xref: /dragonfly/sys/dev/netif/iwn/if_iwn.c (revision be09fc23)
1 /*-
2  * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr>
3  * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org>
4  * Copyright (c) 2008 Sam Leffler, Errno Consulting
5  * Copyright (c) 2011 Intel Corporation
6  * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr>
7  * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*
23  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
24  * adapters.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_wlan.h"
31 #include "opt_iwn.h"
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/bus.h>
42 #include <sys/rman.h>
43 #include <sys/endian.h>
44 #include <sys/firmware.h>
45 #include <sys/limits.h>
46 #include <sys/module.h>
47 #include <sys/queue.h>
48 #include <sys/taskqueue.h>
49 #include <sys/stdbool.h>
50 
51 #include <machine/clock.h>
52 
53 #include <bus/pci/pcireg.h>
54 #include <bus/pci/pcivar.h>
55 
56 #include <net/bpf.h>
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_arp.h>
60 #include <net/ethernet.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 #include <net/if_types.h>
64 #include <net/ifq_var.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/in_var.h>
69 #include <netinet/if_ether.h>
70 #include <netinet/ip.h>
71 
72 #include <netproto/802_11/ieee80211_var.h>
73 #include <netproto/802_11/ieee80211_radiotap.h>
74 #include <netproto/802_11/ieee80211_regdomain.h>
75 #include <netproto/802_11/ieee80211_ratectl.h>
76 
77 #include <dev/netif/iwn/if_iwnreg.h>
78 #include <dev/netif/iwn/if_iwnvar.h>
79 #include <dev/netif/iwn/if_iwn_devid.h>
80 #include <dev/netif/iwn/if_iwn_chip_cfg.h>
81 #include <dev/netif/iwn/if_iwn_debug.h>
82 #include <dev/netif/iwn/if_iwn_ioctl.h>
83 
84 struct iwn_ident {
85 	uint16_t	vendor;
86 	uint16_t	device;
87 	const char	*name;
88 };
89 
90 static const struct iwn_ident iwn_ident_table[] = {
91 	{ 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205"		},
92 	{ 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000"		},
93 	{ 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000"		},
94 	{ 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205"		},
95 	{ 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250"	},
96 	{ 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250"	},
97 	{ 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030"		},
98 	{ 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030"		},
99 	{ 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230"		},
100 	{ 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230"		},
101 	{ 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150"	},
102 	{ 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150"	},
103 	{ 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
104 	{ 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
105 	/* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */
106 	{ 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230"		},
107 	{ 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230"		},
108 	{ 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130"		},
109 	{ 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130"		},
110 	{ 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100"		},
111 	{ 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100"		},
112 	{ 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105"		},
113 	{ 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105"		},
114 	{ 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135"		},
115 	{ 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135"		},
116 	{ 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965"		},
117 	{ 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300"		},
118 	{ 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200"		},
119 	{ 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965"		},
120 	{ 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965"		},
121 	{ 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100"			},
122 	{ 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965"		},
123 	{ 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300"		},
124 	{ 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300"		},
125 	{ 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100"			},
126 	{ 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300"		},
127 	{ 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200"		},
128 	{ 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350"			},
129 	{ 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350"			},
130 	{ 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150"			},
131 	{ 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150"			},
132 	{ 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235"		},
133 	{ 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235"		},
134 	{ 0, 0, NULL }
135 };
136 
137 static int	iwn_probe(device_t);
138 static int	iwn_attach(device_t);
139 static int	iwn4965_attach(struct iwn_softc *, uint16_t);
140 static int	iwn5000_attach(struct iwn_softc *, uint16_t);
141 static int	iwn_config_specific(struct iwn_softc *, uint16_t);
142 static void	iwn_radiotap_attach(struct iwn_softc *);
143 static void	iwn_sysctlattach(struct iwn_softc *);
144 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
145 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
146 		    const uint8_t [IEEE80211_ADDR_LEN],
147 		    const uint8_t [IEEE80211_ADDR_LEN]);
148 static void	iwn_vap_delete(struct ieee80211vap *);
149 static int	iwn_detach(device_t);
150 static int	iwn_shutdown(device_t);
151 static int	iwn_suspend(device_t);
152 static int	iwn_resume(device_t);
153 static int	iwn_nic_lock(struct iwn_softc *);
154 static int	iwn_eeprom_lock(struct iwn_softc *);
155 static int	iwn_init_otprom(struct iwn_softc *);
156 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
157 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
158 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
159 		    void **, bus_size_t, bus_size_t);
160 static void	iwn_dma_contig_free(struct iwn_dma_info *);
161 static int	iwn_alloc_sched(struct iwn_softc *);
162 static void	iwn_free_sched(struct iwn_softc *);
163 static int	iwn_alloc_kw(struct iwn_softc *);
164 static void	iwn_free_kw(struct iwn_softc *);
165 static int	iwn_alloc_ict(struct iwn_softc *);
166 static void	iwn_free_ict(struct iwn_softc *);
167 static int	iwn_alloc_fwmem(struct iwn_softc *);
168 static void	iwn_free_fwmem(struct iwn_softc *);
169 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
170 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
171 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
172 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
173 		    int);
174 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
175 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
176 static void	iwn5000_ict_reset(struct iwn_softc *);
177 static int	iwn_read_eeprom(struct iwn_softc *,
178 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
179 static void	iwn4965_read_eeprom(struct iwn_softc *);
180 #ifdef	IWN_DEBUG
181 static void	iwn4965_print_power_group(struct iwn_softc *, int);
182 #endif
183 static void	iwn5000_read_eeprom(struct iwn_softc *);
184 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
185 static void	iwn_read_eeprom_band(struct iwn_softc *, int);
186 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int);
187 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
188 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
189 		    struct ieee80211_channel *);
190 static int	iwn_setregdomain(struct ieee80211com *,
191 		    struct ieee80211_regdomain *, int,
192 		    struct ieee80211_channel[]);
193 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
194 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
195 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
196 static void	iwn_newassoc(struct ieee80211_node *, int);
197 static int	iwn_media_change(struct ifnet *);
198 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
199 static void	iwn_calib_timeout(void *);
200 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
201 		    struct iwn_rx_data *);
202 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
203 		    struct iwn_rx_data *);
204 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
205 		    struct iwn_rx_data *);
206 static void	iwn5000_rx_calib_results(struct iwn_softc *,
207 		    struct iwn_rx_desc *, struct iwn_rx_data *);
208 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
209 		    struct iwn_rx_data *);
210 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
211 		    struct iwn_rx_data *);
212 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
213 		    struct iwn_rx_data *);
214 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
215 		    uint8_t);
216 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, int, void *);
217 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
218 static void	iwn_notif_intr(struct iwn_softc *);
219 static void	iwn_wakeup_intr(struct iwn_softc *);
220 static void	iwn_rftoggle_intr(struct iwn_softc *);
221 static void	iwn_fatal_intr(struct iwn_softc *);
222 static void	iwn_intr(void *);
223 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
224 		    uint16_t);
225 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
226 		    uint16_t);
227 #ifdef notyet
228 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
229 #endif
230 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
231 		    struct ieee80211_node *);
232 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
233 		    struct ieee80211_node *,
234 		    const struct ieee80211_bpf_params *params);
235 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
236 		    const struct ieee80211_bpf_params *);
237 #if defined(__DragonFly__)
238 static void	iwn_start(struct ifnet *,  struct ifaltq_subque *);
239 #else
240 static void	iwn_start(struct ifnet *);
241 #endif
242 static void	iwn_start_locked(struct ifnet *);
243 static void	iwn_watchdog(void *);
244 #if defined(__DragonFly__)
245 static int	iwn_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
246 #else
247 static int	iwn_ioctl(struct ifnet *, u_long, caddr_t);
248 #endif
249 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
250 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
251 		    int);
252 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
253 		    int);
254 static int	iwn_set_link_quality(struct iwn_softc *,
255 		    struct ieee80211_node *);
256 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
257 static int	iwn_updateedca(struct ieee80211com *);
258 static void	iwn_update_mcast(struct ifnet *);
259 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
260 static int	iwn_set_critical_temp(struct iwn_softc *);
261 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
262 static void	iwn4965_power_calibration(struct iwn_softc *, int);
263 static int	iwn4965_set_txpower(struct iwn_softc *,
264 		    struct ieee80211_channel *, int);
265 static int	iwn5000_set_txpower(struct iwn_softc *,
266 		    struct ieee80211_channel *, int);
267 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
268 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
269 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
270 static int	iwn4965_get_temperature(struct iwn_softc *);
271 static int	iwn5000_get_temperature(struct iwn_softc *);
272 static int	iwn_init_sensitivity(struct iwn_softc *);
273 static void	iwn_collect_noise(struct iwn_softc *,
274 		    const struct iwn_rx_general_stats *);
275 static int	iwn4965_init_gains(struct iwn_softc *);
276 static int	iwn5000_init_gains(struct iwn_softc *);
277 static int	iwn4965_set_gains(struct iwn_softc *);
278 static int	iwn5000_set_gains(struct iwn_softc *);
279 static void	iwn_tune_sensitivity(struct iwn_softc *,
280 		    const struct iwn_rx_stats *);
281 static void	iwn_save_stats_counters(struct iwn_softc *,
282 		    const struct iwn_stats *);
283 static int	iwn_send_sensitivity(struct iwn_softc *);
284 static void	iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *);
285 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
286 static int	iwn_send_btcoex(struct iwn_softc *);
287 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
288 static int	iwn5000_runtime_calib(struct iwn_softc *);
289 static int	iwn_config(struct iwn_softc *);
290 static int	iwn_scan(struct iwn_softc *, struct ieee80211vap *,
291 		    struct ieee80211_scan_state *, struct ieee80211_channel *);
292 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
293 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
294 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
295 		    struct ieee80211_rx_ampdu *, int, int, int);
296 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
297 		    struct ieee80211_rx_ampdu *);
298 static int	iwn_addba_request(struct ieee80211_node *,
299 		    struct ieee80211_tx_ampdu *, int, int, int);
300 static int	iwn_addba_response(struct ieee80211_node *,
301 		    struct ieee80211_tx_ampdu *, int, int, int);
302 static int	iwn_ampdu_tx_start(struct ieee80211com *,
303 		    struct ieee80211_node *, uint8_t);
304 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
305 		    struct ieee80211_tx_ampdu *);
306 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
307 		    struct ieee80211_node *, int, uint8_t, uint16_t);
308 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
309 		    uint8_t, uint16_t);
310 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
311 		    struct ieee80211_node *, int, uint8_t, uint16_t);
312 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
313 		    uint8_t, uint16_t);
314 static int	iwn5000_query_calibration(struct iwn_softc *);
315 static int	iwn5000_send_calibration(struct iwn_softc *);
316 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
317 static int	iwn5000_crystal_calib(struct iwn_softc *);
318 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
319 static int	iwn5000_temp_offset_calibv2(struct iwn_softc *);
320 static int	iwn4965_post_alive(struct iwn_softc *);
321 static int	iwn5000_post_alive(struct iwn_softc *);
322 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
323 		    int);
324 static int	iwn4965_load_firmware(struct iwn_softc *);
325 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
326 		    const uint8_t *, int);
327 static int	iwn5000_load_firmware(struct iwn_softc *);
328 static int	iwn_read_firmware_leg(struct iwn_softc *,
329 		    struct iwn_fw_info *);
330 static int	iwn_read_firmware_tlv(struct iwn_softc *,
331 		    struct iwn_fw_info *, uint16_t);
332 static int	iwn_read_firmware(struct iwn_softc *);
333 static int	iwn_clock_wait(struct iwn_softc *);
334 static int	iwn_apm_init(struct iwn_softc *);
335 static void	iwn_apm_stop_master(struct iwn_softc *);
336 static void	iwn_apm_stop(struct iwn_softc *);
337 static int	iwn4965_nic_config(struct iwn_softc *);
338 static int	iwn5000_nic_config(struct iwn_softc *);
339 static int	iwn_hw_prepare(struct iwn_softc *);
340 static int	iwn_hw_init(struct iwn_softc *);
341 static void	iwn_hw_stop(struct iwn_softc *);
342 static void	iwn_radio_on(void *, int);
343 static void	iwn_radio_off(void *, int);
344 static void	iwn_panicked(void *, int);
345 static void	iwn_init_locked(struct iwn_softc *);
346 static void	iwn_init(void *);
347 static void	iwn_stop_locked(struct iwn_softc *);
348 static void	iwn_stop(struct iwn_softc *);
349 static void	iwn_scan_start(struct ieee80211com *);
350 static void	iwn_scan_end(struct ieee80211com *);
351 static void	iwn_set_channel(struct ieee80211com *);
352 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
353 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
354 static void	iwn_hw_reset(void *, int);
355 #ifdef	IWN_DEBUG
356 static char	*iwn_get_csr_string(int);
357 static void	iwn_debug_register(struct iwn_softc *);
358 #endif
359 static int	iwn_sleep(struct iwn_softc *sc, void *wchan,
360 				int flags, const char *wmsg, int timo);
361 
362 static device_method_t iwn_methods[] = {
363 	/* Device interface */
364 	DEVMETHOD(device_probe,		iwn_probe),
365 	DEVMETHOD(device_attach,	iwn_attach),
366 	DEVMETHOD(device_detach,	iwn_detach),
367 	DEVMETHOD(device_shutdown,	iwn_shutdown),
368 	DEVMETHOD(device_suspend,	iwn_suspend),
369 	DEVMETHOD(device_resume,	iwn_resume),
370 
371 	DEVMETHOD_END
372 };
373 
374 static driver_t iwn_driver = {
375 	"iwn",
376 	iwn_methods,
377 	sizeof(struct iwn_softc)
378 };
379 static devclass_t iwn_devclass;
380 
381 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL);
382 
383 MODULE_VERSION(iwn, 1);
384 
385 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
386 MODULE_DEPEND(iwn, pci, 1, 1, 1);
387 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
388 
389 static int
390 iwn_probe(device_t dev)
391 {
392 	const struct iwn_ident *ident;
393 
394 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
395 		if (pci_get_vendor(dev) == ident->vendor &&
396 		    pci_get_device(dev) == ident->device) {
397 			device_set_desc(dev, ident->name);
398 			return (BUS_PROBE_DEFAULT);
399 		}
400 	}
401 	return ENXIO;
402 }
403 
404 static int
405 iwn_is_3stream_device(struct iwn_softc *sc)
406 {
407 	/* XXX for now only 5300, until the 5350 can be tested */
408 	if (sc->hw_type == IWN_HW_REV_TYPE_5300)
409 		return (1);
410 	return (0);
411 }
412 
413 static int
414 iwn_attach(device_t dev)
415 {
416 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
417 	struct ieee80211com *ic;
418 	struct ifnet *ifp;
419 	int i, error, rid;
420 	uint8_t macaddr[IEEE80211_ADDR_LEN];
421 	char ethstr[ETHER_ADDRSTRLEN + 1];
422 
423 	wlan_serialize_enter();
424 
425 	sc->sc_dev = dev;
426 
427 #ifdef	IWN_DEBUG
428 	error = resource_int_value(device_get_name(sc->sc_dev),
429 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
430 	if (error != 0)
431 		sc->sc_debug = 0;
432 #else
433 	sc->sc_debug = 0;
434 #endif
435 
436 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__);
437 
438 	/*
439 	 * Get the offset of the PCI Express Capability Structure in PCI
440 	 * Configuration Space.
441 	 */
442 #if defined(__DragonFly__)
443 	error = pci_find_extcap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
444 #else
445 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
446 #endif
447 	if (error != 0) {
448 		device_printf(dev, "PCIe capability structure not found!\n");
449 		wlan_serialize_exit();
450 		return error;
451 	}
452 
453 	/* Clear device-specific "PCI retry timeout" register (41h). */
454 	pci_write_config(dev, 0x41, 0, 1);
455 
456 	/* Enable bus-mastering. */
457 	pci_enable_busmaster(dev);
458 
459 	rid = PCIR_BAR(0);
460 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
461 	    RF_ACTIVE);
462 	if (sc->mem == NULL) {
463 		device_printf(dev, "can't map mem space\n");
464 		error = ENOMEM;
465 		wlan_serialize_exit();
466 		return error;
467 	}
468 	sc->sc_st = rman_get_bustag(sc->mem);
469 	sc->sc_sh = rman_get_bushandle(sc->mem);
470 
471 	rid = 0;
472 #ifdef OLD_MSI
473 	i = 1;
474 	if (pci_alloc_msi(dev, &i) == 0)
475 		rid = 1;
476 #endif
477 	/* Install interrupt handler. */
478 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
479 	    (rid != 0 ? 0 : RF_SHAREABLE));
480 	if (sc->irq == NULL) {
481 		device_printf(dev, "can't map interrupt\n");
482 		error = ENOMEM;
483 		goto fail;
484 	}
485 
486 	IWN_LOCK_INIT(sc);
487 
488 	/* Read hardware revision and attach. */
489 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT)
490 	    & IWN_HW_REV_TYPE_MASK;
491 	sc->subdevice_id = pci_get_subdevice(dev);
492 
493 	/*
494 	 * 4965 versus 5000 and later have different methods.
495 	 * Let's set those up first.
496 	 */
497 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
498 		error = iwn4965_attach(sc, pci_get_device(dev));
499 	else
500 		error = iwn5000_attach(sc, pci_get_device(dev));
501 	if (error != 0) {
502 		device_printf(dev, "could not attach device, error %d\n",
503 		    error);
504 		goto fail;
505 	}
506 
507 	/*
508 	 * Next, let's setup the various parameters of each NIC.
509 	 */
510 	error = iwn_config_specific(sc, pci_get_device(dev));
511 	if (error != 0) {
512 		device_printf(dev, "could not attach device, error %d\n",
513 		    error);
514 		goto fail;
515 	}
516 
517 	if ((error = iwn_hw_prepare(sc)) != 0) {
518 		device_printf(dev, "hardware not ready, error %d\n", error);
519 		goto fail;
520 	}
521 
522 	/* Allocate DMA memory for firmware transfers. */
523 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
524 		device_printf(dev,
525 		    "could not allocate memory for firmware, error %d\n",
526 		    error);
527 		goto fail;
528 	}
529 
530 	/* Allocate "Keep Warm" page. */
531 	if ((error = iwn_alloc_kw(sc)) != 0) {
532 		device_printf(dev,
533 		    "could not allocate keep warm page, error %d\n", error);
534 		goto fail;
535 	}
536 
537 	/* Allocate ICT table for 5000 Series. */
538 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
539 	    (error = iwn_alloc_ict(sc)) != 0) {
540 		device_printf(dev, "could not allocate ICT table, error %d\n",
541 		    error);
542 		goto fail;
543 	}
544 
545 	/* Allocate TX scheduler "rings". */
546 	if ((error = iwn_alloc_sched(sc)) != 0) {
547 		device_printf(dev,
548 		    "could not allocate TX scheduler rings, error %d\n", error);
549 		goto fail;
550 	}
551 
552 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
553 	for (i = 0; i < sc->ntxqs; i++) {
554 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
555 			device_printf(dev,
556 			    "could not allocate TX ring %d, error %d\n", i,
557 			    error);
558 			goto fail;
559 		}
560 	}
561 
562 	/* Allocate RX ring. */
563 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
564 		device_printf(dev, "could not allocate RX ring, error %d\n",
565 		    error);
566 		goto fail;
567 	}
568 
569 	/* Clear pending interrupts. */
570 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
571 
572 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
573 	if (ifp == NULL) {
574 		device_printf(dev, "can not allocate ifnet structure\n");
575 		goto fail;
576 	}
577 
578 	ic = ifp->if_l2com;
579 	ic->ic_ifp = ifp;
580 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
581 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
582 
583 	/* Set device capabilities. */
584 	ic->ic_caps =
585 		  IEEE80211_C_STA		/* station mode supported */
586 		| IEEE80211_C_MONITOR		/* monitor mode supported */
587 		| IEEE80211_C_BGSCAN		/* background scanning */
588 		| IEEE80211_C_TXPMGT		/* tx power management */
589 		| IEEE80211_C_SHSLOT		/* short slot time supported */
590 		| IEEE80211_C_WPA
591 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
592 #if 0
593 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
594 #endif
595 		| IEEE80211_C_WME		/* WME */
596 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
597 		;
598 
599 	/* Read MAC address, channels, etc from EEPROM. */
600 	if ((error = iwn_read_eeprom(sc, macaddr)) != 0) {
601 		device_printf(dev, "could not read EEPROM, error %d\n",
602 		    error);
603 		goto fail;
604 	}
605 
606 	/* Count the number of available chains. */
607 	sc->ntxchains =
608 	    ((sc->txchainmask >> 2) & 1) +
609 	    ((sc->txchainmask >> 1) & 1) +
610 	    ((sc->txchainmask >> 0) & 1);
611 	sc->nrxchains =
612 	    ((sc->rxchainmask >> 2) & 1) +
613 	    ((sc->rxchainmask >> 1) & 1) +
614 	    ((sc->rxchainmask >> 0) & 1);
615 	if (bootverbose) {
616 		device_printf(dev, "MIMO %dT%dR, %.4s, address %s\n",
617 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
618 		    kether_ntoa(macaddr, ethstr));
619 	}
620 
621 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
622 		ic->ic_rxstream = sc->nrxchains;
623 		ic->ic_txstream = sc->ntxchains;
624 
625 		/*
626 		 * Some of the 3 antenna devices (ie, the 4965) only supports
627 		 * 2x2 operation.  So correct the number of streams if
628 		 * it's not a 3-stream device.
629 		 */
630 		if (! iwn_is_3stream_device(sc)) {
631 			if (ic->ic_rxstream > 2)
632 				ic->ic_rxstream = 2;
633 			if (ic->ic_txstream > 2)
634 				ic->ic_txstream = 2;
635 		}
636 
637 		ic->ic_htcaps =
638 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
639 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
640 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
641 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
642 #ifdef notyet
643 			| IEEE80211_HTCAP_GREENFIELD
644 #if IWN_RBUF_SIZE == 8192
645 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
646 #else
647 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
648 #endif
649 #endif
650 			/* s/w capabilities */
651 			| IEEE80211_HTC_HT		/* HT operation */
652 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
653 #ifdef notyet
654 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
655 #endif
656 			;
657 	}
658 
659 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
660 	ifp->if_softc = sc;
661 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
662 	ifp->if_init = iwn_init;
663 	ifp->if_ioctl = iwn_ioctl;
664 	ifp->if_start = iwn_start;
665 #if defined(__DragonFly__)
666 	ifp->if_nmbjclusters = IWN_RX_RING_COUNT;
667 	ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
668 #else
669 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
670 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
671 	IFQ_SET_READY(&ifp->if_snd);
672 #endif
673 
674 	ieee80211_ifattach(ic, macaddr);
675 	ic->ic_vap_create = iwn_vap_create;
676 	ic->ic_vap_delete = iwn_vap_delete;
677 	ic->ic_raw_xmit = iwn_raw_xmit;
678 	ic->ic_node_alloc = iwn_node_alloc;
679 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
680 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
681 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
682 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
683 	sc->sc_addba_request = ic->ic_addba_request;
684 	ic->ic_addba_request = iwn_addba_request;
685 	sc->sc_addba_response = ic->ic_addba_response;
686 	ic->ic_addba_response = iwn_addba_response;
687 	sc->sc_addba_stop = ic->ic_addba_stop;
688 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
689 	ic->ic_newassoc = iwn_newassoc;
690 	ic->ic_wme.wme_update = iwn_updateedca;
691 	ic->ic_update_mcast = iwn_update_mcast;
692 	ic->ic_scan_start = iwn_scan_start;
693 	ic->ic_scan_end = iwn_scan_end;
694 	ic->ic_set_channel = iwn_set_channel;
695 	ic->ic_scan_curchan = iwn_scan_curchan;
696 	ic->ic_scan_mindwell = iwn_scan_mindwell;
697 	ic->ic_setregdomain = iwn_setregdomain;
698 
699 	iwn_radiotap_attach(sc);
700 
701 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
702 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
703 	TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset, sc);
704 	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc);
705 	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc);
706 	TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked, sc);
707 
708 	sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK,
709 	    taskqueue_thread_enqueue, &sc->sc_tq);
710 #if defined(__DragonFly__)
711 	error = taskqueue_start_threads(&sc->sc_tq, 1, TDPRI_KERN_DAEMON,
712 					-1, "iwn_taskq");
713 #else
714 	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwn_taskq");
715 #endif
716 	if (error != 0) {
717 		device_printf(dev, "can't start threads, error %d\n", error);
718 		goto fail;
719 	}
720 
721 	iwn_sysctlattach(sc);
722 
723 	/*
724 	 * Hook our interrupt after all initialization is complete.
725 	 */
726 #if defined(__DragonFly__)
727 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
728 			       iwn_intr, sc, &sc->sc_ih,
729 			       &wlan_global_serializer);
730 #else
731 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
732 	    NULL, iwn_intr, sc, &sc->sc_ih);
733 #endif
734 	if (error != 0) {
735 		device_printf(dev, "can't establish interrupt, error %d\n",
736 		    error);
737 		goto fail;
738 	}
739 
740 #if 0
741 	device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n",
742 	    __func__,
743 	    sizeof(struct iwn_stats),
744 	    sizeof(struct iwn_stats_bt));
745 #endif
746 
747 	if (bootverbose)
748 		ieee80211_announce(ic);
749 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
750 	wlan_serialize_exit();
751 	return 0;
752 fail:
753 	wlan_serialize_exit();
754 	iwn_detach(dev);
755 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
756 	return error;
757 }
758 
759 /*
760  * Define specific configuration based on device id and subdevice id
761  * pid : PCI device id
762  */
763 static int
764 iwn_config_specific(struct iwn_softc *sc, uint16_t pid)
765 {
766 
767 	switch (pid) {
768 /* 4965 series */
769 	case IWN_DID_4965_1:
770 	case IWN_DID_4965_2:
771 	case IWN_DID_4965_3:
772 	case IWN_DID_4965_4:
773 		sc->base_params = &iwn4965_base_params;
774 		sc->limits = &iwn4965_sensitivity_limits;
775 		sc->fwname = "iwn4965fw";
776 		/* Override chains masks, ROM is known to be broken. */
777 		sc->txchainmask = IWN_ANT_AB;
778 		sc->rxchainmask = IWN_ANT_ABC;
779 		/* Enable normal btcoex */
780 		sc->sc_flags |= IWN_FLAG_BTCOEX;
781 		break;
782 /* 1000 Series */
783 	case IWN_DID_1000_1:
784 	case IWN_DID_1000_2:
785 		switch(sc->subdevice_id) {
786 			case	IWN_SDID_1000_1:
787 			case	IWN_SDID_1000_2:
788 			case	IWN_SDID_1000_3:
789 			case	IWN_SDID_1000_4:
790 			case	IWN_SDID_1000_5:
791 			case	IWN_SDID_1000_6:
792 			case	IWN_SDID_1000_7:
793 			case	IWN_SDID_1000_8:
794 			case	IWN_SDID_1000_9:
795 			case	IWN_SDID_1000_10:
796 			case	IWN_SDID_1000_11:
797 			case	IWN_SDID_1000_12:
798 				sc->limits = &iwn1000_sensitivity_limits;
799 				sc->base_params = &iwn1000_base_params;
800 				sc->fwname = "iwn1000fw";
801 				break;
802 			default:
803 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
804 				    "0x%04x rev %d not supported (subdevice)\n", pid,
805 				    sc->subdevice_id,sc->hw_type);
806 				return ENOTSUP;
807 		}
808 		break;
809 /* 6x00 Series */
810 	case IWN_DID_6x00_2:
811 	case IWN_DID_6x00_4:
812 	case IWN_DID_6x00_1:
813 	case IWN_DID_6x00_3:
814 		sc->fwname = "iwn6000fw";
815 		sc->limits = &iwn6000_sensitivity_limits;
816 		switch(sc->subdevice_id) {
817 			case IWN_SDID_6x00_1:
818 			case IWN_SDID_6x00_2:
819 			case IWN_SDID_6x00_8:
820 				//iwl6000_3agn_cfg
821 				sc->base_params = &iwn_6000_base_params;
822 				break;
823 			case IWN_SDID_6x00_3:
824 			case IWN_SDID_6x00_6:
825 			case IWN_SDID_6x00_9:
826 				////iwl6000i_2agn
827 			case IWN_SDID_6x00_4:
828 			case IWN_SDID_6x00_7:
829 			case IWN_SDID_6x00_10:
830 				//iwl6000i_2abg_cfg
831 			case IWN_SDID_6x00_5:
832 				//iwl6000i_2bg_cfg
833 				sc->base_params = &iwn_6000i_base_params;
834 				sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
835 				sc->txchainmask = IWN_ANT_BC;
836 				sc->rxchainmask = IWN_ANT_BC;
837 				break;
838 			default:
839 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
840 				    "0x%04x rev %d not supported (subdevice)\n", pid,
841 				    sc->subdevice_id,sc->hw_type);
842 				return ENOTSUP;
843 		}
844 		break;
845 /* 6x05 Series */
846 	case IWN_DID_6x05_1:
847 	case IWN_DID_6x05_2:
848 		switch(sc->subdevice_id) {
849 			case IWN_SDID_6x05_1:
850 			case IWN_SDID_6x05_4:
851 			case IWN_SDID_6x05_6:
852 				//iwl6005_2agn_cfg
853 			case IWN_SDID_6x05_2:
854 			case IWN_SDID_6x05_5:
855 			case IWN_SDID_6x05_7:
856 				//iwl6005_2abg_cfg
857 			case IWN_SDID_6x05_3:
858 				//iwl6005_2bg_cfg
859 			case IWN_SDID_6x05_8:
860 			case IWN_SDID_6x05_9:
861 				//iwl6005_2agn_sff_cfg
862 			case IWN_SDID_6x05_10:
863 				//iwl6005_2agn_d_cfg
864 			case IWN_SDID_6x05_11:
865 				//iwl6005_2agn_mow1_cfg
866 			case IWN_SDID_6x05_12:
867 				//iwl6005_2agn_mow2_cfg
868 				sc->fwname = "iwn6000g2afw";
869 				sc->limits = &iwn6000_sensitivity_limits;
870 				sc->base_params = &iwn_6000g2_base_params;
871 				break;
872 			default:
873 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
874 				    "0x%04x rev %d not supported (subdevice)\n", pid,
875 				    sc->subdevice_id,sc->hw_type);
876 				return ENOTSUP;
877 		}
878 		break;
879 /* 6x35 Series */
880 	case IWN_DID_6035_1:
881 	case IWN_DID_6035_2:
882 		switch(sc->subdevice_id) {
883 			case IWN_SDID_6035_1:
884 			case IWN_SDID_6035_2:
885 			case IWN_SDID_6035_3:
886 			case IWN_SDID_6035_4:
887 				sc->fwname = "iwn6000g2bfw";
888 				sc->limits = &iwn6235_sensitivity_limits;
889 				sc->base_params = &iwn_6235_base_params;
890 				break;
891 			default:
892 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
893 				    "0x%04x rev %d not supported (subdevice)\n", pid,
894 				    sc->subdevice_id,sc->hw_type);
895 				return ENOTSUP;
896 		}
897 		break;
898 /* 6x50 WiFi/WiMax Series */
899 	case IWN_DID_6050_1:
900 	case IWN_DID_6050_2:
901 		switch(sc->subdevice_id) {
902 			case IWN_SDID_6050_1:
903 			case IWN_SDID_6050_3:
904 			case IWN_SDID_6050_5:
905 				//iwl6050_2agn_cfg
906 			case IWN_SDID_6050_2:
907 			case IWN_SDID_6050_4:
908 			case IWN_SDID_6050_6:
909 				//iwl6050_2abg_cfg
910 				sc->fwname = "iwn6050fw";
911 				sc->txchainmask = IWN_ANT_AB;
912 				sc->rxchainmask = IWN_ANT_AB;
913 				sc->limits = &iwn6000_sensitivity_limits;
914 				sc->base_params = &iwn_6050_base_params;
915 				break;
916 			default:
917 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
918 				    "0x%04x rev %d not supported (subdevice)\n", pid,
919 				    sc->subdevice_id,sc->hw_type);
920 				return ENOTSUP;
921 		}
922 		break;
923 /* 6150 WiFi/WiMax Series */
924 	case IWN_DID_6150_1:
925 	case IWN_DID_6150_2:
926 		switch(sc->subdevice_id) {
927 			case IWN_SDID_6150_1:
928 			case IWN_SDID_6150_3:
929 			case IWN_SDID_6150_5:
930 				// iwl6150_bgn_cfg
931 			case IWN_SDID_6150_2:
932 			case IWN_SDID_6150_4:
933 			case IWN_SDID_6150_6:
934 				//iwl6150_bg_cfg
935 				sc->fwname = "iwn6050fw";
936 				sc->limits = &iwn6000_sensitivity_limits;
937 				sc->base_params = &iwn_6150_base_params;
938 				break;
939 			default:
940 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
941 				    "0x%04x rev %d not supported (subdevice)\n", pid,
942 				    sc->subdevice_id,sc->hw_type);
943 				return ENOTSUP;
944 		}
945 		break;
946 /* 6030 Series and 1030 Series */
947 	case IWN_DID_x030_1:
948 	case IWN_DID_x030_2:
949 	case IWN_DID_x030_3:
950 	case IWN_DID_x030_4:
951 		switch(sc->subdevice_id) {
952 			case IWN_SDID_x030_1:
953 			case IWN_SDID_x030_3:
954 			case IWN_SDID_x030_5:
955 			// iwl1030_bgn_cfg
956 			case IWN_SDID_x030_2:
957 			case IWN_SDID_x030_4:
958 			case IWN_SDID_x030_6:
959 			//iwl1030_bg_cfg
960 			case IWN_SDID_x030_7:
961 			case IWN_SDID_x030_10:
962 			case IWN_SDID_x030_14:
963 			//iwl6030_2agn_cfg
964 			case IWN_SDID_x030_8:
965 			case IWN_SDID_x030_11:
966 			case IWN_SDID_x030_15:
967 			// iwl6030_2bgn_cfg
968 			case IWN_SDID_x030_9:
969 			case IWN_SDID_x030_12:
970 			case IWN_SDID_x030_16:
971 			// iwl6030_2abg_cfg
972 			case IWN_SDID_x030_13:
973 			//iwl6030_2bg_cfg
974 				sc->fwname = "iwn6000g2bfw";
975 				sc->limits = &iwn6000_sensitivity_limits;
976 				sc->base_params = &iwn_6000g2b_base_params;
977 				break;
978 			default:
979 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
980 				    "0x%04x rev %d not supported (subdevice)\n", pid,
981 				    sc->subdevice_id,sc->hw_type);
982 				return ENOTSUP;
983 		}
984 		break;
985 /* 130 Series WiFi */
986 /* XXX: This series will need adjustment for rate.
987  * see rx_with_siso_diversity in linux kernel
988  */
989 	case IWN_DID_130_1:
990 	case IWN_DID_130_2:
991 		switch(sc->subdevice_id) {
992 			case IWN_SDID_130_1:
993 			case IWN_SDID_130_3:
994 			case IWN_SDID_130_5:
995 			//iwl130_bgn_cfg
996 			case IWN_SDID_130_2:
997 			case IWN_SDID_130_4:
998 			case IWN_SDID_130_6:
999 			//iwl130_bg_cfg
1000 				sc->fwname = "iwn6000g2bfw";
1001 				sc->limits = &iwn6000_sensitivity_limits;
1002 				sc->base_params = &iwn_6000g2b_base_params;
1003 				break;
1004 			default:
1005 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1006 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1007 				    sc->subdevice_id,sc->hw_type);
1008 				return ENOTSUP;
1009 		}
1010 		break;
1011 /* 100 Series WiFi */
1012 	case IWN_DID_100_1:
1013 	case IWN_DID_100_2:
1014 		switch(sc->subdevice_id) {
1015 			case IWN_SDID_100_1:
1016 			case IWN_SDID_100_2:
1017 			case IWN_SDID_100_3:
1018 			case IWN_SDID_100_4:
1019 			case IWN_SDID_100_5:
1020 			case IWN_SDID_100_6:
1021 				sc->limits = &iwn1000_sensitivity_limits;
1022 				sc->base_params = &iwn1000_base_params;
1023 				sc->fwname = "iwn100fw";
1024 				break;
1025 			default:
1026 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1027 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1028 				    sc->subdevice_id,sc->hw_type);
1029 				return ENOTSUP;
1030 		}
1031 		break;
1032 
1033 /* 105 Series */
1034 /* XXX: This series will need adjustment for rate.
1035  * see rx_with_siso_diversity in linux kernel
1036  */
1037 	case IWN_DID_105_1:
1038 	case IWN_DID_105_2:
1039 		switch(sc->subdevice_id) {
1040 			case IWN_SDID_105_1:
1041 			case IWN_SDID_105_2:
1042 			case IWN_SDID_105_3:
1043 			//iwl105_bgn_cfg
1044 			case IWN_SDID_105_4:
1045 			//iwl105_bgn_d_cfg
1046 				sc->limits = &iwn2030_sensitivity_limits;
1047 				sc->base_params = &iwn2000_base_params;
1048 				sc->fwname = "iwn105fw";
1049 				break;
1050 			default:
1051 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1052 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1053 				    sc->subdevice_id,sc->hw_type);
1054 				return ENOTSUP;
1055 		}
1056 		break;
1057 
1058 /* 135 Series */
1059 /* XXX: This series will need adjustment for rate.
1060  * see rx_with_siso_diversity in linux kernel
1061  */
1062 	case IWN_DID_135_1:
1063 	case IWN_DID_135_2:
1064 		switch(sc->subdevice_id) {
1065 			case IWN_SDID_135_1:
1066 			case IWN_SDID_135_2:
1067 			case IWN_SDID_135_3:
1068 				sc->limits = &iwn2030_sensitivity_limits;
1069 				sc->base_params = &iwn2030_base_params;
1070 				sc->fwname = "iwn135fw";
1071 				break;
1072 			default:
1073 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1074 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1075 				    sc->subdevice_id,sc->hw_type);
1076 				return ENOTSUP;
1077 		}
1078 		break;
1079 
1080 /* 2x00 Series */
1081 	case IWN_DID_2x00_1:
1082 	case IWN_DID_2x00_2:
1083 		switch(sc->subdevice_id) {
1084 			case IWN_SDID_2x00_1:
1085 			case IWN_SDID_2x00_2:
1086 			case IWN_SDID_2x00_3:
1087 			//iwl2000_2bgn_cfg
1088 			case IWN_SDID_2x00_4:
1089 			//iwl2000_2bgn_d_cfg
1090 				sc->limits = &iwn2030_sensitivity_limits;
1091 				sc->base_params = &iwn2000_base_params;
1092 				sc->fwname = "iwn2000fw";
1093 				break;
1094 			default:
1095 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1096 				    "0x%04x rev %d not supported (subdevice) \n",
1097 				    pid, sc->subdevice_id, sc->hw_type);
1098 				return ENOTSUP;
1099 		}
1100 		break;
1101 /* 2x30 Series */
1102 	case IWN_DID_2x30_1:
1103 	case IWN_DID_2x30_2:
1104 		switch(sc->subdevice_id) {
1105 			case IWN_SDID_2x30_1:
1106 			case IWN_SDID_2x30_3:
1107 			case IWN_SDID_2x30_5:
1108 			//iwl100_bgn_cfg
1109 			case IWN_SDID_2x30_2:
1110 			case IWN_SDID_2x30_4:
1111 			case IWN_SDID_2x30_6:
1112 			//iwl100_bg_cfg
1113 				sc->limits = &iwn2030_sensitivity_limits;
1114 				sc->base_params = &iwn2030_base_params;
1115 				sc->fwname = "iwn2030fw";
1116 				break;
1117 			default:
1118 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1119 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1120 				    sc->subdevice_id,sc->hw_type);
1121 				return ENOTSUP;
1122 		}
1123 		break;
1124 /* 5x00 Series */
1125 	case IWN_DID_5x00_1:
1126 	case IWN_DID_5x00_2:
1127 	case IWN_DID_5x00_3:
1128 	case IWN_DID_5x00_4:
1129 		sc->limits = &iwn5000_sensitivity_limits;
1130 		sc->base_params = &iwn5000_base_params;
1131 		sc->fwname = "iwn5000fw";
1132 		switch(sc->subdevice_id) {
1133 			case IWN_SDID_5x00_1:
1134 			case IWN_SDID_5x00_2:
1135 			case IWN_SDID_5x00_3:
1136 			case IWN_SDID_5x00_4:
1137 			case IWN_SDID_5x00_9:
1138 			case IWN_SDID_5x00_10:
1139 			case IWN_SDID_5x00_11:
1140 			case IWN_SDID_5x00_12:
1141 			case IWN_SDID_5x00_17:
1142 			case IWN_SDID_5x00_18:
1143 			case IWN_SDID_5x00_19:
1144 			case IWN_SDID_5x00_20:
1145 			//iwl5100_agn_cfg
1146 				sc->txchainmask = IWN_ANT_B;
1147 				sc->rxchainmask = IWN_ANT_AB;
1148 				break;
1149 			case IWN_SDID_5x00_5:
1150 			case IWN_SDID_5x00_6:
1151 			case IWN_SDID_5x00_13:
1152 			case IWN_SDID_5x00_14:
1153 			case IWN_SDID_5x00_21:
1154 			case IWN_SDID_5x00_22:
1155 			//iwl5100_bgn_cfg
1156 				sc->txchainmask = IWN_ANT_B;
1157 				sc->rxchainmask = IWN_ANT_AB;
1158 				break;
1159 			case IWN_SDID_5x00_7:
1160 			case IWN_SDID_5x00_8:
1161 			case IWN_SDID_5x00_15:
1162 			case IWN_SDID_5x00_16:
1163 			case IWN_SDID_5x00_23:
1164 			case IWN_SDID_5x00_24:
1165 			//iwl5100_abg_cfg
1166 				sc->txchainmask = IWN_ANT_B;
1167 				sc->rxchainmask = IWN_ANT_AB;
1168 				break;
1169 			case IWN_SDID_5x00_25:
1170 			case IWN_SDID_5x00_26:
1171 			case IWN_SDID_5x00_27:
1172 			case IWN_SDID_5x00_28:
1173 			case IWN_SDID_5x00_29:
1174 			case IWN_SDID_5x00_30:
1175 			case IWN_SDID_5x00_31:
1176 			case IWN_SDID_5x00_32:
1177 			case IWN_SDID_5x00_33:
1178 			case IWN_SDID_5x00_34:
1179 			case IWN_SDID_5x00_35:
1180 			case IWN_SDID_5x00_36:
1181 			//iwl5300_agn_cfg
1182 				sc->txchainmask = IWN_ANT_ABC;
1183 				sc->rxchainmask = IWN_ANT_ABC;
1184 				break;
1185 			default:
1186 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1187 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1188 				    sc->subdevice_id,sc->hw_type);
1189 				return ENOTSUP;
1190 		}
1191 		break;
1192 /* 5x50 Series */
1193 	case IWN_DID_5x50_1:
1194 	case IWN_DID_5x50_2:
1195 	case IWN_DID_5x50_3:
1196 	case IWN_DID_5x50_4:
1197 		sc->limits = &iwn5000_sensitivity_limits;
1198 		sc->base_params = &iwn5000_base_params;
1199 		sc->fwname = "iwn5000fw";
1200 		switch(sc->subdevice_id) {
1201 			case IWN_SDID_5x50_1:
1202 			case IWN_SDID_5x50_2:
1203 			case IWN_SDID_5x50_3:
1204 			//iwl5350_agn_cfg
1205 				sc->limits = &iwn5000_sensitivity_limits;
1206 				sc->base_params = &iwn5000_base_params;
1207 				sc->fwname = "iwn5000fw";
1208 				break;
1209 			case IWN_SDID_5x50_4:
1210 			case IWN_SDID_5x50_5:
1211 			case IWN_SDID_5x50_8:
1212 			case IWN_SDID_5x50_9:
1213 			case IWN_SDID_5x50_10:
1214 			case IWN_SDID_5x50_11:
1215 			//iwl5150_agn_cfg
1216 			case IWN_SDID_5x50_6:
1217 			case IWN_SDID_5x50_7:
1218 			case IWN_SDID_5x50_12:
1219 			case IWN_SDID_5x50_13:
1220 			//iwl5150_abg_cfg
1221 				sc->limits = &iwn5000_sensitivity_limits;
1222 				sc->fwname = "iwn5150fw";
1223 				sc->base_params = &iwn_5x50_base_params;
1224 				break;
1225 			default:
1226 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1227 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1228 				    sc->subdevice_id,sc->hw_type);
1229 				return ENOTSUP;
1230 		}
1231 		break;
1232 	default:
1233 		device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x"
1234 		    "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id,
1235 		     sc->hw_type);
1236 		return ENOTSUP;
1237 	}
1238 	return 0;
1239 }
1240 
1241 static int
1242 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
1243 {
1244 	struct iwn_ops *ops = &sc->ops;
1245 
1246 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1247 	ops->load_firmware = iwn4965_load_firmware;
1248 	ops->read_eeprom = iwn4965_read_eeprom;
1249 	ops->post_alive = iwn4965_post_alive;
1250 	ops->nic_config = iwn4965_nic_config;
1251 	ops->update_sched = iwn4965_update_sched;
1252 	ops->get_temperature = iwn4965_get_temperature;
1253 	ops->get_rssi = iwn4965_get_rssi;
1254 	ops->set_txpower = iwn4965_set_txpower;
1255 	ops->init_gains = iwn4965_init_gains;
1256 	ops->set_gains = iwn4965_set_gains;
1257 	ops->add_node = iwn4965_add_node;
1258 	ops->tx_done = iwn4965_tx_done;
1259 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
1260 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
1261 	sc->ntxqs = IWN4965_NTXQUEUES;
1262 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
1263 	sc->ndmachnls = IWN4965_NDMACHNLS;
1264 	sc->broadcast_id = IWN4965_ID_BROADCAST;
1265 	sc->rxonsz = IWN4965_RXONSZ;
1266 	sc->schedsz = IWN4965_SCHEDSZ;
1267 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
1268 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
1269 	sc->fwsz = IWN4965_FWSZ;
1270 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
1271 	sc->limits = &iwn4965_sensitivity_limits;
1272 	sc->fwname = "iwn4965fw";
1273 	/* Override chains masks, ROM is known to be broken. */
1274 	sc->txchainmask = IWN_ANT_AB;
1275 	sc->rxchainmask = IWN_ANT_ABC;
1276 	/* Enable normal btcoex */
1277 	sc->sc_flags |= IWN_FLAG_BTCOEX;
1278 
1279 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1280 
1281 	return 0;
1282 }
1283 
1284 static int
1285 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
1286 {
1287 	struct iwn_ops *ops = &sc->ops;
1288 
1289 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1290 
1291 	ops->load_firmware = iwn5000_load_firmware;
1292 	ops->read_eeprom = iwn5000_read_eeprom;
1293 	ops->post_alive = iwn5000_post_alive;
1294 	ops->nic_config = iwn5000_nic_config;
1295 	ops->update_sched = iwn5000_update_sched;
1296 	ops->get_temperature = iwn5000_get_temperature;
1297 	ops->get_rssi = iwn5000_get_rssi;
1298 	ops->set_txpower = iwn5000_set_txpower;
1299 	ops->init_gains = iwn5000_init_gains;
1300 	ops->set_gains = iwn5000_set_gains;
1301 	ops->add_node = iwn5000_add_node;
1302 	ops->tx_done = iwn5000_tx_done;
1303 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
1304 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
1305 	sc->ntxqs = IWN5000_NTXQUEUES;
1306 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
1307 	sc->ndmachnls = IWN5000_NDMACHNLS;
1308 	sc->broadcast_id = IWN5000_ID_BROADCAST;
1309 	sc->rxonsz = IWN5000_RXONSZ;
1310 	sc->schedsz = IWN5000_SCHEDSZ;
1311 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
1312 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
1313 	sc->fwsz = IWN5000_FWSZ;
1314 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
1315 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
1316 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
1317 
1318 	return 0;
1319 }
1320 
1321 /*
1322  * Attach the interface to 802.11 radiotap.
1323  */
1324 static void
1325 iwn_radiotap_attach(struct iwn_softc *sc)
1326 {
1327 	struct ifnet *ifp = sc->sc_ifp;
1328 	struct ieee80211com *ic = ifp->if_l2com;
1329 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1330 	ieee80211_radiotap_attach(ic,
1331 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
1332 		IWN_TX_RADIOTAP_PRESENT,
1333 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
1334 		IWN_RX_RADIOTAP_PRESENT);
1335 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1336 }
1337 
1338 static void
1339 iwn_sysctlattach(struct iwn_softc *sc)
1340 {
1341 #ifdef	IWN_DEBUG
1342 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
1343 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
1344 
1345 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1346 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
1347 		"control debugging printfs");
1348 #endif
1349 }
1350 
1351 static struct ieee80211vap *
1352 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1353     enum ieee80211_opmode opmode, int flags,
1354     const uint8_t bssid[IEEE80211_ADDR_LEN],
1355     const uint8_t mac[IEEE80211_ADDR_LEN])
1356 {
1357 	struct iwn_vap *ivp;
1358 	struct ieee80211vap *vap;
1359 	uint8_t mac1[IEEE80211_ADDR_LEN];
1360 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
1361 
1362 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
1363 		return NULL;
1364 
1365 	IEEE80211_ADDR_COPY(mac1, mac);
1366 
1367 	ivp = kmalloc(sizeof(struct iwn_vap), M_80211_VAP, M_INTWAIT | M_ZERO);
1368 	if (ivp == NULL)
1369 		return NULL;
1370 	vap = &ivp->iv_vap;
1371 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac1);
1372 	ivp->ctx = IWN_RXON_BSS_CTX;
1373 	IEEE80211_ADDR_COPY(ivp->macaddr, mac1);
1374 	vap->iv_bmissthreshold = 10;		/* override default */
1375 	/* Override with driver methods. */
1376 	ivp->iv_newstate = vap->iv_newstate;
1377 	vap->iv_newstate = iwn_newstate;
1378 	sc->ivap[IWN_RXON_BSS_CTX] = vap;
1379 
1380 	ieee80211_ratectl_init(vap);
1381 	/* Complete setup. */
1382 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status);
1383 	ic->ic_opmode = opmode;
1384 	return vap;
1385 }
1386 
1387 static void
1388 iwn_vap_delete(struct ieee80211vap *vap)
1389 {
1390 	struct iwn_vap *ivp = IWN_VAP(vap);
1391 
1392 	ieee80211_ratectl_deinit(vap);
1393 	ieee80211_vap_detach(vap);
1394 	kfree(ivp, M_80211_VAP);
1395 }
1396 
1397 static int
1398 iwn_detach(device_t dev)
1399 {
1400 	struct iwn_softc *sc = device_get_softc(dev);
1401 	struct ifnet *ifp = sc->sc_ifp;
1402 	struct ieee80211com *ic;
1403 	int qid;
1404 
1405 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1406 
1407 	if (ifp != NULL) {
1408 		ic = ifp->if_l2com;
1409 
1410 		ieee80211_draintask(ic, &sc->sc_reinit_task);
1411 		ieee80211_draintask(ic, &sc->sc_radioon_task);
1412 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
1413 
1414 		iwn_stop(sc);
1415 
1416 #if defined(__DragonFly__)
1417 		/* doesn't exist for DFly, DFly drains tasks on free */
1418 #else
1419 		taskqueue_drain_all(sc->sc_tq);
1420 #endif
1421 		taskqueue_free(sc->sc_tq);
1422 
1423 		callout_drain(&sc->watchdog_to);
1424 		callout_drain(&sc->calib_to);
1425 		ieee80211_ifdetach(ic);
1426 	}
1427 
1428 	/* Uninstall interrupt handler. */
1429 	if (sc->irq != NULL) {
1430 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
1431 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
1432 		    sc->irq);
1433 		pci_release_msi(dev);
1434 	}
1435 
1436 	/* Free DMA resources. */
1437 	iwn_free_rx_ring(sc, &sc->rxq);
1438 	for (qid = 0; qid < sc->ntxqs; qid++)
1439 		iwn_free_tx_ring(sc, &sc->txq[qid]);
1440 	iwn_free_sched(sc);
1441 	iwn_free_kw(sc);
1442 	if (sc->ict != NULL)
1443 		iwn_free_ict(sc);
1444 	iwn_free_fwmem(sc);
1445 
1446 	if (sc->mem != NULL)
1447 		bus_release_resource(dev, SYS_RES_MEMORY,
1448 		    rman_get_rid(sc->mem), sc->mem);
1449 
1450 	if (ifp != NULL)
1451 		if_free(ifp);
1452 
1453 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__);
1454 	IWN_LOCK_DESTROY(sc);
1455 	return 0;
1456 }
1457 
1458 static int
1459 iwn_shutdown(device_t dev)
1460 {
1461 	struct iwn_softc *sc = device_get_softc(dev);
1462 
1463 	iwn_stop(sc);
1464 	return 0;
1465 }
1466 
1467 static int
1468 iwn_suspend(device_t dev)
1469 {
1470 	struct iwn_softc *sc = device_get_softc(dev);
1471 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1472 
1473 	ieee80211_suspend_all(ic);
1474 	return 0;
1475 }
1476 
1477 static int
1478 iwn_resume(device_t dev)
1479 {
1480 	struct iwn_softc *sc = device_get_softc(dev);
1481 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1482 
1483 	/* Clear device-specific "PCI retry timeout" register (41h). */
1484 	pci_write_config(dev, 0x41, 0, 1);
1485 
1486 	ieee80211_resume_all(ic);
1487 	return 0;
1488 }
1489 
1490 static int
1491 iwn_nic_lock(struct iwn_softc *sc)
1492 {
1493 	int ntries;
1494 
1495 	/* Request exclusive access to NIC. */
1496 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1497 
1498 	/* Spin until we actually get the lock. */
1499 	for (ntries = 0; ntries < 1000; ntries++) {
1500 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1501 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1502 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1503 			return 0;
1504 		DELAY(10);
1505 	}
1506 	return ETIMEDOUT;
1507 }
1508 
1509 static __inline void
1510 iwn_nic_unlock(struct iwn_softc *sc)
1511 {
1512 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1513 }
1514 
1515 static __inline uint32_t
1516 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1517 {
1518 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1519 	IWN_BARRIER_READ_WRITE(sc);
1520 	return IWN_READ(sc, IWN_PRPH_RDATA);
1521 }
1522 
1523 static __inline void
1524 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1525 {
1526 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1527 	IWN_BARRIER_WRITE(sc);
1528 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1529 }
1530 
1531 static __inline void
1532 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1533 {
1534 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1535 }
1536 
1537 static __inline void
1538 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1539 {
1540 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1541 }
1542 
1543 static __inline void
1544 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1545     const uint32_t *data, int count)
1546 {
1547 	for (; count > 0; count--, data++, addr += 4)
1548 		iwn_prph_write(sc, addr, *data);
1549 }
1550 
1551 static __inline uint32_t
1552 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1553 {
1554 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1555 	IWN_BARRIER_READ_WRITE(sc);
1556 	return IWN_READ(sc, IWN_MEM_RDATA);
1557 }
1558 
1559 static __inline void
1560 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1561 {
1562 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1563 	IWN_BARRIER_WRITE(sc);
1564 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1565 }
1566 
1567 static __inline void
1568 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1569 {
1570 	uint32_t tmp;
1571 
1572 	tmp = iwn_mem_read(sc, addr & ~3);
1573 	if (addr & 3)
1574 		tmp = (tmp & 0x0000ffff) | data << 16;
1575 	else
1576 		tmp = (tmp & 0xffff0000) | data;
1577 	iwn_mem_write(sc, addr & ~3, tmp);
1578 }
1579 
1580 static __inline void
1581 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1582     int count)
1583 {
1584 	for (; count > 0; count--, addr += 4)
1585 		*data++ = iwn_mem_read(sc, addr);
1586 }
1587 
1588 static __inline void
1589 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1590     int count)
1591 {
1592 	for (; count > 0; count--, addr += 4)
1593 		iwn_mem_write(sc, addr, val);
1594 }
1595 
1596 static int
1597 iwn_eeprom_lock(struct iwn_softc *sc)
1598 {
1599 	int i, ntries;
1600 
1601 	for (i = 0; i < 100; i++) {
1602 		/* Request exclusive access to EEPROM. */
1603 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1604 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1605 
1606 		/* Spin until we actually get the lock. */
1607 		for (ntries = 0; ntries < 100; ntries++) {
1608 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1609 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1610 				return 0;
1611 			DELAY(10);
1612 		}
1613 	}
1614 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__);
1615 	return ETIMEDOUT;
1616 }
1617 
1618 static __inline void
1619 iwn_eeprom_unlock(struct iwn_softc *sc)
1620 {
1621 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1622 }
1623 
1624 /*
1625  * Initialize access by host to One Time Programmable ROM.
1626  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1627  */
1628 static int
1629 iwn_init_otprom(struct iwn_softc *sc)
1630 {
1631 	uint16_t prev, base, next;
1632 	int count, error;
1633 
1634 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1635 
1636 	/* Wait for clock stabilization before accessing prph. */
1637 	if ((error = iwn_clock_wait(sc)) != 0)
1638 		return error;
1639 
1640 	if ((error = iwn_nic_lock(sc)) != 0)
1641 		return error;
1642 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1643 	DELAY(5);
1644 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1645 	iwn_nic_unlock(sc);
1646 
1647 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1648 	if (sc->base_params->shadow_ram_support) {
1649 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1650 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1651 	}
1652 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1653 	/* Clear ECC status. */
1654 	IWN_SETBITS(sc, IWN_OTP_GP,
1655 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1656 
1657 	/*
1658 	 * Find the block before last block (contains the EEPROM image)
1659 	 * for HW without OTP shadow RAM.
1660 	 */
1661 	if (! sc->base_params->shadow_ram_support) {
1662 		/* Switch to absolute addressing mode. */
1663 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1664 		base = prev = 0;
1665 		for (count = 0; count < sc->base_params->max_ll_items;
1666 		    count++) {
1667 			error = iwn_read_prom_data(sc, base, &next, 2);
1668 			if (error != 0)
1669 				return error;
1670 			if (next == 0)	/* End of linked-list. */
1671 				break;
1672 			prev = base;
1673 			base = le16toh(next);
1674 		}
1675 		if (count == 0 || count == sc->base_params->max_ll_items)
1676 			return EIO;
1677 		/* Skip "next" word. */
1678 		sc->prom_base = prev + 1;
1679 	}
1680 
1681 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1682 
1683 	return 0;
1684 }
1685 
1686 static int
1687 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1688 {
1689 	uint8_t *out = data;
1690 	uint32_t val, tmp;
1691 	int ntries;
1692 
1693 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1694 
1695 	addr += sc->prom_base;
1696 	for (; count > 0; count -= 2, addr++) {
1697 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1698 		for (ntries = 0; ntries < 10; ntries++) {
1699 			val = IWN_READ(sc, IWN_EEPROM);
1700 			if (val & IWN_EEPROM_READ_VALID)
1701 				break;
1702 			DELAY(5);
1703 		}
1704 		if (ntries == 10) {
1705 			device_printf(sc->sc_dev,
1706 			    "timeout reading ROM at 0x%x\n", addr);
1707 			return ETIMEDOUT;
1708 		}
1709 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1710 			/* OTPROM, check for ECC errors. */
1711 			tmp = IWN_READ(sc, IWN_OTP_GP);
1712 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1713 				device_printf(sc->sc_dev,
1714 				    "OTPROM ECC error at 0x%x\n", addr);
1715 				return EIO;
1716 			}
1717 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1718 				/* Correctable ECC error, clear bit. */
1719 				IWN_SETBITS(sc, IWN_OTP_GP,
1720 				    IWN_OTP_GP_ECC_CORR_STTS);
1721 			}
1722 		}
1723 		*out++ = val >> 16;
1724 		if (count > 1)
1725 			*out++ = val >> 24;
1726 	}
1727 
1728 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1729 
1730 	return 0;
1731 }
1732 
1733 static void
1734 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1735 {
1736 	if (error != 0)
1737 		return;
1738 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1739 	*(bus_addr_t *)arg = segs[0].ds_addr;
1740 }
1741 
1742 static int
1743 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1744     void **kvap, bus_size_t size, bus_size_t alignment)
1745 {
1746 	int error;
1747 
1748 	dma->tag = NULL;
1749 	dma->size = size;
1750 
1751 #if defined(__DragonFly__)
1752 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1753 				   0,
1754 				   BUS_SPACE_MAXADDR_32BIT,
1755 				   BUS_SPACE_MAXADDR,
1756 				   NULL, NULL,
1757 				   size, 1, size,
1758 				   BUS_DMA_NOWAIT, &dma->tag);
1759 #else
1760 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1761 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1762 	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
1763 #endif
1764 	if (error != 0)
1765 		goto fail;
1766 
1767 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1768 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1769 	if (error != 0)
1770 		goto fail;
1771 
1772 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1773 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1774 	if (error != 0)
1775 		goto fail;
1776 
1777 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1778 
1779 	if (kvap != NULL)
1780 		*kvap = dma->vaddr;
1781 
1782 	return 0;
1783 
1784 fail:	iwn_dma_contig_free(dma);
1785 	return error;
1786 }
1787 
1788 static void
1789 iwn_dma_contig_free(struct iwn_dma_info *dma)
1790 {
1791 	if (dma->vaddr != NULL) {
1792 		bus_dmamap_sync(dma->tag, dma->map,
1793 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1794 		bus_dmamap_unload(dma->tag, dma->map);
1795 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1796 		dma->vaddr = NULL;
1797 	}
1798 	if (dma->tag != NULL) {
1799 		bus_dma_tag_destroy(dma->tag);
1800 		dma->tag = NULL;
1801 	}
1802 }
1803 
1804 static int
1805 iwn_alloc_sched(struct iwn_softc *sc)
1806 {
1807 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1808 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1809 	    sc->schedsz, 1024);
1810 }
1811 
1812 static void
1813 iwn_free_sched(struct iwn_softc *sc)
1814 {
1815 	iwn_dma_contig_free(&sc->sched_dma);
1816 }
1817 
1818 static int
1819 iwn_alloc_kw(struct iwn_softc *sc)
1820 {
1821 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1822 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1823 }
1824 
1825 static void
1826 iwn_free_kw(struct iwn_softc *sc)
1827 {
1828 	iwn_dma_contig_free(&sc->kw_dma);
1829 }
1830 
1831 static int
1832 iwn_alloc_ict(struct iwn_softc *sc)
1833 {
1834 	/* ICT table must be aligned on a 4KB boundary. */
1835 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1836 	    IWN_ICT_SIZE, 4096);
1837 }
1838 
1839 static void
1840 iwn_free_ict(struct iwn_softc *sc)
1841 {
1842 	iwn_dma_contig_free(&sc->ict_dma);
1843 }
1844 
1845 static int
1846 iwn_alloc_fwmem(struct iwn_softc *sc)
1847 {
1848 	/* Must be aligned on a 16-byte boundary. */
1849 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1850 }
1851 
1852 static void
1853 iwn_free_fwmem(struct iwn_softc *sc)
1854 {
1855 	iwn_dma_contig_free(&sc->fw_dma);
1856 }
1857 
1858 static int
1859 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1860 {
1861 	bus_size_t size;
1862 	int i, error;
1863 
1864 	ring->cur = 0;
1865 
1866 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1867 
1868 	/* Allocate RX descriptors (256-byte aligned). */
1869 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1870 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1871 	    size, 256);
1872 	if (error != 0) {
1873 		device_printf(sc->sc_dev,
1874 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1875 		    __func__, error);
1876 		goto fail;
1877 	}
1878 
1879 	/* Allocate RX status area (16-byte aligned). */
1880 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1881 	    sizeof (struct iwn_rx_status), 16);
1882 	if (error != 0) {
1883 		device_printf(sc->sc_dev,
1884 		    "%s: could not allocate RX status DMA memory, error %d\n",
1885 		    __func__, error);
1886 		goto fail;
1887 	}
1888 
1889 	/* Create RX buffer DMA tag. */
1890 #if defined(__DragonFly__)
1891 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1,
1892 				   0,
1893 				   BUS_SPACE_MAXADDR_32BIT,
1894 				   BUS_SPACE_MAXADDR,
1895 				   NULL, NULL,
1896 				   IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE,
1897 				   BUS_DMA_NOWAIT, &ring->data_dmat);
1898 #else
1899 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1900 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1901 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, BUS_DMA_NOWAIT, NULL, NULL,
1902 	    &ring->data_dmat);
1903 #endif
1904 	if (error != 0) {
1905 		device_printf(sc->sc_dev,
1906 		    "%s: could not create RX buf DMA tag, error %d\n",
1907 		    __func__, error);
1908 		goto fail;
1909 	}
1910 
1911 	/*
1912 	 * Allocate and map RX buffers.
1913 	 */
1914 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1915 		struct iwn_rx_data *data = &ring->data[i];
1916 		bus_addr_t paddr;
1917 
1918 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1919 		if (error != 0) {
1920 			device_printf(sc->sc_dev,
1921 			    "%s: could not create RX buf DMA map, error %d\n",
1922 			    __func__, error);
1923 			goto fail;
1924 		}
1925 
1926 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
1927 				   IWN_RBUF_SIZE);
1928 		if (data->m == NULL) {
1929 			device_printf(sc->sc_dev,
1930 			    "%s: could not allocate RX mbuf\n", __func__);
1931 			error = ENOBUFS;
1932 			goto fail;
1933 		}
1934 
1935 		error = bus_dmamap_load(ring->data_dmat, data->map,
1936 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1937 		    &paddr, BUS_DMA_NOWAIT);
1938 		if (error != 0 && error != EFBIG) {
1939 			device_printf(sc->sc_dev,
1940 			    "%s: can't not map mbuf, error %d\n", __func__,
1941 			    error);
1942 			goto fail;
1943 		}
1944 
1945 		/* Set physical address of RX buffer (256-byte aligned). */
1946 		ring->desc[i] = htole32(paddr >> 8);
1947 	}
1948 
1949 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1950 	    BUS_DMASYNC_PREWRITE);
1951 
1952 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
1953 
1954 	return 0;
1955 
1956 fail:	iwn_free_rx_ring(sc, ring);
1957 
1958 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
1959 
1960 	return error;
1961 }
1962 
1963 static void
1964 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1965 {
1966 	int ntries;
1967 
1968 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
1969 
1970 	if (iwn_nic_lock(sc) == 0) {
1971 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1972 		for (ntries = 0; ntries < 1000; ntries++) {
1973 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1974 			    IWN_FH_RX_STATUS_IDLE)
1975 				break;
1976 			DELAY(10);
1977 		}
1978 		iwn_nic_unlock(sc);
1979 	}
1980 	ring->cur = 0;
1981 	sc->last_rx_valid = 0;
1982 }
1983 
1984 static void
1985 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1986 {
1987 	int i;
1988 
1989 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1990 
1991 	iwn_dma_contig_free(&ring->desc_dma);
1992 	iwn_dma_contig_free(&ring->stat_dma);
1993 
1994 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1995 		struct iwn_rx_data *data = &ring->data[i];
1996 
1997 		if (data->m != NULL) {
1998 			bus_dmamap_sync(ring->data_dmat, data->map,
1999 			    BUS_DMASYNC_POSTREAD);
2000 			bus_dmamap_unload(ring->data_dmat, data->map);
2001 			m_freem(data->m);
2002 			data->m = NULL;
2003 		}
2004 		if (data->map != NULL)
2005 			bus_dmamap_destroy(ring->data_dmat, data->map);
2006 	}
2007 	if (ring->data_dmat != NULL) {
2008 		bus_dma_tag_destroy(ring->data_dmat);
2009 		ring->data_dmat = NULL;
2010 	}
2011 }
2012 
2013 static int
2014 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
2015 {
2016 	bus_addr_t paddr;
2017 	bus_size_t size;
2018 	int i, error;
2019 
2020 	ring->qid = qid;
2021 	ring->queued = 0;
2022 	ring->cur = 0;
2023 
2024 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2025 
2026 	/* Allocate TX descriptors (256-byte aligned). */
2027 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
2028 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
2029 	    size, 256);
2030 	if (error != 0) {
2031 		device_printf(sc->sc_dev,
2032 		    "%s: could not allocate TX ring DMA memory, error %d\n",
2033 		    __func__, error);
2034 		goto fail;
2035 	}
2036 
2037 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
2038 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
2039 	    size, 4);
2040 	if (error != 0) {
2041 		device_printf(sc->sc_dev,
2042 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
2043 		    __func__, error);
2044 		goto fail;
2045 	}
2046 
2047 #if defined(__DragonFly__)
2048 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1,
2049 				   0,
2050 				   BUS_SPACE_MAXADDR_32BIT,
2051 				   BUS_SPACE_MAXADDR,
2052 				   NULL, NULL,
2053 				   MCLBYTES, IWN_MAX_SCATTER - 1, MCLBYTES,
2054 				   BUS_DMA_NOWAIT, &ring->data_dmat);
2055 #else
2056 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
2057 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
2058 	    IWN_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
2059 	    &ring->data_dmat);
2060 #endif
2061 	if (error != 0) {
2062 		device_printf(sc->sc_dev,
2063 		    "%s: could not create TX buf DMA tag, error %d\n",
2064 		    __func__, error);
2065 		goto fail;
2066 	}
2067 
2068 	paddr = ring->cmd_dma.paddr;
2069 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2070 		struct iwn_tx_data *data = &ring->data[i];
2071 
2072 		data->cmd_paddr = paddr;
2073 		data->scratch_paddr = paddr + 12;
2074 		paddr += sizeof (struct iwn_tx_cmd);
2075 
2076 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2077 		if (error != 0) {
2078 			device_printf(sc->sc_dev,
2079 			    "%s: could not create TX buf DMA map, error %d\n",
2080 			    __func__, error);
2081 			goto fail;
2082 		}
2083 	}
2084 
2085 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2086 
2087 	return 0;
2088 
2089 fail:	iwn_free_tx_ring(sc, ring);
2090 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2091 	return error;
2092 }
2093 
2094 static void
2095 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2096 {
2097 	int i;
2098 
2099 	DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__);
2100 
2101 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2102 		struct iwn_tx_data *data = &ring->data[i];
2103 
2104 		if (data->m != NULL) {
2105 			bus_dmamap_sync(ring->data_dmat, data->map,
2106 			    BUS_DMASYNC_POSTWRITE);
2107 			bus_dmamap_unload(ring->data_dmat, data->map);
2108 			m_freem(data->m);
2109 			data->m = NULL;
2110 		}
2111 	}
2112 	/* Clear TX descriptors. */
2113 	memset(ring->desc, 0, ring->desc_dma.size);
2114 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2115 	    BUS_DMASYNC_PREWRITE);
2116 	sc->qfullmsk &= ~(1 << ring->qid);
2117 	ring->queued = 0;
2118 	ring->cur = 0;
2119 }
2120 
2121 static void
2122 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2123 {
2124 	int i;
2125 
2126 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
2127 
2128 	iwn_dma_contig_free(&ring->desc_dma);
2129 	iwn_dma_contig_free(&ring->cmd_dma);
2130 
2131 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2132 		struct iwn_tx_data *data = &ring->data[i];
2133 
2134 		if (data->m != NULL) {
2135 			bus_dmamap_sync(ring->data_dmat, data->map,
2136 			    BUS_DMASYNC_POSTWRITE);
2137 			bus_dmamap_unload(ring->data_dmat, data->map);
2138 			m_freem(data->m);
2139 		}
2140 		if (data->map != NULL)
2141 			bus_dmamap_destroy(ring->data_dmat, data->map);
2142 	}
2143 	if (ring->data_dmat != NULL) {
2144 		bus_dma_tag_destroy(ring->data_dmat);
2145 		ring->data_dmat = NULL;
2146 	}
2147 }
2148 
2149 static void
2150 iwn5000_ict_reset(struct iwn_softc *sc)
2151 {
2152 	/* Disable interrupts. */
2153 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2154 
2155 	/* Reset ICT table. */
2156 	memset(sc->ict, 0, IWN_ICT_SIZE);
2157 	sc->ict_cur = 0;
2158 
2159 	/* Set physical address of ICT table (4KB aligned). */
2160 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
2161 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
2162 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
2163 
2164 	/* Enable periodic RX interrupt. */
2165 	sc->int_mask |= IWN_INT_RX_PERIODIC;
2166 	/* Switch to ICT interrupt mode in driver. */
2167 	sc->sc_flags |= IWN_FLAG_USE_ICT;
2168 
2169 	/* Re-enable interrupts. */
2170 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
2171 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2172 }
2173 
2174 static int
2175 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2176 {
2177 	struct iwn_ops *ops = &sc->ops;
2178 	uint16_t val;
2179 	int error;
2180 
2181 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2182 
2183 	/* Check whether adapter has an EEPROM or an OTPROM. */
2184 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
2185 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
2186 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
2187 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
2188 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
2189 
2190 	/* Adapter has to be powered on for EEPROM access to work. */
2191 	if ((error = iwn_apm_init(sc)) != 0) {
2192 		device_printf(sc->sc_dev,
2193 		    "%s: could not power ON adapter, error %d\n", __func__,
2194 		    error);
2195 		return error;
2196 	}
2197 
2198 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
2199 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
2200 		return EIO;
2201 	}
2202 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2203 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
2204 		    __func__, error);
2205 		return error;
2206 	}
2207 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
2208 		if ((error = iwn_init_otprom(sc)) != 0) {
2209 			device_printf(sc->sc_dev,
2210 			    "%s: could not initialize OTPROM, error %d\n",
2211 			    __func__, error);
2212 			return error;
2213 		}
2214 	}
2215 
2216 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
2217 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
2218 	/* Check if HT support is bonded out. */
2219 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
2220 		sc->sc_flags |= IWN_FLAG_HAS_11N;
2221 
2222 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
2223 	sc->rfcfg = le16toh(val);
2224 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
2225 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
2226 	if (sc->txchainmask == 0)
2227 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
2228 	if (sc->rxchainmask == 0)
2229 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
2230 
2231 	/* Read MAC address. */
2232 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
2233 
2234 	/* Read adapter-specific information from EEPROM. */
2235 	ops->read_eeprom(sc);
2236 
2237 	iwn_apm_stop(sc);	/* Power OFF adapter. */
2238 
2239 	iwn_eeprom_unlock(sc);
2240 
2241 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2242 
2243 	return 0;
2244 }
2245 
2246 static void
2247 iwn4965_read_eeprom(struct iwn_softc *sc)
2248 {
2249 	uint32_t addr;
2250 	uint16_t val;
2251 	int i;
2252 
2253 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2254 
2255 	/* Read regulatory domain (4 ASCII characters). */
2256 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
2257 
2258 	/* Read the list of authorized channels (20MHz ones only). */
2259 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2260 		addr = iwn4965_regulatory_bands[i];
2261 		iwn_read_eeprom_channels(sc, i, addr);
2262 	}
2263 
2264 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
2265 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
2266 	sc->maxpwr2GHz = val & 0xff;
2267 	sc->maxpwr5GHz = val >> 8;
2268 	/* Check that EEPROM values are within valid range. */
2269 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2270 		sc->maxpwr5GHz = 38;
2271 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2272 		sc->maxpwr2GHz = 38;
2273 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2274 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2275 
2276 	/* Read samples for each TX power group. */
2277 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
2278 	    sizeof sc->bands);
2279 
2280 	/* Read voltage at which samples were taken. */
2281 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
2282 	sc->eeprom_voltage = (int16_t)le16toh(val);
2283 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2284 	    sc->eeprom_voltage);
2285 
2286 #ifdef IWN_DEBUG
2287 	/* Print samples. */
2288 	if (sc->sc_debug & IWN_DEBUG_ANY) {
2289 		for (i = 0; i < IWN_NBANDS - 1; i++)
2290 			iwn4965_print_power_group(sc, i);
2291 	}
2292 #endif
2293 
2294 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2295 }
2296 
2297 #ifdef IWN_DEBUG
2298 static void
2299 iwn4965_print_power_group(struct iwn_softc *sc, int i)
2300 {
2301 	struct iwn4965_eeprom_band *band = &sc->bands[i];
2302 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
2303 	int j, c;
2304 
2305 	kprintf("===band %d===\n", i);
2306 	kprintf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2307 	kprintf("chan1 num=%d\n", chans[0].num);
2308 	for (c = 0; c < 2; c++) {
2309 		for (j = 0; j < IWN_NSAMPLES; j++) {
2310 			kprintf("chain %d, sample %d: temp=%d gain=%d "
2311 			    "power=%d pa_det=%d\n", c, j,
2312 			    chans[0].samples[c][j].temp,
2313 			    chans[0].samples[c][j].gain,
2314 			    chans[0].samples[c][j].power,
2315 			    chans[0].samples[c][j].pa_det);
2316 		}
2317 	}
2318 	kprintf("chan2 num=%d\n", chans[1].num);
2319 	for (c = 0; c < 2; c++) {
2320 		for (j = 0; j < IWN_NSAMPLES; j++) {
2321 			kprintf("chain %d, sample %d: temp=%d gain=%d "
2322 			    "power=%d pa_det=%d\n", c, j,
2323 			    chans[1].samples[c][j].temp,
2324 			    chans[1].samples[c][j].gain,
2325 			    chans[1].samples[c][j].power,
2326 			    chans[1].samples[c][j].pa_det);
2327 		}
2328 	}
2329 }
2330 #endif
2331 
2332 static void
2333 iwn5000_read_eeprom(struct iwn_softc *sc)
2334 {
2335 	struct iwn5000_eeprom_calib_hdr hdr;
2336 	int32_t volt;
2337 	uint32_t base, addr;
2338 	uint16_t val;
2339 	int i;
2340 
2341 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2342 
2343 	/* Read regulatory domain (4 ASCII characters). */
2344 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2345 	base = le16toh(val);
2346 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
2347 	    sc->eeprom_domain, 4);
2348 
2349 	/* Read the list of authorized channels (20MHz ones only). */
2350 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2351 		addr =  base + sc->base_params->regulatory_bands[i];
2352 		iwn_read_eeprom_channels(sc, i, addr);
2353 	}
2354 
2355 	/* Read enhanced TX power information for 6000 Series. */
2356 	if (sc->base_params->enhanced_TX_power)
2357 		iwn_read_eeprom_enhinfo(sc);
2358 
2359 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
2360 	base = le16toh(val);
2361 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
2362 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2363 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
2364 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
2365 	sc->calib_ver = hdr.version;
2366 
2367 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
2368 		sc->eeprom_voltage = le16toh(hdr.volt);
2369 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2370 		sc->eeprom_temp_high=le16toh(val);
2371 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2372 		sc->eeprom_temp = le16toh(val);
2373 	}
2374 
2375 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
2376 		/* Compute temperature offset. */
2377 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2378 		sc->eeprom_temp = le16toh(val);
2379 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2380 		volt = le16toh(val);
2381 		sc->temp_off = sc->eeprom_temp - (volt / -5);
2382 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
2383 		    sc->eeprom_temp, volt, sc->temp_off);
2384 	} else {
2385 		/* Read crystal calibration. */
2386 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
2387 		    &sc->eeprom_crystal, sizeof (uint32_t));
2388 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
2389 		    le32toh(sc->eeprom_crystal));
2390 	}
2391 
2392 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2393 
2394 }
2395 
2396 /*
2397  * Translate EEPROM flags to net80211.
2398  */
2399 static uint32_t
2400 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
2401 {
2402 	uint32_t nflags;
2403 
2404 	nflags = 0;
2405 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2406 		nflags |= IEEE80211_CHAN_PASSIVE;
2407 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
2408 		nflags |= IEEE80211_CHAN_NOADHOC;
2409 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
2410 		nflags |= IEEE80211_CHAN_DFS;
2411 		/* XXX apparently IBSS may still be marked */
2412 		nflags |= IEEE80211_CHAN_NOADHOC;
2413 	}
2414 
2415 	return nflags;
2416 }
2417 
2418 static void
2419 iwn_read_eeprom_band(struct iwn_softc *sc, int n)
2420 {
2421 	struct ifnet *ifp = sc->sc_ifp;
2422 	struct ieee80211com *ic = ifp->if_l2com;
2423 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2424 	const struct iwn_chan_band *band = &iwn_bands[n];
2425 	struct ieee80211_channel *c;
2426 	uint8_t chan;
2427 	int i, nflags;
2428 
2429 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2430 
2431 	for (i = 0; i < band->nchan; i++) {
2432 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2433 			DPRINTF(sc, IWN_DEBUG_RESET,
2434 			    "skip chan %d flags 0x%x maxpwr %d\n",
2435 			    band->chan[i], channels[i].flags,
2436 			    channels[i].maxpwr);
2437 			continue;
2438 		}
2439 		chan = band->chan[i];
2440 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2441 
2442 		c = &ic->ic_channels[ic->ic_nchans++];
2443 		c->ic_ieee = chan;
2444 		c->ic_maxregpower = channels[i].maxpwr;
2445 		c->ic_maxpower = 2*c->ic_maxregpower;
2446 
2447 		if (n == 0) {	/* 2GHz band */
2448 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G);
2449 			/* G =>'s B is supported */
2450 			c->ic_flags = IEEE80211_CHAN_B | nflags;
2451 			c = &ic->ic_channels[ic->ic_nchans++];
2452 			c[0] = c[-1];
2453 			c->ic_flags = IEEE80211_CHAN_G | nflags;
2454 		} else {	/* 5GHz band */
2455 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
2456 			c->ic_flags = IEEE80211_CHAN_A | nflags;
2457 		}
2458 
2459 		/* Save maximum allowed TX power for this channel. */
2460 		sc->maxpwr[chan] = channels[i].maxpwr;
2461 
2462 		DPRINTF(sc, IWN_DEBUG_RESET,
2463 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
2464 		    channels[i].flags, channels[i].maxpwr);
2465 
2466 		if (sc->sc_flags & IWN_FLAG_HAS_11N) {
2467 			/* add HT20, HT40 added separately */
2468 			c = &ic->ic_channels[ic->ic_nchans++];
2469 			c[0] = c[-1];
2470 			c->ic_flags |= IEEE80211_CHAN_HT20;
2471 		}
2472 	}
2473 
2474 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2475 
2476 }
2477 
2478 static void
2479 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n)
2480 {
2481 	struct ifnet *ifp = sc->sc_ifp;
2482 	struct ieee80211com *ic = ifp->if_l2com;
2483 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2484 	const struct iwn_chan_band *band = &iwn_bands[n];
2485 	struct ieee80211_channel *c, *cent, *extc;
2486 	uint8_t chan;
2487 	int i, nflags;
2488 
2489 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__);
2490 
2491 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) {
2492 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__);
2493 		return;
2494 	}
2495 
2496 	for (i = 0; i < band->nchan; i++) {
2497 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2498 			DPRINTF(sc, IWN_DEBUG_RESET,
2499 			    "skip chan %d flags 0x%x maxpwr %d\n",
2500 			    band->chan[i], channels[i].flags,
2501 			    channels[i].maxpwr);
2502 			continue;
2503 		}
2504 		chan = band->chan[i];
2505 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2506 
2507 		/*
2508 		 * Each entry defines an HT40 channel pair; find the
2509 		 * center channel, then the extension channel above.
2510 		 */
2511 		cent = ieee80211_find_channel_byieee(ic, chan,
2512 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
2513 		if (cent == NULL) {	/* XXX shouldn't happen */
2514 			device_printf(sc->sc_dev,
2515 			    "%s: no entry for channel %d\n", __func__, chan);
2516 			continue;
2517 		}
2518 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
2519 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
2520 		if (extc == NULL) {
2521 			DPRINTF(sc, IWN_DEBUG_RESET,
2522 			    "%s: skip chan %d, extension channel not found\n",
2523 			    __func__, chan);
2524 			continue;
2525 		}
2526 
2527 		DPRINTF(sc, IWN_DEBUG_RESET,
2528 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2529 		    chan, channels[i].flags, channels[i].maxpwr);
2530 
2531 		c = &ic->ic_channels[ic->ic_nchans++];
2532 		c[0] = cent[0];
2533 		c->ic_extieee = extc->ic_ieee;
2534 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2535 		c->ic_flags |= IEEE80211_CHAN_HT40U | nflags;
2536 		c = &ic->ic_channels[ic->ic_nchans++];
2537 		c[0] = extc[0];
2538 		c->ic_extieee = cent->ic_ieee;
2539 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2540 		c->ic_flags |= IEEE80211_CHAN_HT40D | nflags;
2541 	}
2542 
2543 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2544 
2545 }
2546 
2547 static void
2548 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2549 {
2550 	struct ifnet *ifp = sc->sc_ifp;
2551 	struct ieee80211com *ic = ifp->if_l2com;
2552 
2553 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
2554 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
2555 
2556 	if (n < 5)
2557 		iwn_read_eeprom_band(sc, n);
2558 	else
2559 		iwn_read_eeprom_ht40(sc, n);
2560 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2561 }
2562 
2563 static struct iwn_eeprom_chan *
2564 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
2565 {
2566 	int band, chan, i, j;
2567 
2568 	if (IEEE80211_IS_CHAN_HT40(c)) {
2569 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
2570 		if (IEEE80211_IS_CHAN_HT40D(c))
2571 			chan = c->ic_extieee;
2572 		else
2573 			chan = c->ic_ieee;
2574 		for (i = 0; i < iwn_bands[band].nchan; i++) {
2575 			if (iwn_bands[band].chan[i] == chan)
2576 				return &sc->eeprom_channels[band][i];
2577 		}
2578 	} else {
2579 		for (j = 0; j < 5; j++) {
2580 			for (i = 0; i < iwn_bands[j].nchan; i++) {
2581 				if (iwn_bands[j].chan[i] == c->ic_ieee)
2582 					return &sc->eeprom_channels[j][i];
2583 			}
2584 		}
2585 	}
2586 	return NULL;
2587 }
2588 
2589 /*
2590  * Enforce flags read from EEPROM.
2591  */
2592 static int
2593 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
2594     int nchan, struct ieee80211_channel chans[])
2595 {
2596 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2597 	int i;
2598 
2599 	for (i = 0; i < nchan; i++) {
2600 		struct ieee80211_channel *c = &chans[i];
2601 		struct iwn_eeprom_chan *channel;
2602 
2603 		channel = iwn_find_eeprom_channel(sc, c);
2604 		if (channel == NULL) {
2605 			if_printf(ic->ic_ifp,
2606 			    "%s: invalid channel %u freq %u/0x%x\n",
2607 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2608 			return EINVAL;
2609 		}
2610 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2611 	}
2612 
2613 	return 0;
2614 }
2615 
2616 static void
2617 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2618 {
2619 	struct iwn_eeprom_enhinfo enhinfo[35];
2620 	struct ifnet *ifp = sc->sc_ifp;
2621 	struct ieee80211com *ic = ifp->if_l2com;
2622 	struct ieee80211_channel *c;
2623 	uint16_t val, base;
2624 	int8_t maxpwr;
2625 	uint8_t flags;
2626 	int i, j;
2627 
2628 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2629 
2630 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2631 	base = le16toh(val);
2632 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2633 	    enhinfo, sizeof enhinfo);
2634 
2635 	for (i = 0; i < nitems(enhinfo); i++) {
2636 		flags = enhinfo[i].flags;
2637 		if (!(flags & IWN_ENHINFO_VALID))
2638 			continue;	/* Skip invalid entries. */
2639 
2640 		maxpwr = 0;
2641 		if (sc->txchainmask & IWN_ANT_A)
2642 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2643 		if (sc->txchainmask & IWN_ANT_B)
2644 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2645 		if (sc->txchainmask & IWN_ANT_C)
2646 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2647 		if (sc->ntxchains == 2)
2648 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2649 		else if (sc->ntxchains == 3)
2650 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2651 
2652 		for (j = 0; j < ic->ic_nchans; j++) {
2653 			c = &ic->ic_channels[j];
2654 			if ((flags & IWN_ENHINFO_5GHZ)) {
2655 				if (!IEEE80211_IS_CHAN_A(c))
2656 					continue;
2657 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2658 				if (!IEEE80211_IS_CHAN_G(c))
2659 					continue;
2660 			} else if (!IEEE80211_IS_CHAN_B(c))
2661 				continue;
2662 			if ((flags & IWN_ENHINFO_HT40)) {
2663 				if (!IEEE80211_IS_CHAN_HT40(c))
2664 					continue;
2665 			} else {
2666 				if (IEEE80211_IS_CHAN_HT40(c))
2667 					continue;
2668 			}
2669 			if (enhinfo[i].chan != 0 &&
2670 			    enhinfo[i].chan != c->ic_ieee)
2671 				continue;
2672 
2673 			DPRINTF(sc, IWN_DEBUG_RESET,
2674 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2675 			    c->ic_flags, maxpwr / 2);
2676 			c->ic_maxregpower = maxpwr / 2;
2677 			c->ic_maxpower = maxpwr;
2678 		}
2679 	}
2680 
2681 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2682 
2683 }
2684 
2685 static struct ieee80211_node *
2686 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2687 {
2688 	return (kmalloc(sizeof (struct iwn_node),
2689 		        M_80211_NODE, M_INTWAIT | M_ZERO));
2690 }
2691 
2692 static __inline int
2693 rate2plcp(int rate)
2694 {
2695 	switch (rate & 0xff) {
2696 	case 12:	return 0xd;
2697 	case 18:	return 0xf;
2698 	case 24:	return 0x5;
2699 	case 36:	return 0x7;
2700 	case 48:	return 0x9;
2701 	case 72:	return 0xb;
2702 	case 96:	return 0x1;
2703 	case 108:	return 0x3;
2704 	case 2:		return 10;
2705 	case 4:		return 20;
2706 	case 11:	return 55;
2707 	case 22:	return 110;
2708 	}
2709 	return 0;
2710 }
2711 
2712 static int
2713 iwn_get_1stream_tx_antmask(struct iwn_softc *sc)
2714 {
2715 
2716 	return IWN_LSB(sc->txchainmask);
2717 }
2718 
2719 static int
2720 iwn_get_2stream_tx_antmask(struct iwn_softc *sc)
2721 {
2722 	int tx;
2723 
2724 	/*
2725 	 * The '2 stream' setup is a bit .. odd.
2726 	 *
2727 	 * For NICs that support only 1 antenna, default to IWN_ANT_AB or
2728 	 * the firmware panics (eg Intel 5100.)
2729 	 *
2730 	 * For NICs that support two antennas, we use ANT_AB.
2731 	 *
2732 	 * For NICs that support three antennas, we use the two that
2733 	 * wasn't the default one.
2734 	 *
2735 	 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict
2736 	 * this to only one antenna.
2737 	 */
2738 
2739 	/* Default - transmit on the other antennas */
2740 	tx = (sc->txchainmask & ~IWN_LSB(sc->txchainmask));
2741 
2742 	/* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */
2743 	if (tx == 0)
2744 		tx = IWN_ANT_AB;
2745 
2746 	/*
2747 	 * If the NIC is a two-stream TX NIC, configure the TX mask to
2748 	 * the default chainmask
2749 	 */
2750 	else if (sc->ntxchains == 2)
2751 		tx = sc->txchainmask;
2752 
2753 	return (tx);
2754 }
2755 
2756 
2757 
2758 /*
2759  * Calculate the required PLCP value from the given rate,
2760  * to the given node.
2761  *
2762  * This will take the node configuration (eg 11n, rate table
2763  * setup, etc) into consideration.
2764  */
2765 static uint32_t
2766 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2767     uint8_t rate)
2768 {
2769 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
2770 	struct ieee80211com *ic = ni->ni_ic;
2771 	uint32_t plcp = 0;
2772 	int ridx;
2773 
2774 	/*
2775 	 * If it's an MCS rate, let's set the plcp correctly
2776 	 * and set the relevant flags based on the node config.
2777 	 */
2778 	if (rate & IEEE80211_RATE_MCS) {
2779 		/*
2780 		 * Set the initial PLCP value to be between 0->31 for
2781 		 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2782 		 * flag.
2783 		 */
2784 		plcp = RV(rate) | IWN_RFLAG_MCS;
2785 
2786 		/*
2787 		 * XXX the following should only occur if both
2788 		 * the local configuration _and_ the remote node
2789 		 * advertise these capabilities.  Thus this code
2790 		 * may need fixing!
2791 		 */
2792 
2793 		/*
2794 		 * Set the channel width and guard interval.
2795 		 */
2796 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2797 			plcp |= IWN_RFLAG_HT40;
2798 			if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2799 				plcp |= IWN_RFLAG_SGI;
2800 		} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) {
2801 			plcp |= IWN_RFLAG_SGI;
2802 		}
2803 
2804 		/*
2805 		 * Ensure the selected rate matches the link quality
2806 		 * table entries being used.
2807 		 */
2808 		if (rate > 0x8f)
2809 			plcp |= IWN_RFLAG_ANT(sc->txchainmask);
2810 		else if (rate > 0x87)
2811 			plcp |= IWN_RFLAG_ANT(iwn_get_2stream_tx_antmask(sc));
2812 		else
2813 			plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2814 	} else {
2815 		/*
2816 		 * Set the initial PLCP - fine for both
2817 		 * OFDM and CCK rates.
2818 		 */
2819 		plcp = rate2plcp(rate);
2820 
2821 		/* Set CCK flag if it's CCK */
2822 
2823 		/* XXX It would be nice to have a method
2824 		 * to map the ridx -> phy table entry
2825 		 * so we could just query that, rather than
2826 		 * this hack to check against IWN_RIDX_OFDM6.
2827 		 */
2828 		ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2829 		    rate & IEEE80211_RATE_VAL);
2830 		if (ridx < IWN_RIDX_OFDM6 &&
2831 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2832 			plcp |= IWN_RFLAG_CCK;
2833 
2834 		/* Set antenna configuration */
2835 		/* XXX TODO: is this the right antenna to use for legacy? */
2836 		plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2837 	}
2838 
2839 	DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2840 	    __func__,
2841 	    rate,
2842 	    plcp);
2843 
2844 	return (htole32(plcp));
2845 #undef	RV
2846 }
2847 
2848 static void
2849 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2850 {
2851 	/* Doesn't do anything at the moment */
2852 }
2853 
2854 static int
2855 iwn_media_change(struct ifnet *ifp)
2856 {
2857 	int error;
2858 
2859 	error = ieee80211_media_change(ifp);
2860 	/* NB: only the fixed rate can change and that doesn't need a reset */
2861 	return (error == ENETRESET ? 0 : error);
2862 }
2863 
2864 static int
2865 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2866 {
2867 	struct iwn_vap *ivp = IWN_VAP(vap);
2868 	struct ieee80211com *ic = vap->iv_ic;
2869 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2870 	int error = 0;
2871 
2872 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2873 
2874 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2875 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2876 
2877 	IEEE80211_UNLOCK(ic);
2878 	IWN_LOCK(sc);
2879 #if defined(__DragonFly__)
2880 	callout_stop_sync(&sc->calib_to);
2881 #else
2882 	callout_stop(&sc->calib_to);
2883 #endif
2884 
2885 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
2886 
2887 	switch (nstate) {
2888 	case IEEE80211_S_ASSOC:
2889 		if (vap->iv_state != IEEE80211_S_RUN)
2890 			break;
2891 		/* FALLTHROUGH */
2892 	case IEEE80211_S_AUTH:
2893 		if (vap->iv_state == IEEE80211_S_AUTH)
2894 			break;
2895 
2896 		/*
2897 		 * !AUTH -> AUTH transition requires state reset to handle
2898 		 * reassociations correctly.
2899 		 */
2900 		sc->rxon->associd = 0;
2901 		sc->rxon->filter &= ~htole32(IWN_FILTER_BSS);
2902 		sc->calib.state = IWN_CALIB_STATE_INIT;
2903 
2904 		if ((error = iwn_auth(sc, vap)) != 0) {
2905 			device_printf(sc->sc_dev,
2906 			    "%s: could not move to auth state\n", __func__);
2907 		}
2908 		break;
2909 
2910 	case IEEE80211_S_RUN:
2911 		/*
2912 		 * RUN -> RUN transition; Just restart the timers.
2913 		 */
2914 		if (vap->iv_state == IEEE80211_S_RUN) {
2915 			sc->calib_cnt = 0;
2916 			break;
2917 		}
2918 
2919 		/*
2920 		 * !RUN -> RUN requires setting the association id
2921 		 * which is done with a firmware cmd.  We also defer
2922 		 * starting the timers until that work is done.
2923 		 */
2924 		if ((error = iwn_run(sc, vap)) != 0) {
2925 			device_printf(sc->sc_dev,
2926 			    "%s: could not move to run state\n", __func__);
2927 		}
2928 		break;
2929 
2930 	case IEEE80211_S_INIT:
2931 		sc->calib.state = IWN_CALIB_STATE_INIT;
2932 		break;
2933 
2934 	default:
2935 		break;
2936 	}
2937 	IWN_UNLOCK(sc);
2938 	IEEE80211_LOCK(ic);
2939 	if (error != 0){
2940 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2941 		return error;
2942 	}
2943 
2944 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2945 
2946 	return ivp->iv_newstate(vap, nstate, arg);
2947 }
2948 
2949 static void
2950 iwn_calib_timeout(void *arg)
2951 {
2952 	struct iwn_softc *sc = arg;
2953 
2954 	IWN_LOCK_ASSERT(sc);
2955 
2956 	/* Force automatic TX power calibration every 60 secs. */
2957 	if (++sc->calib_cnt >= 120) {
2958 		uint32_t flags = 0;
2959 
2960 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2961 		    "sending request for statistics");
2962 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2963 		    sizeof flags, 1);
2964 		sc->calib_cnt = 0;
2965 	}
2966 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2967 	    sc);
2968 }
2969 
2970 /*
2971  * Process an RX_PHY firmware notification.  This is usually immediately
2972  * followed by an MPDU_RX_DONE notification.
2973  */
2974 static void
2975 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2976     struct iwn_rx_data *data)
2977 {
2978 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2979 
2980 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2981 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2982 
2983 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2984 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2985 	sc->last_rx_valid = 1;
2986 }
2987 
2988 /*
2989  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2990  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2991  */
2992 static void
2993 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2994     struct iwn_rx_data *data)
2995 {
2996 	struct iwn_ops *ops = &sc->ops;
2997 	struct ifnet *ifp = sc->sc_ifp;
2998 	struct ieee80211com *ic = ifp->if_l2com;
2999 	struct iwn_rx_ring *ring = &sc->rxq;
3000 	struct ieee80211_frame *wh;
3001 	struct ieee80211_node *ni;
3002 	struct mbuf *m, *m1;
3003 	struct iwn_rx_stat *stat;
3004 	caddr_t head;
3005 	bus_addr_t paddr;
3006 	uint32_t flags;
3007 	int error, len, rssi, nf;
3008 
3009 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3010 
3011 	if (desc->type == IWN_MPDU_RX_DONE) {
3012 		/* Check for prior RX_PHY notification. */
3013 		if (!sc->last_rx_valid) {
3014 			DPRINTF(sc, IWN_DEBUG_ANY,
3015 			    "%s: missing RX_PHY\n", __func__);
3016 			return;
3017 		}
3018 		stat = &sc->last_rx_stat;
3019 	} else
3020 		stat = (struct iwn_rx_stat *)(desc + 1);
3021 
3022 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3023 
3024 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
3025 		device_printf(sc->sc_dev,
3026 		    "%s: invalid RX statistic header, len %d\n", __func__,
3027 		    stat->cfg_phy_len);
3028 		return;
3029 	}
3030 	if (desc->type == IWN_MPDU_RX_DONE) {
3031 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
3032 		head = (caddr_t)(mpdu + 1);
3033 		len = le16toh(mpdu->len);
3034 	} else {
3035 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
3036 		len = le16toh(stat->len);
3037 	}
3038 
3039 	flags = le32toh(*(uint32_t *)(head + len));
3040 
3041 	/* Discard frames with a bad FCS early. */
3042 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
3043 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
3044 		    __func__, flags);
3045 #if defined(__DragonFly__)
3046 		++ifp->if_ierrors;
3047 #else
3048 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3049 #endif
3050 		return;
3051 	}
3052 	/* Discard frames that are too short. */
3053 	if (len < sizeof (*wh)) {
3054 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
3055 		    __func__, len);
3056 #if defined(__DragonFly__)
3057 		++ifp->if_ierrors;
3058 #else
3059 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3060 #endif
3061 		return;
3062 	}
3063 
3064 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
3065 	if (m1 == NULL) {
3066 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
3067 		    __func__);
3068 #if defined(__DragonFly__)
3069 		++ifp->if_ierrors;
3070 #else
3071 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3072 #endif
3073 		return;
3074 	}
3075 	bus_dmamap_unload(ring->data_dmat, data->map);
3076 
3077 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
3078 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3079 	if (error != 0 && error != EFBIG) {
3080 		device_printf(sc->sc_dev,
3081 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
3082 		m_freem(m1);
3083 
3084 		/* Try to reload the old mbuf. */
3085 		error = bus_dmamap_load(ring->data_dmat, data->map,
3086 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
3087 		    &paddr, BUS_DMA_NOWAIT);
3088 		if (error != 0 && error != EFBIG) {
3089 			panic("%s: could not load old RX mbuf", __func__);
3090 		}
3091 		/* Physical address may have changed. */
3092 		ring->desc[ring->cur] = htole32(paddr >> 8);
3093 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
3094 		    BUS_DMASYNC_PREWRITE);
3095 #if defined(__DragonFly__)
3096 		++ifp->if_ierrors;
3097 #else
3098 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
3099 #endif
3100 		return;
3101 	}
3102 
3103 	m = data->m;
3104 	data->m = m1;
3105 	/* Update RX descriptor. */
3106 	ring->desc[ring->cur] = htole32(paddr >> 8);
3107 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3108 	    BUS_DMASYNC_PREWRITE);
3109 
3110 	/* Finalize mbuf. */
3111 	m->m_pkthdr.rcvif = ifp;
3112 	m->m_data = head;
3113 	m->m_pkthdr.len = m->m_len = len;
3114 
3115 	/* Grab a reference to the source node. */
3116 	wh = mtod(m, struct ieee80211_frame *);
3117 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
3118 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
3119 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
3120 
3121 	rssi = ops->get_rssi(sc, stat);
3122 
3123 	if (ieee80211_radiotap_active(ic)) {
3124 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
3125 
3126 		tap->wr_flags = 0;
3127 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
3128 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3129 		tap->wr_dbm_antsignal = (int8_t)rssi;
3130 		tap->wr_dbm_antnoise = (int8_t)nf;
3131 		tap->wr_tsft = stat->tstamp;
3132 		switch (stat->rate) {
3133 		/* CCK rates. */
3134 		case  10: tap->wr_rate =   2; break;
3135 		case  20: tap->wr_rate =   4; break;
3136 		case  55: tap->wr_rate =  11; break;
3137 		case 110: tap->wr_rate =  22; break;
3138 		/* OFDM rates. */
3139 		case 0xd: tap->wr_rate =  12; break;
3140 		case 0xf: tap->wr_rate =  18; break;
3141 		case 0x5: tap->wr_rate =  24; break;
3142 		case 0x7: tap->wr_rate =  36; break;
3143 		case 0x9: tap->wr_rate =  48; break;
3144 		case 0xb: tap->wr_rate =  72; break;
3145 		case 0x1: tap->wr_rate =  96; break;
3146 		case 0x3: tap->wr_rate = 108; break;
3147 		/* Unknown rate: should not happen. */
3148 		default:  tap->wr_rate =   0;
3149 		}
3150 	}
3151 
3152 	IWN_UNLOCK(sc);
3153 
3154 	/* Send the frame to the 802.11 layer. */
3155 	if (ni != NULL) {
3156 		if (ni->ni_flags & IEEE80211_NODE_HT)
3157 			m->m_flags |= M_AMPDU;
3158 		(void)ieee80211_input(ni, m, rssi - nf, nf);
3159 		/* Node is no longer needed. */
3160 		ieee80211_free_node(ni);
3161 	} else
3162 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
3163 
3164 	IWN_LOCK(sc);
3165 
3166 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3167 
3168 }
3169 
3170 /* Process an incoming Compressed BlockAck. */
3171 static void
3172 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3173     struct iwn_rx_data *data)
3174 {
3175 	struct iwn_ops *ops = &sc->ops;
3176 	struct ifnet *ifp = sc->sc_ifp;
3177 	struct iwn_node *wn;
3178 	struct ieee80211_node *ni;
3179 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
3180 	struct iwn_tx_ring *txq;
3181 	struct iwn_tx_data *txdata;
3182 	struct ieee80211_tx_ampdu *tap;
3183 	struct mbuf *m;
3184 	uint64_t bitmap;
3185 	uint16_t ssn;
3186 	uint8_t tid;
3187 	int ackfailcnt = 0, i, lastidx, qid, *res, shift;
3188 	int tx_ok = 0, tx_err = 0;
3189 
3190 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s begin\n", __func__);
3191 
3192 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3193 
3194 	qid = le16toh(ba->qid);
3195 	txq = &sc->txq[ba->qid];
3196 	tap = sc->qid2tap[ba->qid];
3197 	tid = tap->txa_tid;
3198 	wn = (void *)tap->txa_ni;
3199 
3200 	res = NULL;
3201 	ssn = 0;
3202 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3203 		res = tap->txa_private;
3204 		ssn = tap->txa_start & 0xfff;
3205 	}
3206 
3207 	for (lastidx = le16toh(ba->ssn) & 0xff; txq->read != lastidx;) {
3208 		txdata = &txq->data[txq->read];
3209 
3210 		/* Unmap and free mbuf. */
3211 		bus_dmamap_sync(txq->data_dmat, txdata->map,
3212 		    BUS_DMASYNC_POSTWRITE);
3213 		bus_dmamap_unload(txq->data_dmat, txdata->map);
3214 		m = txdata->m, txdata->m = NULL;
3215 		ni = txdata->ni, txdata->ni = NULL;
3216 
3217 		KASSERT(ni != NULL, ("no node"));
3218 		KASSERT(m != NULL, ("no mbuf"));
3219 
3220 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m);
3221 		ieee80211_tx_complete(ni, m, 1);
3222 
3223 		txq->queued--;
3224 		txq->read = (txq->read + 1) % IWN_TX_RING_COUNT;
3225 	}
3226 
3227 	if (txq->queued == 0 && res != NULL) {
3228 		iwn_nic_lock(sc);
3229 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3230 		iwn_nic_unlock(sc);
3231 		sc->qid2tap[qid] = NULL;
3232 		kfree(res, M_DEVBUF);
3233 		return;
3234 	}
3235 
3236 	if (wn->agg[tid].bitmap == 0)
3237 		return;
3238 
3239 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
3240 	if (shift < 0)
3241 		shift += 0x100;
3242 
3243 	if (wn->agg[tid].nframes > (64 - shift))
3244 		return;
3245 
3246 	/*
3247 	 * Walk the bitmap and calculate how many successful and failed
3248 	 * attempts are made.
3249 	 *
3250 	 * Yes, the rate control code doesn't know these are A-MPDU
3251 	 * subframes and that it's okay to fail some of these.
3252 	 */
3253 	ni = tap->txa_ni;
3254 	bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap;
3255 	for (i = 0; bitmap; i++) {
3256 		if ((bitmap & 1) == 0) {
3257 #if defined(__DragonFly__)
3258 			++ifp->if_oerrors;
3259 #else
3260 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3261 #endif
3262 			tx_err ++;
3263 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3264 			    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
3265 		} else {
3266 #if defined(__DragonFly__)
3267 			++ifp->if_opackets;
3268 #else
3269 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3270 #endif
3271 			tx_ok ++;
3272 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3273 			    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
3274 		}
3275 		bitmap >>= 1;
3276 	}
3277 
3278 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3279 	    "->%s: end; %d ok; %d err\n",__func__, tx_ok, tx_err);
3280 
3281 }
3282 
3283 /*
3284  * Process a CALIBRATION_RESULT notification sent by the initialization
3285  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
3286  */
3287 static void
3288 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3289     struct iwn_rx_data *data)
3290 {
3291 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
3292 	int len, idx = -1;
3293 
3294 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3295 
3296 	/* Runtime firmware should not send such a notification. */
3297 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE){
3298 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received after clib done\n",
3299 	    __func__);
3300 		return;
3301 	}
3302 	len = (le32toh(desc->len) & 0x3fff) - 4;
3303 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3304 
3305 	switch (calib->code) {
3306 	case IWN5000_PHY_CALIB_DC:
3307 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC)
3308 			idx = 0;
3309 		break;
3310 	case IWN5000_PHY_CALIB_LO:
3311 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO)
3312 			idx = 1;
3313 		break;
3314 	case IWN5000_PHY_CALIB_TX_IQ:
3315 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ)
3316 			idx = 2;
3317 		break;
3318 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
3319 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC)
3320 			idx = 3;
3321 		break;
3322 	case IWN5000_PHY_CALIB_BASE_BAND:
3323 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND)
3324 			idx = 4;
3325 		break;
3326 	}
3327 	if (idx == -1)	/* Ignore other results. */
3328 		return;
3329 
3330 	/* Save calibration result. */
3331 	if (sc->calibcmd[idx].buf != NULL)
3332 		kfree(sc->calibcmd[idx].buf, M_DEVBUF);
3333 	sc->calibcmd[idx].buf = kmalloc(len, M_DEVBUF, M_INTWAIT);
3334 	if (sc->calibcmd[idx].buf == NULL) {
3335 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3336 		    "not enough memory for calibration result %d\n",
3337 		    calib->code);
3338 		return;
3339 	}
3340 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3341 	    "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len);
3342 	sc->calibcmd[idx].len = len;
3343 	memcpy(sc->calibcmd[idx].buf, calib, len);
3344 }
3345 
3346 static void
3347 iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib,
3348     struct iwn_stats *stats, int len)
3349 {
3350 	struct iwn_stats_bt *stats_bt;
3351 	struct iwn_stats *lstats;
3352 
3353 	/*
3354 	 * First - check whether the length is the bluetooth or normal.
3355 	 *
3356 	 * If it's normal - just copy it and bump out.
3357 	 * Otherwise we have to convert things.
3358 	 */
3359 
3360 	if (len == sizeof(struct iwn_stats) + 4) {
3361 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3362 		sc->last_stat_valid = 1;
3363 		return;
3364 	}
3365 
3366 	/*
3367 	 * If it's not the bluetooth size - log, then just copy.
3368 	 */
3369 	if (len != sizeof(struct iwn_stats_bt) + 4) {
3370 		DPRINTF(sc, IWN_DEBUG_STATS,
3371 		    "%s: size of rx statistics (%d) not an expected size!\n",
3372 		    __func__,
3373 		    len);
3374 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3375 		sc->last_stat_valid = 1;
3376 		return;
3377 	}
3378 
3379 	/*
3380 	 * Ok. Time to copy.
3381 	 */
3382 	stats_bt = (struct iwn_stats_bt *) stats;
3383 	lstats = &sc->last_stat;
3384 
3385 	/* flags */
3386 	lstats->flags = stats_bt->flags;
3387 	/* rx_bt */
3388 	memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm,
3389 	    sizeof(struct iwn_rx_phy_stats));
3390 	memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck,
3391 	    sizeof(struct iwn_rx_phy_stats));
3392 	memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common,
3393 	    sizeof(struct iwn_rx_general_stats));
3394 	memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht,
3395 	    sizeof(struct iwn_rx_ht_phy_stats));
3396 	/* tx */
3397 	memcpy(&lstats->tx, &stats_bt->tx,
3398 	    sizeof(struct iwn_tx_stats));
3399 	/* general */
3400 	memcpy(&lstats->general, &stats_bt->general,
3401 	    sizeof(struct iwn_general_stats));
3402 
3403 	/* XXX TODO: Squirrel away the extra bluetooth stats somewhere */
3404 	sc->last_stat_valid = 1;
3405 }
3406 
3407 /*
3408  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
3409  * The latter is sent by the firmware after each received beacon.
3410  */
3411 static void
3412 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3413     struct iwn_rx_data *data)
3414 {
3415 	struct iwn_ops *ops = &sc->ops;
3416 	struct ifnet *ifp = sc->sc_ifp;
3417 	struct ieee80211com *ic = ifp->if_l2com;
3418 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3419 	struct iwn_calib_state *calib = &sc->calib;
3420 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
3421 	struct iwn_stats *lstats;
3422 	int temp;
3423 
3424 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3425 
3426 	/* Ignore statistics received during a scan. */
3427 	if (vap->iv_state != IEEE80211_S_RUN ||
3428 	    (ic->ic_flags & IEEE80211_F_SCAN)){
3429 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n",
3430 	    __func__);
3431 		return;
3432 	}
3433 
3434 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3435 
3436 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS,
3437 	    "%s: received statistics, cmd %d, len %d\n",
3438 	    __func__, desc->type, le16toh(desc->len));
3439 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
3440 
3441 	/*
3442 	 * Collect/track general statistics for reporting.
3443 	 *
3444 	 * This takes care of ensuring that the bluetooth sized message
3445 	 * will be correctly converted to the legacy sized message.
3446 	 */
3447 	iwn_stats_update(sc, calib, stats, le16toh(desc->len));
3448 
3449 	/*
3450 	 * And now, let's take a reference of it to use!
3451 	 */
3452 	lstats = &sc->last_stat;
3453 
3454 	/* Test if temperature has changed. */
3455 	if (lstats->general.temp != sc->rawtemp) {
3456 		/* Convert "raw" temperature to degC. */
3457 		sc->rawtemp = stats->general.temp;
3458 		temp = ops->get_temperature(sc);
3459 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
3460 		    __func__, temp);
3461 
3462 		/* Update TX power if need be (4965AGN only). */
3463 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3464 			iwn4965_power_calibration(sc, temp);
3465 	}
3466 
3467 	if (desc->type != IWN_BEACON_STATISTICS)
3468 		return;	/* Reply to a statistics request. */
3469 
3470 	sc->noise = iwn_get_noise(&lstats->rx.general);
3471 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
3472 
3473 	/* Test that RSSI and noise are present in stats report. */
3474 	if (le32toh(lstats->rx.general.flags) != 1) {
3475 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
3476 		    "received statistics without RSSI");
3477 		return;
3478 	}
3479 
3480 	if (calib->state == IWN_CALIB_STATE_ASSOC)
3481 		iwn_collect_noise(sc, &lstats->rx.general);
3482 	else if (calib->state == IWN_CALIB_STATE_RUN) {
3483 		iwn_tune_sensitivity(sc, &lstats->rx);
3484 		/*
3485 		 * XXX TODO: Only run the RX recovery if we're associated!
3486 		 */
3487 		iwn_check_rx_recovery(sc, lstats);
3488 		iwn_save_stats_counters(sc, lstats);
3489 	}
3490 
3491 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3492 }
3493 
3494 /*
3495  * Save the relevant statistic counters for the next calibration
3496  * pass.
3497  */
3498 static void
3499 iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs)
3500 {
3501 	struct iwn_calib_state *calib = &sc->calib;
3502 
3503 	/* Save counters values for next call. */
3504 	calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp);
3505 	calib->fa_cck = le32toh(rs->rx.cck.fa);
3506 	calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp);
3507 	calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp);
3508 	calib->fa_ofdm = le32toh(rs->rx.ofdm.fa);
3509 
3510 	/* Last time we received these tick values */
3511 	sc->last_calib_ticks = ticks;
3512 }
3513 
3514 /*
3515  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
3516  * and 5000 adapters have different incompatible TX status formats.
3517  */
3518 static void
3519 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3520     struct iwn_rx_data *data)
3521 {
3522 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
3523 	struct iwn_tx_ring *ring;
3524 	int qid;
3525 
3526 	qid = desc->qid & 0xf;
3527 	ring = &sc->txq[qid];
3528 
3529 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3530 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3531 	    __func__, desc->qid, desc->idx,
3532 	    stat->rtsfailcnt,
3533 	    stat->ackfailcnt,
3534 	    stat->btkillcnt,
3535 	    stat->rate, le16toh(stat->duration),
3536 	    le32toh(stat->status));
3537 
3538 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3539 	if (qid >= sc->firstaggqueue) {
3540 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3541 		    stat->ackfailcnt, &stat->status);
3542 	} else {
3543 		iwn_tx_done(sc, desc, stat->ackfailcnt,
3544 		    le32toh(stat->status) & 0xff);
3545 	}
3546 }
3547 
3548 static void
3549 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3550     struct iwn_rx_data *data)
3551 {
3552 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
3553 	struct iwn_tx_ring *ring;
3554 	int qid;
3555 
3556 	qid = desc->qid & 0xf;
3557 	ring = &sc->txq[qid];
3558 
3559 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3560 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3561 	    __func__, desc->qid, desc->idx,
3562 	    stat->rtsfailcnt,
3563 	    stat->ackfailcnt,
3564 	    stat->btkillcnt,
3565 	    stat->rate, le16toh(stat->duration),
3566 	    le32toh(stat->status));
3567 
3568 #ifdef notyet
3569 	/* Reset TX scheduler slot. */
3570 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
3571 #endif
3572 
3573 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3574 	if (qid >= sc->firstaggqueue) {
3575 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3576 		    stat->ackfailcnt, &stat->status);
3577 	} else {
3578 		iwn_tx_done(sc, desc, stat->ackfailcnt,
3579 		    le16toh(stat->status) & 0xff);
3580 	}
3581 }
3582 
3583 /*
3584  * Adapter-independent backend for TX_DONE firmware notifications.
3585  */
3586 static void
3587 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
3588     uint8_t status)
3589 {
3590 	struct ifnet *ifp = sc->sc_ifp;
3591 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
3592 	struct iwn_tx_data *data = &ring->data[desc->idx];
3593 	struct mbuf *m;
3594 	struct ieee80211_node *ni;
3595 	struct ieee80211vap *vap;
3596 
3597 	KASSERT(data->ni != NULL, ("no node"));
3598 
3599 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3600 
3601 	/* Unmap and free mbuf. */
3602 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
3603 	bus_dmamap_unload(ring->data_dmat, data->map);
3604 	m = data->m, data->m = NULL;
3605 	ni = data->ni, data->ni = NULL;
3606 	vap = ni->ni_vap;
3607 
3608 	/*
3609 	 * Update rate control statistics for the node.
3610 	 */
3611 	if (status & IWN_TX_FAIL) {
3612 #if defined(__DragonFly__)
3613 		++ifp->if_oerrors;
3614 #else
3615 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3616 #endif
3617 		ieee80211_ratectl_tx_complete(vap, ni,
3618 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
3619 	} else {
3620 #if defined(__DragonFly__)
3621 		++ifp->if_opackets;
3622 #else
3623 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3624 #endif
3625 		ieee80211_ratectl_tx_complete(vap, ni,
3626 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
3627 	}
3628 
3629 	/*
3630 	 * Channels marked for "radar" require traffic to be received
3631 	 * to unlock before we can transmit.  Until traffic is seen
3632 	 * any attempt to transmit is returned immediately with status
3633 	 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
3634 	 * happen on first authenticate after scanning.  To workaround
3635 	 * this we ignore a failure of this sort in AUTH state so the
3636 	 * 802.11 layer will fall back to using a timeout to wait for
3637 	 * the AUTH reply.  This allows the firmware time to see
3638 	 * traffic so a subsequent retry of AUTH succeeds.  It's
3639 	 * unclear why the firmware does not maintain state for
3640 	 * channels recently visited as this would allow immediate
3641 	 * use of the channel after a scan (where we see traffic).
3642 	 */
3643 	if (status == IWN_TX_FAIL_TX_LOCKED &&
3644 	    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
3645 		ieee80211_tx_complete(ni, m, 0);
3646 	else
3647 		ieee80211_tx_complete(ni, m,
3648 		    (status & IWN_TX_FAIL) != 0);
3649 
3650 	sc->sc_tx_timer = 0;
3651 	if (--ring->queued < IWN_TX_RING_LOMARK) {
3652 		sc->qfullmsk &= ~(1 << ring->qid);
3653 #if defined(__DragonFly__)
3654 		if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) {
3655 			ifq_clr_oactive(&ifp->if_snd);
3656 			iwn_start_locked(ifp);
3657 		}
3658 #else
3659 		if (sc->qfullmsk == 0 &&
3660 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
3661 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3662 			iwn_start_locked(ifp);
3663 		}
3664 #endif
3665 	}
3666 
3667 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3668 
3669 }
3670 
3671 /*
3672  * Process a "command done" firmware notification.  This is where we wakeup
3673  * processes waiting for a synchronous command completion.
3674  */
3675 static void
3676 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3677 {
3678 	struct iwn_tx_ring *ring;
3679 	struct iwn_tx_data *data;
3680 	int cmd_queue_num;
3681 
3682 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
3683 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
3684 	else
3685 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
3686 
3687 	if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num)
3688 		return;	/* Not a command ack. */
3689 
3690 	ring = &sc->txq[cmd_queue_num];
3691 	data = &ring->data[desc->idx];
3692 
3693 	/* If the command was mapped in an mbuf, free it. */
3694 	if (data->m != NULL) {
3695 		bus_dmamap_sync(ring->data_dmat, data->map,
3696 		    BUS_DMASYNC_POSTWRITE);
3697 		bus_dmamap_unload(ring->data_dmat, data->map);
3698 		m_freem(data->m);
3699 		data->m = NULL;
3700 	}
3701 	wakeup(&ring->desc[desc->idx]);
3702 }
3703 
3704 static void
3705 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes,
3706     int ackfailcnt, void *stat)
3707 {
3708 	struct iwn_ops *ops = &sc->ops;
3709 	struct ifnet *ifp = sc->sc_ifp;
3710 	struct iwn_tx_ring *ring = &sc->txq[qid];
3711 	struct iwn_tx_data *data;
3712 	struct mbuf *m;
3713 	struct iwn_node *wn;
3714 	struct ieee80211_node *ni;
3715 	struct ieee80211_tx_ampdu *tap;
3716 	uint64_t bitmap;
3717 	uint32_t *status = stat;
3718 	uint16_t *aggstatus = stat;
3719 	uint16_t ssn;
3720 	uint8_t tid;
3721 	int bit, i, lastidx, *res, seqno, shift, start;
3722 
3723 	/* XXX TODO: status is le16 field! Grr */
3724 
3725 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3726 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: nframes=%d, status=0x%08x\n",
3727 	    __func__,
3728 	    nframes,
3729 	    *status);
3730 
3731 	tap = sc->qid2tap[qid];
3732 	tid = tap->txa_tid;
3733 	wn = (void *)tap->txa_ni;
3734 	ni = tap->txa_ni;
3735 
3736 	/*
3737 	 * XXX TODO: ACK and RTS failures would be nice here!
3738 	 */
3739 
3740 	/*
3741 	 * A-MPDU single frame status - if we failed to transmit it
3742 	 * in A-MPDU, then it may be a permanent failure.
3743 	 *
3744 	 * XXX TODO: check what the Linux iwlwifi driver does here;
3745 	 * there's some permanent and temporary failures that may be
3746 	 * handled differently.
3747 	 */
3748 	if (nframes == 1) {
3749 		if ((*status & 0xff) != 1 && (*status & 0xff) != 2) {
3750 #ifdef	NOT_YET
3751 			kprintf("ieee80211_send_bar()\n");
3752 #endif
3753 			/*
3754 			 * If we completely fail a transmit, make sure a
3755 			 * notification is pushed up to the rate control
3756 			 * layer.
3757 			 */
3758 			ieee80211_ratectl_tx_complete(ni->ni_vap,
3759 			    ni,
3760 			    IEEE80211_RATECTL_TX_FAILURE,
3761 			    &ackfailcnt,
3762 			    NULL);
3763 		} else {
3764 			/*
3765 			 * If nframes=1, then we won't be getting a BA for
3766 			 * this frame.  Ensure that we correctly update the
3767 			 * rate control code with how many retries were
3768 			 * needed to send it.
3769 			 */
3770 			ieee80211_ratectl_tx_complete(ni->ni_vap,
3771 			    ni,
3772 			    IEEE80211_RATECTL_TX_SUCCESS,
3773 			    &ackfailcnt,
3774 			    NULL);
3775 		}
3776 	}
3777 
3778 	bitmap = 0;
3779 	start = idx;
3780 	for (i = 0; i < nframes; i++) {
3781 		if (le16toh(aggstatus[i * 2]) & 0xc)
3782 			continue;
3783 
3784 		idx = le16toh(aggstatus[2*i + 1]) & 0xff;
3785 		bit = idx - start;
3786 		shift = 0;
3787 		if (bit >= 64) {
3788 			shift = 0x100 - idx + start;
3789 			bit = 0;
3790 			start = idx;
3791 		} else if (bit <= -64)
3792 			bit = 0x100 - start + idx;
3793 		else if (bit < 0) {
3794 			shift = start - idx;
3795 			start = idx;
3796 			bit = 0;
3797 		}
3798 		bitmap = bitmap << shift;
3799 		bitmap |= 1ULL << bit;
3800 	}
3801 	tap = sc->qid2tap[qid];
3802 	tid = tap->txa_tid;
3803 	wn = (void *)tap->txa_ni;
3804 	wn->agg[tid].bitmap = bitmap;
3805 	wn->agg[tid].startidx = start;
3806 	wn->agg[tid].nframes = nframes;
3807 
3808 	res = NULL;
3809 	ssn = 0;
3810 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3811 		res = tap->txa_private;
3812 		ssn = tap->txa_start & 0xfff;
3813 	}
3814 
3815 	/* This is going nframes DWORDS into the descriptor? */
3816 	seqno = le32toh(*(status + nframes)) & 0xfff;
3817 	for (lastidx = (seqno & 0xff); ring->read != lastidx;) {
3818 		data = &ring->data[ring->read];
3819 
3820 		/* Unmap and free mbuf. */
3821 		bus_dmamap_sync(ring->data_dmat, data->map,
3822 		    BUS_DMASYNC_POSTWRITE);
3823 		bus_dmamap_unload(ring->data_dmat, data->map);
3824 		m = data->m, data->m = NULL;
3825 		ni = data->ni, data->ni = NULL;
3826 
3827 		KASSERT(ni != NULL, ("no node"));
3828 		KASSERT(m != NULL, ("no mbuf"));
3829 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m);
3830 		ieee80211_tx_complete(ni, m, 1);
3831 
3832 		ring->queued--;
3833 		ring->read = (ring->read + 1) % IWN_TX_RING_COUNT;
3834 	}
3835 
3836 	if (ring->queued == 0 && res != NULL) {
3837 		iwn_nic_lock(sc);
3838 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3839 		iwn_nic_unlock(sc);
3840 		sc->qid2tap[qid] = NULL;
3841 		kfree(res, M_DEVBUF);
3842 		return;
3843 	}
3844 
3845 	sc->sc_tx_timer = 0;
3846 	if (ring->queued < IWN_TX_RING_LOMARK) {
3847 		sc->qfullmsk &= ~(1 << ring->qid);
3848 #if defined(__DragonFly__)
3849 		if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) {
3850 			ifq_clr_oactive(&ifp->if_snd);
3851 			iwn_start_locked(ifp);
3852 		}
3853 #else
3854 		if (sc->qfullmsk == 0 &&
3855 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
3856 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3857 			iwn_start_locked(ifp);
3858 		}
3859 #endif
3860 	}
3861 
3862 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3863 
3864 }
3865 
3866 /*
3867  * Process an INT_FH_RX or INT_SW_RX interrupt.
3868  */
3869 static void
3870 iwn_notif_intr(struct iwn_softc *sc)
3871 {
3872 	struct iwn_ops *ops = &sc->ops;
3873 	struct ifnet *ifp = sc->sc_ifp;
3874 	struct ieee80211com *ic = ifp->if_l2com;
3875 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3876 	uint16_t hw;
3877 
3878 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
3879 	    BUS_DMASYNC_POSTREAD);
3880 
3881 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
3882 	while (sc->rxq.cur != hw) {
3883 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
3884 		struct iwn_rx_desc *desc;
3885 
3886 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3887 		    BUS_DMASYNC_POSTREAD);
3888 		desc = mtod(data->m, struct iwn_rx_desc *);
3889 
3890 		DPRINTF(sc, IWN_DEBUG_RECV,
3891 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
3892 		    __func__, sc->rxq.cur, desc->qid & 0xf, desc->idx, desc->flags,
3893 		    desc->type, iwn_intr_str(desc->type),
3894 		    le16toh(desc->len));
3895 
3896 		if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF))	/* Reply to a command. */
3897 			iwn_cmd_done(sc, desc);
3898 
3899 		switch (desc->type) {
3900 		case IWN_RX_PHY:
3901 			iwn_rx_phy(sc, desc, data);
3902 			break;
3903 
3904 		case IWN_RX_DONE:		/* 4965AGN only. */
3905 		case IWN_MPDU_RX_DONE:
3906 			/* An 802.11 frame has been received. */
3907 			iwn_rx_done(sc, desc, data);
3908 			break;
3909 
3910 		case IWN_RX_COMPRESSED_BA:
3911 			/* A Compressed BlockAck has been received. */
3912 			iwn_rx_compressed_ba(sc, desc, data);
3913 			break;
3914 
3915 		case IWN_TX_DONE:
3916 			/* An 802.11 frame has been transmitted. */
3917 			ops->tx_done(sc, desc, data);
3918 			break;
3919 
3920 		case IWN_RX_STATISTICS:
3921 		case IWN_BEACON_STATISTICS:
3922 			iwn_rx_statistics(sc, desc, data);
3923 			break;
3924 
3925 		case IWN_BEACON_MISSED:
3926 		{
3927 			struct iwn_beacon_missed *miss =
3928 			    (struct iwn_beacon_missed *)(desc + 1);
3929 			int misses;
3930 
3931 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3932 			    BUS_DMASYNC_POSTREAD);
3933 			misses = le32toh(miss->consecutive);
3934 
3935 			DPRINTF(sc, IWN_DEBUG_STATE,
3936 			    "%s: beacons missed %d/%d\n", __func__,
3937 			    misses, le32toh(miss->total));
3938 			/*
3939 			 * If more than 5 consecutive beacons are missed,
3940 			 * reinitialize the sensitivity state machine.
3941 			 */
3942 			if (vap->iv_state == IEEE80211_S_RUN &&
3943 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3944 				if (misses > 5)
3945 					(void)iwn_init_sensitivity(sc);
3946 				if (misses >= vap->iv_bmissthreshold) {
3947 					IWN_UNLOCK(sc);
3948 					ieee80211_beacon_miss(ic);
3949 					IWN_LOCK(sc);
3950 				}
3951 			}
3952 			break;
3953 		}
3954 		case IWN_UC_READY:
3955 		{
3956 			struct iwn_ucode_info *uc =
3957 			    (struct iwn_ucode_info *)(desc + 1);
3958 
3959 			/* The microcontroller is ready. */
3960 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3961 			    BUS_DMASYNC_POSTREAD);
3962 			DPRINTF(sc, IWN_DEBUG_RESET,
3963 			    "microcode alive notification version=%d.%d "
3964 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
3965 			    uc->subtype, le32toh(uc->valid));
3966 
3967 			if (le32toh(uc->valid) != 1) {
3968 				device_printf(sc->sc_dev,
3969 				    "microcontroller initialization failed");
3970 				break;
3971 			}
3972 			if (uc->subtype == IWN_UCODE_INIT) {
3973 				/* Save microcontroller report. */
3974 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
3975 			}
3976 			/* Save the address of the error log in SRAM. */
3977 			sc->errptr = le32toh(uc->errptr);
3978 			break;
3979 		}
3980 		case IWN_STATE_CHANGED:
3981 		{
3982 			/*
3983 			 * State change allows hardware switch change to be
3984 			 * noted. However, we handle this in iwn_intr as we
3985 			 * get both the enable/disble intr.
3986 			 */
3987 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3988 			    BUS_DMASYNC_POSTREAD);
3989 #ifdef	IWN_DEBUG
3990 			uint32_t *status = (uint32_t *)(desc + 1);
3991 			DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE,
3992 			    "state changed to %x\n",
3993 			    le32toh(*status));
3994 #endif
3995 			break;
3996 		}
3997 		case IWN_START_SCAN:
3998 		{
3999 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
4000 			    BUS_DMASYNC_POSTREAD);
4001 #ifdef	IWN_DEBUG
4002 			struct iwn_start_scan *scan =
4003 			    (struct iwn_start_scan *)(desc + 1);
4004 			DPRINTF(sc, IWN_DEBUG_ANY,
4005 			    "%s: scanning channel %d status %x\n",
4006 			    __func__, scan->chan, le32toh(scan->status));
4007 #endif
4008 			break;
4009 		}
4010 		case IWN_STOP_SCAN:
4011 		{
4012 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
4013 			    BUS_DMASYNC_POSTREAD);
4014 #ifdef	IWN_DEBUG
4015 			struct iwn_stop_scan *scan =
4016 			    (struct iwn_stop_scan *)(desc + 1);
4017 			DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN,
4018 			    "scan finished nchan=%d status=%d chan=%d\n",
4019 			    scan->nchan, scan->status, scan->chan);
4020 #endif
4021 			sc->sc_is_scanning = 0;
4022 			IWN_UNLOCK(sc);
4023 			ieee80211_scan_next(vap);
4024 			IWN_LOCK(sc);
4025 			break;
4026 		}
4027 		case IWN5000_CALIBRATION_RESULT:
4028 			iwn5000_rx_calib_results(sc, desc, data);
4029 			break;
4030 
4031 		case IWN5000_CALIBRATION_DONE:
4032 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
4033 			wakeup(sc);
4034 			break;
4035 		}
4036 
4037 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
4038 	}
4039 
4040 	/* Tell the firmware what we have processed. */
4041 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
4042 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
4043 }
4044 
4045 /*
4046  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
4047  * from power-down sleep mode.
4048  */
4049 static void
4050 iwn_wakeup_intr(struct iwn_softc *sc)
4051 {
4052 	int qid;
4053 
4054 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
4055 	    __func__);
4056 
4057 	/* Wakeup RX and TX rings. */
4058 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
4059 	for (qid = 0; qid < sc->ntxqs; qid++) {
4060 		struct iwn_tx_ring *ring = &sc->txq[qid];
4061 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
4062 	}
4063 }
4064 
4065 static void
4066 iwn_rftoggle_intr(struct iwn_softc *sc)
4067 {
4068 	struct ifnet *ifp = sc->sc_ifp;
4069 	struct ieee80211com *ic = ifp->if_l2com;
4070 	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
4071 
4072 	IWN_LOCK_ASSERT(sc);
4073 
4074 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
4075 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
4076 	if (tmp & IWN_GP_CNTRL_RFKILL)
4077 		ieee80211_runtask(ic, &sc->sc_radioon_task);
4078 	else
4079 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
4080 }
4081 
4082 /*
4083  * Dump the error log of the firmware when a firmware panic occurs.  Although
4084  * we can't debug the firmware because it is neither open source nor free, it
4085  * can help us to identify certain classes of problems.
4086  */
4087 static void
4088 iwn_fatal_intr(struct iwn_softc *sc)
4089 {
4090 	struct iwn_fw_dump dump;
4091 	int i;
4092 
4093 	IWN_LOCK_ASSERT(sc);
4094 
4095 	/* Force a complete recalibration on next init. */
4096 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
4097 
4098 	/* Check that the error log address is valid. */
4099 	if (sc->errptr < IWN_FW_DATA_BASE ||
4100 	    sc->errptr + sizeof (dump) >
4101 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
4102 		kprintf("%s: bad firmware error log address 0x%08x\n", __func__,
4103 		    sc->errptr);
4104 		return;
4105 	}
4106 	if (iwn_nic_lock(sc) != 0) {
4107 		kprintf("%s: could not read firmware error log\n", __func__);
4108 		return;
4109 	}
4110 	/* Read firmware error log from SRAM. */
4111 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
4112 	    sizeof (dump) / sizeof (uint32_t));
4113 	iwn_nic_unlock(sc);
4114 
4115 	if (dump.valid == 0) {
4116 		kprintf("%s: firmware error log is empty\n", __func__);
4117 		return;
4118 	}
4119 	kprintf("firmware error log:\n");
4120 	kprintf("  error type      = \"%s\" (0x%08X)\n",
4121 	    (dump.id < nitems(iwn_fw_errmsg)) ?
4122 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
4123 	    dump.id);
4124 	kprintf("  program counter = 0x%08X\n", dump.pc);
4125 	kprintf("  source line     = 0x%08X\n", dump.src_line);
4126 	kprintf("  error data      = 0x%08X%08X\n",
4127 	    dump.error_data[0], dump.error_data[1]);
4128 	kprintf("  branch link     = 0x%08X%08X\n",
4129 	    dump.branch_link[0], dump.branch_link[1]);
4130 	kprintf("  interrupt link  = 0x%08X%08X\n",
4131 	    dump.interrupt_link[0], dump.interrupt_link[1]);
4132 	kprintf("  time            = %u\n", dump.time[0]);
4133 
4134 	/* Dump driver status (TX and RX rings) while we're here. */
4135 	kprintf("driver status:\n");
4136 	for (i = 0; i < sc->ntxqs; i++) {
4137 		struct iwn_tx_ring *ring = &sc->txq[i];
4138 		kprintf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
4139 		    i, ring->qid, ring->cur, ring->queued);
4140 	}
4141 	kprintf("  rx ring: cur=%d\n", sc->rxq.cur);
4142 }
4143 
4144 static void
4145 iwn_intr(void *arg)
4146 {
4147 	struct iwn_softc *sc = arg;
4148 	struct ifnet *ifp = sc->sc_ifp;
4149 	uint32_t r1, r2, tmp;
4150 
4151 	IWN_LOCK(sc);
4152 
4153 	/* Disable interrupts. */
4154 	IWN_WRITE(sc, IWN_INT_MASK, 0);
4155 
4156 	/* Read interrupts from ICT (fast) or from registers (slow). */
4157 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4158 		tmp = 0;
4159 		while (sc->ict[sc->ict_cur] != 0) {
4160 			tmp |= sc->ict[sc->ict_cur];
4161 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
4162 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
4163 		}
4164 		tmp = le32toh(tmp);
4165 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
4166 			tmp = 0;
4167 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
4168 			tmp |= 0x8000;
4169 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
4170 		r2 = 0;	/* Unused. */
4171 	} else {
4172 		r1 = IWN_READ(sc, IWN_INT);
4173 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
4174 			return;	/* Hardware gone! */
4175 		r2 = IWN_READ(sc, IWN_FH_INT);
4176 	}
4177 
4178 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n"
4179     , r1, r2);
4180 
4181 	if (r1 == 0 && r2 == 0)
4182 		goto done;	/* Interrupt not for us. */
4183 
4184 	/* Acknowledge interrupts. */
4185 	IWN_WRITE(sc, IWN_INT, r1);
4186 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
4187 		IWN_WRITE(sc, IWN_FH_INT, r2);
4188 
4189 	if (r1 & IWN_INT_RF_TOGGLED) {
4190 		iwn_rftoggle_intr(sc);
4191 		goto done;
4192 	}
4193 	if (r1 & IWN_INT_CT_REACHED) {
4194 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
4195 		    __func__);
4196 	}
4197 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
4198 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
4199 		    __func__);
4200 #ifdef	IWN_DEBUG
4201 		iwn_debug_register(sc);
4202 #endif
4203 		/* Dump firmware error log and stop. */
4204 		iwn_fatal_intr(sc);
4205 
4206 		taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task);
4207 		goto done;
4208 	}
4209 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
4210 	    (r2 & IWN_FH_INT_RX)) {
4211 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4212 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
4213 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
4214 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4215 			    IWN_INT_PERIODIC_DIS);
4216 			iwn_notif_intr(sc);
4217 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
4218 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4219 				    IWN_INT_PERIODIC_ENA);
4220 			}
4221 		} else
4222 			iwn_notif_intr(sc);
4223 	}
4224 
4225 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
4226 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
4227 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
4228 		wakeup(sc);	/* FH DMA transfer completed. */
4229 	}
4230 
4231 	if (r1 & IWN_INT_ALIVE)
4232 		wakeup(sc);	/* Firmware is alive. */
4233 
4234 	if (r1 & IWN_INT_WAKEUP)
4235 		iwn_wakeup_intr(sc);
4236 
4237 done:
4238 	/* Re-enable interrupts. */
4239 	if (ifp->if_flags & IFF_UP)
4240 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4241 
4242 	IWN_UNLOCK(sc);
4243 }
4244 
4245 /*
4246  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
4247  * 5000 adapters use a slightly different format).
4248  */
4249 static void
4250 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4251     uint16_t len)
4252 {
4253 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
4254 
4255 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4256 
4257 	*w = htole16(len + 8);
4258 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4259 	    BUS_DMASYNC_PREWRITE);
4260 	if (idx < IWN_SCHED_WINSZ) {
4261 		*(w + IWN_TX_RING_COUNT) = *w;
4262 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4263 		    BUS_DMASYNC_PREWRITE);
4264 	}
4265 }
4266 
4267 static void
4268 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4269     uint16_t len)
4270 {
4271 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4272 
4273 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4274 
4275 	*w = htole16(id << 12 | (len + 8));
4276 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4277 	    BUS_DMASYNC_PREWRITE);
4278 	if (idx < IWN_SCHED_WINSZ) {
4279 		*(w + IWN_TX_RING_COUNT) = *w;
4280 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4281 		    BUS_DMASYNC_PREWRITE);
4282 	}
4283 }
4284 
4285 #ifdef notyet
4286 static void
4287 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
4288 {
4289 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4290 
4291 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4292 
4293 	*w = (*w & htole16(0xf000)) | htole16(1);
4294 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4295 	    BUS_DMASYNC_PREWRITE);
4296 	if (idx < IWN_SCHED_WINSZ) {
4297 		*(w + IWN_TX_RING_COUNT) = *w;
4298 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4299 		    BUS_DMASYNC_PREWRITE);
4300 	}
4301 }
4302 #endif
4303 
4304 /*
4305  * Check whether OFDM 11g protection will be enabled for the given rate.
4306  *
4307  * The original driver code only enabled protection for OFDM rates.
4308  * It didn't check to see whether it was operating in 11a or 11bg mode.
4309  */
4310 static int
4311 iwn_check_rate_needs_protection(struct iwn_softc *sc,
4312     struct ieee80211vap *vap, uint8_t rate)
4313 {
4314 	struct ieee80211com *ic = vap->iv_ic;
4315 
4316 	/*
4317 	 * Not in 2GHz mode? Then there's no need to enable OFDM
4318 	 * 11bg protection.
4319 	 */
4320 	if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
4321 		return (0);
4322 	}
4323 
4324 	/*
4325 	 * 11bg protection not enabled? Then don't use it.
4326 	 */
4327 	if ((ic->ic_flags & IEEE80211_F_USEPROT) == 0)
4328 		return (0);
4329 
4330 	/*
4331 	 * If it's an 11n rate - no protection.
4332 	 * We'll do it via a specific 11n check.
4333 	 */
4334 	if (rate & IEEE80211_RATE_MCS) {
4335 		return (0);
4336 	}
4337 
4338 	/*
4339 	 * Do a rate table lookup.  If the PHY is CCK,
4340 	 * don't do protection.
4341 	 */
4342 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK)
4343 		return (0);
4344 
4345 	/*
4346 	 * Yup, enable protection.
4347 	 */
4348 	return (1);
4349 }
4350 
4351 /*
4352  * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into
4353  * the link quality table that reflects this particular entry.
4354  */
4355 static int
4356 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni,
4357     uint8_t rate)
4358 {
4359 	struct ieee80211_rateset *rs;
4360 	int is_11n;
4361 	int nr;
4362 	int i;
4363 	uint8_t cmp_rate;
4364 
4365 	/*
4366 	 * Figure out if we're using 11n or not here.
4367 	 */
4368 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0)
4369 		is_11n = 1;
4370 	else
4371 		is_11n = 0;
4372 
4373 	/*
4374 	 * Use the correct rate table.
4375 	 */
4376 	if (is_11n) {
4377 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4378 		nr = ni->ni_htrates.rs_nrates;
4379 	} else {
4380 		rs = &ni->ni_rates;
4381 		nr = rs->rs_nrates;
4382 	}
4383 
4384 	/*
4385 	 * Find the relevant link quality entry in the table.
4386 	 */
4387 	for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) {
4388 		/*
4389 		 * The link quality table index starts at 0 == highest
4390 		 * rate, so we walk the rate table backwards.
4391 		 */
4392 		cmp_rate = rs->rs_rates[(nr - 1) - i];
4393 		if (rate & IEEE80211_RATE_MCS)
4394 			cmp_rate |= IEEE80211_RATE_MCS;
4395 
4396 #if 0
4397 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n",
4398 		    __func__,
4399 		    i,
4400 		    nr,
4401 		    rate,
4402 		    cmp_rate);
4403 #endif
4404 
4405 		if (cmp_rate == rate)
4406 			return (i);
4407 	}
4408 
4409 	/* Failed? Start at the end */
4410 	return (IWN_MAX_TX_RETRIES - 1);
4411 }
4412 
4413 static int
4414 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
4415 {
4416 	struct iwn_ops *ops = &sc->ops;
4417 	const struct ieee80211_txparam *tp;
4418 	struct ieee80211vap *vap = ni->ni_vap;
4419 	struct ieee80211com *ic = ni->ni_ic;
4420 	struct iwn_node *wn = (void *)ni;
4421 	struct iwn_tx_ring *ring;
4422 	struct iwn_tx_desc *desc;
4423 	struct iwn_tx_data *data;
4424 	struct iwn_tx_cmd *cmd;
4425 	struct iwn_cmd_data *tx;
4426 	struct ieee80211_frame *wh;
4427 	struct ieee80211_key *k = NULL;
4428 	struct mbuf *m1;
4429 	uint32_t flags;
4430 	uint16_t qos;
4431 	u_int hdrlen;
4432 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4433 	uint8_t tid, type;
4434 	int ac, i, totlen, error, pad, nsegs = 0, rate;
4435 
4436 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4437 
4438 	IWN_LOCK_ASSERT(sc);
4439 
4440 	wh = mtod(m, struct ieee80211_frame *);
4441 	hdrlen = ieee80211_anyhdrsize(wh);
4442 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4443 
4444 	/* Select EDCA Access Category and TX ring for this frame. */
4445 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
4446 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
4447 		tid = qos & IEEE80211_QOS_TID;
4448 	} else {
4449 		qos = 0;
4450 		tid = 0;
4451 	}
4452 	ac = M_WME_GETAC(m);
4453 	if (m->m_flags & M_AMPDU_MPDU) {
4454 		uint16_t seqno;
4455 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
4456 
4457 		if (!IEEE80211_AMPDU_RUNNING(tap)) {
4458 			m_freem(m);
4459 			return EINVAL;
4460 		}
4461 
4462 		/*
4463 		 * Queue this frame to the hardware ring that we've
4464 		 * negotiated AMPDU TX on.
4465 		 *
4466 		 * Note that the sequence number must match the TX slot
4467 		 * being used!
4468 		 */
4469 		ac = *(int *)tap->txa_private;
4470 		seqno = ni->ni_txseqs[tid];
4471 		*(uint16_t *)wh->i_seq =
4472 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4473 		ring = &sc->txq[ac];
4474 		if ((seqno % 256) != ring->cur) {
4475 			device_printf(sc->sc_dev,
4476 			    "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n",
4477 			    __func__,
4478 			    m,
4479 			    seqno,
4480 			    seqno % 256,
4481 			    ring->cur);
4482 		}
4483 		ni->ni_txseqs[tid]++;
4484 	}
4485 	ring = &sc->txq[ac];
4486 	desc = &ring->desc[ring->cur];
4487 	data = &ring->data[ring->cur];
4488 
4489 	/* Choose a TX rate index. */
4490 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
4491 	if (type == IEEE80211_FC0_TYPE_MGT)
4492 		rate = tp->mgmtrate;
4493 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
4494 		rate = tp->mcastrate;
4495 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
4496 		rate = tp->ucastrate;
4497 	else if (m->m_flags & M_EAPOL)
4498 		rate = tp->mgmtrate;
4499 	else {
4500 		/* XXX pass pktlen */
4501 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
4502 		rate = ni->ni_txrate;
4503 	}
4504 
4505 	/* Encrypt the frame if need be. */
4506 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
4507 		/* Retrieve key for TX. */
4508 		k = ieee80211_crypto_encap(ni, m);
4509 		if (k == NULL) {
4510 			m_freem(m);
4511 			return ENOBUFS;
4512 		}
4513 		/* 802.11 header may have moved. */
4514 		wh = mtod(m, struct ieee80211_frame *);
4515 	}
4516 	totlen = m->m_pkthdr.len;
4517 
4518 	if (ieee80211_radiotap_active_vap(vap)) {
4519 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4520 
4521 		tap->wt_flags = 0;
4522 		tap->wt_rate = rate;
4523 		if (k != NULL)
4524 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4525 
4526 		ieee80211_radiotap_tx(vap, m);
4527 	}
4528 
4529 	/* Prepare TX firmware command. */
4530 	cmd = &ring->cmd[ring->cur];
4531 	cmd->code = IWN_CMD_TX_DATA;
4532 	cmd->flags = 0;
4533 	cmd->qid = ring->qid;
4534 	cmd->idx = ring->cur;
4535 
4536 	tx = (struct iwn_cmd_data *)cmd->data;
4537 	/* NB: No need to clear tx, all fields are reinitialized here. */
4538 	tx->scratch = 0;	/* clear "scratch" area */
4539 
4540 	flags = 0;
4541 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4542 		/* Unicast frame, check if an ACK is expected. */
4543 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
4544 		    IEEE80211_QOS_ACKPOLICY_NOACK)
4545 			flags |= IWN_TX_NEED_ACK;
4546 	}
4547 	if ((wh->i_fc[0] &
4548 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
4549 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
4550 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
4551 
4552 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
4553 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
4554 
4555 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
4556 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4557 		/* NB: Group frames are sent using CCK in 802.11b/g. */
4558 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
4559 			flags |= IWN_TX_NEED_RTS;
4560 		} else if (iwn_check_rate_needs_protection(sc, vap, rate)) {
4561 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4562 				flags |= IWN_TX_NEED_CTS;
4563 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4564 				flags |= IWN_TX_NEED_RTS;
4565 		} else if ((rate & IEEE80211_RATE_MCS) &&
4566 			(ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)) {
4567 			flags |= IWN_TX_NEED_RTS;
4568 		}
4569 
4570 		/* XXX HT protection? */
4571 
4572 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
4573 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4574 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
4575 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
4576 				flags |= IWN_TX_NEED_PROTECTION;
4577 			} else
4578 				flags |= IWN_TX_FULL_TXOP;
4579 		}
4580 	}
4581 
4582 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
4583 	    type != IEEE80211_FC0_TYPE_DATA)
4584 		tx->id = sc->broadcast_id;
4585 	else
4586 		tx->id = wn->id;
4587 
4588 	if (type == IEEE80211_FC0_TYPE_MGT) {
4589 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4590 
4591 		/* Tell HW to set timestamp in probe responses. */
4592 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4593 			flags |= IWN_TX_INSERT_TSTAMP;
4594 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4595 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4596 			tx->timeout = htole16(3);
4597 		else
4598 			tx->timeout = htole16(2);
4599 	} else
4600 		tx->timeout = htole16(0);
4601 
4602 	if (hdrlen & 3) {
4603 		/* First segment length must be a multiple of 4. */
4604 		flags |= IWN_TX_NEED_PADDING;
4605 		pad = 4 - (hdrlen & 3);
4606 	} else
4607 		pad = 0;
4608 
4609 	tx->len = htole16(totlen);
4610 	tx->tid = tid;
4611 	tx->rts_ntries = 60;
4612 	tx->data_ntries = 15;
4613 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4614 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4615 	if (tx->id == sc->broadcast_id) {
4616 		/* Group or management frame. */
4617 		tx->linkq = 0;
4618 	} else {
4619 		tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate);
4620 		flags |= IWN_TX_LINKQ;	/* enable MRR */
4621 	}
4622 
4623 	/* Set physical address of "scratch area". */
4624 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4625 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4626 
4627 	/* Copy 802.11 header in TX command. */
4628 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4629 
4630 	/* Trim 802.11 header. */
4631 	m_adj(m, hdrlen);
4632 	tx->security = 0;
4633 	tx->flags = htole32(flags);
4634 
4635 #if defined(__DragonFly__)
4636 	error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
4637 					     data->map, m,
4638 					     segs, IWN_MAX_SCATTER - 1,
4639 					     &nsegs, BUS_DMA_NOWAIT);
4640 #else
4641 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4642 	    &nsegs, BUS_DMA_NOWAIT);
4643 #endif
4644 	if (error != 0) {
4645 		if (error != EFBIG) {
4646 			device_printf(sc->sc_dev,
4647 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4648 			m_freem(m);
4649 			return error;
4650 		}
4651 		/* Too many DMA segments, linearize mbuf. */
4652 #if defined(__DragonFly__)
4653 		m1 = m_defrag(m, M_NOWAIT);
4654 #else
4655 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER);
4656 #endif
4657 		if (m1 == NULL) {
4658 			device_printf(sc->sc_dev,
4659 			    "%s: could not defrag mbuf\n", __func__);
4660 			m_freem(m);
4661 			return ENOBUFS;
4662 		}
4663 		m = m1;
4664 
4665 #if defined(__DragonFly__)
4666 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
4667 						     data->map, m,
4668 						     segs, IWN_MAX_SCATTER - 1,
4669 						     &nsegs, BUS_DMA_NOWAIT);
4670 #else
4671 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4672 		    segs, &nsegs, BUS_DMA_NOWAIT);
4673 #endif
4674 		if (error != 0) {
4675 			device_printf(sc->sc_dev,
4676 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4677 			m_freem(m);
4678 			return error;
4679 		}
4680 	}
4681 
4682 	data->m = m;
4683 	data->ni = ni;
4684 
4685 	DPRINTF(sc, IWN_DEBUG_XMIT,
4686 	    "%s: qid %d idx %d len %d nsegs %d flags 0x%08x rate 0x%04x plcp 0x%08x\n",
4687 	    __func__,
4688 	    ring->qid,
4689 	    ring->cur,
4690 	    m->m_pkthdr.len,
4691 	    nsegs,
4692 	    flags,
4693 	    rate,
4694 	    tx->rate);
4695 
4696 	/* Fill TX descriptor. */
4697 	desc->nsegs = 1;
4698 	if (m->m_len != 0)
4699 		desc->nsegs += nsegs;
4700 	/* First DMA segment is used by the TX command. */
4701 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4702 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4703 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4704 	/* Other DMA segments are for data payload. */
4705 	seg = &segs[0];
4706 	for (i = 1; i <= nsegs; i++) {
4707 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4708 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4709 		    seg->ds_len << 4);
4710 		seg++;
4711 	}
4712 
4713 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4714 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4715 	    BUS_DMASYNC_PREWRITE);
4716 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4717 	    BUS_DMASYNC_PREWRITE);
4718 
4719 	/* Update TX scheduler. */
4720 	if (ring->qid >= sc->firstaggqueue)
4721 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4722 
4723 	/* Kick TX ring. */
4724 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4725 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4726 
4727 	/* Mark TX ring as full if we reach a certain threshold. */
4728 	if (++ring->queued > IWN_TX_RING_HIMARK)
4729 		sc->qfullmsk |= 1 << ring->qid;
4730 
4731 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4732 
4733 	return 0;
4734 }
4735 
4736 static int
4737 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
4738     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
4739 {
4740 	struct iwn_ops *ops = &sc->ops;
4741 //	struct ifnet *ifp = sc->sc_ifp;
4742 	struct ieee80211vap *vap = ni->ni_vap;
4743 //	struct ieee80211com *ic = ifp->if_l2com;
4744 	struct iwn_tx_cmd *cmd;
4745 	struct iwn_cmd_data *tx;
4746 	struct ieee80211_frame *wh;
4747 	struct iwn_tx_ring *ring;
4748 	struct iwn_tx_desc *desc;
4749 	struct iwn_tx_data *data;
4750 	struct mbuf *m1;
4751 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4752 	uint32_t flags;
4753 	u_int hdrlen;
4754 	int ac, totlen, error, pad, nsegs = 0, i, rate;
4755 	uint8_t type;
4756 
4757 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4758 
4759 	IWN_LOCK_ASSERT(sc);
4760 
4761 	wh = mtod(m, struct ieee80211_frame *);
4762 	hdrlen = ieee80211_anyhdrsize(wh);
4763 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4764 
4765 	ac = params->ibp_pri & 3;
4766 
4767 	ring = &sc->txq[ac];
4768 	desc = &ring->desc[ring->cur];
4769 	data = &ring->data[ring->cur];
4770 
4771 	/* Choose a TX rate. */
4772 	rate = params->ibp_rate0;
4773 	totlen = m->m_pkthdr.len;
4774 
4775 	/* Prepare TX firmware command. */
4776 	cmd = &ring->cmd[ring->cur];
4777 	cmd->code = IWN_CMD_TX_DATA;
4778 	cmd->flags = 0;
4779 	cmd->qid = ring->qid;
4780 	cmd->idx = ring->cur;
4781 
4782 	tx = (struct iwn_cmd_data *)cmd->data;
4783 	/* NB: No need to clear tx, all fields are reinitialized here. */
4784 	tx->scratch = 0;	/* clear "scratch" area */
4785 
4786 	flags = 0;
4787 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
4788 		flags |= IWN_TX_NEED_ACK;
4789 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
4790 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4791 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4792 			flags &= ~IWN_TX_NEED_RTS;
4793 			flags |= IWN_TX_NEED_PROTECTION;
4794 		} else
4795 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
4796 	}
4797 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
4798 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4799 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4800 			flags &= ~IWN_TX_NEED_CTS;
4801 			flags |= IWN_TX_NEED_PROTECTION;
4802 		} else
4803 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
4804 	}
4805 	if (type == IEEE80211_FC0_TYPE_MGT) {
4806 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4807 
4808 		/* Tell HW to set timestamp in probe responses. */
4809 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4810 			flags |= IWN_TX_INSERT_TSTAMP;
4811 
4812 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4813 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4814 			tx->timeout = htole16(3);
4815 		else
4816 			tx->timeout = htole16(2);
4817 	} else
4818 		tx->timeout = htole16(0);
4819 
4820 	if (hdrlen & 3) {
4821 		/* First segment length must be a multiple of 4. */
4822 		flags |= IWN_TX_NEED_PADDING;
4823 		pad = 4 - (hdrlen & 3);
4824 	} else
4825 		pad = 0;
4826 
4827 	if (ieee80211_radiotap_active_vap(vap)) {
4828 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4829 
4830 		tap->wt_flags = 0;
4831 		tap->wt_rate = rate;
4832 
4833 		ieee80211_radiotap_tx(vap, m);
4834 	}
4835 
4836 	tx->len = htole16(totlen);
4837 	tx->tid = 0;
4838 	tx->id = sc->broadcast_id;
4839 	tx->rts_ntries = params->ibp_try1;
4840 	tx->data_ntries = params->ibp_try0;
4841 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4842 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4843 
4844 	/* Group or management frame. */
4845 	tx->linkq = 0;
4846 
4847 	/* Set physical address of "scratch area". */
4848 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4849 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4850 
4851 	/* Copy 802.11 header in TX command. */
4852 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4853 
4854 	/* Trim 802.11 header. */
4855 	m_adj(m, hdrlen);
4856 	tx->security = 0;
4857 	tx->flags = htole32(flags);
4858 
4859 #if defined(__DragonFly__)
4860 	error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
4861 					     m, segs, IWN_MAX_SCATTER - 1,
4862 					     &nsegs, BUS_DMA_NOWAIT);
4863 #else
4864 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4865 	    &nsegs, BUS_DMA_NOWAIT);
4866 #endif
4867 	if (error != 0) {
4868 		if (error != EFBIG) {
4869 			device_printf(sc->sc_dev,
4870 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4871 			m_freem(m);
4872 			return error;
4873 		}
4874 		/* Too many DMA segments, linearize mbuf. */
4875 #if defined(__DragonFly__)
4876 		m1 = m_defrag(m, M_NOWAIT);
4877 #else
4878 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER);
4879 #endif
4880 		if (m1 == NULL) {
4881 			device_printf(sc->sc_dev,
4882 			    "%s: could not defrag mbuf\n", __func__);
4883 			m_freem(m);
4884 			return ENOBUFS;
4885 		}
4886 		m = m1;
4887 
4888 #if defined(__DragonFly__)
4889 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
4890 						     data->map, m,
4891 						     segs, IWN_MAX_SCATTER - 1,
4892 						     &nsegs, BUS_DMA_NOWAIT);
4893 #else
4894 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4895 		    segs, &nsegs, BUS_DMA_NOWAIT);
4896 #endif
4897 		if (error != 0) {
4898 			device_printf(sc->sc_dev,
4899 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4900 			m_freem(m);
4901 			return error;
4902 		}
4903 	}
4904 
4905 	data->m = m;
4906 	data->ni = ni;
4907 
4908 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
4909 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
4910 
4911 	/* Fill TX descriptor. */
4912 	desc->nsegs = 1;
4913 	if (m->m_len != 0)
4914 		desc->nsegs += nsegs;
4915 	/* First DMA segment is used by the TX command. */
4916 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4917 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4918 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4919 	/* Other DMA segments are for data payload. */
4920 	seg = &segs[0];
4921 	for (i = 1; i <= nsegs; i++) {
4922 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4923 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4924 		    seg->ds_len << 4);
4925 		seg++;
4926 	}
4927 
4928 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4929 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4930 	    BUS_DMASYNC_PREWRITE);
4931 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4932 	    BUS_DMASYNC_PREWRITE);
4933 
4934 	/* Update TX scheduler. */
4935 	if (ring->qid >= sc->firstaggqueue)
4936 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4937 
4938 	/* Kick TX ring. */
4939 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4940 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4941 
4942 	/* Mark TX ring as full if we reach a certain threshold. */
4943 	if (++ring->queued > IWN_TX_RING_HIMARK)
4944 		sc->qfullmsk |= 1 << ring->qid;
4945 
4946 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4947 
4948 	return 0;
4949 }
4950 
4951 static int
4952 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
4953     const struct ieee80211_bpf_params *params)
4954 {
4955 	struct ieee80211com *ic = ni->ni_ic;
4956 	struct ifnet *ifp = ic->ic_ifp;
4957 	struct iwn_softc *sc = ifp->if_softc;
4958 	int error = 0;
4959 
4960 	DPRINTF(sc, IWN_DEBUG_XMIT | IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4961 
4962 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4963 		ieee80211_free_node(ni);
4964 		m_freem(m);
4965 		return ENETDOWN;
4966 	}
4967 
4968 	IWN_LOCK(sc);
4969 	if (params == NULL) {
4970 		/*
4971 		 * Legacy path; interpret frame contents to decide
4972 		 * precisely how to send the frame.
4973 		 */
4974 		error = iwn_tx_data(sc, m, ni);
4975 	} else {
4976 		/*
4977 		 * Caller supplied explicit parameters to use in
4978 		 * sending the frame.
4979 		 */
4980 		error = iwn_tx_data_raw(sc, m, ni, params);
4981 	}
4982 	if (error != 0) {
4983 		/* NB: m is reclaimed on tx failure */
4984 		ieee80211_free_node(ni);
4985 #if defined(__DragonFly__)
4986 		++ifp->if_oerrors;
4987 #else
4988 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
4989 #endif
4990 	}
4991 	sc->sc_tx_timer = 5;
4992 
4993 	IWN_UNLOCK(sc);
4994 
4995 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s: end\n",__func__);
4996 
4997 	return error;
4998 }
4999 
5000 #if defined(__DragonFly__)
5001 static void
5002 iwn_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
5003 #else
5004 static void
5005 iwn_start(struct ifnet *ifp)
5006 #endif
5007 {
5008 	struct iwn_softc *sc = ifp->if_softc;
5009 
5010 	IWN_LOCK(sc);
5011 	iwn_start_locked(ifp);
5012 	IWN_UNLOCK(sc);
5013 }
5014 
5015 #if defined(__DragonFly__)
5016 
5017 static void
5018 iwn_start_locked(struct ifnet *ifp)
5019 {
5020 	struct iwn_softc *sc = ifp->if_softc;
5021 	struct ieee80211_node *ni;
5022 	struct mbuf *m;
5023 
5024 	IWN_LOCK_ASSERT(sc);
5025 
5026 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__);
5027 
5028 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
5029 	    ifq_is_oactive(&ifp->if_snd))
5030 		return;
5031 
5032 	for (;;) {
5033 		if (sc->qfullmsk != 0) {
5034 			ifq_set_oactive(&ifp->if_snd);
5035 			break;
5036 		}
5037 		m = ifq_dequeue(&ifp->if_snd);
5038 		if (m == NULL)
5039 			break;
5040 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
5041 		if (iwn_tx_data(sc, m, ni) != 0) {
5042 			ieee80211_free_node(ni);
5043 			++ifp->if_oerrors;
5044 			continue;
5045 		}
5046 		sc->sc_tx_timer = 5;
5047 	}
5048 
5049 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: done\n", __func__);
5050 }
5051 
5052 #else
5053 
5054 static void
5055 iwn_start_locked(struct ifnet *ifp)
5056 {
5057 	struct iwn_softc *sc = ifp->if_softc;
5058 	struct ieee80211_node *ni;
5059 	struct mbuf *m;
5060 
5061 	IWN_LOCK_ASSERT(sc);
5062 
5063 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__);
5064 
5065 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
5066 	    (ifp->if_drv_flags & IFF_DRV_OACTIVE))
5067 		return;
5068 
5069 	for (;;) {
5070 		if (sc->qfullmsk != 0) {
5071 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5072 			break;
5073 		}
5074 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
5075 		if (m == NULL)
5076 			break;
5077 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
5078 		if (iwn_tx_data(sc, m, ni) != 0) {
5079 			ieee80211_free_node(ni);
5080 #if defined(__DragonFly__)
5081 			++ifp->if_oerrors;
5082 #else
5083 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
5084 #endif
5085 			continue;
5086 		}
5087 		sc->sc_tx_timer = 5;
5088 	}
5089 
5090 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: done\n", __func__);
5091 }
5092 
5093 #endif
5094 
5095 static void
5096 iwn_watchdog(void *arg)
5097 {
5098 	struct iwn_softc *sc = arg;
5099 	struct ifnet *ifp = sc->sc_ifp;
5100 	struct ieee80211com *ic = ifp->if_l2com;
5101 
5102 	IWN_LOCK_ASSERT(sc);
5103 
5104 	KASSERT(ifp->if_drv_flags & IFF_DRV_RUNNING, ("not running"));
5105 
5106 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5107 
5108 	if (sc->sc_tx_timer > 0) {
5109 		if (--sc->sc_tx_timer == 0) {
5110 			if_printf(ifp, "device timeout\n");
5111 			ieee80211_runtask(ic, &sc->sc_reinit_task);
5112 			return;
5113 		}
5114 	}
5115 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
5116 }
5117 
5118 #if defined(__DragonFly__)
5119 static int
5120 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data,
5121 	  struct ucred *cred __unused)
5122 #else
5123 static int
5124 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5125 #endif
5126 {
5127 	struct iwn_softc *sc = ifp->if_softc;
5128 	struct ieee80211com *ic = ifp->if_l2com;
5129 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5130 	struct ifreq *ifr = (struct ifreq *) data;
5131 	int error = 0, startall = 0, stop = 0;
5132 
5133 	switch (cmd) {
5134 	case SIOCGIFADDR:
5135 		error = ether_ioctl(ifp, cmd, data);
5136 		break;
5137 	case SIOCSIFFLAGS:
5138 		IWN_LOCK(sc);
5139 		if (ifp->if_flags & IFF_UP) {
5140 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
5141 				iwn_init_locked(sc);
5142 				if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
5143 					startall = 1;
5144 				else
5145 					stop = 1;
5146 			}
5147 		} else {
5148 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5149 				iwn_stop_locked(sc);
5150 		}
5151 		IWN_UNLOCK(sc);
5152 		if (startall)
5153 			ieee80211_start_all(ic);
5154 		else if (vap != NULL && stop)
5155 			ieee80211_stop(vap);
5156 		break;
5157 	case SIOCGIFMEDIA:
5158 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
5159 		break;
5160 	case SIOCGIWNSTATS:
5161 		IWN_LOCK(sc);
5162 		/* XXX validate permissions/memory/etc? */
5163 		error = copyout(&sc->last_stat, ifr->ifr_data,
5164 		    sizeof(struct iwn_stats));
5165 		IWN_UNLOCK(sc);
5166 		break;
5167 	case SIOCZIWNSTATS:
5168 		IWN_LOCK(sc);
5169 		memset(&sc->last_stat, 0, sizeof(struct iwn_stats));
5170 		IWN_UNLOCK(sc);
5171 		error = 0;
5172 		break;
5173 	default:
5174 		error = EINVAL;
5175 		break;
5176 	}
5177 	return error;
5178 }
5179 
5180 /*
5181  * Send a command to the firmware.
5182  */
5183 static int
5184 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
5185 {
5186 	struct iwn_tx_ring *ring;
5187 	struct iwn_tx_desc *desc;
5188 	struct iwn_tx_data *data;
5189 	struct iwn_tx_cmd *cmd;
5190 	struct mbuf *m;
5191 	bus_addr_t paddr;
5192 	int totlen, error;
5193 	int cmd_queue_num;
5194 
5195 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5196 
5197 	if (async == 0)
5198 		IWN_LOCK_ASSERT(sc);
5199 
5200 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
5201 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
5202 	else
5203 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
5204 
5205 	ring = &sc->txq[cmd_queue_num];
5206 	desc = &ring->desc[ring->cur];
5207 	data = &ring->data[ring->cur];
5208 	totlen = 4 + size;
5209 
5210 	if (size > sizeof cmd->data) {
5211 		/* Command is too large to fit in a descriptor. */
5212 		if (totlen > MCLBYTES)
5213 			return EINVAL;
5214 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
5215 		if (m == NULL)
5216 			return ENOMEM;
5217 		cmd = mtod(m, struct iwn_tx_cmd *);
5218 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
5219 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
5220 		if (error != 0) {
5221 			m_freem(m);
5222 			return error;
5223 		}
5224 		data->m = m;
5225 	} else {
5226 		cmd = &ring->cmd[ring->cur];
5227 		paddr = data->cmd_paddr;
5228 	}
5229 
5230 	cmd->code = code;
5231 	cmd->flags = 0;
5232 	cmd->qid = ring->qid;
5233 	cmd->idx = ring->cur;
5234 	memcpy(cmd->data, buf, size);
5235 
5236 	desc->nsegs = 1;
5237 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
5238 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
5239 
5240 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
5241 	    __func__, iwn_intr_str(cmd->code), cmd->code,
5242 	    cmd->flags, cmd->qid, cmd->idx);
5243 
5244 	if (size > sizeof cmd->data) {
5245 		bus_dmamap_sync(ring->data_dmat, data->map,
5246 		    BUS_DMASYNC_PREWRITE);
5247 	} else {
5248 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
5249 		    BUS_DMASYNC_PREWRITE);
5250 	}
5251 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
5252 	    BUS_DMASYNC_PREWRITE);
5253 
5254 	/* Kick command ring. */
5255 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
5256 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
5257 
5258 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5259 
5260 	return async ? 0 : iwn_sleep(sc, desc, PCATCH, "iwncmd", hz);
5261 }
5262 
5263 static int
5264 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5265 {
5266 	struct iwn4965_node_info hnode;
5267 	caddr_t src, dst;
5268 
5269 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5270 
5271 	/*
5272 	 * We use the node structure for 5000 Series internally (it is
5273 	 * a superset of the one for 4965AGN). We thus copy the common
5274 	 * fields before sending the command.
5275 	 */
5276 	src = (caddr_t)node;
5277 	dst = (caddr_t)&hnode;
5278 	memcpy(dst, src, 48);
5279 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
5280 	memcpy(dst + 48, src + 72, 20);
5281 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
5282 }
5283 
5284 static int
5285 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5286 {
5287 
5288 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5289 
5290 	/* Direct mapping. */
5291 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
5292 }
5293 
5294 static int
5295 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
5296 {
5297 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
5298 	struct iwn_node *wn = (void *)ni;
5299 	struct ieee80211_rateset *rs;
5300 	struct iwn_cmd_link_quality linkq;
5301 	int i, rate, txrate;
5302 	int is_11n;
5303 
5304 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5305 
5306 	memset(&linkq, 0, sizeof linkq);
5307 	linkq.id = wn->id;
5308 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5309 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5310 
5311 	linkq.ampdu_max = 32;		/* XXX negotiated? */
5312 	linkq.ampdu_threshold = 3;
5313 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5314 
5315 	DPRINTF(sc, IWN_DEBUG_XMIT,
5316 	    "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n",
5317 	    __func__,
5318 	    linkq.antmsk_1stream,
5319 	    linkq.antmsk_2stream,
5320 	    sc->ntxchains);
5321 
5322 	/*
5323 	 * Are we using 11n rates? Ensure the channel is
5324 	 * 11n _and_ we have some 11n rates, or don't
5325 	 * try.
5326 	 */
5327 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) {
5328 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
5329 		is_11n = 1;
5330 	} else {
5331 		rs = &ni->ni_rates;
5332 		is_11n = 0;
5333 	}
5334 
5335 	/* Start at highest available bit-rate. */
5336 	/*
5337 	 * XXX this is all very dirty!
5338 	 */
5339 	if (is_11n)
5340 		txrate = ni->ni_htrates.rs_nrates - 1;
5341 	else
5342 		txrate = rs->rs_nrates - 1;
5343 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
5344 		uint32_t plcp;
5345 
5346 		/*
5347 		 * XXX TODO: ensure the last two slots are the two lowest
5348 		 * rate entries, just for now.
5349 		 */
5350 		if (i == 14 || i == 15)
5351 			txrate = 0;
5352 
5353 		if (is_11n)
5354 			rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate];
5355 		else
5356 			rate = RV(rs->rs_rates[txrate]);
5357 
5358 		/* Do rate -> PLCP config mapping */
5359 		plcp = iwn_rate_to_plcp(sc, ni, rate);
5360 		linkq.retry[i] = plcp;
5361 		DPRINTF(sc, IWN_DEBUG_XMIT,
5362 		    "%s: i=%d, txrate=%d, rate=0x%02x, plcp=0x%08x\n",
5363 		    __func__,
5364 		    i,
5365 		    txrate,
5366 		    rate,
5367 		    le32toh(plcp));
5368 
5369 		/*
5370 		 * The mimo field is an index into the table which
5371 		 * indicates the first index where it and subsequent entries
5372 		 * will not be using MIMO.
5373 		 *
5374 		 * Since we're filling linkq from 0..15 and we're filling
5375 		 * from the higest MCS rates to the lowest rates, if we
5376 		 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie,
5377 		 * the next entry.)  That way if the next entry is a non-MIMO
5378 		 * entry, we're already pointing at it.
5379 		 */
5380 		if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
5381 		    RV(le32toh(plcp)) > 7)
5382 			linkq.mimo = i + 1;
5383 
5384 		/* Next retry at immediate lower bit-rate. */
5385 		if (txrate > 0)
5386 			txrate--;
5387 	}
5388 	/*
5389 	 * If we reached the end of the list and indeed we hit
5390 	 * all MIMO rates (eg 5300 doing MCS23-15) then yes,
5391 	 * set mimo to 15.  Setting it to 16 panics the firmware.
5392 	 */
5393 	if (linkq.mimo > 15)
5394 		linkq.mimo = 15;
5395 
5396 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: mimo = %d\n", __func__, linkq.mimo);
5397 
5398 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5399 
5400 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
5401 #undef	RV
5402 }
5403 
5404 /*
5405  * Broadcast node is used to send group-addressed and management frames.
5406  */
5407 static int
5408 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
5409 {
5410 	struct iwn_ops *ops = &sc->ops;
5411 	struct ifnet *ifp = sc->sc_ifp;
5412 	struct ieee80211com *ic = ifp->if_l2com;
5413 	struct iwn_node_info node;
5414 	struct iwn_cmd_link_quality linkq;
5415 	uint8_t txant;
5416 	int i, error;
5417 
5418 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5419 
5420 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5421 
5422 	memset(&node, 0, sizeof node);
5423 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
5424 	node.id = sc->broadcast_id;
5425 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
5426 	if ((error = ops->add_node(sc, &node, async)) != 0)
5427 		return error;
5428 
5429 	/* Use the first valid TX antenna. */
5430 	txant = IWN_LSB(sc->txchainmask);
5431 
5432 	memset(&linkq, 0, sizeof linkq);
5433 	linkq.id = sc->broadcast_id;
5434 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5435 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5436 	linkq.ampdu_max = 64;
5437 	linkq.ampdu_threshold = 3;
5438 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5439 
5440 	/* Use lowest mandatory bit-rate. */
5441 	/* XXX rate table lookup? */
5442 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
5443 		linkq.retry[0] = htole32(0xd);
5444 	else
5445 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
5446 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
5447 	/* Use same bit-rate for all TX retries. */
5448 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
5449 		linkq.retry[i] = linkq.retry[0];
5450 	}
5451 
5452 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5453 
5454 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
5455 }
5456 
5457 static int
5458 iwn_updateedca(struct ieee80211com *ic)
5459 {
5460 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
5461 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
5462 	struct iwn_edca_params cmd;
5463 	int aci;
5464 
5465 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5466 
5467 	memset(&cmd, 0, sizeof cmd);
5468 	cmd.flags = htole32(IWN_EDCA_UPDATE);
5469 	for (aci = 0; aci < WME_NUM_AC; aci++) {
5470 		const struct wmeParams *ac =
5471 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
5472 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
5473 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
5474 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
5475 		cmd.ac[aci].txoplimit =
5476 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
5477 	}
5478 	IEEE80211_UNLOCK(ic);
5479 	IWN_LOCK(sc);
5480 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5481 	IWN_UNLOCK(sc);
5482 	IEEE80211_LOCK(ic);
5483 
5484 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5485 
5486 	return 0;
5487 #undef IWN_EXP2
5488 }
5489 
5490 static void
5491 iwn_update_mcast(struct ifnet *ifp)
5492 {
5493 	/* Ignore */
5494 }
5495 
5496 static void
5497 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
5498 {
5499 	struct iwn_cmd_led led;
5500 
5501 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5502 
5503 #if 0
5504 	/* XXX don't set LEDs during scan? */
5505 	if (sc->sc_is_scanning)
5506 		return;
5507 #endif
5508 
5509 	/* Clear microcode LED ownership. */
5510 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
5511 
5512 	led.which = which;
5513 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
5514 	led.off = off;
5515 	led.on = on;
5516 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
5517 }
5518 
5519 /*
5520  * Set the critical temperature at which the firmware will stop the radio
5521  * and notify us.
5522  */
5523 static int
5524 iwn_set_critical_temp(struct iwn_softc *sc)
5525 {
5526 	struct iwn_critical_temp crit;
5527 	int32_t temp;
5528 
5529 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5530 
5531 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
5532 
5533 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
5534 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
5535 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
5536 		temp = IWN_CTOK(110);
5537 	else
5538 		temp = 110;
5539 	memset(&crit, 0, sizeof crit);
5540 	crit.tempR = htole32(temp);
5541 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
5542 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
5543 }
5544 
5545 static int
5546 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
5547 {
5548 	struct iwn_cmd_timing cmd;
5549 	uint64_t val, mod;
5550 
5551 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5552 
5553 	memset(&cmd, 0, sizeof cmd);
5554 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
5555 	cmd.bintval = htole16(ni->ni_intval);
5556 	cmd.lintval = htole16(10);
5557 
5558 	/* Compute remaining time until next beacon. */
5559 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
5560 	mod = le64toh(cmd.tstamp) % val;
5561 	cmd.binitval = htole32((uint32_t)(val - mod));
5562 
5563 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
5564 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
5565 
5566 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
5567 }
5568 
5569 static void
5570 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
5571 {
5572 	struct ifnet *ifp = sc->sc_ifp;
5573 	struct ieee80211com *ic = ifp->if_l2com;
5574 
5575 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5576 
5577 	/* Adjust TX power if need be (delta >= 3 degC). */
5578 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
5579 	    __func__, sc->temp, temp);
5580 	if (abs(temp - sc->temp) >= 3) {
5581 		/* Record temperature of last calibration. */
5582 		sc->temp = temp;
5583 		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
5584 	}
5585 }
5586 
5587 /*
5588  * Set TX power for current channel (each rate has its own power settings).
5589  * This function takes into account the regulatory information from EEPROM,
5590  * the current temperature and the current voltage.
5591  */
5592 static int
5593 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5594     int async)
5595 {
5596 /* Fixed-point arithmetic division using a n-bit fractional part. */
5597 #define fdivround(a, b, n)	\
5598 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
5599 /* Linear interpolation. */
5600 #define interpolate(x, x1, y1, x2, y2, n)	\
5601 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
5602 
5603 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
5604 	struct iwn_ucode_info *uc = &sc->ucode_info;
5605 	struct iwn4965_cmd_txpower cmd;
5606 	struct iwn4965_eeprom_chan_samples *chans;
5607 	const uint8_t *rf_gain, *dsp_gain;
5608 	int32_t vdiff, tdiff;
5609 	int i, c, grp, maxpwr;
5610 	uint8_t chan;
5611 
5612 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5613 	/* Retrieve current channel from last RXON. */
5614 	chan = sc->rxon->chan;
5615 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
5616 	    chan);
5617 
5618 	memset(&cmd, 0, sizeof cmd);
5619 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
5620 	cmd.chan = chan;
5621 
5622 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
5623 		maxpwr   = sc->maxpwr5GHz;
5624 		rf_gain  = iwn4965_rf_gain_5ghz;
5625 		dsp_gain = iwn4965_dsp_gain_5ghz;
5626 	} else {
5627 		maxpwr   = sc->maxpwr2GHz;
5628 		rf_gain  = iwn4965_rf_gain_2ghz;
5629 		dsp_gain = iwn4965_dsp_gain_2ghz;
5630 	}
5631 
5632 	/* Compute voltage compensation. */
5633 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
5634 	if (vdiff > 0)
5635 		vdiff *= 2;
5636 	if (abs(vdiff) > 2)
5637 		vdiff = 0;
5638 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5639 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
5640 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
5641 
5642 	/* Get channel attenuation group. */
5643 	if (chan <= 20)		/* 1-20 */
5644 		grp = 4;
5645 	else if (chan <= 43)	/* 34-43 */
5646 		grp = 0;
5647 	else if (chan <= 70)	/* 44-70 */
5648 		grp = 1;
5649 	else if (chan <= 124)	/* 71-124 */
5650 		grp = 2;
5651 	else			/* 125-200 */
5652 		grp = 3;
5653 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5654 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
5655 
5656 	/* Get channel sub-band. */
5657 	for (i = 0; i < IWN_NBANDS; i++)
5658 		if (sc->bands[i].lo != 0 &&
5659 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
5660 			break;
5661 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
5662 		return EINVAL;
5663 	chans = sc->bands[i].chans;
5664 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5665 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
5666 
5667 	for (c = 0; c < 2; c++) {
5668 		uint8_t power, gain, temp;
5669 		int maxchpwr, pwr, ridx, idx;
5670 
5671 		power = interpolate(chan,
5672 		    chans[0].num, chans[0].samples[c][1].power,
5673 		    chans[1].num, chans[1].samples[c][1].power, 1);
5674 		gain  = interpolate(chan,
5675 		    chans[0].num, chans[0].samples[c][1].gain,
5676 		    chans[1].num, chans[1].samples[c][1].gain, 1);
5677 		temp  = interpolate(chan,
5678 		    chans[0].num, chans[0].samples[c][1].temp,
5679 		    chans[1].num, chans[1].samples[c][1].temp, 1);
5680 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5681 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
5682 		    __func__, c, power, gain, temp);
5683 
5684 		/* Compute temperature compensation. */
5685 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
5686 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5687 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
5688 		    __func__, tdiff, sc->temp, temp);
5689 
5690 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
5691 			/* Convert dBm to half-dBm. */
5692 			maxchpwr = sc->maxpwr[chan] * 2;
5693 			if ((ridx / 8) & 1)
5694 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
5695 
5696 			pwr = maxpwr;
5697 
5698 			/* Adjust TX power based on rate. */
5699 			if ((ridx % 8) == 5)
5700 				pwr -= 15;	/* OFDM48: -7.5dB */
5701 			else if ((ridx % 8) == 6)
5702 				pwr -= 17;	/* OFDM54: -8.5dB */
5703 			else if ((ridx % 8) == 7)
5704 				pwr -= 20;	/* OFDM60: -10dB */
5705 			else
5706 				pwr -= 10;	/* Others: -5dB */
5707 
5708 			/* Do not exceed channel max TX power. */
5709 			if (pwr > maxchpwr)
5710 				pwr = maxchpwr;
5711 
5712 			idx = gain - (pwr - power) - tdiff - vdiff;
5713 			if ((ridx / 8) & 1)	/* MIMO */
5714 				idx += (int32_t)le32toh(uc->atten[grp][c]);
5715 
5716 			if (cmd.band == 0)
5717 				idx += 9;	/* 5GHz */
5718 			if (ridx == IWN_RIDX_MAX)
5719 				idx += 5;	/* CCK */
5720 
5721 			/* Make sure idx stays in a valid range. */
5722 			if (idx < 0)
5723 				idx = 0;
5724 			else if (idx > IWN4965_MAX_PWR_INDEX)
5725 				idx = IWN4965_MAX_PWR_INDEX;
5726 
5727 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5728 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
5729 			    __func__, c, ridx, idx);
5730 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
5731 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
5732 		}
5733 	}
5734 
5735 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5736 	    "%s: set tx power for chan %d\n", __func__, chan);
5737 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
5738 
5739 #undef interpolate
5740 #undef fdivround
5741 }
5742 
5743 static int
5744 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5745     int async)
5746 {
5747 	struct iwn5000_cmd_txpower cmd;
5748 	int cmdid;
5749 
5750 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5751 
5752 	/*
5753 	 * TX power calibration is handled automatically by the firmware
5754 	 * for 5000 Series.
5755 	 */
5756 	memset(&cmd, 0, sizeof cmd);
5757 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
5758 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
5759 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
5760 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5761 	    "%s: setting TX power; rev=%d\n",
5762 	    __func__,
5763 	    IWN_UCODE_API(sc->ucode_rev));
5764 	if (IWN_UCODE_API(sc->ucode_rev) == 1)
5765 		cmdid = IWN_CMD_TXPOWER_DBM_V1;
5766 	else
5767 		cmdid = IWN_CMD_TXPOWER_DBM;
5768 	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
5769 }
5770 
5771 /*
5772  * Retrieve the maximum RSSI (in dBm) among receivers.
5773  */
5774 static int
5775 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5776 {
5777 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
5778 	uint8_t mask, agc;
5779 	int rssi;
5780 
5781 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5782 
5783 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
5784 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
5785 
5786 	rssi = 0;
5787 	if (mask & IWN_ANT_A)
5788 		rssi = MAX(rssi, phy->rssi[0]);
5789 	if (mask & IWN_ANT_B)
5790 		rssi = MAX(rssi, phy->rssi[2]);
5791 	if (mask & IWN_ANT_C)
5792 		rssi = MAX(rssi, phy->rssi[4]);
5793 
5794 	DPRINTF(sc, IWN_DEBUG_RECV,
5795 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
5796 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
5797 	    rssi - agc - IWN_RSSI_TO_DBM);
5798 	return rssi - agc - IWN_RSSI_TO_DBM;
5799 }
5800 
5801 static int
5802 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5803 {
5804 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
5805 	uint8_t agc;
5806 	int rssi;
5807 
5808 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5809 
5810 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
5811 
5812 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
5813 		   le16toh(phy->rssi[1]) & 0xff);
5814 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
5815 
5816 	DPRINTF(sc, IWN_DEBUG_RECV,
5817 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
5818 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
5819 	    rssi - agc - IWN_RSSI_TO_DBM);
5820 	return rssi - agc - IWN_RSSI_TO_DBM;
5821 }
5822 
5823 /*
5824  * Retrieve the average noise (in dBm) among receivers.
5825  */
5826 static int
5827 iwn_get_noise(const struct iwn_rx_general_stats *stats)
5828 {
5829 	int i, total, nbant, noise;
5830 
5831 	total = nbant = 0;
5832 	for (i = 0; i < 3; i++) {
5833 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
5834 			continue;
5835 		total += noise;
5836 		nbant++;
5837 	}
5838 	/* There should be at least one antenna but check anyway. */
5839 	return (nbant == 0) ? -127 : (total / nbant) - 107;
5840 }
5841 
5842 /*
5843  * Compute temperature (in degC) from last received statistics.
5844  */
5845 static int
5846 iwn4965_get_temperature(struct iwn_softc *sc)
5847 {
5848 	struct iwn_ucode_info *uc = &sc->ucode_info;
5849 	int32_t r1, r2, r3, r4, temp;
5850 
5851 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5852 
5853 	r1 = le32toh(uc->temp[0].chan20MHz);
5854 	r2 = le32toh(uc->temp[1].chan20MHz);
5855 	r3 = le32toh(uc->temp[2].chan20MHz);
5856 	r4 = le32toh(sc->rawtemp);
5857 
5858 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
5859 		return 0;
5860 
5861 	/* Sign-extend 23-bit R4 value to 32-bit. */
5862 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
5863 	/* Compute temperature in Kelvin. */
5864 	temp = (259 * (r4 - r2)) / (r3 - r1);
5865 	temp = (temp * 97) / 100 + 8;
5866 
5867 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
5868 	    IWN_KTOC(temp));
5869 	return IWN_KTOC(temp);
5870 }
5871 
5872 static int
5873 iwn5000_get_temperature(struct iwn_softc *sc)
5874 {
5875 	int32_t temp;
5876 
5877 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5878 
5879 	/*
5880 	 * Temperature is not used by the driver for 5000 Series because
5881 	 * TX power calibration is handled by firmware.
5882 	 */
5883 	temp = le32toh(sc->rawtemp);
5884 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
5885 		temp = (temp / -5) + sc->temp_off;
5886 		temp = IWN_KTOC(temp);
5887 	}
5888 	return temp;
5889 }
5890 
5891 /*
5892  * Initialize sensitivity calibration state machine.
5893  */
5894 static int
5895 iwn_init_sensitivity(struct iwn_softc *sc)
5896 {
5897 	struct iwn_ops *ops = &sc->ops;
5898 	struct iwn_calib_state *calib = &sc->calib;
5899 	uint32_t flags;
5900 	int error;
5901 
5902 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5903 
5904 	/* Reset calibration state machine. */
5905 	memset(calib, 0, sizeof (*calib));
5906 	calib->state = IWN_CALIB_STATE_INIT;
5907 	calib->cck_state = IWN_CCK_STATE_HIFA;
5908 	/* Set initial correlation values. */
5909 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
5910 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
5911 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
5912 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
5913 	calib->cck_x4      = 125;
5914 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
5915 	calib->energy_cck  = sc->limits->energy_cck;
5916 
5917 	/* Write initial sensitivity. */
5918 	if ((error = iwn_send_sensitivity(sc)) != 0)
5919 		return error;
5920 
5921 	/* Write initial gains. */
5922 	if ((error = ops->init_gains(sc)) != 0)
5923 		return error;
5924 
5925 	/* Request statistics at each beacon interval. */
5926 	flags = 0;
5927 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
5928 	    __func__);
5929 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
5930 }
5931 
5932 /*
5933  * Collect noise and RSSI statistics for the first 20 beacons received
5934  * after association and use them to determine connected antennas and
5935  * to set differential gains.
5936  */
5937 static void
5938 iwn_collect_noise(struct iwn_softc *sc,
5939     const struct iwn_rx_general_stats *stats)
5940 {
5941 	struct iwn_ops *ops = &sc->ops;
5942 	struct iwn_calib_state *calib = &sc->calib;
5943 	struct ifnet *ifp = sc->sc_ifp;
5944 	struct ieee80211com *ic = ifp->if_l2com;
5945 	uint32_t val;
5946 	int i;
5947 
5948 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5949 
5950 	/* Accumulate RSSI and noise for all 3 antennas. */
5951 	for (i = 0; i < 3; i++) {
5952 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
5953 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
5954 	}
5955 	/* NB: We update differential gains only once after 20 beacons. */
5956 	if (++calib->nbeacons < 20)
5957 		return;
5958 
5959 	/* Determine highest average RSSI. */
5960 	val = MAX(calib->rssi[0], calib->rssi[1]);
5961 	val = MAX(calib->rssi[2], val);
5962 
5963 	/* Determine which antennas are connected. */
5964 	sc->chainmask = sc->rxchainmask;
5965 	for (i = 0; i < 3; i++)
5966 		if (val - calib->rssi[i] > 15 * 20)
5967 			sc->chainmask &= ~(1 << i);
5968 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5969 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
5970 	    __func__, sc->rxchainmask, sc->chainmask);
5971 
5972 	/* If none of the TX antennas are connected, keep at least one. */
5973 	if ((sc->chainmask & sc->txchainmask) == 0)
5974 		sc->chainmask |= IWN_LSB(sc->txchainmask);
5975 
5976 	(void)ops->set_gains(sc);
5977 	calib->state = IWN_CALIB_STATE_RUN;
5978 
5979 #ifdef notyet
5980 	/* XXX Disable RX chains with no antennas connected. */
5981 	sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
5982 	if (sc->sc_is_scanning)
5983 		device_printf(sc->sc_dev,
5984 		    "%s: is_scanning set, before RXON\n",
5985 		    __func__);
5986 	(void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
5987 #endif
5988 
5989 	/* Enable power-saving mode if requested by user. */
5990 	if (ic->ic_flags & IEEE80211_F_PMGTON)
5991 		(void)iwn_set_pslevel(sc, 0, 3, 1);
5992 
5993 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5994 
5995 }
5996 
5997 static int
5998 iwn4965_init_gains(struct iwn_softc *sc)
5999 {
6000 	struct iwn_phy_calib_gain cmd;
6001 
6002 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6003 
6004 	memset(&cmd, 0, sizeof cmd);
6005 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
6006 	/* Differential gains initially set to 0 for all 3 antennas. */
6007 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6008 	    "%s: setting initial differential gains\n", __func__);
6009 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6010 }
6011 
6012 static int
6013 iwn5000_init_gains(struct iwn_softc *sc)
6014 {
6015 	struct iwn_phy_calib cmd;
6016 
6017 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6018 
6019 	memset(&cmd, 0, sizeof cmd);
6020 	cmd.code = sc->reset_noise_gain;
6021 	cmd.ngroups = 1;
6022 	cmd.isvalid = 1;
6023 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6024 	    "%s: setting initial differential gains\n", __func__);
6025 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6026 }
6027 
6028 static int
6029 iwn4965_set_gains(struct iwn_softc *sc)
6030 {
6031 	struct iwn_calib_state *calib = &sc->calib;
6032 	struct iwn_phy_calib_gain cmd;
6033 	int i, delta, noise;
6034 
6035 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6036 
6037 	/* Get minimal noise among connected antennas. */
6038 	noise = INT_MAX;	/* NB: There's at least one antenna. */
6039 	for (i = 0; i < 3; i++)
6040 		if (sc->chainmask & (1 << i))
6041 			noise = MIN(calib->noise[i], noise);
6042 
6043 	memset(&cmd, 0, sizeof cmd);
6044 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
6045 	/* Set differential gains for connected antennas. */
6046 	for (i = 0; i < 3; i++) {
6047 		if (sc->chainmask & (1 << i)) {
6048 			/* Compute attenuation (in unit of 1.5dB). */
6049 			delta = (noise - (int32_t)calib->noise[i]) / 30;
6050 			/* NB: delta <= 0 */
6051 			/* Limit to [-4.5dB,0]. */
6052 			cmd.gain[i] = MIN(abs(delta), 3);
6053 			if (delta < 0)
6054 				cmd.gain[i] |= 1 << 2;	/* sign bit */
6055 		}
6056 	}
6057 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6058 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
6059 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
6060 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6061 }
6062 
6063 static int
6064 iwn5000_set_gains(struct iwn_softc *sc)
6065 {
6066 	struct iwn_calib_state *calib = &sc->calib;
6067 	struct iwn_phy_calib_gain cmd;
6068 	int i, ant, div, delta;
6069 
6070 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6071 
6072 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
6073 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
6074 
6075 	memset(&cmd, 0, sizeof cmd);
6076 	cmd.code = sc->noise_gain;
6077 	cmd.ngroups = 1;
6078 	cmd.isvalid = 1;
6079 	/* Get first available RX antenna as referential. */
6080 	ant = IWN_LSB(sc->rxchainmask);
6081 	/* Set differential gains for other antennas. */
6082 	for (i = ant + 1; i < 3; i++) {
6083 		if (sc->chainmask & (1 << i)) {
6084 			/* The delta is relative to antenna "ant". */
6085 			delta = ((int32_t)calib->noise[ant] -
6086 			    (int32_t)calib->noise[i]) / div;
6087 			/* Limit to [-4.5dB,+4.5dB]. */
6088 			cmd.gain[i - 1] = MIN(abs(delta), 3);
6089 			if (delta < 0)
6090 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
6091 		}
6092 	}
6093 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
6094 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
6095 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
6096 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6097 }
6098 
6099 /*
6100  * Tune RF RX sensitivity based on the number of false alarms detected
6101  * during the last beacon period.
6102  */
6103 static void
6104 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
6105 {
6106 #define inc(val, inc, max)			\
6107 	if ((val) < (max)) {			\
6108 		if ((val) < (max) - (inc))	\
6109 			(val) += (inc);		\
6110 		else				\
6111 			(val) = (max);		\
6112 		needs_update = 1;		\
6113 	}
6114 #define dec(val, dec, min)			\
6115 	if ((val) > (min)) {			\
6116 		if ((val) > (min) + (dec))	\
6117 			(val) -= (dec);		\
6118 		else				\
6119 			(val) = (min);		\
6120 		needs_update = 1;		\
6121 	}
6122 
6123 	const struct iwn_sensitivity_limits *limits = sc->limits;
6124 	struct iwn_calib_state *calib = &sc->calib;
6125 	uint32_t val, rxena, fa;
6126 	uint32_t energy[3], energy_min;
6127 	uint8_t noise[3], noise_ref;
6128 	int i, needs_update = 0;
6129 
6130 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6131 
6132 	/* Check that we've been enabled long enough. */
6133 	if ((rxena = le32toh(stats->general.load)) == 0){
6134 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__);
6135 		return;
6136 	}
6137 
6138 	/* Compute number of false alarms since last call for OFDM. */
6139 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6140 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
6141 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6142 
6143 	if (fa > 50 * rxena) {
6144 		/* High false alarm count, decrease sensitivity. */
6145 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6146 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
6147 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
6148 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
6149 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
6150 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
6151 
6152 	} else if (fa < 5 * rxena) {
6153 		/* Low false alarm count, increase sensitivity. */
6154 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6155 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
6156 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
6157 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
6158 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
6159 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
6160 	}
6161 
6162 	/* Compute maximum noise among 3 receivers. */
6163 	for (i = 0; i < 3; i++)
6164 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
6165 	val = MAX(noise[0], noise[1]);
6166 	val = MAX(noise[2], val);
6167 	/* Insert it into our samples table. */
6168 	calib->noise_samples[calib->cur_noise_sample] = val;
6169 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
6170 
6171 	/* Compute maximum noise among last 20 samples. */
6172 	noise_ref = calib->noise_samples[0];
6173 	for (i = 1; i < 20; i++)
6174 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
6175 
6176 	/* Compute maximum energy among 3 receivers. */
6177 	for (i = 0; i < 3; i++)
6178 		energy[i] = le32toh(stats->general.energy[i]);
6179 	val = MIN(energy[0], energy[1]);
6180 	val = MIN(energy[2], val);
6181 	/* Insert it into our samples table. */
6182 	calib->energy_samples[calib->cur_energy_sample] = val;
6183 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
6184 
6185 	/* Compute minimum energy among last 10 samples. */
6186 	energy_min = calib->energy_samples[0];
6187 	for (i = 1; i < 10; i++)
6188 		energy_min = MAX(energy_min, calib->energy_samples[i]);
6189 	energy_min += 6;
6190 
6191 	/* Compute number of false alarms since last call for CCK. */
6192 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
6193 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
6194 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6195 
6196 	if (fa > 50 * rxena) {
6197 		/* High false alarm count, decrease sensitivity. */
6198 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6199 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
6200 		calib->cck_state = IWN_CCK_STATE_HIFA;
6201 		calib->low_fa = 0;
6202 
6203 		if (calib->cck_x4 > 160) {
6204 			calib->noise_ref = noise_ref;
6205 			if (calib->energy_cck > 2)
6206 				dec(calib->energy_cck, 2, energy_min);
6207 		}
6208 		if (calib->cck_x4 < 160) {
6209 			calib->cck_x4 = 161;
6210 			needs_update = 1;
6211 		} else
6212 			inc(calib->cck_x4, 3, limits->max_cck_x4);
6213 
6214 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
6215 
6216 	} else if (fa < 5 * rxena) {
6217 		/* Low false alarm count, increase sensitivity. */
6218 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6219 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
6220 		calib->cck_state = IWN_CCK_STATE_LOFA;
6221 		calib->low_fa++;
6222 
6223 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
6224 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
6225 		     calib->low_fa > 100)) {
6226 			inc(calib->energy_cck, 2, limits->min_energy_cck);
6227 			dec(calib->cck_x4,     3, limits->min_cck_x4);
6228 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
6229 		}
6230 	} else {
6231 		/* Not worth to increase or decrease sensitivity. */
6232 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6233 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
6234 		calib->low_fa = 0;
6235 		calib->noise_ref = noise_ref;
6236 
6237 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
6238 			/* Previous interval had many false alarms. */
6239 			dec(calib->energy_cck, 8, energy_min);
6240 		}
6241 		calib->cck_state = IWN_CCK_STATE_INIT;
6242 	}
6243 
6244 	if (needs_update)
6245 		(void)iwn_send_sensitivity(sc);
6246 
6247 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6248 
6249 #undef dec
6250 #undef inc
6251 }
6252 
6253 static int
6254 iwn_send_sensitivity(struct iwn_softc *sc)
6255 {
6256 	struct iwn_calib_state *calib = &sc->calib;
6257 	struct iwn_enhanced_sensitivity_cmd cmd;
6258 	int len;
6259 
6260 	memset(&cmd, 0, sizeof cmd);
6261 	len = sizeof (struct iwn_sensitivity_cmd);
6262 	cmd.which = IWN_SENSITIVITY_WORKTBL;
6263 	/* OFDM modulation. */
6264 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
6265 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
6266 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
6267 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
6268 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
6269 	cmd.energy_ofdm_th     = htole16(62);
6270 	/* CCK modulation. */
6271 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
6272 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
6273 	cmd.energy_cck         = htole16(calib->energy_cck);
6274 	/* Barker modulation: use default values. */
6275 	cmd.corr_barker        = htole16(190);
6276 	cmd.corr_barker_mrc    = htole16(sc->limits->barker_mrc);
6277 
6278 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6279 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
6280 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
6281 	    calib->ofdm_mrc_x4, calib->cck_x4,
6282 	    calib->cck_mrc_x4, calib->energy_cck);
6283 
6284 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
6285 		goto send;
6286 	/* Enhanced sensitivity settings. */
6287 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
6288 	cmd.ofdm_det_slope_mrc = htole16(668);
6289 	cmd.ofdm_det_icept_mrc = htole16(4);
6290 	cmd.ofdm_det_slope     = htole16(486);
6291 	cmd.ofdm_det_icept     = htole16(37);
6292 	cmd.cck_det_slope_mrc  = htole16(853);
6293 	cmd.cck_det_icept_mrc  = htole16(4);
6294 	cmd.cck_det_slope      = htole16(476);
6295 	cmd.cck_det_icept      = htole16(99);
6296 send:
6297 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
6298 }
6299 
6300 /*
6301  * Look at the increase of PLCP errors over time; if it exceeds
6302  * a programmed threshold then trigger an RF retune.
6303  */
6304 static void
6305 iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs)
6306 {
6307 	int32_t delta_ofdm, delta_ht, delta_cck;
6308 	struct iwn_calib_state *calib = &sc->calib;
6309 	int delta_ticks, cur_ticks;
6310 	int delta_msec;
6311 	int thresh;
6312 
6313 	/*
6314 	 * Calculate the difference between the current and
6315 	 * previous statistics.
6316 	 */
6317 	delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck;
6318 	delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6319 	delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht;
6320 
6321 	/*
6322 	 * Calculate the delta in time between successive statistics
6323 	 * messages.  Yes, it can roll over; so we make sure that
6324 	 * this doesn't happen.
6325 	 *
6326 	 * XXX go figure out what to do about rollover
6327 	 * XXX go figure out what to do if ticks rolls over to -ve instead!
6328 	 * XXX go stab signed integer overflow undefined-ness in the face.
6329 	 */
6330 	cur_ticks = ticks;
6331 	delta_ticks = cur_ticks - sc->last_calib_ticks;
6332 
6333 	/*
6334 	 * If any are negative, then the firmware likely reset; so just
6335 	 * bail.  We'll pick this up next time.
6336 	 */
6337 	if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0)
6338 		return;
6339 
6340 	/*
6341 	 * delta_ticks is in ticks; we need to convert it up to milliseconds
6342 	 * so we can do some useful math with it.
6343 	 */
6344 	delta_msec = ticks_to_msecs(delta_ticks);
6345 
6346 	/*
6347 	 * Calculate what our threshold is given the current delta_msec.
6348 	 */
6349 	thresh = sc->base_params->plcp_err_threshold * delta_msec;
6350 
6351 	DPRINTF(sc, IWN_DEBUG_STATE,
6352 	    "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n",
6353 	    __func__,
6354 	    delta_msec,
6355 	    delta_cck,
6356 	    delta_ofdm,
6357 	    delta_ht,
6358 	    (delta_msec + delta_cck + delta_ofdm + delta_ht),
6359 	    thresh);
6360 
6361 	/*
6362 	 * If we need a retune, then schedule a single channel scan
6363 	 * to a channel that isn't the currently active one!
6364 	 *
6365 	 * The math from linux iwlwifi:
6366 	 *
6367 	 * if ((delta * 100 / msecs) > threshold)
6368 	 */
6369 	if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) {
6370 		DPRINTF(sc, IWN_DEBUG_ANY,
6371 		    "%s: PLCP error threshold raw (%d) comparison (%d) "
6372 		    "over limit (%d); retune!\n",
6373 		    __func__,
6374 		    (delta_cck + delta_ofdm + delta_ht),
6375 		    (delta_cck + delta_ofdm + delta_ht) * 100,
6376 		    thresh);
6377 	}
6378 }
6379 
6380 /*
6381  * Set STA mode power saving level (between 0 and 5).
6382  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
6383  */
6384 static int
6385 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
6386 {
6387 	struct iwn_pmgt_cmd cmd;
6388 	const struct iwn_pmgt *pmgt;
6389 	uint32_t max, skip_dtim;
6390 	uint32_t reg;
6391 	int i;
6392 
6393 	DPRINTF(sc, IWN_DEBUG_PWRSAVE,
6394 	    "%s: dtim=%d, level=%d, async=%d\n",
6395 	    __func__,
6396 	    dtim,
6397 	    level,
6398 	    async);
6399 
6400 	/* Select which PS parameters to use. */
6401 	if (dtim <= 2)
6402 		pmgt = &iwn_pmgt[0][level];
6403 	else if (dtim <= 10)
6404 		pmgt = &iwn_pmgt[1][level];
6405 	else
6406 		pmgt = &iwn_pmgt[2][level];
6407 
6408 	memset(&cmd, 0, sizeof cmd);
6409 	if (level != 0)	/* not CAM */
6410 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
6411 	if (level == 5)
6412 		cmd.flags |= htole16(IWN_PS_FAST_PD);
6413 	/* Retrieve PCIe Active State Power Management (ASPM). */
6414 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
6415 	if (!(reg & 0x1))	/* L0s Entry disabled. */
6416 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
6417 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
6418 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
6419 
6420 	if (dtim == 0) {
6421 		dtim = 1;
6422 		skip_dtim = 0;
6423 	} else
6424 		skip_dtim = pmgt->skip_dtim;
6425 	if (skip_dtim != 0) {
6426 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
6427 		max = pmgt->intval[4];
6428 		if (max == (uint32_t)-1)
6429 			max = dtim * (skip_dtim + 1);
6430 		else if (max > dtim)
6431 			max = (max / dtim) * dtim;
6432 	} else
6433 		max = dtim;
6434 	for (i = 0; i < 5; i++)
6435 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
6436 
6437 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
6438 	    level);
6439 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
6440 }
6441 
6442 static int
6443 iwn_send_btcoex(struct iwn_softc *sc)
6444 {
6445 	struct iwn_bluetooth cmd;
6446 
6447 	memset(&cmd, 0, sizeof cmd);
6448 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
6449 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
6450 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
6451 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
6452 	    __func__);
6453 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
6454 }
6455 
6456 static int
6457 iwn_send_advanced_btcoex(struct iwn_softc *sc)
6458 {
6459 	static const uint32_t btcoex_3wire[12] = {
6460 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
6461 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
6462 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
6463 	};
6464 	struct iwn6000_btcoex_config btconfig;
6465 	struct iwn2000_btcoex_config btconfig2k;
6466 	struct iwn_btcoex_priotable btprio;
6467 	struct iwn_btcoex_prot btprot;
6468 	int error, i;
6469 	uint8_t flags;
6470 
6471 	memset(&btconfig, 0, sizeof btconfig);
6472 	memset(&btconfig2k, 0, sizeof btconfig2k);
6473 
6474 	flags = IWN_BT_FLAG_COEX6000_MODE_3W <<
6475 	    IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2
6476 
6477 	if (sc->base_params->bt_sco_disable)
6478 		flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6479 	else
6480 		flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6481 
6482 	flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION;
6483 
6484 	/* Default flags result is 145 as old value */
6485 
6486 	/*
6487 	 * Flags value has to be review. Values must change if we
6488 	 * which to disable it
6489 	 */
6490 	if (sc->base_params->bt_session_2) {
6491 		btconfig2k.flags = flags;
6492 		btconfig2k.max_kill = 5;
6493 		btconfig2k.bt3_t7_timer = 1;
6494 		btconfig2k.kill_ack = htole32(0xffff0000);
6495 		btconfig2k.kill_cts = htole32(0xffff0000);
6496 		btconfig2k.sample_time = 2;
6497 		btconfig2k.bt3_t2_timer = 0xc;
6498 
6499 		for (i = 0; i < 12; i++)
6500 			btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]);
6501 		btconfig2k.valid = htole16(0xff);
6502 		btconfig2k.prio_boost = htole32(0xf0);
6503 		DPRINTF(sc, IWN_DEBUG_RESET,
6504 		    "%s: configuring advanced bluetooth coexistence"
6505 		    " session 2, flags : 0x%x\n",
6506 		    __func__,
6507 		    flags);
6508 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k,
6509 		    sizeof(btconfig2k), 1);
6510 	} else {
6511 		btconfig.flags = flags;
6512 		btconfig.max_kill = 5;
6513 		btconfig.bt3_t7_timer = 1;
6514 		btconfig.kill_ack = htole32(0xffff0000);
6515 		btconfig.kill_cts = htole32(0xffff0000);
6516 		btconfig.sample_time = 2;
6517 		btconfig.bt3_t2_timer = 0xc;
6518 
6519 		for (i = 0; i < 12; i++)
6520 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
6521 		btconfig.valid = htole16(0xff);
6522 		btconfig.prio_boost = 0xf0;
6523 		DPRINTF(sc, IWN_DEBUG_RESET,
6524 		    "%s: configuring advanced bluetooth coexistence,"
6525 		    " flags : 0x%x\n",
6526 		    __func__,
6527 		    flags);
6528 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
6529 		    sizeof(btconfig), 1);
6530 	}
6531 
6532 	if (error != 0)
6533 		return error;
6534 
6535 	memset(&btprio, 0, sizeof btprio);
6536 	btprio.calib_init1 = 0x6;
6537 	btprio.calib_init2 = 0x7;
6538 	btprio.calib_periodic_low1 = 0x2;
6539 	btprio.calib_periodic_low2 = 0x3;
6540 	btprio.calib_periodic_high1 = 0x4;
6541 	btprio.calib_periodic_high2 = 0x5;
6542 	btprio.dtim = 0x6;
6543 	btprio.scan52 = 0x8;
6544 	btprio.scan24 = 0xa;
6545 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
6546 	    1);
6547 	if (error != 0)
6548 		return error;
6549 
6550 	/* Force BT state machine change. */
6551 	memset(&btprot, 0, sizeof btprot);
6552 	btprot.open = 1;
6553 	btprot.type = 1;
6554 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6555 	if (error != 0)
6556 		return error;
6557 	btprot.open = 0;
6558 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6559 }
6560 
6561 static int
6562 iwn5000_runtime_calib(struct iwn_softc *sc)
6563 {
6564 	struct iwn5000_calib_config cmd;
6565 
6566 	memset(&cmd, 0, sizeof cmd);
6567 	cmd.ucode.once.enable = 0xffffffff;
6568 	cmd.ucode.once.start = IWN5000_CALIB_DC;
6569 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6570 	    "%s: configuring runtime calibration\n", __func__);
6571 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
6572 }
6573 
6574 static int
6575 iwn_config(struct iwn_softc *sc)
6576 {
6577 	struct iwn_ops *ops = &sc->ops;
6578 	struct ifnet *ifp = sc->sc_ifp;
6579 	struct ieee80211com *ic = ifp->if_l2com;
6580 	uint32_t txmask;
6581 	uint16_t rxchain;
6582 	int error;
6583 
6584 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6585 
6586 	if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET)
6587 	    && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) {
6588 		device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are"
6589 		    " exclusive each together. Review NIC config file. Conf"
6590 		    " :  0x%08x Flags :  0x%08x  \n", __func__,
6591 		    sc->base_params->calib_need,
6592 		    (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET |
6593 		    IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2));
6594 		return (EINVAL);
6595 	}
6596 
6597 	/* Compute temperature calib if needed. Will be send by send calib */
6598 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) {
6599 		error = iwn5000_temp_offset_calib(sc);
6600 		if (error != 0) {
6601 			device_printf(sc->sc_dev,
6602 			    "%s: could not set temperature offset\n", __func__);
6603 			return (error);
6604 		}
6605 	} else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
6606 		error = iwn5000_temp_offset_calibv2(sc);
6607 		if (error != 0) {
6608 			device_printf(sc->sc_dev,
6609 			    "%s: could not compute temperature offset v2\n",
6610 			    __func__);
6611 			return (error);
6612 		}
6613 	}
6614 
6615 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6616 		/* Configure runtime DC calibration. */
6617 		error = iwn5000_runtime_calib(sc);
6618 		if (error != 0) {
6619 			device_printf(sc->sc_dev,
6620 			    "%s: could not configure runtime calibration\n",
6621 			    __func__);
6622 			return error;
6623 		}
6624 	}
6625 
6626 	/* Configure valid TX chains for >=5000 Series. */
6627 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6628 	    IWN_UCODE_API(sc->ucode_rev) > 1) {
6629 		txmask = htole32(sc->txchainmask);
6630 		DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6631 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
6632 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
6633 		    sizeof txmask, 0);
6634 		if (error != 0) {
6635 			device_printf(sc->sc_dev,
6636 			    "%s: could not configure valid TX chains, "
6637 			    "error %d\n", __func__, error);
6638 			return error;
6639 		}
6640 	}
6641 
6642 	/* Configure bluetooth coexistence. */
6643 	error = 0;
6644 
6645 	/* Configure bluetooth coexistence if needed. */
6646 	if (sc->base_params->bt_mode == IWN_BT_ADVANCED)
6647 		error = iwn_send_advanced_btcoex(sc);
6648 	if (sc->base_params->bt_mode == IWN_BT_SIMPLE)
6649 		error = iwn_send_btcoex(sc);
6650 
6651 	if (error != 0) {
6652 		device_printf(sc->sc_dev,
6653 		    "%s: could not configure bluetooth coexistence, error %d\n",
6654 		    __func__, error);
6655 		return error;
6656 	}
6657 
6658 	/* Set mode, channel, RX filter and enable RX. */
6659 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6660 	memset(sc->rxon, 0, sizeof (struct iwn_rxon));
6661 	IEEE80211_ADDR_COPY(sc->rxon->myaddr, IF_LLADDR(ifp));
6662 	IEEE80211_ADDR_COPY(sc->rxon->wlap, IF_LLADDR(ifp));
6663 	sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
6664 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6665 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
6666 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6667 	switch (ic->ic_opmode) {
6668 	case IEEE80211_M_STA:
6669 		sc->rxon->mode = IWN_MODE_STA;
6670 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST);
6671 		break;
6672 	case IEEE80211_M_MONITOR:
6673 		sc->rxon->mode = IWN_MODE_MONITOR;
6674 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST |
6675 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
6676 		break;
6677 	default:
6678 		/* Should not get there. */
6679 		break;
6680 	}
6681 	sc->rxon->cck_mask  = 0x0f;	/* not yet negotiated */
6682 	sc->rxon->ofdm_mask = 0xff;	/* not yet negotiated */
6683 	sc->rxon->ht_single_mask = 0xff;
6684 	sc->rxon->ht_dual_mask = 0xff;
6685 	sc->rxon->ht_triple_mask = 0xff;
6686 	/*
6687 	 * In active association mode, ensure that
6688 	 * all the receive chains are enabled.
6689 	 *
6690 	 * Since we're not yet doing SMPS, don't allow the
6691 	 * number of idle RX chains to be less than the active
6692 	 * number.
6693 	 */
6694 	rxchain =
6695 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6696 	    IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) |
6697 	    IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains);
6698 	sc->rxon->rxchain = htole16(rxchain);
6699 	DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6700 	    "%s: rxchainmask=0x%x, nrxchains=%d\n",
6701 	    __func__,
6702 	    sc->rxchainmask,
6703 	    sc->nrxchains);
6704 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__);
6705 	if (sc->sc_is_scanning)
6706 		device_printf(sc->sc_dev,
6707 		    "%s: is_scanning set, before RXON\n",
6708 		    __func__);
6709 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 0);
6710 	if (error != 0) {
6711 		device_printf(sc->sc_dev, "%s: RXON command failed\n",
6712 		    __func__);
6713 		return error;
6714 	}
6715 
6716 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
6717 		device_printf(sc->sc_dev, "%s: could not add broadcast node\n",
6718 		    __func__);
6719 		return error;
6720 	}
6721 
6722 	/* Configuration has changed, set TX power accordingly. */
6723 	if ((error = ops->set_txpower(sc, ic->ic_curchan, 0)) != 0) {
6724 		device_printf(sc->sc_dev, "%s: could not set TX power\n",
6725 		    __func__);
6726 		return error;
6727 	}
6728 
6729 	if ((error = iwn_set_critical_temp(sc)) != 0) {
6730 		device_printf(sc->sc_dev,
6731 		    "%s: could not set critical temperature\n", __func__);
6732 		return error;
6733 	}
6734 
6735 	/* Set power saving level to CAM during initialization. */
6736 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
6737 		device_printf(sc->sc_dev,
6738 		    "%s: could not set power saving level\n", __func__);
6739 		return error;
6740 	}
6741 
6742 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6743 
6744 	return 0;
6745 }
6746 
6747 static uint16_t
6748 iwn_get_active_dwell_time(struct iwn_softc *sc,
6749     struct ieee80211_channel *c, uint8_t n_probes)
6750 {
6751 	/* No channel? Default to 2GHz settings */
6752 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6753 		return (IWN_ACTIVE_DWELL_TIME_2GHZ +
6754 		IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
6755 	}
6756 
6757 	/* 5GHz dwell time */
6758 	return (IWN_ACTIVE_DWELL_TIME_5GHZ +
6759 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
6760 }
6761 
6762 /*
6763  * Limit the total dwell time to 85% of the beacon interval.
6764  *
6765  * Returns the dwell time in milliseconds.
6766  */
6767 static uint16_t
6768 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
6769 {
6770 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
6771 	struct ieee80211vap *vap = NULL;
6772 	int bintval = 0;
6773 
6774 	/* bintval is in TU (1.024mS) */
6775 	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
6776 		vap = TAILQ_FIRST(&ic->ic_vaps);
6777 		bintval = vap->iv_bss->ni_intval;
6778 	}
6779 
6780 	/*
6781 	 * If it's non-zero, we should calculate the minimum of
6782 	 * it and the DWELL_BASE.
6783 	 *
6784 	 * XXX Yes, the math should take into account that bintval
6785 	 * is 1.024mS, not 1mS..
6786 	 */
6787 	if (bintval > 0) {
6788 		DPRINTF(sc, IWN_DEBUG_SCAN,
6789 		    "%s: bintval=%d\n",
6790 		    __func__,
6791 		    bintval);
6792 		return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
6793 	}
6794 
6795 	/* No association context? Default */
6796 	return (IWN_PASSIVE_DWELL_BASE);
6797 }
6798 
6799 static uint16_t
6800 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c)
6801 {
6802 	uint16_t passive;
6803 
6804 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6805 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
6806 	} else {
6807 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
6808 	}
6809 
6810 	/* Clamp to the beacon interval if we're associated */
6811 	return (iwn_limit_dwell(sc, passive));
6812 }
6813 
6814 static int
6815 iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap,
6816     struct ieee80211_scan_state *ss, struct ieee80211_channel *c)
6817 {
6818 	struct ifnet *ifp = sc->sc_ifp;
6819 	struct ieee80211com *ic = ifp->if_l2com;
6820 	struct ieee80211_node *ni = vap->iv_bss;
6821 	struct iwn_scan_hdr *hdr;
6822 	struct iwn_cmd_data *tx;
6823 	struct iwn_scan_essid *essid;
6824 	struct iwn_scan_chan *chan;
6825 	struct ieee80211_frame *wh;
6826 	struct ieee80211_rateset *rs;
6827 	uint8_t *buf, *frm;
6828 	uint16_t rxchain;
6829 	uint8_t txant;
6830 	int buflen, error;
6831 	int is_active;
6832 	uint16_t dwell_active, dwell_passive;
6833 	uint32_t extra, scan_service_time;
6834 
6835 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6836 
6837 	/*
6838 	 * We are absolutely not allowed to send a scan command when another
6839 	 * scan command is pending.
6840 	 */
6841 	if (sc->sc_is_scanning) {
6842 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
6843 		    __func__);
6844 		return (EAGAIN);
6845 	}
6846 
6847 	/* Assign the scan channel */
6848 	c = ic->ic_curchan;
6849 
6850 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6851 	buf = kmalloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_INTWAIT | M_ZERO);
6852 	if (buf == NULL) {
6853 		device_printf(sc->sc_dev,
6854 		    "%s: could not allocate buffer for scan command\n",
6855 		    __func__);
6856 		return ENOMEM;
6857 	}
6858 	hdr = (struct iwn_scan_hdr *)buf;
6859 	/*
6860 	 * Move to the next channel if no frames are received within 10ms
6861 	 * after sending the probe request.
6862 	 */
6863 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
6864 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
6865 	/*
6866 	 * Max needs to be greater than active and passive and quiet!
6867 	 * It's also in microseconds!
6868 	 */
6869 	hdr->max_svc = htole32(250 * 1024);
6870 
6871 	/*
6872 	 * Reset scan: interval=100
6873 	 * Normal scan: interval=becaon interval
6874 	 * suspend_time: 100 (TU)
6875 	 *
6876 	 */
6877 	extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22;
6878 	//scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024);
6879 	scan_service_time = (4 << 22) | (100 * 1024);	/* Hardcode for now! */
6880 	hdr->pause_svc = htole32(scan_service_time);
6881 
6882 	/* Select antennas for scanning. */
6883 	rxchain =
6884 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6885 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
6886 	    IWN_RXCHAIN_DRIVER_FORCE;
6887 	if (IEEE80211_IS_CHAN_A(c) &&
6888 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
6889 		/* Ant A must be avoided in 5GHz because of an HW bug. */
6890 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
6891 	} else	/* Use all available RX antennas. */
6892 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
6893 	hdr->rxchain = htole16(rxchain);
6894 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
6895 
6896 	tx = (struct iwn_cmd_data *)(hdr + 1);
6897 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
6898 	tx->id = sc->broadcast_id;
6899 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
6900 
6901 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
6902 		/* Send probe requests at 6Mbps. */
6903 		tx->rate = htole32(0xd);
6904 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
6905 	} else {
6906 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
6907 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
6908 		    sc->rxon->associd && sc->rxon->chan > 14)
6909 			tx->rate = htole32(0xd);
6910 		else {
6911 			/* Send probe requests at 1Mbps. */
6912 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
6913 		}
6914 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
6915 	}
6916 	/* Use the first valid TX antenna. */
6917 	txant = IWN_LSB(sc->txchainmask);
6918 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
6919 
6920 	/*
6921 	 * Only do active scanning if we're announcing a probe request
6922 	 * for a given SSID (or more, if we ever add it to the driver.)
6923 	 */
6924 	is_active = 0;
6925 
6926 	/*
6927 	 * If we're scanning for a specific SSID, add it to the command.
6928 	 *
6929 	 * XXX maybe look at adding support for scanning multiple SSIDs?
6930 	 */
6931 	essid = (struct iwn_scan_essid *)(tx + 1);
6932 	if (ss != NULL) {
6933 		if (ss->ss_ssid[0].len != 0) {
6934 			essid[0].id = IEEE80211_ELEMID_SSID;
6935 			essid[0].len = ss->ss_ssid[0].len;
6936 			memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
6937 		}
6938 
6939 		DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n",
6940 		    __func__,
6941 		    ss->ss_ssid[0].len,
6942 		    ss->ss_ssid[0].len,
6943 		    ss->ss_ssid[0].ssid);
6944 
6945 		if (ss->ss_nssid > 0)
6946 			is_active = 1;
6947 	}
6948 
6949 	/*
6950 	 * Build a probe request frame.  Most of the following code is a
6951 	 * copy & paste of what is done in net80211.
6952 	 */
6953 	wh = (struct ieee80211_frame *)(essid + 20);
6954 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
6955 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
6956 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
6957 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
6958 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
6959 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
6960 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
6961 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
6962 
6963 	frm = (uint8_t *)(wh + 1);
6964 	frm = ieee80211_add_ssid(frm, NULL, 0);
6965 	frm = ieee80211_add_rates(frm, rs);
6966 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
6967 		frm = ieee80211_add_xrates(frm, rs);
6968 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
6969 		frm = ieee80211_add_htcap(frm, ni);
6970 
6971 	/* Set length of probe request. */
6972 	tx->len = htole16(frm - (uint8_t *)wh);
6973 
6974 	/*
6975 	 * If active scanning is requested but a certain channel is
6976 	 * marked passive, we can do active scanning if we detect
6977 	 * transmissions.
6978 	 *
6979 	 * There is an issue with some firmware versions that triggers
6980 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
6981 	 * on a radar channel even though this means that we should NOT
6982 	 * send probes.
6983 	 *
6984 	 * The "good CRC threshold" is the number of frames that we
6985 	 * need to receive during our dwell time on a channel before
6986 	 * sending out probes -- setting this to a huge value will
6987 	 * mean we never reach it, but at the same time work around
6988 	 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER
6989 	 * here instead of IWL_GOOD_CRC_TH_DISABLED.
6990 	 *
6991 	 * This was fixed in later versions along with some other
6992 	 * scan changes, and the threshold behaves as a flag in those
6993 	 * versions.
6994 	 */
6995 
6996 	/*
6997 	 * If we're doing active scanning, set the crc_threshold
6998 	 * to a suitable value.  This is different to active veruss
6999 	 * passive scanning depending upon the channel flags; the
7000 	 * firmware will obey that particular check for us.
7001 	 */
7002 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
7003 		hdr->crc_threshold = is_active ?
7004 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
7005 	else
7006 		hdr->crc_threshold = is_active ?
7007 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
7008 
7009 	chan = (struct iwn_scan_chan *)frm;
7010 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
7011 	chan->flags = 0;
7012 	if (ss->ss_nssid > 0)
7013 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
7014 	chan->dsp_gain = 0x6e;
7015 
7016 	/*
7017 	 * Set the passive/active flag depending upon the channel mode.
7018 	 * XXX TODO: take the is_active flag into account as well?
7019 	 */
7020 	if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
7021 		chan->flags |= htole32(IWN_CHAN_PASSIVE);
7022 	else
7023 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
7024 
7025 	/*
7026 	 * Calculate the active/passive dwell times.
7027 	 */
7028 
7029 	dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid);
7030 	dwell_passive = iwn_get_passive_dwell_time(sc, c);
7031 
7032 	/* Make sure they're valid */
7033 	if (dwell_passive <= dwell_active)
7034 		dwell_passive = dwell_active + 1;
7035 
7036 	chan->active = htole16(dwell_active);
7037 	chan->passive = htole16(dwell_passive);
7038 
7039 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
7040 	    !(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
7041 		chan->rf_gain = 0x3b;
7042 	} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
7043 		chan->rf_gain = 0x3b;
7044 	} else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
7045 		chan->rf_gain = 0x28;
7046 	} else {
7047 		chan->rf_gain = 0x28;
7048 	}
7049 
7050 	DPRINTF(sc, IWN_DEBUG_STATE,
7051 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
7052 	    "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x "
7053 	    "isactive=%d numssid=%d\n", __func__,
7054 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
7055 	    dwell_active, dwell_passive, scan_service_time,
7056 	    hdr->crc_threshold, is_active, ss->ss_nssid);
7057 
7058 	hdr->nchan++;
7059 	chan++;
7060 	buflen = (uint8_t *)chan - buf;
7061 	hdr->len = htole16(buflen);
7062 
7063 	if (sc->sc_is_scanning) {
7064 		device_printf(sc->sc_dev,
7065 		    "%s: called with is_scanning set!\n",
7066 		    __func__);
7067 	}
7068 	sc->sc_is_scanning = 1;
7069 
7070 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
7071 	    hdr->nchan);
7072 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
7073 	kfree(buf, M_DEVBUF);
7074 
7075 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7076 
7077 	return error;
7078 }
7079 
7080 static int
7081 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
7082 {
7083 	struct iwn_ops *ops = &sc->ops;
7084 	struct ifnet *ifp = sc->sc_ifp;
7085 	struct ieee80211com *ic = ifp->if_l2com;
7086 	struct ieee80211_node *ni = vap->iv_bss;
7087 	int error;
7088 
7089 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7090 
7091 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7092 	/* Update adapter configuration. */
7093 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7094 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7095 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7096 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7097 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7098 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7099 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7100 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7101 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7102 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7103 		sc->rxon->cck_mask  = 0;
7104 		sc->rxon->ofdm_mask = 0x15;
7105 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7106 		sc->rxon->cck_mask  = 0x03;
7107 		sc->rxon->ofdm_mask = 0;
7108 	} else {
7109 		/* Assume 802.11b/g. */
7110 		sc->rxon->cck_mask  = 0x03;
7111 		sc->rxon->ofdm_mask = 0x15;
7112 	}
7113 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
7114 	    sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask,
7115 	    sc->rxon->ofdm_mask);
7116 	if (sc->sc_is_scanning)
7117 		device_printf(sc->sc_dev,
7118 		    "%s: is_scanning set, before RXON\n",
7119 		    __func__);
7120 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
7121 	if (error != 0) {
7122 		device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n",
7123 		    __func__, error);
7124 		return error;
7125 	}
7126 
7127 	/* Configuration has changed, set TX power accordingly. */
7128 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
7129 		device_printf(sc->sc_dev,
7130 		    "%s: could not set TX power, error %d\n", __func__, error);
7131 		return error;
7132 	}
7133 	/*
7134 	 * Reconfiguring RXON clears the firmware nodes table so we must
7135 	 * add the broadcast node again.
7136 	 */
7137 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
7138 		device_printf(sc->sc_dev,
7139 		    "%s: could not add broadcast node, error %d\n", __func__,
7140 		    error);
7141 		return error;
7142 	}
7143 
7144 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7145 
7146 	return 0;
7147 }
7148 
7149 static int
7150 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
7151 {
7152 	struct iwn_ops *ops = &sc->ops;
7153 	struct ifnet *ifp = sc->sc_ifp;
7154 	struct ieee80211com *ic = ifp->if_l2com;
7155 	struct ieee80211_node *ni = vap->iv_bss;
7156 	struct iwn_node_info node;
7157 	uint32_t htflags = 0;
7158 	int error;
7159 
7160 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7161 
7162 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7163 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
7164 		/* Link LED blinks while monitoring. */
7165 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
7166 		return 0;
7167 	}
7168 	if ((error = iwn_set_timing(sc, ni)) != 0) {
7169 		device_printf(sc->sc_dev,
7170 		    "%s: could not set timing, error %d\n", __func__, error);
7171 		return error;
7172 	}
7173 
7174 	/* Update adapter configuration. */
7175 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7176 	sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd));
7177 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7178 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7179 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7180 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7181 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7182 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7183 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7184 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7185 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7186 		sc->rxon->cck_mask  = 0;
7187 		sc->rxon->ofdm_mask = 0x15;
7188 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7189 		sc->rxon->cck_mask  = 0x03;
7190 		sc->rxon->ofdm_mask = 0;
7191 	} else {
7192 		/* Assume 802.11b/g. */
7193 		sc->rxon->cck_mask  = 0x0f;
7194 		sc->rxon->ofdm_mask = 0x15;
7195 	}
7196 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
7197 		htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
7198 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
7199 			switch (ic->ic_curhtprotmode) {
7200 			case IEEE80211_HTINFO_OPMODE_HT20PR:
7201 				htflags |= IWN_RXON_HT_MODEPURE40;
7202 				break;
7203 			default:
7204 				htflags |= IWN_RXON_HT_MODEMIXED;
7205 				break;
7206 			}
7207 		}
7208 		if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
7209 			htflags |= IWN_RXON_HT_HT40MINUS;
7210 	}
7211 	sc->rxon->flags |= htole32(htflags);
7212 	sc->rxon->filter |= htole32(IWN_FILTER_BSS);
7213 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x\n",
7214 	    sc->rxon->chan, sc->rxon->flags);
7215 	if (sc->sc_is_scanning)
7216 		device_printf(sc->sc_dev,
7217 		    "%s: is_scanning set, before RXON\n",
7218 		    __func__);
7219 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
7220 	if (error != 0) {
7221 		device_printf(sc->sc_dev,
7222 		    "%s: could not update configuration, error %d\n", __func__,
7223 		    error);
7224 		return error;
7225 	}
7226 
7227 	/* Configuration has changed, set TX power accordingly. */
7228 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
7229 		device_printf(sc->sc_dev,
7230 		    "%s: could not set TX power, error %d\n", __func__, error);
7231 		return error;
7232 	}
7233 
7234 	/* Fake a join to initialize the TX rate. */
7235 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
7236 	iwn_newassoc(ni, 1);
7237 
7238 	/* Add BSS node. */
7239 	memset(&node, 0, sizeof node);
7240 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
7241 	node.id = IWN_ID_BSS;
7242 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
7243 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
7244 		case IEEE80211_HTCAP_SMPS_ENA:
7245 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
7246 			break;
7247 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
7248 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
7249 			break;
7250 		}
7251 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
7252 		    IWN_AMDPU_DENSITY(5));	/* 4us */
7253 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
7254 			node.htflags |= htole32(IWN_NODE_HT40);
7255 	}
7256 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
7257 	error = ops->add_node(sc, &node, 1);
7258 	if (error != 0) {
7259 		device_printf(sc->sc_dev,
7260 		    "%s: could not add BSS node, error %d\n", __func__, error);
7261 		return error;
7262 	}
7263 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
7264 	    __func__, node.id);
7265 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
7266 		device_printf(sc->sc_dev,
7267 		    "%s: could not setup link quality for node %d, error %d\n",
7268 		    __func__, node.id, error);
7269 		return error;
7270 	}
7271 
7272 	if ((error = iwn_init_sensitivity(sc)) != 0) {
7273 		device_printf(sc->sc_dev,
7274 		    "%s: could not set sensitivity, error %d\n", __func__,
7275 		    error);
7276 		return error;
7277 	}
7278 	/* Start periodic calibration timer. */
7279 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
7280 	sc->calib_cnt = 0;
7281 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
7282 	    sc);
7283 
7284 	/* Link LED always on while associated. */
7285 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
7286 
7287 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7288 
7289 	return 0;
7290 }
7291 
7292 /*
7293  * This function is called by upper layer when an ADDBA request is received
7294  * from another STA and before the ADDBA response is sent.
7295  */
7296 static int
7297 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
7298     int baparamset, int batimeout, int baseqctl)
7299 {
7300 #define MS(_v, _f)	(((_v) & _f) >> _f##_S)
7301 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7302 	struct iwn_ops *ops = &sc->ops;
7303 	struct iwn_node *wn = (void *)ni;
7304 	struct iwn_node_info node;
7305 	uint16_t ssn;
7306 	uint8_t tid;
7307 	int error;
7308 
7309 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7310 
7311 	tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID);
7312 	ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START);
7313 
7314 	memset(&node, 0, sizeof node);
7315 	node.id = wn->id;
7316 	node.control = IWN_NODE_UPDATE;
7317 	node.flags = IWN_FLAG_SET_ADDBA;
7318 	node.addba_tid = tid;
7319 	node.addba_ssn = htole16(ssn);
7320 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
7321 	    wn->id, tid, ssn);
7322 	error = ops->add_node(sc, &node, 1);
7323 	if (error != 0)
7324 		return error;
7325 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
7326 #undef MS
7327 }
7328 
7329 /*
7330  * This function is called by upper layer on teardown of an HT-immediate
7331  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
7332  */
7333 static void
7334 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
7335 {
7336 	struct ieee80211com *ic = ni->ni_ic;
7337 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
7338 	struct iwn_ops *ops = &sc->ops;
7339 	struct iwn_node *wn = (void *)ni;
7340 	struct iwn_node_info node;
7341 	uint8_t tid;
7342 
7343 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7344 
7345 	/* XXX: tid as an argument */
7346 	for (tid = 0; tid < WME_NUM_TID; tid++) {
7347 		if (&ni->ni_rx_ampdu[tid] == rap)
7348 			break;
7349 	}
7350 
7351 	memset(&node, 0, sizeof node);
7352 	node.id = wn->id;
7353 	node.control = IWN_NODE_UPDATE;
7354 	node.flags = IWN_FLAG_SET_DELBA;
7355 	node.delba_tid = tid;
7356 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
7357 	(void)ops->add_node(sc, &node, 1);
7358 	sc->sc_ampdu_rx_stop(ni, rap);
7359 }
7360 
7361 static int
7362 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7363     int dialogtoken, int baparamset, int batimeout)
7364 {
7365 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7366 	int qid;
7367 
7368 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7369 
7370 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
7371 		if (sc->qid2tap[qid] == NULL)
7372 			break;
7373 	}
7374 	if (qid == sc->ntxqs) {
7375 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
7376 		    __func__);
7377 		return 0;
7378 	}
7379 	tap->txa_private = kmalloc(sizeof(int), M_DEVBUF, M_INTWAIT);
7380 	if (tap->txa_private == NULL) {
7381 		device_printf(sc->sc_dev,
7382 		    "%s: failed to alloc TX aggregation structure\n", __func__);
7383 		return 0;
7384 	}
7385 	sc->qid2tap[qid] = tap;
7386 	*(int *)tap->txa_private = qid;
7387 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
7388 	    batimeout);
7389 }
7390 
7391 static int
7392 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7393     int code, int baparamset, int batimeout)
7394 {
7395 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7396 	int qid = *(int *)tap->txa_private;
7397 	uint8_t tid = tap->txa_tid;
7398 	int ret;
7399 
7400 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7401 
7402 	if (code == IEEE80211_STATUS_SUCCESS) {
7403 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
7404 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
7405 		if (ret != 1)
7406 			return ret;
7407 	} else {
7408 		sc->qid2tap[qid] = NULL;
7409 		kfree(tap->txa_private, M_DEVBUF);
7410 		tap->txa_private = NULL;
7411 	}
7412 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
7413 }
7414 
7415 /*
7416  * This function is called by upper layer when an ADDBA response is received
7417  * from another STA.
7418  */
7419 static int
7420 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
7421     uint8_t tid)
7422 {
7423 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
7424 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7425 	struct iwn_ops *ops = &sc->ops;
7426 	struct iwn_node *wn = (void *)ni;
7427 	struct iwn_node_info node;
7428 	int error, qid;
7429 
7430 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7431 
7432 	/* Enable TX for the specified RA/TID. */
7433 	wn->disable_tid &= ~(1 << tid);
7434 	memset(&node, 0, sizeof node);
7435 	node.id = wn->id;
7436 	node.control = IWN_NODE_UPDATE;
7437 	node.flags = IWN_FLAG_SET_DISABLE_TID;
7438 	node.disable_tid = htole16(wn->disable_tid);
7439 	error = ops->add_node(sc, &node, 1);
7440 	if (error != 0)
7441 		return 0;
7442 
7443 	if ((error = iwn_nic_lock(sc)) != 0)
7444 		return 0;
7445 	qid = *(int *)tap->txa_private;
7446 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
7447 	    __func__, wn->id, tid, tap->txa_start, qid);
7448 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
7449 	iwn_nic_unlock(sc);
7450 
7451 	iwn_set_link_quality(sc, ni);
7452 	return 1;
7453 }
7454 
7455 static void
7456 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
7457 {
7458 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7459 	struct iwn_ops *ops = &sc->ops;
7460 	uint8_t tid = tap->txa_tid;
7461 	int qid;
7462 
7463 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7464 
7465 	sc->sc_addba_stop(ni, tap);
7466 
7467 	if (tap->txa_private == NULL)
7468 		return;
7469 
7470 	qid = *(int *)tap->txa_private;
7471 	if (sc->txq[qid].queued != 0)
7472 		return;
7473 	if (iwn_nic_lock(sc) != 0)
7474 		return;
7475 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
7476 	iwn_nic_unlock(sc);
7477 	sc->qid2tap[qid] = NULL;
7478 	kfree(tap->txa_private, M_DEVBUF);
7479 	tap->txa_private = NULL;
7480 }
7481 
7482 static void
7483 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7484     int qid, uint8_t tid, uint16_t ssn)
7485 {
7486 	struct iwn_node *wn = (void *)ni;
7487 
7488 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7489 
7490 	/* Stop TX scheduler while we're changing its configuration. */
7491 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7492 	    IWN4965_TXQ_STATUS_CHGACT);
7493 
7494 	/* Assign RA/TID translation to the queue. */
7495 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
7496 	    wn->id << 4 | tid);
7497 
7498 	/* Enable chain-building mode for the queue. */
7499 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
7500 
7501 	/* Set starting sequence number from the ADDBA request. */
7502 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7503 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7504 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7505 
7506 	/* Set scheduler window size. */
7507 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
7508 	    IWN_SCHED_WINSZ);
7509 	/* Set scheduler frame limit. */
7510 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7511 	    IWN_SCHED_LIMIT << 16);
7512 
7513 	/* Enable interrupts for the queue. */
7514 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7515 
7516 	/* Mark the queue as active. */
7517 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7518 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
7519 	    iwn_tid2fifo[tid] << 1);
7520 }
7521 
7522 static void
7523 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7524 {
7525 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7526 
7527 	/* Stop TX scheduler while we're changing its configuration. */
7528 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7529 	    IWN4965_TXQ_STATUS_CHGACT);
7530 
7531 	/* Set starting sequence number from the ADDBA request. */
7532 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7533 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7534 
7535 	/* Disable interrupts for the queue. */
7536 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7537 
7538 	/* Mark the queue as inactive. */
7539 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7540 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
7541 }
7542 
7543 static void
7544 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7545     int qid, uint8_t tid, uint16_t ssn)
7546 {
7547 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7548 
7549 	struct iwn_node *wn = (void *)ni;
7550 
7551 	/* Stop TX scheduler while we're changing its configuration. */
7552 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7553 	    IWN5000_TXQ_STATUS_CHGACT);
7554 
7555 	/* Assign RA/TID translation to the queue. */
7556 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
7557 	    wn->id << 4 | tid);
7558 
7559 	/* Enable chain-building mode for the queue. */
7560 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
7561 
7562 	/* Enable aggregation for the queue. */
7563 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7564 
7565 	/* Set starting sequence number from the ADDBA request. */
7566 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7567 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7568 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7569 
7570 	/* Set scheduler window size and frame limit. */
7571 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7572 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7573 
7574 	/* Enable interrupts for the queue. */
7575 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7576 
7577 	/* Mark the queue as active. */
7578 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7579 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
7580 }
7581 
7582 static void
7583 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7584 {
7585 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7586 
7587 	/* Stop TX scheduler while we're changing its configuration. */
7588 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7589 	    IWN5000_TXQ_STATUS_CHGACT);
7590 
7591 	/* Disable aggregation for the queue. */
7592 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7593 
7594 	/* Set starting sequence number from the ADDBA request. */
7595 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7596 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7597 
7598 	/* Disable interrupts for the queue. */
7599 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7600 
7601 	/* Mark the queue as inactive. */
7602 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7603 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
7604 }
7605 
7606 /*
7607  * Query calibration tables from the initialization firmware.  We do this
7608  * only once at first boot.  Called from a process context.
7609  */
7610 static int
7611 iwn5000_query_calibration(struct iwn_softc *sc)
7612 {
7613 	struct iwn5000_calib_config cmd;
7614 	int error;
7615 
7616 	memset(&cmd, 0, sizeof cmd);
7617 	cmd.ucode.once.enable = htole32(0xffffffff);
7618 	cmd.ucode.once.start  = htole32(0xffffffff);
7619 	cmd.ucode.once.send   = htole32(0xffffffff);
7620 	cmd.ucode.flags       = htole32(0xffffffff);
7621 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
7622 	    __func__);
7623 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
7624 	if (error != 0)
7625 		return error;
7626 
7627 	/* Wait at most two seconds for calibration to complete. */
7628 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
7629 		error = iwn_sleep(sc, sc, PCATCH, "iwncal", 2 * hz);
7630 	return error;
7631 }
7632 
7633 /*
7634  * Send calibration results to the runtime firmware.  These results were
7635  * obtained on first boot from the initialization firmware.
7636  */
7637 static int
7638 iwn5000_send_calibration(struct iwn_softc *sc)
7639 {
7640 	int idx, error;
7641 
7642 	for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) {
7643 		if (!(sc->base_params->calib_need & (1<<idx))) {
7644 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7645 			    "No need of calib %d\n",
7646 			    idx);
7647 			continue; /* no need for this calib */
7648 		}
7649 		if (sc->calibcmd[idx].buf == NULL) {
7650 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7651 			    "Need calib idx : %d but no available data\n",
7652 			    idx);
7653 			continue;
7654 		}
7655 
7656 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7657 		    "send calibration result idx=%d len=%d\n", idx,
7658 		    sc->calibcmd[idx].len);
7659 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
7660 		    sc->calibcmd[idx].len, 0);
7661 		if (error != 0) {
7662 			device_printf(sc->sc_dev,
7663 			    "%s: could not send calibration result, error %d\n",
7664 			    __func__, error);
7665 			return error;
7666 		}
7667 	}
7668 	return 0;
7669 }
7670 
7671 static int
7672 iwn5000_send_wimax_coex(struct iwn_softc *sc)
7673 {
7674 	struct iwn5000_wimax_coex wimax;
7675 
7676 #if 0
7677 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
7678 		/* Enable WiMAX coexistence for combo adapters. */
7679 		wimax.flags =
7680 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
7681 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
7682 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
7683 		    IWN_WIMAX_COEX_ENABLE;
7684 		memcpy(wimax.events, iwn6050_wimax_events,
7685 		    sizeof iwn6050_wimax_events);
7686 	} else
7687 #endif
7688 	{
7689 		/* Disable WiMAX coexistence. */
7690 		wimax.flags = 0;
7691 		memset(wimax.events, 0, sizeof wimax.events);
7692 	}
7693 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
7694 	    __func__);
7695 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
7696 }
7697 
7698 static int
7699 iwn5000_crystal_calib(struct iwn_softc *sc)
7700 {
7701 	struct iwn5000_phy_calib_crystal cmd;
7702 
7703 	memset(&cmd, 0, sizeof cmd);
7704 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
7705 	cmd.ngroups = 1;
7706 	cmd.isvalid = 1;
7707 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
7708 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
7709 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
7710 	    cmd.cap_pin[0], cmd.cap_pin[1]);
7711 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7712 }
7713 
7714 static int
7715 iwn5000_temp_offset_calib(struct iwn_softc *sc)
7716 {
7717 	struct iwn5000_phy_calib_temp_offset cmd;
7718 
7719 	memset(&cmd, 0, sizeof cmd);
7720 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7721 	cmd.ngroups = 1;
7722 	cmd.isvalid = 1;
7723 	if (sc->eeprom_temp != 0)
7724 		cmd.offset = htole16(sc->eeprom_temp);
7725 	else
7726 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
7727 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
7728 	    le16toh(cmd.offset));
7729 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7730 }
7731 
7732 static int
7733 iwn5000_temp_offset_calibv2(struct iwn_softc *sc)
7734 {
7735 	struct iwn5000_phy_calib_temp_offsetv2 cmd;
7736 
7737 	memset(&cmd, 0, sizeof cmd);
7738 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7739 	cmd.ngroups = 1;
7740 	cmd.isvalid = 1;
7741 	if (sc->eeprom_temp != 0) {
7742 		cmd.offset_low = htole16(sc->eeprom_temp);
7743 		cmd.offset_high = htole16(sc->eeprom_temp_high);
7744 	} else {
7745 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
7746 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
7747 	}
7748 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
7749 
7750 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7751 	    "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n",
7752 	    le16toh(cmd.offset_low),
7753 	    le16toh(cmd.offset_high),
7754 	    le16toh(cmd.burnt_voltage_ref));
7755 
7756 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7757 }
7758 
7759 /*
7760  * This function is called after the runtime firmware notifies us of its
7761  * readiness (called in a process context).
7762  */
7763 static int
7764 iwn4965_post_alive(struct iwn_softc *sc)
7765 {
7766 	int error, qid;
7767 
7768 	if ((error = iwn_nic_lock(sc)) != 0)
7769 		return error;
7770 
7771 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7772 
7773 	/* Clear TX scheduler state in SRAM. */
7774 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7775 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
7776 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
7777 
7778 	/* Set physical address of TX scheduler rings (1KB aligned). */
7779 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7780 
7781 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7782 
7783 	/* Disable chain mode for all our 16 queues. */
7784 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
7785 
7786 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
7787 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
7788 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7789 
7790 		/* Set scheduler window size. */
7791 		iwn_mem_write(sc, sc->sched_base +
7792 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
7793 		/* Set scheduler frame limit. */
7794 		iwn_mem_write(sc, sc->sched_base +
7795 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7796 		    IWN_SCHED_LIMIT << 16);
7797 	}
7798 
7799 	/* Enable interrupts for all our 16 queues. */
7800 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
7801 	/* Identify TX FIFO rings (0-7). */
7802 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
7803 
7804 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7805 	for (qid = 0; qid < 7; qid++) {
7806 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
7807 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7808 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
7809 	}
7810 	iwn_nic_unlock(sc);
7811 	return 0;
7812 }
7813 
7814 /*
7815  * This function is called after the initialization or runtime firmware
7816  * notifies us of its readiness (called in a process context).
7817  */
7818 static int
7819 iwn5000_post_alive(struct iwn_softc *sc)
7820 {
7821 	int error, qid;
7822 
7823 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7824 
7825 	/* Switch to using ICT interrupt mode. */
7826 	iwn5000_ict_reset(sc);
7827 
7828 	if ((error = iwn_nic_lock(sc)) != 0){
7829 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
7830 		return error;
7831 	}
7832 
7833 	/* Clear TX scheduler state in SRAM. */
7834 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7835 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
7836 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
7837 
7838 	/* Set physical address of TX scheduler rings (1KB aligned). */
7839 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7840 
7841 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7842 
7843 	/* Enable chain mode for all queues, except command queue. */
7844 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
7845 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf);
7846 	else
7847 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
7848 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
7849 
7850 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
7851 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
7852 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7853 
7854 		iwn_mem_write(sc, sc->sched_base +
7855 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
7856 		/* Set scheduler window size and frame limit. */
7857 		iwn_mem_write(sc, sc->sched_base +
7858 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7859 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7860 	}
7861 
7862 	/* Enable interrupts for all our 20 queues. */
7863 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
7864 	/* Identify TX FIFO rings (0-7). */
7865 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
7866 
7867 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7868 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) {
7869 		/* Mark TX rings as active. */
7870 		for (qid = 0; qid < 11; qid++) {
7871 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 };
7872 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7873 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7874 		}
7875 	} else {
7876 		/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7877 		for (qid = 0; qid < 7; qid++) {
7878 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
7879 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7880 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7881 		}
7882 	}
7883 	iwn_nic_unlock(sc);
7884 
7885 	/* Configure WiMAX coexistence for combo adapters. */
7886 	error = iwn5000_send_wimax_coex(sc);
7887 	if (error != 0) {
7888 		device_printf(sc->sc_dev,
7889 		    "%s: could not configure WiMAX coexistence, error %d\n",
7890 		    __func__, error);
7891 		return error;
7892 	}
7893 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
7894 		/* Perform crystal calibration. */
7895 		error = iwn5000_crystal_calib(sc);
7896 		if (error != 0) {
7897 			device_printf(sc->sc_dev,
7898 			    "%s: crystal calibration failed, error %d\n",
7899 			    __func__, error);
7900 			return error;
7901 		}
7902 	}
7903 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
7904 		/* Query calibration from the initialization firmware. */
7905 		if ((error = iwn5000_query_calibration(sc)) != 0) {
7906 			device_printf(sc->sc_dev,
7907 			    "%s: could not query calibration, error %d\n",
7908 			    __func__, error);
7909 			return error;
7910 		}
7911 		/*
7912 		 * We have the calibration results now, reboot with the
7913 		 * runtime firmware (call ourselves recursively!)
7914 		 */
7915 		iwn_hw_stop(sc);
7916 		error = iwn_hw_init(sc);
7917 	} else {
7918 		/* Send calibration results to runtime firmware. */
7919 		error = iwn5000_send_calibration(sc);
7920 	}
7921 
7922 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7923 
7924 	return error;
7925 }
7926 
7927 /*
7928  * The firmware boot code is small and is intended to be copied directly into
7929  * the NIC internal memory (no DMA transfer).
7930  */
7931 static int
7932 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
7933 {
7934 	int error, ntries;
7935 
7936 	size /= sizeof (uint32_t);
7937 
7938 	if ((error = iwn_nic_lock(sc)) != 0)
7939 		return error;
7940 
7941 	/* Copy microcode image into NIC memory. */
7942 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
7943 	    (const uint32_t *)ucode, size);
7944 
7945 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
7946 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
7947 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
7948 
7949 	/* Start boot load now. */
7950 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
7951 
7952 	/* Wait for transfer to complete. */
7953 	for (ntries = 0; ntries < 1000; ntries++) {
7954 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
7955 		    IWN_BSM_WR_CTRL_START))
7956 			break;
7957 		DELAY(10);
7958 	}
7959 	if (ntries == 1000) {
7960 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7961 		    __func__);
7962 		iwn_nic_unlock(sc);
7963 		return ETIMEDOUT;
7964 	}
7965 
7966 	/* Enable boot after power up. */
7967 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
7968 
7969 	iwn_nic_unlock(sc);
7970 	return 0;
7971 }
7972 
7973 static int
7974 iwn4965_load_firmware(struct iwn_softc *sc)
7975 {
7976 	struct iwn_fw_info *fw = &sc->fw;
7977 	struct iwn_dma_info *dma = &sc->fw_dma;
7978 	int error;
7979 
7980 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
7981 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
7982 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7983 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7984 	    fw->init.text, fw->init.textsz);
7985 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7986 
7987 	/* Tell adapter where to find initialization sections. */
7988 	if ((error = iwn_nic_lock(sc)) != 0)
7989 		return error;
7990 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7991 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
7992 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7993 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7994 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
7995 	iwn_nic_unlock(sc);
7996 
7997 	/* Load firmware boot code. */
7998 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
7999 	if (error != 0) {
8000 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
8001 		    __func__);
8002 		return error;
8003 	}
8004 	/* Now press "execute". */
8005 	IWN_WRITE(sc, IWN_RESET, 0);
8006 
8007 	/* Wait at most one second for first alive notification. */
8008 	if ((error = iwn_sleep(sc, sc, PCATCH, "iwninit", hz)) != 0) {
8009 		device_printf(sc->sc_dev,
8010 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8011 		    __func__, error);
8012 		return error;
8013 	}
8014 
8015 	/* Retrieve current temperature for initial TX power calibration. */
8016 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
8017 	sc->temp = iwn4965_get_temperature(sc);
8018 
8019 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
8020 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
8021 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8022 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
8023 	    fw->main.text, fw->main.textsz);
8024 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8025 
8026 	/* Tell adapter where to find runtime sections. */
8027 	if ((error = iwn_nic_lock(sc)) != 0)
8028 		return error;
8029 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
8030 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
8031 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
8032 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
8033 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
8034 	    IWN_FW_UPDATED | fw->main.textsz);
8035 	iwn_nic_unlock(sc);
8036 
8037 	return 0;
8038 }
8039 
8040 static int
8041 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
8042     const uint8_t *section, int size)
8043 {
8044 	struct iwn_dma_info *dma = &sc->fw_dma;
8045 	int error;
8046 
8047 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8048 
8049 	/* Copy firmware section into pre-allocated DMA-safe memory. */
8050 	memcpy(dma->vaddr, section, size);
8051 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8052 
8053 	if ((error = iwn_nic_lock(sc)) != 0)
8054 		return error;
8055 
8056 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8057 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
8058 
8059 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
8060 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
8061 	    IWN_LOADDR(dma->paddr));
8062 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
8063 	    IWN_HIADDR(dma->paddr) << 28 | size);
8064 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
8065 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
8066 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
8067 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
8068 
8069 	/* Kick Flow Handler to start DMA transfer. */
8070 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8071 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
8072 
8073 	iwn_nic_unlock(sc);
8074 
8075 	/* Wait at most five seconds for FH DMA transfer to complete. */
8076 	return iwn_sleep(sc, sc, PCATCH, "iwninit", 5 * hz);
8077 }
8078 
8079 static int
8080 iwn5000_load_firmware(struct iwn_softc *sc)
8081 {
8082 	struct iwn_fw_part *fw;
8083 	int error;
8084 
8085 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8086 
8087 	/* Load the initialization firmware on first boot only. */
8088 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
8089 	    &sc->fw.main : &sc->fw.init;
8090 
8091 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
8092 	    fw->text, fw->textsz);
8093 	if (error != 0) {
8094 		device_printf(sc->sc_dev,
8095 		    "%s: could not load firmware %s section, error %d\n",
8096 		    __func__, ".text", error);
8097 		return error;
8098 	}
8099 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
8100 	    fw->data, fw->datasz);
8101 	if (error != 0) {
8102 		device_printf(sc->sc_dev,
8103 		    "%s: could not load firmware %s section, error %d\n",
8104 		    __func__, ".data", error);
8105 		return error;
8106 	}
8107 
8108 	/* Now press "execute". */
8109 	IWN_WRITE(sc, IWN_RESET, 0);
8110 	return 0;
8111 }
8112 
8113 /*
8114  * Extract text and data sections from a legacy firmware image.
8115  */
8116 static int
8117 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
8118 {
8119 	const uint32_t *ptr;
8120 	size_t hdrlen = 24;
8121 	uint32_t rev;
8122 
8123 	ptr = (const uint32_t *)fw->data;
8124 	rev = le32toh(*ptr++);
8125 
8126 	sc->ucode_rev = rev;
8127 
8128 	/* Check firmware API version. */
8129 	if (IWN_FW_API(rev) <= 1) {
8130 		device_printf(sc->sc_dev,
8131 		    "%s: bad firmware, need API version >=2\n", __func__);
8132 		return EINVAL;
8133 	}
8134 	if (IWN_FW_API(rev) >= 3) {
8135 		/* Skip build number (version 2 header). */
8136 		hdrlen += 4;
8137 		ptr++;
8138 	}
8139 	if (fw->size < hdrlen) {
8140 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8141 		    __func__, fw->size);
8142 		return EINVAL;
8143 	}
8144 	fw->main.textsz = le32toh(*ptr++);
8145 	fw->main.datasz = le32toh(*ptr++);
8146 	fw->init.textsz = le32toh(*ptr++);
8147 	fw->init.datasz = le32toh(*ptr++);
8148 	fw->boot.textsz = le32toh(*ptr++);
8149 
8150 	/* Check that all firmware sections fit. */
8151 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
8152 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
8153 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8154 		    __func__, fw->size);
8155 		return EINVAL;
8156 	}
8157 
8158 	/* Get pointers to firmware sections. */
8159 	fw->main.text = (const uint8_t *)ptr;
8160 	fw->main.data = fw->main.text + fw->main.textsz;
8161 	fw->init.text = fw->main.data + fw->main.datasz;
8162 	fw->init.data = fw->init.text + fw->init.textsz;
8163 	fw->boot.text = fw->init.data + fw->init.datasz;
8164 	return 0;
8165 }
8166 
8167 /*
8168  * Extract text and data sections from a TLV firmware image.
8169  */
8170 static int
8171 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
8172     uint16_t alt)
8173 {
8174 	const struct iwn_fw_tlv_hdr *hdr;
8175 	const struct iwn_fw_tlv *tlv;
8176 	const uint8_t *ptr, *end;
8177 	uint64_t altmask;
8178 	uint32_t len, tmp;
8179 
8180 	if (fw->size < sizeof (*hdr)) {
8181 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8182 		    __func__, fw->size);
8183 		return EINVAL;
8184 	}
8185 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
8186 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
8187 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
8188 		    __func__, le32toh(hdr->signature));
8189 		return EINVAL;
8190 	}
8191 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
8192 	    le32toh(hdr->build));
8193 	sc->ucode_rev = le32toh(hdr->rev);
8194 
8195 	/*
8196 	 * Select the closest supported alternative that is less than
8197 	 * or equal to the specified one.
8198 	 */
8199 	altmask = le64toh(hdr->altmask);
8200 	while (alt > 0 && !(altmask & (1ULL << alt)))
8201 		alt--;	/* Downgrade. */
8202 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
8203 
8204 	ptr = (const uint8_t *)(hdr + 1);
8205 	end = (const uint8_t *)(fw->data + fw->size);
8206 
8207 	/* Parse type-length-value fields. */
8208 	while (ptr + sizeof (*tlv) <= end) {
8209 		tlv = (const struct iwn_fw_tlv *)ptr;
8210 		len = le32toh(tlv->len);
8211 
8212 		ptr += sizeof (*tlv);
8213 		if (ptr + len > end) {
8214 			device_printf(sc->sc_dev,
8215 			    "%s: firmware too short: %zu bytes\n", __func__,
8216 			    fw->size);
8217 			return EINVAL;
8218 		}
8219 		/* Skip other alternatives. */
8220 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
8221 			goto next;
8222 
8223 		switch (le16toh(tlv->type)) {
8224 		case IWN_FW_TLV_MAIN_TEXT:
8225 			fw->main.text = ptr;
8226 			fw->main.textsz = len;
8227 			break;
8228 		case IWN_FW_TLV_MAIN_DATA:
8229 			fw->main.data = ptr;
8230 			fw->main.datasz = len;
8231 			break;
8232 		case IWN_FW_TLV_INIT_TEXT:
8233 			fw->init.text = ptr;
8234 			fw->init.textsz = len;
8235 			break;
8236 		case IWN_FW_TLV_INIT_DATA:
8237 			fw->init.data = ptr;
8238 			fw->init.datasz = len;
8239 			break;
8240 		case IWN_FW_TLV_BOOT_TEXT:
8241 			fw->boot.text = ptr;
8242 			fw->boot.textsz = len;
8243 			break;
8244 		case IWN_FW_TLV_ENH_SENS:
8245 			if (!len)
8246 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
8247 			break;
8248 		case IWN_FW_TLV_PHY_CALIB:
8249 			tmp = le32toh(*ptr);
8250 			if (tmp < 253) {
8251 				sc->reset_noise_gain = tmp;
8252 				sc->noise_gain = tmp + 1;
8253 			}
8254 			break;
8255 		case IWN_FW_TLV_PAN:
8256 			sc->sc_flags |= IWN_FLAG_PAN_SUPPORT;
8257 			DPRINTF(sc, IWN_DEBUG_RESET,
8258 			    "PAN Support found: %d\n", 1);
8259 			break;
8260 		case IWN_FW_TLV_FLAGS:
8261 			if (len < sizeof(uint32_t))
8262 				break;
8263 			if (len % sizeof(uint32_t))
8264 				break;
8265 			sc->tlv_feature_flags = le32toh(*ptr);
8266 			DPRINTF(sc, IWN_DEBUG_RESET,
8267 			    "%s: feature: 0x%08x\n",
8268 			    __func__,
8269 			    sc->tlv_feature_flags);
8270 			break;
8271 		case IWN_FW_TLV_PBREQ_MAXLEN:
8272 		case IWN_FW_TLV_RUNT_EVTLOG_PTR:
8273 		case IWN_FW_TLV_RUNT_EVTLOG_SIZE:
8274 		case IWN_FW_TLV_RUNT_ERRLOG_PTR:
8275 		case IWN_FW_TLV_INIT_EVTLOG_PTR:
8276 		case IWN_FW_TLV_INIT_EVTLOG_SIZE:
8277 		case IWN_FW_TLV_INIT_ERRLOG_PTR:
8278 		case IWN_FW_TLV_WOWLAN_INST:
8279 		case IWN_FW_TLV_WOWLAN_DATA:
8280 			DPRINTF(sc, IWN_DEBUG_RESET,
8281 			    "TLV type %d recognized but not handled\n",
8282 			    le16toh(tlv->type));
8283 			break;
8284 		default:
8285 			DPRINTF(sc, IWN_DEBUG_RESET,
8286 			    "TLV type %d not handled\n", le16toh(tlv->type));
8287 			break;
8288 		}
8289  next:		/* TLV fields are 32-bit aligned. */
8290 		ptr += (len + 3) & ~3;
8291 	}
8292 	return 0;
8293 }
8294 
8295 static int
8296 iwn_read_firmware(struct iwn_softc *sc)
8297 {
8298 	struct iwn_fw_info *fw = &sc->fw;
8299 	int error;
8300 
8301 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8302 
8303 	IWN_UNLOCK(sc);
8304 
8305 	memset(fw, 0, sizeof (*fw));
8306 
8307 	/* Read firmware image from filesystem. */
8308 	sc->fw_fp = firmware_get(sc->fwname);
8309 	if (sc->fw_fp == NULL) {
8310 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
8311 		    __func__, sc->fwname);
8312 		IWN_LOCK(sc);
8313 		error = EINVAL;
8314 		goto done;
8315 	}
8316 	IWN_LOCK(sc);
8317 
8318 	fw->size = sc->fw_fp->datasize;
8319 	fw->data = (const uint8_t *)sc->fw_fp->data;
8320 	if (fw->size < sizeof (uint32_t)) {
8321 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8322 		    __func__, fw->size);
8323 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8324 		sc->fw_fp = NULL;
8325 		error = EINVAL;
8326 		goto done;
8327 	}
8328 
8329 	/* Retrieve text and data sections. */
8330 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
8331 		error = iwn_read_firmware_leg(sc, fw);
8332 	else
8333 		error = iwn_read_firmware_tlv(sc, fw, 1);
8334 	if (error != 0) {
8335 		device_printf(sc->sc_dev,
8336 		    "%s: could not read firmware sections, error %d\n",
8337 		    __func__, error);
8338 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8339 		sc->fw_fp = NULL;
8340 		goto done;
8341 	}
8342 
8343 	device_printf(sc->sc_dev, "%s: ucode rev=0x%08x\n", __func__, sc->ucode_rev);
8344 
8345 	/* Make sure text and data sections fit in hardware memory. */
8346 	if (fw->main.textsz > sc->fw_text_maxsz ||
8347 	    fw->main.datasz > sc->fw_data_maxsz ||
8348 	    fw->init.textsz > sc->fw_text_maxsz ||
8349 	    fw->init.datasz > sc->fw_data_maxsz ||
8350 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
8351 	    (fw->boot.textsz & 3) != 0) {
8352 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
8353 		    __func__);
8354 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8355 		sc->fw_fp = NULL;
8356 		error = EINVAL;
8357 	}
8358 	error = 0;
8359 done:
8360 	/* We can proceed with loading the firmware. */
8361 	return error;
8362 }
8363 
8364 static int
8365 iwn_clock_wait(struct iwn_softc *sc)
8366 {
8367 	int ntries;
8368 
8369 	/* Set "initialization complete" bit. */
8370 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8371 
8372 	/* Wait for clock stabilization. */
8373 	for (ntries = 0; ntries < 2500; ntries++) {
8374 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
8375 			return 0;
8376 		DELAY(10);
8377 	}
8378 	device_printf(sc->sc_dev,
8379 	    "%s: timeout waiting for clock stabilization\n", __func__);
8380 	return ETIMEDOUT;
8381 }
8382 
8383 static int
8384 iwn_apm_init(struct iwn_softc *sc)
8385 {
8386 	uint32_t reg;
8387 	int error;
8388 
8389 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8390 
8391 	/* Disable L0s exit timer (NMI bug workaround). */
8392 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
8393 	/* Don't wait for ICH L0s (ICH bug workaround). */
8394 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
8395 
8396 	/* Set FH wait threshold to max (HW bug under stress workaround). */
8397 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
8398 
8399 	/* Enable HAP INTA to move adapter from L1a to L0s. */
8400 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
8401 
8402 	/* Retrieve PCIe Active State Power Management (ASPM). */
8403 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
8404 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
8405 	if (reg & 0x02)	/* L1 Entry enabled. */
8406 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8407 	else
8408 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8409 
8410 	if (sc->base_params->pll_cfg_val)
8411 		IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val);
8412 
8413 	/* Wait for clock stabilization before accessing prph. */
8414 	if ((error = iwn_clock_wait(sc)) != 0)
8415 		return error;
8416 
8417 	if ((error = iwn_nic_lock(sc)) != 0)
8418 		return error;
8419 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
8420 		/* Enable DMA and BSM (Bootstrap State Machine). */
8421 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8422 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
8423 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
8424 	} else {
8425 		/* Enable DMA. */
8426 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8427 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8428 	}
8429 	DELAY(20);
8430 	/* Disable L1-Active. */
8431 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
8432 	iwn_nic_unlock(sc);
8433 
8434 	return 0;
8435 }
8436 
8437 static void
8438 iwn_apm_stop_master(struct iwn_softc *sc)
8439 {
8440 	int ntries;
8441 
8442 	/* Stop busmaster DMA activity. */
8443 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
8444 	for (ntries = 0; ntries < 100; ntries++) {
8445 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
8446 			return;
8447 		DELAY(10);
8448 	}
8449 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
8450 }
8451 
8452 static void
8453 iwn_apm_stop(struct iwn_softc *sc)
8454 {
8455 	iwn_apm_stop_master(sc);
8456 
8457 	/* Reset the entire device. */
8458 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
8459 	DELAY(10);
8460 	/* Clear "initialization complete" bit. */
8461 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8462 }
8463 
8464 static int
8465 iwn4965_nic_config(struct iwn_softc *sc)
8466 {
8467 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8468 
8469 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
8470 		/*
8471 		 * I don't believe this to be correct but this is what the
8472 		 * vendor driver is doing. Probably the bits should not be
8473 		 * shifted in IWN_RFCFG_*.
8474 		 */
8475 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8476 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8477 		    IWN_RFCFG_STEP(sc->rfcfg) |
8478 		    IWN_RFCFG_DASH(sc->rfcfg));
8479 	}
8480 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8481 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8482 	return 0;
8483 }
8484 
8485 static int
8486 iwn5000_nic_config(struct iwn_softc *sc)
8487 {
8488 	uint32_t tmp;
8489 	int error;
8490 
8491 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8492 
8493 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
8494 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8495 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8496 		    IWN_RFCFG_STEP(sc->rfcfg) |
8497 		    IWN_RFCFG_DASH(sc->rfcfg));
8498 	}
8499 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8500 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8501 
8502 	if ((error = iwn_nic_lock(sc)) != 0)
8503 		return error;
8504 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
8505 
8506 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
8507 		/*
8508 		 * Select first Switching Voltage Regulator (1.32V) to
8509 		 * solve a stability issue related to noisy DC2DC line
8510 		 * in the silicon of 1000 Series.
8511 		 */
8512 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
8513 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
8514 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
8515 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
8516 	}
8517 	iwn_nic_unlock(sc);
8518 
8519 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
8520 		/* Use internal power amplifier only. */
8521 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
8522 	}
8523 	if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) {
8524 		/* Indicate that ROM calibration version is >=6. */
8525 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
8526 	}
8527 	if (sc->base_params->additional_gp_drv_bit)
8528 		IWN_SETBITS(sc, IWN_GP_DRIVER,
8529 		    sc->base_params->additional_gp_drv_bit);
8530 	return 0;
8531 }
8532 
8533 /*
8534  * Take NIC ownership over Intel Active Management Technology (AMT).
8535  */
8536 static int
8537 iwn_hw_prepare(struct iwn_softc *sc)
8538 {
8539 	int ntries;
8540 
8541 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8542 
8543 	/* Check if hardware is ready. */
8544 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8545 	for (ntries = 0; ntries < 5; ntries++) {
8546 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8547 		    IWN_HW_IF_CONFIG_NIC_READY)
8548 			return 0;
8549 		DELAY(10);
8550 	}
8551 
8552 	/* Hardware not ready, force into ready state. */
8553 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
8554 	for (ntries = 0; ntries < 15000; ntries++) {
8555 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
8556 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
8557 			break;
8558 		DELAY(10);
8559 	}
8560 	if (ntries == 15000)
8561 		return ETIMEDOUT;
8562 
8563 	/* Hardware should be ready now. */
8564 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8565 	for (ntries = 0; ntries < 5; ntries++) {
8566 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8567 		    IWN_HW_IF_CONFIG_NIC_READY)
8568 			return 0;
8569 		DELAY(10);
8570 	}
8571 	return ETIMEDOUT;
8572 }
8573 
8574 static int
8575 iwn_hw_init(struct iwn_softc *sc)
8576 {
8577 	struct iwn_ops *ops = &sc->ops;
8578 	int error, chnl, qid;
8579 
8580 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8581 
8582 	/* Clear pending interrupts. */
8583 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8584 
8585 	if ((error = iwn_apm_init(sc)) != 0) {
8586 		device_printf(sc->sc_dev,
8587 		    "%s: could not power ON adapter, error %d\n", __func__,
8588 		    error);
8589 		return error;
8590 	}
8591 
8592 	/* Select VMAIN power source. */
8593 	if ((error = iwn_nic_lock(sc)) != 0)
8594 		return error;
8595 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
8596 	iwn_nic_unlock(sc);
8597 
8598 	/* Perform adapter-specific initialization. */
8599 	if ((error = ops->nic_config(sc)) != 0)
8600 		return error;
8601 
8602 	/* Initialize RX ring. */
8603 	if ((error = iwn_nic_lock(sc)) != 0)
8604 		return error;
8605 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
8606 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
8607 	/* Set physical address of RX ring (256-byte aligned). */
8608 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
8609 	/* Set physical address of RX status (16-byte aligned). */
8610 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
8611 	/* Enable RX. */
8612 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
8613 	    IWN_FH_RX_CONFIG_ENA           |
8614 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
8615 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
8616 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
8617 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
8618 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
8619 	iwn_nic_unlock(sc);
8620 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
8621 
8622 	if ((error = iwn_nic_lock(sc)) != 0)
8623 		return error;
8624 
8625 	/* Initialize TX scheduler. */
8626 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8627 
8628 	/* Set physical address of "keep warm" page (16-byte aligned). */
8629 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
8630 
8631 	/* Initialize TX rings. */
8632 	for (qid = 0; qid < sc->ntxqs; qid++) {
8633 		struct iwn_tx_ring *txq = &sc->txq[qid];
8634 
8635 		/* Set physical address of TX ring (256-byte aligned). */
8636 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
8637 		    txq->desc_dma.paddr >> 8);
8638 	}
8639 	iwn_nic_unlock(sc);
8640 
8641 	/* Enable DMA channels. */
8642 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8643 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
8644 		    IWN_FH_TX_CONFIG_DMA_ENA |
8645 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
8646 	}
8647 
8648 	/* Clear "radio off" and "commands blocked" bits. */
8649 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8650 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
8651 
8652 	/* Clear pending interrupts. */
8653 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8654 	/* Enable interrupt coalescing. */
8655 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
8656 	/* Enable interrupts. */
8657 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8658 
8659 	/* _Really_ make sure "radio off" bit is cleared! */
8660 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8661 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8662 
8663 	/* Enable shadow registers. */
8664 	if (sc->base_params->shadow_reg_enable)
8665 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
8666 
8667 	if ((error = ops->load_firmware(sc)) != 0) {
8668 		device_printf(sc->sc_dev,
8669 		    "%s: could not load firmware, error %d\n", __func__,
8670 		    error);
8671 		return error;
8672 	}
8673 	/* Wait at most one second for firmware alive notification. */
8674 	if ((error = iwn_sleep(sc, sc, PCATCH, "iwninit", hz)) != 0) {
8675 		device_printf(sc->sc_dev,
8676 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8677 		    __func__, error);
8678 		return error;
8679 	}
8680 	/* Do post-firmware initialization. */
8681 
8682 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8683 
8684 	return ops->post_alive(sc);
8685 }
8686 
8687 static void
8688 iwn_hw_stop(struct iwn_softc *sc)
8689 {
8690 	int chnl, qid, ntries;
8691 
8692 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8693 
8694 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
8695 
8696 	/* Disable interrupts. */
8697 	IWN_WRITE(sc, IWN_INT_MASK, 0);
8698 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8699 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
8700 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8701 
8702 	/* Make sure we no longer hold the NIC lock. */
8703 	iwn_nic_unlock(sc);
8704 
8705 	/* Stop TX scheduler. */
8706 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8707 
8708 	/* Stop all DMA channels. */
8709 	if (iwn_nic_lock(sc) == 0) {
8710 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8711 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
8712 			for (ntries = 0; ntries < 200; ntries++) {
8713 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
8714 				    IWN_FH_TX_STATUS_IDLE(chnl))
8715 					break;
8716 				DELAY(10);
8717 			}
8718 		}
8719 		iwn_nic_unlock(sc);
8720 	}
8721 
8722 	/* Stop RX ring. */
8723 	iwn_reset_rx_ring(sc, &sc->rxq);
8724 
8725 	/* Reset all TX rings. */
8726 	for (qid = 0; qid < sc->ntxqs; qid++)
8727 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
8728 
8729 	if (iwn_nic_lock(sc) == 0) {
8730 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
8731 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8732 		iwn_nic_unlock(sc);
8733 	}
8734 	DELAY(5);
8735 	/* Power OFF adapter. */
8736 	iwn_apm_stop(sc);
8737 }
8738 
8739 static void
8740 iwn_radio_on(void *arg0, int pending)
8741 {
8742 	struct iwn_softc *sc = arg0;
8743 	struct ifnet *ifp = sc->sc_ifp;
8744 	struct ieee80211com *ic = ifp->if_l2com;
8745 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8746 
8747 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8748 
8749 	if (vap != NULL) {
8750 		iwn_init(sc);
8751 		ieee80211_init(vap);
8752 	}
8753 }
8754 
8755 static void
8756 iwn_radio_off(void *arg0, int pending)
8757 {
8758 	struct iwn_softc *sc = arg0;
8759 	struct ifnet *ifp = sc->sc_ifp;
8760 	struct ieee80211com *ic = ifp->if_l2com;
8761 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8762 
8763 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8764 
8765 	iwn_stop(sc);
8766 	if (vap != NULL)
8767 		ieee80211_stop(vap);
8768 
8769 	/* Enable interrupts to get RF toggle notification. */
8770 	IWN_LOCK(sc);
8771 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8772 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8773 	IWN_UNLOCK(sc);
8774 }
8775 
8776 static void
8777 iwn_panicked(void *arg0, int pending)
8778 {
8779 	struct iwn_softc *sc = arg0;
8780 	struct ifnet *ifp = sc->sc_ifp;
8781 	struct ieee80211com *ic = ifp->if_l2com;
8782 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8783 	int error;
8784 
8785 	if (vap == NULL) {
8786 		kprintf("%s: null vap\n", __func__);
8787 		return;
8788 	}
8789 
8790 	device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
8791 	    "resetting...\n", __func__, vap->iv_state);
8792 
8793 	IWN_LOCK(sc);
8794 
8795 	iwn_stop_locked(sc);
8796 	iwn_init_locked(sc);
8797 	if (vap->iv_state >= IEEE80211_S_AUTH &&
8798 	    (error = iwn_auth(sc, vap)) != 0) {
8799 		device_printf(sc->sc_dev,
8800 		    "%s: could not move to auth state\n", __func__);
8801 	}
8802 	if (vap->iv_state >= IEEE80211_S_RUN &&
8803 	    (error = iwn_run(sc, vap)) != 0) {
8804 		device_printf(sc->sc_dev,
8805 		    "%s: could not move to run state\n", __func__);
8806 	}
8807 
8808 	/* Only run start once the NIC is in a useful state, like associated */
8809 	iwn_start_locked(sc->sc_ifp);
8810 
8811 	IWN_UNLOCK(sc);
8812 }
8813 
8814 static void
8815 iwn_init_locked(struct iwn_softc *sc)
8816 {
8817 	struct ifnet *ifp = sc->sc_ifp;
8818 	int error;
8819 
8820 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8821 
8822 	IWN_LOCK_ASSERT(sc);
8823 
8824 	if ((error = iwn_hw_prepare(sc)) != 0) {
8825 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
8826 		    __func__, error);
8827 		goto fail;
8828 	}
8829 
8830 	/* Initialize interrupt mask to default value. */
8831 	sc->int_mask = IWN_INT_MASK_DEF;
8832 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8833 
8834 	/* Check that the radio is not disabled by hardware switch. */
8835 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
8836 		device_printf(sc->sc_dev,
8837 		    "radio is disabled by hardware switch\n");
8838 		/* Enable interrupts to get RF toggle notifications. */
8839 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
8840 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8841 		return;
8842 	}
8843 
8844 	/* Read firmware images from the filesystem. */
8845 	if ((error = iwn_read_firmware(sc)) != 0) {
8846 		device_printf(sc->sc_dev,
8847 		    "%s: could not read firmware, error %d\n", __func__,
8848 		    error);
8849 		goto fail;
8850 	}
8851 
8852 	/* Initialize hardware and upload firmware. */
8853 	error = iwn_hw_init(sc);
8854 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8855 	sc->fw_fp = NULL;
8856 	if (error != 0) {
8857 		device_printf(sc->sc_dev,
8858 		    "%s: could not initialize hardware, error %d\n", __func__,
8859 		    error);
8860 		goto fail;
8861 	}
8862 
8863 	/* Configure adapter now that it is ready. */
8864 	if ((error = iwn_config(sc)) != 0) {
8865 		device_printf(sc->sc_dev,
8866 		    "%s: could not configure device, error %d\n", __func__,
8867 		    error);
8868 		goto fail;
8869 	}
8870 
8871 #if defined(__DragonFly__)
8872         ifq_clr_oactive(&ifp->if_snd);
8873 	ifp->if_flags |= IFF_RUNNING;
8874 #else
8875 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
8876 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
8877 #endif
8878 
8879 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
8880 
8881 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8882 
8883 	return;
8884 
8885 fail:	iwn_stop_locked(sc);
8886 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
8887 }
8888 
8889 static void
8890 iwn_init(void *arg)
8891 {
8892 	struct iwn_softc *sc = arg;
8893 	struct ifnet *ifp = sc->sc_ifp;
8894 	struct ieee80211com *ic = ifp->if_l2com;
8895 
8896 	IWN_LOCK(sc);
8897 	iwn_init_locked(sc);
8898 	IWN_UNLOCK(sc);
8899 
8900 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
8901 		ieee80211_start_all(ic);
8902 }
8903 
8904 static void
8905 iwn_stop_locked(struct iwn_softc *sc)
8906 {
8907 	struct ifnet *ifp = sc->sc_ifp;
8908 
8909 	IWN_LOCK_ASSERT(sc);
8910 
8911 	sc->sc_is_scanning = 0;
8912 	sc->sc_tx_timer = 0;
8913 #if defined(__DragonFly__)
8914 	callout_stop_sync(&sc->watchdog_to);
8915 	callout_stop_sync(&sc->calib_to);
8916         ifq_clr_oactive(&ifp->if_snd);
8917 	ifp->if_flags &= ~IFF_RUNNING;
8918 #else
8919 	callout_stop(&sc->watchdog_to);
8920 	callout_stop(&sc->calib_to);
8921 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
8922 #endif
8923 
8924 	/* Power OFF hardware. */
8925 	iwn_hw_stop(sc);
8926 }
8927 
8928 static void
8929 iwn_stop(struct iwn_softc *sc)
8930 {
8931 	IWN_LOCK(sc);
8932 	iwn_stop_locked(sc);
8933 	IWN_UNLOCK(sc);
8934 }
8935 
8936 /*
8937  * Callback from net80211 to start a scan.
8938  */
8939 static void
8940 iwn_scan_start(struct ieee80211com *ic)
8941 {
8942 	struct ifnet *ifp = ic->ic_ifp;
8943 	struct iwn_softc *sc = ifp->if_softc;
8944 
8945 	IWN_LOCK(sc);
8946 	/* make the link LED blink while we're scanning */
8947 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
8948 	IWN_UNLOCK(sc);
8949 }
8950 
8951 /*
8952  * Callback from net80211 to terminate a scan.
8953  */
8954 static void
8955 iwn_scan_end(struct ieee80211com *ic)
8956 {
8957 	struct ifnet *ifp = ic->ic_ifp;
8958 	struct iwn_softc *sc = ifp->if_softc;
8959 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8960 
8961 	IWN_LOCK(sc);
8962 	if (vap->iv_state == IEEE80211_S_RUN) {
8963 		/* Set link LED to ON status if we are associated */
8964 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
8965 	}
8966 	IWN_UNLOCK(sc);
8967 }
8968 
8969 /*
8970  * Callback from net80211 to force a channel change.
8971  */
8972 static void
8973 iwn_set_channel(struct ieee80211com *ic)
8974 {
8975 	const struct ieee80211_channel *c = ic->ic_curchan;
8976 	struct ifnet *ifp = ic->ic_ifp;
8977 	struct iwn_softc *sc = ifp->if_softc;
8978 	int error;
8979 
8980 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8981 
8982 	IWN_LOCK(sc);
8983 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
8984 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
8985 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
8986 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
8987 
8988 	/*
8989 	 * Only need to set the channel in Monitor mode. AP scanning and auth
8990 	 * are already taken care of by their respective firmware commands.
8991 	 */
8992 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
8993 		error = iwn_config(sc);
8994 		if (error != 0)
8995 		device_printf(sc->sc_dev,
8996 		    "%s: error %d settting channel\n", __func__, error);
8997 	}
8998 	IWN_UNLOCK(sc);
8999 }
9000 
9001 /*
9002  * Callback from net80211 to start scanning of the current channel.
9003  */
9004 static void
9005 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
9006 {
9007 	struct ieee80211vap *vap = ss->ss_vap;
9008 	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
9009 	struct ieee80211com *ic = vap->iv_ic;
9010 	int error;
9011 
9012 	IWN_LOCK(sc);
9013 	error = iwn_scan(sc, vap, ss, ic->ic_curchan);
9014 	IWN_UNLOCK(sc);
9015 	if (error != 0)
9016 		ieee80211_cancel_scan(vap);
9017 }
9018 
9019 /*
9020  * Callback from net80211 to handle the minimum dwell time being met.
9021  * The intent is to terminate the scan but we just let the firmware
9022  * notify us when it's finished as we have no safe way to abort it.
9023  */
9024 static void
9025 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
9026 {
9027 	/* NB: don't try to abort scan; wait for firmware to finish */
9028 }
9029 
9030 static void
9031 iwn_hw_reset(void *arg0, int pending)
9032 {
9033 	struct iwn_softc *sc = arg0;
9034 	struct ifnet *ifp = sc->sc_ifp;
9035 	struct ieee80211com *ic = ifp->if_l2com;
9036 
9037 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
9038 
9039 	iwn_stop(sc);
9040 	iwn_init(sc);
9041 	ieee80211_notify_radio(ic, 1);
9042 }
9043 #ifdef	IWN_DEBUG
9044 #define	IWN_DESC(x) case x:	return #x
9045 #define	COUNTOF(array) (sizeof(array) / sizeof(array[0]))
9046 
9047 /*
9048  * Translate CSR code to string
9049  */
9050 static char *iwn_get_csr_string(int csr)
9051 {
9052 	switch (csr) {
9053 		IWN_DESC(IWN_HW_IF_CONFIG);
9054 		IWN_DESC(IWN_INT_COALESCING);
9055 		IWN_DESC(IWN_INT);
9056 		IWN_DESC(IWN_INT_MASK);
9057 		IWN_DESC(IWN_FH_INT);
9058 		IWN_DESC(IWN_GPIO_IN);
9059 		IWN_DESC(IWN_RESET);
9060 		IWN_DESC(IWN_GP_CNTRL);
9061 		IWN_DESC(IWN_HW_REV);
9062 		IWN_DESC(IWN_EEPROM);
9063 		IWN_DESC(IWN_EEPROM_GP);
9064 		IWN_DESC(IWN_OTP_GP);
9065 		IWN_DESC(IWN_GIO);
9066 		IWN_DESC(IWN_GP_UCODE);
9067 		IWN_DESC(IWN_GP_DRIVER);
9068 		IWN_DESC(IWN_UCODE_GP1);
9069 		IWN_DESC(IWN_UCODE_GP2);
9070 		IWN_DESC(IWN_LED);
9071 		IWN_DESC(IWN_DRAM_INT_TBL);
9072 		IWN_DESC(IWN_GIO_CHICKEN);
9073 		IWN_DESC(IWN_ANA_PLL);
9074 		IWN_DESC(IWN_HW_REV_WA);
9075 		IWN_DESC(IWN_DBG_HPET_MEM);
9076 	default:
9077 		return "UNKNOWN CSR";
9078 	}
9079 }
9080 
9081 /*
9082  * This function print firmware register
9083  */
9084 static void
9085 iwn_debug_register(struct iwn_softc *sc)
9086 {
9087 	int i;
9088 	static const uint32_t csr_tbl[] = {
9089 		IWN_HW_IF_CONFIG,
9090 		IWN_INT_COALESCING,
9091 		IWN_INT,
9092 		IWN_INT_MASK,
9093 		IWN_FH_INT,
9094 		IWN_GPIO_IN,
9095 		IWN_RESET,
9096 		IWN_GP_CNTRL,
9097 		IWN_HW_REV,
9098 		IWN_EEPROM,
9099 		IWN_EEPROM_GP,
9100 		IWN_OTP_GP,
9101 		IWN_GIO,
9102 		IWN_GP_UCODE,
9103 		IWN_GP_DRIVER,
9104 		IWN_UCODE_GP1,
9105 		IWN_UCODE_GP2,
9106 		IWN_LED,
9107 		IWN_DRAM_INT_TBL,
9108 		IWN_GIO_CHICKEN,
9109 		IWN_ANA_PLL,
9110 		IWN_HW_REV_WA,
9111 		IWN_DBG_HPET_MEM,
9112 	};
9113 	DPRINTF(sc, IWN_DEBUG_REGISTER,
9114 	    "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s",
9115 	    "\n");
9116 	for (i = 0; i <  COUNTOF(csr_tbl); i++){
9117 		DPRINTF(sc, IWN_DEBUG_REGISTER,"  %10s: 0x%08x ",
9118 			iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i]));
9119 		if ((i+1) % 3 == 0)
9120 			DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9121 	}
9122 	DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9123 }
9124 #endif
9125 
9126 #if defined(__DragonFly__)
9127 
9128 static int
9129 iwn_sleep(struct iwn_softc *sc, void *wchan,
9130 	  int flags, const char *wmsg, int timo)
9131 {
9132 	int iws;
9133 	int error;
9134 
9135 	iws = wlan_is_serialized();
9136 	if (iws)
9137 		wlan_serialize_exit();
9138 	error = lksleep(wchan, &sc->sc_mtx, flags, wmsg, timo);
9139 	if (iws)
9140 		wlan_serialize_enter();
9141 
9142 	return error;
9143 }
9144 
9145 #else
9146 
9147 static int
9148 iwn_sleep(struct iwn_softc *sc, void *wchan,
9149 	  int flags, const char *wmsg, int timo)
9150 {
9151 	int error;
9152 
9153 	error = lksleep(wchan, &sc->sc_mtx, flags, wmsg, timo);
9154 
9155 	return error;
9156 }
9157 
9158 #endif
9159