xref: /dragonfly/sys/dev/netif/iwn/if_iwn.c (revision b0d289c2)
1 /*-
2  * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr>
3  * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org>
4  * Copyright (c) 2008 Sam Leffler, Errno Consulting
5  * Copyright (c) 2011 Intel Corporation
6  * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr>
7  * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*
23  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
24  * adapters.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_wlan.h"
31 #include "opt_iwn.h"
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/bus.h>
42 #include <sys/rman.h>
43 #include <sys/endian.h>
44 #include <sys/firmware.h>
45 #include <sys/limits.h>
46 #include <sys/module.h>
47 #include <sys/queue.h>
48 #include <sys/taskqueue.h>
49 #include <sys/stdbool.h>
50 
51 #include <machine/clock.h>
52 
53 #include <bus/pci/pcireg.h>
54 #include <bus/pci/pcivar.h>
55 
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_arp.h>
60 #include <net/ethernet.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 #include <net/if_types.h>
64 #include <net/ifq_var.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/in_var.h>
69 #include <netinet/if_ether.h>
70 #include <netinet/ip.h>
71 
72 #include <netproto/802_11/ieee80211_var.h>
73 #include <netproto/802_11/ieee80211_radiotap.h>
74 #include <netproto/802_11/ieee80211_regdomain.h>
75 #include <netproto/802_11/ieee80211_ratectl.h>
76 
77 #include <dev/netif/iwn/if_iwnreg.h>
78 #include <dev/netif/iwn/if_iwnvar.h>
79 #include <dev/netif/iwn/if_iwn_devid.h>
80 #include <dev/netif/iwn/if_iwn_chip_cfg.h>
81 #include <dev/netif/iwn/if_iwn_debug.h>
82 #include <dev/netif/iwn/if_iwn_ioctl.h>
83 
84 struct iwn_ident {
85 	uint16_t	vendor;
86 	uint16_t	device;
87 	const char	*name;
88 };
89 
90 static const struct iwn_ident iwn_ident_table[] = {
91 	{ 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205"		},
92 	{ 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000"		},
93 	{ 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000"		},
94 	{ 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205"		},
95 	{ 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250"	},
96 	{ 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250"	},
97 	{ 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030"		},
98 	{ 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030"		},
99 	{ 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230"		},
100 	{ 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230"		},
101 	{ 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150"	},
102 	{ 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150"	},
103 	{ 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
104 	{ 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
105 	/* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */
106 	{ 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230"		},
107 	{ 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230"		},
108 	{ 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130"		},
109 	{ 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130"		},
110 	{ 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100"		},
111 	{ 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100"		},
112 	{ 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105"		},
113 	{ 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105"		},
114 	{ 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135"		},
115 	{ 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135"		},
116 	{ 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965"		},
117 	{ 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300"		},
118 	{ 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200"		},
119 	{ 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965"		},
120 	{ 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965"		},
121 	{ 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100"			},
122 	{ 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965"		},
123 	{ 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300"		},
124 	{ 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300"		},
125 	{ 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100"			},
126 	{ 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300"		},
127 	{ 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200"		},
128 	{ 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350"			},
129 	{ 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350"			},
130 	{ 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150"			},
131 	{ 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150"			},
132 	{ 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235"		},
133 	{ 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235"		},
134 	{ 0, 0, NULL }
135 };
136 
137 static int	iwn_probe(device_t);
138 static int	iwn_attach(device_t);
139 static int	iwn4965_attach(struct iwn_softc *, uint16_t);
140 static int	iwn5000_attach(struct iwn_softc *, uint16_t);
141 static int	iwn_config_specific(struct iwn_softc *, uint16_t);
142 static void	iwn_radiotap_attach(struct iwn_softc *);
143 static void	iwn_sysctlattach(struct iwn_softc *);
144 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
145 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
146 		    const uint8_t [IEEE80211_ADDR_LEN],
147 		    const uint8_t [IEEE80211_ADDR_LEN]);
148 static void	iwn_vap_delete(struct ieee80211vap *);
149 static int	iwn_detach(device_t);
150 static int	iwn_shutdown(device_t);
151 static int	iwn_suspend(device_t);
152 static int	iwn_resume(device_t);
153 static int	iwn_nic_lock(struct iwn_softc *);
154 static int	iwn_eeprom_lock(struct iwn_softc *);
155 static int	iwn_init_otprom(struct iwn_softc *);
156 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
157 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
158 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
159 		    void **, bus_size_t, bus_size_t);
160 static void	iwn_dma_contig_free(struct iwn_dma_info *);
161 static int	iwn_alloc_sched(struct iwn_softc *);
162 static void	iwn_free_sched(struct iwn_softc *);
163 static int	iwn_alloc_kw(struct iwn_softc *);
164 static void	iwn_free_kw(struct iwn_softc *);
165 static int	iwn_alloc_ict(struct iwn_softc *);
166 static void	iwn_free_ict(struct iwn_softc *);
167 static int	iwn_alloc_fwmem(struct iwn_softc *);
168 static void	iwn_free_fwmem(struct iwn_softc *);
169 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
170 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
171 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
172 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
173 		    int);
174 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
175 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
176 static void	iwn5000_ict_reset(struct iwn_softc *);
177 static int	iwn_read_eeprom(struct iwn_softc *,
178 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
179 static void	iwn4965_read_eeprom(struct iwn_softc *);
180 #ifdef	IWN_DEBUG
181 static void	iwn4965_print_power_group(struct iwn_softc *, int);
182 #endif
183 static void	iwn5000_read_eeprom(struct iwn_softc *);
184 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
185 static void	iwn_read_eeprom_band(struct iwn_softc *, int);
186 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int);
187 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
188 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
189 		    struct ieee80211_channel *);
190 static int	iwn_setregdomain(struct ieee80211com *,
191 		    struct ieee80211_regdomain *, int,
192 		    struct ieee80211_channel[]);
193 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
194 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
195 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
196 static void	iwn_newassoc(struct ieee80211_node *, int);
197 static int	iwn_media_change(struct ifnet *);
198 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
199 static void	iwn_calib_timeout(void *);
200 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
201 		    struct iwn_rx_data *);
202 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
203 		    struct iwn_rx_data *);
204 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
205 		    struct iwn_rx_data *);
206 static void	iwn5000_rx_calib_results(struct iwn_softc *,
207 		    struct iwn_rx_desc *, struct iwn_rx_data *);
208 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
209 		    struct iwn_rx_data *);
210 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
211 		    struct iwn_rx_data *);
212 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
213 		    struct iwn_rx_data *);
214 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
215 		    uint8_t);
216 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, int, void *);
217 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
218 static void	iwn_notif_intr(struct iwn_softc *);
219 static void	iwn_wakeup_intr(struct iwn_softc *);
220 static void	iwn_rftoggle_intr(struct iwn_softc *);
221 static void	iwn_fatal_intr(struct iwn_softc *);
222 static void	iwn_intr(void *);
223 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
224 		    uint16_t);
225 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
226 		    uint16_t);
227 #ifdef notyet
228 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
229 #endif
230 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
231 		    struct ieee80211_node *);
232 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
233 		    struct ieee80211_node *,
234 		    const struct ieee80211_bpf_params *params);
235 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
236 		    const struct ieee80211_bpf_params *);
237 #if defined(__DragonFly__)
238 static void	iwn_start(struct ifnet *,  struct ifaltq_subque *);
239 #else
240 static void	iwn_start(struct ifnet *);
241 #endif
242 static void	iwn_start_locked(struct ifnet *);
243 static void	iwn_watchdog(void *);
244 #if defined(__DragonFly__)
245 static int	iwn_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
246 #else
247 static int	iwn_ioctl(struct ifnet *, u_long, caddr_t);
248 #endif
249 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
250 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
251 		    int);
252 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
253 		    int);
254 static int	iwn_set_link_quality(struct iwn_softc *,
255 		    struct ieee80211_node *);
256 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
257 static int	iwn_updateedca(struct ieee80211com *);
258 static void	iwn_update_mcast(struct ifnet *);
259 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
260 static int	iwn_set_critical_temp(struct iwn_softc *);
261 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
262 static void	iwn4965_power_calibration(struct iwn_softc *, int);
263 static int	iwn4965_set_txpower(struct iwn_softc *,
264 		    struct ieee80211_channel *, int);
265 static int	iwn5000_set_txpower(struct iwn_softc *,
266 		    struct ieee80211_channel *, int);
267 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
268 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
269 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
270 static int	iwn4965_get_temperature(struct iwn_softc *);
271 static int	iwn5000_get_temperature(struct iwn_softc *);
272 static int	iwn_init_sensitivity(struct iwn_softc *);
273 static void	iwn_collect_noise(struct iwn_softc *,
274 		    const struct iwn_rx_general_stats *);
275 static int	iwn4965_init_gains(struct iwn_softc *);
276 static int	iwn5000_init_gains(struct iwn_softc *);
277 static int	iwn4965_set_gains(struct iwn_softc *);
278 static int	iwn5000_set_gains(struct iwn_softc *);
279 static void	iwn_tune_sensitivity(struct iwn_softc *,
280 		    const struct iwn_rx_stats *);
281 static void	iwn_save_stats_counters(struct iwn_softc *,
282 		    const struct iwn_stats *);
283 static int	iwn_send_sensitivity(struct iwn_softc *);
284 static void	iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *);
285 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
286 static int	iwn_send_btcoex(struct iwn_softc *);
287 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
288 static int	iwn5000_runtime_calib(struct iwn_softc *);
289 static int	iwn_config(struct iwn_softc *);
290 static int	iwn_scan(struct iwn_softc *, struct ieee80211vap *,
291 		    struct ieee80211_scan_state *, struct ieee80211_channel *);
292 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
293 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
294 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
295 		    struct ieee80211_rx_ampdu *, int, int, int);
296 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
297 		    struct ieee80211_rx_ampdu *);
298 static int	iwn_addba_request(struct ieee80211_node *,
299 		    struct ieee80211_tx_ampdu *, int, int, int);
300 static int	iwn_addba_response(struct ieee80211_node *,
301 		    struct ieee80211_tx_ampdu *, int, int, int);
302 static int	iwn_ampdu_tx_start(struct ieee80211com *,
303 		    struct ieee80211_node *, uint8_t);
304 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
305 		    struct ieee80211_tx_ampdu *);
306 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
307 		    struct ieee80211_node *, int, uint8_t, uint16_t);
308 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
309 		    uint8_t, uint16_t);
310 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
311 		    struct ieee80211_node *, int, uint8_t, uint16_t);
312 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
313 		    uint8_t, uint16_t);
314 static int	iwn5000_query_calibration(struct iwn_softc *);
315 static int	iwn5000_send_calibration(struct iwn_softc *);
316 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
317 static int	iwn5000_crystal_calib(struct iwn_softc *);
318 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
319 static int	iwn5000_temp_offset_calibv2(struct iwn_softc *);
320 static int	iwn4965_post_alive(struct iwn_softc *);
321 static int	iwn5000_post_alive(struct iwn_softc *);
322 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
323 		    int);
324 static int	iwn4965_load_firmware(struct iwn_softc *);
325 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
326 		    const uint8_t *, int);
327 static int	iwn5000_load_firmware(struct iwn_softc *);
328 static int	iwn_read_firmware_leg(struct iwn_softc *,
329 		    struct iwn_fw_info *);
330 static int	iwn_read_firmware_tlv(struct iwn_softc *,
331 		    struct iwn_fw_info *, uint16_t);
332 static int	iwn_read_firmware(struct iwn_softc *);
333 static int	iwn_clock_wait(struct iwn_softc *);
334 static int	iwn_apm_init(struct iwn_softc *);
335 static void	iwn_apm_stop_master(struct iwn_softc *);
336 static void	iwn_apm_stop(struct iwn_softc *);
337 static int	iwn4965_nic_config(struct iwn_softc *);
338 static int	iwn5000_nic_config(struct iwn_softc *);
339 static int	iwn_hw_prepare(struct iwn_softc *);
340 static int	iwn_hw_init(struct iwn_softc *);
341 static void	iwn_hw_stop(struct iwn_softc *);
342 static void	iwn_radio_on(void *, int);
343 static void	iwn_radio_off(void *, int);
344 static void	iwn_panicked(void *, int);
345 static void	iwn_init_locked(struct iwn_softc *);
346 static void	iwn_init(void *);
347 static void	iwn_stop_locked(struct iwn_softc *);
348 static void	iwn_stop(struct iwn_softc *);
349 static void	iwn_scan_start(struct ieee80211com *);
350 static void	iwn_scan_end(struct ieee80211com *);
351 static void	iwn_set_channel(struct ieee80211com *);
352 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
353 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
354 static void	iwn_hw_reset(void *, int);
355 #ifdef	IWN_DEBUG
356 static char	*iwn_get_csr_string(int);
357 static void	iwn_debug_register(struct iwn_softc *);
358 #endif
359 static int	iwn_sleep(struct iwn_softc *sc, void *wchan,
360 				int flags, const char *wmsg, int timo);
361 
362 static device_method_t iwn_methods[] = {
363 	/* Device interface */
364 	DEVMETHOD(device_probe,		iwn_probe),
365 	DEVMETHOD(device_attach,	iwn_attach),
366 	DEVMETHOD(device_detach,	iwn_detach),
367 	DEVMETHOD(device_shutdown,	iwn_shutdown),
368 	DEVMETHOD(device_suspend,	iwn_suspend),
369 	DEVMETHOD(device_resume,	iwn_resume),
370 
371 	DEVMETHOD_END
372 };
373 
374 static driver_t iwn_driver = {
375 	"iwn",
376 	iwn_methods,
377 	sizeof(struct iwn_softc)
378 };
379 static devclass_t iwn_devclass;
380 
381 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL);
382 
383 MODULE_VERSION(iwn, 1);
384 
385 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
386 MODULE_DEPEND(iwn, pci, 1, 1, 1);
387 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
388 
389 static int
390 iwn_probe(device_t dev)
391 {
392 	const struct iwn_ident *ident;
393 
394 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
395 		if (pci_get_vendor(dev) == ident->vendor &&
396 		    pci_get_device(dev) == ident->device) {
397 			device_set_desc(dev, ident->name);
398 			return (BUS_PROBE_DEFAULT);
399 		}
400 	}
401 	return ENXIO;
402 }
403 
404 static int
405 iwn_is_3stream_device(struct iwn_softc *sc)
406 {
407 	/* XXX for now only 5300, until the 5350 can be tested */
408 	if (sc->hw_type == IWN_HW_REV_TYPE_5300)
409 		return (1);
410 	return (0);
411 }
412 
413 static int
414 iwn_attach(device_t dev)
415 {
416 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
417 	struct ieee80211com *ic;
418 	struct ifnet *ifp;
419 	int i, error, rid;
420 	uint8_t macaddr[IEEE80211_ADDR_LEN];
421 	char ethstr[ETHER_ADDRSTRLEN + 1];
422 
423 	wlan_serialize_enter();
424 
425 	sc->sc_dev = dev;
426 
427 #ifdef	IWN_DEBUG
428 	error = resource_int_value(device_get_name(sc->sc_dev),
429 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
430 	if (error != 0)
431 		sc->sc_debug = 0;
432 #else
433 	sc->sc_debug = 0;
434 #endif
435 
436 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__);
437 
438 	/*
439 	 * Get the offset of the PCI Express Capability Structure in PCI
440 	 * Configuration Space.
441 	 */
442 #if defined(__DragonFly__)
443 	error = pci_find_extcap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
444 #else
445 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
446 #endif
447 	if (error != 0) {
448 		device_printf(dev, "PCIe capability structure not found!\n");
449 		wlan_serialize_exit();
450 		return error;
451 	}
452 
453 	/* Clear device-specific "PCI retry timeout" register (41h). */
454 	pci_write_config(dev, 0x41, 0, 1);
455 
456 	/* Enable bus-mastering. */
457 	pci_enable_busmaster(dev);
458 
459 	rid = PCIR_BAR(0);
460 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
461 	    RF_ACTIVE);
462 	if (sc->mem == NULL) {
463 		device_printf(dev, "can't map mem space\n");
464 		error = ENOMEM;
465 		wlan_serialize_exit();
466 		return error;
467 	}
468 	sc->sc_st = rman_get_bustag(sc->mem);
469 	sc->sc_sh = rman_get_bushandle(sc->mem);
470 
471 	rid = 0;
472 #ifdef OLD_MSI
473 	i = 1;
474 	if (pci_alloc_msi(dev, &i) == 0)
475 		rid = 1;
476 #endif
477 	/* Install interrupt handler. */
478 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
479 	    (rid != 0 ? 0 : RF_SHAREABLE));
480 	if (sc->irq == NULL) {
481 		device_printf(dev, "can't map interrupt\n");
482 		error = ENOMEM;
483 		goto fail;
484 	}
485 
486 	IWN_LOCK_INIT(sc);
487 
488 	/* Read hardware revision and attach. */
489 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT)
490 	    & IWN_HW_REV_TYPE_MASK;
491 	sc->subdevice_id = pci_get_subdevice(dev);
492 
493 	/*
494 	 * 4965 versus 5000 and later have different methods.
495 	 * Let's set those up first.
496 	 */
497 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
498 		error = iwn4965_attach(sc, pci_get_device(dev));
499 	else
500 		error = iwn5000_attach(sc, pci_get_device(dev));
501 	if (error != 0) {
502 		device_printf(dev, "could not attach device, error %d\n",
503 		    error);
504 		goto fail;
505 	}
506 
507 	/*
508 	 * Next, let's setup the various parameters of each NIC.
509 	 */
510 	error = iwn_config_specific(sc, pci_get_device(dev));
511 	if (error != 0) {
512 		device_printf(dev, "could not attach device, error %d\n",
513 		    error);
514 		goto fail;
515 	}
516 
517 	if ((error = iwn_hw_prepare(sc)) != 0) {
518 		device_printf(dev, "hardware not ready, error %d\n", error);
519 		goto fail;
520 	}
521 
522 	/* Allocate DMA memory for firmware transfers. */
523 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
524 		device_printf(dev,
525 		    "could not allocate memory for firmware, error %d\n",
526 		    error);
527 		goto fail;
528 	}
529 
530 	/* Allocate "Keep Warm" page. */
531 	if ((error = iwn_alloc_kw(sc)) != 0) {
532 		device_printf(dev,
533 		    "could not allocate keep warm page, error %d\n", error);
534 		goto fail;
535 	}
536 
537 	/* Allocate ICT table for 5000 Series. */
538 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
539 	    (error = iwn_alloc_ict(sc)) != 0) {
540 		device_printf(dev, "could not allocate ICT table, error %d\n",
541 		    error);
542 		goto fail;
543 	}
544 
545 	/* Allocate TX scheduler "rings". */
546 	if ((error = iwn_alloc_sched(sc)) != 0) {
547 		device_printf(dev,
548 		    "could not allocate TX scheduler rings, error %d\n", error);
549 		goto fail;
550 	}
551 
552 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
553 	for (i = 0; i < sc->ntxqs; i++) {
554 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
555 			device_printf(dev,
556 			    "could not allocate TX ring %d, error %d\n", i,
557 			    error);
558 			goto fail;
559 		}
560 	}
561 
562 	/* Allocate RX ring. */
563 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
564 		device_printf(dev, "could not allocate RX ring, error %d\n",
565 		    error);
566 		goto fail;
567 	}
568 
569 	/* Clear pending interrupts. */
570 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
571 
572 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
573 	if (ifp == NULL) {
574 		device_printf(dev, "can not allocate ifnet structure\n");
575 		goto fail;
576 	}
577 
578 	ic = ifp->if_l2com;
579 	ic->ic_ifp = ifp;
580 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
581 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
582 
583 	/* Set device capabilities. */
584 	ic->ic_caps =
585 		  IEEE80211_C_STA		/* station mode supported */
586 		| IEEE80211_C_MONITOR		/* monitor mode supported */
587 		| IEEE80211_C_BGSCAN		/* background scanning */
588 		| IEEE80211_C_TXPMGT		/* tx power management */
589 		| IEEE80211_C_SHSLOT		/* short slot time supported */
590 		| IEEE80211_C_WPA
591 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
592 #if 0
593 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
594 #endif
595 		| IEEE80211_C_WME		/* WME */
596 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
597 		;
598 
599 	/* Read MAC address, channels, etc from EEPROM. */
600 	if ((error = iwn_read_eeprom(sc, macaddr)) != 0) {
601 		device_printf(dev, "could not read EEPROM, error %d\n",
602 		    error);
603 		goto fail;
604 	}
605 
606 	/* Count the number of available chains. */
607 	sc->ntxchains =
608 	    ((sc->txchainmask >> 2) & 1) +
609 	    ((sc->txchainmask >> 1) & 1) +
610 	    ((sc->txchainmask >> 0) & 1);
611 	sc->nrxchains =
612 	    ((sc->rxchainmask >> 2) & 1) +
613 	    ((sc->rxchainmask >> 1) & 1) +
614 	    ((sc->rxchainmask >> 0) & 1);
615 	if (bootverbose) {
616 		device_printf(dev, "MIMO %dT%dR, %.4s, address %s\n",
617 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
618 		    kether_ntoa(macaddr, ethstr));
619 	}
620 
621 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
622 		ic->ic_rxstream = sc->nrxchains;
623 		ic->ic_txstream = sc->ntxchains;
624 
625 		/*
626 		 * Some of the 3 antenna devices (ie, the 4965) only supports
627 		 * 2x2 operation.  So correct the number of streams if
628 		 * it's not a 3-stream device.
629 		 */
630 		if (! iwn_is_3stream_device(sc)) {
631 			if (ic->ic_rxstream > 2)
632 				ic->ic_rxstream = 2;
633 			if (ic->ic_txstream > 2)
634 				ic->ic_txstream = 2;
635 		}
636 
637 		ic->ic_htcaps =
638 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
639 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
640 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
641 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
642 #ifdef notyet
643 			| IEEE80211_HTCAP_GREENFIELD
644 #if IWN_RBUF_SIZE == 8192
645 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
646 #else
647 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
648 #endif
649 #endif
650 			/* s/w capabilities */
651 			| IEEE80211_HTC_HT		/* HT operation */
652 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
653 #ifdef notyet
654 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
655 #endif
656 			;
657 	}
658 
659 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
660 	ifp->if_softc = sc;
661 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
662 	ifp->if_init = iwn_init;
663 	ifp->if_ioctl = iwn_ioctl;
664 	ifp->if_start = iwn_start;
665 #if defined(__DragonFly__)
666 	ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
667 #else
668 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
669 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
670 	IFQ_SET_READY(&ifp->if_snd);
671 #endif
672 
673 	ieee80211_ifattach(ic, macaddr);
674 	ic->ic_vap_create = iwn_vap_create;
675 	ic->ic_vap_delete = iwn_vap_delete;
676 	ic->ic_raw_xmit = iwn_raw_xmit;
677 	ic->ic_node_alloc = iwn_node_alloc;
678 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
679 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
680 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
681 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
682 	sc->sc_addba_request = ic->ic_addba_request;
683 	ic->ic_addba_request = iwn_addba_request;
684 	sc->sc_addba_response = ic->ic_addba_response;
685 	ic->ic_addba_response = iwn_addba_response;
686 	sc->sc_addba_stop = ic->ic_addba_stop;
687 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
688 	ic->ic_newassoc = iwn_newassoc;
689 	ic->ic_wme.wme_update = iwn_updateedca;
690 	ic->ic_update_mcast = iwn_update_mcast;
691 	ic->ic_scan_start = iwn_scan_start;
692 	ic->ic_scan_end = iwn_scan_end;
693 	ic->ic_set_channel = iwn_set_channel;
694 	ic->ic_scan_curchan = iwn_scan_curchan;
695 	ic->ic_scan_mindwell = iwn_scan_mindwell;
696 	ic->ic_setregdomain = iwn_setregdomain;
697 
698 	iwn_radiotap_attach(sc);
699 
700 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
701 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
702 	TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset, sc);
703 	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc);
704 	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc);
705 	TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked, sc);
706 
707 	sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK,
708 	    taskqueue_thread_enqueue, &sc->sc_tq);
709 #if defined(__DragonFly__)
710 	error = taskqueue_start_threads(&sc->sc_tq, 1, TDPRI_KERN_DAEMON,
711 					-1, "iwn_taskq");
712 #else
713 	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwn_taskq");
714 #endif
715 	if (error != 0) {
716 		device_printf(dev, "can't start threads, error %d\n", error);
717 		goto fail;
718 	}
719 
720 	iwn_sysctlattach(sc);
721 
722 	/*
723 	 * Hook our interrupt after all initialization is complete.
724 	 */
725 #if defined(__DragonFly__)
726 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
727 			       iwn_intr, sc, &sc->sc_ih,
728 			       &wlan_global_serializer);
729 #else
730 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
731 	    NULL, iwn_intr, sc, &sc->sc_ih);
732 #endif
733 	if (error != 0) {
734 		device_printf(dev, "can't establish interrupt, error %d\n",
735 		    error);
736 		goto fail;
737 	}
738 
739 #if 0
740 	device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n",
741 	    __func__,
742 	    sizeof(struct iwn_stats),
743 	    sizeof(struct iwn_stats_bt));
744 #endif
745 
746 	if (bootverbose)
747 		ieee80211_announce(ic);
748 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
749 	wlan_serialize_exit();
750 	return 0;
751 fail:
752 	wlan_serialize_exit();
753 	iwn_detach(dev);
754 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
755 	return error;
756 }
757 
758 /*
759  * Define specific configuration based on device id and subdevice id
760  * pid : PCI device id
761  */
762 static int
763 iwn_config_specific(struct iwn_softc *sc, uint16_t pid)
764 {
765 
766 	switch (pid) {
767 /* 4965 series */
768 	case IWN_DID_4965_1:
769 	case IWN_DID_4965_2:
770 	case IWN_DID_4965_3:
771 	case IWN_DID_4965_4:
772 		sc->base_params = &iwn4965_base_params;
773 		sc->limits = &iwn4965_sensitivity_limits;
774 		sc->fwname = "iwn4965fw";
775 		/* Override chains masks, ROM is known to be broken. */
776 		sc->txchainmask = IWN_ANT_AB;
777 		sc->rxchainmask = IWN_ANT_ABC;
778 		/* Enable normal btcoex */
779 		sc->sc_flags |= IWN_FLAG_BTCOEX;
780 		break;
781 /* 1000 Series */
782 	case IWN_DID_1000_1:
783 	case IWN_DID_1000_2:
784 		switch(sc->subdevice_id) {
785 			case	IWN_SDID_1000_1:
786 			case	IWN_SDID_1000_2:
787 			case	IWN_SDID_1000_3:
788 			case	IWN_SDID_1000_4:
789 			case	IWN_SDID_1000_5:
790 			case	IWN_SDID_1000_6:
791 			case	IWN_SDID_1000_7:
792 			case	IWN_SDID_1000_8:
793 			case	IWN_SDID_1000_9:
794 			case	IWN_SDID_1000_10:
795 			case	IWN_SDID_1000_11:
796 			case	IWN_SDID_1000_12:
797 				sc->limits = &iwn1000_sensitivity_limits;
798 				sc->base_params = &iwn1000_base_params;
799 				sc->fwname = "iwn1000fw";
800 				break;
801 			default:
802 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
803 				    "0x%04x rev %d not supported (subdevice)\n", pid,
804 				    sc->subdevice_id,sc->hw_type);
805 				return ENOTSUP;
806 		}
807 		break;
808 /* 6x00 Series */
809 	case IWN_DID_6x00_2:
810 	case IWN_DID_6x00_4:
811 	case IWN_DID_6x00_1:
812 	case IWN_DID_6x00_3:
813 		sc->fwname = "iwn6000fw";
814 		sc->limits = &iwn6000_sensitivity_limits;
815 		switch(sc->subdevice_id) {
816 			case IWN_SDID_6x00_1:
817 			case IWN_SDID_6x00_2:
818 			case IWN_SDID_6x00_8:
819 				//iwl6000_3agn_cfg
820 				sc->base_params = &iwn_6000_base_params;
821 				break;
822 			case IWN_SDID_6x00_3:
823 			case IWN_SDID_6x00_6:
824 			case IWN_SDID_6x00_9:
825 				////iwl6000i_2agn
826 			case IWN_SDID_6x00_4:
827 			case IWN_SDID_6x00_7:
828 			case IWN_SDID_6x00_10:
829 				//iwl6000i_2abg_cfg
830 			case IWN_SDID_6x00_5:
831 				//iwl6000i_2bg_cfg
832 				sc->base_params = &iwn_6000i_base_params;
833 				sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
834 				sc->txchainmask = IWN_ANT_BC;
835 				sc->rxchainmask = IWN_ANT_BC;
836 				break;
837 			default:
838 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
839 				    "0x%04x rev %d not supported (subdevice)\n", pid,
840 				    sc->subdevice_id,sc->hw_type);
841 				return ENOTSUP;
842 		}
843 		break;
844 /* 6x05 Series */
845 	case IWN_DID_6x05_1:
846 	case IWN_DID_6x05_2:
847 		switch(sc->subdevice_id) {
848 			case IWN_SDID_6x05_1:
849 			case IWN_SDID_6x05_4:
850 			case IWN_SDID_6x05_6:
851 				//iwl6005_2agn_cfg
852 			case IWN_SDID_6x05_2:
853 			case IWN_SDID_6x05_5:
854 			case IWN_SDID_6x05_7:
855 				//iwl6005_2abg_cfg
856 			case IWN_SDID_6x05_3:
857 				//iwl6005_2bg_cfg
858 			case IWN_SDID_6x05_8:
859 			case IWN_SDID_6x05_9:
860 				//iwl6005_2agn_sff_cfg
861 			case IWN_SDID_6x05_10:
862 				//iwl6005_2agn_d_cfg
863 			case IWN_SDID_6x05_11:
864 				//iwl6005_2agn_mow1_cfg
865 			case IWN_SDID_6x05_12:
866 				//iwl6005_2agn_mow2_cfg
867 				sc->fwname = "iwn6000g2afw";
868 				sc->limits = &iwn6000_sensitivity_limits;
869 				sc->base_params = &iwn_6000g2_base_params;
870 				break;
871 			default:
872 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
873 				    "0x%04x rev %d not supported (subdevice)\n", pid,
874 				    sc->subdevice_id,sc->hw_type);
875 				return ENOTSUP;
876 		}
877 		break;
878 /* 6x35 Series */
879 	case IWN_DID_6035_1:
880 	case IWN_DID_6035_2:
881 		switch(sc->subdevice_id) {
882 			case IWN_SDID_6035_1:
883 			case IWN_SDID_6035_2:
884 			case IWN_SDID_6035_3:
885 			case IWN_SDID_6035_4:
886 				sc->fwname = "iwn6000g2bfw";
887 				sc->limits = &iwn6235_sensitivity_limits;
888 				sc->base_params = &iwn_6235_base_params;
889 				break;
890 			default:
891 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
892 				    "0x%04x rev %d not supported (subdevice)\n", pid,
893 				    sc->subdevice_id,sc->hw_type);
894 				return ENOTSUP;
895 		}
896 		break;
897 /* 6x50 WiFi/WiMax Series */
898 	case IWN_DID_6050_1:
899 	case IWN_DID_6050_2:
900 		switch(sc->subdevice_id) {
901 			case IWN_SDID_6050_1:
902 			case IWN_SDID_6050_3:
903 			case IWN_SDID_6050_5:
904 				//iwl6050_2agn_cfg
905 			case IWN_SDID_6050_2:
906 			case IWN_SDID_6050_4:
907 			case IWN_SDID_6050_6:
908 				//iwl6050_2abg_cfg
909 				sc->fwname = "iwn6050fw";
910 				sc->txchainmask = IWN_ANT_AB;
911 				sc->rxchainmask = IWN_ANT_AB;
912 				sc->limits = &iwn6000_sensitivity_limits;
913 				sc->base_params = &iwn_6050_base_params;
914 				break;
915 			default:
916 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
917 				    "0x%04x rev %d not supported (subdevice)\n", pid,
918 				    sc->subdevice_id,sc->hw_type);
919 				return ENOTSUP;
920 		}
921 		break;
922 /* 6150 WiFi/WiMax Series */
923 	case IWN_DID_6150_1:
924 	case IWN_DID_6150_2:
925 		switch(sc->subdevice_id) {
926 			case IWN_SDID_6150_1:
927 			case IWN_SDID_6150_3:
928 			case IWN_SDID_6150_5:
929 				// iwl6150_bgn_cfg
930 			case IWN_SDID_6150_2:
931 			case IWN_SDID_6150_4:
932 			case IWN_SDID_6150_6:
933 				//iwl6150_bg_cfg
934 				sc->fwname = "iwn6050fw";
935 				sc->limits = &iwn6000_sensitivity_limits;
936 				sc->base_params = &iwn_6150_base_params;
937 				break;
938 			default:
939 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
940 				    "0x%04x rev %d not supported (subdevice)\n", pid,
941 				    sc->subdevice_id,sc->hw_type);
942 				return ENOTSUP;
943 		}
944 		break;
945 /* 6030 Series and 1030 Series */
946 	case IWN_DID_x030_1:
947 	case IWN_DID_x030_2:
948 	case IWN_DID_x030_3:
949 	case IWN_DID_x030_4:
950 		switch(sc->subdevice_id) {
951 			case IWN_SDID_x030_1:
952 			case IWN_SDID_x030_3:
953 			case IWN_SDID_x030_5:
954 			// iwl1030_bgn_cfg
955 			case IWN_SDID_x030_2:
956 			case IWN_SDID_x030_4:
957 			case IWN_SDID_x030_6:
958 			//iwl1030_bg_cfg
959 			case IWN_SDID_x030_7:
960 			case IWN_SDID_x030_10:
961 			case IWN_SDID_x030_14:
962 			//iwl6030_2agn_cfg
963 			case IWN_SDID_x030_8:
964 			case IWN_SDID_x030_11:
965 			case IWN_SDID_x030_15:
966 			// iwl6030_2bgn_cfg
967 			case IWN_SDID_x030_9:
968 			case IWN_SDID_x030_12:
969 			case IWN_SDID_x030_16:
970 			// iwl6030_2abg_cfg
971 			case IWN_SDID_x030_13:
972 			//iwl6030_2bg_cfg
973 				sc->fwname = "iwn6000g2bfw";
974 				sc->limits = &iwn6000_sensitivity_limits;
975 				sc->base_params = &iwn_6000g2b_base_params;
976 				break;
977 			default:
978 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
979 				    "0x%04x rev %d not supported (subdevice)\n", pid,
980 				    sc->subdevice_id,sc->hw_type);
981 				return ENOTSUP;
982 		}
983 		break;
984 /* 130 Series WiFi */
985 /* XXX: This series will need adjustment for rate.
986  * see rx_with_siso_diversity in linux kernel
987  */
988 	case IWN_DID_130_1:
989 	case IWN_DID_130_2:
990 		switch(sc->subdevice_id) {
991 			case IWN_SDID_130_1:
992 			case IWN_SDID_130_3:
993 			case IWN_SDID_130_5:
994 			//iwl130_bgn_cfg
995 			case IWN_SDID_130_2:
996 			case IWN_SDID_130_4:
997 			case IWN_SDID_130_6:
998 			//iwl130_bg_cfg
999 				sc->fwname = "iwn6000g2bfw";
1000 				sc->limits = &iwn6000_sensitivity_limits;
1001 				sc->base_params = &iwn_6000g2b_base_params;
1002 				break;
1003 			default:
1004 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1005 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1006 				    sc->subdevice_id,sc->hw_type);
1007 				return ENOTSUP;
1008 		}
1009 		break;
1010 /* 100 Series WiFi */
1011 	case IWN_DID_100_1:
1012 	case IWN_DID_100_2:
1013 		switch(sc->subdevice_id) {
1014 			case IWN_SDID_100_1:
1015 			case IWN_SDID_100_2:
1016 			case IWN_SDID_100_3:
1017 			case IWN_SDID_100_4:
1018 			case IWN_SDID_100_5:
1019 			case IWN_SDID_100_6:
1020 				sc->limits = &iwn1000_sensitivity_limits;
1021 				sc->base_params = &iwn1000_base_params;
1022 				sc->fwname = "iwn100fw";
1023 				break;
1024 			default:
1025 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1026 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1027 				    sc->subdevice_id,sc->hw_type);
1028 				return ENOTSUP;
1029 		}
1030 		break;
1031 
1032 /* 105 Series */
1033 /* XXX: This series will need adjustment for rate.
1034  * see rx_with_siso_diversity in linux kernel
1035  */
1036 	case IWN_DID_105_1:
1037 	case IWN_DID_105_2:
1038 		switch(sc->subdevice_id) {
1039 			case IWN_SDID_105_1:
1040 			case IWN_SDID_105_2:
1041 			case IWN_SDID_105_3:
1042 			//iwl105_bgn_cfg
1043 			case IWN_SDID_105_4:
1044 			//iwl105_bgn_d_cfg
1045 				sc->limits = &iwn2030_sensitivity_limits;
1046 				sc->base_params = &iwn2000_base_params;
1047 				sc->fwname = "iwn105fw";
1048 				break;
1049 			default:
1050 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1051 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1052 				    sc->subdevice_id,sc->hw_type);
1053 				return ENOTSUP;
1054 		}
1055 		break;
1056 
1057 /* 135 Series */
1058 /* XXX: This series will need adjustment for rate.
1059  * see rx_with_siso_diversity in linux kernel
1060  */
1061 	case IWN_DID_135_1:
1062 	case IWN_DID_135_2:
1063 		switch(sc->subdevice_id) {
1064 			case IWN_SDID_135_1:
1065 			case IWN_SDID_135_2:
1066 			case IWN_SDID_135_3:
1067 				sc->limits = &iwn2030_sensitivity_limits;
1068 				sc->base_params = &iwn2030_base_params;
1069 				sc->fwname = "iwn135fw";
1070 				break;
1071 			default:
1072 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1073 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1074 				    sc->subdevice_id,sc->hw_type);
1075 				return ENOTSUP;
1076 		}
1077 		break;
1078 
1079 /* 2x00 Series */
1080 	case IWN_DID_2x00_1:
1081 	case IWN_DID_2x00_2:
1082 		switch(sc->subdevice_id) {
1083 			case IWN_SDID_2x00_1:
1084 			case IWN_SDID_2x00_2:
1085 			case IWN_SDID_2x00_3:
1086 			//iwl2000_2bgn_cfg
1087 			case IWN_SDID_2x00_4:
1088 			//iwl2000_2bgn_d_cfg
1089 				sc->limits = &iwn2030_sensitivity_limits;
1090 				sc->base_params = &iwn2000_base_params;
1091 				sc->fwname = "iwn2000fw";
1092 				break;
1093 			default:
1094 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1095 				    "0x%04x rev %d not supported (subdevice) \n",
1096 				    pid, sc->subdevice_id, sc->hw_type);
1097 				return ENOTSUP;
1098 		}
1099 		break;
1100 /* 2x30 Series */
1101 	case IWN_DID_2x30_1:
1102 	case IWN_DID_2x30_2:
1103 		switch(sc->subdevice_id) {
1104 			case IWN_SDID_2x30_1:
1105 			case IWN_SDID_2x30_3:
1106 			case IWN_SDID_2x30_5:
1107 			//iwl100_bgn_cfg
1108 			case IWN_SDID_2x30_2:
1109 			case IWN_SDID_2x30_4:
1110 			case IWN_SDID_2x30_6:
1111 			//iwl100_bg_cfg
1112 				sc->limits = &iwn2030_sensitivity_limits;
1113 				sc->base_params = &iwn2030_base_params;
1114 				sc->fwname = "iwn2030fw";
1115 				break;
1116 			default:
1117 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1118 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1119 				    sc->subdevice_id,sc->hw_type);
1120 				return ENOTSUP;
1121 		}
1122 		break;
1123 /* 5x00 Series */
1124 	case IWN_DID_5x00_1:
1125 	case IWN_DID_5x00_2:
1126 	case IWN_DID_5x00_3:
1127 	case IWN_DID_5x00_4:
1128 		sc->limits = &iwn5000_sensitivity_limits;
1129 		sc->base_params = &iwn5000_base_params;
1130 		sc->fwname = "iwn5000fw";
1131 		switch(sc->subdevice_id) {
1132 			case IWN_SDID_5x00_1:
1133 			case IWN_SDID_5x00_2:
1134 			case IWN_SDID_5x00_3:
1135 			case IWN_SDID_5x00_4:
1136 			case IWN_SDID_5x00_9:
1137 			case IWN_SDID_5x00_10:
1138 			case IWN_SDID_5x00_11:
1139 			case IWN_SDID_5x00_12:
1140 			case IWN_SDID_5x00_17:
1141 			case IWN_SDID_5x00_18:
1142 			case IWN_SDID_5x00_19:
1143 			case IWN_SDID_5x00_20:
1144 			//iwl5100_agn_cfg
1145 				sc->txchainmask = IWN_ANT_B;
1146 				sc->rxchainmask = IWN_ANT_AB;
1147 				break;
1148 			case IWN_SDID_5x00_5:
1149 			case IWN_SDID_5x00_6:
1150 			case IWN_SDID_5x00_13:
1151 			case IWN_SDID_5x00_14:
1152 			case IWN_SDID_5x00_21:
1153 			case IWN_SDID_5x00_22:
1154 			//iwl5100_bgn_cfg
1155 				sc->txchainmask = IWN_ANT_B;
1156 				sc->rxchainmask = IWN_ANT_AB;
1157 				break;
1158 			case IWN_SDID_5x00_7:
1159 			case IWN_SDID_5x00_8:
1160 			case IWN_SDID_5x00_15:
1161 			case IWN_SDID_5x00_16:
1162 			case IWN_SDID_5x00_23:
1163 			case IWN_SDID_5x00_24:
1164 			//iwl5100_abg_cfg
1165 				sc->txchainmask = IWN_ANT_B;
1166 				sc->rxchainmask = IWN_ANT_AB;
1167 				break;
1168 			case IWN_SDID_5x00_25:
1169 			case IWN_SDID_5x00_26:
1170 			case IWN_SDID_5x00_27:
1171 			case IWN_SDID_5x00_28:
1172 			case IWN_SDID_5x00_29:
1173 			case IWN_SDID_5x00_30:
1174 			case IWN_SDID_5x00_31:
1175 			case IWN_SDID_5x00_32:
1176 			case IWN_SDID_5x00_33:
1177 			case IWN_SDID_5x00_34:
1178 			case IWN_SDID_5x00_35:
1179 			case IWN_SDID_5x00_36:
1180 			//iwl5300_agn_cfg
1181 				sc->txchainmask = IWN_ANT_ABC;
1182 				sc->rxchainmask = IWN_ANT_ABC;
1183 				break;
1184 			default:
1185 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1186 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1187 				    sc->subdevice_id,sc->hw_type);
1188 				return ENOTSUP;
1189 		}
1190 		break;
1191 /* 5x50 Series */
1192 	case IWN_DID_5x50_1:
1193 	case IWN_DID_5x50_2:
1194 	case IWN_DID_5x50_3:
1195 	case IWN_DID_5x50_4:
1196 		sc->limits = &iwn5000_sensitivity_limits;
1197 		sc->base_params = &iwn5000_base_params;
1198 		sc->fwname = "iwn5000fw";
1199 		switch(sc->subdevice_id) {
1200 			case IWN_SDID_5x50_1:
1201 			case IWN_SDID_5x50_2:
1202 			case IWN_SDID_5x50_3:
1203 			//iwl5350_agn_cfg
1204 				sc->limits = &iwn5000_sensitivity_limits;
1205 				sc->base_params = &iwn5000_base_params;
1206 				sc->fwname = "iwn5000fw";
1207 				break;
1208 			case IWN_SDID_5x50_4:
1209 			case IWN_SDID_5x50_5:
1210 			case IWN_SDID_5x50_8:
1211 			case IWN_SDID_5x50_9:
1212 			case IWN_SDID_5x50_10:
1213 			case IWN_SDID_5x50_11:
1214 			//iwl5150_agn_cfg
1215 			case IWN_SDID_5x50_6:
1216 			case IWN_SDID_5x50_7:
1217 			case IWN_SDID_5x50_12:
1218 			case IWN_SDID_5x50_13:
1219 			//iwl5150_abg_cfg
1220 				sc->limits = &iwn5000_sensitivity_limits;
1221 				sc->fwname = "iwn5150fw";
1222 				sc->base_params = &iwn_5x50_base_params;
1223 				break;
1224 			default:
1225 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1226 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1227 				    sc->subdevice_id,sc->hw_type);
1228 				return ENOTSUP;
1229 		}
1230 		break;
1231 	default:
1232 		device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x"
1233 		    "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id,
1234 		     sc->hw_type);
1235 		return ENOTSUP;
1236 	}
1237 	return 0;
1238 }
1239 
1240 static int
1241 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
1242 {
1243 	struct iwn_ops *ops = &sc->ops;
1244 
1245 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1246 	ops->load_firmware = iwn4965_load_firmware;
1247 	ops->read_eeprom = iwn4965_read_eeprom;
1248 	ops->post_alive = iwn4965_post_alive;
1249 	ops->nic_config = iwn4965_nic_config;
1250 	ops->update_sched = iwn4965_update_sched;
1251 	ops->get_temperature = iwn4965_get_temperature;
1252 	ops->get_rssi = iwn4965_get_rssi;
1253 	ops->set_txpower = iwn4965_set_txpower;
1254 	ops->init_gains = iwn4965_init_gains;
1255 	ops->set_gains = iwn4965_set_gains;
1256 	ops->add_node = iwn4965_add_node;
1257 	ops->tx_done = iwn4965_tx_done;
1258 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
1259 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
1260 	sc->ntxqs = IWN4965_NTXQUEUES;
1261 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
1262 	sc->ndmachnls = IWN4965_NDMACHNLS;
1263 	sc->broadcast_id = IWN4965_ID_BROADCAST;
1264 	sc->rxonsz = IWN4965_RXONSZ;
1265 	sc->schedsz = IWN4965_SCHEDSZ;
1266 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
1267 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
1268 	sc->fwsz = IWN4965_FWSZ;
1269 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
1270 	sc->limits = &iwn4965_sensitivity_limits;
1271 	sc->fwname = "iwn4965fw";
1272 	/* Override chains masks, ROM is known to be broken. */
1273 	sc->txchainmask = IWN_ANT_AB;
1274 	sc->rxchainmask = IWN_ANT_ABC;
1275 	/* Enable normal btcoex */
1276 	sc->sc_flags |= IWN_FLAG_BTCOEX;
1277 
1278 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1279 
1280 	return 0;
1281 }
1282 
1283 static int
1284 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
1285 {
1286 	struct iwn_ops *ops = &sc->ops;
1287 
1288 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1289 
1290 	ops->load_firmware = iwn5000_load_firmware;
1291 	ops->read_eeprom = iwn5000_read_eeprom;
1292 	ops->post_alive = iwn5000_post_alive;
1293 	ops->nic_config = iwn5000_nic_config;
1294 	ops->update_sched = iwn5000_update_sched;
1295 	ops->get_temperature = iwn5000_get_temperature;
1296 	ops->get_rssi = iwn5000_get_rssi;
1297 	ops->set_txpower = iwn5000_set_txpower;
1298 	ops->init_gains = iwn5000_init_gains;
1299 	ops->set_gains = iwn5000_set_gains;
1300 	ops->add_node = iwn5000_add_node;
1301 	ops->tx_done = iwn5000_tx_done;
1302 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
1303 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
1304 	sc->ntxqs = IWN5000_NTXQUEUES;
1305 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
1306 	sc->ndmachnls = IWN5000_NDMACHNLS;
1307 	sc->broadcast_id = IWN5000_ID_BROADCAST;
1308 	sc->rxonsz = IWN5000_RXONSZ;
1309 	sc->schedsz = IWN5000_SCHEDSZ;
1310 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
1311 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
1312 	sc->fwsz = IWN5000_FWSZ;
1313 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
1314 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
1315 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
1316 
1317 	return 0;
1318 }
1319 
1320 /*
1321  * Attach the interface to 802.11 radiotap.
1322  */
1323 static void
1324 iwn_radiotap_attach(struct iwn_softc *sc)
1325 {
1326 	struct ifnet *ifp = sc->sc_ifp;
1327 	struct ieee80211com *ic = ifp->if_l2com;
1328 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1329 	ieee80211_radiotap_attach(ic,
1330 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
1331 		IWN_TX_RADIOTAP_PRESENT,
1332 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
1333 		IWN_RX_RADIOTAP_PRESENT);
1334 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1335 }
1336 
1337 static void
1338 iwn_sysctlattach(struct iwn_softc *sc)
1339 {
1340 #ifdef	IWN_DEBUG
1341 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
1342 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
1343 
1344 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1345 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
1346 		"control debugging printfs");
1347 #endif
1348 }
1349 
1350 static struct ieee80211vap *
1351 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1352     enum ieee80211_opmode opmode, int flags,
1353     const uint8_t bssid[IEEE80211_ADDR_LEN],
1354     const uint8_t mac[IEEE80211_ADDR_LEN])
1355 {
1356 	struct iwn_vap *ivp;
1357 	struct ieee80211vap *vap;
1358 	uint8_t mac1[IEEE80211_ADDR_LEN];
1359 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
1360 
1361 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
1362 		return NULL;
1363 
1364 	IEEE80211_ADDR_COPY(mac1, mac);
1365 
1366 	ivp = kmalloc(sizeof(struct iwn_vap), M_80211_VAP, M_INTWAIT | M_ZERO);
1367 	if (ivp == NULL)
1368 		return NULL;
1369 	vap = &ivp->iv_vap;
1370 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac1);
1371 	ivp->ctx = IWN_RXON_BSS_CTX;
1372 	IEEE80211_ADDR_COPY(ivp->macaddr, mac1);
1373 	vap->iv_bmissthreshold = 10;		/* override default */
1374 	/* Override with driver methods. */
1375 	ivp->iv_newstate = vap->iv_newstate;
1376 	vap->iv_newstate = iwn_newstate;
1377 	sc->ivap[IWN_RXON_BSS_CTX] = vap;
1378 
1379 	ieee80211_ratectl_init(vap);
1380 	/* Complete setup. */
1381 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status);
1382 	ic->ic_opmode = opmode;
1383 	return vap;
1384 }
1385 
1386 static void
1387 iwn_vap_delete(struct ieee80211vap *vap)
1388 {
1389 	struct iwn_vap *ivp = IWN_VAP(vap);
1390 
1391 	ieee80211_ratectl_deinit(vap);
1392 	ieee80211_vap_detach(vap);
1393 	kfree(ivp, M_80211_VAP);
1394 }
1395 
1396 static int
1397 iwn_detach(device_t dev)
1398 {
1399 	struct iwn_softc *sc = device_get_softc(dev);
1400 	struct ifnet *ifp = sc->sc_ifp;
1401 	struct ieee80211com *ic;
1402 	int qid;
1403 
1404 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1405 
1406 	if (ifp != NULL) {
1407 		ic = ifp->if_l2com;
1408 
1409 		ieee80211_draintask(ic, &sc->sc_reinit_task);
1410 		ieee80211_draintask(ic, &sc->sc_radioon_task);
1411 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
1412 
1413 		iwn_stop(sc);
1414 
1415 #if defined(__DragonFly__)
1416 		/* doesn't exist for DFly, DFly drains tasks on free */
1417 #else
1418 		taskqueue_drain_all(sc->sc_tq);
1419 #endif
1420 		taskqueue_free(sc->sc_tq);
1421 
1422 		callout_drain(&sc->watchdog_to);
1423 		callout_drain(&sc->calib_to);
1424 		ieee80211_ifdetach(ic);
1425 	}
1426 
1427 	/* Uninstall interrupt handler. */
1428 	if (sc->irq != NULL) {
1429 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
1430 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
1431 		    sc->irq);
1432 		pci_release_msi(dev);
1433 	}
1434 
1435 	/* Free DMA resources. */
1436 	iwn_free_rx_ring(sc, &sc->rxq);
1437 	for (qid = 0; qid < sc->ntxqs; qid++)
1438 		iwn_free_tx_ring(sc, &sc->txq[qid]);
1439 	iwn_free_sched(sc);
1440 	iwn_free_kw(sc);
1441 	if (sc->ict != NULL)
1442 		iwn_free_ict(sc);
1443 	iwn_free_fwmem(sc);
1444 
1445 	if (sc->mem != NULL)
1446 		bus_release_resource(dev, SYS_RES_MEMORY,
1447 		    rman_get_rid(sc->mem), sc->mem);
1448 
1449 	if (ifp != NULL)
1450 		if_free(ifp);
1451 
1452 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__);
1453 	IWN_LOCK_DESTROY(sc);
1454 	return 0;
1455 }
1456 
1457 static int
1458 iwn_shutdown(device_t dev)
1459 {
1460 	struct iwn_softc *sc = device_get_softc(dev);
1461 
1462 	iwn_stop(sc);
1463 	return 0;
1464 }
1465 
1466 static int
1467 iwn_suspend(device_t dev)
1468 {
1469 	struct iwn_softc *sc = device_get_softc(dev);
1470 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1471 
1472 	ieee80211_suspend_all(ic);
1473 	return 0;
1474 }
1475 
1476 static int
1477 iwn_resume(device_t dev)
1478 {
1479 	struct iwn_softc *sc = device_get_softc(dev);
1480 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1481 
1482 	/* Clear device-specific "PCI retry timeout" register (41h). */
1483 	pci_write_config(dev, 0x41, 0, 1);
1484 
1485 	ieee80211_resume_all(ic);
1486 	return 0;
1487 }
1488 
1489 static int
1490 iwn_nic_lock(struct iwn_softc *sc)
1491 {
1492 	int ntries;
1493 
1494 	/* Request exclusive access to NIC. */
1495 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1496 
1497 	/* Spin until we actually get the lock. */
1498 	for (ntries = 0; ntries < 1000; ntries++) {
1499 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1500 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1501 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1502 			return 0;
1503 		DELAY(10);
1504 	}
1505 	return ETIMEDOUT;
1506 }
1507 
1508 static __inline void
1509 iwn_nic_unlock(struct iwn_softc *sc)
1510 {
1511 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1512 }
1513 
1514 static __inline uint32_t
1515 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1516 {
1517 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1518 	IWN_BARRIER_READ_WRITE(sc);
1519 	return IWN_READ(sc, IWN_PRPH_RDATA);
1520 }
1521 
1522 static __inline void
1523 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1524 {
1525 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1526 	IWN_BARRIER_WRITE(sc);
1527 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1528 }
1529 
1530 static __inline void
1531 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1532 {
1533 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1534 }
1535 
1536 static __inline void
1537 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1538 {
1539 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1540 }
1541 
1542 static __inline void
1543 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1544     const uint32_t *data, int count)
1545 {
1546 	for (; count > 0; count--, data++, addr += 4)
1547 		iwn_prph_write(sc, addr, *data);
1548 }
1549 
1550 static __inline uint32_t
1551 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1552 {
1553 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1554 	IWN_BARRIER_READ_WRITE(sc);
1555 	return IWN_READ(sc, IWN_MEM_RDATA);
1556 }
1557 
1558 static __inline void
1559 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1560 {
1561 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1562 	IWN_BARRIER_WRITE(sc);
1563 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1564 }
1565 
1566 static __inline void
1567 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1568 {
1569 	uint32_t tmp;
1570 
1571 	tmp = iwn_mem_read(sc, addr & ~3);
1572 	if (addr & 3)
1573 		tmp = (tmp & 0x0000ffff) | data << 16;
1574 	else
1575 		tmp = (tmp & 0xffff0000) | data;
1576 	iwn_mem_write(sc, addr & ~3, tmp);
1577 }
1578 
1579 static __inline void
1580 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1581     int count)
1582 {
1583 	for (; count > 0; count--, addr += 4)
1584 		*data++ = iwn_mem_read(sc, addr);
1585 }
1586 
1587 static __inline void
1588 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1589     int count)
1590 {
1591 	for (; count > 0; count--, addr += 4)
1592 		iwn_mem_write(sc, addr, val);
1593 }
1594 
1595 static int
1596 iwn_eeprom_lock(struct iwn_softc *sc)
1597 {
1598 	int i, ntries;
1599 
1600 	for (i = 0; i < 100; i++) {
1601 		/* Request exclusive access to EEPROM. */
1602 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1603 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1604 
1605 		/* Spin until we actually get the lock. */
1606 		for (ntries = 0; ntries < 100; ntries++) {
1607 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1608 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1609 				return 0;
1610 			DELAY(10);
1611 		}
1612 	}
1613 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__);
1614 	return ETIMEDOUT;
1615 }
1616 
1617 static __inline void
1618 iwn_eeprom_unlock(struct iwn_softc *sc)
1619 {
1620 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1621 }
1622 
1623 /*
1624  * Initialize access by host to One Time Programmable ROM.
1625  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1626  */
1627 static int
1628 iwn_init_otprom(struct iwn_softc *sc)
1629 {
1630 	uint16_t prev, base, next;
1631 	int count, error;
1632 
1633 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1634 
1635 	/* Wait for clock stabilization before accessing prph. */
1636 	if ((error = iwn_clock_wait(sc)) != 0)
1637 		return error;
1638 
1639 	if ((error = iwn_nic_lock(sc)) != 0)
1640 		return error;
1641 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1642 	DELAY(5);
1643 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1644 	iwn_nic_unlock(sc);
1645 
1646 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1647 	if (sc->base_params->shadow_ram_support) {
1648 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1649 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1650 	}
1651 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1652 	/* Clear ECC status. */
1653 	IWN_SETBITS(sc, IWN_OTP_GP,
1654 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1655 
1656 	/*
1657 	 * Find the block before last block (contains the EEPROM image)
1658 	 * for HW without OTP shadow RAM.
1659 	 */
1660 	if (! sc->base_params->shadow_ram_support) {
1661 		/* Switch to absolute addressing mode. */
1662 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1663 		base = prev = 0;
1664 		for (count = 0; count < sc->base_params->max_ll_items;
1665 		    count++) {
1666 			error = iwn_read_prom_data(sc, base, &next, 2);
1667 			if (error != 0)
1668 				return error;
1669 			if (next == 0)	/* End of linked-list. */
1670 				break;
1671 			prev = base;
1672 			base = le16toh(next);
1673 		}
1674 		if (count == 0 || count == sc->base_params->max_ll_items)
1675 			return EIO;
1676 		/* Skip "next" word. */
1677 		sc->prom_base = prev + 1;
1678 	}
1679 
1680 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1681 
1682 	return 0;
1683 }
1684 
1685 static int
1686 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1687 {
1688 	uint8_t *out = data;
1689 	uint32_t val, tmp;
1690 	int ntries;
1691 
1692 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1693 
1694 	addr += sc->prom_base;
1695 	for (; count > 0; count -= 2, addr++) {
1696 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1697 		for (ntries = 0; ntries < 10; ntries++) {
1698 			val = IWN_READ(sc, IWN_EEPROM);
1699 			if (val & IWN_EEPROM_READ_VALID)
1700 				break;
1701 			DELAY(5);
1702 		}
1703 		if (ntries == 10) {
1704 			device_printf(sc->sc_dev,
1705 			    "timeout reading ROM at 0x%x\n", addr);
1706 			return ETIMEDOUT;
1707 		}
1708 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1709 			/* OTPROM, check for ECC errors. */
1710 			tmp = IWN_READ(sc, IWN_OTP_GP);
1711 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1712 				device_printf(sc->sc_dev,
1713 				    "OTPROM ECC error at 0x%x\n", addr);
1714 				return EIO;
1715 			}
1716 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1717 				/* Correctable ECC error, clear bit. */
1718 				IWN_SETBITS(sc, IWN_OTP_GP,
1719 				    IWN_OTP_GP_ECC_CORR_STTS);
1720 			}
1721 		}
1722 		*out++ = val >> 16;
1723 		if (count > 1)
1724 			*out++ = val >> 24;
1725 	}
1726 
1727 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1728 
1729 	return 0;
1730 }
1731 
1732 static void
1733 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1734 {
1735 	if (error != 0)
1736 		return;
1737 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1738 	*(bus_addr_t *)arg = segs[0].ds_addr;
1739 }
1740 
1741 static int
1742 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1743     void **kvap, bus_size_t size, bus_size_t alignment)
1744 {
1745 	int error;
1746 
1747 	dma->tag = NULL;
1748 	dma->size = size;
1749 
1750 #if defined(__DragonFly__)
1751 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1752 				   0,
1753 				   BUS_SPACE_MAXADDR_32BIT,
1754 				   BUS_SPACE_MAXADDR,
1755 				   NULL, NULL,
1756 				   size, 1, size,
1757 				   BUS_DMA_NOWAIT, &dma->tag);
1758 #else
1759 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1760 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1761 	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
1762 #endif
1763 	if (error != 0)
1764 		goto fail;
1765 
1766 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1767 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1768 	if (error != 0)
1769 		goto fail;
1770 
1771 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1772 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1773 	if (error != 0)
1774 		goto fail;
1775 
1776 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1777 
1778 	if (kvap != NULL)
1779 		*kvap = dma->vaddr;
1780 
1781 	return 0;
1782 
1783 fail:	iwn_dma_contig_free(dma);
1784 	return error;
1785 }
1786 
1787 static void
1788 iwn_dma_contig_free(struct iwn_dma_info *dma)
1789 {
1790 	if (dma->vaddr != NULL) {
1791 		bus_dmamap_sync(dma->tag, dma->map,
1792 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1793 		bus_dmamap_unload(dma->tag, dma->map);
1794 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1795 		dma->vaddr = NULL;
1796 	}
1797 	if (dma->tag != NULL) {
1798 		bus_dma_tag_destroy(dma->tag);
1799 		dma->tag = NULL;
1800 	}
1801 }
1802 
1803 static int
1804 iwn_alloc_sched(struct iwn_softc *sc)
1805 {
1806 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1807 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1808 	    sc->schedsz, 1024);
1809 }
1810 
1811 static void
1812 iwn_free_sched(struct iwn_softc *sc)
1813 {
1814 	iwn_dma_contig_free(&sc->sched_dma);
1815 }
1816 
1817 static int
1818 iwn_alloc_kw(struct iwn_softc *sc)
1819 {
1820 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1821 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1822 }
1823 
1824 static void
1825 iwn_free_kw(struct iwn_softc *sc)
1826 {
1827 	iwn_dma_contig_free(&sc->kw_dma);
1828 }
1829 
1830 static int
1831 iwn_alloc_ict(struct iwn_softc *sc)
1832 {
1833 	/* ICT table must be aligned on a 4KB boundary. */
1834 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1835 	    IWN_ICT_SIZE, 4096);
1836 }
1837 
1838 static void
1839 iwn_free_ict(struct iwn_softc *sc)
1840 {
1841 	iwn_dma_contig_free(&sc->ict_dma);
1842 }
1843 
1844 static int
1845 iwn_alloc_fwmem(struct iwn_softc *sc)
1846 {
1847 	/* Must be aligned on a 16-byte boundary. */
1848 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1849 }
1850 
1851 static void
1852 iwn_free_fwmem(struct iwn_softc *sc)
1853 {
1854 	iwn_dma_contig_free(&sc->fw_dma);
1855 }
1856 
1857 static int
1858 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1859 {
1860 	bus_size_t size;
1861 	int i, error;
1862 
1863 	ring->cur = 0;
1864 
1865 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1866 
1867 	/* Allocate RX descriptors (256-byte aligned). */
1868 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1869 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1870 	    size, 256);
1871 	if (error != 0) {
1872 		device_printf(sc->sc_dev,
1873 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1874 		    __func__, error);
1875 		goto fail;
1876 	}
1877 
1878 	/* Allocate RX status area (16-byte aligned). */
1879 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1880 	    sizeof (struct iwn_rx_status), 16);
1881 	if (error != 0) {
1882 		device_printf(sc->sc_dev,
1883 		    "%s: could not allocate RX status DMA memory, error %d\n",
1884 		    __func__, error);
1885 		goto fail;
1886 	}
1887 
1888 	/* Create RX buffer DMA tag. */
1889 #if defined(__DragonFly__)
1890 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1,
1891 				   0,
1892 				   BUS_SPACE_MAXADDR_32BIT,
1893 				   BUS_SPACE_MAXADDR,
1894 				   NULL, NULL,
1895 				   IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE,
1896 				   BUS_DMA_NOWAIT, &ring->data_dmat);
1897 #else
1898 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1899 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1900 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, BUS_DMA_NOWAIT, NULL, NULL,
1901 	    &ring->data_dmat);
1902 #endif
1903 	if (error != 0) {
1904 		device_printf(sc->sc_dev,
1905 		    "%s: could not create RX buf DMA tag, error %d\n",
1906 		    __func__, error);
1907 		goto fail;
1908 	}
1909 
1910 	/*
1911 	 * Allocate and map RX buffers.
1912 	 */
1913 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1914 		struct iwn_rx_data *data = &ring->data[i];
1915 		bus_addr_t paddr;
1916 
1917 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1918 		if (error != 0) {
1919 			device_printf(sc->sc_dev,
1920 			    "%s: could not create RX buf DMA map, error %d\n",
1921 			    __func__, error);
1922 			goto fail;
1923 		}
1924 
1925 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
1926 				   IWN_RBUF_SIZE);
1927 		if (data->m == NULL) {
1928 			device_printf(sc->sc_dev,
1929 			    "%s: could not allocate RX mbuf\n", __func__);
1930 			error = ENOBUFS;
1931 			goto fail;
1932 		}
1933 
1934 		error = bus_dmamap_load(ring->data_dmat, data->map,
1935 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1936 		    &paddr, BUS_DMA_NOWAIT);
1937 		if (error != 0 && error != EFBIG) {
1938 			device_printf(sc->sc_dev,
1939 			    "%s: can't not map mbuf, error %d\n", __func__,
1940 			    error);
1941 			goto fail;
1942 		}
1943 
1944 		/* Set physical address of RX buffer (256-byte aligned). */
1945 		ring->desc[i] = htole32(paddr >> 8);
1946 	}
1947 
1948 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1949 	    BUS_DMASYNC_PREWRITE);
1950 
1951 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
1952 
1953 	return 0;
1954 
1955 fail:	iwn_free_rx_ring(sc, ring);
1956 
1957 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
1958 
1959 	return error;
1960 }
1961 
1962 static void
1963 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1964 {
1965 	int ntries;
1966 
1967 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
1968 
1969 	if (iwn_nic_lock(sc) == 0) {
1970 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1971 		for (ntries = 0; ntries < 1000; ntries++) {
1972 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1973 			    IWN_FH_RX_STATUS_IDLE)
1974 				break;
1975 			DELAY(10);
1976 		}
1977 		iwn_nic_unlock(sc);
1978 	}
1979 	ring->cur = 0;
1980 	sc->last_rx_valid = 0;
1981 }
1982 
1983 static void
1984 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1985 {
1986 	int i;
1987 
1988 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1989 
1990 	iwn_dma_contig_free(&ring->desc_dma);
1991 	iwn_dma_contig_free(&ring->stat_dma);
1992 
1993 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1994 		struct iwn_rx_data *data = &ring->data[i];
1995 
1996 		if (data->m != NULL) {
1997 			bus_dmamap_sync(ring->data_dmat, data->map,
1998 			    BUS_DMASYNC_POSTREAD);
1999 			bus_dmamap_unload(ring->data_dmat, data->map);
2000 			m_freem(data->m);
2001 			data->m = NULL;
2002 		}
2003 		if (data->map != NULL)
2004 			bus_dmamap_destroy(ring->data_dmat, data->map);
2005 	}
2006 	if (ring->data_dmat != NULL) {
2007 		bus_dma_tag_destroy(ring->data_dmat);
2008 		ring->data_dmat = NULL;
2009 	}
2010 }
2011 
2012 static int
2013 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
2014 {
2015 	bus_addr_t paddr;
2016 	bus_size_t size;
2017 	int i, error;
2018 
2019 	ring->qid = qid;
2020 	ring->queued = 0;
2021 	ring->cur = 0;
2022 
2023 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2024 
2025 	/* Allocate TX descriptors (256-byte aligned). */
2026 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
2027 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
2028 	    size, 256);
2029 	if (error != 0) {
2030 		device_printf(sc->sc_dev,
2031 		    "%s: could not allocate TX ring DMA memory, error %d\n",
2032 		    __func__, error);
2033 		goto fail;
2034 	}
2035 
2036 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
2037 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
2038 	    size, 4);
2039 	if (error != 0) {
2040 		device_printf(sc->sc_dev,
2041 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
2042 		    __func__, error);
2043 		goto fail;
2044 	}
2045 
2046 #if defined(__DragonFly__)
2047 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1,
2048 				   0,
2049 				   BUS_SPACE_MAXADDR_32BIT,
2050 				   BUS_SPACE_MAXADDR,
2051 				   NULL, NULL,
2052 				   MCLBYTES, IWN_MAX_SCATTER - 1, MCLBYTES,
2053 				   BUS_DMA_NOWAIT, &ring->data_dmat);
2054 #else
2055 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
2056 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
2057 	    IWN_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
2058 	    &ring->data_dmat);
2059 #endif
2060 	if (error != 0) {
2061 		device_printf(sc->sc_dev,
2062 		    "%s: could not create TX buf DMA tag, error %d\n",
2063 		    __func__, error);
2064 		goto fail;
2065 	}
2066 
2067 	paddr = ring->cmd_dma.paddr;
2068 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2069 		struct iwn_tx_data *data = &ring->data[i];
2070 
2071 		data->cmd_paddr = paddr;
2072 		data->scratch_paddr = paddr + 12;
2073 		paddr += sizeof (struct iwn_tx_cmd);
2074 
2075 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2076 		if (error != 0) {
2077 			device_printf(sc->sc_dev,
2078 			    "%s: could not create TX buf DMA map, error %d\n",
2079 			    __func__, error);
2080 			goto fail;
2081 		}
2082 	}
2083 
2084 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2085 
2086 	return 0;
2087 
2088 fail:	iwn_free_tx_ring(sc, ring);
2089 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2090 	return error;
2091 }
2092 
2093 static void
2094 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2095 {
2096 	int i;
2097 
2098 	DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__);
2099 
2100 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2101 		struct iwn_tx_data *data = &ring->data[i];
2102 
2103 		if (data->m != NULL) {
2104 			bus_dmamap_sync(ring->data_dmat, data->map,
2105 			    BUS_DMASYNC_POSTWRITE);
2106 			bus_dmamap_unload(ring->data_dmat, data->map);
2107 			m_freem(data->m);
2108 			data->m = NULL;
2109 		}
2110 	}
2111 	/* Clear TX descriptors. */
2112 	memset(ring->desc, 0, ring->desc_dma.size);
2113 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2114 	    BUS_DMASYNC_PREWRITE);
2115 	sc->qfullmsk &= ~(1 << ring->qid);
2116 	ring->queued = 0;
2117 	ring->cur = 0;
2118 }
2119 
2120 static void
2121 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2122 {
2123 	int i;
2124 
2125 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
2126 
2127 	iwn_dma_contig_free(&ring->desc_dma);
2128 	iwn_dma_contig_free(&ring->cmd_dma);
2129 
2130 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2131 		struct iwn_tx_data *data = &ring->data[i];
2132 
2133 		if (data->m != NULL) {
2134 			bus_dmamap_sync(ring->data_dmat, data->map,
2135 			    BUS_DMASYNC_POSTWRITE);
2136 			bus_dmamap_unload(ring->data_dmat, data->map);
2137 			m_freem(data->m);
2138 		}
2139 		if (data->map != NULL)
2140 			bus_dmamap_destroy(ring->data_dmat, data->map);
2141 	}
2142 	if (ring->data_dmat != NULL) {
2143 		bus_dma_tag_destroy(ring->data_dmat);
2144 		ring->data_dmat = NULL;
2145 	}
2146 }
2147 
2148 static void
2149 iwn5000_ict_reset(struct iwn_softc *sc)
2150 {
2151 	/* Disable interrupts. */
2152 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2153 
2154 	/* Reset ICT table. */
2155 	memset(sc->ict, 0, IWN_ICT_SIZE);
2156 	sc->ict_cur = 0;
2157 
2158 	/* Set physical address of ICT table (4KB aligned). */
2159 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
2160 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
2161 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
2162 
2163 	/* Enable periodic RX interrupt. */
2164 	sc->int_mask |= IWN_INT_RX_PERIODIC;
2165 	/* Switch to ICT interrupt mode in driver. */
2166 	sc->sc_flags |= IWN_FLAG_USE_ICT;
2167 
2168 	/* Re-enable interrupts. */
2169 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
2170 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2171 }
2172 
2173 static int
2174 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2175 {
2176 	struct iwn_ops *ops = &sc->ops;
2177 	uint16_t val;
2178 	int error;
2179 
2180 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2181 
2182 	/* Check whether adapter has an EEPROM or an OTPROM. */
2183 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
2184 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
2185 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
2186 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
2187 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
2188 
2189 	/* Adapter has to be powered on for EEPROM access to work. */
2190 	if ((error = iwn_apm_init(sc)) != 0) {
2191 		device_printf(sc->sc_dev,
2192 		    "%s: could not power ON adapter, error %d\n", __func__,
2193 		    error);
2194 		return error;
2195 	}
2196 
2197 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
2198 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
2199 		return EIO;
2200 	}
2201 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2202 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
2203 		    __func__, error);
2204 		return error;
2205 	}
2206 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
2207 		if ((error = iwn_init_otprom(sc)) != 0) {
2208 			device_printf(sc->sc_dev,
2209 			    "%s: could not initialize OTPROM, error %d\n",
2210 			    __func__, error);
2211 			return error;
2212 		}
2213 	}
2214 
2215 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
2216 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
2217 	/* Check if HT support is bonded out. */
2218 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
2219 		sc->sc_flags |= IWN_FLAG_HAS_11N;
2220 
2221 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
2222 	sc->rfcfg = le16toh(val);
2223 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
2224 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
2225 	if (sc->txchainmask == 0)
2226 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
2227 	if (sc->rxchainmask == 0)
2228 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
2229 
2230 	/* Read MAC address. */
2231 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
2232 
2233 	/* Read adapter-specific information from EEPROM. */
2234 	ops->read_eeprom(sc);
2235 
2236 	iwn_apm_stop(sc);	/* Power OFF adapter. */
2237 
2238 	iwn_eeprom_unlock(sc);
2239 
2240 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2241 
2242 	return 0;
2243 }
2244 
2245 static void
2246 iwn4965_read_eeprom(struct iwn_softc *sc)
2247 {
2248 	uint32_t addr;
2249 	uint16_t val;
2250 	int i;
2251 
2252 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2253 
2254 	/* Read regulatory domain (4 ASCII characters). */
2255 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
2256 
2257 	/* Read the list of authorized channels (20MHz ones only). */
2258 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2259 		addr = iwn4965_regulatory_bands[i];
2260 		iwn_read_eeprom_channels(sc, i, addr);
2261 	}
2262 
2263 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
2264 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
2265 	sc->maxpwr2GHz = val & 0xff;
2266 	sc->maxpwr5GHz = val >> 8;
2267 	/* Check that EEPROM values are within valid range. */
2268 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2269 		sc->maxpwr5GHz = 38;
2270 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2271 		sc->maxpwr2GHz = 38;
2272 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2273 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2274 
2275 	/* Read samples for each TX power group. */
2276 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
2277 	    sizeof sc->bands);
2278 
2279 	/* Read voltage at which samples were taken. */
2280 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
2281 	sc->eeprom_voltage = (int16_t)le16toh(val);
2282 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2283 	    sc->eeprom_voltage);
2284 
2285 #ifdef IWN_DEBUG
2286 	/* Print samples. */
2287 	if (sc->sc_debug & IWN_DEBUG_ANY) {
2288 		for (i = 0; i < IWN_NBANDS - 1; i++)
2289 			iwn4965_print_power_group(sc, i);
2290 	}
2291 #endif
2292 
2293 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2294 }
2295 
2296 #ifdef IWN_DEBUG
2297 static void
2298 iwn4965_print_power_group(struct iwn_softc *sc, int i)
2299 {
2300 	struct iwn4965_eeprom_band *band = &sc->bands[i];
2301 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
2302 	int j, c;
2303 
2304 	kprintf("===band %d===\n", i);
2305 	kprintf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2306 	kprintf("chan1 num=%d\n", chans[0].num);
2307 	for (c = 0; c < 2; c++) {
2308 		for (j = 0; j < IWN_NSAMPLES; j++) {
2309 			kprintf("chain %d, sample %d: temp=%d gain=%d "
2310 			    "power=%d pa_det=%d\n", c, j,
2311 			    chans[0].samples[c][j].temp,
2312 			    chans[0].samples[c][j].gain,
2313 			    chans[0].samples[c][j].power,
2314 			    chans[0].samples[c][j].pa_det);
2315 		}
2316 	}
2317 	kprintf("chan2 num=%d\n", chans[1].num);
2318 	for (c = 0; c < 2; c++) {
2319 		for (j = 0; j < IWN_NSAMPLES; j++) {
2320 			kprintf("chain %d, sample %d: temp=%d gain=%d "
2321 			    "power=%d pa_det=%d\n", c, j,
2322 			    chans[1].samples[c][j].temp,
2323 			    chans[1].samples[c][j].gain,
2324 			    chans[1].samples[c][j].power,
2325 			    chans[1].samples[c][j].pa_det);
2326 		}
2327 	}
2328 }
2329 #endif
2330 
2331 static void
2332 iwn5000_read_eeprom(struct iwn_softc *sc)
2333 {
2334 	struct iwn5000_eeprom_calib_hdr hdr;
2335 	int32_t volt;
2336 	uint32_t base, addr;
2337 	uint16_t val;
2338 	int i;
2339 
2340 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2341 
2342 	/* Read regulatory domain (4 ASCII characters). */
2343 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2344 	base = le16toh(val);
2345 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
2346 	    sc->eeprom_domain, 4);
2347 
2348 	/* Read the list of authorized channels (20MHz ones only). */
2349 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2350 		addr =  base + sc->base_params->regulatory_bands[i];
2351 		iwn_read_eeprom_channels(sc, i, addr);
2352 	}
2353 
2354 	/* Read enhanced TX power information for 6000 Series. */
2355 	if (sc->base_params->enhanced_TX_power)
2356 		iwn_read_eeprom_enhinfo(sc);
2357 
2358 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
2359 	base = le16toh(val);
2360 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
2361 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2362 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
2363 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
2364 	sc->calib_ver = hdr.version;
2365 
2366 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
2367 		sc->eeprom_voltage = le16toh(hdr.volt);
2368 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2369 		sc->eeprom_temp_high=le16toh(val);
2370 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2371 		sc->eeprom_temp = le16toh(val);
2372 	}
2373 
2374 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
2375 		/* Compute temperature offset. */
2376 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2377 		sc->eeprom_temp = le16toh(val);
2378 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2379 		volt = le16toh(val);
2380 		sc->temp_off = sc->eeprom_temp - (volt / -5);
2381 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
2382 		    sc->eeprom_temp, volt, sc->temp_off);
2383 	} else {
2384 		/* Read crystal calibration. */
2385 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
2386 		    &sc->eeprom_crystal, sizeof (uint32_t));
2387 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
2388 		    le32toh(sc->eeprom_crystal));
2389 	}
2390 
2391 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2392 
2393 }
2394 
2395 /*
2396  * Translate EEPROM flags to net80211.
2397  */
2398 static uint32_t
2399 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
2400 {
2401 	uint32_t nflags;
2402 
2403 	nflags = 0;
2404 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2405 		nflags |= IEEE80211_CHAN_PASSIVE;
2406 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
2407 		nflags |= IEEE80211_CHAN_NOADHOC;
2408 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
2409 		nflags |= IEEE80211_CHAN_DFS;
2410 		/* XXX apparently IBSS may still be marked */
2411 		nflags |= IEEE80211_CHAN_NOADHOC;
2412 	}
2413 
2414 	return nflags;
2415 }
2416 
2417 static void
2418 iwn_read_eeprom_band(struct iwn_softc *sc, int n)
2419 {
2420 	struct ifnet *ifp = sc->sc_ifp;
2421 	struct ieee80211com *ic = ifp->if_l2com;
2422 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2423 	const struct iwn_chan_band *band = &iwn_bands[n];
2424 	struct ieee80211_channel *c;
2425 	uint8_t chan;
2426 	int i, nflags;
2427 
2428 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2429 
2430 	for (i = 0; i < band->nchan; i++) {
2431 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2432 			DPRINTF(sc, IWN_DEBUG_RESET,
2433 			    "skip chan %d flags 0x%x maxpwr %d\n",
2434 			    band->chan[i], channels[i].flags,
2435 			    channels[i].maxpwr);
2436 			continue;
2437 		}
2438 		chan = band->chan[i];
2439 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2440 
2441 		c = &ic->ic_channels[ic->ic_nchans++];
2442 		c->ic_ieee = chan;
2443 		c->ic_maxregpower = channels[i].maxpwr;
2444 		c->ic_maxpower = 2*c->ic_maxregpower;
2445 
2446 		if (n == 0) {	/* 2GHz band */
2447 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G);
2448 			/* G =>'s B is supported */
2449 			c->ic_flags = IEEE80211_CHAN_B | nflags;
2450 			c = &ic->ic_channels[ic->ic_nchans++];
2451 			c[0] = c[-1];
2452 			c->ic_flags = IEEE80211_CHAN_G | nflags;
2453 		} else {	/* 5GHz band */
2454 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
2455 			c->ic_flags = IEEE80211_CHAN_A | nflags;
2456 		}
2457 
2458 		/* Save maximum allowed TX power for this channel. */
2459 		sc->maxpwr[chan] = channels[i].maxpwr;
2460 
2461 		DPRINTF(sc, IWN_DEBUG_RESET,
2462 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
2463 		    channels[i].flags, channels[i].maxpwr);
2464 
2465 		if (sc->sc_flags & IWN_FLAG_HAS_11N) {
2466 			/* add HT20, HT40 added separately */
2467 			c = &ic->ic_channels[ic->ic_nchans++];
2468 			c[0] = c[-1];
2469 			c->ic_flags |= IEEE80211_CHAN_HT20;
2470 		}
2471 	}
2472 
2473 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2474 
2475 }
2476 
2477 static void
2478 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n)
2479 {
2480 	struct ifnet *ifp = sc->sc_ifp;
2481 	struct ieee80211com *ic = ifp->if_l2com;
2482 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2483 	const struct iwn_chan_band *band = &iwn_bands[n];
2484 	struct ieee80211_channel *c, *cent, *extc;
2485 	uint8_t chan;
2486 	int i, nflags;
2487 
2488 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__);
2489 
2490 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) {
2491 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__);
2492 		return;
2493 	}
2494 
2495 	for (i = 0; i < band->nchan; i++) {
2496 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2497 			DPRINTF(sc, IWN_DEBUG_RESET,
2498 			    "skip chan %d flags 0x%x maxpwr %d\n",
2499 			    band->chan[i], channels[i].flags,
2500 			    channels[i].maxpwr);
2501 			continue;
2502 		}
2503 		chan = band->chan[i];
2504 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2505 
2506 		/*
2507 		 * Each entry defines an HT40 channel pair; find the
2508 		 * center channel, then the extension channel above.
2509 		 */
2510 		cent = ieee80211_find_channel_byieee(ic, chan,
2511 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
2512 		if (cent == NULL) {	/* XXX shouldn't happen */
2513 			device_printf(sc->sc_dev,
2514 			    "%s: no entry for channel %d\n", __func__, chan);
2515 			continue;
2516 		}
2517 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
2518 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
2519 		if (extc == NULL) {
2520 			DPRINTF(sc, IWN_DEBUG_RESET,
2521 			    "%s: skip chan %d, extension channel not found\n",
2522 			    __func__, chan);
2523 			continue;
2524 		}
2525 
2526 		DPRINTF(sc, IWN_DEBUG_RESET,
2527 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2528 		    chan, channels[i].flags, channels[i].maxpwr);
2529 
2530 		c = &ic->ic_channels[ic->ic_nchans++];
2531 		c[0] = cent[0];
2532 		c->ic_extieee = extc->ic_ieee;
2533 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2534 		c->ic_flags |= IEEE80211_CHAN_HT40U | nflags;
2535 		c = &ic->ic_channels[ic->ic_nchans++];
2536 		c[0] = extc[0];
2537 		c->ic_extieee = cent->ic_ieee;
2538 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2539 		c->ic_flags |= IEEE80211_CHAN_HT40D | nflags;
2540 	}
2541 
2542 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2543 
2544 }
2545 
2546 static void
2547 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2548 {
2549 	struct ifnet *ifp = sc->sc_ifp;
2550 	struct ieee80211com *ic = ifp->if_l2com;
2551 
2552 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
2553 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
2554 
2555 	if (n < 5)
2556 		iwn_read_eeprom_band(sc, n);
2557 	else
2558 		iwn_read_eeprom_ht40(sc, n);
2559 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2560 }
2561 
2562 static struct iwn_eeprom_chan *
2563 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
2564 {
2565 	int band, chan, i, j;
2566 
2567 	if (IEEE80211_IS_CHAN_HT40(c)) {
2568 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
2569 		if (IEEE80211_IS_CHAN_HT40D(c))
2570 			chan = c->ic_extieee;
2571 		else
2572 			chan = c->ic_ieee;
2573 		for (i = 0; i < iwn_bands[band].nchan; i++) {
2574 			if (iwn_bands[band].chan[i] == chan)
2575 				return &sc->eeprom_channels[band][i];
2576 		}
2577 	} else {
2578 		for (j = 0; j < 5; j++) {
2579 			for (i = 0; i < iwn_bands[j].nchan; i++) {
2580 				if (iwn_bands[j].chan[i] == c->ic_ieee)
2581 					return &sc->eeprom_channels[j][i];
2582 			}
2583 		}
2584 	}
2585 	return NULL;
2586 }
2587 
2588 /*
2589  * Enforce flags read from EEPROM.
2590  */
2591 static int
2592 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
2593     int nchan, struct ieee80211_channel chans[])
2594 {
2595 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2596 	int i;
2597 
2598 	for (i = 0; i < nchan; i++) {
2599 		struct ieee80211_channel *c = &chans[i];
2600 		struct iwn_eeprom_chan *channel;
2601 
2602 		channel = iwn_find_eeprom_channel(sc, c);
2603 		if (channel == NULL) {
2604 			if_printf(ic->ic_ifp,
2605 			    "%s: invalid channel %u freq %u/0x%x\n",
2606 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2607 			return EINVAL;
2608 		}
2609 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2610 	}
2611 
2612 	return 0;
2613 }
2614 
2615 static void
2616 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2617 {
2618 	struct iwn_eeprom_enhinfo enhinfo[35];
2619 	struct ifnet *ifp = sc->sc_ifp;
2620 	struct ieee80211com *ic = ifp->if_l2com;
2621 	struct ieee80211_channel *c;
2622 	uint16_t val, base;
2623 	int8_t maxpwr;
2624 	uint8_t flags;
2625 	int i, j;
2626 
2627 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2628 
2629 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2630 	base = le16toh(val);
2631 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2632 	    enhinfo, sizeof enhinfo);
2633 
2634 	for (i = 0; i < nitems(enhinfo); i++) {
2635 		flags = enhinfo[i].flags;
2636 		if (!(flags & IWN_ENHINFO_VALID))
2637 			continue;	/* Skip invalid entries. */
2638 
2639 		maxpwr = 0;
2640 		if (sc->txchainmask & IWN_ANT_A)
2641 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2642 		if (sc->txchainmask & IWN_ANT_B)
2643 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2644 		if (sc->txchainmask & IWN_ANT_C)
2645 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2646 		if (sc->ntxchains == 2)
2647 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2648 		else if (sc->ntxchains == 3)
2649 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2650 
2651 		for (j = 0; j < ic->ic_nchans; j++) {
2652 			c = &ic->ic_channels[j];
2653 			if ((flags & IWN_ENHINFO_5GHZ)) {
2654 				if (!IEEE80211_IS_CHAN_A(c))
2655 					continue;
2656 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2657 				if (!IEEE80211_IS_CHAN_G(c))
2658 					continue;
2659 			} else if (!IEEE80211_IS_CHAN_B(c))
2660 				continue;
2661 			if ((flags & IWN_ENHINFO_HT40)) {
2662 				if (!IEEE80211_IS_CHAN_HT40(c))
2663 					continue;
2664 			} else {
2665 				if (IEEE80211_IS_CHAN_HT40(c))
2666 					continue;
2667 			}
2668 			if (enhinfo[i].chan != 0 &&
2669 			    enhinfo[i].chan != c->ic_ieee)
2670 				continue;
2671 
2672 			DPRINTF(sc, IWN_DEBUG_RESET,
2673 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2674 			    c->ic_flags, maxpwr / 2);
2675 			c->ic_maxregpower = maxpwr / 2;
2676 			c->ic_maxpower = maxpwr;
2677 		}
2678 	}
2679 
2680 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2681 
2682 }
2683 
2684 static struct ieee80211_node *
2685 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2686 {
2687 	return (kmalloc(sizeof (struct iwn_node),
2688 		        M_80211_NODE, M_INTWAIT | M_ZERO));
2689 }
2690 
2691 static __inline int
2692 rate2plcp(int rate)
2693 {
2694 	switch (rate & 0xff) {
2695 	case 12:	return 0xd;
2696 	case 18:	return 0xf;
2697 	case 24:	return 0x5;
2698 	case 36:	return 0x7;
2699 	case 48:	return 0x9;
2700 	case 72:	return 0xb;
2701 	case 96:	return 0x1;
2702 	case 108:	return 0x3;
2703 	case 2:		return 10;
2704 	case 4:		return 20;
2705 	case 11:	return 55;
2706 	case 22:	return 110;
2707 	}
2708 	return 0;
2709 }
2710 
2711 static int
2712 iwn_get_1stream_tx_antmask(struct iwn_softc *sc)
2713 {
2714 
2715 	return IWN_LSB(sc->txchainmask);
2716 }
2717 
2718 static int
2719 iwn_get_2stream_tx_antmask(struct iwn_softc *sc)
2720 {
2721 	int tx;
2722 
2723 	/*
2724 	 * The '2 stream' setup is a bit .. odd.
2725 	 *
2726 	 * For NICs that support only 1 antenna, default to IWN_ANT_AB or
2727 	 * the firmware panics (eg Intel 5100.)
2728 	 *
2729 	 * For NICs that support two antennas, we use ANT_AB.
2730 	 *
2731 	 * For NICs that support three antennas, we use the two that
2732 	 * wasn't the default one.
2733 	 *
2734 	 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict
2735 	 * this to only one antenna.
2736 	 */
2737 
2738 	/* Default - transmit on the other antennas */
2739 	tx = (sc->txchainmask & ~IWN_LSB(sc->txchainmask));
2740 
2741 	/* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */
2742 	if (tx == 0)
2743 		tx = IWN_ANT_AB;
2744 
2745 	/*
2746 	 * If the NIC is a two-stream TX NIC, configure the TX mask to
2747 	 * the default chainmask
2748 	 */
2749 	else if (sc->ntxchains == 2)
2750 		tx = sc->txchainmask;
2751 
2752 	return (tx);
2753 }
2754 
2755 
2756 
2757 /*
2758  * Calculate the required PLCP value from the given rate,
2759  * to the given node.
2760  *
2761  * This will take the node configuration (eg 11n, rate table
2762  * setup, etc) into consideration.
2763  */
2764 static uint32_t
2765 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2766     uint8_t rate)
2767 {
2768 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
2769 	struct ieee80211com *ic = ni->ni_ic;
2770 	uint32_t plcp = 0;
2771 	int ridx;
2772 
2773 	/*
2774 	 * If it's an MCS rate, let's set the plcp correctly
2775 	 * and set the relevant flags based on the node config.
2776 	 */
2777 	if (rate & IEEE80211_RATE_MCS) {
2778 		/*
2779 		 * Set the initial PLCP value to be between 0->31 for
2780 		 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2781 		 * flag.
2782 		 */
2783 		plcp = RV(rate) | IWN_RFLAG_MCS;
2784 
2785 		/*
2786 		 * XXX the following should only occur if both
2787 		 * the local configuration _and_ the remote node
2788 		 * advertise these capabilities.  Thus this code
2789 		 * may need fixing!
2790 		 */
2791 
2792 		/*
2793 		 * Set the channel width and guard interval.
2794 		 */
2795 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2796 			plcp |= IWN_RFLAG_HT40;
2797 			if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2798 				plcp |= IWN_RFLAG_SGI;
2799 		} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) {
2800 			plcp |= IWN_RFLAG_SGI;
2801 		}
2802 
2803 		/*
2804 		 * Ensure the selected rate matches the link quality
2805 		 * table entries being used.
2806 		 */
2807 		if (rate > 0x8f)
2808 			plcp |= IWN_RFLAG_ANT(sc->txchainmask);
2809 		else if (rate > 0x87)
2810 			plcp |= IWN_RFLAG_ANT(iwn_get_2stream_tx_antmask(sc));
2811 		else
2812 			plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2813 	} else {
2814 		/*
2815 		 * Set the initial PLCP - fine for both
2816 		 * OFDM and CCK rates.
2817 		 */
2818 		plcp = rate2plcp(rate);
2819 
2820 		/* Set CCK flag if it's CCK */
2821 
2822 		/* XXX It would be nice to have a method
2823 		 * to map the ridx -> phy table entry
2824 		 * so we could just query that, rather than
2825 		 * this hack to check against IWN_RIDX_OFDM6.
2826 		 */
2827 		ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2828 		    rate & IEEE80211_RATE_VAL);
2829 		if (ridx < IWN_RIDX_OFDM6 &&
2830 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2831 			plcp |= IWN_RFLAG_CCK;
2832 
2833 		/* Set antenna configuration */
2834 		/* XXX TODO: is this the right antenna to use for legacy? */
2835 		plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2836 	}
2837 
2838 	DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2839 	    __func__,
2840 	    rate,
2841 	    plcp);
2842 
2843 	return (htole32(plcp));
2844 #undef	RV
2845 }
2846 
2847 static void
2848 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2849 {
2850 	/* Doesn't do anything at the moment */
2851 }
2852 
2853 static int
2854 iwn_media_change(struct ifnet *ifp)
2855 {
2856 	int error;
2857 
2858 	error = ieee80211_media_change(ifp);
2859 	/* NB: only the fixed rate can change and that doesn't need a reset */
2860 	return (error == ENETRESET ? 0 : error);
2861 }
2862 
2863 static int
2864 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2865 {
2866 	struct iwn_vap *ivp = IWN_VAP(vap);
2867 	struct ieee80211com *ic = vap->iv_ic;
2868 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2869 	int error = 0;
2870 
2871 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2872 
2873 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2874 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2875 
2876 	IEEE80211_UNLOCK(ic);
2877 	IWN_LOCK(sc);
2878 #if defined(__DragonFly__)
2879 	callout_stop_sync(&sc->calib_to);
2880 #else
2881 	callout_stop(&sc->calib_to);
2882 #endif
2883 
2884 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
2885 
2886 	switch (nstate) {
2887 	case IEEE80211_S_ASSOC:
2888 		if (vap->iv_state != IEEE80211_S_RUN)
2889 			break;
2890 		/* FALLTHROUGH */
2891 	case IEEE80211_S_AUTH:
2892 		if (vap->iv_state == IEEE80211_S_AUTH)
2893 			break;
2894 
2895 		/*
2896 		 * !AUTH -> AUTH transition requires state reset to handle
2897 		 * reassociations correctly.
2898 		 */
2899 		sc->rxon->associd = 0;
2900 		sc->rxon->filter &= ~htole32(IWN_FILTER_BSS);
2901 		sc->calib.state = IWN_CALIB_STATE_INIT;
2902 
2903 		if ((error = iwn_auth(sc, vap)) != 0) {
2904 			device_printf(sc->sc_dev,
2905 			    "%s: could not move to auth state\n", __func__);
2906 		}
2907 		break;
2908 
2909 	case IEEE80211_S_RUN:
2910 		/*
2911 		 * RUN -> RUN transition; Just restart the timers.
2912 		 */
2913 		if (vap->iv_state == IEEE80211_S_RUN) {
2914 			sc->calib_cnt = 0;
2915 			break;
2916 		}
2917 
2918 		/*
2919 		 * !RUN -> RUN requires setting the association id
2920 		 * which is done with a firmware cmd.  We also defer
2921 		 * starting the timers until that work is done.
2922 		 */
2923 		if ((error = iwn_run(sc, vap)) != 0) {
2924 			device_printf(sc->sc_dev,
2925 			    "%s: could not move to run state\n", __func__);
2926 		}
2927 		break;
2928 
2929 	case IEEE80211_S_INIT:
2930 		sc->calib.state = IWN_CALIB_STATE_INIT;
2931 		break;
2932 
2933 	default:
2934 		break;
2935 	}
2936 	IWN_UNLOCK(sc);
2937 	IEEE80211_LOCK(ic);
2938 	if (error != 0){
2939 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2940 		return error;
2941 	}
2942 
2943 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2944 
2945 	return ivp->iv_newstate(vap, nstate, arg);
2946 }
2947 
2948 static void
2949 iwn_calib_timeout(void *arg)
2950 {
2951 	struct iwn_softc *sc = arg;
2952 
2953 	IWN_LOCK_ASSERT(sc);
2954 
2955 	/* Force automatic TX power calibration every 60 secs. */
2956 	if (++sc->calib_cnt >= 120) {
2957 		uint32_t flags = 0;
2958 
2959 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2960 		    "sending request for statistics");
2961 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2962 		    sizeof flags, 1);
2963 		sc->calib_cnt = 0;
2964 	}
2965 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2966 	    sc);
2967 }
2968 
2969 /*
2970  * Process an RX_PHY firmware notification.  This is usually immediately
2971  * followed by an MPDU_RX_DONE notification.
2972  */
2973 static void
2974 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2975     struct iwn_rx_data *data)
2976 {
2977 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2978 
2979 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2980 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2981 
2982 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2983 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2984 	sc->last_rx_valid = 1;
2985 }
2986 
2987 /*
2988  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2989  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2990  */
2991 static void
2992 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2993     struct iwn_rx_data *data)
2994 {
2995 	struct iwn_ops *ops = &sc->ops;
2996 	struct ifnet *ifp = sc->sc_ifp;
2997 	struct ieee80211com *ic = ifp->if_l2com;
2998 	struct iwn_rx_ring *ring = &sc->rxq;
2999 	struct ieee80211_frame *wh;
3000 	struct ieee80211_node *ni;
3001 	struct mbuf *m, *m1;
3002 	struct iwn_rx_stat *stat;
3003 	caddr_t head;
3004 	bus_addr_t paddr;
3005 	uint32_t flags;
3006 	int error, len, rssi, nf;
3007 
3008 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3009 
3010 	if (desc->type == IWN_MPDU_RX_DONE) {
3011 		/* Check for prior RX_PHY notification. */
3012 		if (!sc->last_rx_valid) {
3013 			DPRINTF(sc, IWN_DEBUG_ANY,
3014 			    "%s: missing RX_PHY\n", __func__);
3015 			return;
3016 		}
3017 		stat = &sc->last_rx_stat;
3018 	} else
3019 		stat = (struct iwn_rx_stat *)(desc + 1);
3020 
3021 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3022 
3023 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
3024 		device_printf(sc->sc_dev,
3025 		    "%s: invalid RX statistic header, len %d\n", __func__,
3026 		    stat->cfg_phy_len);
3027 		return;
3028 	}
3029 	if (desc->type == IWN_MPDU_RX_DONE) {
3030 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
3031 		head = (caddr_t)(mpdu + 1);
3032 		len = le16toh(mpdu->len);
3033 	} else {
3034 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
3035 		len = le16toh(stat->len);
3036 	}
3037 
3038 	flags = le32toh(*(uint32_t *)(head + len));
3039 
3040 	/* Discard frames with a bad FCS early. */
3041 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
3042 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
3043 		    __func__, flags);
3044 #if defined(__DragonFly__)
3045 		++ifp->if_ierrors;
3046 #else
3047 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3048 #endif
3049 		return;
3050 	}
3051 	/* Discard frames that are too short. */
3052 	if (len < sizeof (*wh)) {
3053 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
3054 		    __func__, len);
3055 #if defined(__DragonFly__)
3056 		++ifp->if_ierrors;
3057 #else
3058 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3059 #endif
3060 		return;
3061 	}
3062 
3063 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
3064 	if (m1 == NULL) {
3065 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
3066 		    __func__);
3067 #if defined(__DragonFly__)
3068 		++ifp->if_ierrors;
3069 #else
3070 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3071 #endif
3072 		return;
3073 	}
3074 	bus_dmamap_unload(ring->data_dmat, data->map);
3075 
3076 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
3077 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3078 	if (error != 0 && error != EFBIG) {
3079 		device_printf(sc->sc_dev,
3080 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
3081 		m_freem(m1);
3082 
3083 		/* Try to reload the old mbuf. */
3084 		error = bus_dmamap_load(ring->data_dmat, data->map,
3085 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
3086 		    &paddr, BUS_DMA_NOWAIT);
3087 		if (error != 0 && error != EFBIG) {
3088 			panic("%s: could not load old RX mbuf", __func__);
3089 		}
3090 		/* Physical address may have changed. */
3091 		ring->desc[ring->cur] = htole32(paddr >> 8);
3092 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
3093 		    BUS_DMASYNC_PREWRITE);
3094 #if defined(__DragonFly__)
3095 		++ifp->if_ierrors;
3096 #else
3097 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3098 #endif
3099 		return;
3100 	}
3101 
3102 	m = data->m;
3103 	data->m = m1;
3104 	/* Update RX descriptor. */
3105 	ring->desc[ring->cur] = htole32(paddr >> 8);
3106 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3107 	    BUS_DMASYNC_PREWRITE);
3108 
3109 	/* Finalize mbuf. */
3110 	m->m_pkthdr.rcvif = ifp;
3111 	m->m_data = head;
3112 	m->m_pkthdr.len = m->m_len = len;
3113 
3114 	/* Grab a reference to the source node. */
3115 	wh = mtod(m, struct ieee80211_frame *);
3116 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
3117 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
3118 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
3119 
3120 	rssi = ops->get_rssi(sc, stat);
3121 
3122 	if (ieee80211_radiotap_active(ic)) {
3123 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
3124 
3125 		tap->wr_flags = 0;
3126 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
3127 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3128 		tap->wr_dbm_antsignal = (int8_t)rssi;
3129 		tap->wr_dbm_antnoise = (int8_t)nf;
3130 		tap->wr_tsft = stat->tstamp;
3131 		switch (stat->rate) {
3132 		/* CCK rates. */
3133 		case  10: tap->wr_rate =   2; break;
3134 		case  20: tap->wr_rate =   4; break;
3135 		case  55: tap->wr_rate =  11; break;
3136 		case 110: tap->wr_rate =  22; break;
3137 		/* OFDM rates. */
3138 		case 0xd: tap->wr_rate =  12; break;
3139 		case 0xf: tap->wr_rate =  18; break;
3140 		case 0x5: tap->wr_rate =  24; break;
3141 		case 0x7: tap->wr_rate =  36; break;
3142 		case 0x9: tap->wr_rate =  48; break;
3143 		case 0xb: tap->wr_rate =  72; break;
3144 		case 0x1: tap->wr_rate =  96; break;
3145 		case 0x3: tap->wr_rate = 108; break;
3146 		/* Unknown rate: should not happen. */
3147 		default:  tap->wr_rate =   0;
3148 		}
3149 	}
3150 
3151 	IWN_UNLOCK(sc);
3152 
3153 	/* Send the frame to the 802.11 layer. */
3154 	if (ni != NULL) {
3155 		if (ni->ni_flags & IEEE80211_NODE_HT)
3156 			m->m_flags |= M_AMPDU;
3157 		(void)ieee80211_input(ni, m, rssi - nf, nf);
3158 		/* Node is no longer needed. */
3159 		ieee80211_free_node(ni);
3160 	} else
3161 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
3162 
3163 	IWN_LOCK(sc);
3164 
3165 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3166 
3167 }
3168 
3169 /* Process an incoming Compressed BlockAck. */
3170 static void
3171 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3172     struct iwn_rx_data *data)
3173 {
3174 	struct iwn_ops *ops = &sc->ops;
3175 	struct ifnet *ifp = sc->sc_ifp;
3176 	struct iwn_node *wn;
3177 	struct ieee80211_node *ni;
3178 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
3179 	struct iwn_tx_ring *txq;
3180 	struct iwn_tx_data *txdata;
3181 	struct ieee80211_tx_ampdu *tap;
3182 	struct mbuf *m;
3183 	uint64_t bitmap;
3184 	uint16_t ssn;
3185 	uint8_t tid;
3186 	int ackfailcnt = 0, i, lastidx, qid, *res, shift;
3187 	int tx_ok = 0, tx_err = 0;
3188 
3189 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s begin\n", __func__);
3190 
3191 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3192 
3193 	qid = le16toh(ba->qid);
3194 	txq = &sc->txq[ba->qid];
3195 	tap = sc->qid2tap[ba->qid];
3196 	tid = tap->txa_tid;
3197 	wn = (void *)tap->txa_ni;
3198 
3199 	res = NULL;
3200 	ssn = 0;
3201 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3202 		res = tap->txa_private;
3203 		ssn = tap->txa_start & 0xfff;
3204 	}
3205 
3206 	for (lastidx = le16toh(ba->ssn) & 0xff; txq->read != lastidx;) {
3207 		txdata = &txq->data[txq->read];
3208 
3209 		/* Unmap and free mbuf. */
3210 		bus_dmamap_sync(txq->data_dmat, txdata->map,
3211 		    BUS_DMASYNC_POSTWRITE);
3212 		bus_dmamap_unload(txq->data_dmat, txdata->map);
3213 		m = txdata->m, txdata->m = NULL;
3214 		ni = txdata->ni, txdata->ni = NULL;
3215 
3216 		KASSERT(ni != NULL, ("no node"));
3217 		KASSERT(m != NULL, ("no mbuf"));
3218 
3219 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m);
3220 		ieee80211_tx_complete(ni, m, 1);
3221 
3222 		txq->queued--;
3223 		txq->read = (txq->read + 1) % IWN_TX_RING_COUNT;
3224 	}
3225 
3226 	if (txq->queued == 0 && res != NULL) {
3227 		iwn_nic_lock(sc);
3228 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3229 		iwn_nic_unlock(sc);
3230 		sc->qid2tap[qid] = NULL;
3231 		kfree(res, M_DEVBUF);
3232 		return;
3233 	}
3234 
3235 	if (wn->agg[tid].bitmap == 0)
3236 		return;
3237 
3238 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
3239 	if (shift < 0)
3240 		shift += 0x100;
3241 
3242 	if (wn->agg[tid].nframes > (64 - shift))
3243 		return;
3244 
3245 	/*
3246 	 * Walk the bitmap and calculate how many successful and failed
3247 	 * attempts are made.
3248 	 *
3249 	 * Yes, the rate control code doesn't know these are A-MPDU
3250 	 * subframes and that it's okay to fail some of these.
3251 	 */
3252 	ni = tap->txa_ni;
3253 	bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap;
3254 	for (i = 0; bitmap; i++) {
3255 		if ((bitmap & 1) == 0) {
3256 #if defined(__DragonFly__)
3257 			++ifp->if_oerrors;
3258 #else
3259 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3260 #endif
3261 			tx_err ++;
3262 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3263 			    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
3264 		} else {
3265 #if defined(__DragonFly__)
3266 			++ifp->if_opackets;
3267 #else
3268 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3269 #endif
3270 			tx_ok ++;
3271 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3272 			    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
3273 		}
3274 		bitmap >>= 1;
3275 	}
3276 
3277 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3278 	    "->%s: end; %d ok; %d err\n",__func__, tx_ok, tx_err);
3279 
3280 }
3281 
3282 /*
3283  * Process a CALIBRATION_RESULT notification sent by the initialization
3284  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
3285  */
3286 static void
3287 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3288     struct iwn_rx_data *data)
3289 {
3290 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
3291 	int len, idx = -1;
3292 
3293 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3294 
3295 	/* Runtime firmware should not send such a notification. */
3296 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE){
3297 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received after clib done\n",
3298 	    __func__);
3299 		return;
3300 	}
3301 	len = (le32toh(desc->len) & 0x3fff) - 4;
3302 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3303 
3304 	switch (calib->code) {
3305 	case IWN5000_PHY_CALIB_DC:
3306 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC)
3307 			idx = 0;
3308 		break;
3309 	case IWN5000_PHY_CALIB_LO:
3310 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO)
3311 			idx = 1;
3312 		break;
3313 	case IWN5000_PHY_CALIB_TX_IQ:
3314 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ)
3315 			idx = 2;
3316 		break;
3317 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
3318 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC)
3319 			idx = 3;
3320 		break;
3321 	case IWN5000_PHY_CALIB_BASE_BAND:
3322 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND)
3323 			idx = 4;
3324 		break;
3325 	}
3326 	if (idx == -1)	/* Ignore other results. */
3327 		return;
3328 
3329 	/* Save calibration result. */
3330 	if (sc->calibcmd[idx].buf != NULL)
3331 		kfree(sc->calibcmd[idx].buf, M_DEVBUF);
3332 	sc->calibcmd[idx].buf = kmalloc(len, M_DEVBUF, M_INTWAIT);
3333 	if (sc->calibcmd[idx].buf == NULL) {
3334 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3335 		    "not enough memory for calibration result %d\n",
3336 		    calib->code);
3337 		return;
3338 	}
3339 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3340 	    "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len);
3341 	sc->calibcmd[idx].len = len;
3342 	memcpy(sc->calibcmd[idx].buf, calib, len);
3343 }
3344 
3345 static void
3346 iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib,
3347     struct iwn_stats *stats, int len)
3348 {
3349 	struct iwn_stats_bt *stats_bt;
3350 	struct iwn_stats *lstats;
3351 
3352 	/*
3353 	 * First - check whether the length is the bluetooth or normal.
3354 	 *
3355 	 * If it's normal - just copy it and bump out.
3356 	 * Otherwise we have to convert things.
3357 	 */
3358 
3359 	if (len == sizeof(struct iwn_stats) + 4) {
3360 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3361 		sc->last_stat_valid = 1;
3362 		return;
3363 	}
3364 
3365 	/*
3366 	 * If it's not the bluetooth size - log, then just copy.
3367 	 */
3368 	if (len != sizeof(struct iwn_stats_bt) + 4) {
3369 		DPRINTF(sc, IWN_DEBUG_STATS,
3370 		    "%s: size of rx statistics (%d) not an expected size!\n",
3371 		    __func__,
3372 		    len);
3373 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3374 		sc->last_stat_valid = 1;
3375 		return;
3376 	}
3377 
3378 	/*
3379 	 * Ok. Time to copy.
3380 	 */
3381 	stats_bt = (struct iwn_stats_bt *) stats;
3382 	lstats = &sc->last_stat;
3383 
3384 	/* flags */
3385 	lstats->flags = stats_bt->flags;
3386 	/* rx_bt */
3387 	memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm,
3388 	    sizeof(struct iwn_rx_phy_stats));
3389 	memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck,
3390 	    sizeof(struct iwn_rx_phy_stats));
3391 	memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common,
3392 	    sizeof(struct iwn_rx_general_stats));
3393 	memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht,
3394 	    sizeof(struct iwn_rx_ht_phy_stats));
3395 	/* tx */
3396 	memcpy(&lstats->tx, &stats_bt->tx,
3397 	    sizeof(struct iwn_tx_stats));
3398 	/* general */
3399 	memcpy(&lstats->general, &stats_bt->general,
3400 	    sizeof(struct iwn_general_stats));
3401 
3402 	/* XXX TODO: Squirrel away the extra bluetooth stats somewhere */
3403 	sc->last_stat_valid = 1;
3404 }
3405 
3406 /*
3407  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
3408  * The latter is sent by the firmware after each received beacon.
3409  */
3410 static void
3411 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3412     struct iwn_rx_data *data)
3413 {
3414 	struct iwn_ops *ops = &sc->ops;
3415 	struct ifnet *ifp = sc->sc_ifp;
3416 	struct ieee80211com *ic = ifp->if_l2com;
3417 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3418 	struct iwn_calib_state *calib = &sc->calib;
3419 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
3420 	struct iwn_stats *lstats;
3421 	int temp;
3422 
3423 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3424 
3425 	/* Ignore statistics received during a scan. */
3426 	if (vap->iv_state != IEEE80211_S_RUN ||
3427 	    (ic->ic_flags & IEEE80211_F_SCAN)){
3428 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n",
3429 	    __func__);
3430 		return;
3431 	}
3432 
3433 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3434 
3435 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS,
3436 	    "%s: received statistics, cmd %d, len %d\n",
3437 	    __func__, desc->type, le16toh(desc->len));
3438 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
3439 
3440 	/*
3441 	 * Collect/track general statistics for reporting.
3442 	 *
3443 	 * This takes care of ensuring that the bluetooth sized message
3444 	 * will be correctly converted to the legacy sized message.
3445 	 */
3446 	iwn_stats_update(sc, calib, stats, le16toh(desc->len));
3447 
3448 	/*
3449 	 * And now, let's take a reference of it to use!
3450 	 */
3451 	lstats = &sc->last_stat;
3452 
3453 	/* Test if temperature has changed. */
3454 	if (lstats->general.temp != sc->rawtemp) {
3455 		/* Convert "raw" temperature to degC. */
3456 		sc->rawtemp = stats->general.temp;
3457 		temp = ops->get_temperature(sc);
3458 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
3459 		    __func__, temp);
3460 
3461 		/* Update TX power if need be (4965AGN only). */
3462 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3463 			iwn4965_power_calibration(sc, temp);
3464 	}
3465 
3466 	if (desc->type != IWN_BEACON_STATISTICS)
3467 		return;	/* Reply to a statistics request. */
3468 
3469 	sc->noise = iwn_get_noise(&lstats->rx.general);
3470 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
3471 
3472 	/* Test that RSSI and noise are present in stats report. */
3473 	if (le32toh(lstats->rx.general.flags) != 1) {
3474 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
3475 		    "received statistics without RSSI");
3476 		return;
3477 	}
3478 
3479 	if (calib->state == IWN_CALIB_STATE_ASSOC)
3480 		iwn_collect_noise(sc, &lstats->rx.general);
3481 	else if (calib->state == IWN_CALIB_STATE_RUN) {
3482 		iwn_tune_sensitivity(sc, &lstats->rx);
3483 		/*
3484 		 * XXX TODO: Only run the RX recovery if we're associated!
3485 		 */
3486 		iwn_check_rx_recovery(sc, lstats);
3487 		iwn_save_stats_counters(sc, lstats);
3488 	}
3489 
3490 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3491 }
3492 
3493 /*
3494  * Save the relevant statistic counters for the next calibration
3495  * pass.
3496  */
3497 static void
3498 iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs)
3499 {
3500 	struct iwn_calib_state *calib = &sc->calib;
3501 
3502 	/* Save counters values for next call. */
3503 	calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp);
3504 	calib->fa_cck = le32toh(rs->rx.cck.fa);
3505 	calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp);
3506 	calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp);
3507 	calib->fa_ofdm = le32toh(rs->rx.ofdm.fa);
3508 
3509 	/* Last time we received these tick values */
3510 	sc->last_calib_ticks = ticks;
3511 }
3512 
3513 /*
3514  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
3515  * and 5000 adapters have different incompatible TX status formats.
3516  */
3517 static void
3518 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3519     struct iwn_rx_data *data)
3520 {
3521 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
3522 	struct iwn_tx_ring *ring;
3523 	int qid;
3524 
3525 	qid = desc->qid & 0xf;
3526 	ring = &sc->txq[qid];
3527 
3528 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3529 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3530 	    __func__, desc->qid, desc->idx,
3531 	    stat->rtsfailcnt,
3532 	    stat->ackfailcnt,
3533 	    stat->btkillcnt,
3534 	    stat->rate, le16toh(stat->duration),
3535 	    le32toh(stat->status));
3536 
3537 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3538 	if (qid >= sc->firstaggqueue) {
3539 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3540 		    stat->ackfailcnt, &stat->status);
3541 	} else {
3542 		iwn_tx_done(sc, desc, stat->ackfailcnt,
3543 		    le32toh(stat->status) & 0xff);
3544 	}
3545 }
3546 
3547 static void
3548 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3549     struct iwn_rx_data *data)
3550 {
3551 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
3552 	struct iwn_tx_ring *ring;
3553 	int qid;
3554 
3555 	qid = desc->qid & 0xf;
3556 	ring = &sc->txq[qid];
3557 
3558 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3559 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3560 	    __func__, desc->qid, desc->idx,
3561 	    stat->rtsfailcnt,
3562 	    stat->ackfailcnt,
3563 	    stat->btkillcnt,
3564 	    stat->rate, le16toh(stat->duration),
3565 	    le32toh(stat->status));
3566 
3567 #ifdef notyet
3568 	/* Reset TX scheduler slot. */
3569 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
3570 #endif
3571 
3572 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3573 	if (qid >= sc->firstaggqueue) {
3574 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3575 		    stat->ackfailcnt, &stat->status);
3576 	} else {
3577 		iwn_tx_done(sc, desc, stat->ackfailcnt,
3578 		    le16toh(stat->status) & 0xff);
3579 	}
3580 }
3581 
3582 /*
3583  * Adapter-independent backend for TX_DONE firmware notifications.
3584  */
3585 static void
3586 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
3587     uint8_t status)
3588 {
3589 	struct ifnet *ifp = sc->sc_ifp;
3590 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
3591 	struct iwn_tx_data *data = &ring->data[desc->idx];
3592 	struct mbuf *m;
3593 	struct ieee80211_node *ni;
3594 	struct ieee80211vap *vap;
3595 
3596 	KASSERT(data->ni != NULL, ("no node"));
3597 
3598 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3599 
3600 	/* Unmap and free mbuf. */
3601 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
3602 	bus_dmamap_unload(ring->data_dmat, data->map);
3603 	m = data->m, data->m = NULL;
3604 	ni = data->ni, data->ni = NULL;
3605 	vap = ni->ni_vap;
3606 
3607 	/*
3608 	 * Update rate control statistics for the node.
3609 	 */
3610 	if (status & IWN_TX_FAIL) {
3611 #if defined(__DragonFly__)
3612 		++ifp->if_oerrors;
3613 #else
3614 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3615 #endif
3616 		ieee80211_ratectl_tx_complete(vap, ni,
3617 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
3618 	} else {
3619 #if defined(__DragonFly__)
3620 		++ifp->if_opackets;
3621 #else
3622 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3623 #endif
3624 		ieee80211_ratectl_tx_complete(vap, ni,
3625 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
3626 	}
3627 
3628 	/*
3629 	 * Channels marked for "radar" require traffic to be received
3630 	 * to unlock before we can transmit.  Until traffic is seen
3631 	 * any attempt to transmit is returned immediately with status
3632 	 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
3633 	 * happen on first authenticate after scanning.  To workaround
3634 	 * this we ignore a failure of this sort in AUTH state so the
3635 	 * 802.11 layer will fall back to using a timeout to wait for
3636 	 * the AUTH reply.  This allows the firmware time to see
3637 	 * traffic so a subsequent retry of AUTH succeeds.  It's
3638 	 * unclear why the firmware does not maintain state for
3639 	 * channels recently visited as this would allow immediate
3640 	 * use of the channel after a scan (where we see traffic).
3641 	 */
3642 	if (status == IWN_TX_FAIL_TX_LOCKED &&
3643 	    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
3644 		ieee80211_tx_complete(ni, m, 0);
3645 	else
3646 		ieee80211_tx_complete(ni, m,
3647 		    (status & IWN_TX_FAIL) != 0);
3648 
3649 	sc->sc_tx_timer = 0;
3650 	if (--ring->queued < IWN_TX_RING_LOMARK) {
3651 		sc->qfullmsk &= ~(1 << ring->qid);
3652 #if defined(__DragonFly__)
3653 		if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) {
3654 			ifq_clr_oactive(&ifp->if_snd);
3655 			iwn_start_locked(ifp);
3656 		}
3657 #else
3658 		if (sc->qfullmsk == 0 &&
3659 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
3660 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3661 			iwn_start_locked(ifp);
3662 		}
3663 #endif
3664 	}
3665 
3666 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3667 
3668 }
3669 
3670 /*
3671  * Process a "command done" firmware notification.  This is where we wakeup
3672  * processes waiting for a synchronous command completion.
3673  */
3674 static void
3675 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3676 {
3677 	struct iwn_tx_ring *ring;
3678 	struct iwn_tx_data *data;
3679 	int cmd_queue_num;
3680 
3681 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
3682 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
3683 	else
3684 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
3685 
3686 	if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num)
3687 		return;	/* Not a command ack. */
3688 
3689 	ring = &sc->txq[cmd_queue_num];
3690 	data = &ring->data[desc->idx];
3691 
3692 	/* If the command was mapped in an mbuf, free it. */
3693 	if (data->m != NULL) {
3694 		bus_dmamap_sync(ring->data_dmat, data->map,
3695 		    BUS_DMASYNC_POSTWRITE);
3696 		bus_dmamap_unload(ring->data_dmat, data->map);
3697 		m_freem(data->m);
3698 		data->m = NULL;
3699 	}
3700 	wakeup(&ring->desc[desc->idx]);
3701 }
3702 
3703 static void
3704 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes,
3705     int ackfailcnt, void *stat)
3706 {
3707 	struct iwn_ops *ops = &sc->ops;
3708 	struct ifnet *ifp = sc->sc_ifp;
3709 	struct iwn_tx_ring *ring = &sc->txq[qid];
3710 	struct iwn_tx_data *data;
3711 	struct mbuf *m;
3712 	struct iwn_node *wn;
3713 	struct ieee80211_node *ni;
3714 	struct ieee80211_tx_ampdu *tap;
3715 	uint64_t bitmap;
3716 	uint32_t *status = stat;
3717 	uint16_t *aggstatus = stat;
3718 	uint16_t ssn;
3719 	uint8_t tid;
3720 	int bit, i, lastidx, *res, seqno, shift, start;
3721 
3722 	/* XXX TODO: status is le16 field! Grr */
3723 
3724 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3725 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: nframes=%d, status=0x%08x\n",
3726 	    __func__,
3727 	    nframes,
3728 	    *status);
3729 
3730 	tap = sc->qid2tap[qid];
3731 	tid = tap->txa_tid;
3732 	wn = (void *)tap->txa_ni;
3733 	ni = tap->txa_ni;
3734 
3735 	/*
3736 	 * XXX TODO: ACK and RTS failures would be nice here!
3737 	 */
3738 
3739 	/*
3740 	 * A-MPDU single frame status - if we failed to transmit it
3741 	 * in A-MPDU, then it may be a permanent failure.
3742 	 *
3743 	 * XXX TODO: check what the Linux iwlwifi driver does here;
3744 	 * there's some permanent and temporary failures that may be
3745 	 * handled differently.
3746 	 */
3747 	if (nframes == 1) {
3748 		if ((*status & 0xff) != 1 && (*status & 0xff) != 2) {
3749 #ifdef	NOT_YET
3750 			kprintf("ieee80211_send_bar()\n");
3751 #endif
3752 			/*
3753 			 * If we completely fail a transmit, make sure a
3754 			 * notification is pushed up to the rate control
3755 			 * layer.
3756 			 */
3757 			ieee80211_ratectl_tx_complete(ni->ni_vap,
3758 			    ni,
3759 			    IEEE80211_RATECTL_TX_FAILURE,
3760 			    &ackfailcnt,
3761 			    NULL);
3762 		} else {
3763 			/*
3764 			 * If nframes=1, then we won't be getting a BA for
3765 			 * this frame.  Ensure that we correctly update the
3766 			 * rate control code with how many retries were
3767 			 * needed to send it.
3768 			 */
3769 			ieee80211_ratectl_tx_complete(ni->ni_vap,
3770 			    ni,
3771 			    IEEE80211_RATECTL_TX_SUCCESS,
3772 			    &ackfailcnt,
3773 			    NULL);
3774 		}
3775 	}
3776 
3777 	bitmap = 0;
3778 	start = idx;
3779 	for (i = 0; i < nframes; i++) {
3780 		if (le16toh(aggstatus[i * 2]) & 0xc)
3781 			continue;
3782 
3783 		idx = le16toh(aggstatus[2*i + 1]) & 0xff;
3784 		bit = idx - start;
3785 		shift = 0;
3786 		if (bit >= 64) {
3787 			shift = 0x100 - idx + start;
3788 			bit = 0;
3789 			start = idx;
3790 		} else if (bit <= -64)
3791 			bit = 0x100 - start + idx;
3792 		else if (bit < 0) {
3793 			shift = start - idx;
3794 			start = idx;
3795 			bit = 0;
3796 		}
3797 		bitmap = bitmap << shift;
3798 		bitmap |= 1ULL << bit;
3799 	}
3800 	tap = sc->qid2tap[qid];
3801 	tid = tap->txa_tid;
3802 	wn = (void *)tap->txa_ni;
3803 	wn->agg[tid].bitmap = bitmap;
3804 	wn->agg[tid].startidx = start;
3805 	wn->agg[tid].nframes = nframes;
3806 
3807 	res = NULL;
3808 	ssn = 0;
3809 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3810 		res = tap->txa_private;
3811 		ssn = tap->txa_start & 0xfff;
3812 	}
3813 
3814 	/* This is going nframes DWORDS into the descriptor? */
3815 	seqno = le32toh(*(status + nframes)) & 0xfff;
3816 	for (lastidx = (seqno & 0xff); ring->read != lastidx;) {
3817 		data = &ring->data[ring->read];
3818 
3819 		/* Unmap and free mbuf. */
3820 		bus_dmamap_sync(ring->data_dmat, data->map,
3821 		    BUS_DMASYNC_POSTWRITE);
3822 		bus_dmamap_unload(ring->data_dmat, data->map);
3823 		m = data->m, data->m = NULL;
3824 		ni = data->ni, data->ni = NULL;
3825 
3826 		KASSERT(ni != NULL, ("no node"));
3827 		KASSERT(m != NULL, ("no mbuf"));
3828 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m);
3829 		ieee80211_tx_complete(ni, m, 1);
3830 
3831 		ring->queued--;
3832 		ring->read = (ring->read + 1) % IWN_TX_RING_COUNT;
3833 	}
3834 
3835 	if (ring->queued == 0 && res != NULL) {
3836 		iwn_nic_lock(sc);
3837 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3838 		iwn_nic_unlock(sc);
3839 		sc->qid2tap[qid] = NULL;
3840 		kfree(res, M_DEVBUF);
3841 		return;
3842 	}
3843 
3844 	sc->sc_tx_timer = 0;
3845 	if (ring->queued < IWN_TX_RING_LOMARK) {
3846 		sc->qfullmsk &= ~(1 << ring->qid);
3847 #if defined(__DragonFly__)
3848 		if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) {
3849 			ifq_clr_oactive(&ifp->if_snd);
3850 			iwn_start_locked(ifp);
3851 		}
3852 #else
3853 		if (sc->qfullmsk == 0 &&
3854 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
3855 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3856 			iwn_start_locked(ifp);
3857 		}
3858 #endif
3859 	}
3860 
3861 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3862 
3863 }
3864 
3865 /*
3866  * Process an INT_FH_RX or INT_SW_RX interrupt.
3867  */
3868 static void
3869 iwn_notif_intr(struct iwn_softc *sc)
3870 {
3871 	struct iwn_ops *ops = &sc->ops;
3872 	struct ifnet *ifp = sc->sc_ifp;
3873 	struct ieee80211com *ic = ifp->if_l2com;
3874 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3875 	uint16_t hw;
3876 
3877 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
3878 	    BUS_DMASYNC_POSTREAD);
3879 
3880 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
3881 	while (sc->rxq.cur != hw) {
3882 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
3883 		struct iwn_rx_desc *desc;
3884 
3885 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3886 		    BUS_DMASYNC_POSTREAD);
3887 		desc = mtod(data->m, struct iwn_rx_desc *);
3888 
3889 		DPRINTF(sc, IWN_DEBUG_RECV,
3890 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
3891 		    __func__, sc->rxq.cur, desc->qid & 0xf, desc->idx, desc->flags,
3892 		    desc->type, iwn_intr_str(desc->type),
3893 		    le16toh(desc->len));
3894 
3895 		if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF))	/* Reply to a command. */
3896 			iwn_cmd_done(sc, desc);
3897 
3898 		switch (desc->type) {
3899 		case IWN_RX_PHY:
3900 			iwn_rx_phy(sc, desc, data);
3901 			break;
3902 
3903 		case IWN_RX_DONE:		/* 4965AGN only. */
3904 		case IWN_MPDU_RX_DONE:
3905 			/* An 802.11 frame has been received. */
3906 			iwn_rx_done(sc, desc, data);
3907 			break;
3908 
3909 		case IWN_RX_COMPRESSED_BA:
3910 			/* A Compressed BlockAck has been received. */
3911 			iwn_rx_compressed_ba(sc, desc, data);
3912 			break;
3913 
3914 		case IWN_TX_DONE:
3915 			/* An 802.11 frame has been transmitted. */
3916 			ops->tx_done(sc, desc, data);
3917 			break;
3918 
3919 		case IWN_RX_STATISTICS:
3920 		case IWN_BEACON_STATISTICS:
3921 			iwn_rx_statistics(sc, desc, data);
3922 			break;
3923 
3924 		case IWN_BEACON_MISSED:
3925 		{
3926 			struct iwn_beacon_missed *miss =
3927 			    (struct iwn_beacon_missed *)(desc + 1);
3928 			int misses;
3929 
3930 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3931 			    BUS_DMASYNC_POSTREAD);
3932 			misses = le32toh(miss->consecutive);
3933 
3934 			DPRINTF(sc, IWN_DEBUG_STATE,
3935 			    "%s: beacons missed %d/%d\n", __func__,
3936 			    misses, le32toh(miss->total));
3937 			/*
3938 			 * If more than 5 consecutive beacons are missed,
3939 			 * reinitialize the sensitivity state machine.
3940 			 */
3941 			if (vap->iv_state == IEEE80211_S_RUN &&
3942 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3943 				if (misses > 5)
3944 					(void)iwn_init_sensitivity(sc);
3945 				if (misses >= vap->iv_bmissthreshold) {
3946 					IWN_UNLOCK(sc);
3947 					ieee80211_beacon_miss(ic);
3948 					IWN_LOCK(sc);
3949 				}
3950 			}
3951 			break;
3952 		}
3953 		case IWN_UC_READY:
3954 		{
3955 			struct iwn_ucode_info *uc =
3956 			    (struct iwn_ucode_info *)(desc + 1);
3957 
3958 			/* The microcontroller is ready. */
3959 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3960 			    BUS_DMASYNC_POSTREAD);
3961 			DPRINTF(sc, IWN_DEBUG_RESET,
3962 			    "microcode alive notification version=%d.%d "
3963 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
3964 			    uc->subtype, le32toh(uc->valid));
3965 
3966 			if (le32toh(uc->valid) != 1) {
3967 				device_printf(sc->sc_dev,
3968 				    "microcontroller initialization failed");
3969 				break;
3970 			}
3971 			if (uc->subtype == IWN_UCODE_INIT) {
3972 				/* Save microcontroller report. */
3973 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
3974 			}
3975 			/* Save the address of the error log in SRAM. */
3976 			sc->errptr = le32toh(uc->errptr);
3977 			break;
3978 		}
3979 		case IWN_STATE_CHANGED:
3980 		{
3981 			/*
3982 			 * State change allows hardware switch change to be
3983 			 * noted. However, we handle this in iwn_intr as we
3984 			 * get both the enable/disble intr.
3985 			 */
3986 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3987 			    BUS_DMASYNC_POSTREAD);
3988 #ifdef	IWN_DEBUG
3989 			uint32_t *status = (uint32_t *)(desc + 1);
3990 			DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE,
3991 			    "state changed to %x\n",
3992 			    le32toh(*status));
3993 #endif
3994 			break;
3995 		}
3996 		case IWN_START_SCAN:
3997 		{
3998 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3999 			    BUS_DMASYNC_POSTREAD);
4000 #ifdef	IWN_DEBUG
4001 			struct iwn_start_scan *scan =
4002 			    (struct iwn_start_scan *)(desc + 1);
4003 			DPRINTF(sc, IWN_DEBUG_ANY,
4004 			    "%s: scanning channel %d status %x\n",
4005 			    __func__, scan->chan, le32toh(scan->status));
4006 #endif
4007 			break;
4008 		}
4009 		case IWN_STOP_SCAN:
4010 		{
4011 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
4012 			    BUS_DMASYNC_POSTREAD);
4013 #ifdef	IWN_DEBUG
4014 			struct iwn_stop_scan *scan =
4015 			    (struct iwn_stop_scan *)(desc + 1);
4016 			DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN,
4017 			    "scan finished nchan=%d status=%d chan=%d\n",
4018 			    scan->nchan, scan->status, scan->chan);
4019 #endif
4020 			sc->sc_is_scanning = 0;
4021 			IWN_UNLOCK(sc);
4022 			ieee80211_scan_next(vap);
4023 			IWN_LOCK(sc);
4024 			break;
4025 		}
4026 		case IWN5000_CALIBRATION_RESULT:
4027 			iwn5000_rx_calib_results(sc, desc, data);
4028 			break;
4029 
4030 		case IWN5000_CALIBRATION_DONE:
4031 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
4032 			wakeup(sc);
4033 			break;
4034 		}
4035 
4036 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
4037 	}
4038 
4039 	/* Tell the firmware what we have processed. */
4040 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
4041 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
4042 }
4043 
4044 /*
4045  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
4046  * from power-down sleep mode.
4047  */
4048 static void
4049 iwn_wakeup_intr(struct iwn_softc *sc)
4050 {
4051 	int qid;
4052 
4053 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
4054 	    __func__);
4055 
4056 	/* Wakeup RX and TX rings. */
4057 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
4058 	for (qid = 0; qid < sc->ntxqs; qid++) {
4059 		struct iwn_tx_ring *ring = &sc->txq[qid];
4060 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
4061 	}
4062 }
4063 
4064 static void
4065 iwn_rftoggle_intr(struct iwn_softc *sc)
4066 {
4067 	struct ifnet *ifp = sc->sc_ifp;
4068 	struct ieee80211com *ic = ifp->if_l2com;
4069 	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
4070 
4071 	IWN_LOCK_ASSERT(sc);
4072 
4073 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
4074 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
4075 	if (tmp & IWN_GP_CNTRL_RFKILL)
4076 		ieee80211_runtask(ic, &sc->sc_radioon_task);
4077 	else
4078 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
4079 }
4080 
4081 /*
4082  * Dump the error log of the firmware when a firmware panic occurs.  Although
4083  * we can't debug the firmware because it is neither open source nor free, it
4084  * can help us to identify certain classes of problems.
4085  */
4086 static void
4087 iwn_fatal_intr(struct iwn_softc *sc)
4088 {
4089 	struct iwn_fw_dump dump;
4090 	int i;
4091 
4092 	IWN_LOCK_ASSERT(sc);
4093 
4094 	/* Force a complete recalibration on next init. */
4095 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
4096 
4097 	/* Check that the error log address is valid. */
4098 	if (sc->errptr < IWN_FW_DATA_BASE ||
4099 	    sc->errptr + sizeof (dump) >
4100 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
4101 		kprintf("%s: bad firmware error log address 0x%08x\n", __func__,
4102 		    sc->errptr);
4103 		return;
4104 	}
4105 	if (iwn_nic_lock(sc) != 0) {
4106 		kprintf("%s: could not read firmware error log\n", __func__);
4107 		return;
4108 	}
4109 	/* Read firmware error log from SRAM. */
4110 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
4111 	    sizeof (dump) / sizeof (uint32_t));
4112 	iwn_nic_unlock(sc);
4113 
4114 	if (dump.valid == 0) {
4115 		kprintf("%s: firmware error log is empty\n", __func__);
4116 		return;
4117 	}
4118 	kprintf("firmware error log:\n");
4119 	kprintf("  error type      = \"%s\" (0x%08X)\n",
4120 	    (dump.id < nitems(iwn_fw_errmsg)) ?
4121 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
4122 	    dump.id);
4123 	kprintf("  program counter = 0x%08X\n", dump.pc);
4124 	kprintf("  source line     = 0x%08X\n", dump.src_line);
4125 	kprintf("  error data      = 0x%08X%08X\n",
4126 	    dump.error_data[0], dump.error_data[1]);
4127 	kprintf("  branch link     = 0x%08X%08X\n",
4128 	    dump.branch_link[0], dump.branch_link[1]);
4129 	kprintf("  interrupt link  = 0x%08X%08X\n",
4130 	    dump.interrupt_link[0], dump.interrupt_link[1]);
4131 	kprintf("  time            = %u\n", dump.time[0]);
4132 
4133 	/* Dump driver status (TX and RX rings) while we're here. */
4134 	kprintf("driver status:\n");
4135 	for (i = 0; i < sc->ntxqs; i++) {
4136 		struct iwn_tx_ring *ring = &sc->txq[i];
4137 		kprintf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
4138 		    i, ring->qid, ring->cur, ring->queued);
4139 	}
4140 	kprintf("  rx ring: cur=%d\n", sc->rxq.cur);
4141 }
4142 
4143 static void
4144 iwn_intr(void *arg)
4145 {
4146 	struct iwn_softc *sc = arg;
4147 	struct ifnet *ifp = sc->sc_ifp;
4148 	uint32_t r1, r2, tmp;
4149 
4150 	IWN_LOCK(sc);
4151 
4152 	/* Disable interrupts. */
4153 	IWN_WRITE(sc, IWN_INT_MASK, 0);
4154 
4155 	/* Read interrupts from ICT (fast) or from registers (slow). */
4156 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4157 		tmp = 0;
4158 		while (sc->ict[sc->ict_cur] != 0) {
4159 			tmp |= sc->ict[sc->ict_cur];
4160 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
4161 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
4162 		}
4163 		tmp = le32toh(tmp);
4164 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
4165 			tmp = 0;
4166 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
4167 			tmp |= 0x8000;
4168 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
4169 		r2 = 0;	/* Unused. */
4170 	} else {
4171 		r1 = IWN_READ(sc, IWN_INT);
4172 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
4173 			return;	/* Hardware gone! */
4174 		r2 = IWN_READ(sc, IWN_FH_INT);
4175 	}
4176 
4177 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n"
4178     , r1, r2);
4179 
4180 	if (r1 == 0 && r2 == 0)
4181 		goto done;	/* Interrupt not for us. */
4182 
4183 	/* Acknowledge interrupts. */
4184 	IWN_WRITE(sc, IWN_INT, r1);
4185 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
4186 		IWN_WRITE(sc, IWN_FH_INT, r2);
4187 
4188 	if (r1 & IWN_INT_RF_TOGGLED) {
4189 		iwn_rftoggle_intr(sc);
4190 		goto done;
4191 	}
4192 	if (r1 & IWN_INT_CT_REACHED) {
4193 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
4194 		    __func__);
4195 	}
4196 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
4197 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
4198 		    __func__);
4199 #ifdef	IWN_DEBUG
4200 		iwn_debug_register(sc);
4201 #endif
4202 		/* Dump firmware error log and stop. */
4203 		iwn_fatal_intr(sc);
4204 
4205 		taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task);
4206 		goto done;
4207 	}
4208 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
4209 	    (r2 & IWN_FH_INT_RX)) {
4210 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4211 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
4212 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
4213 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4214 			    IWN_INT_PERIODIC_DIS);
4215 			iwn_notif_intr(sc);
4216 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
4217 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4218 				    IWN_INT_PERIODIC_ENA);
4219 			}
4220 		} else
4221 			iwn_notif_intr(sc);
4222 	}
4223 
4224 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
4225 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
4226 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
4227 		wakeup(sc);	/* FH DMA transfer completed. */
4228 	}
4229 
4230 	if (r1 & IWN_INT_ALIVE)
4231 		wakeup(sc);	/* Firmware is alive. */
4232 
4233 	if (r1 & IWN_INT_WAKEUP)
4234 		iwn_wakeup_intr(sc);
4235 
4236 done:
4237 	/* Re-enable interrupts. */
4238 	if (ifp->if_flags & IFF_UP)
4239 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4240 
4241 	IWN_UNLOCK(sc);
4242 }
4243 
4244 /*
4245  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
4246  * 5000 adapters use a slightly different format).
4247  */
4248 static void
4249 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4250     uint16_t len)
4251 {
4252 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
4253 
4254 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4255 
4256 	*w = htole16(len + 8);
4257 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4258 	    BUS_DMASYNC_PREWRITE);
4259 	if (idx < IWN_SCHED_WINSZ) {
4260 		*(w + IWN_TX_RING_COUNT) = *w;
4261 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4262 		    BUS_DMASYNC_PREWRITE);
4263 	}
4264 }
4265 
4266 static void
4267 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4268     uint16_t len)
4269 {
4270 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4271 
4272 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4273 
4274 	*w = htole16(id << 12 | (len + 8));
4275 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4276 	    BUS_DMASYNC_PREWRITE);
4277 	if (idx < IWN_SCHED_WINSZ) {
4278 		*(w + IWN_TX_RING_COUNT) = *w;
4279 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4280 		    BUS_DMASYNC_PREWRITE);
4281 	}
4282 }
4283 
4284 #ifdef notyet
4285 static void
4286 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
4287 {
4288 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4289 
4290 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4291 
4292 	*w = (*w & htole16(0xf000)) | htole16(1);
4293 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4294 	    BUS_DMASYNC_PREWRITE);
4295 	if (idx < IWN_SCHED_WINSZ) {
4296 		*(w + IWN_TX_RING_COUNT) = *w;
4297 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4298 		    BUS_DMASYNC_PREWRITE);
4299 	}
4300 }
4301 #endif
4302 
4303 /*
4304  * Check whether OFDM 11g protection will be enabled for the given rate.
4305  *
4306  * The original driver code only enabled protection for OFDM rates.
4307  * It didn't check to see whether it was operating in 11a or 11bg mode.
4308  */
4309 static int
4310 iwn_check_rate_needs_protection(struct iwn_softc *sc,
4311     struct ieee80211vap *vap, uint8_t rate)
4312 {
4313 	struct ieee80211com *ic = vap->iv_ic;
4314 
4315 	/*
4316 	 * Not in 2GHz mode? Then there's no need to enable OFDM
4317 	 * 11bg protection.
4318 	 */
4319 	if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
4320 		return (0);
4321 	}
4322 
4323 	/*
4324 	 * 11bg protection not enabled? Then don't use it.
4325 	 */
4326 	if ((ic->ic_flags & IEEE80211_F_USEPROT) == 0)
4327 		return (0);
4328 
4329 	/*
4330 	 * If it's an 11n rate - no protection.
4331 	 * We'll do it via a specific 11n check.
4332 	 */
4333 	if (rate & IEEE80211_RATE_MCS) {
4334 		return (0);
4335 	}
4336 
4337 	/*
4338 	 * Do a rate table lookup.  If the PHY is CCK,
4339 	 * don't do protection.
4340 	 */
4341 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK)
4342 		return (0);
4343 
4344 	/*
4345 	 * Yup, enable protection.
4346 	 */
4347 	return (1);
4348 }
4349 
4350 /*
4351  * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into
4352  * the link quality table that reflects this particular entry.
4353  */
4354 static int
4355 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni,
4356     uint8_t rate)
4357 {
4358 	struct ieee80211_rateset *rs;
4359 	int is_11n;
4360 	int nr;
4361 	int i;
4362 	uint8_t cmp_rate;
4363 
4364 	/*
4365 	 * Figure out if we're using 11n or not here.
4366 	 */
4367 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0)
4368 		is_11n = 1;
4369 	else
4370 		is_11n = 0;
4371 
4372 	/*
4373 	 * Use the correct rate table.
4374 	 */
4375 	if (is_11n) {
4376 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4377 		nr = ni->ni_htrates.rs_nrates;
4378 	} else {
4379 		rs = &ni->ni_rates;
4380 		nr = rs->rs_nrates;
4381 	}
4382 
4383 	/*
4384 	 * Find the relevant link quality entry in the table.
4385 	 */
4386 	for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) {
4387 		/*
4388 		 * The link quality table index starts at 0 == highest
4389 		 * rate, so we walk the rate table backwards.
4390 		 */
4391 		cmp_rate = rs->rs_rates[(nr - 1) - i];
4392 		if (rate & IEEE80211_RATE_MCS)
4393 			cmp_rate |= IEEE80211_RATE_MCS;
4394 
4395 #if 0
4396 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n",
4397 		    __func__,
4398 		    i,
4399 		    nr,
4400 		    rate,
4401 		    cmp_rate);
4402 #endif
4403 
4404 		if (cmp_rate == rate)
4405 			return (i);
4406 	}
4407 
4408 	/* Failed? Start at the end */
4409 	return (IWN_MAX_TX_RETRIES - 1);
4410 }
4411 
4412 static int
4413 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
4414 {
4415 	struct iwn_ops *ops = &sc->ops;
4416 	const struct ieee80211_txparam *tp;
4417 	struct ieee80211vap *vap = ni->ni_vap;
4418 	struct ieee80211com *ic = ni->ni_ic;
4419 	struct iwn_node *wn = (void *)ni;
4420 	struct iwn_tx_ring *ring;
4421 	struct iwn_tx_desc *desc;
4422 	struct iwn_tx_data *data;
4423 	struct iwn_tx_cmd *cmd;
4424 	struct iwn_cmd_data *tx;
4425 	struct ieee80211_frame *wh;
4426 	struct ieee80211_key *k = NULL;
4427 	struct mbuf *m1;
4428 	uint32_t flags;
4429 	uint16_t qos;
4430 	u_int hdrlen;
4431 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4432 	uint8_t tid, type;
4433 	int ac, i, totlen, error, pad, nsegs = 0, rate;
4434 
4435 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4436 
4437 	IWN_LOCK_ASSERT(sc);
4438 
4439 	wh = mtod(m, struct ieee80211_frame *);
4440 	hdrlen = ieee80211_anyhdrsize(wh);
4441 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4442 
4443 	/* Select EDCA Access Category and TX ring for this frame. */
4444 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
4445 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
4446 		tid = qos & IEEE80211_QOS_TID;
4447 	} else {
4448 		qos = 0;
4449 		tid = 0;
4450 	}
4451 	ac = M_WME_GETAC(m);
4452 	if (m->m_flags & M_AMPDU_MPDU) {
4453 		uint16_t seqno;
4454 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
4455 
4456 		if (!IEEE80211_AMPDU_RUNNING(tap)) {
4457 			m_freem(m);
4458 			return EINVAL;
4459 		}
4460 
4461 		/*
4462 		 * Queue this frame to the hardware ring that we've
4463 		 * negotiated AMPDU TX on.
4464 		 *
4465 		 * Note that the sequence number must match the TX slot
4466 		 * being used!
4467 		 */
4468 		ac = *(int *)tap->txa_private;
4469 		seqno = ni->ni_txseqs[tid];
4470 		*(uint16_t *)wh->i_seq =
4471 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4472 		ring = &sc->txq[ac];
4473 		if ((seqno % 256) != ring->cur) {
4474 			device_printf(sc->sc_dev,
4475 			    "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n",
4476 			    __func__,
4477 			    m,
4478 			    seqno,
4479 			    seqno % 256,
4480 			    ring->cur);
4481 		}
4482 		ni->ni_txseqs[tid]++;
4483 	}
4484 	ring = &sc->txq[ac];
4485 	desc = &ring->desc[ring->cur];
4486 	data = &ring->data[ring->cur];
4487 
4488 	/* Choose a TX rate index. */
4489 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
4490 	if (type == IEEE80211_FC0_TYPE_MGT)
4491 		rate = tp->mgmtrate;
4492 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
4493 		rate = tp->mcastrate;
4494 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
4495 		rate = tp->ucastrate;
4496 	else if (m->m_flags & M_EAPOL)
4497 		rate = tp->mgmtrate;
4498 	else {
4499 		/* XXX pass pktlen */
4500 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
4501 		rate = ni->ni_txrate;
4502 	}
4503 
4504 	/* Encrypt the frame if need be. */
4505 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
4506 		/* Retrieve key for TX. */
4507 		k = ieee80211_crypto_encap(ni, m);
4508 		if (k == NULL) {
4509 			m_freem(m);
4510 			return ENOBUFS;
4511 		}
4512 		/* 802.11 header may have moved. */
4513 		wh = mtod(m, struct ieee80211_frame *);
4514 	}
4515 	totlen = m->m_pkthdr.len;
4516 
4517 	if (ieee80211_radiotap_active_vap(vap)) {
4518 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4519 
4520 		tap->wt_flags = 0;
4521 		tap->wt_rate = rate;
4522 		if (k != NULL)
4523 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4524 
4525 		ieee80211_radiotap_tx(vap, m);
4526 	}
4527 
4528 	/* Prepare TX firmware command. */
4529 	cmd = &ring->cmd[ring->cur];
4530 	cmd->code = IWN_CMD_TX_DATA;
4531 	cmd->flags = 0;
4532 	cmd->qid = ring->qid;
4533 	cmd->idx = ring->cur;
4534 
4535 	tx = (struct iwn_cmd_data *)cmd->data;
4536 	/* NB: No need to clear tx, all fields are reinitialized here. */
4537 	tx->scratch = 0;	/* clear "scratch" area */
4538 
4539 	flags = 0;
4540 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4541 		/* Unicast frame, check if an ACK is expected. */
4542 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
4543 		    IEEE80211_QOS_ACKPOLICY_NOACK)
4544 			flags |= IWN_TX_NEED_ACK;
4545 	}
4546 	if ((wh->i_fc[0] &
4547 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
4548 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
4549 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
4550 
4551 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
4552 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
4553 
4554 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
4555 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4556 		/* NB: Group frames are sent using CCK in 802.11b/g. */
4557 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
4558 			flags |= IWN_TX_NEED_RTS;
4559 		} else if (iwn_check_rate_needs_protection(sc, vap, rate)) {
4560 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4561 				flags |= IWN_TX_NEED_CTS;
4562 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4563 				flags |= IWN_TX_NEED_RTS;
4564 		} else if ((rate & IEEE80211_RATE_MCS) &&
4565 			(ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)) {
4566 			flags |= IWN_TX_NEED_RTS;
4567 		}
4568 
4569 		/* XXX HT protection? */
4570 
4571 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
4572 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4573 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
4574 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
4575 				flags |= IWN_TX_NEED_PROTECTION;
4576 			} else
4577 				flags |= IWN_TX_FULL_TXOP;
4578 		}
4579 	}
4580 
4581 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
4582 	    type != IEEE80211_FC0_TYPE_DATA)
4583 		tx->id = sc->broadcast_id;
4584 	else
4585 		tx->id = wn->id;
4586 
4587 	if (type == IEEE80211_FC0_TYPE_MGT) {
4588 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4589 
4590 		/* Tell HW to set timestamp in probe responses. */
4591 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4592 			flags |= IWN_TX_INSERT_TSTAMP;
4593 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4594 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4595 			tx->timeout = htole16(3);
4596 		else
4597 			tx->timeout = htole16(2);
4598 	} else
4599 		tx->timeout = htole16(0);
4600 
4601 	if (hdrlen & 3) {
4602 		/* First segment length must be a multiple of 4. */
4603 		flags |= IWN_TX_NEED_PADDING;
4604 		pad = 4 - (hdrlen & 3);
4605 	} else
4606 		pad = 0;
4607 
4608 	tx->len = htole16(totlen);
4609 	tx->tid = tid;
4610 	tx->rts_ntries = 60;
4611 	tx->data_ntries = 15;
4612 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4613 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4614 	if (tx->id == sc->broadcast_id) {
4615 		/* Group or management frame. */
4616 		tx->linkq = 0;
4617 	} else {
4618 		tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate);
4619 		flags |= IWN_TX_LINKQ;	/* enable MRR */
4620 	}
4621 
4622 	/* Set physical address of "scratch area". */
4623 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4624 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4625 
4626 	/* Copy 802.11 header in TX command. */
4627 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4628 
4629 	/* Trim 802.11 header. */
4630 	m_adj(m, hdrlen);
4631 	tx->security = 0;
4632 	tx->flags = htole32(flags);
4633 
4634 #if defined(__DragonFly__)
4635 	error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
4636 					     data->map, m,
4637 					     segs, IWN_MAX_SCATTER - 1,
4638 					     &nsegs, BUS_DMA_NOWAIT);
4639 #else
4640 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4641 	    &nsegs, BUS_DMA_NOWAIT);
4642 #endif
4643 	if (error != 0) {
4644 		if (error != EFBIG) {
4645 			device_printf(sc->sc_dev,
4646 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4647 			m_freem(m);
4648 			return error;
4649 		}
4650 		/* Too many DMA segments, linearize mbuf. */
4651 #if defined(__DragonFly__)
4652 		m1 = m_defrag(m, M_NOWAIT);
4653 #else
4654 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER);
4655 #endif
4656 		if (m1 == NULL) {
4657 			device_printf(sc->sc_dev,
4658 			    "%s: could not defrag mbuf\n", __func__);
4659 			m_freem(m);
4660 			return ENOBUFS;
4661 		}
4662 		m = m1;
4663 
4664 #if defined(__DragonFly__)
4665 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
4666 						     data->map, m,
4667 						     segs, IWN_MAX_SCATTER - 1,
4668 						     &nsegs, BUS_DMA_NOWAIT);
4669 #else
4670 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4671 		    segs, &nsegs, BUS_DMA_NOWAIT);
4672 #endif
4673 		if (error != 0) {
4674 			device_printf(sc->sc_dev,
4675 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4676 			m_freem(m);
4677 			return error;
4678 		}
4679 	}
4680 
4681 	data->m = m;
4682 	data->ni = ni;
4683 
4684 	DPRINTF(sc, IWN_DEBUG_XMIT,
4685 	    "%s: qid %d idx %d len %d nsegs %d flags 0x%08x rate 0x%04x plcp 0x%08x\n",
4686 	    __func__,
4687 	    ring->qid,
4688 	    ring->cur,
4689 	    m->m_pkthdr.len,
4690 	    nsegs,
4691 	    flags,
4692 	    rate,
4693 	    tx->rate);
4694 
4695 	/* Fill TX descriptor. */
4696 	desc->nsegs = 1;
4697 	if (m->m_len != 0)
4698 		desc->nsegs += nsegs;
4699 	/* First DMA segment is used by the TX command. */
4700 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4701 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4702 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4703 	/* Other DMA segments are for data payload. */
4704 	seg = &segs[0];
4705 	for (i = 1; i <= nsegs; i++) {
4706 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4707 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4708 		    seg->ds_len << 4);
4709 		seg++;
4710 	}
4711 
4712 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4713 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4714 	    BUS_DMASYNC_PREWRITE);
4715 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4716 	    BUS_DMASYNC_PREWRITE);
4717 
4718 	/* Update TX scheduler. */
4719 	if (ring->qid >= sc->firstaggqueue)
4720 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4721 
4722 	/* Kick TX ring. */
4723 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4724 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4725 
4726 	/* Mark TX ring as full if we reach a certain threshold. */
4727 	if (++ring->queued > IWN_TX_RING_HIMARK)
4728 		sc->qfullmsk |= 1 << ring->qid;
4729 
4730 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4731 
4732 	return 0;
4733 }
4734 
4735 static int
4736 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
4737     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
4738 {
4739 	struct iwn_ops *ops = &sc->ops;
4740 //	struct ifnet *ifp = sc->sc_ifp;
4741 	struct ieee80211vap *vap = ni->ni_vap;
4742 //	struct ieee80211com *ic = ifp->if_l2com;
4743 	struct iwn_tx_cmd *cmd;
4744 	struct iwn_cmd_data *tx;
4745 	struct ieee80211_frame *wh;
4746 	struct iwn_tx_ring *ring;
4747 	struct iwn_tx_desc *desc;
4748 	struct iwn_tx_data *data;
4749 	struct mbuf *m1;
4750 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4751 	uint32_t flags;
4752 	u_int hdrlen;
4753 	int ac, totlen, error, pad, nsegs = 0, i, rate;
4754 	uint8_t type;
4755 
4756 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4757 
4758 	IWN_LOCK_ASSERT(sc);
4759 
4760 	wh = mtod(m, struct ieee80211_frame *);
4761 	hdrlen = ieee80211_anyhdrsize(wh);
4762 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4763 
4764 	ac = params->ibp_pri & 3;
4765 
4766 	ring = &sc->txq[ac];
4767 	desc = &ring->desc[ring->cur];
4768 	data = &ring->data[ring->cur];
4769 
4770 	/* Choose a TX rate. */
4771 	rate = params->ibp_rate0;
4772 	totlen = m->m_pkthdr.len;
4773 
4774 	/* Prepare TX firmware command. */
4775 	cmd = &ring->cmd[ring->cur];
4776 	cmd->code = IWN_CMD_TX_DATA;
4777 	cmd->flags = 0;
4778 	cmd->qid = ring->qid;
4779 	cmd->idx = ring->cur;
4780 
4781 	tx = (struct iwn_cmd_data *)cmd->data;
4782 	/* NB: No need to clear tx, all fields are reinitialized here. */
4783 	tx->scratch = 0;	/* clear "scratch" area */
4784 
4785 	flags = 0;
4786 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
4787 		flags |= IWN_TX_NEED_ACK;
4788 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
4789 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4790 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4791 			flags &= ~IWN_TX_NEED_RTS;
4792 			flags |= IWN_TX_NEED_PROTECTION;
4793 		} else
4794 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
4795 	}
4796 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
4797 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4798 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4799 			flags &= ~IWN_TX_NEED_CTS;
4800 			flags |= IWN_TX_NEED_PROTECTION;
4801 		} else
4802 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
4803 	}
4804 	if (type == IEEE80211_FC0_TYPE_MGT) {
4805 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4806 
4807 		/* Tell HW to set timestamp in probe responses. */
4808 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4809 			flags |= IWN_TX_INSERT_TSTAMP;
4810 
4811 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4812 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4813 			tx->timeout = htole16(3);
4814 		else
4815 			tx->timeout = htole16(2);
4816 	} else
4817 		tx->timeout = htole16(0);
4818 
4819 	if (hdrlen & 3) {
4820 		/* First segment length must be a multiple of 4. */
4821 		flags |= IWN_TX_NEED_PADDING;
4822 		pad = 4 - (hdrlen & 3);
4823 	} else
4824 		pad = 0;
4825 
4826 	if (ieee80211_radiotap_active_vap(vap)) {
4827 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4828 
4829 		tap->wt_flags = 0;
4830 		tap->wt_rate = rate;
4831 
4832 		ieee80211_radiotap_tx(vap, m);
4833 	}
4834 
4835 	tx->len = htole16(totlen);
4836 	tx->tid = 0;
4837 	tx->id = sc->broadcast_id;
4838 	tx->rts_ntries = params->ibp_try1;
4839 	tx->data_ntries = params->ibp_try0;
4840 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4841 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4842 
4843 	/* Group or management frame. */
4844 	tx->linkq = 0;
4845 
4846 	/* Set physical address of "scratch area". */
4847 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4848 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4849 
4850 	/* Copy 802.11 header in TX command. */
4851 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4852 
4853 	/* Trim 802.11 header. */
4854 	m_adj(m, hdrlen);
4855 	tx->security = 0;
4856 	tx->flags = htole32(flags);
4857 
4858 #if defined(__DragonFly__)
4859 	error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
4860 					     m, segs, IWN_MAX_SCATTER - 1,
4861 					     &nsegs, BUS_DMA_NOWAIT);
4862 #else
4863 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4864 	    &nsegs, BUS_DMA_NOWAIT);
4865 #endif
4866 	if (error != 0) {
4867 		if (error != EFBIG) {
4868 			device_printf(sc->sc_dev,
4869 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4870 			m_freem(m);
4871 			return error;
4872 		}
4873 		/* Too many DMA segments, linearize mbuf. */
4874 #if defined(__DragonFly__)
4875 		m1 = m_defrag(m, M_NOWAIT);
4876 #else
4877 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER);
4878 #endif
4879 		if (m1 == NULL) {
4880 			device_printf(sc->sc_dev,
4881 			    "%s: could not defrag mbuf\n", __func__);
4882 			m_freem(m);
4883 			return ENOBUFS;
4884 		}
4885 		m = m1;
4886 
4887 #if defined(__DragonFly__)
4888 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
4889 						     data->map, m,
4890 						     segs, IWN_MAX_SCATTER - 1,
4891 						     &nsegs, BUS_DMA_NOWAIT);
4892 #else
4893 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4894 		    segs, &nsegs, BUS_DMA_NOWAIT);
4895 #endif
4896 		if (error != 0) {
4897 			device_printf(sc->sc_dev,
4898 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4899 			m_freem(m);
4900 			return error;
4901 		}
4902 	}
4903 
4904 	data->m = m;
4905 	data->ni = ni;
4906 
4907 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
4908 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
4909 
4910 	/* Fill TX descriptor. */
4911 	desc->nsegs = 1;
4912 	if (m->m_len != 0)
4913 		desc->nsegs += nsegs;
4914 	/* First DMA segment is used by the TX command. */
4915 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4916 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4917 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4918 	/* Other DMA segments are for data payload. */
4919 	seg = &segs[0];
4920 	for (i = 1; i <= nsegs; i++) {
4921 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4922 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4923 		    seg->ds_len << 4);
4924 		seg++;
4925 	}
4926 
4927 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4928 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4929 	    BUS_DMASYNC_PREWRITE);
4930 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4931 	    BUS_DMASYNC_PREWRITE);
4932 
4933 	/* Update TX scheduler. */
4934 	if (ring->qid >= sc->firstaggqueue)
4935 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4936 
4937 	/* Kick TX ring. */
4938 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4939 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4940 
4941 	/* Mark TX ring as full if we reach a certain threshold. */
4942 	if (++ring->queued > IWN_TX_RING_HIMARK)
4943 		sc->qfullmsk |= 1 << ring->qid;
4944 
4945 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4946 
4947 	return 0;
4948 }
4949 
4950 static int
4951 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
4952     const struct ieee80211_bpf_params *params)
4953 {
4954 	struct ieee80211com *ic = ni->ni_ic;
4955 	struct ifnet *ifp = ic->ic_ifp;
4956 	struct iwn_softc *sc = ifp->if_softc;
4957 	int error = 0;
4958 
4959 	DPRINTF(sc, IWN_DEBUG_XMIT | IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4960 
4961 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4962 		ieee80211_free_node(ni);
4963 		m_freem(m);
4964 		return ENETDOWN;
4965 	}
4966 
4967 	IWN_LOCK(sc);
4968 	if (params == NULL) {
4969 		/*
4970 		 * Legacy path; interpret frame contents to decide
4971 		 * precisely how to send the frame.
4972 		 */
4973 		error = iwn_tx_data(sc, m, ni);
4974 	} else {
4975 		/*
4976 		 * Caller supplied explicit parameters to use in
4977 		 * sending the frame.
4978 		 */
4979 		error = iwn_tx_data_raw(sc, m, ni, params);
4980 	}
4981 	if (error != 0) {
4982 		/* NB: m is reclaimed on tx failure */
4983 		ieee80211_free_node(ni);
4984 #if defined(__DragonFly__)
4985 		++ifp->if_oerrors;
4986 #else
4987 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
4988 #endif
4989 	}
4990 	sc->sc_tx_timer = 5;
4991 
4992 	IWN_UNLOCK(sc);
4993 
4994 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s: end\n",__func__);
4995 
4996 	return error;
4997 }
4998 
4999 #if defined(__DragonFly__)
5000 static void
5001 iwn_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
5002 #else
5003 static void
5004 iwn_start(struct ifnet *ifp)
5005 #endif
5006 {
5007 	struct iwn_softc *sc = ifp->if_softc;
5008 
5009 	IWN_LOCK(sc);
5010 	iwn_start_locked(ifp);
5011 	IWN_UNLOCK(sc);
5012 }
5013 
5014 #if defined(__DragonFly__)
5015 
5016 static void
5017 iwn_start_locked(struct ifnet *ifp)
5018 {
5019 	struct iwn_softc *sc = ifp->if_softc;
5020 	struct ieee80211_node *ni;
5021 	struct mbuf *m;
5022 
5023 	IWN_LOCK_ASSERT(sc);
5024 
5025 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__);
5026 
5027 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
5028 	    ifq_is_oactive(&ifp->if_snd))
5029 		return;
5030 
5031 	for (;;) {
5032 		if (sc->qfullmsk != 0) {
5033 			ifq_set_oactive(&ifp->if_snd);
5034 			break;
5035 		}
5036 		m = ifq_dequeue(&ifp->if_snd);
5037 		if (m == NULL)
5038 			break;
5039 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
5040 		if (iwn_tx_data(sc, m, ni) != 0) {
5041 			ieee80211_free_node(ni);
5042 			++ifp->if_oerrors;
5043 			continue;
5044 		}
5045 		sc->sc_tx_timer = 5;
5046 	}
5047 
5048 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: done\n", __func__);
5049 }
5050 
5051 #else
5052 
5053 static void
5054 iwn_start_locked(struct ifnet *ifp)
5055 {
5056 	struct iwn_softc *sc = ifp->if_softc;
5057 	struct ieee80211_node *ni;
5058 	struct mbuf *m;
5059 
5060 	IWN_LOCK_ASSERT(sc);
5061 
5062 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__);
5063 
5064 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
5065 	    (ifp->if_drv_flags & IFF_DRV_OACTIVE))
5066 		return;
5067 
5068 	for (;;) {
5069 		if (sc->qfullmsk != 0) {
5070 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5071 			break;
5072 		}
5073 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
5074 		if (m == NULL)
5075 			break;
5076 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
5077 		if (iwn_tx_data(sc, m, ni) != 0) {
5078 			ieee80211_free_node(ni);
5079 #if defined(__DragonFly__)
5080 			++ifp->if_oerrors;
5081 #else
5082 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
5083 #endif
5084 			continue;
5085 		}
5086 		sc->sc_tx_timer = 5;
5087 	}
5088 
5089 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: done\n", __func__);
5090 }
5091 
5092 #endif
5093 
5094 static void
5095 iwn_watchdog(void *arg)
5096 {
5097 	struct iwn_softc *sc = arg;
5098 	struct ifnet *ifp = sc->sc_ifp;
5099 	struct ieee80211com *ic = ifp->if_l2com;
5100 
5101 	IWN_LOCK_ASSERT(sc);
5102 
5103 	KASSERT(ifp->if_drv_flags & IFF_DRV_RUNNING, ("not running"));
5104 
5105 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5106 
5107 	if (sc->sc_tx_timer > 0) {
5108 		if (--sc->sc_tx_timer == 0) {
5109 			if_printf(ifp, "device timeout\n");
5110 			ieee80211_runtask(ic, &sc->sc_reinit_task);
5111 			return;
5112 		}
5113 	}
5114 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
5115 }
5116 
5117 #if defined(__DragonFly__)
5118 static int
5119 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data,
5120 	  struct ucred *cred __unused)
5121 #else
5122 static int
5123 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5124 #endif
5125 {
5126 	struct iwn_softc *sc = ifp->if_softc;
5127 	struct ieee80211com *ic = ifp->if_l2com;
5128 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5129 	struct ifreq *ifr = (struct ifreq *) data;
5130 	int error = 0, startall = 0, stop = 0;
5131 
5132 	switch (cmd) {
5133 	case SIOCGIFADDR:
5134 		error = ether_ioctl(ifp, cmd, data);
5135 		break;
5136 	case SIOCSIFFLAGS:
5137 		IWN_LOCK(sc);
5138 		if (ifp->if_flags & IFF_UP) {
5139 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
5140 				iwn_init_locked(sc);
5141 				if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
5142 					startall = 1;
5143 				else
5144 					stop = 1;
5145 			}
5146 		} else {
5147 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5148 				iwn_stop_locked(sc);
5149 		}
5150 		IWN_UNLOCK(sc);
5151 		if (startall)
5152 			ieee80211_start_all(ic);
5153 		else if (vap != NULL && stop)
5154 			ieee80211_stop(vap);
5155 		break;
5156 	case SIOCGIFMEDIA:
5157 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
5158 		break;
5159 	case SIOCGIWNSTATS:
5160 		IWN_LOCK(sc);
5161 		/* XXX validate permissions/memory/etc? */
5162 		error = copyout(&sc->last_stat, ifr->ifr_data,
5163 		    sizeof(struct iwn_stats));
5164 		IWN_UNLOCK(sc);
5165 		break;
5166 	case SIOCZIWNSTATS:
5167 		IWN_LOCK(sc);
5168 		memset(&sc->last_stat, 0, sizeof(struct iwn_stats));
5169 		IWN_UNLOCK(sc);
5170 		error = 0;
5171 		break;
5172 	default:
5173 		error = EINVAL;
5174 		break;
5175 	}
5176 	return error;
5177 }
5178 
5179 /*
5180  * Send a command to the firmware.
5181  */
5182 static int
5183 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
5184 {
5185 	struct iwn_tx_ring *ring;
5186 	struct iwn_tx_desc *desc;
5187 	struct iwn_tx_data *data;
5188 	struct iwn_tx_cmd *cmd;
5189 	struct mbuf *m;
5190 	bus_addr_t paddr;
5191 	int totlen, error;
5192 	int cmd_queue_num;
5193 
5194 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5195 
5196 	if (async == 0)
5197 		IWN_LOCK_ASSERT(sc);
5198 
5199 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
5200 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
5201 	else
5202 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
5203 
5204 	ring = &sc->txq[cmd_queue_num];
5205 	desc = &ring->desc[ring->cur];
5206 	data = &ring->data[ring->cur];
5207 	totlen = 4 + size;
5208 
5209 	if (size > sizeof cmd->data) {
5210 		/* Command is too large to fit in a descriptor. */
5211 		if (totlen > MCLBYTES)
5212 			return EINVAL;
5213 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
5214 		if (m == NULL)
5215 			return ENOMEM;
5216 		cmd = mtod(m, struct iwn_tx_cmd *);
5217 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
5218 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
5219 		if (error != 0) {
5220 			m_freem(m);
5221 			return error;
5222 		}
5223 		data->m = m;
5224 	} else {
5225 		cmd = &ring->cmd[ring->cur];
5226 		paddr = data->cmd_paddr;
5227 	}
5228 
5229 	cmd->code = code;
5230 	cmd->flags = 0;
5231 	cmd->qid = ring->qid;
5232 	cmd->idx = ring->cur;
5233 	memcpy(cmd->data, buf, size);
5234 
5235 	desc->nsegs = 1;
5236 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
5237 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
5238 
5239 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
5240 	    __func__, iwn_intr_str(cmd->code), cmd->code,
5241 	    cmd->flags, cmd->qid, cmd->idx);
5242 
5243 	if (size > sizeof cmd->data) {
5244 		bus_dmamap_sync(ring->data_dmat, data->map,
5245 		    BUS_DMASYNC_PREWRITE);
5246 	} else {
5247 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
5248 		    BUS_DMASYNC_PREWRITE);
5249 	}
5250 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
5251 	    BUS_DMASYNC_PREWRITE);
5252 
5253 	/* Kick command ring. */
5254 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
5255 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
5256 
5257 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5258 
5259 	return async ? 0 : iwn_sleep(sc, desc, PCATCH, "iwncmd", hz);
5260 }
5261 
5262 static int
5263 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5264 {
5265 	struct iwn4965_node_info hnode;
5266 	caddr_t src, dst;
5267 
5268 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5269 
5270 	/*
5271 	 * We use the node structure for 5000 Series internally (it is
5272 	 * a superset of the one for 4965AGN). We thus copy the common
5273 	 * fields before sending the command.
5274 	 */
5275 	src = (caddr_t)node;
5276 	dst = (caddr_t)&hnode;
5277 	memcpy(dst, src, 48);
5278 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
5279 	memcpy(dst + 48, src + 72, 20);
5280 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
5281 }
5282 
5283 static int
5284 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5285 {
5286 
5287 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5288 
5289 	/* Direct mapping. */
5290 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
5291 }
5292 
5293 static int
5294 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
5295 {
5296 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
5297 	struct iwn_node *wn = (void *)ni;
5298 	struct ieee80211_rateset *rs;
5299 	struct iwn_cmd_link_quality linkq;
5300 	int i, rate, txrate;
5301 	int is_11n;
5302 
5303 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5304 
5305 	memset(&linkq, 0, sizeof linkq);
5306 	linkq.id = wn->id;
5307 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5308 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5309 
5310 	linkq.ampdu_max = 32;		/* XXX negotiated? */
5311 	linkq.ampdu_threshold = 3;
5312 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5313 
5314 	DPRINTF(sc, IWN_DEBUG_XMIT,
5315 	    "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n",
5316 	    __func__,
5317 	    linkq.antmsk_1stream,
5318 	    linkq.antmsk_2stream,
5319 	    sc->ntxchains);
5320 
5321 	/*
5322 	 * Are we using 11n rates? Ensure the channel is
5323 	 * 11n _and_ we have some 11n rates, or don't
5324 	 * try.
5325 	 */
5326 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) {
5327 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
5328 		is_11n = 1;
5329 	} else {
5330 		rs = &ni->ni_rates;
5331 		is_11n = 0;
5332 	}
5333 
5334 	/* Start at highest available bit-rate. */
5335 	/*
5336 	 * XXX this is all very dirty!
5337 	 */
5338 	if (is_11n)
5339 		txrate = ni->ni_htrates.rs_nrates - 1;
5340 	else
5341 		txrate = rs->rs_nrates - 1;
5342 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
5343 		uint32_t plcp;
5344 
5345 		/*
5346 		 * XXX TODO: ensure the last two slots are the two lowest
5347 		 * rate entries, just for now.
5348 		 */
5349 		if (i == 14 || i == 15)
5350 			txrate = 0;
5351 
5352 		if (is_11n)
5353 			rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate];
5354 		else
5355 			rate = RV(rs->rs_rates[txrate]);
5356 
5357 		/* Do rate -> PLCP config mapping */
5358 		plcp = iwn_rate_to_plcp(sc, ni, rate);
5359 		linkq.retry[i] = plcp;
5360 		DPRINTF(sc, IWN_DEBUG_XMIT,
5361 		    "%s: i=%d, txrate=%d, rate=0x%02x, plcp=0x%08x\n",
5362 		    __func__,
5363 		    i,
5364 		    txrate,
5365 		    rate,
5366 		    le32toh(plcp));
5367 
5368 		/*
5369 		 * The mimo field is an index into the table which
5370 		 * indicates the first index where it and subsequent entries
5371 		 * will not be using MIMO.
5372 		 *
5373 		 * Since we're filling linkq from 0..15 and we're filling
5374 		 * from the higest MCS rates to the lowest rates, if we
5375 		 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie,
5376 		 * the next entry.)  That way if the next entry is a non-MIMO
5377 		 * entry, we're already pointing at it.
5378 		 */
5379 		if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
5380 		    RV(le32toh(plcp)) > 7)
5381 			linkq.mimo = i + 1;
5382 
5383 		/* Next retry at immediate lower bit-rate. */
5384 		if (txrate > 0)
5385 			txrate--;
5386 	}
5387 	/*
5388 	 * If we reached the end of the list and indeed we hit
5389 	 * all MIMO rates (eg 5300 doing MCS23-15) then yes,
5390 	 * set mimo to 15.  Setting it to 16 panics the firmware.
5391 	 */
5392 	if (linkq.mimo > 15)
5393 		linkq.mimo = 15;
5394 
5395 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: mimo = %d\n", __func__, linkq.mimo);
5396 
5397 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5398 
5399 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
5400 #undef	RV
5401 }
5402 
5403 /*
5404  * Broadcast node is used to send group-addressed and management frames.
5405  */
5406 static int
5407 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
5408 {
5409 	struct iwn_ops *ops = &sc->ops;
5410 	struct ifnet *ifp = sc->sc_ifp;
5411 	struct ieee80211com *ic = ifp->if_l2com;
5412 	struct iwn_node_info node;
5413 	struct iwn_cmd_link_quality linkq;
5414 	uint8_t txant;
5415 	int i, error;
5416 
5417 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5418 
5419 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5420 
5421 	memset(&node, 0, sizeof node);
5422 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
5423 	node.id = sc->broadcast_id;
5424 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
5425 	if ((error = ops->add_node(sc, &node, async)) != 0)
5426 		return error;
5427 
5428 	/* Use the first valid TX antenna. */
5429 	txant = IWN_LSB(sc->txchainmask);
5430 
5431 	memset(&linkq, 0, sizeof linkq);
5432 	linkq.id = sc->broadcast_id;
5433 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5434 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5435 	linkq.ampdu_max = 64;
5436 	linkq.ampdu_threshold = 3;
5437 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5438 
5439 	/* Use lowest mandatory bit-rate. */
5440 	/* XXX rate table lookup? */
5441 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
5442 		linkq.retry[0] = htole32(0xd);
5443 	else
5444 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
5445 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
5446 	/* Use same bit-rate for all TX retries. */
5447 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
5448 		linkq.retry[i] = linkq.retry[0];
5449 	}
5450 
5451 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5452 
5453 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
5454 }
5455 
5456 static int
5457 iwn_updateedca(struct ieee80211com *ic)
5458 {
5459 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
5460 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
5461 	struct iwn_edca_params cmd;
5462 	int aci;
5463 
5464 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5465 
5466 	memset(&cmd, 0, sizeof cmd);
5467 	cmd.flags = htole32(IWN_EDCA_UPDATE);
5468 	for (aci = 0; aci < WME_NUM_AC; aci++) {
5469 		const struct wmeParams *ac =
5470 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
5471 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
5472 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
5473 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
5474 		cmd.ac[aci].txoplimit =
5475 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
5476 	}
5477 	IEEE80211_UNLOCK(ic);
5478 	IWN_LOCK(sc);
5479 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5480 	IWN_UNLOCK(sc);
5481 	IEEE80211_LOCK(ic);
5482 
5483 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5484 
5485 	return 0;
5486 #undef IWN_EXP2
5487 }
5488 
5489 static void
5490 iwn_update_mcast(struct ifnet *ifp)
5491 {
5492 	/* Ignore */
5493 }
5494 
5495 static void
5496 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
5497 {
5498 	struct iwn_cmd_led led;
5499 
5500 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5501 
5502 #if 0
5503 	/* XXX don't set LEDs during scan? */
5504 	if (sc->sc_is_scanning)
5505 		return;
5506 #endif
5507 
5508 	/* Clear microcode LED ownership. */
5509 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
5510 
5511 	led.which = which;
5512 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
5513 	led.off = off;
5514 	led.on = on;
5515 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
5516 }
5517 
5518 /*
5519  * Set the critical temperature at which the firmware will stop the radio
5520  * and notify us.
5521  */
5522 static int
5523 iwn_set_critical_temp(struct iwn_softc *sc)
5524 {
5525 	struct iwn_critical_temp crit;
5526 	int32_t temp;
5527 
5528 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5529 
5530 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
5531 
5532 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
5533 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
5534 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
5535 		temp = IWN_CTOK(110);
5536 	else
5537 		temp = 110;
5538 	memset(&crit, 0, sizeof crit);
5539 	crit.tempR = htole32(temp);
5540 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
5541 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
5542 }
5543 
5544 static int
5545 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
5546 {
5547 	struct iwn_cmd_timing cmd;
5548 	uint64_t val, mod;
5549 
5550 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5551 
5552 	memset(&cmd, 0, sizeof cmd);
5553 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
5554 	cmd.bintval = htole16(ni->ni_intval);
5555 	cmd.lintval = htole16(10);
5556 
5557 	/* Compute remaining time until next beacon. */
5558 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
5559 	mod = le64toh(cmd.tstamp) % val;
5560 	cmd.binitval = htole32((uint32_t)(val - mod));
5561 
5562 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
5563 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
5564 
5565 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
5566 }
5567 
5568 static void
5569 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
5570 {
5571 	struct ifnet *ifp = sc->sc_ifp;
5572 	struct ieee80211com *ic = ifp->if_l2com;
5573 
5574 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5575 
5576 	/* Adjust TX power if need be (delta >= 3 degC). */
5577 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
5578 	    __func__, sc->temp, temp);
5579 	if (abs(temp - sc->temp) >= 3) {
5580 		/* Record temperature of last calibration. */
5581 		sc->temp = temp;
5582 		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
5583 	}
5584 }
5585 
5586 /*
5587  * Set TX power for current channel (each rate has its own power settings).
5588  * This function takes into account the regulatory information from EEPROM,
5589  * the current temperature and the current voltage.
5590  */
5591 static int
5592 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5593     int async)
5594 {
5595 /* Fixed-point arithmetic division using a n-bit fractional part. */
5596 #define fdivround(a, b, n)	\
5597 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
5598 /* Linear interpolation. */
5599 #define interpolate(x, x1, y1, x2, y2, n)	\
5600 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
5601 
5602 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
5603 	struct iwn_ucode_info *uc = &sc->ucode_info;
5604 	struct iwn4965_cmd_txpower cmd;
5605 	struct iwn4965_eeprom_chan_samples *chans;
5606 	const uint8_t *rf_gain, *dsp_gain;
5607 	int32_t vdiff, tdiff;
5608 	int i, c, grp, maxpwr;
5609 	uint8_t chan;
5610 
5611 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5612 	/* Retrieve current channel from last RXON. */
5613 	chan = sc->rxon->chan;
5614 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
5615 	    chan);
5616 
5617 	memset(&cmd, 0, sizeof cmd);
5618 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
5619 	cmd.chan = chan;
5620 
5621 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
5622 		maxpwr   = sc->maxpwr5GHz;
5623 		rf_gain  = iwn4965_rf_gain_5ghz;
5624 		dsp_gain = iwn4965_dsp_gain_5ghz;
5625 	} else {
5626 		maxpwr   = sc->maxpwr2GHz;
5627 		rf_gain  = iwn4965_rf_gain_2ghz;
5628 		dsp_gain = iwn4965_dsp_gain_2ghz;
5629 	}
5630 
5631 	/* Compute voltage compensation. */
5632 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
5633 	if (vdiff > 0)
5634 		vdiff *= 2;
5635 	if (abs(vdiff) > 2)
5636 		vdiff = 0;
5637 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5638 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
5639 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
5640 
5641 	/* Get channel attenuation group. */
5642 	if (chan <= 20)		/* 1-20 */
5643 		grp = 4;
5644 	else if (chan <= 43)	/* 34-43 */
5645 		grp = 0;
5646 	else if (chan <= 70)	/* 44-70 */
5647 		grp = 1;
5648 	else if (chan <= 124)	/* 71-124 */
5649 		grp = 2;
5650 	else			/* 125-200 */
5651 		grp = 3;
5652 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5653 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
5654 
5655 	/* Get channel sub-band. */
5656 	for (i = 0; i < IWN_NBANDS; i++)
5657 		if (sc->bands[i].lo != 0 &&
5658 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
5659 			break;
5660 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
5661 		return EINVAL;
5662 	chans = sc->bands[i].chans;
5663 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5664 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
5665 
5666 	for (c = 0; c < 2; c++) {
5667 		uint8_t power, gain, temp;
5668 		int maxchpwr, pwr, ridx, idx;
5669 
5670 		power = interpolate(chan,
5671 		    chans[0].num, chans[0].samples[c][1].power,
5672 		    chans[1].num, chans[1].samples[c][1].power, 1);
5673 		gain  = interpolate(chan,
5674 		    chans[0].num, chans[0].samples[c][1].gain,
5675 		    chans[1].num, chans[1].samples[c][1].gain, 1);
5676 		temp  = interpolate(chan,
5677 		    chans[0].num, chans[0].samples[c][1].temp,
5678 		    chans[1].num, chans[1].samples[c][1].temp, 1);
5679 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5680 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
5681 		    __func__, c, power, gain, temp);
5682 
5683 		/* Compute temperature compensation. */
5684 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
5685 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5686 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
5687 		    __func__, tdiff, sc->temp, temp);
5688 
5689 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
5690 			/* Convert dBm to half-dBm. */
5691 			maxchpwr = sc->maxpwr[chan] * 2;
5692 			if ((ridx / 8) & 1)
5693 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
5694 
5695 			pwr = maxpwr;
5696 
5697 			/* Adjust TX power based on rate. */
5698 			if ((ridx % 8) == 5)
5699 				pwr -= 15;	/* OFDM48: -7.5dB */
5700 			else if ((ridx % 8) == 6)
5701 				pwr -= 17;	/* OFDM54: -8.5dB */
5702 			else if ((ridx % 8) == 7)
5703 				pwr -= 20;	/* OFDM60: -10dB */
5704 			else
5705 				pwr -= 10;	/* Others: -5dB */
5706 
5707 			/* Do not exceed channel max TX power. */
5708 			if (pwr > maxchpwr)
5709 				pwr = maxchpwr;
5710 
5711 			idx = gain - (pwr - power) - tdiff - vdiff;
5712 			if ((ridx / 8) & 1)	/* MIMO */
5713 				idx += (int32_t)le32toh(uc->atten[grp][c]);
5714 
5715 			if (cmd.band == 0)
5716 				idx += 9;	/* 5GHz */
5717 			if (ridx == IWN_RIDX_MAX)
5718 				idx += 5;	/* CCK */
5719 
5720 			/* Make sure idx stays in a valid range. */
5721 			if (idx < 0)
5722 				idx = 0;
5723 			else if (idx > IWN4965_MAX_PWR_INDEX)
5724 				idx = IWN4965_MAX_PWR_INDEX;
5725 
5726 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5727 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
5728 			    __func__, c, ridx, idx);
5729 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
5730 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
5731 		}
5732 	}
5733 
5734 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5735 	    "%s: set tx power for chan %d\n", __func__, chan);
5736 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
5737 
5738 #undef interpolate
5739 #undef fdivround
5740 }
5741 
5742 static int
5743 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5744     int async)
5745 {
5746 	struct iwn5000_cmd_txpower cmd;
5747 	int cmdid;
5748 
5749 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5750 
5751 	/*
5752 	 * TX power calibration is handled automatically by the firmware
5753 	 * for 5000 Series.
5754 	 */
5755 	memset(&cmd, 0, sizeof cmd);
5756 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
5757 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
5758 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
5759 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5760 	    "%s: setting TX power; rev=%d\n",
5761 	    __func__,
5762 	    IWN_UCODE_API(sc->ucode_rev));
5763 	if (IWN_UCODE_API(sc->ucode_rev) == 1)
5764 		cmdid = IWN_CMD_TXPOWER_DBM_V1;
5765 	else
5766 		cmdid = IWN_CMD_TXPOWER_DBM;
5767 	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
5768 }
5769 
5770 /*
5771  * Retrieve the maximum RSSI (in dBm) among receivers.
5772  */
5773 static int
5774 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5775 {
5776 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
5777 	uint8_t mask, agc;
5778 	int rssi;
5779 
5780 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5781 
5782 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
5783 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
5784 
5785 	rssi = 0;
5786 	if (mask & IWN_ANT_A)
5787 		rssi = MAX(rssi, phy->rssi[0]);
5788 	if (mask & IWN_ANT_B)
5789 		rssi = MAX(rssi, phy->rssi[2]);
5790 	if (mask & IWN_ANT_C)
5791 		rssi = MAX(rssi, phy->rssi[4]);
5792 
5793 	DPRINTF(sc, IWN_DEBUG_RECV,
5794 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
5795 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
5796 	    rssi - agc - IWN_RSSI_TO_DBM);
5797 	return rssi - agc - IWN_RSSI_TO_DBM;
5798 }
5799 
5800 static int
5801 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5802 {
5803 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
5804 	uint8_t agc;
5805 	int rssi;
5806 
5807 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5808 
5809 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
5810 
5811 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
5812 		   le16toh(phy->rssi[1]) & 0xff);
5813 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
5814 
5815 	DPRINTF(sc, IWN_DEBUG_RECV,
5816 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
5817 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
5818 	    rssi - agc - IWN_RSSI_TO_DBM);
5819 	return rssi - agc - IWN_RSSI_TO_DBM;
5820 }
5821 
5822 /*
5823  * Retrieve the average noise (in dBm) among receivers.
5824  */
5825 static int
5826 iwn_get_noise(const struct iwn_rx_general_stats *stats)
5827 {
5828 	int i, total, nbant, noise;
5829 
5830 	total = nbant = 0;
5831 	for (i = 0; i < 3; i++) {
5832 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
5833 			continue;
5834 		total += noise;
5835 		nbant++;
5836 	}
5837 	/* There should be at least one antenna but check anyway. */
5838 	return (nbant == 0) ? -127 : (total / nbant) - 107;
5839 }
5840 
5841 /*
5842  * Compute temperature (in degC) from last received statistics.
5843  */
5844 static int
5845 iwn4965_get_temperature(struct iwn_softc *sc)
5846 {
5847 	struct iwn_ucode_info *uc = &sc->ucode_info;
5848 	int32_t r1, r2, r3, r4, temp;
5849 
5850 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5851 
5852 	r1 = le32toh(uc->temp[0].chan20MHz);
5853 	r2 = le32toh(uc->temp[1].chan20MHz);
5854 	r3 = le32toh(uc->temp[2].chan20MHz);
5855 	r4 = le32toh(sc->rawtemp);
5856 
5857 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
5858 		return 0;
5859 
5860 	/* Sign-extend 23-bit R4 value to 32-bit. */
5861 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
5862 	/* Compute temperature in Kelvin. */
5863 	temp = (259 * (r4 - r2)) / (r3 - r1);
5864 	temp = (temp * 97) / 100 + 8;
5865 
5866 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
5867 	    IWN_KTOC(temp));
5868 	return IWN_KTOC(temp);
5869 }
5870 
5871 static int
5872 iwn5000_get_temperature(struct iwn_softc *sc)
5873 {
5874 	int32_t temp;
5875 
5876 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5877 
5878 	/*
5879 	 * Temperature is not used by the driver for 5000 Series because
5880 	 * TX power calibration is handled by firmware.
5881 	 */
5882 	temp = le32toh(sc->rawtemp);
5883 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
5884 		temp = (temp / -5) + sc->temp_off;
5885 		temp = IWN_KTOC(temp);
5886 	}
5887 	return temp;
5888 }
5889 
5890 /*
5891  * Initialize sensitivity calibration state machine.
5892  */
5893 static int
5894 iwn_init_sensitivity(struct iwn_softc *sc)
5895 {
5896 	struct iwn_ops *ops = &sc->ops;
5897 	struct iwn_calib_state *calib = &sc->calib;
5898 	uint32_t flags;
5899 	int error;
5900 
5901 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5902 
5903 	/* Reset calibration state machine. */
5904 	memset(calib, 0, sizeof (*calib));
5905 	calib->state = IWN_CALIB_STATE_INIT;
5906 	calib->cck_state = IWN_CCK_STATE_HIFA;
5907 	/* Set initial correlation values. */
5908 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
5909 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
5910 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
5911 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
5912 	calib->cck_x4      = 125;
5913 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
5914 	calib->energy_cck  = sc->limits->energy_cck;
5915 
5916 	/* Write initial sensitivity. */
5917 	if ((error = iwn_send_sensitivity(sc)) != 0)
5918 		return error;
5919 
5920 	/* Write initial gains. */
5921 	if ((error = ops->init_gains(sc)) != 0)
5922 		return error;
5923 
5924 	/* Request statistics at each beacon interval. */
5925 	flags = 0;
5926 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
5927 	    __func__);
5928 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
5929 }
5930 
5931 /*
5932  * Collect noise and RSSI statistics for the first 20 beacons received
5933  * after association and use them to determine connected antennas and
5934  * to set differential gains.
5935  */
5936 static void
5937 iwn_collect_noise(struct iwn_softc *sc,
5938     const struct iwn_rx_general_stats *stats)
5939 {
5940 	struct iwn_ops *ops = &sc->ops;
5941 	struct iwn_calib_state *calib = &sc->calib;
5942 	struct ifnet *ifp = sc->sc_ifp;
5943 	struct ieee80211com *ic = ifp->if_l2com;
5944 	uint32_t val;
5945 	int i;
5946 
5947 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5948 
5949 	/* Accumulate RSSI and noise for all 3 antennas. */
5950 	for (i = 0; i < 3; i++) {
5951 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
5952 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
5953 	}
5954 	/* NB: We update differential gains only once after 20 beacons. */
5955 	if (++calib->nbeacons < 20)
5956 		return;
5957 
5958 	/* Determine highest average RSSI. */
5959 	val = MAX(calib->rssi[0], calib->rssi[1]);
5960 	val = MAX(calib->rssi[2], val);
5961 
5962 	/* Determine which antennas are connected. */
5963 	sc->chainmask = sc->rxchainmask;
5964 	for (i = 0; i < 3; i++)
5965 		if (val - calib->rssi[i] > 15 * 20)
5966 			sc->chainmask &= ~(1 << i);
5967 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5968 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
5969 	    __func__, sc->rxchainmask, sc->chainmask);
5970 
5971 	/* If none of the TX antennas are connected, keep at least one. */
5972 	if ((sc->chainmask & sc->txchainmask) == 0)
5973 		sc->chainmask |= IWN_LSB(sc->txchainmask);
5974 
5975 	(void)ops->set_gains(sc);
5976 	calib->state = IWN_CALIB_STATE_RUN;
5977 
5978 #ifdef notyet
5979 	/* XXX Disable RX chains with no antennas connected. */
5980 	sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
5981 	if (sc->sc_is_scanning)
5982 		device_printf(sc->sc_dev,
5983 		    "%s: is_scanning set, before RXON\n",
5984 		    __func__);
5985 	(void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
5986 #endif
5987 
5988 	/* Enable power-saving mode if requested by user. */
5989 	if (ic->ic_flags & IEEE80211_F_PMGTON)
5990 		(void)iwn_set_pslevel(sc, 0, 3, 1);
5991 
5992 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5993 
5994 }
5995 
5996 static int
5997 iwn4965_init_gains(struct iwn_softc *sc)
5998 {
5999 	struct iwn_phy_calib_gain cmd;
6000 
6001 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6002 
6003 	memset(&cmd, 0, sizeof cmd);
6004 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
6005 	/* Differential gains initially set to 0 for all 3 antennas. */
6006 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6007 	    "%s: setting initial differential gains\n", __func__);
6008 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6009 }
6010 
6011 static int
6012 iwn5000_init_gains(struct iwn_softc *sc)
6013 {
6014 	struct iwn_phy_calib cmd;
6015 
6016 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6017 
6018 	memset(&cmd, 0, sizeof cmd);
6019 	cmd.code = sc->reset_noise_gain;
6020 	cmd.ngroups = 1;
6021 	cmd.isvalid = 1;
6022 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6023 	    "%s: setting initial differential gains\n", __func__);
6024 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6025 }
6026 
6027 static int
6028 iwn4965_set_gains(struct iwn_softc *sc)
6029 {
6030 	struct iwn_calib_state *calib = &sc->calib;
6031 	struct iwn_phy_calib_gain cmd;
6032 	int i, delta, noise;
6033 
6034 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6035 
6036 	/* Get minimal noise among connected antennas. */
6037 	noise = INT_MAX;	/* NB: There's at least one antenna. */
6038 	for (i = 0; i < 3; i++)
6039 		if (sc->chainmask & (1 << i))
6040 			noise = MIN(calib->noise[i], noise);
6041 
6042 	memset(&cmd, 0, sizeof cmd);
6043 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
6044 	/* Set differential gains for connected antennas. */
6045 	for (i = 0; i < 3; i++) {
6046 		if (sc->chainmask & (1 << i)) {
6047 			/* Compute attenuation (in unit of 1.5dB). */
6048 			delta = (noise - (int32_t)calib->noise[i]) / 30;
6049 			/* NB: delta <= 0 */
6050 			/* Limit to [-4.5dB,0]. */
6051 			cmd.gain[i] = MIN(abs(delta), 3);
6052 			if (delta < 0)
6053 				cmd.gain[i] |= 1 << 2;	/* sign bit */
6054 		}
6055 	}
6056 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6057 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
6058 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
6059 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6060 }
6061 
6062 static int
6063 iwn5000_set_gains(struct iwn_softc *sc)
6064 {
6065 	struct iwn_calib_state *calib = &sc->calib;
6066 	struct iwn_phy_calib_gain cmd;
6067 	int i, ant, div, delta;
6068 
6069 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6070 
6071 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
6072 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
6073 
6074 	memset(&cmd, 0, sizeof cmd);
6075 	cmd.code = sc->noise_gain;
6076 	cmd.ngroups = 1;
6077 	cmd.isvalid = 1;
6078 	/* Get first available RX antenna as referential. */
6079 	ant = IWN_LSB(sc->rxchainmask);
6080 	/* Set differential gains for other antennas. */
6081 	for (i = ant + 1; i < 3; i++) {
6082 		if (sc->chainmask & (1 << i)) {
6083 			/* The delta is relative to antenna "ant". */
6084 			delta = ((int32_t)calib->noise[ant] -
6085 			    (int32_t)calib->noise[i]) / div;
6086 			/* Limit to [-4.5dB,+4.5dB]. */
6087 			cmd.gain[i - 1] = MIN(abs(delta), 3);
6088 			if (delta < 0)
6089 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
6090 		}
6091 	}
6092 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
6093 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
6094 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
6095 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6096 }
6097 
6098 /*
6099  * Tune RF RX sensitivity based on the number of false alarms detected
6100  * during the last beacon period.
6101  */
6102 static void
6103 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
6104 {
6105 #define inc(val, inc, max)			\
6106 	if ((val) < (max)) {			\
6107 		if ((val) < (max) - (inc))	\
6108 			(val) += (inc);		\
6109 		else				\
6110 			(val) = (max);		\
6111 		needs_update = 1;		\
6112 	}
6113 #define dec(val, dec, min)			\
6114 	if ((val) > (min)) {			\
6115 		if ((val) > (min) + (dec))	\
6116 			(val) -= (dec);		\
6117 		else				\
6118 			(val) = (min);		\
6119 		needs_update = 1;		\
6120 	}
6121 
6122 	const struct iwn_sensitivity_limits *limits = sc->limits;
6123 	struct iwn_calib_state *calib = &sc->calib;
6124 	uint32_t val, rxena, fa;
6125 	uint32_t energy[3], energy_min;
6126 	uint8_t noise[3], noise_ref;
6127 	int i, needs_update = 0;
6128 
6129 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6130 
6131 	/* Check that we've been enabled long enough. */
6132 	if ((rxena = le32toh(stats->general.load)) == 0){
6133 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__);
6134 		return;
6135 	}
6136 
6137 	/* Compute number of false alarms since last call for OFDM. */
6138 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6139 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
6140 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6141 
6142 	if (fa > 50 * rxena) {
6143 		/* High false alarm count, decrease sensitivity. */
6144 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6145 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
6146 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
6147 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
6148 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
6149 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
6150 
6151 	} else if (fa < 5 * rxena) {
6152 		/* Low false alarm count, increase sensitivity. */
6153 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6154 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
6155 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
6156 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
6157 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
6158 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
6159 	}
6160 
6161 	/* Compute maximum noise among 3 receivers. */
6162 	for (i = 0; i < 3; i++)
6163 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
6164 	val = MAX(noise[0], noise[1]);
6165 	val = MAX(noise[2], val);
6166 	/* Insert it into our samples table. */
6167 	calib->noise_samples[calib->cur_noise_sample] = val;
6168 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
6169 
6170 	/* Compute maximum noise among last 20 samples. */
6171 	noise_ref = calib->noise_samples[0];
6172 	for (i = 1; i < 20; i++)
6173 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
6174 
6175 	/* Compute maximum energy among 3 receivers. */
6176 	for (i = 0; i < 3; i++)
6177 		energy[i] = le32toh(stats->general.energy[i]);
6178 	val = MIN(energy[0], energy[1]);
6179 	val = MIN(energy[2], val);
6180 	/* Insert it into our samples table. */
6181 	calib->energy_samples[calib->cur_energy_sample] = val;
6182 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
6183 
6184 	/* Compute minimum energy among last 10 samples. */
6185 	energy_min = calib->energy_samples[0];
6186 	for (i = 1; i < 10; i++)
6187 		energy_min = MAX(energy_min, calib->energy_samples[i]);
6188 	energy_min += 6;
6189 
6190 	/* Compute number of false alarms since last call for CCK. */
6191 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
6192 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
6193 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6194 
6195 	if (fa > 50 * rxena) {
6196 		/* High false alarm count, decrease sensitivity. */
6197 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6198 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
6199 		calib->cck_state = IWN_CCK_STATE_HIFA;
6200 		calib->low_fa = 0;
6201 
6202 		if (calib->cck_x4 > 160) {
6203 			calib->noise_ref = noise_ref;
6204 			if (calib->energy_cck > 2)
6205 				dec(calib->energy_cck, 2, energy_min);
6206 		}
6207 		if (calib->cck_x4 < 160) {
6208 			calib->cck_x4 = 161;
6209 			needs_update = 1;
6210 		} else
6211 			inc(calib->cck_x4, 3, limits->max_cck_x4);
6212 
6213 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
6214 
6215 	} else if (fa < 5 * rxena) {
6216 		/* Low false alarm count, increase sensitivity. */
6217 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6218 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
6219 		calib->cck_state = IWN_CCK_STATE_LOFA;
6220 		calib->low_fa++;
6221 
6222 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
6223 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
6224 		     calib->low_fa > 100)) {
6225 			inc(calib->energy_cck, 2, limits->min_energy_cck);
6226 			dec(calib->cck_x4,     3, limits->min_cck_x4);
6227 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
6228 		}
6229 	} else {
6230 		/* Not worth to increase or decrease sensitivity. */
6231 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6232 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
6233 		calib->low_fa = 0;
6234 		calib->noise_ref = noise_ref;
6235 
6236 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
6237 			/* Previous interval had many false alarms. */
6238 			dec(calib->energy_cck, 8, energy_min);
6239 		}
6240 		calib->cck_state = IWN_CCK_STATE_INIT;
6241 	}
6242 
6243 	if (needs_update)
6244 		(void)iwn_send_sensitivity(sc);
6245 
6246 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6247 
6248 #undef dec
6249 #undef inc
6250 }
6251 
6252 static int
6253 iwn_send_sensitivity(struct iwn_softc *sc)
6254 {
6255 	struct iwn_calib_state *calib = &sc->calib;
6256 	struct iwn_enhanced_sensitivity_cmd cmd;
6257 	int len;
6258 
6259 	memset(&cmd, 0, sizeof cmd);
6260 	len = sizeof (struct iwn_sensitivity_cmd);
6261 	cmd.which = IWN_SENSITIVITY_WORKTBL;
6262 	/* OFDM modulation. */
6263 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
6264 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
6265 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
6266 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
6267 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
6268 	cmd.energy_ofdm_th     = htole16(62);
6269 	/* CCK modulation. */
6270 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
6271 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
6272 	cmd.energy_cck         = htole16(calib->energy_cck);
6273 	/* Barker modulation: use default values. */
6274 	cmd.corr_barker        = htole16(190);
6275 	cmd.corr_barker_mrc    = htole16(sc->limits->barker_mrc);
6276 
6277 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6278 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
6279 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
6280 	    calib->ofdm_mrc_x4, calib->cck_x4,
6281 	    calib->cck_mrc_x4, calib->energy_cck);
6282 
6283 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
6284 		goto send;
6285 	/* Enhanced sensitivity settings. */
6286 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
6287 	cmd.ofdm_det_slope_mrc = htole16(668);
6288 	cmd.ofdm_det_icept_mrc = htole16(4);
6289 	cmd.ofdm_det_slope     = htole16(486);
6290 	cmd.ofdm_det_icept     = htole16(37);
6291 	cmd.cck_det_slope_mrc  = htole16(853);
6292 	cmd.cck_det_icept_mrc  = htole16(4);
6293 	cmd.cck_det_slope      = htole16(476);
6294 	cmd.cck_det_icept      = htole16(99);
6295 send:
6296 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
6297 }
6298 
6299 /*
6300  * Look at the increase of PLCP errors over time; if it exceeds
6301  * a programmed threshold then trigger an RF retune.
6302  */
6303 static void
6304 iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs)
6305 {
6306 	int32_t delta_ofdm, delta_ht, delta_cck;
6307 	struct iwn_calib_state *calib = &sc->calib;
6308 	int delta_ticks, cur_ticks;
6309 	int delta_msec;
6310 	int thresh;
6311 
6312 	/*
6313 	 * Calculate the difference between the current and
6314 	 * previous statistics.
6315 	 */
6316 	delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck;
6317 	delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6318 	delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht;
6319 
6320 	/*
6321 	 * Calculate the delta in time between successive statistics
6322 	 * messages.  Yes, it can roll over; so we make sure that
6323 	 * this doesn't happen.
6324 	 *
6325 	 * XXX go figure out what to do about rollover
6326 	 * XXX go figure out what to do if ticks rolls over to -ve instead!
6327 	 * XXX go stab signed integer overflow undefined-ness in the face.
6328 	 */
6329 	cur_ticks = ticks;
6330 	delta_ticks = cur_ticks - sc->last_calib_ticks;
6331 
6332 	/*
6333 	 * If any are negative, then the firmware likely reset; so just
6334 	 * bail.  We'll pick this up next time.
6335 	 */
6336 	if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0)
6337 		return;
6338 
6339 	/*
6340 	 * delta_ticks is in ticks; we need to convert it up to milliseconds
6341 	 * so we can do some useful math with it.
6342 	 */
6343 	delta_msec = ticks_to_msecs(delta_ticks);
6344 
6345 	/*
6346 	 * Calculate what our threshold is given the current delta_msec.
6347 	 */
6348 	thresh = sc->base_params->plcp_err_threshold * delta_msec;
6349 
6350 	DPRINTF(sc, IWN_DEBUG_STATE,
6351 	    "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n",
6352 	    __func__,
6353 	    delta_msec,
6354 	    delta_cck,
6355 	    delta_ofdm,
6356 	    delta_ht,
6357 	    (delta_msec + delta_cck + delta_ofdm + delta_ht),
6358 	    thresh);
6359 
6360 	/*
6361 	 * If we need a retune, then schedule a single channel scan
6362 	 * to a channel that isn't the currently active one!
6363 	 *
6364 	 * The math from linux iwlwifi:
6365 	 *
6366 	 * if ((delta * 100 / msecs) > threshold)
6367 	 */
6368 	if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) {
6369 		DPRINTF(sc, IWN_DEBUG_ANY,
6370 		    "%s: PLCP error threshold raw (%d) comparison (%d) "
6371 		    "over limit (%d); retune!\n",
6372 		    __func__,
6373 		    (delta_cck + delta_ofdm + delta_ht),
6374 		    (delta_cck + delta_ofdm + delta_ht) * 100,
6375 		    thresh);
6376 	}
6377 }
6378 
6379 /*
6380  * Set STA mode power saving level (between 0 and 5).
6381  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
6382  */
6383 static int
6384 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
6385 {
6386 	struct iwn_pmgt_cmd cmd;
6387 	const struct iwn_pmgt *pmgt;
6388 	uint32_t max, skip_dtim;
6389 	uint32_t reg;
6390 	int i;
6391 
6392 	DPRINTF(sc, IWN_DEBUG_PWRSAVE,
6393 	    "%s: dtim=%d, level=%d, async=%d\n",
6394 	    __func__,
6395 	    dtim,
6396 	    level,
6397 	    async);
6398 
6399 	/* Select which PS parameters to use. */
6400 	if (dtim <= 2)
6401 		pmgt = &iwn_pmgt[0][level];
6402 	else if (dtim <= 10)
6403 		pmgt = &iwn_pmgt[1][level];
6404 	else
6405 		pmgt = &iwn_pmgt[2][level];
6406 
6407 	memset(&cmd, 0, sizeof cmd);
6408 	if (level != 0)	/* not CAM */
6409 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
6410 	if (level == 5)
6411 		cmd.flags |= htole16(IWN_PS_FAST_PD);
6412 	/* Retrieve PCIe Active State Power Management (ASPM). */
6413 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
6414 	if (!(reg & 0x1))	/* L0s Entry disabled. */
6415 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
6416 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
6417 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
6418 
6419 	if (dtim == 0) {
6420 		dtim = 1;
6421 		skip_dtim = 0;
6422 	} else
6423 		skip_dtim = pmgt->skip_dtim;
6424 	if (skip_dtim != 0) {
6425 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
6426 		max = pmgt->intval[4];
6427 		if (max == (uint32_t)-1)
6428 			max = dtim * (skip_dtim + 1);
6429 		else if (max > dtim)
6430 			max = (max / dtim) * dtim;
6431 	} else
6432 		max = dtim;
6433 	for (i = 0; i < 5; i++)
6434 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
6435 
6436 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
6437 	    level);
6438 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
6439 }
6440 
6441 static int
6442 iwn_send_btcoex(struct iwn_softc *sc)
6443 {
6444 	struct iwn_bluetooth cmd;
6445 
6446 	memset(&cmd, 0, sizeof cmd);
6447 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
6448 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
6449 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
6450 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
6451 	    __func__);
6452 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
6453 }
6454 
6455 static int
6456 iwn_send_advanced_btcoex(struct iwn_softc *sc)
6457 {
6458 	static const uint32_t btcoex_3wire[12] = {
6459 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
6460 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
6461 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
6462 	};
6463 	struct iwn6000_btcoex_config btconfig;
6464 	struct iwn2000_btcoex_config btconfig2k;
6465 	struct iwn_btcoex_priotable btprio;
6466 	struct iwn_btcoex_prot btprot;
6467 	int error, i;
6468 	uint8_t flags;
6469 
6470 	memset(&btconfig, 0, sizeof btconfig);
6471 	memset(&btconfig2k, 0, sizeof btconfig2k);
6472 
6473 	flags = IWN_BT_FLAG_COEX6000_MODE_3W <<
6474 	    IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2
6475 
6476 	if (sc->base_params->bt_sco_disable)
6477 		flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6478 	else
6479 		flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6480 
6481 	flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION;
6482 
6483 	/* Default flags result is 145 as old value */
6484 
6485 	/*
6486 	 * Flags value has to be review. Values must change if we
6487 	 * which to disable it
6488 	 */
6489 	if (sc->base_params->bt_session_2) {
6490 		btconfig2k.flags = flags;
6491 		btconfig2k.max_kill = 5;
6492 		btconfig2k.bt3_t7_timer = 1;
6493 		btconfig2k.kill_ack = htole32(0xffff0000);
6494 		btconfig2k.kill_cts = htole32(0xffff0000);
6495 		btconfig2k.sample_time = 2;
6496 		btconfig2k.bt3_t2_timer = 0xc;
6497 
6498 		for (i = 0; i < 12; i++)
6499 			btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]);
6500 		btconfig2k.valid = htole16(0xff);
6501 		btconfig2k.prio_boost = htole32(0xf0);
6502 		DPRINTF(sc, IWN_DEBUG_RESET,
6503 		    "%s: configuring advanced bluetooth coexistence"
6504 		    " session 2, flags : 0x%x\n",
6505 		    __func__,
6506 		    flags);
6507 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k,
6508 		    sizeof(btconfig2k), 1);
6509 	} else {
6510 		btconfig.flags = flags;
6511 		btconfig.max_kill = 5;
6512 		btconfig.bt3_t7_timer = 1;
6513 		btconfig.kill_ack = htole32(0xffff0000);
6514 		btconfig.kill_cts = htole32(0xffff0000);
6515 		btconfig.sample_time = 2;
6516 		btconfig.bt3_t2_timer = 0xc;
6517 
6518 		for (i = 0; i < 12; i++)
6519 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
6520 		btconfig.valid = htole16(0xff);
6521 		btconfig.prio_boost = 0xf0;
6522 		DPRINTF(sc, IWN_DEBUG_RESET,
6523 		    "%s: configuring advanced bluetooth coexistence,"
6524 		    " flags : 0x%x\n",
6525 		    __func__,
6526 		    flags);
6527 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
6528 		    sizeof(btconfig), 1);
6529 	}
6530 
6531 	if (error != 0)
6532 		return error;
6533 
6534 	memset(&btprio, 0, sizeof btprio);
6535 	btprio.calib_init1 = 0x6;
6536 	btprio.calib_init2 = 0x7;
6537 	btprio.calib_periodic_low1 = 0x2;
6538 	btprio.calib_periodic_low2 = 0x3;
6539 	btprio.calib_periodic_high1 = 0x4;
6540 	btprio.calib_periodic_high2 = 0x5;
6541 	btprio.dtim = 0x6;
6542 	btprio.scan52 = 0x8;
6543 	btprio.scan24 = 0xa;
6544 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
6545 	    1);
6546 	if (error != 0)
6547 		return error;
6548 
6549 	/* Force BT state machine change. */
6550 	memset(&btprot, 0, sizeof btprot);
6551 	btprot.open = 1;
6552 	btprot.type = 1;
6553 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6554 	if (error != 0)
6555 		return error;
6556 	btprot.open = 0;
6557 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6558 }
6559 
6560 static int
6561 iwn5000_runtime_calib(struct iwn_softc *sc)
6562 {
6563 	struct iwn5000_calib_config cmd;
6564 
6565 	memset(&cmd, 0, sizeof cmd);
6566 	cmd.ucode.once.enable = 0xffffffff;
6567 	cmd.ucode.once.start = IWN5000_CALIB_DC;
6568 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6569 	    "%s: configuring runtime calibration\n", __func__);
6570 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
6571 }
6572 
6573 static int
6574 iwn_config(struct iwn_softc *sc)
6575 {
6576 	struct iwn_ops *ops = &sc->ops;
6577 	struct ifnet *ifp = sc->sc_ifp;
6578 	struct ieee80211com *ic = ifp->if_l2com;
6579 	uint32_t txmask;
6580 	uint16_t rxchain;
6581 	int error;
6582 
6583 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6584 
6585 	if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET)
6586 	    && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) {
6587 		device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are"
6588 		    " exclusive each together. Review NIC config file. Conf"
6589 		    " :  0x%08x Flags :  0x%08x  \n", __func__,
6590 		    sc->base_params->calib_need,
6591 		    (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET |
6592 		    IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2));
6593 		return (EINVAL);
6594 	}
6595 
6596 	/* Compute temperature calib if needed. Will be send by send calib */
6597 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) {
6598 		error = iwn5000_temp_offset_calib(sc);
6599 		if (error != 0) {
6600 			device_printf(sc->sc_dev,
6601 			    "%s: could not set temperature offset\n", __func__);
6602 			return (error);
6603 		}
6604 	} else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
6605 		error = iwn5000_temp_offset_calibv2(sc);
6606 		if (error != 0) {
6607 			device_printf(sc->sc_dev,
6608 			    "%s: could not compute temperature offset v2\n",
6609 			    __func__);
6610 			return (error);
6611 		}
6612 	}
6613 
6614 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6615 		/* Configure runtime DC calibration. */
6616 		error = iwn5000_runtime_calib(sc);
6617 		if (error != 0) {
6618 			device_printf(sc->sc_dev,
6619 			    "%s: could not configure runtime calibration\n",
6620 			    __func__);
6621 			return error;
6622 		}
6623 	}
6624 
6625 	/* Configure valid TX chains for >=5000 Series. */
6626 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6627 	    IWN_UCODE_API(sc->ucode_rev) > 1) {
6628 		txmask = htole32(sc->txchainmask);
6629 		DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6630 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
6631 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
6632 		    sizeof txmask, 0);
6633 		if (error != 0) {
6634 			device_printf(sc->sc_dev,
6635 			    "%s: could not configure valid TX chains, "
6636 			    "error %d\n", __func__, error);
6637 			return error;
6638 		}
6639 	}
6640 
6641 	/* Configure bluetooth coexistence. */
6642 	error = 0;
6643 
6644 	/* Configure bluetooth coexistence if needed. */
6645 	if (sc->base_params->bt_mode == IWN_BT_ADVANCED)
6646 		error = iwn_send_advanced_btcoex(sc);
6647 	if (sc->base_params->bt_mode == IWN_BT_SIMPLE)
6648 		error = iwn_send_btcoex(sc);
6649 
6650 	if (error != 0) {
6651 		device_printf(sc->sc_dev,
6652 		    "%s: could not configure bluetooth coexistence, error %d\n",
6653 		    __func__, error);
6654 		return error;
6655 	}
6656 
6657 	/* Set mode, channel, RX filter and enable RX. */
6658 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6659 	memset(sc->rxon, 0, sizeof (struct iwn_rxon));
6660 	IEEE80211_ADDR_COPY(sc->rxon->myaddr, IF_LLADDR(ifp));
6661 	IEEE80211_ADDR_COPY(sc->rxon->wlap, IF_LLADDR(ifp));
6662 	sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
6663 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6664 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
6665 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6666 	switch (ic->ic_opmode) {
6667 	case IEEE80211_M_STA:
6668 		sc->rxon->mode = IWN_MODE_STA;
6669 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST);
6670 		break;
6671 	case IEEE80211_M_MONITOR:
6672 		sc->rxon->mode = IWN_MODE_MONITOR;
6673 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST |
6674 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
6675 		break;
6676 	default:
6677 		/* Should not get there. */
6678 		break;
6679 	}
6680 	sc->rxon->cck_mask  = 0x0f;	/* not yet negotiated */
6681 	sc->rxon->ofdm_mask = 0xff;	/* not yet negotiated */
6682 	sc->rxon->ht_single_mask = 0xff;
6683 	sc->rxon->ht_dual_mask = 0xff;
6684 	sc->rxon->ht_triple_mask = 0xff;
6685 	/*
6686 	 * In active association mode, ensure that
6687 	 * all the receive chains are enabled.
6688 	 *
6689 	 * Since we're not yet doing SMPS, don't allow the
6690 	 * number of idle RX chains to be less than the active
6691 	 * number.
6692 	 */
6693 	rxchain =
6694 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6695 	    IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) |
6696 	    IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains);
6697 	sc->rxon->rxchain = htole16(rxchain);
6698 	DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6699 	    "%s: rxchainmask=0x%x, nrxchains=%d\n",
6700 	    __func__,
6701 	    sc->rxchainmask,
6702 	    sc->nrxchains);
6703 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__);
6704 	if (sc->sc_is_scanning)
6705 		device_printf(sc->sc_dev,
6706 		    "%s: is_scanning set, before RXON\n",
6707 		    __func__);
6708 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 0);
6709 	if (error != 0) {
6710 		device_printf(sc->sc_dev, "%s: RXON command failed\n",
6711 		    __func__);
6712 		return error;
6713 	}
6714 
6715 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
6716 		device_printf(sc->sc_dev, "%s: could not add broadcast node\n",
6717 		    __func__);
6718 		return error;
6719 	}
6720 
6721 	/* Configuration has changed, set TX power accordingly. */
6722 	if ((error = ops->set_txpower(sc, ic->ic_curchan, 0)) != 0) {
6723 		device_printf(sc->sc_dev, "%s: could not set TX power\n",
6724 		    __func__);
6725 		return error;
6726 	}
6727 
6728 	if ((error = iwn_set_critical_temp(sc)) != 0) {
6729 		device_printf(sc->sc_dev,
6730 		    "%s: could not set critical temperature\n", __func__);
6731 		return error;
6732 	}
6733 
6734 	/* Set power saving level to CAM during initialization. */
6735 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
6736 		device_printf(sc->sc_dev,
6737 		    "%s: could not set power saving level\n", __func__);
6738 		return error;
6739 	}
6740 
6741 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6742 
6743 	return 0;
6744 }
6745 
6746 static uint16_t
6747 iwn_get_active_dwell_time(struct iwn_softc *sc,
6748     struct ieee80211_channel *c, uint8_t n_probes)
6749 {
6750 	/* No channel? Default to 2GHz settings */
6751 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6752 		return (IWN_ACTIVE_DWELL_TIME_2GHZ +
6753 		IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
6754 	}
6755 
6756 	/* 5GHz dwell time */
6757 	return (IWN_ACTIVE_DWELL_TIME_5GHZ +
6758 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
6759 }
6760 
6761 /*
6762  * Limit the total dwell time to 85% of the beacon interval.
6763  *
6764  * Returns the dwell time in milliseconds.
6765  */
6766 static uint16_t
6767 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
6768 {
6769 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
6770 	struct ieee80211vap *vap = NULL;
6771 	int bintval = 0;
6772 
6773 	/* bintval is in TU (1.024mS) */
6774 	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
6775 		vap = TAILQ_FIRST(&ic->ic_vaps);
6776 		bintval = vap->iv_bss->ni_intval;
6777 	}
6778 
6779 	/*
6780 	 * If it's non-zero, we should calculate the minimum of
6781 	 * it and the DWELL_BASE.
6782 	 *
6783 	 * XXX Yes, the math should take into account that bintval
6784 	 * is 1.024mS, not 1mS..
6785 	 */
6786 	if (bintval > 0) {
6787 		DPRINTF(sc, IWN_DEBUG_SCAN,
6788 		    "%s: bintval=%d\n",
6789 		    __func__,
6790 		    bintval);
6791 		return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
6792 	}
6793 
6794 	/* No association context? Default */
6795 	return (IWN_PASSIVE_DWELL_BASE);
6796 }
6797 
6798 static uint16_t
6799 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c)
6800 {
6801 	uint16_t passive;
6802 
6803 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6804 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
6805 	} else {
6806 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
6807 	}
6808 
6809 	/* Clamp to the beacon interval if we're associated */
6810 	return (iwn_limit_dwell(sc, passive));
6811 }
6812 
6813 static int
6814 iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap,
6815     struct ieee80211_scan_state *ss, struct ieee80211_channel *c)
6816 {
6817 	struct ifnet *ifp = sc->sc_ifp;
6818 	struct ieee80211com *ic = ifp->if_l2com;
6819 	struct ieee80211_node *ni = vap->iv_bss;
6820 	struct iwn_scan_hdr *hdr;
6821 	struct iwn_cmd_data *tx;
6822 	struct iwn_scan_essid *essid;
6823 	struct iwn_scan_chan *chan;
6824 	struct ieee80211_frame *wh;
6825 	struct ieee80211_rateset *rs;
6826 	uint8_t *buf, *frm;
6827 	uint16_t rxchain;
6828 	uint8_t txant;
6829 	int buflen, error;
6830 	int is_active;
6831 	uint16_t dwell_active, dwell_passive;
6832 	uint32_t extra, scan_service_time;
6833 
6834 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6835 
6836 	/*
6837 	 * We are absolutely not allowed to send a scan command when another
6838 	 * scan command is pending.
6839 	 */
6840 	if (sc->sc_is_scanning) {
6841 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
6842 		    __func__);
6843 		return (EAGAIN);
6844 	}
6845 
6846 	/* Assign the scan channel */
6847 	c = ic->ic_curchan;
6848 
6849 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6850 	buf = kmalloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_INTWAIT | M_ZERO);
6851 	if (buf == NULL) {
6852 		device_printf(sc->sc_dev,
6853 		    "%s: could not allocate buffer for scan command\n",
6854 		    __func__);
6855 		return ENOMEM;
6856 	}
6857 	hdr = (struct iwn_scan_hdr *)buf;
6858 	/*
6859 	 * Move to the next channel if no frames are received within 10ms
6860 	 * after sending the probe request.
6861 	 */
6862 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
6863 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
6864 	/*
6865 	 * Max needs to be greater than active and passive and quiet!
6866 	 * It's also in microseconds!
6867 	 */
6868 	hdr->max_svc = htole32(250 * 1024);
6869 
6870 	/*
6871 	 * Reset scan: interval=100
6872 	 * Normal scan: interval=becaon interval
6873 	 * suspend_time: 100 (TU)
6874 	 *
6875 	 */
6876 	extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22;
6877 	//scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024);
6878 	scan_service_time = (4 << 22) | (100 * 1024);	/* Hardcode for now! */
6879 	hdr->pause_svc = htole32(scan_service_time);
6880 
6881 	/* Select antennas for scanning. */
6882 	rxchain =
6883 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6884 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
6885 	    IWN_RXCHAIN_DRIVER_FORCE;
6886 	if (IEEE80211_IS_CHAN_A(c) &&
6887 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
6888 		/* Ant A must be avoided in 5GHz because of an HW bug. */
6889 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
6890 	} else	/* Use all available RX antennas. */
6891 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
6892 	hdr->rxchain = htole16(rxchain);
6893 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
6894 
6895 	tx = (struct iwn_cmd_data *)(hdr + 1);
6896 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
6897 	tx->id = sc->broadcast_id;
6898 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
6899 
6900 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
6901 		/* Send probe requests at 6Mbps. */
6902 		tx->rate = htole32(0xd);
6903 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
6904 	} else {
6905 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
6906 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
6907 		    sc->rxon->associd && sc->rxon->chan > 14)
6908 			tx->rate = htole32(0xd);
6909 		else {
6910 			/* Send probe requests at 1Mbps. */
6911 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
6912 		}
6913 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
6914 	}
6915 	/* Use the first valid TX antenna. */
6916 	txant = IWN_LSB(sc->txchainmask);
6917 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
6918 
6919 	/*
6920 	 * Only do active scanning if we're announcing a probe request
6921 	 * for a given SSID (or more, if we ever add it to the driver.)
6922 	 */
6923 	is_active = 0;
6924 
6925 	/*
6926 	 * If we're scanning for a specific SSID, add it to the command.
6927 	 *
6928 	 * XXX maybe look at adding support for scanning multiple SSIDs?
6929 	 */
6930 	essid = (struct iwn_scan_essid *)(tx + 1);
6931 	if (ss != NULL) {
6932 		if (ss->ss_ssid[0].len != 0) {
6933 			essid[0].id = IEEE80211_ELEMID_SSID;
6934 			essid[0].len = ss->ss_ssid[0].len;
6935 			memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
6936 		}
6937 
6938 		DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n",
6939 		    __func__,
6940 		    ss->ss_ssid[0].len,
6941 		    ss->ss_ssid[0].len,
6942 		    ss->ss_ssid[0].ssid);
6943 
6944 		if (ss->ss_nssid > 0)
6945 			is_active = 1;
6946 	}
6947 
6948 	/*
6949 	 * Build a probe request frame.  Most of the following code is a
6950 	 * copy & paste of what is done in net80211.
6951 	 */
6952 	wh = (struct ieee80211_frame *)(essid + 20);
6953 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
6954 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
6955 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
6956 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
6957 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
6958 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
6959 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
6960 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
6961 
6962 	frm = (uint8_t *)(wh + 1);
6963 	frm = ieee80211_add_ssid(frm, NULL, 0);
6964 	frm = ieee80211_add_rates(frm, rs);
6965 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
6966 		frm = ieee80211_add_xrates(frm, rs);
6967 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
6968 		frm = ieee80211_add_htcap(frm, ni);
6969 
6970 	/* Set length of probe request. */
6971 	tx->len = htole16(frm - (uint8_t *)wh);
6972 
6973 	/*
6974 	 * If active scanning is requested but a certain channel is
6975 	 * marked passive, we can do active scanning if we detect
6976 	 * transmissions.
6977 	 *
6978 	 * There is an issue with some firmware versions that triggers
6979 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
6980 	 * on a radar channel even though this means that we should NOT
6981 	 * send probes.
6982 	 *
6983 	 * The "good CRC threshold" is the number of frames that we
6984 	 * need to receive during our dwell time on a channel before
6985 	 * sending out probes -- setting this to a huge value will
6986 	 * mean we never reach it, but at the same time work around
6987 	 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER
6988 	 * here instead of IWL_GOOD_CRC_TH_DISABLED.
6989 	 *
6990 	 * This was fixed in later versions along with some other
6991 	 * scan changes, and the threshold behaves as a flag in those
6992 	 * versions.
6993 	 */
6994 
6995 	/*
6996 	 * If we're doing active scanning, set the crc_threshold
6997 	 * to a suitable value.  This is different to active veruss
6998 	 * passive scanning depending upon the channel flags; the
6999 	 * firmware will obey that particular check for us.
7000 	 */
7001 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
7002 		hdr->crc_threshold = is_active ?
7003 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
7004 	else
7005 		hdr->crc_threshold = is_active ?
7006 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
7007 
7008 	chan = (struct iwn_scan_chan *)frm;
7009 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
7010 	chan->flags = 0;
7011 	if (ss->ss_nssid > 0)
7012 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
7013 	chan->dsp_gain = 0x6e;
7014 
7015 	/*
7016 	 * Set the passive/active flag depending upon the channel mode.
7017 	 * XXX TODO: take the is_active flag into account as well?
7018 	 */
7019 	if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
7020 		chan->flags |= htole32(IWN_CHAN_PASSIVE);
7021 	else
7022 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
7023 
7024 	/*
7025 	 * Calculate the active/passive dwell times.
7026 	 */
7027 
7028 	dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid);
7029 	dwell_passive = iwn_get_passive_dwell_time(sc, c);
7030 
7031 	/* Make sure they're valid */
7032 	if (dwell_passive <= dwell_active)
7033 		dwell_passive = dwell_active + 1;
7034 
7035 	chan->active = htole16(dwell_active);
7036 	chan->passive = htole16(dwell_passive);
7037 
7038 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
7039 	    !(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
7040 		chan->rf_gain = 0x3b;
7041 	} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
7042 		chan->rf_gain = 0x3b;
7043 	} else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
7044 		chan->rf_gain = 0x28;
7045 	} else {
7046 		chan->rf_gain = 0x28;
7047 	}
7048 
7049 	DPRINTF(sc, IWN_DEBUG_STATE,
7050 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
7051 	    "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x "
7052 	    "isactive=%d numssid=%d\n", __func__,
7053 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
7054 	    dwell_active, dwell_passive, scan_service_time,
7055 	    hdr->crc_threshold, is_active, ss->ss_nssid);
7056 
7057 	hdr->nchan++;
7058 	chan++;
7059 	buflen = (uint8_t *)chan - buf;
7060 	hdr->len = htole16(buflen);
7061 
7062 	if (sc->sc_is_scanning) {
7063 		device_printf(sc->sc_dev,
7064 		    "%s: called with is_scanning set!\n",
7065 		    __func__);
7066 	}
7067 	sc->sc_is_scanning = 1;
7068 
7069 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
7070 	    hdr->nchan);
7071 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
7072 	kfree(buf, M_DEVBUF);
7073 
7074 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7075 
7076 	return error;
7077 }
7078 
7079 static int
7080 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
7081 {
7082 	struct iwn_ops *ops = &sc->ops;
7083 	struct ifnet *ifp = sc->sc_ifp;
7084 	struct ieee80211com *ic = ifp->if_l2com;
7085 	struct ieee80211_node *ni = vap->iv_bss;
7086 	int error;
7087 
7088 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7089 
7090 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7091 	/* Update adapter configuration. */
7092 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7093 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7094 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7095 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7096 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7097 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7098 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7099 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7100 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7101 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7102 		sc->rxon->cck_mask  = 0;
7103 		sc->rxon->ofdm_mask = 0x15;
7104 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7105 		sc->rxon->cck_mask  = 0x03;
7106 		sc->rxon->ofdm_mask = 0;
7107 	} else {
7108 		/* Assume 802.11b/g. */
7109 		sc->rxon->cck_mask  = 0x03;
7110 		sc->rxon->ofdm_mask = 0x15;
7111 	}
7112 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
7113 	    sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask,
7114 	    sc->rxon->ofdm_mask);
7115 	if (sc->sc_is_scanning)
7116 		device_printf(sc->sc_dev,
7117 		    "%s: is_scanning set, before RXON\n",
7118 		    __func__);
7119 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
7120 	if (error != 0) {
7121 		device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n",
7122 		    __func__, error);
7123 		return error;
7124 	}
7125 
7126 	/* Configuration has changed, set TX power accordingly. */
7127 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
7128 		device_printf(sc->sc_dev,
7129 		    "%s: could not set TX power, error %d\n", __func__, error);
7130 		return error;
7131 	}
7132 	/*
7133 	 * Reconfiguring RXON clears the firmware nodes table so we must
7134 	 * add the broadcast node again.
7135 	 */
7136 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
7137 		device_printf(sc->sc_dev,
7138 		    "%s: could not add broadcast node, error %d\n", __func__,
7139 		    error);
7140 		return error;
7141 	}
7142 
7143 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7144 
7145 	return 0;
7146 }
7147 
7148 static int
7149 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
7150 {
7151 	struct iwn_ops *ops = &sc->ops;
7152 	struct ifnet *ifp = sc->sc_ifp;
7153 	struct ieee80211com *ic = ifp->if_l2com;
7154 	struct ieee80211_node *ni = vap->iv_bss;
7155 	struct iwn_node_info node;
7156 	uint32_t htflags = 0;
7157 	int error;
7158 
7159 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7160 
7161 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7162 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
7163 		/* Link LED blinks while monitoring. */
7164 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
7165 		return 0;
7166 	}
7167 	if ((error = iwn_set_timing(sc, ni)) != 0) {
7168 		device_printf(sc->sc_dev,
7169 		    "%s: could not set timing, error %d\n", __func__, error);
7170 		return error;
7171 	}
7172 
7173 	/* Update adapter configuration. */
7174 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7175 	sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd));
7176 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7177 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7178 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7179 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7180 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7181 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7182 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7183 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7184 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7185 		sc->rxon->cck_mask  = 0;
7186 		sc->rxon->ofdm_mask = 0x15;
7187 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7188 		sc->rxon->cck_mask  = 0x03;
7189 		sc->rxon->ofdm_mask = 0;
7190 	} else {
7191 		/* Assume 802.11b/g. */
7192 		sc->rxon->cck_mask  = 0x0f;
7193 		sc->rxon->ofdm_mask = 0x15;
7194 	}
7195 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
7196 		htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
7197 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
7198 			switch (ic->ic_curhtprotmode) {
7199 			case IEEE80211_HTINFO_OPMODE_HT20PR:
7200 				htflags |= IWN_RXON_HT_MODEPURE40;
7201 				break;
7202 			default:
7203 				htflags |= IWN_RXON_HT_MODEMIXED;
7204 				break;
7205 			}
7206 		}
7207 		if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
7208 			htflags |= IWN_RXON_HT_HT40MINUS;
7209 	}
7210 	sc->rxon->flags |= htole32(htflags);
7211 	sc->rxon->filter |= htole32(IWN_FILTER_BSS);
7212 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x\n",
7213 	    sc->rxon->chan, sc->rxon->flags);
7214 	if (sc->sc_is_scanning)
7215 		device_printf(sc->sc_dev,
7216 		    "%s: is_scanning set, before RXON\n",
7217 		    __func__);
7218 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
7219 	if (error != 0) {
7220 		device_printf(sc->sc_dev,
7221 		    "%s: could not update configuration, error %d\n", __func__,
7222 		    error);
7223 		return error;
7224 	}
7225 
7226 	/* Configuration has changed, set TX power accordingly. */
7227 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
7228 		device_printf(sc->sc_dev,
7229 		    "%s: could not set TX power, error %d\n", __func__, error);
7230 		return error;
7231 	}
7232 
7233 	/* Fake a join to initialize the TX rate. */
7234 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
7235 	iwn_newassoc(ni, 1);
7236 
7237 	/* Add BSS node. */
7238 	memset(&node, 0, sizeof node);
7239 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
7240 	node.id = IWN_ID_BSS;
7241 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
7242 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
7243 		case IEEE80211_HTCAP_SMPS_ENA:
7244 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
7245 			break;
7246 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
7247 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
7248 			break;
7249 		}
7250 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
7251 		    IWN_AMDPU_DENSITY(5));	/* 4us */
7252 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
7253 			node.htflags |= htole32(IWN_NODE_HT40);
7254 	}
7255 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
7256 	error = ops->add_node(sc, &node, 1);
7257 	if (error != 0) {
7258 		device_printf(sc->sc_dev,
7259 		    "%s: could not add BSS node, error %d\n", __func__, error);
7260 		return error;
7261 	}
7262 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
7263 	    __func__, node.id);
7264 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
7265 		device_printf(sc->sc_dev,
7266 		    "%s: could not setup link quality for node %d, error %d\n",
7267 		    __func__, node.id, error);
7268 		return error;
7269 	}
7270 
7271 	if ((error = iwn_init_sensitivity(sc)) != 0) {
7272 		device_printf(sc->sc_dev,
7273 		    "%s: could not set sensitivity, error %d\n", __func__,
7274 		    error);
7275 		return error;
7276 	}
7277 	/* Start periodic calibration timer. */
7278 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
7279 	sc->calib_cnt = 0;
7280 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
7281 	    sc);
7282 
7283 	/* Link LED always on while associated. */
7284 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
7285 
7286 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7287 
7288 	return 0;
7289 }
7290 
7291 /*
7292  * This function is called by upper layer when an ADDBA request is received
7293  * from another STA and before the ADDBA response is sent.
7294  */
7295 static int
7296 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
7297     int baparamset, int batimeout, int baseqctl)
7298 {
7299 #define MS(_v, _f)	(((_v) & _f) >> _f##_S)
7300 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7301 	struct iwn_ops *ops = &sc->ops;
7302 	struct iwn_node *wn = (void *)ni;
7303 	struct iwn_node_info node;
7304 	uint16_t ssn;
7305 	uint8_t tid;
7306 	int error;
7307 
7308 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7309 
7310 	tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID);
7311 	ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START);
7312 
7313 	memset(&node, 0, sizeof node);
7314 	node.id = wn->id;
7315 	node.control = IWN_NODE_UPDATE;
7316 	node.flags = IWN_FLAG_SET_ADDBA;
7317 	node.addba_tid = tid;
7318 	node.addba_ssn = htole16(ssn);
7319 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
7320 	    wn->id, tid, ssn);
7321 	error = ops->add_node(sc, &node, 1);
7322 	if (error != 0)
7323 		return error;
7324 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
7325 #undef MS
7326 }
7327 
7328 /*
7329  * This function is called by upper layer on teardown of an HT-immediate
7330  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
7331  */
7332 static void
7333 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
7334 {
7335 	struct ieee80211com *ic = ni->ni_ic;
7336 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
7337 	struct iwn_ops *ops = &sc->ops;
7338 	struct iwn_node *wn = (void *)ni;
7339 	struct iwn_node_info node;
7340 	uint8_t tid;
7341 
7342 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7343 
7344 	/* XXX: tid as an argument */
7345 	for (tid = 0; tid < WME_NUM_TID; tid++) {
7346 		if (&ni->ni_rx_ampdu[tid] == rap)
7347 			break;
7348 	}
7349 
7350 	memset(&node, 0, sizeof node);
7351 	node.id = wn->id;
7352 	node.control = IWN_NODE_UPDATE;
7353 	node.flags = IWN_FLAG_SET_DELBA;
7354 	node.delba_tid = tid;
7355 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
7356 	(void)ops->add_node(sc, &node, 1);
7357 	sc->sc_ampdu_rx_stop(ni, rap);
7358 }
7359 
7360 static int
7361 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7362     int dialogtoken, int baparamset, int batimeout)
7363 {
7364 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7365 	int qid;
7366 
7367 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7368 
7369 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
7370 		if (sc->qid2tap[qid] == NULL)
7371 			break;
7372 	}
7373 	if (qid == sc->ntxqs) {
7374 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
7375 		    __func__);
7376 		return 0;
7377 	}
7378 	tap->txa_private = kmalloc(sizeof(int), M_DEVBUF, M_INTWAIT);
7379 	if (tap->txa_private == NULL) {
7380 		device_printf(sc->sc_dev,
7381 		    "%s: failed to alloc TX aggregation structure\n", __func__);
7382 		return 0;
7383 	}
7384 	sc->qid2tap[qid] = tap;
7385 	*(int *)tap->txa_private = qid;
7386 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
7387 	    batimeout);
7388 }
7389 
7390 static int
7391 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7392     int code, int baparamset, int batimeout)
7393 {
7394 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7395 	int qid = *(int *)tap->txa_private;
7396 	uint8_t tid = tap->txa_tid;
7397 	int ret;
7398 
7399 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7400 
7401 	if (code == IEEE80211_STATUS_SUCCESS) {
7402 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
7403 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
7404 		if (ret != 1)
7405 			return ret;
7406 	} else {
7407 		sc->qid2tap[qid] = NULL;
7408 		kfree(tap->txa_private, M_DEVBUF);
7409 		tap->txa_private = NULL;
7410 	}
7411 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
7412 }
7413 
7414 /*
7415  * This function is called by upper layer when an ADDBA response is received
7416  * from another STA.
7417  */
7418 static int
7419 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
7420     uint8_t tid)
7421 {
7422 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
7423 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7424 	struct iwn_ops *ops = &sc->ops;
7425 	struct iwn_node *wn = (void *)ni;
7426 	struct iwn_node_info node;
7427 	int error, qid;
7428 
7429 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7430 
7431 	/* Enable TX for the specified RA/TID. */
7432 	wn->disable_tid &= ~(1 << tid);
7433 	memset(&node, 0, sizeof node);
7434 	node.id = wn->id;
7435 	node.control = IWN_NODE_UPDATE;
7436 	node.flags = IWN_FLAG_SET_DISABLE_TID;
7437 	node.disable_tid = htole16(wn->disable_tid);
7438 	error = ops->add_node(sc, &node, 1);
7439 	if (error != 0)
7440 		return 0;
7441 
7442 	if ((error = iwn_nic_lock(sc)) != 0)
7443 		return 0;
7444 	qid = *(int *)tap->txa_private;
7445 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
7446 	    __func__, wn->id, tid, tap->txa_start, qid);
7447 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
7448 	iwn_nic_unlock(sc);
7449 
7450 	iwn_set_link_quality(sc, ni);
7451 	return 1;
7452 }
7453 
7454 static void
7455 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
7456 {
7457 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7458 	struct iwn_ops *ops = &sc->ops;
7459 	uint8_t tid = tap->txa_tid;
7460 	int qid;
7461 
7462 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7463 
7464 	sc->sc_addba_stop(ni, tap);
7465 
7466 	if (tap->txa_private == NULL)
7467 		return;
7468 
7469 	qid = *(int *)tap->txa_private;
7470 	if (sc->txq[qid].queued != 0)
7471 		return;
7472 	if (iwn_nic_lock(sc) != 0)
7473 		return;
7474 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
7475 	iwn_nic_unlock(sc);
7476 	sc->qid2tap[qid] = NULL;
7477 	kfree(tap->txa_private, M_DEVBUF);
7478 	tap->txa_private = NULL;
7479 }
7480 
7481 static void
7482 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7483     int qid, uint8_t tid, uint16_t ssn)
7484 {
7485 	struct iwn_node *wn = (void *)ni;
7486 
7487 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7488 
7489 	/* Stop TX scheduler while we're changing its configuration. */
7490 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7491 	    IWN4965_TXQ_STATUS_CHGACT);
7492 
7493 	/* Assign RA/TID translation to the queue. */
7494 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
7495 	    wn->id << 4 | tid);
7496 
7497 	/* Enable chain-building mode for the queue. */
7498 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
7499 
7500 	/* Set starting sequence number from the ADDBA request. */
7501 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7502 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7503 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7504 
7505 	/* Set scheduler window size. */
7506 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
7507 	    IWN_SCHED_WINSZ);
7508 	/* Set scheduler frame limit. */
7509 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7510 	    IWN_SCHED_LIMIT << 16);
7511 
7512 	/* Enable interrupts for the queue. */
7513 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7514 
7515 	/* Mark the queue as active. */
7516 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7517 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
7518 	    iwn_tid2fifo[tid] << 1);
7519 }
7520 
7521 static void
7522 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7523 {
7524 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7525 
7526 	/* Stop TX scheduler while we're changing its configuration. */
7527 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7528 	    IWN4965_TXQ_STATUS_CHGACT);
7529 
7530 	/* Set starting sequence number from the ADDBA request. */
7531 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7532 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7533 
7534 	/* Disable interrupts for the queue. */
7535 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7536 
7537 	/* Mark the queue as inactive. */
7538 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7539 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
7540 }
7541 
7542 static void
7543 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7544     int qid, uint8_t tid, uint16_t ssn)
7545 {
7546 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7547 
7548 	struct iwn_node *wn = (void *)ni;
7549 
7550 	/* Stop TX scheduler while we're changing its configuration. */
7551 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7552 	    IWN5000_TXQ_STATUS_CHGACT);
7553 
7554 	/* Assign RA/TID translation to the queue. */
7555 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
7556 	    wn->id << 4 | tid);
7557 
7558 	/* Enable chain-building mode for the queue. */
7559 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
7560 
7561 	/* Enable aggregation for the queue. */
7562 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7563 
7564 	/* Set starting sequence number from the ADDBA request. */
7565 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7566 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7567 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7568 
7569 	/* Set scheduler window size and frame limit. */
7570 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7571 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7572 
7573 	/* Enable interrupts for the queue. */
7574 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7575 
7576 	/* Mark the queue as active. */
7577 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7578 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
7579 }
7580 
7581 static void
7582 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7583 {
7584 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7585 
7586 	/* Stop TX scheduler while we're changing its configuration. */
7587 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7588 	    IWN5000_TXQ_STATUS_CHGACT);
7589 
7590 	/* Disable aggregation for the queue. */
7591 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7592 
7593 	/* Set starting sequence number from the ADDBA request. */
7594 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7595 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7596 
7597 	/* Disable interrupts for the queue. */
7598 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7599 
7600 	/* Mark the queue as inactive. */
7601 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7602 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
7603 }
7604 
7605 /*
7606  * Query calibration tables from the initialization firmware.  We do this
7607  * only once at first boot.  Called from a process context.
7608  */
7609 static int
7610 iwn5000_query_calibration(struct iwn_softc *sc)
7611 {
7612 	struct iwn5000_calib_config cmd;
7613 	int error;
7614 
7615 	memset(&cmd, 0, sizeof cmd);
7616 	cmd.ucode.once.enable = htole32(0xffffffff);
7617 	cmd.ucode.once.start  = htole32(0xffffffff);
7618 	cmd.ucode.once.send   = htole32(0xffffffff);
7619 	cmd.ucode.flags       = htole32(0xffffffff);
7620 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
7621 	    __func__);
7622 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
7623 	if (error != 0)
7624 		return error;
7625 
7626 	/* Wait at most two seconds for calibration to complete. */
7627 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
7628 		error = iwn_sleep(sc, sc, PCATCH, "iwncal", 2 * hz);
7629 	return error;
7630 }
7631 
7632 /*
7633  * Send calibration results to the runtime firmware.  These results were
7634  * obtained on first boot from the initialization firmware.
7635  */
7636 static int
7637 iwn5000_send_calibration(struct iwn_softc *sc)
7638 {
7639 	int idx, error;
7640 
7641 	for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) {
7642 		if (!(sc->base_params->calib_need & (1<<idx))) {
7643 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7644 			    "No need of calib %d\n",
7645 			    idx);
7646 			continue; /* no need for this calib */
7647 		}
7648 		if (sc->calibcmd[idx].buf == NULL) {
7649 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7650 			    "Need calib idx : %d but no available data\n",
7651 			    idx);
7652 			continue;
7653 		}
7654 
7655 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7656 		    "send calibration result idx=%d len=%d\n", idx,
7657 		    sc->calibcmd[idx].len);
7658 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
7659 		    sc->calibcmd[idx].len, 0);
7660 		if (error != 0) {
7661 			device_printf(sc->sc_dev,
7662 			    "%s: could not send calibration result, error %d\n",
7663 			    __func__, error);
7664 			return error;
7665 		}
7666 	}
7667 	return 0;
7668 }
7669 
7670 static int
7671 iwn5000_send_wimax_coex(struct iwn_softc *sc)
7672 {
7673 	struct iwn5000_wimax_coex wimax;
7674 
7675 #if 0
7676 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
7677 		/* Enable WiMAX coexistence for combo adapters. */
7678 		wimax.flags =
7679 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
7680 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
7681 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
7682 		    IWN_WIMAX_COEX_ENABLE;
7683 		memcpy(wimax.events, iwn6050_wimax_events,
7684 		    sizeof iwn6050_wimax_events);
7685 	} else
7686 #endif
7687 	{
7688 		/* Disable WiMAX coexistence. */
7689 		wimax.flags = 0;
7690 		memset(wimax.events, 0, sizeof wimax.events);
7691 	}
7692 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
7693 	    __func__);
7694 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
7695 }
7696 
7697 static int
7698 iwn5000_crystal_calib(struct iwn_softc *sc)
7699 {
7700 	struct iwn5000_phy_calib_crystal cmd;
7701 
7702 	memset(&cmd, 0, sizeof cmd);
7703 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
7704 	cmd.ngroups = 1;
7705 	cmd.isvalid = 1;
7706 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
7707 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
7708 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
7709 	    cmd.cap_pin[0], cmd.cap_pin[1]);
7710 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7711 }
7712 
7713 static int
7714 iwn5000_temp_offset_calib(struct iwn_softc *sc)
7715 {
7716 	struct iwn5000_phy_calib_temp_offset cmd;
7717 
7718 	memset(&cmd, 0, sizeof cmd);
7719 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7720 	cmd.ngroups = 1;
7721 	cmd.isvalid = 1;
7722 	if (sc->eeprom_temp != 0)
7723 		cmd.offset = htole16(sc->eeprom_temp);
7724 	else
7725 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
7726 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
7727 	    le16toh(cmd.offset));
7728 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7729 }
7730 
7731 static int
7732 iwn5000_temp_offset_calibv2(struct iwn_softc *sc)
7733 {
7734 	struct iwn5000_phy_calib_temp_offsetv2 cmd;
7735 
7736 	memset(&cmd, 0, sizeof cmd);
7737 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7738 	cmd.ngroups = 1;
7739 	cmd.isvalid = 1;
7740 	if (sc->eeprom_temp != 0) {
7741 		cmd.offset_low = htole16(sc->eeprom_temp);
7742 		cmd.offset_high = htole16(sc->eeprom_temp_high);
7743 	} else {
7744 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
7745 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
7746 	}
7747 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
7748 
7749 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7750 	    "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n",
7751 	    le16toh(cmd.offset_low),
7752 	    le16toh(cmd.offset_high),
7753 	    le16toh(cmd.burnt_voltage_ref));
7754 
7755 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7756 }
7757 
7758 /*
7759  * This function is called after the runtime firmware notifies us of its
7760  * readiness (called in a process context).
7761  */
7762 static int
7763 iwn4965_post_alive(struct iwn_softc *sc)
7764 {
7765 	int error, qid;
7766 
7767 	if ((error = iwn_nic_lock(sc)) != 0)
7768 		return error;
7769 
7770 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7771 
7772 	/* Clear TX scheduler state in SRAM. */
7773 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7774 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
7775 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
7776 
7777 	/* Set physical address of TX scheduler rings (1KB aligned). */
7778 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7779 
7780 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7781 
7782 	/* Disable chain mode for all our 16 queues. */
7783 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
7784 
7785 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
7786 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
7787 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7788 
7789 		/* Set scheduler window size. */
7790 		iwn_mem_write(sc, sc->sched_base +
7791 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
7792 		/* Set scheduler frame limit. */
7793 		iwn_mem_write(sc, sc->sched_base +
7794 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7795 		    IWN_SCHED_LIMIT << 16);
7796 	}
7797 
7798 	/* Enable interrupts for all our 16 queues. */
7799 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
7800 	/* Identify TX FIFO rings (0-7). */
7801 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
7802 
7803 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7804 	for (qid = 0; qid < 7; qid++) {
7805 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
7806 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7807 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
7808 	}
7809 	iwn_nic_unlock(sc);
7810 	return 0;
7811 }
7812 
7813 /*
7814  * This function is called after the initialization or runtime firmware
7815  * notifies us of its readiness (called in a process context).
7816  */
7817 static int
7818 iwn5000_post_alive(struct iwn_softc *sc)
7819 {
7820 	int error, qid;
7821 
7822 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7823 
7824 	/* Switch to using ICT interrupt mode. */
7825 	iwn5000_ict_reset(sc);
7826 
7827 	if ((error = iwn_nic_lock(sc)) != 0){
7828 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
7829 		return error;
7830 	}
7831 
7832 	/* Clear TX scheduler state in SRAM. */
7833 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7834 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
7835 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
7836 
7837 	/* Set physical address of TX scheduler rings (1KB aligned). */
7838 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7839 
7840 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7841 
7842 	/* Enable chain mode for all queues, except command queue. */
7843 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
7844 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf);
7845 	else
7846 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
7847 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
7848 
7849 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
7850 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
7851 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7852 
7853 		iwn_mem_write(sc, sc->sched_base +
7854 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
7855 		/* Set scheduler window size and frame limit. */
7856 		iwn_mem_write(sc, sc->sched_base +
7857 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7858 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7859 	}
7860 
7861 	/* Enable interrupts for all our 20 queues. */
7862 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
7863 	/* Identify TX FIFO rings (0-7). */
7864 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
7865 
7866 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7867 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) {
7868 		/* Mark TX rings as active. */
7869 		for (qid = 0; qid < 11; qid++) {
7870 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 };
7871 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7872 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7873 		}
7874 	} else {
7875 		/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7876 		for (qid = 0; qid < 7; qid++) {
7877 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
7878 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7879 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7880 		}
7881 	}
7882 	iwn_nic_unlock(sc);
7883 
7884 	/* Configure WiMAX coexistence for combo adapters. */
7885 	error = iwn5000_send_wimax_coex(sc);
7886 	if (error != 0) {
7887 		device_printf(sc->sc_dev,
7888 		    "%s: could not configure WiMAX coexistence, error %d\n",
7889 		    __func__, error);
7890 		return error;
7891 	}
7892 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
7893 		/* Perform crystal calibration. */
7894 		error = iwn5000_crystal_calib(sc);
7895 		if (error != 0) {
7896 			device_printf(sc->sc_dev,
7897 			    "%s: crystal calibration failed, error %d\n",
7898 			    __func__, error);
7899 			return error;
7900 		}
7901 	}
7902 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
7903 		/* Query calibration from the initialization firmware. */
7904 		if ((error = iwn5000_query_calibration(sc)) != 0) {
7905 			device_printf(sc->sc_dev,
7906 			    "%s: could not query calibration, error %d\n",
7907 			    __func__, error);
7908 			return error;
7909 		}
7910 		/*
7911 		 * We have the calibration results now, reboot with the
7912 		 * runtime firmware (call ourselves recursively!)
7913 		 */
7914 		iwn_hw_stop(sc);
7915 		error = iwn_hw_init(sc);
7916 	} else {
7917 		/* Send calibration results to runtime firmware. */
7918 		error = iwn5000_send_calibration(sc);
7919 	}
7920 
7921 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7922 
7923 	return error;
7924 }
7925 
7926 /*
7927  * The firmware boot code is small and is intended to be copied directly into
7928  * the NIC internal memory (no DMA transfer).
7929  */
7930 static int
7931 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
7932 {
7933 	int error, ntries;
7934 
7935 	size /= sizeof (uint32_t);
7936 
7937 	if ((error = iwn_nic_lock(sc)) != 0)
7938 		return error;
7939 
7940 	/* Copy microcode image into NIC memory. */
7941 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
7942 	    (const uint32_t *)ucode, size);
7943 
7944 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
7945 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
7946 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
7947 
7948 	/* Start boot load now. */
7949 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
7950 
7951 	/* Wait for transfer to complete. */
7952 	for (ntries = 0; ntries < 1000; ntries++) {
7953 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
7954 		    IWN_BSM_WR_CTRL_START))
7955 			break;
7956 		DELAY(10);
7957 	}
7958 	if (ntries == 1000) {
7959 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7960 		    __func__);
7961 		iwn_nic_unlock(sc);
7962 		return ETIMEDOUT;
7963 	}
7964 
7965 	/* Enable boot after power up. */
7966 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
7967 
7968 	iwn_nic_unlock(sc);
7969 	return 0;
7970 }
7971 
7972 static int
7973 iwn4965_load_firmware(struct iwn_softc *sc)
7974 {
7975 	struct iwn_fw_info *fw = &sc->fw;
7976 	struct iwn_dma_info *dma = &sc->fw_dma;
7977 	int error;
7978 
7979 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
7980 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
7981 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7982 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7983 	    fw->init.text, fw->init.textsz);
7984 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7985 
7986 	/* Tell adapter where to find initialization sections. */
7987 	if ((error = iwn_nic_lock(sc)) != 0)
7988 		return error;
7989 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7990 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
7991 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7992 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7993 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
7994 	iwn_nic_unlock(sc);
7995 
7996 	/* Load firmware boot code. */
7997 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
7998 	if (error != 0) {
7999 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
8000 		    __func__);
8001 		return error;
8002 	}
8003 	/* Now press "execute". */
8004 	IWN_WRITE(sc, IWN_RESET, 0);
8005 
8006 	/* Wait at most one second for first alive notification. */
8007 	if ((error = iwn_sleep(sc, sc, PCATCH, "iwninit", hz)) != 0) {
8008 		device_printf(sc->sc_dev,
8009 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8010 		    __func__, error);
8011 		return error;
8012 	}
8013 
8014 	/* Retrieve current temperature for initial TX power calibration. */
8015 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
8016 	sc->temp = iwn4965_get_temperature(sc);
8017 
8018 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
8019 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
8020 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8021 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
8022 	    fw->main.text, fw->main.textsz);
8023 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8024 
8025 	/* Tell adapter where to find runtime sections. */
8026 	if ((error = iwn_nic_lock(sc)) != 0)
8027 		return error;
8028 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
8029 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
8030 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
8031 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
8032 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
8033 	    IWN_FW_UPDATED | fw->main.textsz);
8034 	iwn_nic_unlock(sc);
8035 
8036 	return 0;
8037 }
8038 
8039 static int
8040 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
8041     const uint8_t *section, int size)
8042 {
8043 	struct iwn_dma_info *dma = &sc->fw_dma;
8044 	int error;
8045 
8046 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8047 
8048 	/* Copy firmware section into pre-allocated DMA-safe memory. */
8049 	memcpy(dma->vaddr, section, size);
8050 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8051 
8052 	if ((error = iwn_nic_lock(sc)) != 0)
8053 		return error;
8054 
8055 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8056 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
8057 
8058 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
8059 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
8060 	    IWN_LOADDR(dma->paddr));
8061 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
8062 	    IWN_HIADDR(dma->paddr) << 28 | size);
8063 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
8064 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
8065 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
8066 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
8067 
8068 	/* Kick Flow Handler to start DMA transfer. */
8069 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8070 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
8071 
8072 	iwn_nic_unlock(sc);
8073 
8074 	/* Wait at most five seconds for FH DMA transfer to complete. */
8075 	return iwn_sleep(sc, sc, PCATCH, "iwninit", 5 * hz);
8076 }
8077 
8078 static int
8079 iwn5000_load_firmware(struct iwn_softc *sc)
8080 {
8081 	struct iwn_fw_part *fw;
8082 	int error;
8083 
8084 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8085 
8086 	/* Load the initialization firmware on first boot only. */
8087 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
8088 	    &sc->fw.main : &sc->fw.init;
8089 
8090 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
8091 	    fw->text, fw->textsz);
8092 	if (error != 0) {
8093 		device_printf(sc->sc_dev,
8094 		    "%s: could not load firmware %s section, error %d\n",
8095 		    __func__, ".text", error);
8096 		return error;
8097 	}
8098 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
8099 	    fw->data, fw->datasz);
8100 	if (error != 0) {
8101 		device_printf(sc->sc_dev,
8102 		    "%s: could not load firmware %s section, error %d\n",
8103 		    __func__, ".data", error);
8104 		return error;
8105 	}
8106 
8107 	/* Now press "execute". */
8108 	IWN_WRITE(sc, IWN_RESET, 0);
8109 	return 0;
8110 }
8111 
8112 /*
8113  * Extract text and data sections from a legacy firmware image.
8114  */
8115 static int
8116 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
8117 {
8118 	const uint32_t *ptr;
8119 	size_t hdrlen = 24;
8120 	uint32_t rev;
8121 
8122 	ptr = (const uint32_t *)fw->data;
8123 	rev = le32toh(*ptr++);
8124 
8125 	sc->ucode_rev = rev;
8126 
8127 	/* Check firmware API version. */
8128 	if (IWN_FW_API(rev) <= 1) {
8129 		device_printf(sc->sc_dev,
8130 		    "%s: bad firmware, need API version >=2\n", __func__);
8131 		return EINVAL;
8132 	}
8133 	if (IWN_FW_API(rev) >= 3) {
8134 		/* Skip build number (version 2 header). */
8135 		hdrlen += 4;
8136 		ptr++;
8137 	}
8138 	if (fw->size < hdrlen) {
8139 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8140 		    __func__, fw->size);
8141 		return EINVAL;
8142 	}
8143 	fw->main.textsz = le32toh(*ptr++);
8144 	fw->main.datasz = le32toh(*ptr++);
8145 	fw->init.textsz = le32toh(*ptr++);
8146 	fw->init.datasz = le32toh(*ptr++);
8147 	fw->boot.textsz = le32toh(*ptr++);
8148 
8149 	/* Check that all firmware sections fit. */
8150 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
8151 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
8152 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8153 		    __func__, fw->size);
8154 		return EINVAL;
8155 	}
8156 
8157 	/* Get pointers to firmware sections. */
8158 	fw->main.text = (const uint8_t *)ptr;
8159 	fw->main.data = fw->main.text + fw->main.textsz;
8160 	fw->init.text = fw->main.data + fw->main.datasz;
8161 	fw->init.data = fw->init.text + fw->init.textsz;
8162 	fw->boot.text = fw->init.data + fw->init.datasz;
8163 	return 0;
8164 }
8165 
8166 /*
8167  * Extract text and data sections from a TLV firmware image.
8168  */
8169 static int
8170 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
8171     uint16_t alt)
8172 {
8173 	const struct iwn_fw_tlv_hdr *hdr;
8174 	const struct iwn_fw_tlv *tlv;
8175 	const uint8_t *ptr, *end;
8176 	uint64_t altmask;
8177 	uint32_t len, tmp;
8178 
8179 	if (fw->size < sizeof (*hdr)) {
8180 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8181 		    __func__, fw->size);
8182 		return EINVAL;
8183 	}
8184 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
8185 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
8186 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
8187 		    __func__, le32toh(hdr->signature));
8188 		return EINVAL;
8189 	}
8190 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
8191 	    le32toh(hdr->build));
8192 	sc->ucode_rev = le32toh(hdr->rev);
8193 
8194 	/*
8195 	 * Select the closest supported alternative that is less than
8196 	 * or equal to the specified one.
8197 	 */
8198 	altmask = le64toh(hdr->altmask);
8199 	while (alt > 0 && !(altmask & (1ULL << alt)))
8200 		alt--;	/* Downgrade. */
8201 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
8202 
8203 	ptr = (const uint8_t *)(hdr + 1);
8204 	end = (const uint8_t *)(fw->data + fw->size);
8205 
8206 	/* Parse type-length-value fields. */
8207 	while (ptr + sizeof (*tlv) <= end) {
8208 		tlv = (const struct iwn_fw_tlv *)ptr;
8209 		len = le32toh(tlv->len);
8210 
8211 		ptr += sizeof (*tlv);
8212 		if (ptr + len > end) {
8213 			device_printf(sc->sc_dev,
8214 			    "%s: firmware too short: %zu bytes\n", __func__,
8215 			    fw->size);
8216 			return EINVAL;
8217 		}
8218 		/* Skip other alternatives. */
8219 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
8220 			goto next;
8221 
8222 		switch (le16toh(tlv->type)) {
8223 		case IWN_FW_TLV_MAIN_TEXT:
8224 			fw->main.text = ptr;
8225 			fw->main.textsz = len;
8226 			break;
8227 		case IWN_FW_TLV_MAIN_DATA:
8228 			fw->main.data = ptr;
8229 			fw->main.datasz = len;
8230 			break;
8231 		case IWN_FW_TLV_INIT_TEXT:
8232 			fw->init.text = ptr;
8233 			fw->init.textsz = len;
8234 			break;
8235 		case IWN_FW_TLV_INIT_DATA:
8236 			fw->init.data = ptr;
8237 			fw->init.datasz = len;
8238 			break;
8239 		case IWN_FW_TLV_BOOT_TEXT:
8240 			fw->boot.text = ptr;
8241 			fw->boot.textsz = len;
8242 			break;
8243 		case IWN_FW_TLV_ENH_SENS:
8244 			if (!len)
8245 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
8246 			break;
8247 		case IWN_FW_TLV_PHY_CALIB:
8248 			tmp = le32toh(*ptr);
8249 			if (tmp < 253) {
8250 				sc->reset_noise_gain = tmp;
8251 				sc->noise_gain = tmp + 1;
8252 			}
8253 			break;
8254 		case IWN_FW_TLV_PAN:
8255 			sc->sc_flags |= IWN_FLAG_PAN_SUPPORT;
8256 			DPRINTF(sc, IWN_DEBUG_RESET,
8257 			    "PAN Support found: %d\n", 1);
8258 			break;
8259 		case IWN_FW_TLV_FLAGS:
8260 			if (len < sizeof(uint32_t))
8261 				break;
8262 			if (len % sizeof(uint32_t))
8263 				break;
8264 			sc->tlv_feature_flags = le32toh(*ptr);
8265 			DPRINTF(sc, IWN_DEBUG_RESET,
8266 			    "%s: feature: 0x%08x\n",
8267 			    __func__,
8268 			    sc->tlv_feature_flags);
8269 			break;
8270 		case IWN_FW_TLV_PBREQ_MAXLEN:
8271 		case IWN_FW_TLV_RUNT_EVTLOG_PTR:
8272 		case IWN_FW_TLV_RUNT_EVTLOG_SIZE:
8273 		case IWN_FW_TLV_RUNT_ERRLOG_PTR:
8274 		case IWN_FW_TLV_INIT_EVTLOG_PTR:
8275 		case IWN_FW_TLV_INIT_EVTLOG_SIZE:
8276 		case IWN_FW_TLV_INIT_ERRLOG_PTR:
8277 		case IWN_FW_TLV_WOWLAN_INST:
8278 		case IWN_FW_TLV_WOWLAN_DATA:
8279 			DPRINTF(sc, IWN_DEBUG_RESET,
8280 			    "TLV type %d recognized but not handled\n",
8281 			    le16toh(tlv->type));
8282 			break;
8283 		default:
8284 			DPRINTF(sc, IWN_DEBUG_RESET,
8285 			    "TLV type %d not handled\n", le16toh(tlv->type));
8286 			break;
8287 		}
8288  next:		/* TLV fields are 32-bit aligned. */
8289 		ptr += (len + 3) & ~3;
8290 	}
8291 	return 0;
8292 }
8293 
8294 static int
8295 iwn_read_firmware(struct iwn_softc *sc)
8296 {
8297 	struct iwn_fw_info *fw = &sc->fw;
8298 	int error;
8299 
8300 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8301 
8302 	IWN_UNLOCK(sc);
8303 
8304 	memset(fw, 0, sizeof (*fw));
8305 
8306 	/* Read firmware image from filesystem. */
8307 	sc->fw_fp = firmware_get(sc->fwname);
8308 	if (sc->fw_fp == NULL) {
8309 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
8310 		    __func__, sc->fwname);
8311 		IWN_LOCK(sc);
8312 		error = EINVAL;
8313 		goto done;
8314 	}
8315 	IWN_LOCK(sc);
8316 
8317 	fw->size = sc->fw_fp->datasize;
8318 	fw->data = (const uint8_t *)sc->fw_fp->data;
8319 	if (fw->size < sizeof (uint32_t)) {
8320 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8321 		    __func__, fw->size);
8322 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8323 		sc->fw_fp = NULL;
8324 		error = EINVAL;
8325 		goto done;
8326 	}
8327 
8328 	/* Retrieve text and data sections. */
8329 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
8330 		error = iwn_read_firmware_leg(sc, fw);
8331 	else
8332 		error = iwn_read_firmware_tlv(sc, fw, 1);
8333 	if (error != 0) {
8334 		device_printf(sc->sc_dev,
8335 		    "%s: could not read firmware sections, error %d\n",
8336 		    __func__, error);
8337 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8338 		sc->fw_fp = NULL;
8339 		goto done;
8340 	}
8341 
8342 	device_printf(sc->sc_dev, "%s: ucode rev=0x%08x\n", __func__, sc->ucode_rev);
8343 
8344 	/* Make sure text and data sections fit in hardware memory. */
8345 	if (fw->main.textsz > sc->fw_text_maxsz ||
8346 	    fw->main.datasz > sc->fw_data_maxsz ||
8347 	    fw->init.textsz > sc->fw_text_maxsz ||
8348 	    fw->init.datasz > sc->fw_data_maxsz ||
8349 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
8350 	    (fw->boot.textsz & 3) != 0) {
8351 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
8352 		    __func__);
8353 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8354 		sc->fw_fp = NULL;
8355 		error = EINVAL;
8356 	}
8357 	error = 0;
8358 done:
8359 	/* We can proceed with loading the firmware. */
8360 	return error;
8361 }
8362 
8363 static int
8364 iwn_clock_wait(struct iwn_softc *sc)
8365 {
8366 	int ntries;
8367 
8368 	/* Set "initialization complete" bit. */
8369 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8370 
8371 	/* Wait for clock stabilization. */
8372 	for (ntries = 0; ntries < 2500; ntries++) {
8373 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
8374 			return 0;
8375 		DELAY(10);
8376 	}
8377 	device_printf(sc->sc_dev,
8378 	    "%s: timeout waiting for clock stabilization\n", __func__);
8379 	return ETIMEDOUT;
8380 }
8381 
8382 static int
8383 iwn_apm_init(struct iwn_softc *sc)
8384 {
8385 	uint32_t reg;
8386 	int error;
8387 
8388 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8389 
8390 	/* Disable L0s exit timer (NMI bug workaround). */
8391 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
8392 	/* Don't wait for ICH L0s (ICH bug workaround). */
8393 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
8394 
8395 	/* Set FH wait threshold to max (HW bug under stress workaround). */
8396 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
8397 
8398 	/* Enable HAP INTA to move adapter from L1a to L0s. */
8399 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
8400 
8401 	/* Retrieve PCIe Active State Power Management (ASPM). */
8402 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
8403 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
8404 	if (reg & 0x02)	/* L1 Entry enabled. */
8405 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8406 	else
8407 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8408 
8409 	if (sc->base_params->pll_cfg_val)
8410 		IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val);
8411 
8412 	/* Wait for clock stabilization before accessing prph. */
8413 	if ((error = iwn_clock_wait(sc)) != 0)
8414 		return error;
8415 
8416 	if ((error = iwn_nic_lock(sc)) != 0)
8417 		return error;
8418 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
8419 		/* Enable DMA and BSM (Bootstrap State Machine). */
8420 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8421 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
8422 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
8423 	} else {
8424 		/* Enable DMA. */
8425 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8426 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8427 	}
8428 	DELAY(20);
8429 	/* Disable L1-Active. */
8430 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
8431 	iwn_nic_unlock(sc);
8432 
8433 	return 0;
8434 }
8435 
8436 static void
8437 iwn_apm_stop_master(struct iwn_softc *sc)
8438 {
8439 	int ntries;
8440 
8441 	/* Stop busmaster DMA activity. */
8442 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
8443 	for (ntries = 0; ntries < 100; ntries++) {
8444 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
8445 			return;
8446 		DELAY(10);
8447 	}
8448 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
8449 }
8450 
8451 static void
8452 iwn_apm_stop(struct iwn_softc *sc)
8453 {
8454 	iwn_apm_stop_master(sc);
8455 
8456 	/* Reset the entire device. */
8457 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
8458 	DELAY(10);
8459 	/* Clear "initialization complete" bit. */
8460 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8461 }
8462 
8463 static int
8464 iwn4965_nic_config(struct iwn_softc *sc)
8465 {
8466 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8467 
8468 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
8469 		/*
8470 		 * I don't believe this to be correct but this is what the
8471 		 * vendor driver is doing. Probably the bits should not be
8472 		 * shifted in IWN_RFCFG_*.
8473 		 */
8474 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8475 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8476 		    IWN_RFCFG_STEP(sc->rfcfg) |
8477 		    IWN_RFCFG_DASH(sc->rfcfg));
8478 	}
8479 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8480 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8481 	return 0;
8482 }
8483 
8484 static int
8485 iwn5000_nic_config(struct iwn_softc *sc)
8486 {
8487 	uint32_t tmp;
8488 	int error;
8489 
8490 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8491 
8492 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
8493 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8494 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8495 		    IWN_RFCFG_STEP(sc->rfcfg) |
8496 		    IWN_RFCFG_DASH(sc->rfcfg));
8497 	}
8498 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8499 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8500 
8501 	if ((error = iwn_nic_lock(sc)) != 0)
8502 		return error;
8503 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
8504 
8505 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
8506 		/*
8507 		 * Select first Switching Voltage Regulator (1.32V) to
8508 		 * solve a stability issue related to noisy DC2DC line
8509 		 * in the silicon of 1000 Series.
8510 		 */
8511 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
8512 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
8513 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
8514 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
8515 	}
8516 	iwn_nic_unlock(sc);
8517 
8518 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
8519 		/* Use internal power amplifier only. */
8520 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
8521 	}
8522 	if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) {
8523 		/* Indicate that ROM calibration version is >=6. */
8524 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
8525 	}
8526 	if (sc->base_params->additional_gp_drv_bit)
8527 		IWN_SETBITS(sc, IWN_GP_DRIVER,
8528 		    sc->base_params->additional_gp_drv_bit);
8529 	return 0;
8530 }
8531 
8532 /*
8533  * Take NIC ownership over Intel Active Management Technology (AMT).
8534  */
8535 static int
8536 iwn_hw_prepare(struct iwn_softc *sc)
8537 {
8538 	int ntries;
8539 
8540 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8541 
8542 	/* Check if hardware is ready. */
8543 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8544 	for (ntries = 0; ntries < 5; ntries++) {
8545 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8546 		    IWN_HW_IF_CONFIG_NIC_READY)
8547 			return 0;
8548 		DELAY(10);
8549 	}
8550 
8551 	/* Hardware not ready, force into ready state. */
8552 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
8553 	for (ntries = 0; ntries < 15000; ntries++) {
8554 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
8555 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
8556 			break;
8557 		DELAY(10);
8558 	}
8559 	if (ntries == 15000)
8560 		return ETIMEDOUT;
8561 
8562 	/* Hardware should be ready now. */
8563 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8564 	for (ntries = 0; ntries < 5; ntries++) {
8565 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8566 		    IWN_HW_IF_CONFIG_NIC_READY)
8567 			return 0;
8568 		DELAY(10);
8569 	}
8570 	return ETIMEDOUT;
8571 }
8572 
8573 static int
8574 iwn_hw_init(struct iwn_softc *sc)
8575 {
8576 	struct iwn_ops *ops = &sc->ops;
8577 	int error, chnl, qid;
8578 
8579 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8580 
8581 	/* Clear pending interrupts. */
8582 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8583 
8584 	if ((error = iwn_apm_init(sc)) != 0) {
8585 		device_printf(sc->sc_dev,
8586 		    "%s: could not power ON adapter, error %d\n", __func__,
8587 		    error);
8588 		return error;
8589 	}
8590 
8591 	/* Select VMAIN power source. */
8592 	if ((error = iwn_nic_lock(sc)) != 0)
8593 		return error;
8594 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
8595 	iwn_nic_unlock(sc);
8596 
8597 	/* Perform adapter-specific initialization. */
8598 	if ((error = ops->nic_config(sc)) != 0)
8599 		return error;
8600 
8601 	/* Initialize RX ring. */
8602 	if ((error = iwn_nic_lock(sc)) != 0)
8603 		return error;
8604 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
8605 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
8606 	/* Set physical address of RX ring (256-byte aligned). */
8607 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
8608 	/* Set physical address of RX status (16-byte aligned). */
8609 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
8610 	/* Enable RX. */
8611 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
8612 	    IWN_FH_RX_CONFIG_ENA           |
8613 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
8614 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
8615 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
8616 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
8617 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
8618 	iwn_nic_unlock(sc);
8619 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
8620 
8621 	if ((error = iwn_nic_lock(sc)) != 0)
8622 		return error;
8623 
8624 	/* Initialize TX scheduler. */
8625 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8626 
8627 	/* Set physical address of "keep warm" page (16-byte aligned). */
8628 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
8629 
8630 	/* Initialize TX rings. */
8631 	for (qid = 0; qid < sc->ntxqs; qid++) {
8632 		struct iwn_tx_ring *txq = &sc->txq[qid];
8633 
8634 		/* Set physical address of TX ring (256-byte aligned). */
8635 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
8636 		    txq->desc_dma.paddr >> 8);
8637 	}
8638 	iwn_nic_unlock(sc);
8639 
8640 	/* Enable DMA channels. */
8641 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8642 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
8643 		    IWN_FH_TX_CONFIG_DMA_ENA |
8644 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
8645 	}
8646 
8647 	/* Clear "radio off" and "commands blocked" bits. */
8648 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8649 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
8650 
8651 	/* Clear pending interrupts. */
8652 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8653 	/* Enable interrupt coalescing. */
8654 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
8655 	/* Enable interrupts. */
8656 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8657 
8658 	/* _Really_ make sure "radio off" bit is cleared! */
8659 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8660 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8661 
8662 	/* Enable shadow registers. */
8663 	if (sc->base_params->shadow_reg_enable)
8664 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
8665 
8666 	if ((error = ops->load_firmware(sc)) != 0) {
8667 		device_printf(sc->sc_dev,
8668 		    "%s: could not load firmware, error %d\n", __func__,
8669 		    error);
8670 		return error;
8671 	}
8672 	/* Wait at most one second for firmware alive notification. */
8673 	if ((error = iwn_sleep(sc, sc, PCATCH, "iwninit", hz)) != 0) {
8674 		device_printf(sc->sc_dev,
8675 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8676 		    __func__, error);
8677 		return error;
8678 	}
8679 	/* Do post-firmware initialization. */
8680 
8681 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8682 
8683 	return ops->post_alive(sc);
8684 }
8685 
8686 static void
8687 iwn_hw_stop(struct iwn_softc *sc)
8688 {
8689 	int chnl, qid, ntries;
8690 
8691 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8692 
8693 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
8694 
8695 	/* Disable interrupts. */
8696 	IWN_WRITE(sc, IWN_INT_MASK, 0);
8697 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8698 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
8699 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8700 
8701 	/* Make sure we no longer hold the NIC lock. */
8702 	iwn_nic_unlock(sc);
8703 
8704 	/* Stop TX scheduler. */
8705 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8706 
8707 	/* Stop all DMA channels. */
8708 	if (iwn_nic_lock(sc) == 0) {
8709 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8710 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
8711 			for (ntries = 0; ntries < 200; ntries++) {
8712 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
8713 				    IWN_FH_TX_STATUS_IDLE(chnl))
8714 					break;
8715 				DELAY(10);
8716 			}
8717 		}
8718 		iwn_nic_unlock(sc);
8719 	}
8720 
8721 	/* Stop RX ring. */
8722 	iwn_reset_rx_ring(sc, &sc->rxq);
8723 
8724 	/* Reset all TX rings. */
8725 	for (qid = 0; qid < sc->ntxqs; qid++)
8726 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
8727 
8728 	if (iwn_nic_lock(sc) == 0) {
8729 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
8730 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8731 		iwn_nic_unlock(sc);
8732 	}
8733 	DELAY(5);
8734 	/* Power OFF adapter. */
8735 	iwn_apm_stop(sc);
8736 }
8737 
8738 static void
8739 iwn_radio_on(void *arg0, int pending)
8740 {
8741 	struct iwn_softc *sc = arg0;
8742 	struct ifnet *ifp = sc->sc_ifp;
8743 	struct ieee80211com *ic = ifp->if_l2com;
8744 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8745 
8746 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8747 
8748 	if (vap != NULL) {
8749 		iwn_init(sc);
8750 		ieee80211_init(vap);
8751 	}
8752 }
8753 
8754 static void
8755 iwn_radio_off(void *arg0, int pending)
8756 {
8757 	struct iwn_softc *sc = arg0;
8758 	struct ifnet *ifp = sc->sc_ifp;
8759 	struct ieee80211com *ic = ifp->if_l2com;
8760 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8761 
8762 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8763 
8764 	iwn_stop(sc);
8765 	if (vap != NULL)
8766 		ieee80211_stop(vap);
8767 
8768 	/* Enable interrupts to get RF toggle notification. */
8769 	IWN_LOCK(sc);
8770 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8771 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8772 	IWN_UNLOCK(sc);
8773 }
8774 
8775 static void
8776 iwn_panicked(void *arg0, int pending)
8777 {
8778 	struct iwn_softc *sc = arg0;
8779 	struct ifnet *ifp = sc->sc_ifp;
8780 	struct ieee80211com *ic = ifp->if_l2com;
8781 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8782 	int error;
8783 
8784 	if (vap == NULL) {
8785 		kprintf("%s: null vap\n", __func__);
8786 		return;
8787 	}
8788 
8789 	device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
8790 	    "resetting...\n", __func__, vap->iv_state);
8791 
8792 	IWN_LOCK(sc);
8793 
8794 	iwn_stop_locked(sc);
8795 	iwn_init_locked(sc);
8796 	if (vap->iv_state >= IEEE80211_S_AUTH &&
8797 	    (error = iwn_auth(sc, vap)) != 0) {
8798 		device_printf(sc->sc_dev,
8799 		    "%s: could not move to auth state\n", __func__);
8800 	}
8801 	if (vap->iv_state >= IEEE80211_S_RUN &&
8802 	    (error = iwn_run(sc, vap)) != 0) {
8803 		device_printf(sc->sc_dev,
8804 		    "%s: could not move to run state\n", __func__);
8805 	}
8806 
8807 	/* Only run start once the NIC is in a useful state, like associated */
8808 	iwn_start_locked(sc->sc_ifp);
8809 
8810 	IWN_UNLOCK(sc);
8811 }
8812 
8813 static void
8814 iwn_init_locked(struct iwn_softc *sc)
8815 {
8816 	struct ifnet *ifp = sc->sc_ifp;
8817 	int error;
8818 
8819 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8820 
8821 	IWN_LOCK_ASSERT(sc);
8822 
8823 	if ((error = iwn_hw_prepare(sc)) != 0) {
8824 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
8825 		    __func__, error);
8826 		goto fail;
8827 	}
8828 
8829 	/* Initialize interrupt mask to default value. */
8830 	sc->int_mask = IWN_INT_MASK_DEF;
8831 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8832 
8833 	/* Check that the radio is not disabled by hardware switch. */
8834 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
8835 		device_printf(sc->sc_dev,
8836 		    "radio is disabled by hardware switch\n");
8837 		/* Enable interrupts to get RF toggle notifications. */
8838 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
8839 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8840 		return;
8841 	}
8842 
8843 	/* Read firmware images from the filesystem. */
8844 	if ((error = iwn_read_firmware(sc)) != 0) {
8845 		device_printf(sc->sc_dev,
8846 		    "%s: could not read firmware, error %d\n", __func__,
8847 		    error);
8848 		goto fail;
8849 	}
8850 
8851 	/* Initialize hardware and upload firmware. */
8852 	error = iwn_hw_init(sc);
8853 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8854 	sc->fw_fp = NULL;
8855 	if (error != 0) {
8856 		device_printf(sc->sc_dev,
8857 		    "%s: could not initialize hardware, error %d\n", __func__,
8858 		    error);
8859 		goto fail;
8860 	}
8861 
8862 	/* Configure adapter now that it is ready. */
8863 	if ((error = iwn_config(sc)) != 0) {
8864 		device_printf(sc->sc_dev,
8865 		    "%s: could not configure device, error %d\n", __func__,
8866 		    error);
8867 		goto fail;
8868 	}
8869 
8870 #if defined(__DragonFly__)
8871         ifq_clr_oactive(&ifp->if_snd);
8872 	ifp->if_flags |= IFF_RUNNING;
8873 #else
8874 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
8875 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
8876 #endif
8877 
8878 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
8879 
8880 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8881 
8882 	return;
8883 
8884 fail:	iwn_stop_locked(sc);
8885 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
8886 }
8887 
8888 static void
8889 iwn_init(void *arg)
8890 {
8891 	struct iwn_softc *sc = arg;
8892 	struct ifnet *ifp = sc->sc_ifp;
8893 	struct ieee80211com *ic = ifp->if_l2com;
8894 
8895 	IWN_LOCK(sc);
8896 	iwn_init_locked(sc);
8897 	IWN_UNLOCK(sc);
8898 
8899 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
8900 		ieee80211_start_all(ic);
8901 }
8902 
8903 static void
8904 iwn_stop_locked(struct iwn_softc *sc)
8905 {
8906 	struct ifnet *ifp = sc->sc_ifp;
8907 
8908 	IWN_LOCK_ASSERT(sc);
8909 
8910 	sc->sc_is_scanning = 0;
8911 	sc->sc_tx_timer = 0;
8912 #if defined(__DragonFly__)
8913 	callout_stop_sync(&sc->watchdog_to);
8914 	callout_stop_sync(&sc->calib_to);
8915         ifq_clr_oactive(&ifp->if_snd);
8916 	ifp->if_flags &= ~IFF_RUNNING;
8917 #else
8918 	callout_stop(&sc->watchdog_to);
8919 	callout_stop(&sc->calib_to);
8920 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
8921 #endif
8922 
8923 	/* Power OFF hardware. */
8924 	iwn_hw_stop(sc);
8925 }
8926 
8927 static void
8928 iwn_stop(struct iwn_softc *sc)
8929 {
8930 	IWN_LOCK(sc);
8931 	iwn_stop_locked(sc);
8932 	IWN_UNLOCK(sc);
8933 }
8934 
8935 /*
8936  * Callback from net80211 to start a scan.
8937  */
8938 static void
8939 iwn_scan_start(struct ieee80211com *ic)
8940 {
8941 	struct ifnet *ifp = ic->ic_ifp;
8942 	struct iwn_softc *sc = ifp->if_softc;
8943 
8944 	IWN_LOCK(sc);
8945 	/* make the link LED blink while we're scanning */
8946 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
8947 	IWN_UNLOCK(sc);
8948 }
8949 
8950 /*
8951  * Callback from net80211 to terminate a scan.
8952  */
8953 static void
8954 iwn_scan_end(struct ieee80211com *ic)
8955 {
8956 	struct ifnet *ifp = ic->ic_ifp;
8957 	struct iwn_softc *sc = ifp->if_softc;
8958 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8959 
8960 	IWN_LOCK(sc);
8961 	if (vap->iv_state == IEEE80211_S_RUN) {
8962 		/* Set link LED to ON status if we are associated */
8963 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
8964 	}
8965 	IWN_UNLOCK(sc);
8966 }
8967 
8968 /*
8969  * Callback from net80211 to force a channel change.
8970  */
8971 static void
8972 iwn_set_channel(struct ieee80211com *ic)
8973 {
8974 	const struct ieee80211_channel *c = ic->ic_curchan;
8975 	struct ifnet *ifp = ic->ic_ifp;
8976 	struct iwn_softc *sc = ifp->if_softc;
8977 	int error;
8978 
8979 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8980 
8981 	IWN_LOCK(sc);
8982 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
8983 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
8984 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
8985 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
8986 
8987 	/*
8988 	 * Only need to set the channel in Monitor mode. AP scanning and auth
8989 	 * are already taken care of by their respective firmware commands.
8990 	 */
8991 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
8992 		error = iwn_config(sc);
8993 		if (error != 0)
8994 		device_printf(sc->sc_dev,
8995 		    "%s: error %d settting channel\n", __func__, error);
8996 	}
8997 	IWN_UNLOCK(sc);
8998 }
8999 
9000 /*
9001  * Callback from net80211 to start scanning of the current channel.
9002  */
9003 static void
9004 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
9005 {
9006 	struct ieee80211vap *vap = ss->ss_vap;
9007 	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
9008 	struct ieee80211com *ic = vap->iv_ic;
9009 	int error;
9010 
9011 	IWN_LOCK(sc);
9012 	error = iwn_scan(sc, vap, ss, ic->ic_curchan);
9013 	IWN_UNLOCK(sc);
9014 	if (error != 0)
9015 		ieee80211_cancel_scan(vap);
9016 }
9017 
9018 /*
9019  * Callback from net80211 to handle the minimum dwell time being met.
9020  * The intent is to terminate the scan but we just let the firmware
9021  * notify us when it's finished as we have no safe way to abort it.
9022  */
9023 static void
9024 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
9025 {
9026 	/* NB: don't try to abort scan; wait for firmware to finish */
9027 }
9028 
9029 static void
9030 iwn_hw_reset(void *arg0, int pending)
9031 {
9032 	struct iwn_softc *sc = arg0;
9033 	struct ifnet *ifp = sc->sc_ifp;
9034 	struct ieee80211com *ic = ifp->if_l2com;
9035 
9036 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
9037 
9038 	iwn_stop(sc);
9039 	iwn_init(sc);
9040 	ieee80211_notify_radio(ic, 1);
9041 }
9042 #ifdef	IWN_DEBUG
9043 #define	IWN_DESC(x) case x:	return #x
9044 #define	COUNTOF(array) (sizeof(array) / sizeof(array[0]))
9045 
9046 /*
9047  * Translate CSR code to string
9048  */
9049 static char *iwn_get_csr_string(int csr)
9050 {
9051 	switch (csr) {
9052 		IWN_DESC(IWN_HW_IF_CONFIG);
9053 		IWN_DESC(IWN_INT_COALESCING);
9054 		IWN_DESC(IWN_INT);
9055 		IWN_DESC(IWN_INT_MASK);
9056 		IWN_DESC(IWN_FH_INT);
9057 		IWN_DESC(IWN_GPIO_IN);
9058 		IWN_DESC(IWN_RESET);
9059 		IWN_DESC(IWN_GP_CNTRL);
9060 		IWN_DESC(IWN_HW_REV);
9061 		IWN_DESC(IWN_EEPROM);
9062 		IWN_DESC(IWN_EEPROM_GP);
9063 		IWN_DESC(IWN_OTP_GP);
9064 		IWN_DESC(IWN_GIO);
9065 		IWN_DESC(IWN_GP_UCODE);
9066 		IWN_DESC(IWN_GP_DRIVER);
9067 		IWN_DESC(IWN_UCODE_GP1);
9068 		IWN_DESC(IWN_UCODE_GP2);
9069 		IWN_DESC(IWN_LED);
9070 		IWN_DESC(IWN_DRAM_INT_TBL);
9071 		IWN_DESC(IWN_GIO_CHICKEN);
9072 		IWN_DESC(IWN_ANA_PLL);
9073 		IWN_DESC(IWN_HW_REV_WA);
9074 		IWN_DESC(IWN_DBG_HPET_MEM);
9075 	default:
9076 		return "UNKNOWN CSR";
9077 	}
9078 }
9079 
9080 /*
9081  * This function print firmware register
9082  */
9083 static void
9084 iwn_debug_register(struct iwn_softc *sc)
9085 {
9086 	int i;
9087 	static const uint32_t csr_tbl[] = {
9088 		IWN_HW_IF_CONFIG,
9089 		IWN_INT_COALESCING,
9090 		IWN_INT,
9091 		IWN_INT_MASK,
9092 		IWN_FH_INT,
9093 		IWN_GPIO_IN,
9094 		IWN_RESET,
9095 		IWN_GP_CNTRL,
9096 		IWN_HW_REV,
9097 		IWN_EEPROM,
9098 		IWN_EEPROM_GP,
9099 		IWN_OTP_GP,
9100 		IWN_GIO,
9101 		IWN_GP_UCODE,
9102 		IWN_GP_DRIVER,
9103 		IWN_UCODE_GP1,
9104 		IWN_UCODE_GP2,
9105 		IWN_LED,
9106 		IWN_DRAM_INT_TBL,
9107 		IWN_GIO_CHICKEN,
9108 		IWN_ANA_PLL,
9109 		IWN_HW_REV_WA,
9110 		IWN_DBG_HPET_MEM,
9111 	};
9112 	DPRINTF(sc, IWN_DEBUG_REGISTER,
9113 	    "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s",
9114 	    "\n");
9115 	for (i = 0; i <  COUNTOF(csr_tbl); i++){
9116 		DPRINTF(sc, IWN_DEBUG_REGISTER,"  %10s: 0x%08x ",
9117 			iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i]));
9118 		if ((i+1) % 3 == 0)
9119 			DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9120 	}
9121 	DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9122 }
9123 #endif
9124 
9125 #if defined(__DragonFly__)
9126 
9127 static int
9128 iwn_sleep(struct iwn_softc *sc, void *wchan,
9129 	  int flags, const char *wmsg, int timo)
9130 {
9131 	int iws;
9132 	int error;
9133 
9134 	iws = wlan_is_serialized();
9135 	if (iws)
9136 		wlan_serialize_exit();
9137 	error = lksleep(wchan, &sc->sc_mtx, flags, wmsg, timo);
9138 	if (iws)
9139 		wlan_serialize_enter();
9140 
9141 	return error;
9142 }
9143 
9144 #else
9145 
9146 static int
9147 iwn_sleep(struct iwn_softc *sc, void *wchan,
9148 	  int flags, const char *wmsg, int timo)
9149 {
9150 	int error;
9151 
9152 	error = lksleep(wchan, &sc->sc_mtx, flags, wmsg, timo);
9153 
9154 	return error;
9155 }
9156 
9157 #endif
9158