993 	}
4994 
4995 	error = iwn_init_sensitivity(sc);
4996 	if (error != 0) {
4997 		device_printf(sc->sc_dev,
4998 		    "%s: could not set sensitivity, error %d\n",
4999 		    __func__, error);
5000 		return error;
5001 	}
5002 
5003 	/* Start periodic calibration timer. */
5004 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
5005 	iwn_calib_reset(sc);
5006 
5007 	/* Link LED always on while associated. */
5008 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
5009 
5010 	return 0;
5011 #undef MS
5012 }
5013 
5014 #if 0	/* HT */
5015 /*
5016  * This function is called by upper layer when an ADDBA request is received
5017  * from another STA and before the ADDBA response is sent.
5018  */
5019 static int
5020 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5021     uint8_t tid)
5022 {
5023 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
5024 	struct iwn_softc *sc = ic->ic_softc;
5025 	struct iwn_node *wn = (void *)ni;
5026 	struct iwn_node_info node;
5027 
5028 	memset(&node, 0, sizeof node);
5029 	node.id = wn->id;
5030 	node.control = IWN_NODE_UPDATE;
5031 	node.flags = IWN_FLAG_SET_ADDBA;
5032 	node.addba_tid = tid;
5033 	node.addba_ssn = htole16(ba->ba_winstart);
5034 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
5035 	    wn->id, tid, ba->ba_winstart));
5036 	return sc->sc_hal->add_node(sc, &node, 1);
5037 }
5038 
5039 /*
5040  * This function is called by upper layer on teardown of an HT-immediate
5041  * Block Ack agreement (eg. uppon receipt of a DELBA frame.)
5042  */
5043 static void
5044 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5045     uint8_t tid)
5046 {
5047 	struct iwn_softc *sc = ic->ic_softc;
5048 	struct iwn_node *wn = (void *)ni;
5049 	struct iwn_node_info node;
5050 
5051 	memset(&node, 0, sizeof node);
5052 	node.id = wn->id;
5053 	node.control = IWN_NODE_UPDATE;
5054 	node.flags = IWN_FLAG_SET_DELBA;
5055 	node.delba_tid = tid;
5056 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
5057 	(void)sc->sc_hal->add_node(sc, &node, 1);
5058 }
5059 
5060 /*
5061  * This function is called by upper layer when an ADDBA response is received
5062  * from another STA.
5063  */
5064 static int
5065 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5066     uint8_t tid)
5067 {
5068 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5069 	struct iwn_softc *sc = ic->ic_softc;
5070 	const struct iwn_hal *hal = sc->sc_hal;
5071 	struct iwn_node *wn = (void *)ni;
5072 	struct iwn_node_info node;
5073 	int error;
5074 
5075 	/* Enable TX for the specified RA/TID. */
5076 	wn->disable_tid &= ~(1 << tid);
5077 	memset(&node, 0, sizeof node);
5078 	node.id = wn->id;
5079 	node.control = IWN_NODE_UPDATE;
5080 	node.flags = IWN_FLAG_SET_DISABLE_TID;
5081 	node.disable_tid = htole16(wn->disable_tid);
5082 	error = hal->add_node(sc, &node, 1);
5083 	if (error != 0)
5084 		return error;
5085 
5086 	if ((error = iwn_nic_lock(sc)) != 0)
5087 		return error;
5088 	hal->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5089 	iwn_nic_unlock(sc);
5090 	return 0;
5091 }
5092 
5093 static void
5094 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5095     uint8_t tid)
5096 {
5097 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5098 	struct iwn_softc *sc = ic->ic_softc;
5099 	int error;
5100 
5101 	error = iwn_nic_lock(sc);
5102 	if (error != 0)
5103 		return;
5104 	sc->sc_hal->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5105 	iwn_nic_unlock(sc);
5106 }
5107 
5108 static void
5109 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5110     uint8_t tid, uint16_t ssn)
5111 {
5112 	struct iwn_node *wn = (void *)ni;
5113 	int qid = 7 + tid;
5114 
5115 	/* Stop TX scheduler while we're changing its configuration. */
5116 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5117 	    IWN4965_TXQ_STATUS_CHGACT);
5118 
5119 	/* Assign RA/TID translation to the queue. */
5120 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5121 	    wn->id << 4 | tid);
5122 
5123 	/* Enable chain-building mode for the queue. */
5124 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5125 
5126 	/* Set starting sequence number from the ADDBA request. */
5127 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5128 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5129 
5130 	/* Set scheduler window size. */
5131 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5132 	    IWN_SCHED_WINSZ);
5133 	/* Set scheduler frame limit. */
5134 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5135 	    IWN_SCHED_LIMIT << 16);
5136 
5137 	/* Enable interrupts for the queue. */
5138 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5139 
5140 	/* Mark the queue as active. */
5141 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5142 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5143 	    iwn_tid2fifo[tid] << 1);
5144 }
5145 
5146 static void
5147 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5148 {
5149 	int qid = 7 + tid;
5150 
5151 	/* Stop TX scheduler while we're changing its configuration. */
5152 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5153 	    IWN4965_TXQ_STATUS_CHGACT);
5154 
5155 	/* Set starting sequence number from the ADDBA request. */
5156 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5157 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5158 
5159 	/* Disable interrupts for the queue. */
5160 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5161 
5162 	/* Mark the queue as inactive. */
5163 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5164 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5165 }
5166 
5167 static void
5168 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5169     uint8_t tid, uint16_t ssn)
5170 {
5171 	struct iwn_node *wn = (void *)ni;
5172 	int qid = 10 + tid;
5173 
5174 	/* Stop TX scheduler while we're changing its configuration. */
5175 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5176 	    IWN5000_TXQ_STATUS_CHGACT);
5177 
5178 	/* Assign RA/TID translation to the queue. */
5179 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5180 	    wn->id << 4 | tid);
5181 
5182 	/* Enable chain-building mode for the queue. */
5183 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5184 
5185 	/* Enable aggregation for the queue. */
5186 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5187 
5188 	/* Set starting sequence number from the ADDBA request. */
5189 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5190 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5191 
5192 	/* Set scheduler window size and frame limit. */
5193 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5194 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5195 
5196 	/* Enable interrupts for the queue. */
5197 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5198 
5199 	/* Mark the queue as active. */
5200 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5201 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5202 }
5203 
5204 static void
5205 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5206 {
5207 	int qid = 10 + tid;
5208 
5209 	/* Stop TX scheduler while we're changing its configuration. */
5210 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5211 	    IWN5000_TXQ_STATUS_CHGACT);
5212 
5213 	/* Disable aggregation for the queue. */
5214 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5215 
5216 	/* Set starting sequence number from the ADDBA request. */
5217 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5218 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5219 
5220 	/* Disable interrupts for the queue. */
5221 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5222 
5223 	/* Mark the queue as inactive. */
5224 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5225 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5226 }
5227 #endif
5228 
5229 /*
5230  * Query calibration tables from the initialization firmware.  We do this
5231  * only once at first boot.  Called from a process context.
5232  */
5233 static int
5234 iwn5000_query_calibration(struct iwn_softc *sc)
5235 {
5236 	struct iwn5000_calib_config cmd;
5237 	int error;
5238 
5239 	memset(&cmd, 0, sizeof cmd);
5240 	cmd.ucode.once.enable = 0xffffffff;
5241 	cmd.ucode.once.start  = 0xffffffff;
5242 	cmd.ucode.once.send   = 0xffffffff;
5243 	cmd.ucode.flags       = 0xffffffff;
5244 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
5245 	    __func__);
5246 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5247 	if (error != 0)
5248 		return error;
5249 
5250 	/* Wait at most two seconds for calibration to complete. */
5251 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5252 		error = zsleep(sc, &wlan_global_serializer,
5253 			       0, "iwninit", 2 * hz);
5254 	}
5255 	return error;
5256 }
5257 
5258 /*
5259  * Send calibration results to the runtime firmware.  These results were
5260  * obtained on first boot from the initialization firmware.
5261  */
5262 static int
5263 iwn5000_send_calibration(struct iwn_softc *sc)
5264 {
5265 	int idx, error;
5266 
5267 	for (idx = 0; idx < 5; idx++) {
5268 		if (sc->calibcmd[idx].buf == NULL)
5269 			continue;	/* No results available. */
5270 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5271 		    "send calibration result idx=%d len=%d\n",
5272 		    idx, sc->calibcmd[idx].len);
5273 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5274 		    sc->calibcmd[idx].len, 0);
5275 		if (error != 0) {
5276 			device_printf(sc->sc_dev,
5277 			    "%s: could not send calibration result, error %d\n",
5278 			    __func__, error);
5279 			return error;
5280 		}
5281 	}
5282 	return 0;
5283 }
5284 
5285 static int
5286 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5287 {
5288 	struct iwn5000_wimax_coex wimax;
5289 
5290 #ifdef notyet
5291 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5292 		/* Enable WiMAX coexistence for combo adapters. */
5293 		wimax.flags =
5294 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5295 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5296 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
5297 		    IWN_WIMAX_COEX_ENABLE;
5298 		memcpy(wimax.events, iwn6050_wimax_events,
5299 		    sizeof iwn6050_wimax_events);
5300 	} else
5301 #endif
5302 	{
5303 		/* Disable WiMAX coexistence. */
5304 		wimax.flags = 0;
5305 		memset(wimax.events, 0, sizeof wimax.events);
5306 	}
5307 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
5308 	    __func__);
5309 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5310 }
5311 
5312 /*
5313  * This function is called after the runtime firmware notifies us of its
5314  * readiness (called in a process context.)
5315  */
5316 static int
5317 iwn4965_post_alive(struct iwn_softc *sc)
5318 {
5319 	int error, qid;
5320 
5321 	if ((error = iwn_nic_lock(sc)) != 0)
5322 		return error;
5323 
5324 	/* Clear TX scheduler state in SRAM. */
5325 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5326 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5327 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5328 
5329 	/* Set physical address of TX scheduler rings (1KB aligned.) */
5330 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5331 
5332 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5333 
5334 	/* Disable chain mode for all our 16 queues. */
5335 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5336 
5337 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5338 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5339 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5340 
5341 		/* Set scheduler window size. */
5342 		iwn_mem_write(sc, sc->sched_base +
5343 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5344 		/* Set scheduler frame limit. */
5345 		iwn_mem_write(sc, sc->sched_base +
5346 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5347 		    IWN_SCHED_LIMIT << 16);
5348 	}
5349 
5350 	/* Enable interrupts for all our 16 queues. */
5351 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5352 	/* Identify TX FIFO rings (0-7). */
5353 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5354 
5355 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5356 	for (qid = 0; qid < 7; qid++) {
5357 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5358 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5359 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5360 	}
5361 	iwn_nic_unlock(sc);
5362 	return 0;
5363 }
5364 
5365 /*
5366  * This function is called after the initialization or runtime firmware
5367  * notifies us of its readiness (called in a process context.)
5368  */
5369 static int
5370 iwn5000_post_alive(struct iwn_softc *sc)
5371 {
5372 	int error, qid;
5373 
5374 	/* Switch to using ICT interrupt mode. */
5375 	iwn5000_ict_reset(sc);
5376 
5377 	error = iwn_nic_lock(sc);
5378 	if (error != 0)
5379 		return error;
5380 
5381 	/* Clear TX scheduler state in SRAM. */
5382 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5383 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5384 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5385 
5386 	/* Set physical address of TX scheduler rings (1KB aligned.) */
5387 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5388 
5389 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5390 
5391 	/* Enable chain mode for all queues, except command queue. */
5392 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5393 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5394 
5395 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5396 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5397 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5398 
5399 		iwn_mem_write(sc, sc->sched_base +
5400 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5401 		/* Set scheduler window size and frame limit. */
5402 		iwn_mem_write(sc, sc->sched_base +
5403 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5404 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5405 	}
5406 
5407 	/* Enable interrupts for all our 20 queues. */
5408 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5409 	/* Identify TX FIFO rings (0-7). */
5410 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5411 
5412 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5413 	for (qid = 0; qid < 7; qid++) {
5414 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5415 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5416 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5417 	}
5418 	iwn_nic_unlock(sc);
5419 
5420 	/* Configure WiMAX coexistence for combo adapters. */
5421 	error = iwn5000_send_wimax_coex(sc);
5422 	if (error != 0) {
5423 		device_printf(sc->sc_dev,
5424 		    "%s: could not configure WiMAX coexistence, error %d\n",
5425 		    __func__, error);
5426 		return error;
5427 	}
5428 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5429 		struct iwn5000_phy_calib_crystal cmd;
5430 
5431 		/* Perform crystal calibration. */
5432 		memset(&cmd, 0, sizeof cmd);
5433 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5434 		cmd.ngroups = 1;
5435 		cmd.isvalid = 1;
5436 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5437 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5438 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5439 		    "sending crystal calibration %d, %d\n",
5440 		    cmd.cap_pin[0], cmd.cap_pin[1]);
5441 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5442 		if (error != 0) {
5443 			device_printf(sc->sc_dev,
5444 			    "%s: crystal calibration failed, error %d\n",
5445 			    __func__, error);
5446 			return error;
5447 		}
5448 	}
5449 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5450 		/* Query calibration from the initialization firmware. */
5451 		error = iwn5000_query_calibration(sc);
5452 		if (error != 0) {
5453 			device_printf(sc->sc_dev,
5454 			    "%s: could not query calibration, error %d\n",
5455 			    __func__, error);
5456 			return error;
5457 		}
5458 		/*
5459 		 * We have the calibration results now, reboot with the
5460 		 * runtime firmware (call ourselves recursively!)
5461 		 */
5462 		iwn_hw_stop(sc);
5463 		error = iwn_hw_init(sc);
5464 	} else {
5465 		/* Send calibration results to runtime firmware. */
5466 		error = iwn5000_send_calibration(sc);
5467 	}
5468 	return error;
5469 }
5470 
5471 /*
5472  * The firmware boot code is small and is intended to be copied directly into
5473  * the NIC internal memory (no DMA transfer.)
5474  */
5475 static int
5476 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5477 {
5478 	int error, ntries;
5479 
5480 	size /= sizeof (uint32_t);
5481 
5482 	error = iwn_nic_lock(sc);
5483 	if (error != 0)
5484 		return error;
5485 
5486 	/* Copy microcode image into NIC memory. */
5487 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5488 	    (const uint32_t *)ucode, size);
5489 
5490 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5491 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5492 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5493 
5494 	/* Start boot load now. */
5495 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5496 
5497 	/* Wait for transfer to complete. */
5498 	for (ntries = 0; ntries < 1000; ntries++) {
5499 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5500 		    IWN_BSM_WR_CTRL_START))
5501 			break;
5502 		DELAY(10);
5503 	}
5504 	if (ntries == 1000) {
5505 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
5506 		    __func__);
5507 		iwn_nic_unlock(sc);
5508 		return ETIMEDOUT;
5509 	}
5510 
5511 	/* Enable boot after power up. */
5512 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5513 
5514 	iwn_nic_unlock(sc);
5515 	return 0;
5516 }
5517 
5518 static int
5519 iwn4965_load_firmware(struct iwn_softc *sc)
5520 {
5521 	struct iwn_fw_info *fw = &sc->fw;
5522 	struct iwn_dma_info *dma = &sc->fw_dma;
5523 	int error;
5524 
5525 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5526 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5527 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5528 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5529 	    fw->init.text, fw->init.textsz);
5530 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5531 
5532 	/* Tell adapter where to find initialization sections. */
5533 	error = iwn_nic_lock(sc);
5534 	if (error != 0)
5535 		return error;
5536 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5537 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5538 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5539 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5540 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5541 	iwn_nic_unlock(sc);
5542 
5543 	/* Load firmware boot code. */
5544 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5545 	if (error != 0) {
5546 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
5547 		    __func__);
5548 		return error;
5549 	}
5550 	/* Now press "execute". */
5551 	IWN_WRITE(sc, IWN_RESET, 0);
5552 
5553 	/* Wait at most one second for first alive notification. */
5554 	error = zsleep(sc, &wlan_global_serializer, 0, "iwninit", hz);
5555 	if (error) {
5556 		device_printf(sc->sc_dev,
5557 		    "%s: timeout waiting for adapter to initialize, error %d\n",
5558 		    __func__, error);
5559 		return error;
5560 	}
5561 
5562 	/* Retrieve current temperature for initial TX power calibration. */
5563 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5564 	sc->temp = iwn4965_get_temperature(sc);
5565 
5566 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5567 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5568 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5569 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5570 	    fw->main.text, fw->main.textsz);
5571 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5572 
5573 	/* Tell adapter where to find runtime sections. */
5574 	error = iwn_nic_lock(sc);
5575 	if (error != 0)
5576 		return error;
5577 
5578 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5579 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5580 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5581 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5582 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5583 	    IWN_FW_UPDATED | fw->main.textsz);
5584 	iwn_nic_unlock(sc);
5585 
5586 	return 0;
5587 }
5588 
5589 static int
5590 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5591     const uint8_t *section, int size)
5592 {
5593 	struct iwn_dma_info *dma = &sc->fw_dma;
5594 	int error;
5595 
5596 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5597 	memcpy(dma->vaddr, section, size);
5598 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5599 
5600 	error = iwn_nic_lock(sc);
5601 	if (error != 0)
5602 		return error;
5603 
5604 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5605 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5606 
5607 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5608 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5609 	    IWN_LOADDR(dma->paddr));
5610 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5611 	    IWN_HIADDR(dma->paddr) << 28 | size);
5612 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5613 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5614 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5615 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5616 
5617 	/* Kick Flow Handler to start DMA transfer. */
5618 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5619 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5620 
5621 	iwn_nic_unlock(sc);
5622 
5623 	/*
5624 	 * Wait at most five seconds for FH DMA transfer to complete.
5625 	 */
5626 	error = zsleep(sc, &wlan_global_serializer, 0, "iwninit", hz);
5627 	return (error);
5628 }
5629 
5630 static int
5631 iwn5000_load_firmware(struct iwn_softc *sc)
5632 {
5633 	struct iwn_fw_part *fw;
5634 	int error;
5635 
5636 	/* Load the initialization firmware on first boot only. */
5637 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5638 	    &sc->fw.main : &sc->fw.init;
5639 
5640 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5641 	    fw->text, fw->textsz);
5642 	if (error != 0) {
5643 		device_printf(sc->sc_dev,
5644 		    "%s: could not load firmware %s section, error %d\n",
5645 		    __func__, ".text", error);
5646 		return error;
5647 	}
5648 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5649 	    fw->data, fw->datasz);
5650 	if (error != 0) {
5651 		device_printf(sc->sc_dev,
5652 		    "%s: could not load firmware %s section, error %d\n",
5653 		    __func__, ".data", error);
5654 		return error;
5655 	}
5656 
5657 	/* Now press "execute". */
5658 	IWN_WRITE(sc, IWN_RESET, 0);
5659 	return 0;
5660 }
5661 
5662 static int
5663 iwn_read_firmware(struct iwn_softc *sc)
5664 {
5665 	const struct iwn_hal *hal = sc->sc_hal;
5666 	struct iwn_fw_info *fw = &sc->fw;
5667 	const uint32_t *ptr;
5668 	uint32_t rev;
5669 	size_t size;
5670 	int wlan_serialized;
5671 
5672 	/*
5673 	 * Read firmware image from filesystem.  The firmware can block
5674 	 * in a taskq and deadlock against our serializer so unlock
5675 	 * while we do tihs.
5676 	 */
5677 	wlan_serialized = IS_SERIALIZED(&wlan_global_serializer);
5678 	if (wlan_serialized)
5679 		wlan_serialize_exit();
5680 	sc->fw_fp = firmware_get(sc->fwname);
5681 	if (wlan_serialized)
5682 		wlan_serialize_enter();
5683 	if (sc->fw_fp == NULL) {
5684 		device_printf(sc->sc_dev,
5685 		    "%s: could not load firmare image \"%s\"\n", __func__,
5686 		    sc->fwname);
5687 		return EINVAL;
5688 	}
5689 
5690 	size = sc->fw_fp->datasize;
5691 	if (size < 28) {
5692 		device_printf(sc->sc_dev,
5693 		    "%s: truncated firmware header: %zu bytes\n",
5694 		    __func__, size);
5695 		return EINVAL;
5696 	}
5697 
5698 	/* Process firmware header. */
5699 	ptr = (const uint32_t *)sc->fw_fp->data;
5700 	rev = le32toh(*ptr++);
5701 	/* Check firmware API version. */
5702 	if (IWN_FW_API(rev) <= 1) {
5703 		device_printf(sc->sc_dev,
5704 		    "%s: bad firmware, need API version >=2\n", __func__);
5705 		return EINVAL;
5706 	}
5707 	if (IWN_FW_API(rev) >= 3) {
5708 		/* Skip build number (version 2 header). */
5709 		size -= 4;
5710 		ptr++;
5711 	}
5712 	fw->main.textsz = le32toh(*ptr++);
5713 	fw->main.datasz = le32toh(*ptr++);
5714 	fw->init.textsz = le32toh(*ptr++);
5715 	fw->init.datasz = le32toh(*ptr++);
5716 	fw->boot.textsz = le32toh(*ptr++);
5717 	size -= 24;
5718 
5719 	/* Sanity-check firmware header. */
5720 	if (fw->main.textsz > hal->fw_text_maxsz ||
5721 	    fw->main.datasz > hal->fw_data_maxsz ||
5722 	    fw->init.textsz > hal->fw_text_maxsz ||
5723 	    fw->init.datasz > hal->fw_data_maxsz ||
5724 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5725 	    (fw->boot.textsz & 3) != 0) {
5726 		device_printf(sc->sc_dev, "%s: invalid firmware header\n",
5727 		    __func__);
5728 		return EINVAL;
5729 	}
5730 
5731 	/* Check that all firmware sections fit. */
5732 	if (fw->main.textsz + fw->main.datasz + fw->init.textsz +
5733 	    fw->init.datasz + fw->boot.textsz > size) {
5734 		device_printf(sc->sc_dev,
5735 		    "%s: firmware file too short: %zu bytes\n",
5736 		    __func__, size);
5737 		return EINVAL;
5738 	}
5739 
5740 	/* Get pointers to firmware sections. */
5741 	fw->main.text = (const uint8_t *)ptr;
5742 	fw->main.data = fw->main.text + fw->main.textsz;
5743 	fw->init.text = fw->main.data + fw->main.datasz;
5744 	fw->init.data = fw->init.text + fw->init.textsz;
5745 	fw->boot.text = fw->init.data + fw->init.datasz;
5746 
5747 	return 0;
5748 }
5749 
5750 static int
5751 iwn_clock_wait(struct iwn_softc *sc)
5752 {
5753 	int ntries;
5754 
5755 	/* Set "initialization complete" bit. */
5756 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5757 
5758 	/* Wait for clock stabilization. */
5759 	for (ntries = 0; ntries < 2500; ntries++) {
5760 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5761 			return 0;
5762 		DELAY(10);
5763 	}
5764 	device_printf(sc->sc_dev,
5765 	    "%s: timeout waiting for clock stabilization\n", __func__);
5766 	return ETIMEDOUT;
5767 }
5768 
5769 static int
5770 iwn_apm_init(struct iwn_softc *sc)
5771 {
5772 	uint32_t tmp;
5773 	int error;
5774 
5775 	/* Disable L0s exit timer (NMI bug workaround.) */
5776 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5777 	/* Don't wait for ICH L0s (ICH bug workaround.) */
5778 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5779 
5780 	/* Set FH wait threshold to max (HW bug under stress workaround.) */
5781 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5782 
5783 	/* Enable HAP INTA to move adapter from L1a to L0s. */
5784 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5785 
5786 	/* Retrieve PCIe Active State Power Management (ASPM). */
5787 	tmp = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
5788 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5789 	if (tmp & 0x02)	/* L1 Entry enabled. */
5790 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5791 	else
5792 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5793 
5794 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5795 	    sc->hw_type != IWN_HW_REV_TYPE_6000 &&
5796 	    sc->hw_type != IWN_HW_REV_TYPE_6050)
5797 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5798 
5799 	/* Wait for clock stabilization before accessing prph. */
5800 	error = iwn_clock_wait(sc);
5801 	if (error != 0)
5802 		return error;
5803 
5804 	error = iwn_nic_lock(sc);
5805 	if (error != 0)
5806 		return error;
5807 
5808 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5809 		/* Enable DMA and BSM (Bootstrap State Machine.) */
5810 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5811 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5812 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5813 	} else {
5814 		/* Enable DMA. */
5815 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5816 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5817 	}
5818 	DELAY(20);
5819 
5820 	/* Disable L1-Active. */
5821 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5822 	iwn_nic_unlock(sc);
5823 
5824 	return 0;
5825 }
5826 
5827 static void
5828 iwn_apm_stop_master(struct iwn_softc *sc)
5829 {
5830 	int ntries;
5831 
5832 	/* Stop busmaster DMA activity. */
5833 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5834 	for (ntries = 0; ntries < 100; ntries++) {
5835 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5836 			return;
5837 		DELAY(10);
5838 	}
5839 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
5840 	    __func__);
5841 }
5842 
5843 static void
5844 iwn_apm_stop(struct iwn_softc *sc)
5845 {
5846 	iwn_apm_stop_master(sc);
5847 
5848 	/* Reset the entire device. */
5849 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5850 	DELAY(10);
5851 	/* Clear "initialization complete" bit. */
5852 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5853 }
5854 
5855 static int
5856 iwn4965_nic_config(struct iwn_softc *sc)
5857 {
5858 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5859 		/*
5860 		 * I don't believe this to be correct but this is what the
5861 		 * vendor driver is doing. Probably the bits should not be
5862 		 * shifted in IWN_RFCFG_*.
5863 		 */
5864 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5865 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5866 		    IWN_RFCFG_STEP(sc->rfcfg) |
5867 		    IWN_RFCFG_DASH(sc->rfcfg));
5868 	}
5869 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5870 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5871 	return 0;
5872 }
5873 
5874 static int
5875 iwn5000_nic_config(struct iwn_softc *sc)
5876 {
5877 	uint32_t tmp;
5878 	int error;
5879 
5880 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5881 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5882 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5883 		    IWN_RFCFG_STEP(sc->rfcfg) |
5884 		    IWN_RFCFG_DASH(sc->rfcfg));
5885 	}
5886 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5887 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5888 
5889 	error = iwn_nic_lock(sc);
5890 	if (error != 0)
5891 		return error;
5892 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
5893 
5894 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
5895 		/*
5896 		 * Select first Switching Voltage Regulator (1.32V) to
5897 		 * solve a stability issue related to noisy DC2DC line
5898 		 * in the silicon of 1000 Series.
5899 		 */
5900 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
5901 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
5902 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
5903 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
5904 	}
5905 	iwn_nic_unlock(sc);
5906 
5907 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
5908 		/* Use internal power amplifier only. */
5909 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
5910 	}
5911 	 if (sc->hw_type == IWN_HW_REV_TYPE_6050 && sc->calib_ver >= 6) {
5912 		 /* Indicate that ROM calibration version is >=6. */
5913 		 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
5914 	}
5915 	return 0;
5916 }
5917 
5918 /*
5919  * Take NIC ownership over Intel Active Management Technology (AMT).
5920  */
5921 static int
5922 iwn_hw_prepare(struct iwn_softc *sc)
5923 {
5924 	int ntries;
5925 
5926 	/* Check if hardware is ready. */
5927 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5928 	for (ntries = 0; ntries < 5; ntries++) {
5929 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5930 		    IWN_HW_IF_CONFIG_NIC_READY)
5931 			return 0;
5932 		DELAY(10);
5933 	}
5934 
5935 	/* Hardware not ready, force into ready state. */
5936 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
5937 	for (ntries = 0; ntries < 15000; ntries++) {
5938 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
5939 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
5940 			break;
5941 		DELAY(10);
5942 	}
5943 	if (ntries == 15000)
5944 		return ETIMEDOUT;
5945 
5946 	/* Hardware should be ready now. */
5947 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5948 	for (ntries = 0; ntries < 5; ntries++) {
5949 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5950 		    IWN_HW_IF_CONFIG_NIC_READY)
5951 			return 0;
5952 		DELAY(10);
5953 	}
5954 	return ETIMEDOUT;
5955 }
5956 
5957 static int
5958 iwn_hw_init(struct iwn_softc *sc)
5959 {
5960 	const struct iwn_hal *hal = sc->sc_hal;
5961 	int error, chnl, qid;
5962 
5963 	/* Clear pending interrupts. */
5964 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5965 
5966 	error = iwn_apm_init(sc);
5967 	if (error != 0) {
5968 		device_printf(sc->sc_dev,
5969 		    "%s: could not power ON adapter, error %d\n",
5970 		    __func__, error);
5971 		goto done;
5972 	}
5973 
5974 	/* Select VMAIN power source. */
5975 	error = iwn_nic_lock(sc);
5976 	if (error != 0)
5977 		goto done;
5978 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
5979 	iwn_nic_unlock(sc);
5980 
5981 	/* Perform adapter-specific initialization. */
5982 	error = hal->nic_config(sc);
5983 	if (error != 0)
5984 		goto done;
5985 
5986 	/* Initialize RX ring. */
5987 	error = iwn_nic_lock(sc);
5988 	if (error != 0)
5989 		goto done;
5990 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
5991 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
5992 	/* Set physical address of RX ring (256-byte aligned.) */
5993 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
5994 	/* Set physical address of RX status (16-byte aligned.) */
5995 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
5996 	/* Enable RX. */
5997 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
5998 	    IWN_FH_RX_CONFIG_ENA           |
5999 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
6000 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
6001 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
6002 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
6003 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
6004 	iwn_nic_unlock(sc);
6005 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6006 
6007 	error = iwn_nic_lock(sc);
6008 	if (error != 0)
6009 		goto done;
6010 
6011 	/* Initialize TX scheduler. */
6012 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
6013 
6014 	/* Set physical address of "keep warm" page (16-byte aligned.) */
6015 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6016 
6017 	/* Initialize TX rings. */
6018 	for (qid = 0; qid < hal->ntxqs; qid++) {
6019 		struct iwn_tx_ring *txq = &sc->txq[qid];
6020 
6021 		/* Set physical address of TX ring (256-byte aligned.) */
6022 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6023 		    txq->desc_dma.paddr >> 8);
6024 	}
6025 	iwn_nic_unlock(sc);
6026 
6027 	/* Enable DMA channels. */
6028 	for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
6029 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6030 		    IWN_FH_TX_CONFIG_DMA_ENA |
6031 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6032 	}
6033 
6034 	/* Clear "radio off" and "commands blocked" bits. */
6035 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6036 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6037 
6038 	/* Clear pending interrupts. */
6039 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6040 	/* Enable interrupt coalescing. */
6041 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6042 	/* Enable interrupts. */
6043 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6044 
6045 	/* _Really_ make sure "radio off" bit is cleared! */
6046 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6047 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6048 
6049 	error = hal->load_firmware(sc);
6050 	if (error != 0) {
6051 		device_printf(sc->sc_dev,
6052 		    "%s: could not load firmware, error %d\n",
6053 		    __func__, error);
6054 		goto done;
6055 	}
6056 	/* Wait at most one second for firmware alive notification. */
6057 	error = zsleep(sc, &wlan_global_serializer, 0, "iwninit", hz);
6058 	if (error != 0) {
6059 		device_printf(sc->sc_dev,
6060 		    "%s: timeout waiting for adapter to initialize, error %d\n",
6061 		    __func__, error);
6062 		goto done;
6063 	}
6064 	/* Do post-firmware initialization. */
6065 	error = hal->post_alive(sc);
6066 done:
6067 	return error;
6068 }
6069 
6070 static void
6071 iwn_hw_stop(struct iwn_softc *sc)
6072 {
6073 	const struct iwn_hal *hal = sc->sc_hal;
6074 	uint32_t tmp;
6075 	int chnl, qid, ntries;
6076 
6077 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6078 
6079 	/* Disable interrupts. */
6080 	IWN_WRITE(sc, IWN_INT_MASK, 0);
6081 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6082 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6083 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6084 
6085 	/* Make sure we no longer hold the NIC lock. */
6086 	iwn_nic_unlock(sc);
6087 
6088 	/* Stop TX scheduler. */
6089 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
6090 
6091 	/* Stop all DMA channels. */
6092 	if (iwn_nic_lock(sc) == 0) {
6093 		for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
6094 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6095 			for (ntries = 0; ntries < 200; ntries++) {
6096 				tmp = IWN_READ(sc, IWN_FH_TX_STATUS);
6097 				if ((tmp & IWN_FH_TX_STATUS_IDLE(chnl)) ==
6098 				    IWN_FH_TX_STATUS_IDLE(chnl))
6099 					break;
6100 				DELAY(10);
6101 			}
6102 		}
6103 		iwn_nic_unlock(sc);
6104 	}
6105 
6106 	/* Stop RX ring. */
6107 	iwn_reset_rx_ring(sc, &sc->rxq);
6108 
6109 	/* Reset all TX rings. */
6110 	for (qid = 0; qid < hal->ntxqs; qid++)
6111 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
6112 
6113 	if (iwn_nic_lock(sc) == 0) {
6114 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6115 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6116 		iwn_nic_unlock(sc);
6117 	}
6118 	DELAY(5);
6119 
6120 	/* Power OFF adapter. */
6121 	iwn_apm_stop(sc);
6122 }
6123 
6124 static void
6125 iwn_init_locked(struct iwn_softc *sc)
6126 {
6127 	struct ifnet *ifp = sc->sc_ifp;
6128 	int error;
6129 	int wlan_serializer_needed;
6130 
6131 	/*
6132 	 * The kernel generic firmware loader can wind up calling this
6133 	 * without the wlan serializer, while the wlan subsystem will
6134 	 * call it with the serializer.
6135 	 *
6136 	 * Make sure we hold the serializer or we will have timing issues
6137 	 * with the wlan subsystem.
6138 	 */
6139 	wlan_serializer_needed = !IS_SERIALIZED(&wlan_global_serializer);
6140 	if (wlan_serializer_needed)
6141 		wlan_serialize_enter();
6142 
6143 	error = iwn_hw_prepare(sc);
6144 	if (error != 0) {
6145 		device_printf(sc->sc_dev, "%s: hardware not ready, eror %d\n",
6146 		    __func__, error);
6147 		goto fail;
6148 	}
6149 
6150 	/* Initialize interrupt mask to default value. */
6151 	sc->int_mask = IWN_INT_MASK_DEF;
6152 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6153 
6154 	/* Check that the radio is not disabled by hardware switch. */
6155 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6156 		device_printf(sc->sc_dev,
6157 		    "radio is disabled by hardware switch\n");
6158 
6159 		/* Enable interrupts to get RF toggle notifications. */
6160 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
6161 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6162 		if (wlan_serializer_needed)
6163 			wlan_serialize_exit();
6164 		return;
6165 	}
6166 
6167 	/* Read firmware images from the filesystem. */
6168 	error = iwn_read_firmware(sc);
6169 	if (error != 0) {
6170 		device_printf(sc->sc_dev,
6171 		    "%s: could not read firmware, error %d\n",
6172 		    __func__, error);
6173 		goto fail;
6174 	}
6175 
6176 	/* Initialize hardware and upload firmware. */
6177 	error = iwn_hw_init(sc);
6178 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6179 	sc->fw_fp = NULL;
6180 	if (error != 0) {
6181 		device_printf(sc->sc_dev,
6182 		    "%s: could not initialize hardware, error %d\n",
6183 		    __func__, error);
6184 		goto fail;
6185 	}
6186 
6187 	/* Configure adapter now that it is ready. */
6188 	error = iwn_config(sc);
6189 	if (error != 0) {
6190 		device_printf(sc->sc_dev,
6191 		    "%s: could not configure device, error %d\n",
6192 		    __func__, error);
6193 		goto fail;
6194 	}
6195 
6196 	ifp->if_flags &= ~IFF_OACTIVE;
6197 	ifp->if_flags |= IFF_RUNNING;
6198 	if (wlan_serializer_needed)
6199 		wlan_serialize_exit();
6200 	return;
6201 
6202 fail:
6203 	iwn_stop_locked(sc);
6204 	if (wlan_serializer_needed)
6205 		wlan_serialize_exit();
6206 }
6207 
6208 static void
6209 iwn_init(void *arg)
6210 {
6211 	struct iwn_softc *sc = arg;
6212 	struct ifnet *ifp = sc->sc_ifp;
6213 	struct ieee80211com *ic = ifp->if_l2com;
6214 
6215 	wlan_serialize_enter();
6216 	iwn_init_locked(sc);
6217 	wlan_serialize_exit();
6218 
6219 	if (ifp->if_flags & IFF_RUNNING)
6220 		ieee80211_start_all(ic);
6221 }
6222 
6223 static void
6224 iwn_stop_locked(struct iwn_softc *sc)
6225 {
6226 	struct ifnet *ifp = sc->sc_ifp;
6227 
6228 	sc->sc_tx_timer = 0;
6229 	callout_stop(&sc->sc_timer_to);
6230 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6231 
6232 	/* Power OFF hardware. */
6233 	iwn_hw_stop(sc);
6234 }
6235 
6236 static void
6237 iwn_stop(struct iwn_softc *sc)
6238 {
6239 	wlan_serialize_enter();
6240 	iwn_stop_locked(sc);
6241 	wlan_serialize_exit();
6242 }
6243 
6244 /*
6245  * Callback from net80211 to start a scan.
6246  */
6247 static void
6248 iwn_scan_start(struct ieee80211com *ic)
6249 {
6250 	struct ifnet *ifp = ic->ic_ifp;
6251 	struct iwn_softc *sc = ifp->if_softc;
6252 
6253 	/* make the link LED blink while we're scanning */
6254 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
6255 }
6256 
6257 /*
6258  * Callback from net80211 to terminate a scan.
6259  */
6260 static void
6261 iwn_scan_end(struct ieee80211com *ic)
6262 {
6263 	struct ifnet *ifp = ic->ic_ifp;
6264 	struct iwn_softc *sc = ifp->if_softc;
6265 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6266 
6267 	if (vap->iv_state == IEEE80211_S_RUN) {
6268 		/* Set link LED to ON status if we are associated */
6269 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
6270 	}
6271 }
6272 
6273 /*
6274  * Callback from net80211 to force a channel change.
6275  */
6276 static void
6277 iwn_set_channel(struct ieee80211com *ic)
6278 {
6279 	const struct ieee80211_channel *c = ic->ic_curchan;
6280 	struct ifnet *ifp = ic->ic_ifp;
6281 	struct iwn_softc *sc = ifp->if_softc;
6282 
6283 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
6284 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
6285 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
6286 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
6287 }
6288 
6289 /*
6290  * Callback from net80211 to start scanning of the current channel.
6291  */
6292 static void
6293 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
6294 {
6295 	struct ieee80211vap *vap = ss->ss_vap;
6296 	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6297 	int error;
6298 
6299 	error = iwn_scan(sc);
6300 	if (error != 0)
6301 		ieee80211_cancel_scan(vap);
6302 }
6303 
6304 /*
6305  * Callback from net80211 to handle the minimum dwell time being met.
6306  * The intent is to terminate the scan but we just let the firmware
6307  * notify us when it's finished as we have no safe way to abort it.
6308  */
6309 static void
6310 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
6311 {
6312 	/* NB: don't try to abort scan; wait for firmware to finish */
6313 }
6314 
6315 static struct iwn_eeprom_chan *
6316 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
6317 {
6318 	int i, j;
6319 
6320 	for (j = 0; j < 7; j++) {
6321 		for (i = 0; i < iwn_bands[j].nchan; i++) {
6322 			if (iwn_bands[j].chan[i] == c->ic_ieee)
6323 				return &sc->eeprom_channels[j][i];
6324 		}
6325 	}
6326 
6327 	return NULL;
6328 }
6329 
6330 /*
6331  * Enforce flags read from EEPROM.
6332  */
6333 static int
6334 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
6335     int nchan, struct ieee80211_channel chans[])
6336 {
6337 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
6338 	int i;
6339 
6340 	for (i = 0; i < nchan; i++) {
6341 		struct ieee80211_channel *c = &chans[i];
6342 		struct iwn_eeprom_chan *channel;
6343 
6344 		channel = iwn_find_eeprom_channel(sc, c);
6345 		if (channel == NULL) {
6346 			if_printf(ic->ic_ifp,
6347 			    "%s: invalid channel %u freq %u/0x%x\n",
6348 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
6349 			return EINVAL;
6350 		}
6351 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
6352 	}
6353 
6354 	return 0;
6355 }
6356 
6357 static void
6358 iwn_hw_reset_task(void *arg0, int pending)
6359 {
6360 	struct iwn_softc *sc = arg0;
6361 	struct ifnet *ifp;
6362 	struct ieee80211com *ic;
6363 
6364 	wlan_serialize_enter();
6365 	ifp = sc->sc_ifp;
6366 	ic = ifp->if_l2com;
6367 	iwn_stop_locked(sc);
6368 	iwn_init_locked(sc);
6369 	ieee80211_notify_radio(ic, 1);
6370 	wlan_serialize_exit();
6371 }
6372 
6373 static void
6374 iwn_radio_on_task(void *arg0, int pending)
6375 {
6376 	struct iwn_softc *sc = arg0;
6377 	struct ifnet *ifp;
6378 	struct ieee80211com *ic;
6379 	struct ieee80211vap *vap;
6380 
6381 	wlan_serialize_enter();
6382 	ifp = sc->sc_ifp;
6383 	ic = ifp->if_l2com;
6384 	vap = TAILQ_FIRST(&ic->ic_vaps);
6385 	if (vap != NULL) {
6386 		iwn_init_locked(sc);
6387 		ieee80211_init(vap);
6388 	}
6389 	wlan_serialize_exit();
6390 }
6391 
6392 static void
6393 iwn_radio_off_task(void *arg0, int pending)
6394 {
6395 	struct iwn_softc *sc = arg0;
6396 	struct ifnet *ifp;
6397 	struct ieee80211com *ic;
6398 	struct ieee80211vap *vap;
6399 
6400 	wlan_serialize_enter();
6401 	ifp = sc->sc_ifp;
6402 	ic = ifp->if_l2com;
6403 	vap = TAILQ_FIRST(&ic->ic_vaps);
6404 	iwn_stop_locked(sc);
6405 	if (vap != NULL)
6406 		ieee80211_stop(vap);
6407 
6408 	/* Enable interrupts to get RF toggle notification. */
6409 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6410 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6411 	wlan_serialize_exit();
6412 }
6413 
6414 static void
6415 iwn_sysctlattach(struct iwn_softc *sc)
6416 {
6417 	struct sysctl_ctx_list *ctx;
6418 	struct sysctl_oid *tree;
6419 
6420 	ctx = &sc->sc_sysctl_ctx;
6421 	tree = sc->sc_sysctl_tree;
6422 	if (tree == NULL) {
6423 		device_printf(sc->sc_dev, "can't add sysctl node\n");
6424 		return;
6425 	}
6426 
6427 #ifdef IWN_DEBUG
6428 	sc->sc_debug = 0;
6429 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6430 	    "debug", CTLFLAG_RW, &sc->sc_debug, 0, "control debugging printfs");
6431 #endif
6432 }
6433 
6434 static int
6435 iwn_pci_shutdown(device_t dev)
6436 {
6437 	struct iwn_softc *sc = device_get_softc(dev);
6438 
6439 	wlan_serialize_enter();
6440 	iwn_stop_locked(sc);
6441 	wlan_serialize_exit();
6442 
6443 	return 0;
6444 }
6445 
6446 static int
6447 iwn_pci_suspend(device_t dev)
6448 {
6449 	struct iwn_softc *sc = device_get_softc(dev);
6450 	struct ifnet *ifp = sc->sc_ifp;
6451 	struct ieee80211com *ic = ifp->if_l2com;
6452 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6453 
6454 	wlan_serialize_enter();
6455 	iwn_stop_locked(sc);
6456 	if (vap != NULL)
6457 		ieee80211_stop(vap);
6458 	wlan_serialize_exit();
6459 
6460 	return 0;
6461 }
6462 
6463 static int
6464 iwn_pci_resume(device_t dev)
6465 {
6466 	struct iwn_softc *sc = device_get_softc(dev);
6467 	struct ifnet *ifp;
6468 	struct ieee80211com *ic;
6469 	struct ieee80211vap *vap;
6470 
6471 	wlan_serialize_enter();
6472 	ifp = sc->sc_ifp;
6473 	ic = ifp->if_l2com;
6474 	vap = TAILQ_FIRST(&ic->ic_vaps);
6475 	/* Clear device-specific "PCI retry timeout" register (41h). */
6476 	pci_write_config(dev, 0x41, 0, 1);
6477 
6478 	if (ifp->if_flags & IFF_UP) {
6479 		iwn_init_locked(sc);
6480 		if (vap != NULL)
6481 			ieee80211_init(vap);
6482 		if (ifp->if_flags & IFF_RUNNING)
6483 			iwn_start_locked(ifp);
6484 	}
6485 	wlan_serialize_exit();
6486 
6487 	return 0;
6488 }
6489 
6490 #ifdef IWN_DEBUG
6491 static const char *
6492 iwn_intr_str(uint8_t cmd)
6493 {
6494 	switch (cmd) {
6495 	/* Notifications */
6496 	case IWN_UC_READY:		return "UC_READY";
6497 	case IWN_ADD_NODE_DONE:		return "ADD_NODE_DONE";
6498 	case IWN_TX_DONE:		return "TX_DONE";
6499 	case IWN_START_SCAN:		return "START_SCAN";
6500 	case IWN_STOP_SCAN:		return "STOP_SCAN";
6501 	case IWN_RX_STATISTICS:		return "RX_STATS";
6502 	case IWN_BEACON_STATISTICS:	return "BEACON_STATS";
6503 	case IWN_STATE_CHANGED:		return "STATE_CHANGED";
6504 	case IWN_BEACON_MISSED:		return "BEACON_MISSED";
6505 	case IWN_RX_PHY:		return "RX_PHY";
6506 	case IWN_MPDU_RX_DONE:		return "MPDU_RX_DONE";
6507 	case IWN_RX_DONE:		return "RX_DONE";
6508 
6509 	/* Command Notifications */
6510 	case IWN_CMD_RXON:		return "IWN_CMD_RXON";
6511 	case IWN_CMD_RXON_ASSOC:	return "IWN_CMD_RXON_ASSOC";
6512 	case IWN_CMD_EDCA_PARAMS:	return "IWN_CMD_EDCA_PARAMS";
6513 	case IWN_CMD_TIMING:		return "IWN_CMD_TIMING";
6514 	case IWN_CMD_LINK_QUALITY:	return "IWN_CMD_LINK_QUALITY";
6515 	case IWN_CMD_SET_LED:		return "IWN_CMD_SET_LED";
6516 	case IWN5000_CMD_WIMAX_COEX:	return "IWN5000_CMD_WIMAX_COEX";
6517 	case IWN5000_CMD_CALIB_CONFIG:	return "IWN5000_CMD_CALIB_CONFIG";
6518 	case IWN5000_CMD_CALIB_RESULT:	return "IWN5000_CMD_CALIB_RESULT";
6519 	case IWN5000_CMD_CALIB_COMPLETE: return "IWN5000_CMD_CALIB_COMPLETE";
6520 	case IWN_CMD_SET_POWER_MODE:	return "IWN_CMD_SET_POWER_MODE";
6521 	case IWN_CMD_SCAN:		return "IWN_CMD_SCAN";
6522 	case IWN_CMD_SCAN_RESULTS:	return "IWN_CMD_SCAN_RESULTS";
6523 	case IWN_CMD_TXPOWER:		return "IWN_CMD_TXPOWER";
6524 	case IWN_CMD_TXPOWER_DBM:	return "IWN_CMD_TXPOWER_DBM";
6525 	case IWN5000_CMD_TX_ANT_CONFIG:	return "IWN5000_CMD_TX_ANT_CONFIG";
6526 	case IWN_CMD_BT_COEX:		return "IWN_CMD_BT_COEX";
6527 	case IWN_CMD_SET_CRITICAL_TEMP:	return "IWN_CMD_SET_CRITICAL_TEMP";
6528 	case IWN_CMD_SET_SENSITIVITY:	return "IWN_CMD_SET_SENSITIVITY";
6529 	case IWN_CMD_PHY_CALIB:		return "IWN_CMD_PHY_CALIB";
6530 	}
6531 	return "UNKNOWN INTR NOTIF/CMD";
6532 }
6533 #endif /* IWN_DEBUG */
6534 
6535 static device_method_t iwn_methods[] = {
6536 	/* Device interface */
6537 	DEVMETHOD(device_probe,		iwn_pci_probe),
6538 	DEVMETHOD(device_attach,	iwn_pci_attach),
6539 	DEVMETHOD(device_detach,	iwn_pci_detach),
6540 	DEVMETHOD(device_shutdown,	iwn_pci_shutdown),
6541 	DEVMETHOD(device_suspend,	iwn_pci_suspend),
6542 	DEVMETHOD(device_resume,	iwn_pci_resume),
6543 	{ 0, 0 }
6544 };
6545 
6546 static driver_t iwn_driver = {
6547 	"iwn",
6548 	iwn_methods,
6549 	sizeof (struct iwn_softc)
6550 };
6551 static devclass_t iwn_devclass;
6552 
6553 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL);
6554 MODULE_DEPEND(iwn, pci, 1, 1, 1);
6555 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
6556 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
6557 MODULE_DEPEND(iwn, wlan_amrr, 1, 1, 1);
6558