xref: /dragonfly/sys/dev/netif/iwn/if_iwn.c (revision cfd1aba3)
1 /*-
2  * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr>
3  * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org>
4  * Copyright (c) 2008 Sam Leffler, Errno Consulting
5  * Copyright (c) 2011 Intel Corporation
6  * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr>
7  * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  *
21  * $FreeBSD: head/sys/dev/iwn/if_iwn.c 258118 2013-11-14 07:27:00Z adrian $
22  */
23 
24 /*
25  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
26  * adapters.
27  */
28 
29 #include "opt_wlan.h"
30 #include "opt_iwn.h"
31 
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/sysctl.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/socket.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/stdbool.h>
41 #include <sys/bus.h>
42 #include <sys/rman.h>
43 #include <sys/endian.h>
44 #include <sys/firmware.h>
45 #include <sys/limits.h>
46 #include <sys/module.h>
47 #include <sys/queue.h>
48 #include <sys/taskqueue.h>
49 #include <sys/libkern.h>
50 
51 #include <sys/resource.h>
52 #include <machine/clock.h>
53 
54 #include <bus/pci/pcireg.h>
55 #include <bus/pci/pcivar.h>
56 
57 #include <net/bpf.h>
58 #include <net/if.h>
59 #include <net/if_var.h>
60 #include <net/if_arp.h>
61 #include <net/ifq_var.h>
62 #include <net/ethernet.h>
63 #include <net/if_dl.h>
64 #include <net/if_media.h>
65 #include <net/if_types.h>
66 
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/in_var.h>
70 #include <netinet/if_ether.h>
71 #include <netinet/ip.h>
72 
73 #include <netproto/802_11/ieee80211_var.h>
74 #include <netproto/802_11/ieee80211_radiotap.h>
75 #include <netproto/802_11/ieee80211_regdomain.h>
76 #include <netproto/802_11/ieee80211_ratectl.h>
77 
78 #include "if_iwnreg.h"
79 #include "if_iwnvar.h"
80 #include "if_iwn_devid.h"
81 #include "if_iwn_chip_cfg.h"
82 #include "if_iwn_debug.h"
83 
84 #define nitems(ary)	(sizeof(ary) / sizeof((ary)[0]))
85 
86 struct iwn_ident {
87 	uint16_t	vendor;
88 	uint16_t	device;
89 	const char	*name;
90 };
91 
92 static const struct iwn_ident iwn_ident_table[] = {
93 	{ 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205"		},
94 	{ 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000"		},
95 	{ 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000"		},
96 	{ 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205"		},
97 	{ 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250"	},
98 	{ 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250"	},
99 	{ 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030"		},
100 	{ 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030"		},
101 	{ 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230"		},
102 	{ 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230"		},
103 	{ 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150"	},
104 	{ 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150"	},
105 	{ 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
106 	{ 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
107 	/* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */
108 	{ 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230"		},
109 	{ 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230"		},
110 	{ 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130"		},
111 	{ 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130"		},
112 	{ 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100"		},
113 	{ 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100"		},
114 	{ 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965"		},
115 	{ 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300"		},
116 	{ 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200"		},
117 	{ 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965"		},
118 	{ 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965"		},
119 	{ 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100"			},
120 	{ 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965"		},
121 	{ 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300"		},
122 	{ 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300"		},
123 	{ 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100"			},
124 	{ 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300"		},
125 	{ 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200"		},
126 	{ 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350"			},
127 	{ 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350"			},
128 	{ 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150"			},
129 	{ 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150"			},
130 	/*
131 	 * These currently don't function; the firmware crashes during
132 	 * the startup calibration request.
133 	 */
134 #if 0
135 	{ 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235"		},
136 	/* XXX TODO: figure out which ID this one is? */
137 	{ 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235"		},
138 #endif
139 	{ 0, 0, NULL }
140 };
141 
142 static int	iwn_pci_probe(device_t);
143 static int	iwn_pci_attach(device_t);
144 static int	iwn4965_attach(struct iwn_softc *, uint16_t);
145 static int	iwn5000_attach(struct iwn_softc *, uint16_t);
146 static int	iwn_config_specific(struct iwn_softc *, uint16_t);
147 static void	iwn_radiotap_attach(struct iwn_softc *);
148 static void	iwn_sysctlattach(struct iwn_softc *);
149 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
150 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
151 		    const uint8_t [IEEE80211_ADDR_LEN],
152 		    const uint8_t [IEEE80211_ADDR_LEN]);
153 static void	iwn_vap_delete(struct ieee80211vap *);
154 static int	iwn_pci_detach(device_t);
155 static int	iwn_pci_shutdown(device_t);
156 static int	iwn_pci_suspend(device_t);
157 static int	iwn_pci_resume(device_t);
158 static int	iwn_nic_lock(struct iwn_softc *);
159 static int	iwn_eeprom_lock(struct iwn_softc *);
160 static int	iwn_init_otprom(struct iwn_softc *);
161 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
162 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
163 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
164 		    void **, bus_size_t, bus_size_t);
165 static void	iwn_dma_contig_free(struct iwn_dma_info *);
166 static int	iwn_alloc_sched(struct iwn_softc *);
167 static void	iwn_free_sched(struct iwn_softc *);
168 static int	iwn_alloc_kw(struct iwn_softc *);
169 static void	iwn_free_kw(struct iwn_softc *);
170 static int	iwn_alloc_ict(struct iwn_softc *);
171 static void	iwn_free_ict(struct iwn_softc *);
172 static int	iwn_alloc_fwmem(struct iwn_softc *);
173 static void	iwn_free_fwmem(struct iwn_softc *);
174 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
175 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
176 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
177 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
178 		    int);
179 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
180 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
181 static void	iwn5000_ict_reset(struct iwn_softc *);
182 static int	iwn_read_eeprom(struct iwn_softc *,
183 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
184 static void	iwn4965_read_eeprom(struct iwn_softc *);
185 #ifdef	IWN_DEBUG
186 static void	iwn4965_print_power_group(struct iwn_softc *, int);
187 #endif
188 static void	iwn5000_read_eeprom(struct iwn_softc *);
189 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
190 static void	iwn_read_eeprom_band(struct iwn_softc *, int);
191 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int);
192 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
193 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
194 		    struct ieee80211_channel *);
195 static int	iwn_setregdomain(struct ieee80211com *,
196 		    struct ieee80211_regdomain *, int,
197 		    struct ieee80211_channel[]);
198 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
199 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
200 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
201 static void	iwn_newassoc(struct ieee80211_node *, int);
202 static int	iwn_media_change(struct ifnet *);
203 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
204 static void	iwn_calib_timeout(void *);
205 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
206 		    struct iwn_rx_data *);
207 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
208 		    struct iwn_rx_data *);
209 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
210 		    struct iwn_rx_data *);
211 static void	iwn5000_rx_calib_results(struct iwn_softc *,
212 		    struct iwn_rx_desc *, struct iwn_rx_data *);
213 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
214 		    struct iwn_rx_data *);
215 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
216 		    struct iwn_rx_data *);
217 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
218 		    struct iwn_rx_data *);
219 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
220 		    uint8_t);
221 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, void *);
222 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
223 static void	iwn_notif_intr(struct iwn_softc *);
224 static void	iwn_wakeup_intr(struct iwn_softc *);
225 static void	iwn_rftoggle_intr(struct iwn_softc *);
226 static void	iwn_fatal_intr(struct iwn_softc *);
227 static void	iwn_intr(void *);
228 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
229 		    uint16_t);
230 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
231 		    uint16_t);
232 #ifdef notyet
233 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
234 #endif
235 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
236 		    struct ieee80211_node *);
237 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
238 		    struct ieee80211_node *,
239 		    const struct ieee80211_bpf_params *params);
240 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
241 		    const struct ieee80211_bpf_params *);
242 static void	iwn_start(struct ifnet *, struct ifaltq_subque *);
243 static void	iwn_start_locked(struct ifnet *);
244 static void	iwn_watchdog_timeout(void *);
245 static int	iwn_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
246 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
247 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
248 		    int);
249 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
250 		    int);
251 static int	iwn_set_link_quality(struct iwn_softc *,
252 		    struct ieee80211_node *);
253 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
254 static int	iwn_updateedca(struct ieee80211com *);
255 static void	iwn_update_mcast(struct ifnet *);
256 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
257 static int	iwn_set_critical_temp(struct iwn_softc *);
258 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
259 static void	iwn4965_power_calibration(struct iwn_softc *, int);
260 static int	iwn4965_set_txpower(struct iwn_softc *,
261 		    struct ieee80211_channel *, int);
262 static int	iwn5000_set_txpower(struct iwn_softc *,
263 		    struct ieee80211_channel *, int);
264 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
265 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
266 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
267 static int	iwn4965_get_temperature(struct iwn_softc *);
268 static int	iwn5000_get_temperature(struct iwn_softc *);
269 static int	iwn_init_sensitivity(struct iwn_softc *);
270 static void	iwn_collect_noise(struct iwn_softc *,
271 		    const struct iwn_rx_general_stats *);
272 static int	iwn4965_init_gains(struct iwn_softc *);
273 static int	iwn5000_init_gains(struct iwn_softc *);
274 static int	iwn4965_set_gains(struct iwn_softc *);
275 static int	iwn5000_set_gains(struct iwn_softc *);
276 static void	iwn_tune_sensitivity(struct iwn_softc *,
277 		    const struct iwn_rx_stats *);
278 static int	iwn_send_sensitivity(struct iwn_softc *);
279 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
280 static int	iwn_send_btcoex(struct iwn_softc *);
281 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
282 static int	iwn5000_runtime_calib(struct iwn_softc *);
283 static int	iwn_config(struct iwn_softc *);
284 static uint8_t	*ieee80211_add_ssid(uint8_t *, const uint8_t *, u_int);
285 static int	iwn_scan(struct iwn_softc *);
286 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
287 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
288 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
289 		    struct ieee80211_rx_ampdu *, int, int, int);
290 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
291 		    struct ieee80211_rx_ampdu *);
292 static int	iwn_addba_request(struct ieee80211_node *,
293 		    struct ieee80211_tx_ampdu *, int, int, int);
294 static int	iwn_addba_response(struct ieee80211_node *,
295 		    struct ieee80211_tx_ampdu *, int, int, int);
296 static int	iwn_ampdu_tx_start(struct ieee80211com *,
297 		    struct ieee80211_node *, uint8_t);
298 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
299 		    struct ieee80211_tx_ampdu *);
300 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
301 		    struct ieee80211_node *, int, uint8_t, uint16_t);
302 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
303 		    uint8_t, uint16_t);
304 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
305 		    struct ieee80211_node *, int, uint8_t, uint16_t);
306 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
307 		    uint8_t, uint16_t);
308 static int	iwn5000_query_calibration(struct iwn_softc *);
309 static int	iwn5000_send_calibration(struct iwn_softc *);
310 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
311 static int	iwn5000_crystal_calib(struct iwn_softc *);
312 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
313 static int	iwn5000_temp_offset_calibv2(struct iwn_softc *);
314 static int	iwn4965_post_alive(struct iwn_softc *);
315 static int	iwn5000_post_alive(struct iwn_softc *);
316 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
317 		    int);
318 static int	iwn4965_load_firmware(struct iwn_softc *);
319 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
320 		    const uint8_t *, int);
321 static int	iwn5000_load_firmware(struct iwn_softc *);
322 static int	iwn_read_firmware_leg(struct iwn_softc *,
323 		    struct iwn_fw_info *);
324 static int	iwn_read_firmware_tlv(struct iwn_softc *,
325 		    struct iwn_fw_info *, uint16_t);
326 static int	iwn_read_firmware(struct iwn_softc *);
327 static int	iwn_clock_wait(struct iwn_softc *);
328 static int	iwn_apm_init(struct iwn_softc *);
329 static void	iwn_apm_stop_master(struct iwn_softc *);
330 static void	iwn_apm_stop(struct iwn_softc *);
331 static int	iwn4965_nic_config(struct iwn_softc *);
332 static int	iwn5000_nic_config(struct iwn_softc *);
333 static int	iwn_hw_prepare(struct iwn_softc *);
334 static int	iwn_hw_init(struct iwn_softc *);
335 static void	iwn_hw_stop(struct iwn_softc *);
336 static void	iwn_radio_on_task(void *, int);
337 static void	iwn_radio_off_task(void *, int);
338 static void	iwn_init_locked(struct iwn_softc *);
339 static void	iwn_init(void *);
340 static void	iwn_stop_locked(struct iwn_softc *);
341 static void	iwn_stop(struct iwn_softc *);
342 static void	iwn_scan_start(struct ieee80211com *);
343 static void	iwn_scan_end(struct ieee80211com *);
344 static void	iwn_set_channel(struct ieee80211com *);
345 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
346 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
347 static void	iwn_hw_reset_task(void *, int);
348 #ifdef	IWN_DEBUG
349 static char	*iwn_get_csr_string(int);
350 static void	iwn_debug_register(struct iwn_softc *);
351 #endif
352 
353 static device_method_t iwn_methods[] = {
354 	/* Device interface */
355 	DEVMETHOD(device_probe,		iwn_pci_probe),
356 	DEVMETHOD(device_attach,	iwn_pci_attach),
357 	DEVMETHOD(device_detach,	iwn_pci_detach),
358 	DEVMETHOD(device_shutdown,	iwn_pci_shutdown),
359 	DEVMETHOD(device_suspend,	iwn_pci_suspend),
360 	DEVMETHOD(device_resume,	iwn_pci_resume),
361 	{ 0, 0 }
362 };
363 
364 static driver_t iwn_driver = {
365 	"iwn",
366 	iwn_methods,
367 	sizeof(struct iwn_softc)
368 };
369 static devclass_t iwn_devclass;
370 
371 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL);
372 
373 MODULE_VERSION(iwn, 1);
374 
375 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
376 MODULE_DEPEND(iwn, pci, 1, 1, 1);
377 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
378 MODULE_DEPEND(iwn, wlan_amrr, 1, 1, 1);
379 
380 static int
381 iwn_pci_probe(device_t dev)
382 {
383 	const struct iwn_ident *ident;
384 
385 	/* no wlan serializer needed */
386 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
387 		if (pci_get_vendor(dev) == ident->vendor &&
388 		    pci_get_device(dev) == ident->device) {
389 			device_set_desc(dev, ident->name);
390 			return 0;
391 		}
392 	}
393 	return ENXIO;
394 }
395 
396 static int
397 iwn_pci_attach(device_t dev)
398 {
399 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
400 	struct ieee80211com *ic;
401 	struct ifnet *ifp;
402 	uint32_t reg;
403 	int i, error;
404 #ifdef OLD_MSI
405 	int result;
406 #endif
407 	uint8_t macaddr[IEEE80211_ADDR_LEN];
408 	char ethstr[ETHER_ADDRSTRLEN + 1];
409 
410 	wlan_serialize_enter();
411 
412 	sc->sc_dev = dev;
413 	sc->sc_dmat = NULL;
414 
415 	if (bus_dma_tag_create(sc->sc_dmat,
416 		       1, 0,
417 		       BUS_SPACE_MAXADDR_32BIT,
418 		       BUS_SPACE_MAXADDR,
419 		       NULL, NULL,
420 		       BUS_SPACE_MAXSIZE,
421 		       IWN_MAX_SCATTER,
422 		       BUS_SPACE_MAXSIZE,
423 		       BUS_DMA_ALLOCNOW,
424 		       &sc->sc_dmat)) {
425 		device_printf(dev, "cannot allocate DMA tag\n");
426 		error = ENOMEM;
427 		goto fail;
428 	}
429 
430 	/* prepare sysctl tree for use in sub modules */
431 	sysctl_ctx_init(&sc->sc_sysctl_ctx);
432 	sc->sc_sysctl_tree = SYSCTL_ADD_NODE(&sc->sc_sysctl_ctx,
433 		SYSCTL_STATIC_CHILDREN(_hw),
434 		OID_AUTO,
435 		device_get_nameunit(sc->sc_dev),
436 		CTLFLAG_RD, 0, "");
437 
438 #ifdef	IWN_DEBUG
439 	error = resource_int_value(device_get_name(sc->sc_dev),
440 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
441 	if (error != 0)
442 		sc->sc_debug = 0;
443 #else
444 	sc->sc_debug = 0;
445 #endif
446 
447 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__);
448 
449 	/*
450 	 * Get the offset of the PCI Express Capability Structure in PCI
451 	 * Configuration Space.
452 	 */
453 	error = pci_find_extcap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
454 	if (error != 0) {
455 		device_printf(dev, "PCIe capability structure not found!\n");
456 		goto fail2;
457 	}
458 
459 	/* Clear device-specific "PCI retry timeout" register (41h). */
460 	pci_write_config(dev, 0x41, 0, 1);
461 
462 	/* Hardware bug workaround. */
463 	reg = pci_read_config(dev, PCIR_COMMAND, 2);
464 	if (reg & PCIM_CMD_INTxDIS) {
465 		DPRINTF(sc, IWN_DEBUG_RESET, "%s: PCIe INTx Disable set\n",
466 		    __func__);
467 		reg &= ~PCIM_CMD_INTxDIS;
468 		pci_write_config(dev, PCIR_COMMAND, reg, 2);
469 	}
470 
471 	/* Enable bus-mastering. */
472 	pci_enable_busmaster(dev);
473 
474 	sc->mem_rid = PCIR_BAR(0);
475 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
476 	    RF_ACTIVE);
477 	if (sc->mem == NULL) {
478 		device_printf(dev, "can't map mem space\n");
479 		error = ENOMEM;
480 		goto fail2;
481 	}
482 	sc->sc_st = rman_get_bustag(sc->mem);
483 	sc->sc_sh = rman_get_bushandle(sc->mem);
484 
485 	sc->irq_rid = 0;
486 #ifdef OLD_MSI
487 	if ((result = pci_msi_count(dev)) == 1 &&
488 	    pci_alloc_msi(dev, &result) == 0)
489 		sc->irq_rid = 1;
490 #endif
491 	/* Install interrupt handler. */
492 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
493 	    RF_ACTIVE | RF_SHAREABLE);
494 	if (sc->irq == NULL) {
495 		device_printf(dev, "can't map interrupt\n");
496 		error = ENOMEM;
497 		goto fail;
498 	}
499 
500 	/* Read hardware revision and attach. */
501 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT)
502 	    & IWN_HW_REV_TYPE_MASK;
503 	sc->subdevice_id = pci_get_subdevice(dev);
504 
505 	/*
506 	 * 4965 versus 5000 and later have different methods.
507 	 * Let's set those up first.
508 	 */
509 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
510 		error = iwn4965_attach(sc, pci_get_device(dev));
511 	else
512 		error = iwn5000_attach(sc, pci_get_device(dev));
513 	if (error != 0) {
514 		device_printf(dev, "could not attach device, error %d\n",
515 		    error);
516 		goto fail;
517 	}
518 
519 	/*
520 	 * Next, let's setup the various parameters of each NIC.
521 	 */
522 	error = iwn_config_specific(sc, pci_get_device(dev));
523 	if (error != 0) {
524 		device_printf(dev, "could not attach device, error %d\n",
525 		    error);
526 		goto fail;
527 	}
528 
529 	if ((error = iwn_hw_prepare(sc)) != 0) {
530 		device_printf(dev, "hardware not ready, error %d\n", error);
531 		goto fail;
532 	}
533 
534 	/* Allocate DMA memory for firmware transfers. */
535 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
536 		device_printf(dev,
537 		    "could not allocate memory for firmware, error %d\n",
538 		    error);
539 		goto fail;
540 	}
541 
542 	/* Allocate "Keep Warm" page. */
543 	if ((error = iwn_alloc_kw(sc)) != 0) {
544 		device_printf(dev,
545 		    "could not allocate keep warm page, error %d\n", error);
546 		goto fail;
547 	}
548 
549 	/* Allocate ICT table for 5000 Series. */
550 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
551 	    (error = iwn_alloc_ict(sc)) != 0) {
552 		device_printf(dev, "could not allocate ICT table, error %d\n",
553 		    error);
554 		goto fail;
555 	}
556 
557 	/* Allocate TX scheduler "rings". */
558 	if ((error = iwn_alloc_sched(sc)) != 0) {
559 		device_printf(dev,
560 		    "could not allocate TX scheduler rings, error %d\n", error);
561 		goto fail;
562 	}
563 
564 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
565 	for (i = 0; i < sc->ntxqs; i++) {
566 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
567 			device_printf(dev,
568 			    "could not allocate TX ring %d, error %d\n", i,
569 			    error);
570 			goto fail;
571 		}
572 	}
573 
574 	/* Allocate RX ring. */
575 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
576 		device_printf(dev, "could not allocate RX ring, error %d\n",
577 		    error);
578 		goto fail;
579 	}
580 
581 	/* Clear pending interrupts. */
582 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
583 
584 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
585 	if (ifp == NULL) {
586 		device_printf(dev, "can not allocate ifnet structure\n");
587 		goto fail;
588 	}
589 
590 	ic = ifp->if_l2com;
591 	ic->ic_ifp = ifp;
592 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
593 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
594 
595 	/* Set device capabilities. */
596 	ic->ic_caps =
597 		  IEEE80211_C_STA		/* station mode supported */
598 		| IEEE80211_C_MONITOR		/* monitor mode supported */
599 		| IEEE80211_C_BGSCAN		/* background scanning */
600 		| IEEE80211_C_TXPMGT		/* tx power management */
601 		| IEEE80211_C_SHSLOT		/* short slot time supported */
602 		| IEEE80211_C_WPA
603 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
604 #if 0
605 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
606 #endif
607 		| IEEE80211_C_WME		/* WME */
608 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
609 		;
610 
611 	/* Read MAC address, channels, etc from EEPROM. */
612 	if ((error = iwn_read_eeprom(sc, macaddr)) != 0) {
613 		device_printf(dev, "could not read EEPROM, error %d\n",
614 		    error);
615 		goto fail;
616 	}
617 
618 	/* Count the number of available chains. */
619 	sc->ntxchains =
620 	    ((sc->txchainmask >> 2) & 1) +
621 	    ((sc->txchainmask >> 1) & 1) +
622 	    ((sc->txchainmask >> 0) & 1);
623 	sc->nrxchains =
624 	    ((sc->rxchainmask >> 2) & 1) +
625 	    ((sc->rxchainmask >> 1) & 1) +
626 	    ((sc->rxchainmask >> 0) & 1);
627 	if (bootverbose) {
628 		device_printf(dev, "MIMO %dT%dR, %.4s, address %s\n",
629 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
630 		    kether_ntoa(macaddr, ethstr));
631 	}
632 
633 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
634 #if notyet
635 		ic->ic_rxstream = sc->nrxchains;
636 		ic->ic_txstream = sc->ntxchains;
637 #endif
638 
639 		/*
640 		 * The NICs we currently support cap out at 2x2 support
641 		 * separate from the chains being used.
642 		 *
643 		 * This is a total hack to work around that until some
644 		 * per-device method is implemented to return the
645 		 * actual stream support.
646 		 *
647 		 * XXX Note: the 5350 is a 3x3 device; so we shouldn't
648 		 * cap this!  But, anything that touches rates in the
649 		 * driver needs to be audited first before 3x3 is enabled.
650 		 */
651 #if notyet
652 		if (ic->ic_rxstream > 2)
653 			ic->ic_rxstream = 2;
654 		if (ic->ic_txstream > 2)
655 			ic->ic_txstream = 2;
656 #endif
657 
658 		ic->ic_htcaps =
659 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
660 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
661 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
662 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
663 #ifdef notyet
664 			| IEEE80211_HTCAP_GREENFIELD
665 #if IWN_RBUF_SIZE == 8192
666 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
667 #else
668 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
669 #endif
670 #endif
671 			/* s/w capabilities */
672 			| IEEE80211_HTC_HT		/* HT operation */
673 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
674 #ifdef notyet
675 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
676 #endif
677 			;
678 	}
679 
680 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
681 	ifp->if_softc = sc;
682 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
683 	ifp->if_init = iwn_init;
684 	ifp->if_ioctl = iwn_ioctl;
685 	ifp->if_start = iwn_start;
686 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
687 #ifdef notyet
688 	ifq_set_ready(&ifp->if_snd);
689 #endif
690 
691 	ieee80211_ifattach(ic, macaddr);
692 	ic->ic_vap_create = iwn_vap_create;
693 	ic->ic_vap_delete = iwn_vap_delete;
694 	ic->ic_raw_xmit = iwn_raw_xmit;
695 	ic->ic_node_alloc = iwn_node_alloc;
696 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
697 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
698 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
699 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
700 	sc->sc_addba_request = ic->ic_addba_request;
701 	ic->ic_addba_request = iwn_addba_request;
702 	sc->sc_addba_response = ic->ic_addba_response;
703 	ic->ic_addba_response = iwn_addba_response;
704 	sc->sc_addba_stop = ic->ic_addba_stop;
705 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
706 	ic->ic_newassoc = iwn_newassoc;
707 	ic->ic_wme.wme_update = iwn_updateedca;
708 	ic->ic_update_mcast = iwn_update_mcast;
709 	ic->ic_scan_start = iwn_scan_start;
710 	ic->ic_scan_end = iwn_scan_end;
711 	ic->ic_set_channel = iwn_set_channel;
712 	ic->ic_scan_curchan = iwn_scan_curchan;
713 	ic->ic_scan_mindwell = iwn_scan_mindwell;
714 	ic->ic_setregdomain = iwn_setregdomain;
715 
716 	iwn_radiotap_attach(sc);
717 
718 	callout_init(&sc->calib_to);
719 	callout_init(&sc->watchdog_to);
720 	TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset_task, sc);
721 	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on_task, sc);
722 	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off_task, sc);
723 
724 	iwn_sysctlattach(sc);
725 
726 	/*
727 	 * Hook our interrupt after all initialization is complete.
728 	 */
729 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
730 			       iwn_intr, sc, &sc->sc_ih,
731 			       &wlan_global_serializer);
732 	if (error != 0) {
733 		device_printf(dev, "can't establish interrupt, error %d\n",
734 		    error);
735 		goto fail;
736 	}
737 
738 	if (bootverbose)
739 		ieee80211_announce(ic);
740 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
741 	wlan_serialize_exit();
742 	return 0;
743 fail:
744 	wlan_serialize_exit();
745 	iwn_pci_detach(dev);
746 	wlan_serialize_enter();
747 fail2:
748 	wlan_serialize_exit();
749 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
750 	return error;
751 }
752 
753 /*
754  * Define specific configuration based on device id and subdevice id
755  * pid : PCI device id
756  */
757 static int
758 iwn_config_specific(struct iwn_softc *sc, uint16_t pid)
759 {
760 
761 	switch (pid) {
762 /* 4965 series */
763 	case IWN_DID_4965_1:
764 	case IWN_DID_4965_2:
765 	case IWN_DID_4965_3:
766 	case IWN_DID_4965_4:
767 		sc->base_params = &iwn4965_base_params;
768 		sc->limits = &iwn4965_sensitivity_limits;
769 		sc->fwname = "iwn4965fw";
770 		/* Override chains masks, ROM is known to be broken. */
771 		sc->txchainmask = IWN_ANT_AB;
772 		sc->rxchainmask = IWN_ANT_ABC;
773 		/* Enable normal btcoex */
774 		sc->sc_flags |= IWN_FLAG_BTCOEX;
775 		break;
776 /* 1000 Series */
777 	case IWN_DID_1000_1:
778 	case IWN_DID_1000_2:
779 		switch(sc->subdevice_id) {
780 			case	IWN_SDID_1000_1:
781 			case	IWN_SDID_1000_2:
782 			case	IWN_SDID_1000_3:
783 			case	IWN_SDID_1000_4:
784 			case	IWN_SDID_1000_5:
785 			case	IWN_SDID_1000_6:
786 			case	IWN_SDID_1000_7:
787 			case	IWN_SDID_1000_8:
788 			case	IWN_SDID_1000_9:
789 			case	IWN_SDID_1000_10:
790 			case	IWN_SDID_1000_11:
791 			case	IWN_SDID_1000_12:
792 				sc->limits = &iwn1000_sensitivity_limits;
793 				sc->base_params = &iwn1000_base_params;
794 				sc->fwname = "iwn1000fw";
795 				break;
796 			default:
797 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
798 				    "0x%04x rev %d not supported (subdevice)\n", pid,
799 				    sc->subdevice_id,sc->hw_type);
800 				return ENOTSUP;
801 		}
802 		break;
803 /* 6x00 Series */
804 	case IWN_DID_6x00_2:
805 	case IWN_DID_6x00_4:
806 	case IWN_DID_6x00_1:
807 	case IWN_DID_6x00_3:
808 		sc->fwname = "iwn6000fw";
809 		sc->limits = &iwn6000_sensitivity_limits;
810 		switch(sc->subdevice_id) {
811 			case IWN_SDID_6x00_1:
812 			case IWN_SDID_6x00_2:
813 			case IWN_SDID_6x00_8:
814 				//iwl6000_3agn_cfg
815 				sc->base_params = &iwn_6000_base_params;
816 				break;
817 			case IWN_SDID_6x00_3:
818 			case IWN_SDID_6x00_6:
819 			case IWN_SDID_6x00_9:
820 				////iwl6000i_2agn
821 			case IWN_SDID_6x00_4:
822 			case IWN_SDID_6x00_7:
823 			case IWN_SDID_6x00_10:
824 				//iwl6000i_2abg_cfg
825 			case IWN_SDID_6x00_5:
826 				//iwl6000i_2bg_cfg
827 				sc->base_params = &iwn_6000i_base_params;
828 				sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
829 				sc->txchainmask = IWN_ANT_BC;
830 				sc->rxchainmask = IWN_ANT_BC;
831 				break;
832 			default:
833 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
834 				    "0x%04x rev %d not supported (subdevice)\n", pid,
835 				    sc->subdevice_id,sc->hw_type);
836 				return ENOTSUP;
837 		}
838 		break;
839 /* 6x05 Series */
840 	case IWN_DID_6x05_1:
841 	case IWN_DID_6x05_2:
842 		switch(sc->subdevice_id) {
843 			case IWN_SDID_6x05_1:
844 			case IWN_SDID_6x05_4:
845 			case IWN_SDID_6x05_6:
846 				//iwl6005_2agn_cfg
847 			case IWN_SDID_6x05_2:
848 			case IWN_SDID_6x05_5:
849 			case IWN_SDID_6x05_7:
850 				//iwl6005_2abg_cfg
851 			case IWN_SDID_6x05_3:
852 				//iwl6005_2bg_cfg
853 			case IWN_SDID_6x05_8:
854 			case IWN_SDID_6x05_9:
855 				//iwl6005_2agn_sff_cfg
856 			case IWN_SDID_6x05_10:
857 				//iwl6005_2agn_d_cfg
858 			case IWN_SDID_6x05_11:
859 				//iwl6005_2agn_mow1_cfg
860 			case IWN_SDID_6x05_12:
861 				//iwl6005_2agn_mow2_cfg
862 				sc->fwname = "iwn6000g2afw";
863 				sc->limits = &iwn6000_sensitivity_limits;
864 				sc->base_params = &iwn_6000g2_base_params;
865 				break;
866 			default:
867 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
868 				    "0x%04x rev %d not supported (subdevice)\n", pid,
869 				    sc->subdevice_id,sc->hw_type);
870 				return ENOTSUP;
871 		}
872 		break;
873 /* 6x35 Series */
874 	case IWN_DID_6035_1:
875 	case IWN_DID_6035_2:
876 		switch(sc->subdevice_id) {
877 			case IWN_SDID_6035_1:
878 			case IWN_SDID_6035_2:
879 			case IWN_SDID_6035_3:
880 			case IWN_SDID_6035_4:
881 				sc->fwname = "iwn6000g2bfw";
882 				sc->limits = &iwn6000_sensitivity_limits;
883 				sc->base_params = &iwn_6000g2b_base_params;
884 				break;
885 			default:
886 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
887 				    "0x%04x rev %d not supported (subdevice)\n", pid,
888 				    sc->subdevice_id,sc->hw_type);
889 				return ENOTSUP;
890 		}
891 		break;
892 /* 6x50 WiFi/WiMax Series */
893 	case IWN_DID_6050_1:
894 	case IWN_DID_6050_2:
895 		switch(sc->subdevice_id) {
896 			case IWN_SDID_6050_1:
897 			case IWN_SDID_6050_3:
898 			case IWN_SDID_6050_5:
899 				//iwl6050_2agn_cfg
900 			case IWN_SDID_6050_2:
901 			case IWN_SDID_6050_4:
902 			case IWN_SDID_6050_6:
903 				//iwl6050_2abg_cfg
904 				sc->fwname = "iwn6050fw";
905 				sc->txchainmask = IWN_ANT_AB;
906 				sc->rxchainmask = IWN_ANT_AB;
907 				sc->limits = &iwn6000_sensitivity_limits;
908 				sc->base_params = &iwn_6050_base_params;
909 				break;
910 			default:
911 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
912 				    "0x%04x rev %d not supported (subdevice)\n", pid,
913 				    sc->subdevice_id,sc->hw_type);
914 				return ENOTSUP;
915 		}
916 		break;
917 /* 6150 WiFi/WiMax Series */
918 	case IWN_DID_6150_1:
919 	case IWN_DID_6150_2:
920 		switch(sc->subdevice_id) {
921 			case IWN_SDID_6150_1:
922 			case IWN_SDID_6150_3:
923 			case IWN_SDID_6150_5:
924 				// iwl6150_bgn_cfg
925 			case IWN_SDID_6150_2:
926 			case IWN_SDID_6150_4:
927 			case IWN_SDID_6150_6:
928 				//iwl6150_bg_cfg
929 				sc->fwname = "iwn6050fw";
930 				sc->limits = &iwn6000_sensitivity_limits;
931 				sc->base_params = &iwn_6150_base_params;
932 				break;
933 			default:
934 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
935 				    "0x%04x rev %d not supported (subdevice)\n", pid,
936 				    sc->subdevice_id,sc->hw_type);
937 				return ENOTSUP;
938 		}
939 		break;
940 /* 6030 Series and 1030 Series */
941 	case IWN_DID_x030_1:
942 	case IWN_DID_x030_2:
943 	case IWN_DID_x030_3:
944 	case IWN_DID_x030_4:
945 		switch(sc->subdevice_id) {
946 			case IWN_SDID_x030_1:
947 			case IWN_SDID_x030_3:
948 			case IWN_SDID_x030_5:
949 			// iwl1030_bgn_cfg
950 			case IWN_SDID_x030_2:
951 			case IWN_SDID_x030_4:
952 			case IWN_SDID_x030_6:
953 			//iwl1030_bg_cfg
954 			case IWN_SDID_x030_7:
955 			case IWN_SDID_x030_10:
956 			case IWN_SDID_x030_14:
957 			//iwl6030_2agn_cfg
958 			case IWN_SDID_x030_8:
959 			case IWN_SDID_x030_11:
960 			case IWN_SDID_x030_15:
961 			// iwl6030_2bgn_cfg
962 			case IWN_SDID_x030_9:
963 			case IWN_SDID_x030_12:
964 			case IWN_SDID_x030_16:
965 			// iwl6030_2abg_cfg
966 			case IWN_SDID_x030_13:
967 			//iwl6030_2bg_cfg
968 				sc->fwname = "iwn6000g2bfw";
969 				sc->limits = &iwn6000_sensitivity_limits;
970 				sc->base_params = &iwn_6000g2b_base_params;
971 				break;
972 			default:
973 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
974 				    "0x%04x rev %d not supported (subdevice)\n", pid,
975 				    sc->subdevice_id,sc->hw_type);
976 				return ENOTSUP;
977 		}
978 		break;
979 /* 130 Series WiFi */
980 /* XXX: This series will need adjustment for rate.
981  * see rx_with_siso_diversity in linux kernel
982  */
983 	case IWN_DID_130_1:
984 	case IWN_DID_130_2:
985 		switch(sc->subdevice_id) {
986 			case IWN_SDID_130_1:
987 			case IWN_SDID_130_3:
988 			case IWN_SDID_130_5:
989 			//iwl130_bgn_cfg
990 			case IWN_SDID_130_2:
991 			case IWN_SDID_130_4:
992 			case IWN_SDID_130_6:
993 			//iwl130_bg_cfg
994 				sc->fwname = "iwn6000g2bfw";
995 				sc->limits = &iwn6000_sensitivity_limits;
996 				sc->base_params = &iwn_6000g2b_base_params;
997 				break;
998 			default:
999 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1000 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1001 				    sc->subdevice_id,sc->hw_type);
1002 				return ENOTSUP;
1003 		}
1004 		break;
1005 /* 100 Series WiFi */
1006 	case IWN_DID_100_1:
1007 	case IWN_DID_100_2:
1008 		switch(sc->subdevice_id) {
1009 			case IWN_SDID_100_1:
1010 			case IWN_SDID_100_2:
1011 			case IWN_SDID_100_3:
1012 			case IWN_SDID_100_4:
1013 			case IWN_SDID_100_5:
1014 			case IWN_SDID_100_6:
1015 				sc->limits = &iwn1000_sensitivity_limits;
1016 				sc->base_params = &iwn1000_base_params;
1017 				sc->fwname = "iwn100fw";
1018 				break;
1019 			default:
1020 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1021 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1022 				    sc->subdevice_id,sc->hw_type);
1023 				return ENOTSUP;
1024 		}
1025 		break;
1026 
1027 /* 2x00 Series */
1028 	case IWN_DID_2x00_1:
1029 	case IWN_DID_2x00_2:
1030 		switch(sc->subdevice_id) {
1031 			case IWN_SDID_2x00_1:
1032 			case IWN_SDID_2x00_2:
1033 			case IWN_SDID_2x00_3:
1034 			//iwl2000_2bgn_cfg
1035 			case IWN_SDID_2x00_4:
1036 			//iwl2000_2bgn_d_cfg
1037 				sc->limits = &iwn2030_sensitivity_limits;
1038 				sc->base_params = &iwn2000_base_params;
1039 				sc->fwname = "iwn2000fw";
1040 				break;
1041 			default:
1042 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1043 				    "0x%04x rev %d not supported (subdevice) \n",
1044 				    pid, sc->subdevice_id, sc->hw_type);
1045 				return ENOTSUP;
1046 		}
1047 		break;
1048 /* 2x30 Series */
1049 	case IWN_DID_2x30_1:
1050 	case IWN_DID_2x30_2:
1051 		switch(sc->subdevice_id) {
1052 			case IWN_SDID_2x30_1:
1053 			case IWN_SDID_2x30_3:
1054 			case IWN_SDID_2x30_5:
1055 			//iwl100_bgn_cfg
1056 			case IWN_SDID_2x30_2:
1057 			case IWN_SDID_2x30_4:
1058 			case IWN_SDID_2x30_6:
1059 			//iwl100_bg_cfg
1060 				sc->limits = &iwn2030_sensitivity_limits;
1061 				sc->base_params = &iwn2030_base_params;
1062 				sc->fwname = "iwn2030fw";
1063 				break;
1064 			default:
1065 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1066 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1067 				    sc->subdevice_id,sc->hw_type);
1068 				return ENOTSUP;
1069 		}
1070 		break;
1071 /* 5x00 Series */
1072 	case IWN_DID_5x00_1:
1073 	case IWN_DID_5x00_2:
1074 	case IWN_DID_5x00_3:
1075 	case IWN_DID_5x00_4:
1076 		sc->limits = &iwn5000_sensitivity_limits;
1077 		sc->base_params = &iwn5000_base_params;
1078 		sc->fwname = "iwn5000fw";
1079 		switch(sc->subdevice_id) {
1080 			case IWN_SDID_5x00_1:
1081 			case IWN_SDID_5x00_2:
1082 			case IWN_SDID_5x00_3:
1083 			case IWN_SDID_5x00_4:
1084 			case IWN_SDID_5x00_9:
1085 			case IWN_SDID_5x00_10:
1086 			case IWN_SDID_5x00_11:
1087 			case IWN_SDID_5x00_12:
1088 			case IWN_SDID_5x00_17:
1089 			case IWN_SDID_5x00_18:
1090 			case IWN_SDID_5x00_19:
1091 			case IWN_SDID_5x00_20:
1092 			//iwl5100_agn_cfg
1093 				sc->txchainmask = IWN_ANT_B;
1094 				sc->rxchainmask = IWN_ANT_AB;
1095 				break;
1096 			case IWN_SDID_5x00_5:
1097 			case IWN_SDID_5x00_6:
1098 			case IWN_SDID_5x00_13:
1099 			case IWN_SDID_5x00_14:
1100 			case IWN_SDID_5x00_21:
1101 			case IWN_SDID_5x00_22:
1102 			//iwl5100_bgn_cfg
1103 				sc->txchainmask = IWN_ANT_B;
1104 				sc->rxchainmask = IWN_ANT_AB;
1105 				break;
1106 			case IWN_SDID_5x00_7:
1107 			case IWN_SDID_5x00_8:
1108 			case IWN_SDID_5x00_15:
1109 			case IWN_SDID_5x00_16:
1110 			case IWN_SDID_5x00_23:
1111 			case IWN_SDID_5x00_24:
1112 			//iwl5100_abg_cfg
1113 				sc->txchainmask = IWN_ANT_B;
1114 				sc->rxchainmask = IWN_ANT_AB;
1115 				break;
1116 			case IWN_SDID_5x00_25:
1117 			case IWN_SDID_5x00_26:
1118 			case IWN_SDID_5x00_27:
1119 			case IWN_SDID_5x00_28:
1120 			case IWN_SDID_5x00_29:
1121 			case IWN_SDID_5x00_30:
1122 			case IWN_SDID_5x00_31:
1123 			case IWN_SDID_5x00_32:
1124 			case IWN_SDID_5x00_33:
1125 			case IWN_SDID_5x00_34:
1126 			case IWN_SDID_5x00_35:
1127 			case IWN_SDID_5x00_36:
1128 			//iwl5300_agn_cfg
1129 				sc->txchainmask = IWN_ANT_ABC;
1130 				sc->rxchainmask = IWN_ANT_ABC;
1131 				break;
1132 			default:
1133 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1134 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1135 				    sc->subdevice_id,sc->hw_type);
1136 				return ENOTSUP;
1137 		}
1138 		break;
1139 /* 5x50 Series */
1140 	case IWN_DID_5x50_1:
1141 	case IWN_DID_5x50_2:
1142 	case IWN_DID_5x50_3:
1143 	case IWN_DID_5x50_4:
1144 		sc->limits = &iwn5000_sensitivity_limits;
1145 		sc->base_params = &iwn5000_base_params;
1146 		sc->fwname = "iwn5000fw";
1147 		switch(sc->subdevice_id) {
1148 			case IWN_SDID_5x50_1:
1149 			case IWN_SDID_5x50_2:
1150 			case IWN_SDID_5x50_3:
1151 			//iwl5350_agn_cfg
1152 				sc->limits = &iwn5000_sensitivity_limits;
1153 				sc->base_params = &iwn5000_base_params;
1154 				sc->fwname = "iwn5000fw";
1155 				break;
1156 			case IWN_SDID_5x50_4:
1157 			case IWN_SDID_5x50_5:
1158 			case IWN_SDID_5x50_8:
1159 			case IWN_SDID_5x50_9:
1160 			case IWN_SDID_5x50_10:
1161 			case IWN_SDID_5x50_11:
1162 			//iwl5150_agn_cfg
1163 			case IWN_SDID_5x50_6:
1164 			case IWN_SDID_5x50_7:
1165 			case IWN_SDID_5x50_12:
1166 			case IWN_SDID_5x50_13:
1167 			//iwl5150_abg_cfg
1168 				sc->limits = &iwn5000_sensitivity_limits;
1169 				sc->fwname = "iwn5150fw";
1170 				sc->base_params = &iwn_5x50_base_params;
1171 				break;
1172 			default:
1173 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1174 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1175 				    sc->subdevice_id,sc->hw_type);
1176 				return ENOTSUP;
1177 		}
1178 		break;
1179 	default:
1180 		device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x"
1181 		    "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id,
1182 		     sc->hw_type);
1183 		return ENOTSUP;
1184 	}
1185 	return 0;
1186 }
1187 
1188 static int
1189 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
1190 {
1191 	struct iwn_ops *ops = &sc->ops;
1192 
1193 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1194 	ops->load_firmware = iwn4965_load_firmware;
1195 	ops->read_eeprom = iwn4965_read_eeprom;
1196 	ops->post_alive = iwn4965_post_alive;
1197 	ops->nic_config = iwn4965_nic_config;
1198 	ops->update_sched = iwn4965_update_sched;
1199 	ops->get_temperature = iwn4965_get_temperature;
1200 	ops->get_rssi = iwn4965_get_rssi;
1201 	ops->set_txpower = iwn4965_set_txpower;
1202 	ops->init_gains = iwn4965_init_gains;
1203 	ops->set_gains = iwn4965_set_gains;
1204 	ops->add_node = iwn4965_add_node;
1205 	ops->tx_done = iwn4965_tx_done;
1206 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
1207 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
1208 	sc->ntxqs = IWN4965_NTXQUEUES;
1209 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
1210 	sc->ndmachnls = IWN4965_NDMACHNLS;
1211 	sc->broadcast_id = IWN4965_ID_BROADCAST;
1212 	sc->rxonsz = IWN4965_RXONSZ;
1213 	sc->schedsz = IWN4965_SCHEDSZ;
1214 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
1215 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
1216 	sc->fwsz = IWN4965_FWSZ;
1217 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
1218 	sc->limits = &iwn4965_sensitivity_limits;
1219 	sc->fwname = "iwn4965fw";
1220 	/* Override chains masks, ROM is known to be broken. */
1221 	sc->txchainmask = IWN_ANT_AB;
1222 	sc->rxchainmask = IWN_ANT_ABC;
1223 	/* Enable normal btcoex */
1224 	sc->sc_flags |= IWN_FLAG_BTCOEX;
1225 
1226 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1227 
1228 	return 0;
1229 }
1230 
1231 static int
1232 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
1233 {
1234 	struct iwn_ops *ops = &sc->ops;
1235 
1236 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1237 
1238 	ops->load_firmware = iwn5000_load_firmware;
1239 	ops->read_eeprom = iwn5000_read_eeprom;
1240 	ops->post_alive = iwn5000_post_alive;
1241 	ops->nic_config = iwn5000_nic_config;
1242 	ops->update_sched = iwn5000_update_sched;
1243 	ops->get_temperature = iwn5000_get_temperature;
1244 	ops->get_rssi = iwn5000_get_rssi;
1245 	ops->set_txpower = iwn5000_set_txpower;
1246 	ops->init_gains = iwn5000_init_gains;
1247 	ops->set_gains = iwn5000_set_gains;
1248 	ops->add_node = iwn5000_add_node;
1249 	ops->tx_done = iwn5000_tx_done;
1250 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
1251 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
1252 	sc->ntxqs = IWN5000_NTXQUEUES;
1253 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
1254 	sc->ndmachnls = IWN5000_NDMACHNLS;
1255 	sc->broadcast_id = IWN5000_ID_BROADCAST;
1256 	sc->rxonsz = IWN5000_RXONSZ;
1257 	sc->schedsz = IWN5000_SCHEDSZ;
1258 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
1259 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
1260 	sc->fwsz = IWN5000_FWSZ;
1261 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
1262 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
1263 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
1264 
1265 	return 0;
1266 }
1267 
1268 /*
1269  * Attach the interface to 802.11 radiotap.
1270  */
1271 static void
1272 iwn_radiotap_attach(struct iwn_softc *sc)
1273 {
1274 	struct ifnet *ifp = sc->sc_ifp;
1275 	struct ieee80211com *ic = ifp->if_l2com;
1276 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1277 	ieee80211_radiotap_attach(ic,
1278 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
1279 		IWN_TX_RADIOTAP_PRESENT,
1280 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
1281 		IWN_RX_RADIOTAP_PRESENT);
1282 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1283 }
1284 
1285 static void
1286 iwn_sysctlattach(struct iwn_softc *sc)
1287 {
1288 #ifdef	IWN_DEBUG
1289 	struct sysctl_ctx_list *ctx;
1290 	struct sysctl_oid *tree;
1291 
1292 	ctx = &sc->sc_sysctl_ctx;
1293 	tree = sc->sc_sysctl_tree;
1294 
1295 	if (tree) {
1296 		device_printf(sc->sc_dev, "can't add sysctl node\n");
1297 		return;
1298 	}
1299 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1300 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
1301 		"control debugging printfs");
1302 #endif
1303 }
1304 
1305 static struct ieee80211vap *
1306 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1307     enum ieee80211_opmode opmode, int flags,
1308     const uint8_t bssid[IEEE80211_ADDR_LEN],
1309     const uint8_t mac[IEEE80211_ADDR_LEN])
1310 {
1311 	struct iwn_vap *ivp;
1312 	struct ieee80211vap *vap;
1313 	uint8_t mac1[IEEE80211_ADDR_LEN];
1314 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
1315 
1316 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
1317 		return NULL;
1318 
1319 	IEEE80211_ADDR_COPY(mac1, mac);
1320 
1321 	ivp = kmalloc(sizeof(struct iwn_vap), M_80211_VAP, M_INTWAIT | M_ZERO);
1322 	vap = &ivp->iv_vap;
1323 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac1);
1324 	ivp->ctx = IWN_RXON_BSS_CTX;
1325 	IEEE80211_ADDR_COPY(ivp->macaddr, mac1);
1326 	vap->iv_bmissthreshold = 10;		/* override default */
1327 	/* Override with driver methods. */
1328 	ivp->iv_newstate = vap->iv_newstate;
1329 	vap->iv_newstate = iwn_newstate;
1330 	sc->ivap[IWN_RXON_BSS_CTX] = vap;
1331 
1332 	ieee80211_ratectl_init(vap);
1333 	/* Complete setup. */
1334 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status);
1335 	ic->ic_opmode = opmode;
1336 	return vap;
1337 }
1338 
1339 static void
1340 iwn_vap_delete(struct ieee80211vap *vap)
1341 {
1342 	struct iwn_vap *ivp = IWN_VAP(vap);
1343 
1344 	ieee80211_ratectl_deinit(vap);
1345 	ieee80211_vap_detach(vap);
1346 	kfree(ivp, M_80211_VAP);
1347 }
1348 
1349 static int
1350 iwn_pci_detach(device_t dev)
1351 {
1352 	struct iwn_softc *sc = device_get_softc(dev);
1353 	struct ifnet *ifp = sc->sc_ifp;
1354 	struct ieee80211com *ic;
1355 	int qid;
1356 
1357 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1358 
1359 	wlan_serialize_enter();
1360 
1361 	if (ifp != NULL) {
1362 		ic = ifp->if_l2com;
1363 
1364 		ieee80211_draintask(ic, &sc->sc_reinit_task);
1365 		ieee80211_draintask(ic, &sc->sc_radioon_task);
1366 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
1367 
1368 		iwn_stop(sc);
1369 		callout_stop(&sc->watchdog_to);
1370 		callout_stop(&sc->calib_to);
1371 		ieee80211_ifdetach(ic);
1372 	}
1373 
1374 	/* cleanup sysctl nodes */
1375 	sysctl_ctx_free(&sc->sc_sysctl_ctx);
1376 
1377 	/* Uninstall interrupt handler. */
1378 	if (sc->irq != NULL) {
1379 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
1380 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
1381 		if (sc->irq_rid == 1)
1382 			pci_release_msi(dev);
1383 		sc->irq = NULL;
1384 	}
1385 
1386 	/* Free DMA resources. */
1387 	iwn_free_rx_ring(sc, &sc->rxq);
1388 	for (qid = 0; qid < sc->ntxqs; qid++)
1389 		iwn_free_tx_ring(sc, &sc->txq[qid]);
1390 	iwn_free_sched(sc);
1391 	iwn_free_kw(sc);
1392 	if (sc->ict != NULL) {
1393 		iwn_free_ict(sc);
1394 		sc->ict = NULL;
1395 	}
1396 	iwn_free_fwmem(sc);
1397 
1398 	if (sc->mem != NULL) {
1399 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
1400 		sc->mem = NULL;
1401 	}
1402 
1403 	if (ifp != NULL) {
1404 		if_free(ifp);
1405 		sc->sc_ifp = NULL;
1406 	}
1407 
1408 	bus_dma_tag_destroy(sc->sc_dmat);
1409 
1410 	wlan_serialize_exit();
1411 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__);
1412 	return 0;
1413 }
1414 
1415 static int
1416 iwn_pci_shutdown(device_t dev)
1417 {
1418 	struct iwn_softc *sc = device_get_softc(dev);
1419 
1420 	wlan_serialize_enter();
1421 	iwn_stop_locked(sc);
1422 	wlan_serialize_exit();
1423 
1424 	return 0;
1425 }
1426 
1427 static int
1428 iwn_pci_suspend(device_t dev)
1429 {
1430 	struct iwn_softc *sc = device_get_softc(dev);
1431 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1432 
1433 	ieee80211_suspend_all(ic);
1434 	return 0;
1435 }
1436 
1437 static int
1438 iwn_pci_resume(device_t dev)
1439 {
1440 	struct iwn_softc *sc = device_get_softc(dev);
1441 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1442 
1443 	/* Clear device-specific "PCI retry timeout" register (41h). */
1444 	pci_write_config(dev, 0x41, 0, 1);
1445 
1446 	ieee80211_resume_all(ic);
1447 	return 0;
1448 }
1449 
1450 static int
1451 iwn_nic_lock(struct iwn_softc *sc)
1452 {
1453 	int ntries;
1454 
1455 	/* Request exclusive access to NIC. */
1456 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1457 
1458 	/* Spin until we actually get the lock. */
1459 	for (ntries = 0; ntries < 1000; ntries++) {
1460 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1461 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1462 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1463 			return 0;
1464 		DELAY(10);
1465 	}
1466 	return ETIMEDOUT;
1467 }
1468 
1469 static __inline void
1470 iwn_nic_unlock(struct iwn_softc *sc)
1471 {
1472 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1473 }
1474 
1475 static __inline uint32_t
1476 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1477 {
1478 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1479 	IWN_BARRIER_READ_WRITE(sc);
1480 	return IWN_READ(sc, IWN_PRPH_RDATA);
1481 }
1482 
1483 static __inline void
1484 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1485 {
1486 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1487 	IWN_BARRIER_WRITE(sc);
1488 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1489 }
1490 
1491 static __inline void
1492 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1493 {
1494 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1495 }
1496 
1497 static __inline void
1498 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1499 {
1500 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1501 }
1502 
1503 static __inline void
1504 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1505     const uint32_t *data, int count)
1506 {
1507 	for (; count > 0; count--, data++, addr += 4)
1508 		iwn_prph_write(sc, addr, *data);
1509 }
1510 
1511 static __inline uint32_t
1512 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1513 {
1514 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1515 	IWN_BARRIER_READ_WRITE(sc);
1516 	return IWN_READ(sc, IWN_MEM_RDATA);
1517 }
1518 
1519 static __inline void
1520 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1521 {
1522 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1523 	IWN_BARRIER_WRITE(sc);
1524 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1525 }
1526 
1527 static __inline void
1528 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1529 {
1530 	uint32_t tmp;
1531 
1532 	tmp = iwn_mem_read(sc, addr & ~3);
1533 	if (addr & 3)
1534 		tmp = (tmp & 0x0000ffff) | data << 16;
1535 	else
1536 		tmp = (tmp & 0xffff0000) | data;
1537 	iwn_mem_write(sc, addr & ~3, tmp);
1538 }
1539 
1540 static __inline void
1541 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1542     int count)
1543 {
1544 	for (; count > 0; count--, addr += 4)
1545 		*data++ = iwn_mem_read(sc, addr);
1546 }
1547 
1548 static __inline void
1549 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1550     int count)
1551 {
1552 	for (; count > 0; count--, addr += 4)
1553 		iwn_mem_write(sc, addr, val);
1554 }
1555 
1556 static int
1557 iwn_eeprom_lock(struct iwn_softc *sc)
1558 {
1559 	int i, ntries;
1560 
1561 	for (i = 0; i < 100; i++) {
1562 		/* Request exclusive access to EEPROM. */
1563 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1564 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1565 
1566 		/* Spin until we actually get the lock. */
1567 		for (ntries = 0; ntries < 100; ntries++) {
1568 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1569 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1570 				return 0;
1571 			DELAY(10);
1572 		}
1573 	}
1574 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__);
1575 	return ETIMEDOUT;
1576 }
1577 
1578 static __inline void
1579 iwn_eeprom_unlock(struct iwn_softc *sc)
1580 {
1581 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1582 }
1583 
1584 /*
1585  * Initialize access by host to One Time Programmable ROM.
1586  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1587  */
1588 static int
1589 iwn_init_otprom(struct iwn_softc *sc)
1590 {
1591 	uint16_t prev, base, next;
1592 	int count, error;
1593 
1594 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1595 
1596 	/* Wait for clock stabilization before accessing prph. */
1597 	if ((error = iwn_clock_wait(sc)) != 0)
1598 		return error;
1599 
1600 	if ((error = iwn_nic_lock(sc)) != 0)
1601 		return error;
1602 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1603 	DELAY(5);
1604 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1605 	iwn_nic_unlock(sc);
1606 
1607 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1608 	if (sc->base_params->shadow_ram_support) {
1609 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1610 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1611 	}
1612 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1613 	/* Clear ECC status. */
1614 	IWN_SETBITS(sc, IWN_OTP_GP,
1615 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1616 
1617 	/*
1618 	 * Find the block before last block (contains the EEPROM image)
1619 	 * for HW without OTP shadow RAM.
1620 	 */
1621 	if (! sc->base_params->shadow_ram_support) {
1622 		/* Switch to absolute addressing mode. */
1623 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1624 		base = prev = 0;
1625 		for (count = 0; count < sc->base_params->max_ll_items;
1626 		    count++) {
1627 			error = iwn_read_prom_data(sc, base, &next, 2);
1628 			if (error != 0)
1629 				return error;
1630 			if (next == 0)	/* End of linked-list. */
1631 				break;
1632 			prev = base;
1633 			base = le16toh(next);
1634 		}
1635 		if (count == 0 || count == sc->base_params->max_ll_items)
1636 			return EIO;
1637 		/* Skip "next" word. */
1638 		sc->prom_base = prev + 1;
1639 	}
1640 
1641 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1642 
1643 	return 0;
1644 }
1645 
1646 static int
1647 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1648 {
1649 	uint8_t *out = data;
1650 	uint32_t val, tmp;
1651 	int ntries;
1652 
1653 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1654 
1655 	addr += sc->prom_base;
1656 	for (; count > 0; count -= 2, addr++) {
1657 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1658 		for (ntries = 0; ntries < 10; ntries++) {
1659 			val = IWN_READ(sc, IWN_EEPROM);
1660 			if (val & IWN_EEPROM_READ_VALID)
1661 				break;
1662 			DELAY(5);
1663 		}
1664 		if (ntries == 10) {
1665 			device_printf(sc->sc_dev,
1666 			    "timeout reading ROM at 0x%x\n", addr);
1667 			return ETIMEDOUT;
1668 		}
1669 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1670 			/* OTPROM, check for ECC errors. */
1671 			tmp = IWN_READ(sc, IWN_OTP_GP);
1672 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1673 				device_printf(sc->sc_dev,
1674 				    "OTPROM ECC error at 0x%x\n", addr);
1675 				return EIO;
1676 			}
1677 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1678 				/* Correctable ECC error, clear bit. */
1679 				IWN_SETBITS(sc, IWN_OTP_GP,
1680 				    IWN_OTP_GP_ECC_CORR_STTS);
1681 			}
1682 		}
1683 		*out++ = val >> 16;
1684 		if (count > 1)
1685 			*out++ = val >> 24;
1686 	}
1687 
1688 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1689 
1690 	return 0;
1691 }
1692 
1693 static void
1694 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1695 {
1696 	if (error != 0)
1697 		return;
1698 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1699 	*(bus_addr_t *)arg = segs[0].ds_addr;
1700 }
1701 
1702 static int
1703 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1704     void **kvap, bus_size_t size, bus_size_t alignment)
1705 {
1706 	int error;
1707 
1708 	dma->tag = NULL;
1709 	dma->size = size;
1710 
1711 	error = bus_dma_tag_create(sc->sc_dmat, alignment,
1712 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1713 	    1, size, BUS_DMA_NOWAIT, &dma->tag);
1714 	if (error != 0)
1715 		goto fail;
1716 
1717 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1718 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1719 	if (error != 0)
1720 		goto fail;
1721 
1722 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1723 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1724 	if (error != 0)
1725 		goto fail;
1726 
1727 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1728 
1729 	if (kvap != NULL)
1730 		*kvap = dma->vaddr;
1731 
1732 	return 0;
1733 
1734 fail:	iwn_dma_contig_free(dma);
1735 	return error;
1736 }
1737 
1738 static void
1739 iwn_dma_contig_free(struct iwn_dma_info *dma)
1740 {
1741 	if (dma->map != NULL) {
1742 		if (dma->vaddr != NULL) {
1743 			bus_dmamap_sync(dma->tag, dma->map,
1744 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1745 			bus_dmamap_unload(dma->tag, dma->map);
1746 			bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1747 			dma->vaddr = NULL;
1748 		}
1749 		bus_dmamap_destroy(dma->tag, dma->map);
1750 		dma->map = NULL;
1751 	}
1752 	if (dma->tag != NULL) {
1753 		bus_dma_tag_destroy(dma->tag);
1754 		dma->tag = NULL;
1755 	}
1756 }
1757 
1758 static int
1759 iwn_alloc_sched(struct iwn_softc *sc)
1760 {
1761 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1762 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1763 	    sc->schedsz, 1024);
1764 }
1765 
1766 static void
1767 iwn_free_sched(struct iwn_softc *sc)
1768 {
1769 	iwn_dma_contig_free(&sc->sched_dma);
1770 }
1771 
1772 static int
1773 iwn_alloc_kw(struct iwn_softc *sc)
1774 {
1775 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1776 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1777 }
1778 
1779 static void
1780 iwn_free_kw(struct iwn_softc *sc)
1781 {
1782 	iwn_dma_contig_free(&sc->kw_dma);
1783 }
1784 
1785 static int
1786 iwn_alloc_ict(struct iwn_softc *sc)
1787 {
1788 	/* ICT table must be aligned on a 4KB boundary. */
1789 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1790 	    IWN_ICT_SIZE, 4096);
1791 }
1792 
1793 static void
1794 iwn_free_ict(struct iwn_softc *sc)
1795 {
1796 	iwn_dma_contig_free(&sc->ict_dma);
1797 }
1798 
1799 static int
1800 iwn_alloc_fwmem(struct iwn_softc *sc)
1801 {
1802 	/* Must be aligned on a 16-byte boundary. */
1803 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1804 }
1805 
1806 static void
1807 iwn_free_fwmem(struct iwn_softc *sc)
1808 {
1809 	iwn_dma_contig_free(&sc->fw_dma);
1810 }
1811 
1812 static int
1813 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1814 {
1815 	bus_size_t size;
1816 	int i, error;
1817 
1818 	ring->cur = 0;
1819 
1820 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1821 
1822 	/* Allocate RX descriptors (256-byte aligned). */
1823 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1824 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1825 	    size, 256);
1826 	if (error != 0) {
1827 		device_printf(sc->sc_dev,
1828 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1829 		    __func__, error);
1830 		goto fail;
1831 	}
1832 
1833 	/* Allocate RX status area (16-byte aligned). */
1834 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1835 	    sizeof (struct iwn_rx_status), 16);
1836 	if (error != 0) {
1837 		device_printf(sc->sc_dev,
1838 		    "%s: could not allocate RX status DMA memory, error %d\n",
1839 		    __func__, error);
1840 		goto fail;
1841 	}
1842 
1843 	/* Create RX buffer DMA tag. */
1844 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
1845 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1846 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, BUS_DMA_NOWAIT, &ring->data_dmat);
1847 	if (error != 0) {
1848 		device_printf(sc->sc_dev,
1849 		    "%s: could not create RX buf DMA tag, error %d\n",
1850 		    __func__, error);
1851 		goto fail;
1852 	}
1853 
1854 	/*
1855 	 * Allocate and map RX buffers.
1856 	 */
1857 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1858 		struct iwn_rx_data *data = &ring->data[i];
1859 		bus_addr_t paddr;
1860 
1861 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1862 		if (error != 0) {
1863 			device_printf(sc->sc_dev,
1864 			    "%s: could not create RX buf DMA map, error %d\n",
1865 			    __func__, error);
1866 			goto fail;
1867 		}
1868 
1869 		data->m = m_getjcl(MB_DONTWAIT, MT_DATA,
1870 				   M_PKTHDR, IWN_RBUF_SIZE);
1871 		if (data->m == NULL) {
1872 			device_printf(sc->sc_dev,
1873 			    "%s: could not allocate RX mbuf\n", __func__);
1874 			error = ENOBUFS;
1875 			goto fail;
1876 		}
1877 
1878 		error = bus_dmamap_load(ring->data_dmat, data->map,
1879 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1880 		    &paddr, BUS_DMA_NOWAIT);
1881 		if (error != 0 && error != EFBIG) {
1882 			device_printf(sc->sc_dev,
1883 			    "%s: can't not map mbuf, error %d\n", __func__,
1884 			    error);
1885 			goto fail;
1886 		}
1887 
1888 		/* Set physical address of RX buffer (256-byte aligned). */
1889 		ring->desc[i] = htole32(paddr >> 8);
1890 	}
1891 
1892 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1893 	    BUS_DMASYNC_PREWRITE);
1894 
1895 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
1896 
1897 	return 0;
1898 
1899 fail:	iwn_free_rx_ring(sc, ring);
1900 
1901 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
1902 
1903 	return error;
1904 }
1905 
1906 static void
1907 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1908 {
1909 	int ntries;
1910 
1911 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
1912 
1913 	if (iwn_nic_lock(sc) == 0) {
1914 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1915 		for (ntries = 0; ntries < 1000; ntries++) {
1916 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1917 			    IWN_FH_RX_STATUS_IDLE)
1918 				break;
1919 			DELAY(10);
1920 		}
1921 		iwn_nic_unlock(sc);
1922 	}
1923 	ring->cur = 0;
1924 	sc->last_rx_valid = 0;
1925 }
1926 
1927 static void
1928 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1929 {
1930 	int i;
1931 
1932 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1933 
1934 	iwn_dma_contig_free(&ring->desc_dma);
1935 	iwn_dma_contig_free(&ring->stat_dma);
1936 
1937 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1938 		struct iwn_rx_data *data = &ring->data[i];
1939 
1940 		if (data->m != NULL) {
1941 			bus_dmamap_sync(ring->data_dmat, data->map,
1942 			    BUS_DMASYNC_POSTREAD);
1943 			bus_dmamap_unload(ring->data_dmat, data->map);
1944 			m_freem(data->m);
1945 			data->m = NULL;
1946 		}
1947 		if (data->map != NULL)
1948 			bus_dmamap_destroy(ring->data_dmat, data->map);
1949 	}
1950 	if (ring->data_dmat != NULL) {
1951 		bus_dma_tag_destroy(ring->data_dmat);
1952 		ring->data_dmat = NULL;
1953 	}
1954 }
1955 
1956 static int
1957 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1958 {
1959 	bus_addr_t paddr;
1960 	bus_size_t size;
1961 	int i, error;
1962 
1963 	ring->qid = qid;
1964 	ring->queued = 0;
1965 	ring->cur = 0;
1966 
1967 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1968 
1969 	/* Allocate TX descriptors (256-byte aligned). */
1970 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1971 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1972 	    size, 256);
1973 	if (error != 0) {
1974 		device_printf(sc->sc_dev,
1975 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1976 		    __func__, error);
1977 		goto fail;
1978 	}
1979 
1980 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1981 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1982 	    size, 4);
1983 	if (error != 0) {
1984 		device_printf(sc->sc_dev,
1985 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1986 		    __func__, error);
1987 		goto fail;
1988 	}
1989 
1990 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
1991 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1992 	    IWN_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, &ring->data_dmat);
1993 	if (error != 0) {
1994 		device_printf(sc->sc_dev,
1995 		    "%s: could not create TX buf DMA tag, error %d\n",
1996 		    __func__, error);
1997 		goto fail;
1998 	}
1999 
2000 	paddr = ring->cmd_dma.paddr;
2001 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2002 		struct iwn_tx_data *data = &ring->data[i];
2003 
2004 		data->cmd_paddr = paddr;
2005 		data->scratch_paddr = paddr + 12;
2006 		paddr += sizeof (struct iwn_tx_cmd);
2007 
2008 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2009 		if (error != 0) {
2010 			device_printf(sc->sc_dev,
2011 			    "%s: could not create TX buf DMA map, error %d\n",
2012 			    __func__, error);
2013 			goto fail;
2014 		}
2015 	}
2016 
2017 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2018 
2019 	return 0;
2020 
2021 fail:	iwn_free_tx_ring(sc, ring);
2022 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2023 	return error;
2024 }
2025 
2026 static void
2027 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2028 {
2029 	int i;
2030 
2031 	DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__);
2032 
2033 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2034 		struct iwn_tx_data *data = &ring->data[i];
2035 
2036 		if (data->m != NULL) {
2037 			bus_dmamap_sync(ring->data_dmat, data->map,
2038 			    BUS_DMASYNC_POSTWRITE);
2039 			bus_dmamap_unload(ring->data_dmat, data->map);
2040 			m_freem(data->m);
2041 			data->m = NULL;
2042 		}
2043 	}
2044 	/* Clear TX descriptors. */
2045 	memset(ring->desc, 0, ring->desc_dma.size);
2046 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2047 	    BUS_DMASYNC_PREWRITE);
2048 	sc->qfullmsk &= ~(1 << ring->qid);
2049 	ring->queued = 0;
2050 	ring->cur = 0;
2051 }
2052 
2053 static void
2054 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2055 {
2056 	int i;
2057 
2058 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
2059 
2060 	iwn_dma_contig_free(&ring->desc_dma);
2061 	iwn_dma_contig_free(&ring->cmd_dma);
2062 
2063 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2064 		struct iwn_tx_data *data = &ring->data[i];
2065 
2066 		if (data->m != NULL) {
2067 			bus_dmamap_sync(ring->data_dmat, data->map,
2068 			    BUS_DMASYNC_POSTWRITE);
2069 			bus_dmamap_unload(ring->data_dmat, data->map);
2070 			m_freem(data->m);
2071 		}
2072 		if (data->map != NULL)
2073 			bus_dmamap_destroy(ring->data_dmat, data->map);
2074 	}
2075 	if (ring->data_dmat != NULL) {
2076 		bus_dma_tag_destroy(ring->data_dmat);
2077 		ring->data_dmat = NULL;
2078 	}
2079 }
2080 
2081 static void
2082 iwn5000_ict_reset(struct iwn_softc *sc)
2083 {
2084 	/* Disable interrupts. */
2085 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2086 
2087 	/* Reset ICT table. */
2088 	memset(sc->ict, 0, IWN_ICT_SIZE);
2089 	sc->ict_cur = 0;
2090 
2091 	/* Set physical address of ICT table (4KB aligned). */
2092 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
2093 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
2094 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
2095 
2096 	/* Enable periodic RX interrupt. */
2097 	sc->int_mask |= IWN_INT_RX_PERIODIC;
2098 	/* Switch to ICT interrupt mode in driver. */
2099 	sc->sc_flags |= IWN_FLAG_USE_ICT;
2100 
2101 	/* Re-enable interrupts. */
2102 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
2103 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2104 }
2105 
2106 static int
2107 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2108 {
2109 	struct iwn_ops *ops = &sc->ops;
2110 	uint16_t val;
2111 	int error;
2112 
2113 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2114 
2115 	/* Check whether adapter has an EEPROM or an OTPROM. */
2116 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
2117 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
2118 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
2119 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
2120 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
2121 
2122 	/* Adapter has to be powered on for EEPROM access to work. */
2123 	if ((error = iwn_apm_init(sc)) != 0) {
2124 		device_printf(sc->sc_dev,
2125 		    "%s: could not power ON adapter, error %d\n", __func__,
2126 		    error);
2127 		return error;
2128 	}
2129 
2130 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
2131 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
2132 		return EIO;
2133 	}
2134 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2135 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
2136 		    __func__, error);
2137 		return error;
2138 	}
2139 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
2140 		if ((error = iwn_init_otprom(sc)) != 0) {
2141 			device_printf(sc->sc_dev,
2142 			    "%s: could not initialize OTPROM, error %d\n",
2143 			    __func__, error);
2144 			return error;
2145 		}
2146 	}
2147 
2148 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
2149 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
2150 	/* Check if HT support is bonded out. */
2151 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
2152 		sc->sc_flags |= IWN_FLAG_HAS_11N;
2153 
2154 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
2155 	sc->rfcfg = le16toh(val);
2156 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
2157 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
2158 	if (sc->txchainmask == 0)
2159 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
2160 	if (sc->rxchainmask == 0)
2161 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
2162 
2163 	/* Read MAC address. */
2164 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
2165 
2166 	/* Read adapter-specific information from EEPROM. */
2167 	ops->read_eeprom(sc);
2168 
2169 	iwn_apm_stop(sc);	/* Power OFF adapter. */
2170 
2171 	iwn_eeprom_unlock(sc);
2172 
2173 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2174 
2175 	return 0;
2176 }
2177 
2178 static void
2179 iwn4965_read_eeprom(struct iwn_softc *sc)
2180 {
2181 	uint32_t addr;
2182 	uint16_t val;
2183 	int i;
2184 
2185 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2186 
2187 	/* Read regulatory domain (4 ASCII characters). */
2188 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
2189 
2190 	/* Read the list of authorized channels (20MHz ones only). */
2191 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2192 		addr = iwn4965_regulatory_bands[i];
2193 		iwn_read_eeprom_channels(sc, i, addr);
2194 	}
2195 
2196 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
2197 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
2198 	sc->maxpwr2GHz = val & 0xff;
2199 	sc->maxpwr5GHz = val >> 8;
2200 	/* Check that EEPROM values are within valid range. */
2201 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2202 		sc->maxpwr5GHz = 38;
2203 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2204 		sc->maxpwr2GHz = 38;
2205 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2206 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2207 
2208 	/* Read samples for each TX power group. */
2209 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
2210 	    sizeof sc->bands);
2211 
2212 	/* Read voltage at which samples were taken. */
2213 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
2214 	sc->eeprom_voltage = (int16_t)le16toh(val);
2215 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2216 	    sc->eeprom_voltage);
2217 
2218 #ifdef IWN_DEBUG
2219 	/* Print samples. */
2220 	if (sc->sc_debug & IWN_DEBUG_ANY) {
2221 		for (i = 0; i < IWN_NBANDS - 1; i++)
2222 			iwn4965_print_power_group(sc, i);
2223 	}
2224 #endif
2225 
2226 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2227 }
2228 
2229 #ifdef IWN_DEBUG
2230 static void
2231 iwn4965_print_power_group(struct iwn_softc *sc, int i)
2232 {
2233 	struct iwn4965_eeprom_band *band = &sc->bands[i];
2234 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
2235 	int j, c;
2236 
2237 	kprintf("===band %d===\n", i);
2238 	kprintf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2239 	kprintf("chan1 num=%d\n", chans[0].num);
2240 	for (c = 0; c < 2; c++) {
2241 		for (j = 0; j < IWN_NSAMPLES; j++) {
2242 			kprintf("chain %d, sample %d: temp=%d gain=%d "
2243 			    "power=%d pa_det=%d\n", c, j,
2244 			    chans[0].samples[c][j].temp,
2245 			    chans[0].samples[c][j].gain,
2246 			    chans[0].samples[c][j].power,
2247 			    chans[0].samples[c][j].pa_det);
2248 		}
2249 	}
2250 	kprintf("chan2 num=%d\n", chans[1].num);
2251 	for (c = 0; c < 2; c++) {
2252 		for (j = 0; j < IWN_NSAMPLES; j++) {
2253 			kprintf("chain %d, sample %d: temp=%d gain=%d "
2254 			    "power=%d pa_det=%d\n", c, j,
2255 			    chans[1].samples[c][j].temp,
2256 			    chans[1].samples[c][j].gain,
2257 			    chans[1].samples[c][j].power,
2258 			    chans[1].samples[c][j].pa_det);
2259 		}
2260 	}
2261 }
2262 #endif
2263 
2264 static void
2265 iwn5000_read_eeprom(struct iwn_softc *sc)
2266 {
2267 	struct iwn5000_eeprom_calib_hdr hdr;
2268 	int32_t volt;
2269 	uint32_t base, addr;
2270 	uint16_t val;
2271 	int i;
2272 
2273 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2274 
2275 	/* Read regulatory domain (4 ASCII characters). */
2276 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2277 	base = le16toh(val);
2278 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
2279 	    sc->eeprom_domain, 4);
2280 
2281 	/* Read the list of authorized channels (20MHz ones only). */
2282 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2283 		addr =  base + sc->base_params->regulatory_bands[i];
2284 		iwn_read_eeprom_channels(sc, i, addr);
2285 	}
2286 
2287 	/* Read enhanced TX power information for 6000 Series. */
2288 	if (sc->base_params->enhanced_TX_power)
2289 		iwn_read_eeprom_enhinfo(sc);
2290 
2291 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
2292 	base = le16toh(val);
2293 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
2294 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2295 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
2296 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
2297 	sc->calib_ver = hdr.version;
2298 
2299 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
2300 		sc->eeprom_voltage = le16toh(hdr.volt);
2301 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2302 		sc->eeprom_temp_high=le16toh(val);
2303 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2304 		sc->eeprom_temp = le16toh(val);
2305 	}
2306 
2307 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
2308 		/* Compute temperature offset. */
2309 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2310 		sc->eeprom_temp = le16toh(val);
2311 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2312 		volt = le16toh(val);
2313 		sc->temp_off = sc->eeprom_temp - (volt / -5);
2314 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
2315 		    sc->eeprom_temp, volt, sc->temp_off);
2316 	} else {
2317 		/* Read crystal calibration. */
2318 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
2319 		    &sc->eeprom_crystal, sizeof (uint32_t));
2320 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
2321 		    le32toh(sc->eeprom_crystal));
2322 	}
2323 
2324 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2325 
2326 }
2327 
2328 /*
2329  * Translate EEPROM flags to net80211.
2330  */
2331 static uint32_t
2332 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
2333 {
2334 	uint32_t nflags;
2335 
2336 	nflags = 0;
2337 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2338 		nflags |= IEEE80211_CHAN_PASSIVE;
2339 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
2340 		nflags |= IEEE80211_CHAN_NOADHOC;
2341 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
2342 		nflags |= IEEE80211_CHAN_DFS;
2343 		/* XXX apparently IBSS may still be marked */
2344 		nflags |= IEEE80211_CHAN_NOADHOC;
2345 	}
2346 
2347 	return nflags;
2348 }
2349 
2350 static void
2351 iwn_read_eeprom_band(struct iwn_softc *sc, int n)
2352 {
2353 	struct ifnet *ifp = sc->sc_ifp;
2354 	struct ieee80211com *ic = ifp->if_l2com;
2355 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2356 	const struct iwn_chan_band *band = &iwn_bands[n];
2357 	struct ieee80211_channel *c;
2358 	uint8_t chan;
2359 	int i, nflags;
2360 
2361 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2362 
2363 	for (i = 0; i < band->nchan; i++) {
2364 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2365 			DPRINTF(sc, IWN_DEBUG_RESET,
2366 			    "skip chan %d flags 0x%x maxpwr %d\n",
2367 			    band->chan[i], channels[i].flags,
2368 			    channels[i].maxpwr);
2369 			continue;
2370 		}
2371 		chan = band->chan[i];
2372 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2373 
2374 		c = &ic->ic_channels[ic->ic_nchans++];
2375 		c->ic_ieee = chan;
2376 		c->ic_maxregpower = channels[i].maxpwr;
2377 		c->ic_maxpower = 2*c->ic_maxregpower;
2378 
2379 		if (n == 0) {	/* 2GHz band */
2380 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G);
2381 			/* G =>'s B is supported */
2382 			c->ic_flags = IEEE80211_CHAN_B | nflags;
2383 			c = &ic->ic_channels[ic->ic_nchans++];
2384 			c[0] = c[-1];
2385 			c->ic_flags = IEEE80211_CHAN_G | nflags;
2386 		} else {	/* 5GHz band */
2387 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
2388 			c->ic_flags = IEEE80211_CHAN_A | nflags;
2389 		}
2390 
2391 		/* Save maximum allowed TX power for this channel. */
2392 		sc->maxpwr[chan] = channels[i].maxpwr;
2393 
2394 		DPRINTF(sc, IWN_DEBUG_RESET,
2395 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
2396 		    channels[i].flags, channels[i].maxpwr);
2397 
2398 		if (sc->sc_flags & IWN_FLAG_HAS_11N) {
2399 			/* add HT20, HT40 added separately */
2400 			c = &ic->ic_channels[ic->ic_nchans++];
2401 			c[0] = c[-1];
2402 			c->ic_flags |= IEEE80211_CHAN_HT20;
2403 		}
2404 	}
2405 
2406 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2407 
2408 }
2409 
2410 static void
2411 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n)
2412 {
2413 	struct ifnet *ifp = sc->sc_ifp;
2414 	struct ieee80211com *ic = ifp->if_l2com;
2415 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2416 	const struct iwn_chan_band *band = &iwn_bands[n];
2417 	struct ieee80211_channel *c, *cent, *extc;
2418 	uint8_t chan;
2419 	int i, nflags;
2420 
2421 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__);
2422 
2423 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) {
2424 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__);
2425 		return;
2426 	}
2427 
2428 	for (i = 0; i < band->nchan; i++) {
2429 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2430 			DPRINTF(sc, IWN_DEBUG_RESET,
2431 			    "skip chan %d flags 0x%x maxpwr %d\n",
2432 			    band->chan[i], channels[i].flags,
2433 			    channels[i].maxpwr);
2434 			continue;
2435 		}
2436 		chan = band->chan[i];
2437 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2438 
2439 		/*
2440 		 * Each entry defines an HT40 channel pair; find the
2441 		 * center channel, then the extension channel above.
2442 		 */
2443 		cent = ieee80211_find_channel_byieee(ic, chan,
2444 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
2445 		if (cent == NULL) {	/* XXX shouldn't happen */
2446 			device_printf(sc->sc_dev,
2447 			    "%s: no entry for channel %d\n", __func__, chan);
2448 			continue;
2449 		}
2450 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
2451 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
2452 		if (extc == NULL) {
2453 			DPRINTF(sc, IWN_DEBUG_RESET,
2454 			    "%s: skip chan %d, extension channel not found\n",
2455 			    __func__, chan);
2456 			continue;
2457 		}
2458 
2459 		DPRINTF(sc, IWN_DEBUG_RESET,
2460 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2461 		    chan, channels[i].flags, channels[i].maxpwr);
2462 
2463 		c = &ic->ic_channels[ic->ic_nchans++];
2464 		c[0] = cent[0];
2465 		c->ic_extieee = extc->ic_ieee;
2466 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2467 		c->ic_flags |= IEEE80211_CHAN_HT40U | nflags;
2468 		c = &ic->ic_channels[ic->ic_nchans++];
2469 		c[0] = extc[0];
2470 		c->ic_extieee = cent->ic_ieee;
2471 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2472 		c->ic_flags |= IEEE80211_CHAN_HT40D | nflags;
2473 	}
2474 
2475 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2476 
2477 }
2478 
2479 static void
2480 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2481 {
2482 	struct ifnet *ifp = sc->sc_ifp;
2483 	struct ieee80211com *ic = ifp->if_l2com;
2484 
2485 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
2486 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
2487 
2488 	if (n < 5)
2489 		iwn_read_eeprom_band(sc, n);
2490 	else
2491 		iwn_read_eeprom_ht40(sc, n);
2492 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2493 }
2494 
2495 static struct iwn_eeprom_chan *
2496 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
2497 {
2498 	int band, chan, i, j;
2499 
2500 	if (IEEE80211_IS_CHAN_HT40(c)) {
2501 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
2502 		if (IEEE80211_IS_CHAN_HT40D(c))
2503 			chan = c->ic_extieee;
2504 		else
2505 			chan = c->ic_ieee;
2506 		for (i = 0; i < iwn_bands[band].nchan; i++) {
2507 			if (iwn_bands[band].chan[i] == chan)
2508 				return &sc->eeprom_channels[band][i];
2509 		}
2510 	} else {
2511 		for (j = 0; j < 5; j++) {
2512 			for (i = 0; i < iwn_bands[j].nchan; i++) {
2513 				if (iwn_bands[j].chan[i] == c->ic_ieee)
2514 					return &sc->eeprom_channels[j][i];
2515 			}
2516 		}
2517 	}
2518 	return NULL;
2519 }
2520 
2521 /*
2522  * Enforce flags read from EEPROM.
2523  */
2524 static int
2525 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
2526     int nchan, struct ieee80211_channel chans[])
2527 {
2528 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2529 	int i;
2530 
2531 	for (i = 0; i < nchan; i++) {
2532 		struct ieee80211_channel *c = &chans[i];
2533 		struct iwn_eeprom_chan *channel;
2534 
2535 		channel = iwn_find_eeprom_channel(sc, c);
2536 		if (channel == NULL) {
2537 			if_printf(ic->ic_ifp,
2538 			    "%s: invalid channel %u freq %u/0x%x\n",
2539 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2540 			return EINVAL;
2541 		}
2542 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2543 	}
2544 
2545 	return 0;
2546 }
2547 
2548 static void
2549 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2550 {
2551 	struct iwn_eeprom_enhinfo enhinfo[35];
2552 	struct ifnet *ifp = sc->sc_ifp;
2553 	struct ieee80211com *ic = ifp->if_l2com;
2554 	struct ieee80211_channel *c;
2555 	uint16_t val, base;
2556 	int8_t maxpwr;
2557 	uint8_t flags;
2558 	int i, j;
2559 
2560 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2561 
2562 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2563 	base = le16toh(val);
2564 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2565 	    enhinfo, sizeof enhinfo);
2566 
2567 	for (i = 0; i < nitems(enhinfo); i++) {
2568 		flags = enhinfo[i].flags;
2569 		if (!(flags & IWN_ENHINFO_VALID))
2570 			continue;	/* Skip invalid entries. */
2571 
2572 		maxpwr = 0;
2573 		if (sc->txchainmask & IWN_ANT_A)
2574 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2575 		if (sc->txchainmask & IWN_ANT_B)
2576 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2577 		if (sc->txchainmask & IWN_ANT_C)
2578 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2579 		if (sc->ntxchains == 2)
2580 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2581 		else if (sc->ntxchains == 3)
2582 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2583 
2584 		for (j = 0; j < ic->ic_nchans; j++) {
2585 			c = &ic->ic_channels[j];
2586 			if ((flags & IWN_ENHINFO_5GHZ)) {
2587 				if (!IEEE80211_IS_CHAN_A(c))
2588 					continue;
2589 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2590 				if (!IEEE80211_IS_CHAN_G(c))
2591 					continue;
2592 			} else if (!IEEE80211_IS_CHAN_B(c))
2593 				continue;
2594 			if ((flags & IWN_ENHINFO_HT40)) {
2595 				if (!IEEE80211_IS_CHAN_HT40(c))
2596 					continue;
2597 			} else {
2598 				if (IEEE80211_IS_CHAN_HT40(c))
2599 					continue;
2600 			}
2601 			if (enhinfo[i].chan != 0 &&
2602 			    enhinfo[i].chan != c->ic_ieee)
2603 				continue;
2604 
2605 			DPRINTF(sc, IWN_DEBUG_RESET,
2606 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2607 			    c->ic_flags, maxpwr / 2);
2608 			c->ic_maxregpower = maxpwr / 2;
2609 			c->ic_maxpower = maxpwr;
2610 		}
2611 	}
2612 
2613 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2614 
2615 }
2616 
2617 static struct ieee80211_node *
2618 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2619 {
2620 	return kmalloc(sizeof(struct iwn_node), M_80211_NODE,
2621 		       M_INTWAIT | M_ZERO);
2622 }
2623 
2624 static __inline int
2625 rate2plcp(int rate)
2626 {
2627 	switch (rate & 0xff) {
2628 	case 12:	return 0xd;
2629 	case 18:	return 0xf;
2630 	case 24:	return 0x5;
2631 	case 36:	return 0x7;
2632 	case 48:	return 0x9;
2633 	case 72:	return 0xb;
2634 	case 96:	return 0x1;
2635 	case 108:	return 0x3;
2636 	case 2:		return 10;
2637 	case 4:		return 20;
2638 	case 11:	return 55;
2639 	case 22:	return 110;
2640 	}
2641 	return 0;
2642 }
2643 
2644 /*
2645  * Calculate the required PLCP value from the given rate,
2646  * to the given node.
2647  *
2648  * This will take the node configuration (eg 11n, rate table
2649  * setup, etc) into consideration.
2650  */
2651 static uint32_t
2652 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2653     uint8_t rate)
2654 {
2655 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
2656 	struct ieee80211com *ic = ni->ni_ic;
2657 	uint8_t txant1, txant2;
2658 	uint32_t plcp = 0;
2659 	int ridx;
2660 
2661 	/* Use the first valid TX antenna. */
2662 	txant1 = IWN_LSB(sc->txchainmask);
2663 	txant2 = IWN_LSB(sc->txchainmask & ~txant1);
2664 
2665 	/*
2666 	 * If it's an MCS rate, let's set the plcp correctly
2667 	 * and set the relevant flags based on the node config.
2668 	 */
2669 	if (rate & IEEE80211_RATE_MCS) {
2670 		/*
2671 		 * Set the initial PLCP value to be between 0->31 for
2672 		 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2673 		 * flag.
2674 		 */
2675 		plcp = RV(rate) | IWN_RFLAG_MCS;
2676 
2677 		/*
2678 		 * XXX the following should only occur if both
2679 		 * the local configuration _and_ the remote node
2680 		 * advertise these capabilities.  Thus this code
2681 		 * may need fixing!
2682 		 */
2683 
2684 		/*
2685 		 * Set the channel width and guard interval.
2686 		 */
2687 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2688 			plcp |= IWN_RFLAG_HT40;
2689 			if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2690 				plcp |= IWN_RFLAG_SGI;
2691 		} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) {
2692 			plcp |= IWN_RFLAG_SGI;
2693 		}
2694 
2695 		/*
2696 		 * If it's a two stream rate, enable TX on both
2697 		 * antennas.
2698 		 *
2699 		 * XXX three stream rates?
2700 		 */
2701 		if (rate > 0x87)
2702 			plcp |= IWN_RFLAG_ANT(txant1 | txant2);
2703 		else
2704 			plcp |= IWN_RFLAG_ANT(txant1);
2705 	} else {
2706 		/*
2707 		 * Set the initial PLCP - fine for both
2708 		 * OFDM and CCK rates.
2709 		 */
2710 		plcp = rate2plcp(rate);
2711 
2712 		/* Set CCK flag if it's CCK */
2713 
2714 		/* XXX It would be nice to have a method
2715 		 * to map the ridx -> phy table entry
2716 		 * so we could just query that, rather than
2717 		 * this hack to check against IWN_RIDX_OFDM6.
2718 		 */
2719 		ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2720 		    rate & IEEE80211_RATE_VAL);
2721 		if (ridx < IWN_RIDX_OFDM6 &&
2722 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2723 			plcp |= IWN_RFLAG_CCK;
2724 
2725 		/* Set antenna configuration */
2726 		plcp |= IWN_RFLAG_ANT(txant1);
2727 	}
2728 
2729 	DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2730 	    __func__,
2731 	    rate,
2732 	    plcp);
2733 
2734 	return (htole32(plcp));
2735 #undef	RV
2736 }
2737 
2738 static void
2739 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2740 {
2741 	/* Doesn't do anything at the moment */
2742 }
2743 
2744 static int
2745 iwn_media_change(struct ifnet *ifp)
2746 {
2747 	int error;
2748 
2749 	error = ieee80211_media_change(ifp);
2750 	/* NB: only the fixed rate can change and that doesn't need a reset */
2751 	return (error == ENETRESET ? 0 : error);
2752 }
2753 
2754 static int
2755 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2756 {
2757 	struct iwn_vap *ivp = IWN_VAP(vap);
2758 	struct ieee80211com *ic = vap->iv_ic;
2759 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2760 	int error = 0;
2761 
2762 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2763 
2764 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2765 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2766 
2767 	callout_stop(&sc->calib_to);
2768 
2769 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
2770 
2771 	switch (nstate) {
2772 	case IEEE80211_S_ASSOC:
2773 		if (vap->iv_state != IEEE80211_S_RUN)
2774 			break;
2775 		/* FALLTHROUGH */
2776 	case IEEE80211_S_AUTH:
2777 		if (vap->iv_state == IEEE80211_S_AUTH)
2778 			break;
2779 
2780 		/*
2781 		 * !AUTH -> AUTH transition requires state reset to handle
2782 		 * reassociations correctly.
2783 		 */
2784 		sc->rxon->associd = 0;
2785 		sc->rxon->filter &= ~htole32(IWN_FILTER_BSS);
2786 		sc->calib.state = IWN_CALIB_STATE_INIT;
2787 
2788 		if ((error = iwn_auth(sc, vap)) != 0) {
2789 			device_printf(sc->sc_dev,
2790 			    "%s: could not move to auth state\n", __func__);
2791 		}
2792 		break;
2793 
2794 	case IEEE80211_S_RUN:
2795 		/*
2796 		 * RUN -> RUN transition; Just restart the timers.
2797 		 */
2798 		if (vap->iv_state == IEEE80211_S_RUN) {
2799 			sc->calib_cnt = 0;
2800 			break;
2801 		}
2802 
2803 		/*
2804 		 * !RUN -> RUN requires setting the association id
2805 		 * which is done with a firmware cmd.  We also defer
2806 		 * starting the timers until that work is done.
2807 		 */
2808 		if ((error = iwn_run(sc, vap)) != 0) {
2809 			device_printf(sc->sc_dev,
2810 			    "%s: could not move to run state\n", __func__);
2811 		}
2812 		break;
2813 
2814 	case IEEE80211_S_INIT:
2815 		sc->calib.state = IWN_CALIB_STATE_INIT;
2816 		break;
2817 
2818 	default:
2819 		break;
2820 	}
2821 	if (error != 0){
2822 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2823 		return error;
2824 	}
2825 
2826 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2827 
2828 	return ivp->iv_newstate(vap, nstate, arg);
2829 }
2830 
2831 static void
2832 iwn_calib_timeout(void *arg)
2833 {
2834 	struct iwn_softc *sc = arg;
2835 
2836 	wlan_serialize_enter();
2837 
2838 	/* Force automatic TX power calibration every 60 secs. */
2839 	if (++sc->calib_cnt >= 120) {
2840 		uint32_t flags = 0;
2841 
2842 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2843 		    "sending request for statistics");
2844 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2845 		    sizeof flags, 1);
2846 		sc->calib_cnt = 0;
2847 	}
2848 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2849 	    sc);
2850 	wlan_serialize_exit();
2851 }
2852 
2853 /*
2854  * Process an RX_PHY firmware notification.  This is usually immediately
2855  * followed by an MPDU_RX_DONE notification.
2856  */
2857 static void
2858 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2859     struct iwn_rx_data *data)
2860 {
2861 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2862 
2863 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2864 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2865 
2866 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2867 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2868 	sc->last_rx_valid = 1;
2869 }
2870 
2871 /*
2872  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2873  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2874  */
2875 static void
2876 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2877     struct iwn_rx_data *data)
2878 {
2879 	struct iwn_ops *ops = &sc->ops;
2880 	struct ifnet *ifp = sc->sc_ifp;
2881 	struct ieee80211com *ic = ifp->if_l2com;
2882 	struct iwn_rx_ring *ring = &sc->rxq;
2883 	struct ieee80211_frame *wh;
2884 	struct ieee80211_node *ni;
2885 	struct mbuf *m, *m1;
2886 	struct iwn_rx_stat *stat;
2887 	caddr_t head;
2888 	bus_addr_t paddr;
2889 	uint32_t flags;
2890 	int error, len, rssi, nf;
2891 
2892 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2893 
2894 	if (desc->type == IWN_MPDU_RX_DONE) {
2895 		/* Check for prior RX_PHY notification. */
2896 		if (!sc->last_rx_valid) {
2897 			DPRINTF(sc, IWN_DEBUG_ANY,
2898 			    "%s: missing RX_PHY\n", __func__);
2899 			return;
2900 		}
2901 		stat = &sc->last_rx_stat;
2902 	} else
2903 		stat = (struct iwn_rx_stat *)(desc + 1);
2904 
2905 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2906 
2907 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2908 		device_printf(sc->sc_dev,
2909 		    "%s: invalid RX statistic header, len %d\n", __func__,
2910 		    stat->cfg_phy_len);
2911 		return;
2912 	}
2913 	if (desc->type == IWN_MPDU_RX_DONE) {
2914 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2915 		head = (caddr_t)(mpdu + 1);
2916 		len = le16toh(mpdu->len);
2917 	} else {
2918 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
2919 		len = le16toh(stat->len);
2920 	}
2921 
2922 	flags = le32toh(*(uint32_t *)(head + len));
2923 
2924 	/* Discard frames with a bad FCS early. */
2925 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2926 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
2927 		    __func__, flags);
2928 		IFNET_STAT_INC(ifp, ierrors, 1);
2929 		return;
2930 	}
2931 	/* Discard frames that are too short. */
2932 	if (len < sizeof (*wh)) {
2933 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
2934 		    __func__, len);
2935 		IFNET_STAT_INC(ifp, ierrors, 1);
2936 		return;
2937 	}
2938 
2939 	m1 = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
2940 	if (m1 == NULL) {
2941 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
2942 		    __func__);
2943 		IFNET_STAT_INC(ifp, ierrors, 1);
2944 		return;
2945 	}
2946 	bus_dmamap_unload(ring->data_dmat, data->map);
2947 
2948 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
2949 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2950 	if (error != 0 && error != EFBIG) {
2951 		device_printf(sc->sc_dev,
2952 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
2953 		m_freem(m1);
2954 
2955 		/* Try to reload the old mbuf. */
2956 		error = bus_dmamap_load(ring->data_dmat, data->map,
2957 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
2958 		    &paddr, BUS_DMA_NOWAIT);
2959 		if (error != 0 && error != EFBIG) {
2960 			panic("%s: could not load old RX mbuf", __func__);
2961 		}
2962 		/* Physical address may have changed. */
2963 		ring->desc[ring->cur] = htole32(paddr >> 8);
2964 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
2965 		    BUS_DMASYNC_PREWRITE);
2966 		IFNET_STAT_INC(ifp, ierrors, 1);
2967 		return;
2968 	}
2969 
2970 	m = data->m;
2971 	data->m = m1;
2972 	/* Update RX descriptor. */
2973 	ring->desc[ring->cur] = htole32(paddr >> 8);
2974 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2975 	    BUS_DMASYNC_PREWRITE);
2976 
2977 	/* Finalize mbuf. */
2978 	m->m_pkthdr.rcvif = ifp;
2979 	m->m_data = head;
2980 	m->m_pkthdr.len = m->m_len = len;
2981 
2982 	/* Grab a reference to the source node. */
2983 	wh = mtod(m, struct ieee80211_frame *);
2984 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2985 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
2986 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
2987 
2988 	rssi = ops->get_rssi(sc, stat);
2989 
2990 	if (ieee80211_radiotap_active(ic)) {
2991 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2992 
2993 		tap->wr_flags = 0;
2994 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2995 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2996 		tap->wr_dbm_antsignal = (int8_t)rssi;
2997 		tap->wr_dbm_antnoise = (int8_t)nf;
2998 		tap->wr_tsft = stat->tstamp;
2999 		switch (stat->rate) {
3000 		/* CCK rates. */
3001 		case  10: tap->wr_rate =   2; break;
3002 		case  20: tap->wr_rate =   4; break;
3003 		case  55: tap->wr_rate =  11; break;
3004 		case 110: tap->wr_rate =  22; break;
3005 		/* OFDM rates. */
3006 		case 0xd: tap->wr_rate =  12; break;
3007 		case 0xf: tap->wr_rate =  18; break;
3008 		case 0x5: tap->wr_rate =  24; break;
3009 		case 0x7: tap->wr_rate =  36; break;
3010 		case 0x9: tap->wr_rate =  48; break;
3011 		case 0xb: tap->wr_rate =  72; break;
3012 		case 0x1: tap->wr_rate =  96; break;
3013 		case 0x3: tap->wr_rate = 108; break;
3014 		/* Unknown rate: should not happen. */
3015 		default:  tap->wr_rate =   0;
3016 		}
3017 	}
3018 
3019 	/* Send the frame to the 802.11 layer. */
3020 	if (ni != NULL) {
3021 		if (ni->ni_flags & IEEE80211_NODE_HT)
3022 			m->m_flags |= M_AMPDU;
3023 		(void)ieee80211_input(ni, m, rssi - nf, nf);
3024 		/* Node is no longer needed. */
3025 		ieee80211_free_node(ni);
3026 	} else {
3027 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
3028 	}
3029 
3030 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3031 
3032 }
3033 
3034 /* Process an incoming Compressed BlockAck. */
3035 static void
3036 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3037     struct iwn_rx_data *data)
3038 {
3039 	struct iwn_ops *ops = &sc->ops;
3040 	struct ifnet *ifp = sc->sc_ifp;
3041 	struct iwn_node *wn;
3042 	struct ieee80211_node *ni;
3043 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
3044 	struct iwn_tx_ring *txq;
3045 	struct iwn_tx_data *txdata;
3046 	struct ieee80211_tx_ampdu *tap;
3047 	struct mbuf *m;
3048 	uint64_t bitmap;
3049 	uint16_t ssn;
3050 	uint8_t tid;
3051 	int ackfailcnt = 0, i, lastidx, qid, *res, shift;
3052 
3053 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3054 
3055 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3056 
3057 	qid = le16toh(ba->qid);
3058 	txq = &sc->txq[ba->qid];
3059 	tap = sc->qid2tap[ba->qid];
3060 	tid = tap->txa_ac;
3061 	wn = (void *)tap->txa_ni;
3062 
3063 	res = NULL;
3064 	ssn = 0;
3065 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3066 		res = tap->txa_private;
3067 		ssn = tap->txa_start & 0xfff;
3068 	}
3069 
3070 	for (lastidx = le16toh(ba->ssn) & 0xff; txq->read != lastidx;) {
3071 		txdata = &txq->data[txq->read];
3072 
3073 		/* Unmap and free mbuf. */
3074 		bus_dmamap_sync(txq->data_dmat, txdata->map,
3075 		    BUS_DMASYNC_POSTWRITE);
3076 		bus_dmamap_unload(txq->data_dmat, txdata->map);
3077 		m = txdata->m, txdata->m = NULL;
3078 		ni = txdata->ni, txdata->ni = NULL;
3079 
3080 		KASSERT(ni != NULL, ("no node"));
3081 		KASSERT(m != NULL, ("no mbuf"));
3082 
3083 		ieee80211_tx_complete(ni, m, 1);
3084 
3085 		txq->queued--;
3086 		txq->read = (txq->read + 1) % IWN_TX_RING_COUNT;
3087 	}
3088 
3089 	if (txq->queued == 0 && res != NULL) {
3090 		iwn_nic_lock(sc);
3091 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3092 		iwn_nic_unlock(sc);
3093 		sc->qid2tap[qid] = NULL;
3094 		kfree(res, M_DEVBUF);
3095 		return;
3096 	}
3097 
3098 	if (wn->agg[tid].bitmap == 0)
3099 		return;
3100 
3101 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
3102 	if (shift < 0)
3103 		shift += 0x100;
3104 
3105 	if (wn->agg[tid].nframes > (64 - shift))
3106 		return;
3107 
3108 	ni = tap->txa_ni;
3109 	bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap;
3110 	for (i = 0; bitmap; i++) {
3111 		if ((bitmap & 1) == 0) {
3112 			IFNET_STAT_INC(ifp, oerrors, 1);
3113 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3114 			    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
3115 		} else {
3116 			IFNET_STAT_INC(ifp, opackets, 1);
3117 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3118 			    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
3119 		}
3120 		bitmap >>= 1;
3121 	}
3122 
3123 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3124 
3125 }
3126 
3127 /*
3128  * Process a CALIBRATION_RESULT notification sent by the initialization
3129  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
3130  */
3131 static void
3132 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3133     struct iwn_rx_data *data)
3134 {
3135 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
3136 	int len, idx = -1;
3137 
3138 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3139 
3140 	/* Runtime firmware should not send such a notification. */
3141 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE){
3142 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received after clib done\n",
3143 	    __func__);
3144 		return;
3145 	}
3146 	len = (le32toh(desc->len) & 0x3fff) - 4;
3147 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3148 
3149 	switch (calib->code) {
3150 	case IWN5000_PHY_CALIB_DC:
3151 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC)
3152 			idx = 0;
3153 		break;
3154 	case IWN5000_PHY_CALIB_LO:
3155 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO)
3156 			idx = 1;
3157 		break;
3158 	case IWN5000_PHY_CALIB_TX_IQ:
3159 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ)
3160 			idx = 2;
3161 		break;
3162 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
3163 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC)
3164 			idx = 3;
3165 		break;
3166 	case IWN5000_PHY_CALIB_BASE_BAND:
3167 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND)
3168 			idx = 4;
3169 		break;
3170 	}
3171 	if (idx == -1)	/* Ignore other results. */
3172 		return;
3173 
3174 	/* Save calibration result. */
3175 	if (sc->calibcmd[idx].buf != NULL)
3176 		kfree(sc->calibcmd[idx].buf, M_DEVBUF);
3177 	sc->calibcmd[idx].buf = kmalloc(len, M_DEVBUF, M_INTWAIT);
3178 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3179 	    "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len);
3180 	sc->calibcmd[idx].len = len;
3181 	memcpy(sc->calibcmd[idx].buf, calib, len);
3182 }
3183 
3184 /*
3185  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
3186  * The latter is sent by the firmware after each received beacon.
3187  */
3188 static void
3189 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3190     struct iwn_rx_data *data)
3191 {
3192 	struct iwn_ops *ops = &sc->ops;
3193 	struct ifnet *ifp = sc->sc_ifp;
3194 	struct ieee80211com *ic = ifp->if_l2com;
3195 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3196 	struct iwn_calib_state *calib = &sc->calib;
3197 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
3198 	int temp;
3199 
3200 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3201 
3202 	/* Ignore statistics received during a scan. */
3203 	if (vap->iv_state != IEEE80211_S_RUN ||
3204 	    (ic->ic_flags & IEEE80211_F_SCAN)){
3205 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n",
3206 	    __func__);
3207 		return;
3208 	}
3209 
3210 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3211 
3212 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received statistics, cmd %d\n",
3213 	    __func__, desc->type);
3214 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
3215 
3216 	/* Test if temperature has changed. */
3217 	if (stats->general.temp != sc->rawtemp) {
3218 		/* Convert "raw" temperature to degC. */
3219 		sc->rawtemp = stats->general.temp;
3220 		temp = ops->get_temperature(sc);
3221 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
3222 		    __func__, temp);
3223 
3224 		/* Update TX power if need be (4965AGN only). */
3225 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3226 			iwn4965_power_calibration(sc, temp);
3227 	}
3228 
3229 	if (desc->type != IWN_BEACON_STATISTICS)
3230 		return;	/* Reply to a statistics request. */
3231 
3232 	sc->noise = iwn_get_noise(&stats->rx.general);
3233 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
3234 
3235 	/* Test that RSSI and noise are present in stats report. */
3236 	if (le32toh(stats->rx.general.flags) != 1) {
3237 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
3238 		    "received statistics without RSSI");
3239 		return;
3240 	}
3241 
3242 	if (calib->state == IWN_CALIB_STATE_ASSOC)
3243 		iwn_collect_noise(sc, &stats->rx.general);
3244 	else if (calib->state == IWN_CALIB_STATE_RUN)
3245 		iwn_tune_sensitivity(sc, &stats->rx);
3246 
3247 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3248 }
3249 
3250 /*
3251  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
3252  * and 5000 adapters have different incompatible TX status formats.
3253  */
3254 static void
3255 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3256     struct iwn_rx_data *data)
3257 {
3258 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
3259 	struct iwn_tx_ring *ring;
3260 	int qid;
3261 
3262 	qid = desc->qid & 0xf;
3263 	ring = &sc->txq[qid];
3264 
3265 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3266 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
3267 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
3268 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
3269 	    le32toh(stat->status));
3270 
3271 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3272 	if (qid >= sc->firstaggqueue) {
3273 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3274 		    &stat->status);
3275 	} else {
3276 		iwn_tx_done(sc, desc, stat->ackfailcnt,
3277 		    le32toh(stat->status) & 0xff);
3278 	}
3279 }
3280 
3281 static void
3282 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3283     struct iwn_rx_data *data)
3284 {
3285 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
3286 	struct iwn_tx_ring *ring;
3287 	int qid;
3288 
3289 	qid = desc->qid & 0xf;
3290 	ring = &sc->txq[qid];
3291 
3292 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3293 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
3294 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
3295 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
3296 	    le32toh(stat->status));
3297 
3298 #ifdef notyet
3299 	/* Reset TX scheduler slot. */
3300 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
3301 #endif
3302 
3303 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3304 	if (qid >= sc->firstaggqueue) {
3305 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3306 		    &stat->status);
3307 	} else {
3308 		iwn_tx_done(sc, desc, stat->ackfailcnt,
3309 		    le16toh(stat->status) & 0xff);
3310 	}
3311 }
3312 
3313 /*
3314  * Adapter-independent backend for TX_DONE firmware notifications.
3315  */
3316 static void
3317 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
3318     uint8_t status)
3319 {
3320 	struct ifnet *ifp = sc->sc_ifp;
3321 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
3322 	struct iwn_tx_data *data = &ring->data[desc->idx];
3323 	struct mbuf *m;
3324 	struct ieee80211_node *ni;
3325 	struct ieee80211vap *vap;
3326 
3327 	KASSERT(data->ni != NULL, ("no node"));
3328 
3329 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3330 
3331 	/* Unmap and free mbuf. */
3332 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
3333 	bus_dmamap_unload(ring->data_dmat, data->map);
3334 	m = data->m, data->m = NULL;
3335 	ni = data->ni, data->ni = NULL;
3336 	vap = ni->ni_vap;
3337 
3338 	/*
3339 	 * Update rate control statistics for the node.
3340 	 */
3341 	if (status & IWN_TX_FAIL) {
3342 		IFNET_STAT_INC(ifp, oerrors, 1);
3343 		ieee80211_ratectl_tx_complete(vap, ni,
3344 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
3345 	} else {
3346 		IFNET_STAT_INC(ifp, opackets, 1);
3347 		ieee80211_ratectl_tx_complete(vap, ni,
3348 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
3349 	}
3350 
3351 	/*
3352 	 * Channels marked for "radar" require traffic to be received
3353 	 * to unlock before we can transmit.  Until traffic is seen
3354 	 * any attempt to transmit is returned immediately with status
3355 	 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
3356 	 * happen on first authenticate after scanning.  To workaround
3357 	 * this we ignore a failure of this sort in AUTH state so the
3358 	 * 802.11 layer will fall back to using a timeout to wait for
3359 	 * the AUTH reply.  This allows the firmware time to see
3360 	 * traffic so a subsequent retry of AUTH succeeds.  It's
3361 	 * unclear why the firmware does not maintain state for
3362 	 * channels recently visited as this would allow immediate
3363 	 * use of the channel after a scan (where we see traffic).
3364 	 */
3365 	if (status == IWN_TX_FAIL_TX_LOCKED &&
3366 	    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
3367 		ieee80211_tx_complete(ni, m, 0);
3368 	else
3369 		ieee80211_tx_complete(ni, m,
3370 		    (status & IWN_TX_FAIL) != 0);
3371 
3372 	sc->sc_tx_timer = 0;
3373 	if (--ring->queued < IWN_TX_RING_LOMARK) {
3374 		sc->qfullmsk &= ~(1 << ring->qid);
3375 		if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) {
3376 			ifq_clr_oactive(&ifp->if_snd);
3377 			iwn_start_locked(ifp);
3378 		}
3379 	}
3380 
3381 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3382 
3383 }
3384 
3385 /*
3386  * Process a "command done" firmware notification.  This is where we wakeup
3387  * processes waiting for a synchronous command completion.
3388  */
3389 static void
3390 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3391 {
3392 	struct iwn_tx_ring *ring;
3393 	struct iwn_tx_data *data;
3394 	int cmd_queue_num;
3395 
3396 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
3397 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
3398 	else
3399 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
3400 
3401 	if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num)
3402 		return;	/* Not a command ack. */
3403 
3404 	ring = &sc->txq[cmd_queue_num];
3405 	data = &ring->data[desc->idx];
3406 
3407 	/* If the command was mapped in an mbuf, free it. */
3408 	if (data->m != NULL) {
3409 		bus_dmamap_sync(ring->data_dmat, data->map,
3410 		    BUS_DMASYNC_POSTWRITE);
3411 		bus_dmamap_unload(ring->data_dmat, data->map);
3412 		m_freem(data->m);
3413 		data->m = NULL;
3414 	}
3415 	wakeup(&ring->desc[desc->idx]);
3416 }
3417 
3418 static void
3419 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes,
3420     void *stat)
3421 {
3422 	struct iwn_ops *ops = &sc->ops;
3423 	struct ifnet *ifp = sc->sc_ifp;
3424 	struct iwn_tx_ring *ring = &sc->txq[qid];
3425 	struct iwn_tx_data *data;
3426 	struct mbuf *m;
3427 	struct iwn_node *wn;
3428 	struct ieee80211_node *ni;
3429 	struct ieee80211_tx_ampdu *tap;
3430 	uint64_t bitmap;
3431 	uint32_t *status = stat;
3432 	uint16_t *aggstatus = stat;
3433 	uint16_t ssn;
3434 	uint8_t tid;
3435 	int bit, i, lastidx, *res, seqno, shift, start;
3436 
3437 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3438 
3439 	if (nframes == 1) {
3440 		if ((*status & 0xff) != 1 && (*status & 0xff) != 2) {
3441 #ifdef	NOT_YET
3442 			kprintf("ieee80211_send_bar()\n");
3443 #endif
3444 			/*
3445 			 * If we completely fail a transmit, make sure a
3446 			 * notification is pushed up to the rate control
3447 			 * layer.
3448 			 */
3449 			tap = sc->qid2tap[qid];
3450 			tid = tap->txa_ac;
3451 			wn = (void *)tap->txa_ni;
3452 			ni = tap->txa_ni;
3453 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3454 			    IEEE80211_RATECTL_TX_FAILURE, &nframes, NULL);
3455 		}
3456 	}
3457 
3458 	bitmap = 0;
3459 	start = idx;
3460 	for (i = 0; i < nframes; i++) {
3461 		if (le16toh(aggstatus[i * 2]) & 0xc)
3462 			continue;
3463 
3464 		idx = le16toh(aggstatus[2*i + 1]) & 0xff;
3465 		bit = idx - start;
3466 		shift = 0;
3467 		if (bit >= 64) {
3468 			shift = 0x100 - idx + start;
3469 			bit = 0;
3470 			start = idx;
3471 		} else if (bit <= -64)
3472 			bit = 0x100 - start + idx;
3473 		else if (bit < 0) {
3474 			shift = start - idx;
3475 			start = idx;
3476 			bit = 0;
3477 		}
3478 		bitmap = bitmap << shift;
3479 		bitmap |= 1ULL << bit;
3480 	}
3481 	tap = sc->qid2tap[qid];
3482 	tid = tap->txa_ac;
3483 	wn = (void *)tap->txa_ni;
3484 	wn->agg[tid].bitmap = bitmap;
3485 	wn->agg[tid].startidx = start;
3486 	wn->agg[tid].nframes = nframes;
3487 
3488 	res = NULL;
3489 	ssn = 0;
3490 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3491 		res = tap->txa_private;
3492 		ssn = tap->txa_start & 0xfff;
3493 	}
3494 
3495 	seqno = le32toh(*(status + nframes)) & 0xfff;
3496 	for (lastidx = (seqno & 0xff); ring->read != lastidx;) {
3497 		data = &ring->data[ring->read];
3498 
3499 		/* Unmap and free mbuf. */
3500 		bus_dmamap_sync(ring->data_dmat, data->map,
3501 		    BUS_DMASYNC_POSTWRITE);
3502 		bus_dmamap_unload(ring->data_dmat, data->map);
3503 		m = data->m, data->m = NULL;
3504 		ni = data->ni, data->ni = NULL;
3505 
3506 		KASSERT(ni != NULL, ("no node"));
3507 		KASSERT(m != NULL, ("no mbuf"));
3508 
3509 		ieee80211_tx_complete(ni, m, 1);
3510 
3511 		ring->queued--;
3512 		ring->read = (ring->read + 1) % IWN_TX_RING_COUNT;
3513 	}
3514 
3515 	if (ring->queued == 0 && res != NULL) {
3516 		iwn_nic_lock(sc);
3517 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3518 		iwn_nic_unlock(sc);
3519 		sc->qid2tap[qid] = NULL;
3520 		kfree(res, M_DEVBUF);
3521 		return;
3522 	}
3523 
3524 	sc->sc_tx_timer = 0;
3525 	if (ring->queued < IWN_TX_RING_LOMARK) {
3526 		sc->qfullmsk &= ~(1 << ring->qid);
3527 		if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) {
3528 			ifq_clr_oactive(&ifp->if_snd);
3529 			iwn_start_locked(ifp);
3530 		}
3531 	}
3532 
3533 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3534 
3535 }
3536 
3537 /*
3538  * Process an INT_FH_RX or INT_SW_RX interrupt.
3539  */
3540 static void
3541 iwn_notif_intr(struct iwn_softc *sc)
3542 {
3543 	struct iwn_ops *ops = &sc->ops;
3544 	struct ifnet *ifp = sc->sc_ifp;
3545 	struct ieee80211com *ic = ifp->if_l2com;
3546 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3547 	uint16_t hw;
3548 
3549 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
3550 	    BUS_DMASYNC_POSTREAD);
3551 
3552 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
3553 	while (sc->rxq.cur != hw) {
3554 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
3555 		struct iwn_rx_desc *desc;
3556 
3557 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3558 		    BUS_DMASYNC_POSTREAD);
3559 		desc = mtod(data->m, struct iwn_rx_desc *);
3560 
3561 		DPRINTF(sc, IWN_DEBUG_RECV,
3562 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
3563 		    __func__, sc->rxq.cur, desc->qid & 0xf, desc->idx, desc->flags,
3564 		    desc->type, iwn_intr_str(desc->type),
3565 		    le16toh(desc->len));
3566 
3567 		if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF))	/* Reply to a command. */
3568 			iwn_cmd_done(sc, desc);
3569 
3570 		switch (desc->type) {
3571 		case IWN_RX_PHY:
3572 			iwn_rx_phy(sc, desc, data);
3573 			break;
3574 
3575 		case IWN_RX_DONE:		/* 4965AGN only. */
3576 		case IWN_MPDU_RX_DONE:
3577 			/* An 802.11 frame has been received. */
3578 			iwn_rx_done(sc, desc, data);
3579 			break;
3580 
3581 		case IWN_RX_COMPRESSED_BA:
3582 			/* A Compressed BlockAck has been received. */
3583 			iwn_rx_compressed_ba(sc, desc, data);
3584 			break;
3585 
3586 		case IWN_TX_DONE:
3587 			/* An 802.11 frame has been transmitted. */
3588 			ops->tx_done(sc, desc, data);
3589 			break;
3590 
3591 		case IWN_RX_STATISTICS:
3592 		case IWN_BEACON_STATISTICS:
3593 			iwn_rx_statistics(sc, desc, data);
3594 			break;
3595 
3596 		case IWN_BEACON_MISSED:
3597 		{
3598 			struct iwn_beacon_missed *miss =
3599 			    (struct iwn_beacon_missed *)(desc + 1);
3600 			int misses;
3601 
3602 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3603 			    BUS_DMASYNC_POSTREAD);
3604 			misses = le32toh(miss->consecutive);
3605 
3606 			DPRINTF(sc, IWN_DEBUG_STATE,
3607 			    "%s: beacons missed %d/%d\n", __func__,
3608 			    misses, le32toh(miss->total));
3609 			/*
3610 			 * If more than 5 consecutive beacons are missed,
3611 			 * reinitialize the sensitivity state machine.
3612 			 */
3613 			if (vap->iv_state == IEEE80211_S_RUN &&
3614 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3615 				if (misses > 5)
3616 					(void)iwn_init_sensitivity(sc);
3617 				if (misses >= vap->iv_bmissthreshold) {
3618 					ieee80211_beacon_miss(ic);
3619 				}
3620 			}
3621 			break;
3622 		}
3623 		case IWN_UC_READY:
3624 		{
3625 			struct iwn_ucode_info *uc =
3626 			    (struct iwn_ucode_info *)(desc + 1);
3627 
3628 			/* The microcontroller is ready. */
3629 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3630 			    BUS_DMASYNC_POSTREAD);
3631 			DPRINTF(sc, IWN_DEBUG_RESET,
3632 			    "microcode alive notification version=%d.%d "
3633 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
3634 			    uc->subtype, le32toh(uc->valid));
3635 
3636 			if (le32toh(uc->valid) != 1) {
3637 				device_printf(sc->sc_dev,
3638 				    "microcontroller initialization failed");
3639 				break;
3640 			}
3641 			if (uc->subtype == IWN_UCODE_INIT) {
3642 				/* Save microcontroller report. */
3643 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
3644 			}
3645 			/* Save the address of the error log in SRAM. */
3646 			sc->errptr = le32toh(uc->errptr);
3647 			break;
3648 		}
3649 		case IWN_STATE_CHANGED:
3650 		{
3651 			/*
3652 			 * State change allows hardware switch change to be
3653 			 * noted. However, we handle this in iwn_intr as we
3654 			 * get both the enable/disble intr.
3655 			 */
3656 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3657 			    BUS_DMASYNC_POSTREAD);
3658 #ifdef	IWN_DEBUG
3659 			uint32_t *status = (uint32_t *)(desc + 1);
3660 			DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE,
3661 			    "state changed to %x\n",
3662 			    le32toh(*status));
3663 #endif
3664 			break;
3665 		}
3666 		case IWN_START_SCAN:
3667 		{
3668 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3669 			    BUS_DMASYNC_POSTREAD);
3670 #ifdef	IWN_DEBUG
3671 			struct iwn_start_scan *scan =
3672 			    (struct iwn_start_scan *)(desc + 1);
3673 			DPRINTF(sc, IWN_DEBUG_ANY,
3674 			    "%s: scanning channel %d status %x\n",
3675 			    __func__, scan->chan, le32toh(scan->status));
3676 #endif
3677 			break;
3678 		}
3679 		case IWN_STOP_SCAN:
3680 		{
3681 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3682 			    BUS_DMASYNC_POSTREAD);
3683 #ifdef	IWN_DEBUG
3684 			struct iwn_stop_scan *scan =
3685 			    (struct iwn_stop_scan *)(desc + 1);
3686 			DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN,
3687 			    "scan finished nchan=%d status=%d chan=%d\n",
3688 			    scan->nchan, scan->status, scan->chan);
3689 #endif
3690 			sc->sc_is_scanning = 0;
3691 			ieee80211_scan_next(vap);
3692 			break;
3693 		}
3694 		case IWN5000_CALIBRATION_RESULT:
3695 			iwn5000_rx_calib_results(sc, desc, data);
3696 			break;
3697 
3698 		case IWN5000_CALIBRATION_DONE:
3699 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
3700 			wakeup(sc);
3701 			break;
3702 		}
3703 
3704 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
3705 	}
3706 
3707 	/* Tell the firmware what we have processed. */
3708 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
3709 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
3710 }
3711 
3712 /*
3713  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
3714  * from power-down sleep mode.
3715  */
3716 static void
3717 iwn_wakeup_intr(struct iwn_softc *sc)
3718 {
3719 	int qid;
3720 
3721 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
3722 	    __func__);
3723 
3724 	/* Wakeup RX and TX rings. */
3725 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
3726 	for (qid = 0; qid < sc->ntxqs; qid++) {
3727 		struct iwn_tx_ring *ring = &sc->txq[qid];
3728 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
3729 	}
3730 }
3731 
3732 static void
3733 iwn_rftoggle_intr(struct iwn_softc *sc)
3734 {
3735 	struct ifnet *ifp = sc->sc_ifp;
3736 	struct ieee80211com *ic = ifp->if_l2com;
3737 	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
3738 
3739 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
3740 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
3741 	if (tmp & IWN_GP_CNTRL_RFKILL)
3742 		ieee80211_runtask(ic, &sc->sc_radioon_task);
3743 	else
3744 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
3745 }
3746 
3747 /*
3748  * Dump the error log of the firmware when a firmware panic occurs.  Although
3749  * we can't debug the firmware because it is neither open source nor free, it
3750  * can help us to identify certain classes of problems.
3751  */
3752 static void
3753 iwn_fatal_intr(struct iwn_softc *sc)
3754 {
3755 	struct iwn_fw_dump dump;
3756 	int i;
3757 
3758 	/* Force a complete recalibration on next init. */
3759 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
3760 
3761 	/* Check that the error log address is valid. */
3762 	if (sc->errptr < IWN_FW_DATA_BASE ||
3763 	    sc->errptr + sizeof (dump) >
3764 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
3765 		kprintf("%s: bad firmware error log address 0x%08x\n", __func__,
3766 		    sc->errptr);
3767 		return;
3768 	}
3769 	if (iwn_nic_lock(sc) != 0) {
3770 		kprintf("%s: could not read firmware error log\n", __func__);
3771 		return;
3772 	}
3773 	/* Read firmware error log from SRAM. */
3774 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
3775 	    sizeof (dump) / sizeof (uint32_t));
3776 	iwn_nic_unlock(sc);
3777 
3778 	if (dump.valid == 0) {
3779 		kprintf("%s: firmware error log is empty\n", __func__);
3780 		return;
3781 	}
3782 	kprintf("firmware error log:\n");
3783 	kprintf("  error type      = \"%s\" (0x%08X)\n",
3784 	    (dump.id < nitems(iwn_fw_errmsg)) ?
3785 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
3786 	    dump.id);
3787 	kprintf("  program counter = 0x%08X\n", dump.pc);
3788 	kprintf("  source line     = 0x%08X\n", dump.src_line);
3789 	kprintf("  error data      = 0x%08X%08X\n",
3790 	    dump.error_data[0], dump.error_data[1]);
3791 	kprintf("  branch link     = 0x%08X%08X\n",
3792 	    dump.branch_link[0], dump.branch_link[1]);
3793 	kprintf("  interrupt link  = 0x%08X%08X\n",
3794 	    dump.interrupt_link[0], dump.interrupt_link[1]);
3795 	kprintf("  time            = %u\n", dump.time[0]);
3796 
3797 	/* Dump driver status (TX and RX rings) while we're here. */
3798 	kprintf("driver status:\n");
3799 	for (i = 0; i < sc->ntxqs; i++) {
3800 		struct iwn_tx_ring *ring = &sc->txq[i];
3801 		kprintf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
3802 		    i, ring->qid, ring->cur, ring->queued);
3803 	}
3804 	kprintf("  rx ring: cur=%d\n", sc->rxq.cur);
3805 }
3806 
3807 static void
3808 iwn_intr(void *arg)
3809 {
3810 	struct iwn_softc *sc = arg;
3811 	struct ifnet *ifp = sc->sc_ifp;
3812 	uint32_t r1, r2, tmp;
3813 
3814 	/* Disable interrupts. */
3815 	IWN_WRITE(sc, IWN_INT_MASK, 0);
3816 
3817 	/* Read interrupts from ICT (fast) or from registers (slow). */
3818 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3819 		tmp = 0;
3820 		while (sc->ict[sc->ict_cur] != 0) {
3821 			tmp |= sc->ict[sc->ict_cur];
3822 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
3823 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
3824 		}
3825 		tmp = le32toh(tmp);
3826 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
3827 			tmp = 0;
3828 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
3829 			tmp |= 0x8000;
3830 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
3831 		r2 = 0;	/* Unused. */
3832 	} else {
3833 		r1 = IWN_READ(sc, IWN_INT);
3834 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
3835 			return;	/* Hardware gone! */
3836 		r2 = IWN_READ(sc, IWN_FH_INT);
3837 	}
3838 
3839 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n"
3840     , r1, r2);
3841 
3842 	if (r1 == 0 && r2 == 0)
3843 		goto done;	/* Interrupt not for us. */
3844 
3845 	/* Acknowledge interrupts. */
3846 	IWN_WRITE(sc, IWN_INT, r1);
3847 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
3848 		IWN_WRITE(sc, IWN_FH_INT, r2);
3849 
3850 	if (r1 & IWN_INT_RF_TOGGLED) {
3851 		iwn_rftoggle_intr(sc);
3852 		goto done;
3853 	}
3854 	if (r1 & IWN_INT_CT_REACHED) {
3855 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
3856 		    __func__);
3857 	}
3858 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
3859 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
3860 		    __func__);
3861 #ifdef	IWN_DEBUG
3862 		iwn_debug_register(sc);
3863 #endif
3864 		/* Dump firmware error log and stop. */
3865 		iwn_fatal_intr(sc);
3866 		ifp->if_flags &= ~IFF_UP;
3867 		iwn_stop_locked(sc);
3868 		goto done;
3869 	}
3870 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
3871 	    (r2 & IWN_FH_INT_RX)) {
3872 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3873 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
3874 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
3875 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
3876 			    IWN_INT_PERIODIC_DIS);
3877 			iwn_notif_intr(sc);
3878 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
3879 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
3880 				    IWN_INT_PERIODIC_ENA);
3881 			}
3882 		} else
3883 			iwn_notif_intr(sc);
3884 	}
3885 
3886 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
3887 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
3888 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
3889 		wakeup(sc);	/* FH DMA transfer completed. */
3890 	}
3891 
3892 	if (r1 & IWN_INT_ALIVE)
3893 		wakeup(sc);	/* Firmware is alive. */
3894 
3895 	if (r1 & IWN_INT_WAKEUP)
3896 		iwn_wakeup_intr(sc);
3897 
3898 done:
3899 	/* Re-enable interrupts. */
3900 	if (ifp->if_flags & IFF_UP)
3901 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
3902 }
3903 
3904 /*
3905  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
3906  * 5000 adapters use a slightly different format).
3907  */
3908 static void
3909 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
3910     uint16_t len)
3911 {
3912 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
3913 
3914 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
3915 
3916 	*w = htole16(len + 8);
3917 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3918 	    BUS_DMASYNC_PREWRITE);
3919 	if (idx < IWN_SCHED_WINSZ) {
3920 		*(w + IWN_TX_RING_COUNT) = *w;
3921 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3922 		    BUS_DMASYNC_PREWRITE);
3923 	}
3924 }
3925 
3926 static void
3927 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
3928     uint16_t len)
3929 {
3930 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
3931 
3932 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
3933 
3934 	*w = htole16(id << 12 | (len + 8));
3935 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3936 	    BUS_DMASYNC_PREWRITE);
3937 	if (idx < IWN_SCHED_WINSZ) {
3938 		*(w + IWN_TX_RING_COUNT) = *w;
3939 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3940 		    BUS_DMASYNC_PREWRITE);
3941 	}
3942 }
3943 
3944 #ifdef notyet
3945 static void
3946 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
3947 {
3948 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
3949 
3950 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
3951 
3952 	*w = (*w & htole16(0xf000)) | htole16(1);
3953 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3954 	    BUS_DMASYNC_PREWRITE);
3955 	if (idx < IWN_SCHED_WINSZ) {
3956 		*(w + IWN_TX_RING_COUNT) = *w;
3957 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3958 		    BUS_DMASYNC_PREWRITE);
3959 	}
3960 }
3961 #endif
3962 
3963 /*
3964  * Check whether OFDM 11g protection will be enabled for the given rate.
3965  *
3966  * The original driver code only enabled protection for OFDM rates.
3967  * It didn't check to see whether it was operating in 11a or 11bg mode.
3968  */
3969 static int
3970 iwn_check_rate_needs_protection(struct iwn_softc *sc,
3971     struct ieee80211vap *vap, uint8_t rate)
3972 {
3973 	struct ieee80211com *ic = vap->iv_ic;
3974 
3975 	/*
3976 	 * Not in 2GHz mode? Then there's no need to enable OFDM
3977 	 * 11bg protection.
3978 	 */
3979 	if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
3980 		return (0);
3981 	}
3982 
3983 	/*
3984 	 * 11bg protection not enabled? Then don't use it.
3985 	 */
3986 	if ((ic->ic_flags & IEEE80211_F_USEPROT) == 0)
3987 		return (0);
3988 
3989 	/*
3990 	 * If it's an 11n rate, then for now we enable
3991 	 * protection.
3992 	 */
3993 	if (rate & IEEE80211_RATE_MCS) {
3994 		return (1);
3995 	}
3996 
3997 	/*
3998 	 * Do a rate table lookup.  If the PHY is CCK,
3999 	 * don't do protection.
4000 	 */
4001 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK)
4002 		return (0);
4003 
4004 	/*
4005 	 * Yup, enable protection.
4006 	 */
4007 	return (1);
4008 }
4009 
4010 /*
4011  * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into
4012  * the link quality table that reflects this particular entry.
4013  */
4014 static int
4015 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni,
4016     uint8_t rate)
4017 {
4018 	struct ieee80211_rateset *rs;
4019 	int is_11n;
4020 	int nr;
4021 	int i;
4022 	uint8_t cmp_rate;
4023 
4024 	/*
4025 	 * Figure out if we're using 11n or not here.
4026 	 */
4027 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0)
4028 		is_11n = 1;
4029 	else
4030 		is_11n = 0;
4031 
4032 	/*
4033 	 * Use the correct rate table.
4034 	 */
4035 	if (is_11n) {
4036 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4037 		nr = ni->ni_htrates.rs_nrates;
4038 	} else {
4039 		rs = &ni->ni_rates;
4040 		nr = rs->rs_nrates;
4041 	}
4042 
4043 	/*
4044 	 * Find the relevant link quality entry in the table.
4045 	 */
4046 	for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) {
4047 		/*
4048 		 * The link quality table index starts at 0 == highest
4049 		 * rate, so we walk the rate table backwards.
4050 		 */
4051 		cmp_rate = rs->rs_rates[(nr - 1) - i];
4052 		if (rate & IEEE80211_RATE_MCS)
4053 			cmp_rate |= IEEE80211_RATE_MCS;
4054 
4055 #if 0
4056 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n",
4057 		    __func__,
4058 		    i,
4059 		    nr,
4060 		    rate,
4061 		    cmp_rate);
4062 #endif
4063 
4064 		if (cmp_rate == rate)
4065 			return (i);
4066 	}
4067 
4068 	/* Failed? Start at the end */
4069 	return (IWN_MAX_TX_RETRIES - 1);
4070 }
4071 
4072 static int
4073 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
4074 {
4075 	struct iwn_ops *ops = &sc->ops;
4076 	const struct ieee80211_txparam *tp;
4077 	struct ieee80211vap *vap = ni->ni_vap;
4078 	struct ieee80211com *ic = ni->ni_ic;
4079 	struct iwn_node *wn = (void *)ni;
4080 	struct iwn_tx_ring *ring;
4081 	struct iwn_tx_desc *desc;
4082 	struct iwn_tx_data *data;
4083 	struct iwn_tx_cmd *cmd;
4084 	struct iwn_cmd_data *tx;
4085 	struct ieee80211_frame *wh;
4086 	struct ieee80211_key *k = NULL;
4087 	struct mbuf *m1;
4088 	uint32_t flags;
4089 	uint16_t qos;
4090 	u_int hdrlen;
4091 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4092 	uint8_t tid, type;
4093 	int ac, i, totlen, error, pad, nsegs = 0, rate;
4094 
4095 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4096 
4097 	wh = mtod(m, struct ieee80211_frame *);
4098 	hdrlen = ieee80211_anyhdrsize(wh);
4099 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4100 
4101 	/* Select EDCA Access Category and TX ring for this frame. */
4102 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
4103 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
4104 		tid = qos & IEEE80211_QOS_TID;
4105 	} else {
4106 		qos = 0;
4107 		tid = 0;
4108 	}
4109 	ac = M_WME_GETAC(m);
4110 	if (m->m_flags & M_AMPDU_MPDU) {
4111 		uint16_t seqno;
4112 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
4113 
4114 		if (!IEEE80211_AMPDU_RUNNING(tap)) {
4115 			m_freem(m);
4116 			return EINVAL;
4117 		}
4118 
4119 		/*
4120 		 * Queue this frame to the hardware ring that we've
4121 		 * negotiated AMPDU TX on.
4122 		 *
4123 		 * Note that the sequence number must match the TX slot
4124 		 * being used!
4125 		 */
4126 		ac = *(int *)tap->txa_private;
4127 		seqno = ni->ni_txseqs[tid];
4128 		*(uint16_t *)wh->i_seq =
4129 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4130 		ring = &sc->txq[ac];
4131 		if ((seqno % 256) != ring->cur) {
4132 			device_printf(sc->sc_dev,
4133 			    "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n",
4134 			    __func__,
4135 			    m,
4136 			    seqno,
4137 			    seqno % 256,
4138 			    ring->cur);
4139 		}
4140 		ni->ni_txseqs[tid]++;
4141 	}
4142 	ring = &sc->txq[ac];
4143 	desc = &ring->desc[ring->cur];
4144 	data = &ring->data[ring->cur];
4145 
4146 	/* Choose a TX rate index. */
4147 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
4148 	if (type == IEEE80211_FC0_TYPE_MGT)
4149 		rate = tp->mgmtrate;
4150 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
4151 		rate = tp->mcastrate;
4152 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
4153 		rate = tp->ucastrate;
4154 	else if (m->m_flags & M_EAPOL)
4155 		rate = tp->mgmtrate;
4156 	else {
4157 		/* XXX pass pktlen */
4158 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
4159 		rate = ni->ni_txrate;
4160 	}
4161 
4162 	/* Encrypt the frame if need be. */
4163 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
4164 		/* Retrieve key for TX. */
4165 		k = ieee80211_crypto_encap(ni, m);
4166 		if (k == NULL) {
4167 			m_freem(m);
4168 			return ENOBUFS;
4169 		}
4170 		/* 802.11 header may have moved. */
4171 		wh = mtod(m, struct ieee80211_frame *);
4172 	}
4173 	totlen = m->m_pkthdr.len;
4174 
4175 	if (ieee80211_radiotap_active_vap(vap)) {
4176 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4177 
4178 		tap->wt_flags = 0;
4179 		tap->wt_rate = rate;
4180 		if (k != NULL)
4181 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4182 
4183 		ieee80211_radiotap_tx(vap, m);
4184 	}
4185 
4186 	/* Prepare TX firmware command. */
4187 	cmd = &ring->cmd[ring->cur];
4188 	cmd->code = IWN_CMD_TX_DATA;
4189 	cmd->flags = 0;
4190 	cmd->qid = ring->qid;
4191 	cmd->idx = ring->cur;
4192 
4193 	tx = (struct iwn_cmd_data *)cmd->data;
4194 	/* NB: No need to clear tx, all fields are reinitialized here. */
4195 	tx->scratch = 0;	/* clear "scratch" area */
4196 
4197 	flags = 0;
4198 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4199 		/* Unicast frame, check if an ACK is expected. */
4200 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
4201 		    IEEE80211_QOS_ACKPOLICY_NOACK)
4202 			flags |= IWN_TX_NEED_ACK;
4203 	}
4204 	if ((wh->i_fc[0] &
4205 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
4206 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
4207 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
4208 
4209 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
4210 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
4211 
4212 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
4213 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4214 		/* NB: Group frames are sent using CCK in 802.11b/g. */
4215 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
4216 			flags |= IWN_TX_NEED_RTS;
4217 		} else if (iwn_check_rate_needs_protection(sc, vap, rate)) {
4218 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4219 				flags |= IWN_TX_NEED_CTS;
4220 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4221 				flags |= IWN_TX_NEED_RTS;
4222 		}
4223 
4224 		/* XXX HT protection? */
4225 
4226 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
4227 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4228 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
4229 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
4230 				flags |= IWN_TX_NEED_PROTECTION;
4231 			} else
4232 				flags |= IWN_TX_FULL_TXOP;
4233 		}
4234 	}
4235 
4236 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
4237 	    type != IEEE80211_FC0_TYPE_DATA)
4238 		tx->id = sc->broadcast_id;
4239 	else
4240 		tx->id = wn->id;
4241 
4242 	if (type == IEEE80211_FC0_TYPE_MGT) {
4243 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4244 
4245 		/* Tell HW to set timestamp in probe responses. */
4246 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4247 			flags |= IWN_TX_INSERT_TSTAMP;
4248 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4249 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4250 			tx->timeout = htole16(3);
4251 		else
4252 			tx->timeout = htole16(2);
4253 	} else
4254 		tx->timeout = htole16(0);
4255 
4256 	if (hdrlen & 3) {
4257 		/* First segment length must be a multiple of 4. */
4258 		flags |= IWN_TX_NEED_PADDING;
4259 		pad = 4 - (hdrlen & 3);
4260 	} else
4261 		pad = 0;
4262 
4263 	tx->len = htole16(totlen);
4264 	tx->tid = tid;
4265 	tx->rts_ntries = 60;
4266 	tx->data_ntries = 15;
4267 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4268 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4269 	if (tx->id == sc->broadcast_id) {
4270 		/* Group or management frame. */
4271 		tx->linkq = 0;
4272 	} else {
4273 		tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate);
4274 		flags |= IWN_TX_LINKQ;	/* enable MRR */
4275 	}
4276 
4277 	/* Set physical address of "scratch area". */
4278 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4279 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4280 
4281 	/* Copy 802.11 header in TX command. */
4282 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4283 
4284 	/* Trim 802.11 header. */
4285 	m_adj(m, hdrlen);
4286 	tx->security = 0;
4287 	tx->flags = htole32(flags);
4288 
4289 	error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
4290 					     m, segs, IWN_MAX_SCATTER - 1,
4291 					     &nsegs, BUS_DMA_NOWAIT);
4292 	if (error != 0) {
4293 		if (error != EFBIG) {
4294 			device_printf(sc->sc_dev,
4295 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4296 			m_freem(m);
4297 			return error;
4298 		}
4299 		/* Too many DMA segments, linearize mbuf. */
4300 		m1 = m_defrag(m, MB_DONTWAIT);
4301 		if (m1 == NULL) {
4302 			device_printf(sc->sc_dev,
4303 			    "%s: could not defrag mbuf\n", __func__);
4304 			m_freem(m);
4305 			return ENOBUFS;
4306 		}
4307 		m = m1;
4308 
4309 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
4310 						      data->map, m, segs,
4311 						      IWN_MAX_SCATTER - 1,
4312 						      &nsegs, BUS_DMA_NOWAIT);
4313 		if (error != 0) {
4314 			device_printf(sc->sc_dev,
4315 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4316 			m_freem(m);
4317 			return error;
4318 		}
4319 	}
4320 
4321 	data->m = m;
4322 	data->ni = ni;
4323 
4324 	DPRINTF(sc, IWN_DEBUG_XMIT,
4325 	    "%s: qid %d idx %d len %d nsegs %d rate %04x plcp 0x%08x\n",
4326 	    __func__,
4327 	    ring->qid,
4328 	    ring->cur,
4329 	    m->m_pkthdr.len,
4330 	    nsegs,
4331 	    rate,
4332 	    tx->rate);
4333 
4334 	/* Fill TX descriptor. */
4335 	desc->nsegs = 1;
4336 	if (m->m_len != 0)
4337 		desc->nsegs += nsegs;
4338 	/* First DMA segment is used by the TX command. */
4339 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4340 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4341 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4342 	/* Other DMA segments are for data payload. */
4343 	seg = &segs[0];
4344 	for (i = 1; i <= nsegs; i++) {
4345 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4346 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4347 		    seg->ds_len << 4);
4348 		seg++;
4349 	}
4350 
4351 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4352 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4353 	    BUS_DMASYNC_PREWRITE);
4354 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4355 	    BUS_DMASYNC_PREWRITE);
4356 
4357 	/* Update TX scheduler. */
4358 	if (ring->qid >= sc->firstaggqueue)
4359 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4360 
4361 	/* Kick TX ring. */
4362 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4363 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4364 
4365 	/* Mark TX ring as full if we reach a certain threshold. */
4366 	if (++ring->queued > IWN_TX_RING_HIMARK)
4367 		sc->qfullmsk |= 1 << ring->qid;
4368 
4369 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4370 
4371 	return 0;
4372 }
4373 
4374 static int
4375 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
4376     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
4377 {
4378 	struct iwn_ops *ops = &sc->ops;
4379 //	struct ifnet *ifp = sc->sc_ifp;
4380 	struct ieee80211vap *vap = ni->ni_vap;
4381 //	struct ieee80211com *ic = ifp->if_l2com;
4382 	struct iwn_tx_cmd *cmd;
4383 	struct iwn_cmd_data *tx;
4384 	struct ieee80211_frame *wh;
4385 	struct iwn_tx_ring *ring;
4386 	struct iwn_tx_desc *desc;
4387 	struct iwn_tx_data *data;
4388 	struct mbuf *m1;
4389 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4390 	uint32_t flags;
4391 	u_int hdrlen;
4392 	int ac, totlen, error, pad, nsegs = 0, i, rate;
4393 	uint8_t type;
4394 
4395 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4396 
4397 	wh = mtod(m, struct ieee80211_frame *);
4398 	hdrlen = ieee80211_anyhdrsize(wh);
4399 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4400 
4401 	ac = params->ibp_pri & 3;
4402 
4403 	ring = &sc->txq[ac];
4404 	desc = &ring->desc[ring->cur];
4405 	data = &ring->data[ring->cur];
4406 
4407 	/* Choose a TX rate. */
4408 	rate = params->ibp_rate0;
4409 	totlen = m->m_pkthdr.len;
4410 
4411 	/* Prepare TX firmware command. */
4412 	cmd = &ring->cmd[ring->cur];
4413 	cmd->code = IWN_CMD_TX_DATA;
4414 	cmd->flags = 0;
4415 	cmd->qid = ring->qid;
4416 	cmd->idx = ring->cur;
4417 
4418 	tx = (struct iwn_cmd_data *)cmd->data;
4419 	/* NB: No need to clear tx, all fields are reinitialized here. */
4420 	tx->scratch = 0;	/* clear "scratch" area */
4421 
4422 	flags = 0;
4423 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
4424 		flags |= IWN_TX_NEED_ACK;
4425 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
4426 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4427 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4428 			flags &= ~IWN_TX_NEED_RTS;
4429 			flags |= IWN_TX_NEED_PROTECTION;
4430 		} else
4431 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
4432 	}
4433 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
4434 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4435 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4436 			flags &= ~IWN_TX_NEED_CTS;
4437 			flags |= IWN_TX_NEED_PROTECTION;
4438 		} else
4439 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
4440 	}
4441 	if (type == IEEE80211_FC0_TYPE_MGT) {
4442 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4443 
4444 		/* Tell HW to set timestamp in probe responses. */
4445 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4446 			flags |= IWN_TX_INSERT_TSTAMP;
4447 
4448 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4449 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4450 			tx->timeout = htole16(3);
4451 		else
4452 			tx->timeout = htole16(2);
4453 	} else
4454 		tx->timeout = htole16(0);
4455 
4456 	if (hdrlen & 3) {
4457 		/* First segment length must be a multiple of 4. */
4458 		flags |= IWN_TX_NEED_PADDING;
4459 		pad = 4 - (hdrlen & 3);
4460 	} else
4461 		pad = 0;
4462 
4463 	if (ieee80211_radiotap_active_vap(vap)) {
4464 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4465 
4466 		tap->wt_flags = 0;
4467 		tap->wt_rate = rate;
4468 
4469 		ieee80211_radiotap_tx(vap, m);
4470 	}
4471 
4472 	tx->len = htole16(totlen);
4473 	tx->tid = 0;
4474 	tx->id = sc->broadcast_id;
4475 	tx->rts_ntries = params->ibp_try1;
4476 	tx->data_ntries = params->ibp_try0;
4477 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4478 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4479 
4480 	/* Group or management frame. */
4481 	tx->linkq = 0;
4482 
4483 	/* Set physical address of "scratch area". */
4484 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4485 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4486 
4487 	/* Copy 802.11 header in TX command. */
4488 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4489 
4490 	/* Trim 802.11 header. */
4491 	m_adj(m, hdrlen);
4492 	tx->security = 0;
4493 	tx->flags = htole32(flags);
4494 
4495 	error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
4496 					     m, segs,
4497 					     IWN_MAX_SCATTER - 1,
4498 					     &nsegs, BUS_DMA_NOWAIT);
4499 	if (error != 0) {
4500 		if (error != EFBIG) {
4501 			device_printf(sc->sc_dev,
4502 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4503 			m_freem(m);
4504 			return error;
4505 		}
4506 		/* Too many DMA segments, linearize mbuf. */
4507 		m1 = m_defrag(m, M_NOWAIT);
4508 		if (m1 == NULL) {
4509 			device_printf(sc->sc_dev,
4510 			    "%s: could not defrag mbuf\n", __func__);
4511 			m_freem(m);
4512 			return ENOBUFS;
4513 		}
4514 		m = m1;
4515 
4516 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
4517 						     data->map, m, segs,
4518 						     IWN_MAX_SCATTER - 1,
4519 						     &nsegs, BUS_DMA_NOWAIT);
4520 		if (error != 0) {
4521 			device_printf(sc->sc_dev,
4522 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4523 			m_freem(m);
4524 			return error;
4525 		}
4526 	}
4527 
4528 	data->m = m;
4529 	data->ni = ni;
4530 
4531 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
4532 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
4533 
4534 	/* Fill TX descriptor. */
4535 	desc->nsegs = 1;
4536 	if (m->m_len != 0)
4537 		desc->nsegs += nsegs;
4538 	/* First DMA segment is used by the TX command. */
4539 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4540 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4541 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4542 	/* Other DMA segments are for data payload. */
4543 	seg = &segs[0];
4544 	for (i = 1; i <= nsegs; i++) {
4545 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4546 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4547 		    seg->ds_len << 4);
4548 		seg++;
4549 	}
4550 
4551 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4552 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4553 	    BUS_DMASYNC_PREWRITE);
4554 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4555 	    BUS_DMASYNC_PREWRITE);
4556 
4557 	/* Update TX scheduler. */
4558 	if (ring->qid >= sc->firstaggqueue)
4559 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4560 
4561 	/* Kick TX ring. */
4562 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4563 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4564 
4565 	/* Mark TX ring as full if we reach a certain threshold. */
4566 	if (++ring->queued > IWN_TX_RING_HIMARK)
4567 		sc->qfullmsk |= 1 << ring->qid;
4568 
4569 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4570 
4571 	return 0;
4572 }
4573 
4574 static int
4575 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
4576     const struct ieee80211_bpf_params *params)
4577 {
4578 	struct ieee80211com *ic = ni->ni_ic;
4579 	struct ifnet *ifp = ic->ic_ifp;
4580 	struct iwn_softc *sc = ifp->if_softc;
4581 	int error = 0;
4582 
4583 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4584 
4585 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
4586 		ieee80211_free_node(ni);
4587 		m_freem(m);
4588 		return ENETDOWN;
4589 	}
4590 
4591 	if (params == NULL) {
4592 		/*
4593 		 * Legacy path; interpret frame contents to decide
4594 		 * precisely how to send the frame.
4595 		 */
4596 		error = iwn_tx_data(sc, m, ni);
4597 	} else {
4598 		/*
4599 		 * Caller supplied explicit parameters to use in
4600 		 * sending the frame.
4601 		 */
4602 		error = iwn_tx_data_raw(sc, m, ni, params);
4603 	}
4604 	if (error != 0) {
4605 		/* NB: m is reclaimed on tx failure */
4606 		ieee80211_free_node(ni);
4607 		IFNET_STAT_INC(ifp, oerrors, 1);
4608 	}
4609 	sc->sc_tx_timer = 5;
4610 
4611 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4612 
4613 	return error;
4614 }
4615 
4616 static void
4617 iwn_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
4618 {
4619 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
4620 	iwn_start_locked(ifp);
4621 }
4622 
4623 static void
4624 iwn_start_locked(struct ifnet *ifp)
4625 {
4626 	struct iwn_softc *sc = ifp->if_softc;
4627 	struct ieee80211_node *ni;
4628 	struct mbuf *m;
4629 
4630 	wlan_assert_serialized();
4631 
4632 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
4633 	    ifq_is_oactive(&ifp->if_snd))
4634 		return;
4635 
4636 	for (;;) {
4637 		if (sc->qfullmsk != 0) {
4638 			ifq_set_oactive(&ifp->if_snd);
4639 			break;
4640 		}
4641 		m = ifq_dequeue(&ifp->if_snd);
4642 		if (m == NULL)
4643 			break;
4644 		KKASSERT(M_TRAILINGSPACE(m) >= 0);
4645 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4646 		if (iwn_tx_data(sc, m, ni) != 0) {
4647 			ieee80211_free_node(ni);
4648 			IFNET_STAT_INC(ifp, oerrors, 1);
4649 			continue;
4650 		}
4651 		sc->sc_tx_timer = 5;
4652 	}
4653 }
4654 
4655 static void
4656 iwn_watchdog_timeout(void *arg)
4657 {
4658 	struct iwn_softc *sc = arg;
4659 	struct ifnet *ifp = sc->sc_ifp;
4660 	struct ieee80211com *ic = ifp->if_l2com;
4661 
4662 	wlan_serialize_enter();
4663 
4664 	KASSERT(ifp->if_flags & IFF_RUNNING, ("not running"));
4665 
4666 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4667 
4668 	if (sc->sc_tx_timer > 0) {
4669 		if (--sc->sc_tx_timer == 0) {
4670 			if_printf(ifp, "device timeout\n");
4671 			ieee80211_runtask(ic, &sc->sc_reinit_task);
4672 			return;
4673 		}
4674 	}
4675 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog_timeout, sc);
4676 	wlan_serialize_exit();
4677 }
4678 
4679 static int
4680 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *ucred)
4681 {
4682 	struct iwn_softc *sc = ifp->if_softc;
4683 	struct ieee80211com *ic = ifp->if_l2com;
4684 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4685 	struct ifreq *ifr = (struct ifreq *) data;
4686 	int error = 0, startall = 0, stop = 0;
4687 
4688 	wlan_assert_serialized();
4689 
4690 	switch (cmd) {
4691 	case SIOCGIFADDR:
4692 		error = ether_ioctl(ifp, cmd, data);
4693 		break;
4694 	case SIOCSIFFLAGS:
4695 		if (ifp->if_flags & IFF_UP) {
4696 			if (!(ifp->if_flags & IFF_RUNNING)) {
4697 				iwn_init_locked(sc);
4698 				if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
4699 					startall = 1;
4700 				else
4701 					stop = 1;
4702 			}
4703 		} else {
4704 			if (ifp->if_flags & IFF_RUNNING)
4705 				iwn_stop_locked(sc);
4706 		}
4707 		if (startall)
4708 			ieee80211_start_all(ic);
4709 		else if (vap != NULL && stop)
4710 			ieee80211_stop(vap);
4711 		break;
4712 	case SIOCGIFMEDIA:
4713 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
4714 		break;
4715 	default:
4716 		error = EINVAL;
4717 		break;
4718 	}
4719 	return error;
4720 }
4721 
4722 /*
4723  * Send a command to the firmware.
4724  */
4725 static int
4726 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
4727 {
4728 	struct iwn_tx_ring *ring;
4729 	struct iwn_tx_desc *desc;
4730 	struct iwn_tx_data *data;
4731 	struct iwn_tx_cmd *cmd;
4732 	struct mbuf *m;
4733 	bus_addr_t paddr;
4734 	int totlen, error;
4735 	int cmd_queue_num;
4736 
4737 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4738 
4739 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
4740 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
4741 	else
4742 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
4743 
4744 	ring = &sc->txq[cmd_queue_num];
4745 	desc = &ring->desc[ring->cur];
4746 	data = &ring->data[ring->cur];
4747 	totlen = 4 + size;
4748 
4749 	if (size > sizeof cmd->data) {
4750 		/* Command is too large to fit in a descriptor. */
4751 		if (totlen > MJUMPAGESIZE)
4752 			return EINVAL;
4753 		m = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
4754 		if (m == NULL)
4755 			return ENOMEM;
4756 		cmd = mtod(m, struct iwn_tx_cmd *);
4757 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
4758 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
4759 		if (error != 0) {
4760 			m_freem(m);
4761 			return error;
4762 		}
4763 		data->m = m;
4764 	} else {
4765 		cmd = &ring->cmd[ring->cur];
4766 		paddr = data->cmd_paddr;
4767 	}
4768 
4769 	cmd->code = code;
4770 	cmd->flags = 0;
4771 	cmd->qid = ring->qid;
4772 	cmd->idx = ring->cur;
4773 	memcpy(cmd->data, buf, size);
4774 
4775 	desc->nsegs = 1;
4776 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
4777 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
4778 
4779 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
4780 	    __func__, iwn_intr_str(cmd->code), cmd->code,
4781 	    cmd->flags, cmd->qid, cmd->idx);
4782 
4783 	if (size > sizeof cmd->data) {
4784 		bus_dmamap_sync(ring->data_dmat, data->map,
4785 		    BUS_DMASYNC_PREWRITE);
4786 	} else {
4787 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4788 		    BUS_DMASYNC_PREWRITE);
4789 	}
4790 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4791 	    BUS_DMASYNC_PREWRITE);
4792 
4793 	/* Kick command ring. */
4794 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4795 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4796 
4797 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4798 
4799 	return async ? 0 : zsleep(desc, &wlan_global_serializer, 0, "iwncmd", hz);
4800 }
4801 
4802 static int
4803 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
4804 {
4805 	struct iwn4965_node_info hnode;
4806 	caddr_t src, dst;
4807 
4808 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4809 
4810 	/*
4811 	 * We use the node structure for 5000 Series internally (it is
4812 	 * a superset of the one for 4965AGN). We thus copy the common
4813 	 * fields before sending the command.
4814 	 */
4815 	src = (caddr_t)node;
4816 	dst = (caddr_t)&hnode;
4817 	memcpy(dst, src, 48);
4818 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
4819 	memcpy(dst + 48, src + 72, 20);
4820 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
4821 }
4822 
4823 static int
4824 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
4825 {
4826 
4827 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4828 
4829 	/* Direct mapping. */
4830 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
4831 }
4832 
4833 static int
4834 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
4835 {
4836 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
4837 	struct iwn_node *wn = (void *)ni;
4838 	struct ieee80211_rateset *rs;
4839 	struct iwn_cmd_link_quality linkq;
4840 	uint8_t txant;
4841 	int i, rate, txrate;
4842 	int is_11n;
4843 
4844 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4845 
4846 	/* Use the first valid TX antenna. */
4847 	txant = IWN_LSB(sc->txchainmask);
4848 
4849 	memset(&linkq, 0, sizeof linkq);
4850 	linkq.id = wn->id;
4851 	linkq.antmsk_1stream = txant;
4852 
4853 	/*
4854 	 * The '2 stream' setup is a bit .. odd.
4855 	 *
4856 	 * For NICs that support only 1 antenna, default to IWN_ANT_AB or
4857 	 * the firmware panics (eg Intel 5100.)
4858 	 *
4859 	 * For NICs that support two antennas, we use ANT_AB.
4860 	 *
4861 	 * For NICs that support three antennas, we use the two that
4862 	 * wasn't the default one.
4863 	 *
4864 	 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict
4865 	 * this to only one antenna.
4866 	 */
4867 
4868 	/* So - if there's no secondary antenna, assume IWN_ANT_AB */
4869 
4870 	/* Default - transmit on the other antennas */
4871 	linkq.antmsk_2stream = (sc->txchainmask & ~IWN_LSB(sc->txchainmask));
4872 
4873 	/* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */
4874 	if (linkq.antmsk_2stream == 0)
4875 		linkq.antmsk_2stream = IWN_ANT_AB;
4876 
4877 	/*
4878 	 * If the NIC is a two-stream TX NIC, configure the TX mask to
4879 	 * the default chainmask
4880 	 */
4881 	else if (sc->ntxchains == 2)
4882 		linkq.antmsk_2stream = sc->txchainmask;
4883 
4884 	linkq.ampdu_max = 32;		/* XXX negotiated? */
4885 	linkq.ampdu_threshold = 3;
4886 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
4887 
4888 	DPRINTF(sc, IWN_DEBUG_XMIT,
4889 	    "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n",
4890 	    __func__,
4891 	    linkq.antmsk_1stream,
4892 	    linkq.antmsk_2stream,
4893 	    sc->ntxchains);
4894 
4895 	/*
4896 	 * Are we using 11n rates? Ensure the channel is
4897 	 * 11n _and_ we have some 11n rates, or don't
4898 	 * try.
4899 	 */
4900 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) {
4901 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4902 		is_11n = 1;
4903 	} else {
4904 		rs = &ni->ni_rates;
4905 		is_11n = 0;
4906 	}
4907 
4908 	/* Start at highest available bit-rate. */
4909 	/*
4910 	 * XXX this is all very dirty!
4911 	 */
4912 	if (is_11n)
4913 		txrate = ni->ni_htrates.rs_nrates - 1;
4914 	else
4915 		txrate = rs->rs_nrates - 1;
4916 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
4917 		uint32_t plcp;
4918 
4919 		if (is_11n)
4920 			rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate];
4921 		else
4922 			rate = RV(rs->rs_rates[txrate]);
4923 
4924 		DPRINTF(sc, IWN_DEBUG_XMIT,
4925 		    "%s: i=%d, txrate=%d, rate=0x%02x\n",
4926 		    __func__,
4927 		    i,
4928 		    txrate,
4929 		    rate);
4930 
4931 		/* Do rate -> PLCP config mapping */
4932 		plcp = iwn_rate_to_plcp(sc, ni, rate);
4933 		linkq.retry[i] = plcp;
4934 
4935 		/*
4936 		 * The mimo field is an index into the table which
4937 		 * indicates the first index where it and subsequent entries
4938 		 * will not be using MIMO.
4939 		 *
4940 		 * Since we're filling linkq from 0..15 and we're filling
4941 		 * from the higest MCS rates to the lowest rates, if we
4942 		 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie,
4943 		 * the next entry.)  That way if the next entry is a non-MIMO
4944 		 * entry, we're already pointing at it.
4945 		 */
4946 		if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
4947 		    RV(le32toh(plcp)) > 7)
4948 			linkq.mimo = i + 1;
4949 
4950 		/* Next retry at immediate lower bit-rate. */
4951 		if (txrate > 0)
4952 			txrate--;
4953 	}
4954 
4955 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4956 
4957 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
4958 #undef	RV
4959 }
4960 
4961 /*
4962  * Broadcast node is used to send group-addressed and management frames.
4963  */
4964 static int
4965 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
4966 {
4967 	struct iwn_ops *ops = &sc->ops;
4968 	struct ifnet *ifp = sc->sc_ifp;
4969 	struct ieee80211com *ic = ifp->if_l2com;
4970 	struct iwn_node_info node;
4971 	struct iwn_cmd_link_quality linkq;
4972 	uint8_t txant;
4973 	int i, error;
4974 
4975 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4976 
4977 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
4978 
4979 	memset(&node, 0, sizeof node);
4980 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
4981 	node.id = sc->broadcast_id;
4982 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
4983 	if ((error = ops->add_node(sc, &node, async)) != 0)
4984 		return error;
4985 
4986 	/* Use the first valid TX antenna. */
4987 	txant = IWN_LSB(sc->txchainmask);
4988 
4989 	memset(&linkq, 0, sizeof linkq);
4990 	linkq.id = sc->broadcast_id;
4991 	linkq.antmsk_1stream = txant;
4992 	linkq.antmsk_2stream = IWN_ANT_AB;
4993 	linkq.ampdu_max = 64;
4994 	linkq.ampdu_threshold = 3;
4995 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
4996 
4997 	/* Use lowest mandatory bit-rate. */
4998 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
4999 		linkq.retry[0] = htole32(0xd);
5000 	else
5001 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
5002 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
5003 	/* Use same bit-rate for all TX retries. */
5004 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
5005 		linkq.retry[i] = linkq.retry[0];
5006 	}
5007 
5008 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5009 
5010 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
5011 }
5012 
5013 static int
5014 iwn_updateedca(struct ieee80211com *ic)
5015 {
5016 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
5017 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
5018 	struct iwn_edca_params cmd;
5019 	int aci;
5020 
5021 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5022 
5023 	memset(&cmd, 0, sizeof cmd);
5024 	cmd.flags = htole32(IWN_EDCA_UPDATE);
5025 	for (aci = 0; aci < WME_NUM_AC; aci++) {
5026 		const struct wmeParams *ac =
5027 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
5028 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
5029 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
5030 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
5031 		cmd.ac[aci].txoplimit =
5032 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
5033 	}
5034 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5035 
5036 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5037 
5038 	return 0;
5039 #undef IWN_EXP2
5040 }
5041 
5042 static void
5043 iwn_update_mcast(struct ifnet *ifp)
5044 {
5045 	/* Ignore */
5046 }
5047 
5048 static void
5049 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
5050 {
5051 	struct iwn_cmd_led led;
5052 
5053 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5054 
5055 #if 0
5056 	/* XXX don't set LEDs during scan? */
5057 	if (sc->sc_is_scanning)
5058 		return;
5059 #endif
5060 
5061 	/* Clear microcode LED ownership. */
5062 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
5063 
5064 	led.which = which;
5065 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
5066 	led.off = off;
5067 	led.on = on;
5068 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
5069 }
5070 
5071 /*
5072  * Set the critical temperature at which the firmware will stop the radio
5073  * and notify us.
5074  */
5075 static int
5076 iwn_set_critical_temp(struct iwn_softc *sc)
5077 {
5078 	struct iwn_critical_temp crit;
5079 	int32_t temp;
5080 
5081 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5082 
5083 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
5084 
5085 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
5086 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
5087 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
5088 		temp = IWN_CTOK(110);
5089 	else
5090 		temp = 110;
5091 	memset(&crit, 0, sizeof crit);
5092 	crit.tempR = htole32(temp);
5093 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
5094 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
5095 }
5096 
5097 static int
5098 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
5099 {
5100 	struct iwn_cmd_timing cmd;
5101 	uint64_t val, mod;
5102 
5103 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5104 
5105 	memset(&cmd, 0, sizeof cmd);
5106 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
5107 	cmd.bintval = htole16(ni->ni_intval);
5108 	cmd.lintval = htole16(10);
5109 
5110 	/* Compute remaining time until next beacon. */
5111 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
5112 	mod = le64toh(cmd.tstamp) % val;
5113 	cmd.binitval = htole32((uint32_t)(val - mod));
5114 
5115 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
5116 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
5117 
5118 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
5119 }
5120 
5121 static void
5122 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
5123 {
5124 	struct ifnet *ifp = sc->sc_ifp;
5125 	struct ieee80211com *ic = ifp->if_l2com;
5126 
5127 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5128 
5129 	/* Adjust TX power if need be (delta >= 3 degC). */
5130 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
5131 	    __func__, sc->temp, temp);
5132 	if (abs(temp - sc->temp) >= 3) {
5133 		/* Record temperature of last calibration. */
5134 		sc->temp = temp;
5135 		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
5136 	}
5137 }
5138 
5139 /*
5140  * Set TX power for current channel (each rate has its own power settings).
5141  * This function takes into account the regulatory information from EEPROM,
5142  * the current temperature and the current voltage.
5143  */
5144 static int
5145 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5146     int async)
5147 {
5148 /* Fixed-point arithmetic division using a n-bit fractional part. */
5149 #define fdivround(a, b, n)	\
5150 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
5151 /* Linear interpolation. */
5152 #define interpolate(x, x1, y1, x2, y2, n)	\
5153 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
5154 
5155 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
5156 	struct iwn_ucode_info *uc = &sc->ucode_info;
5157 	struct iwn4965_cmd_txpower cmd;
5158 	struct iwn4965_eeprom_chan_samples *chans;
5159 	const uint8_t *rf_gain, *dsp_gain;
5160 	int32_t vdiff, tdiff;
5161 	int i, c, grp, maxpwr;
5162 	uint8_t chan;
5163 
5164 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5165 	/* Retrieve current channel from last RXON. */
5166 	chan = sc->rxon->chan;
5167 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
5168 	    chan);
5169 
5170 	memset(&cmd, 0, sizeof cmd);
5171 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
5172 	cmd.chan = chan;
5173 
5174 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
5175 		maxpwr   = sc->maxpwr5GHz;
5176 		rf_gain  = iwn4965_rf_gain_5ghz;
5177 		dsp_gain = iwn4965_dsp_gain_5ghz;
5178 	} else {
5179 		maxpwr   = sc->maxpwr2GHz;
5180 		rf_gain  = iwn4965_rf_gain_2ghz;
5181 		dsp_gain = iwn4965_dsp_gain_2ghz;
5182 	}
5183 
5184 	/* Compute voltage compensation. */
5185 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
5186 	if (vdiff > 0)
5187 		vdiff *= 2;
5188 	if (abs(vdiff) > 2)
5189 		vdiff = 0;
5190 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5191 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
5192 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
5193 
5194 	/* Get channel attenuation group. */
5195 	if (chan <= 20)		/* 1-20 */
5196 		grp = 4;
5197 	else if (chan <= 43)	/* 34-43 */
5198 		grp = 0;
5199 	else if (chan <= 70)	/* 44-70 */
5200 		grp = 1;
5201 	else if (chan <= 124)	/* 71-124 */
5202 		grp = 2;
5203 	else			/* 125-200 */
5204 		grp = 3;
5205 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5206 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
5207 
5208 	/* Get channel sub-band. */
5209 	for (i = 0; i < IWN_NBANDS; i++)
5210 		if (sc->bands[i].lo != 0 &&
5211 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
5212 			break;
5213 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
5214 		return EINVAL;
5215 	chans = sc->bands[i].chans;
5216 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5217 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
5218 
5219 	for (c = 0; c < 2; c++) {
5220 		uint8_t power, gain, temp;
5221 		int maxchpwr, pwr, ridx, idx;
5222 
5223 		power = interpolate(chan,
5224 		    chans[0].num, chans[0].samples[c][1].power,
5225 		    chans[1].num, chans[1].samples[c][1].power, 1);
5226 		gain  = interpolate(chan,
5227 		    chans[0].num, chans[0].samples[c][1].gain,
5228 		    chans[1].num, chans[1].samples[c][1].gain, 1);
5229 		temp  = interpolate(chan,
5230 		    chans[0].num, chans[0].samples[c][1].temp,
5231 		    chans[1].num, chans[1].samples[c][1].temp, 1);
5232 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5233 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
5234 		    __func__, c, power, gain, temp);
5235 
5236 		/* Compute temperature compensation. */
5237 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
5238 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5239 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
5240 		    __func__, tdiff, sc->temp, temp);
5241 
5242 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
5243 			/* Convert dBm to half-dBm. */
5244 			maxchpwr = sc->maxpwr[chan] * 2;
5245 			if ((ridx / 8) & 1)
5246 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
5247 
5248 			pwr = maxpwr;
5249 
5250 			/* Adjust TX power based on rate. */
5251 			if ((ridx % 8) == 5)
5252 				pwr -= 15;	/* OFDM48: -7.5dB */
5253 			else if ((ridx % 8) == 6)
5254 				pwr -= 17;	/* OFDM54: -8.5dB */
5255 			else if ((ridx % 8) == 7)
5256 				pwr -= 20;	/* OFDM60: -10dB */
5257 			else
5258 				pwr -= 10;	/* Others: -5dB */
5259 
5260 			/* Do not exceed channel max TX power. */
5261 			if (pwr > maxchpwr)
5262 				pwr = maxchpwr;
5263 
5264 			idx = gain - (pwr - power) - tdiff - vdiff;
5265 			if ((ridx / 8) & 1)	/* MIMO */
5266 				idx += (int32_t)le32toh(uc->atten[grp][c]);
5267 
5268 			if (cmd.band == 0)
5269 				idx += 9;	/* 5GHz */
5270 			if (ridx == IWN_RIDX_MAX)
5271 				idx += 5;	/* CCK */
5272 
5273 			/* Make sure idx stays in a valid range. */
5274 			if (idx < 0)
5275 				idx = 0;
5276 			else if (idx > IWN4965_MAX_PWR_INDEX)
5277 				idx = IWN4965_MAX_PWR_INDEX;
5278 
5279 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5280 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
5281 			    __func__, c, ridx, idx);
5282 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
5283 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
5284 		}
5285 	}
5286 
5287 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5288 	    "%s: set tx power for chan %d\n", __func__, chan);
5289 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
5290 
5291 #undef interpolate
5292 #undef fdivround
5293 }
5294 
5295 static int
5296 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5297     int async)
5298 {
5299 	struct iwn5000_cmd_txpower cmd;
5300 
5301 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5302 
5303 	/*
5304 	 * TX power calibration is handled automatically by the firmware
5305 	 * for 5000 Series.
5306 	 */
5307 	memset(&cmd, 0, sizeof cmd);
5308 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
5309 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
5310 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
5311 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting TX power\n", __func__);
5312 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
5313 }
5314 
5315 /*
5316  * Retrieve the maximum RSSI (in dBm) among receivers.
5317  */
5318 static int
5319 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5320 {
5321 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
5322 	uint8_t mask, agc;
5323 	int rssi;
5324 
5325 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5326 
5327 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
5328 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
5329 
5330 	rssi = 0;
5331 	if (mask & IWN_ANT_A)
5332 		rssi = MAX(rssi, phy->rssi[0]);
5333 	if (mask & IWN_ANT_B)
5334 		rssi = MAX(rssi, phy->rssi[2]);
5335 	if (mask & IWN_ANT_C)
5336 		rssi = MAX(rssi, phy->rssi[4]);
5337 
5338 	DPRINTF(sc, IWN_DEBUG_RECV,
5339 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
5340 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
5341 	    rssi - agc - IWN_RSSI_TO_DBM);
5342 	return rssi - agc - IWN_RSSI_TO_DBM;
5343 }
5344 
5345 static int
5346 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5347 {
5348 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
5349 	uint8_t agc;
5350 	int rssi;
5351 
5352 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5353 
5354 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
5355 
5356 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
5357 		   le16toh(phy->rssi[1]) & 0xff);
5358 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
5359 
5360 	DPRINTF(sc, IWN_DEBUG_RECV,
5361 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
5362 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
5363 	    rssi - agc - IWN_RSSI_TO_DBM);
5364 	return rssi - agc - IWN_RSSI_TO_DBM;
5365 }
5366 
5367 /*
5368  * Retrieve the average noise (in dBm) among receivers.
5369  */
5370 static int
5371 iwn_get_noise(const struct iwn_rx_general_stats *stats)
5372 {
5373 	int i, total, nbant, noise;
5374 
5375 	total = nbant = 0;
5376 	for (i = 0; i < 3; i++) {
5377 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
5378 			continue;
5379 		total += noise;
5380 		nbant++;
5381 	}
5382 	/* There should be at least one antenna but check anyway. */
5383 	return (nbant == 0) ? -127 : (total / nbant) - 107;
5384 }
5385 
5386 /*
5387  * Compute temperature (in degC) from last received statistics.
5388  */
5389 static int
5390 iwn4965_get_temperature(struct iwn_softc *sc)
5391 {
5392 	struct iwn_ucode_info *uc = &sc->ucode_info;
5393 	int32_t r1, r2, r3, r4, temp;
5394 
5395 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5396 
5397 	r1 = le32toh(uc->temp[0].chan20MHz);
5398 	r2 = le32toh(uc->temp[1].chan20MHz);
5399 	r3 = le32toh(uc->temp[2].chan20MHz);
5400 	r4 = le32toh(sc->rawtemp);
5401 
5402 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
5403 		return 0;
5404 
5405 	/* Sign-extend 23-bit R4 value to 32-bit. */
5406 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
5407 	/* Compute temperature in Kelvin. */
5408 	temp = (259 * (r4 - r2)) / (r3 - r1);
5409 	temp = (temp * 97) / 100 + 8;
5410 
5411 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
5412 	    IWN_KTOC(temp));
5413 	return IWN_KTOC(temp);
5414 }
5415 
5416 static int
5417 iwn5000_get_temperature(struct iwn_softc *sc)
5418 {
5419 	int32_t temp;
5420 
5421 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5422 
5423 	/*
5424 	 * Temperature is not used by the driver for 5000 Series because
5425 	 * TX power calibration is handled by firmware.
5426 	 */
5427 	temp = le32toh(sc->rawtemp);
5428 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
5429 		temp = (temp / -5) + sc->temp_off;
5430 		temp = IWN_KTOC(temp);
5431 	}
5432 	return temp;
5433 }
5434 
5435 /*
5436  * Initialize sensitivity calibration state machine.
5437  */
5438 static int
5439 iwn_init_sensitivity(struct iwn_softc *sc)
5440 {
5441 	struct iwn_ops *ops = &sc->ops;
5442 	struct iwn_calib_state *calib = &sc->calib;
5443 	uint32_t flags;
5444 	int error;
5445 
5446 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5447 
5448 	/* Reset calibration state machine. */
5449 	memset(calib, 0, sizeof (*calib));
5450 	calib->state = IWN_CALIB_STATE_INIT;
5451 	calib->cck_state = IWN_CCK_STATE_HIFA;
5452 	/* Set initial correlation values. */
5453 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
5454 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
5455 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
5456 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
5457 	calib->cck_x4      = 125;
5458 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
5459 	calib->energy_cck  = sc->limits->energy_cck;
5460 
5461 	/* Write initial sensitivity. */
5462 	if ((error = iwn_send_sensitivity(sc)) != 0)
5463 		return error;
5464 
5465 	/* Write initial gains. */
5466 	if ((error = ops->init_gains(sc)) != 0)
5467 		return error;
5468 
5469 	/* Request statistics at each beacon interval. */
5470 	flags = 0;
5471 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
5472 	    __func__);
5473 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
5474 }
5475 
5476 /*
5477  * Collect noise and RSSI statistics for the first 20 beacons received
5478  * after association and use them to determine connected antennas and
5479  * to set differential gains.
5480  */
5481 static void
5482 iwn_collect_noise(struct iwn_softc *sc,
5483     const struct iwn_rx_general_stats *stats)
5484 {
5485 	struct iwn_ops *ops = &sc->ops;
5486 	struct iwn_calib_state *calib = &sc->calib;
5487 	struct ifnet *ifp = sc->sc_ifp;
5488 	struct ieee80211com *ic = ifp->if_l2com;
5489 	uint32_t val;
5490 	int i;
5491 
5492 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5493 
5494 	/* Accumulate RSSI and noise for all 3 antennas. */
5495 	for (i = 0; i < 3; i++) {
5496 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
5497 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
5498 	}
5499 	/* NB: We update differential gains only once after 20 beacons. */
5500 	if (++calib->nbeacons < 20)
5501 		return;
5502 
5503 	/* Determine highest average RSSI. */
5504 	val = MAX(calib->rssi[0], calib->rssi[1]);
5505 	val = MAX(calib->rssi[2], val);
5506 
5507 	/* Determine which antennas are connected. */
5508 	sc->chainmask = sc->rxchainmask;
5509 	for (i = 0; i < 3; i++)
5510 		if (val - calib->rssi[i] > 15 * 20)
5511 			sc->chainmask &= ~(1 << i);
5512 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5513 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
5514 	    __func__, sc->rxchainmask, sc->chainmask);
5515 
5516 	/* If none of the TX antennas are connected, keep at least one. */
5517 	if ((sc->chainmask & sc->txchainmask) == 0)
5518 		sc->chainmask |= IWN_LSB(sc->txchainmask);
5519 
5520 	(void)ops->set_gains(sc);
5521 	calib->state = IWN_CALIB_STATE_RUN;
5522 
5523 #ifdef notyet
5524 	/* XXX Disable RX chains with no antennas connected. */
5525 	sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
5526 	if (sc->sc_is_scanning)
5527 		device_printf(sc->sc_dev,
5528 		    "%s: is_scanning set, before RXON\n",
5529 		    __func__);
5530 	(void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
5531 #endif
5532 
5533 	/* Enable power-saving mode if requested by user. */
5534 	if (ic->ic_flags & IEEE80211_F_PMGTON)
5535 		(void)iwn_set_pslevel(sc, 0, 3, 1);
5536 
5537 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5538 
5539 }
5540 
5541 static int
5542 iwn4965_init_gains(struct iwn_softc *sc)
5543 {
5544 	struct iwn_phy_calib_gain cmd;
5545 
5546 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5547 
5548 	memset(&cmd, 0, sizeof cmd);
5549 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5550 	/* Differential gains initially set to 0 for all 3 antennas. */
5551 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5552 	    "%s: setting initial differential gains\n", __func__);
5553 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5554 }
5555 
5556 static int
5557 iwn5000_init_gains(struct iwn_softc *sc)
5558 {
5559 	struct iwn_phy_calib cmd;
5560 
5561 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5562 
5563 	memset(&cmd, 0, sizeof cmd);
5564 	cmd.code = sc->reset_noise_gain;
5565 	cmd.ngroups = 1;
5566 	cmd.isvalid = 1;
5567 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5568 	    "%s: setting initial differential gains\n", __func__);
5569 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5570 }
5571 
5572 static int
5573 iwn4965_set_gains(struct iwn_softc *sc)
5574 {
5575 	struct iwn_calib_state *calib = &sc->calib;
5576 	struct iwn_phy_calib_gain cmd;
5577 	int i, delta, noise;
5578 
5579 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5580 
5581 	/* Get minimal noise among connected antennas. */
5582 	noise = INT_MAX;	/* NB: There's at least one antenna. */
5583 	for (i = 0; i < 3; i++)
5584 		if (sc->chainmask & (1 << i))
5585 			noise = MIN(calib->noise[i], noise);
5586 
5587 	memset(&cmd, 0, sizeof cmd);
5588 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5589 	/* Set differential gains for connected antennas. */
5590 	for (i = 0; i < 3; i++) {
5591 		if (sc->chainmask & (1 << i)) {
5592 			/* Compute attenuation (in unit of 1.5dB). */
5593 			delta = (noise - (int32_t)calib->noise[i]) / 30;
5594 			/* NB: delta <= 0 */
5595 			/* Limit to [-4.5dB,0]. */
5596 			cmd.gain[i] = MIN(abs(delta), 3);
5597 			if (delta < 0)
5598 				cmd.gain[i] |= 1 << 2;	/* sign bit */
5599 		}
5600 	}
5601 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5602 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
5603 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
5604 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5605 }
5606 
5607 static int
5608 iwn5000_set_gains(struct iwn_softc *sc)
5609 {
5610 	struct iwn_calib_state *calib = &sc->calib;
5611 	struct iwn_phy_calib_gain cmd;
5612 	int i, ant, div, delta;
5613 
5614 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5615 
5616 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
5617 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
5618 
5619 	memset(&cmd, 0, sizeof cmd);
5620 	cmd.code = sc->noise_gain;
5621 	cmd.ngroups = 1;
5622 	cmd.isvalid = 1;
5623 	/* Get first available RX antenna as referential. */
5624 	ant = IWN_LSB(sc->rxchainmask);
5625 	/* Set differential gains for other antennas. */
5626 	for (i = ant + 1; i < 3; i++) {
5627 		if (sc->chainmask & (1 << i)) {
5628 			/* The delta is relative to antenna "ant". */
5629 			delta = ((int32_t)calib->noise[ant] -
5630 			    (int32_t)calib->noise[i]) / div;
5631 			/* Limit to [-4.5dB,+4.5dB]. */
5632 			cmd.gain[i - 1] = MIN(abs(delta), 3);
5633 			if (delta < 0)
5634 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
5635 		}
5636 	}
5637 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5638 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
5639 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
5640 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5641 }
5642 
5643 /*
5644  * Tune RF RX sensitivity based on the number of false alarms detected
5645  * during the last beacon period.
5646  */
5647 static void
5648 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
5649 {
5650 #define inc(val, inc, max)			\
5651 	if ((val) < (max)) {			\
5652 		if ((val) < (max) - (inc))	\
5653 			(val) += (inc);		\
5654 		else				\
5655 			(val) = (max);		\
5656 		needs_update = 1;		\
5657 	}
5658 #define dec(val, dec, min)			\
5659 	if ((val) > (min)) {			\
5660 		if ((val) > (min) + (dec))	\
5661 			(val) -= (dec);		\
5662 		else				\
5663 			(val) = (min);		\
5664 		needs_update = 1;		\
5665 	}
5666 
5667 	const struct iwn_sensitivity_limits *limits = sc->limits;
5668 	struct iwn_calib_state *calib = &sc->calib;
5669 	uint32_t val, rxena, fa;
5670 	uint32_t energy[3], energy_min;
5671 	uint8_t noise[3], noise_ref;
5672 	int i, needs_update = 0;
5673 
5674 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5675 
5676 	/* Check that we've been enabled long enough. */
5677 	if ((rxena = le32toh(stats->general.load)) == 0){
5678 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__);
5679 		return;
5680 	}
5681 
5682 	/* Compute number of false alarms since last call for OFDM. */
5683 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
5684 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
5685 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
5686 
5687 	/* Save counters values for next call. */
5688 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
5689 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
5690 
5691 	if (fa > 50 * rxena) {
5692 		/* High false alarm count, decrease sensitivity. */
5693 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5694 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
5695 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
5696 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
5697 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
5698 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
5699 
5700 	} else if (fa < 5 * rxena) {
5701 		/* Low false alarm count, increase sensitivity. */
5702 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5703 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
5704 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
5705 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
5706 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
5707 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
5708 	}
5709 
5710 	/* Compute maximum noise among 3 receivers. */
5711 	for (i = 0; i < 3; i++)
5712 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
5713 	val = MAX(noise[0], noise[1]);
5714 	val = MAX(noise[2], val);
5715 	/* Insert it into our samples table. */
5716 	calib->noise_samples[calib->cur_noise_sample] = val;
5717 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
5718 
5719 	/* Compute maximum noise among last 20 samples. */
5720 	noise_ref = calib->noise_samples[0];
5721 	for (i = 1; i < 20; i++)
5722 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
5723 
5724 	/* Compute maximum energy among 3 receivers. */
5725 	for (i = 0; i < 3; i++)
5726 		energy[i] = le32toh(stats->general.energy[i]);
5727 	val = MIN(energy[0], energy[1]);
5728 	val = MIN(energy[2], val);
5729 	/* Insert it into our samples table. */
5730 	calib->energy_samples[calib->cur_energy_sample] = val;
5731 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
5732 
5733 	/* Compute minimum energy among last 10 samples. */
5734 	energy_min = calib->energy_samples[0];
5735 	for (i = 1; i < 10; i++)
5736 		energy_min = MAX(energy_min, calib->energy_samples[i]);
5737 	energy_min += 6;
5738 
5739 	/* Compute number of false alarms since last call for CCK. */
5740 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
5741 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
5742 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
5743 
5744 	/* Save counters values for next call. */
5745 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
5746 	calib->fa_cck = le32toh(stats->cck.fa);
5747 
5748 	if (fa > 50 * rxena) {
5749 		/* High false alarm count, decrease sensitivity. */
5750 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5751 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
5752 		calib->cck_state = IWN_CCK_STATE_HIFA;
5753 		calib->low_fa = 0;
5754 
5755 		if (calib->cck_x4 > 160) {
5756 			calib->noise_ref = noise_ref;
5757 			if (calib->energy_cck > 2)
5758 				dec(calib->energy_cck, 2, energy_min);
5759 		}
5760 		if (calib->cck_x4 < 160) {
5761 			calib->cck_x4 = 161;
5762 			needs_update = 1;
5763 		} else
5764 			inc(calib->cck_x4, 3, limits->max_cck_x4);
5765 
5766 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
5767 
5768 	} else if (fa < 5 * rxena) {
5769 		/* Low false alarm count, increase sensitivity. */
5770 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5771 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
5772 		calib->cck_state = IWN_CCK_STATE_LOFA;
5773 		calib->low_fa++;
5774 
5775 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
5776 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
5777 		     calib->low_fa > 100)) {
5778 			inc(calib->energy_cck, 2, limits->min_energy_cck);
5779 			dec(calib->cck_x4,     3, limits->min_cck_x4);
5780 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
5781 		}
5782 	} else {
5783 		/* Not worth to increase or decrease sensitivity. */
5784 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5785 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
5786 		calib->low_fa = 0;
5787 		calib->noise_ref = noise_ref;
5788 
5789 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
5790 			/* Previous interval had many false alarms. */
5791 			dec(calib->energy_cck, 8, energy_min);
5792 		}
5793 		calib->cck_state = IWN_CCK_STATE_INIT;
5794 	}
5795 
5796 	if (needs_update)
5797 		(void)iwn_send_sensitivity(sc);
5798 
5799 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5800 
5801 #undef dec
5802 #undef inc
5803 }
5804 
5805 static int
5806 iwn_send_sensitivity(struct iwn_softc *sc)
5807 {
5808 	struct iwn_calib_state *calib = &sc->calib;
5809 	struct iwn_enhanced_sensitivity_cmd cmd;
5810 	int len;
5811 
5812 	memset(&cmd, 0, sizeof cmd);
5813 	len = sizeof (struct iwn_sensitivity_cmd);
5814 	cmd.which = IWN_SENSITIVITY_WORKTBL;
5815 	/* OFDM modulation. */
5816 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
5817 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
5818 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
5819 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
5820 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
5821 	cmd.energy_ofdm_th     = htole16(62);
5822 	/* CCK modulation. */
5823 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
5824 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
5825 	cmd.energy_cck         = htole16(calib->energy_cck);
5826 	/* Barker modulation: use default values. */
5827 	cmd.corr_barker        = htole16(190);
5828 	cmd.corr_barker_mrc    = htole16(390);
5829 
5830 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5831 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
5832 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
5833 	    calib->ofdm_mrc_x4, calib->cck_x4,
5834 	    calib->cck_mrc_x4, calib->energy_cck);
5835 
5836 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
5837 		goto send;
5838 	/* Enhanced sensitivity settings. */
5839 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
5840 	cmd.ofdm_det_slope_mrc = htole16(668);
5841 	cmd.ofdm_det_icept_mrc = htole16(4);
5842 	cmd.ofdm_det_slope     = htole16(486);
5843 	cmd.ofdm_det_icept     = htole16(37);
5844 	cmd.cck_det_slope_mrc  = htole16(853);
5845 	cmd.cck_det_icept_mrc  = htole16(4);
5846 	cmd.cck_det_slope      = htole16(476);
5847 	cmd.cck_det_icept      = htole16(99);
5848 send:
5849 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
5850 }
5851 
5852 /*
5853  * Set STA mode power saving level (between 0 and 5).
5854  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
5855  */
5856 static int
5857 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
5858 {
5859 	struct iwn_pmgt_cmd cmd;
5860 	const struct iwn_pmgt *pmgt;
5861 	uint32_t max, skip_dtim;
5862 	uint32_t reg;
5863 	int i;
5864 
5865 	DPRINTF(sc, IWN_DEBUG_PWRSAVE,
5866 	    "%s: dtim=%d, level=%d, async=%d\n",
5867 	    __func__,
5868 	    dtim,
5869 	    level,
5870 	    async);
5871 
5872 	/* Select which PS parameters to use. */
5873 	if (dtim <= 2)
5874 		pmgt = &iwn_pmgt[0][level];
5875 	else if (dtim <= 10)
5876 		pmgt = &iwn_pmgt[1][level];
5877 	else
5878 		pmgt = &iwn_pmgt[2][level];
5879 
5880 	memset(&cmd, 0, sizeof cmd);
5881 	if (level != 0)	/* not CAM */
5882 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
5883 	if (level == 5)
5884 		cmd.flags |= htole16(IWN_PS_FAST_PD);
5885 	/* Retrieve PCIe Active State Power Management (ASPM). */
5886 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
5887 	if (!(reg & 0x1))	/* L0s Entry disabled. */
5888 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
5889 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
5890 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
5891 
5892 	if (dtim == 0) {
5893 		dtim = 1;
5894 		skip_dtim = 0;
5895 	} else
5896 		skip_dtim = pmgt->skip_dtim;
5897 	if (skip_dtim != 0) {
5898 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
5899 		max = pmgt->intval[4];
5900 		if (max == (uint32_t)-1)
5901 			max = dtim * (skip_dtim + 1);
5902 		else if (max > dtim)
5903 			max = (max / dtim) * dtim;
5904 	} else
5905 		max = dtim;
5906 	for (i = 0; i < 5; i++)
5907 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
5908 
5909 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
5910 	    level);
5911 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
5912 }
5913 
5914 static int
5915 iwn_send_btcoex(struct iwn_softc *sc)
5916 {
5917 	struct iwn_bluetooth cmd;
5918 
5919 	memset(&cmd, 0, sizeof cmd);
5920 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
5921 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
5922 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
5923 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
5924 	    __func__);
5925 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
5926 }
5927 
5928 static int
5929 iwn_send_advanced_btcoex(struct iwn_softc *sc)
5930 {
5931 	static const uint32_t btcoex_3wire[12] = {
5932 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
5933 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
5934 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
5935 	};
5936 	struct iwn6000_btcoex_config btconfig;
5937 	struct iwn2000_btcoex_config btconfig2k;
5938 	struct iwn_btcoex_priotable btprio;
5939 	struct iwn_btcoex_prot btprot;
5940 	int error, i;
5941 	uint8_t flags;
5942 
5943 	memset(&btconfig, 0, sizeof btconfig);
5944 	memset(&btconfig2k, 0, sizeof btconfig2k);
5945 
5946 	flags = IWN_BT_FLAG_COEX6000_MODE_3W <<
5947 	    IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2
5948 
5949 	if (sc->base_params->bt_sco_disable)
5950 		flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE;
5951 	else
5952 		flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE;
5953 
5954 	flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION;
5955 
5956 	/* Default flags result is 145 as old value */
5957 
5958 	/*
5959 	 * Flags value has to be review. Values must change if we
5960 	 * which to disable it
5961 	 */
5962 	if (sc->base_params->bt_session_2) {
5963 		btconfig2k.flags = flags;
5964 		btconfig2k.max_kill = 5;
5965 		btconfig2k.bt3_t7_timer = 1;
5966 		btconfig2k.kill_ack = htole32(0xffff0000);
5967 		btconfig2k.kill_cts = htole32(0xffff0000);
5968 		btconfig2k.sample_time = 2;
5969 		btconfig2k.bt3_t2_timer = 0xc;
5970 
5971 		for (i = 0; i < 12; i++)
5972 			btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]);
5973 		btconfig2k.valid = htole16(0xff);
5974 		btconfig2k.prio_boost = htole32(0xf0);
5975 		DPRINTF(sc, IWN_DEBUG_RESET,
5976 		    "%s: configuring advanced bluetooth coexistence"
5977 		    " session 2, flags : 0x%x\n",
5978 		    __func__,
5979 		    flags);
5980 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k,
5981 		    sizeof(btconfig2k), 1);
5982 	} else {
5983 		btconfig.flags = flags;
5984 		btconfig.max_kill = 5;
5985 		btconfig.bt3_t7_timer = 1;
5986 		btconfig.kill_ack = htole32(0xffff0000);
5987 		btconfig.kill_cts = htole32(0xffff0000);
5988 		btconfig.sample_time = 2;
5989 		btconfig.bt3_t2_timer = 0xc;
5990 
5991 		for (i = 0; i < 12; i++)
5992 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
5993 		btconfig.valid = htole16(0xff);
5994 		btconfig.prio_boost = 0xf0;
5995 		DPRINTF(sc, IWN_DEBUG_RESET,
5996 		    "%s: configuring advanced bluetooth coexistence,"
5997 		    " flags : 0x%x\n",
5998 		    __func__,
5999 		    flags);
6000 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
6001 		    sizeof(btconfig), 1);
6002 	}
6003 
6004 
6005 	if (error != 0)
6006 		return error;
6007 
6008 	memset(&btprio, 0, sizeof btprio);
6009 	btprio.calib_init1 = 0x6;
6010 	btprio.calib_init2 = 0x7;
6011 	btprio.calib_periodic_low1 = 0x2;
6012 	btprio.calib_periodic_low2 = 0x3;
6013 	btprio.calib_periodic_high1 = 0x4;
6014 	btprio.calib_periodic_high2 = 0x5;
6015 	btprio.dtim = 0x6;
6016 	btprio.scan52 = 0x8;
6017 	btprio.scan24 = 0xa;
6018 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
6019 	    1);
6020 	if (error != 0)
6021 		return error;
6022 
6023 	/* Force BT state machine change. */
6024 	memset(&btprot, 0, sizeof btprot);
6025 	btprot.open = 1;
6026 	btprot.type = 1;
6027 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6028 	if (error != 0)
6029 		return error;
6030 	btprot.open = 0;
6031 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6032 }
6033 
6034 static int
6035 iwn5000_runtime_calib(struct iwn_softc *sc)
6036 {
6037 	struct iwn5000_calib_config cmd;
6038 
6039 	memset(&cmd, 0, sizeof cmd);
6040 	cmd.ucode.once.enable = 0xffffffff;
6041 	cmd.ucode.once.start = IWN5000_CALIB_DC;
6042 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6043 	    "%s: configuring runtime calibration\n", __func__);
6044 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
6045 }
6046 
6047 static int
6048 iwn_config(struct iwn_softc *sc)
6049 {
6050 	struct iwn_ops *ops = &sc->ops;
6051 	struct ifnet *ifp = sc->sc_ifp;
6052 	struct ieee80211com *ic = ifp->if_l2com;
6053 	uint32_t txmask;
6054 	uint16_t rxchain;
6055 	int error;
6056 
6057 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6058 
6059 	if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET)
6060 	    && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) {
6061 		device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are"
6062 		    " exclusive each together. Review NIC config file. Conf"
6063 		    " :  0x%08x Flags :  0x%08x  \n", __func__,
6064 		    sc->base_params->calib_need,
6065 		    (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET |
6066 		    IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2));
6067 		return (EINVAL);
6068 	}
6069 
6070 	/* Compute temperature calib if needed. Will be send by send calib */
6071 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) {
6072 		error = iwn5000_temp_offset_calib(sc);
6073 		if (error != 0) {
6074 			device_printf(sc->sc_dev,
6075 			    "%s: could not set temperature offset\n", __func__);
6076 			return (error);
6077 		}
6078 	} else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
6079 		error = iwn5000_temp_offset_calibv2(sc);
6080 		if (error != 0) {
6081 			device_printf(sc->sc_dev,
6082 			    "%s: could not compute temperature offset v2\n",
6083 			    __func__);
6084 			return (error);
6085 		}
6086 	}
6087 
6088 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6089 		/* Configure runtime DC calibration. */
6090 		error = iwn5000_runtime_calib(sc);
6091 		if (error != 0) {
6092 			device_printf(sc->sc_dev,
6093 			    "%s: could not configure runtime calibration\n",
6094 			    __func__);
6095 			return error;
6096 		}
6097 	}
6098 
6099 	/* Configure valid TX chains for >=5000 Series. */
6100 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
6101 		txmask = htole32(sc->txchainmask);
6102 		DPRINTF(sc, IWN_DEBUG_RESET,
6103 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
6104 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
6105 		    sizeof txmask, 0);
6106 		if (error != 0) {
6107 			device_printf(sc->sc_dev,
6108 			    "%s: could not configure valid TX chains, "
6109 			    "error %d\n", __func__, error);
6110 			return error;
6111 		}
6112 	}
6113 
6114 	/* Configure bluetooth coexistence. */
6115 	error = 0;
6116 
6117 	/* Configure bluetooth coexistence if needed. */
6118 	if (sc->base_params->bt_mode == IWN_BT_ADVANCED)
6119 		error = iwn_send_advanced_btcoex(sc);
6120 	if (sc->base_params->bt_mode == IWN_BT_SIMPLE)
6121 		error = iwn_send_btcoex(sc);
6122 
6123 	if (error != 0) {
6124 		device_printf(sc->sc_dev,
6125 		    "%s: could not configure bluetooth coexistence, error %d\n",
6126 		    __func__, error);
6127 		return error;
6128 	}
6129 
6130 	/* Set mode, channel, RX filter and enable RX. */
6131 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6132 	memset(sc->rxon, 0, sizeof (struct iwn_rxon));
6133 	IEEE80211_ADDR_COPY(sc->rxon->myaddr, IF_LLADDR(ifp));
6134 	IEEE80211_ADDR_COPY(sc->rxon->wlap, IF_LLADDR(ifp));
6135 	sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
6136 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6137 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
6138 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6139 	switch (ic->ic_opmode) {
6140 	case IEEE80211_M_STA:
6141 		sc->rxon->mode = IWN_MODE_STA;
6142 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST);
6143 		break;
6144 	case IEEE80211_M_MONITOR:
6145 		sc->rxon->mode = IWN_MODE_MONITOR;
6146 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST |
6147 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
6148 		break;
6149 	default:
6150 		/* Should not get there. */
6151 		break;
6152 	}
6153 	sc->rxon->cck_mask  = 0x0f;	/* not yet negotiated */
6154 	sc->rxon->ofdm_mask = 0xff;	/* not yet negotiated */
6155 	sc->rxon->ht_single_mask = 0xff;
6156 	sc->rxon->ht_dual_mask = 0xff;
6157 	sc->rxon->ht_triple_mask = 0xff;
6158 	rxchain =
6159 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6160 	    IWN_RXCHAIN_MIMO_COUNT(2) |
6161 	    IWN_RXCHAIN_IDLE_COUNT(2);
6162 	sc->rxon->rxchain = htole16(rxchain);
6163 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__);
6164 	if (sc->sc_is_scanning)
6165 		device_printf(sc->sc_dev,
6166 		    "%s: is_scanning set, before RXON\n",
6167 		    __func__);
6168 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 0);
6169 	if (error != 0) {
6170 		device_printf(sc->sc_dev, "%s: RXON command failed\n",
6171 		    __func__);
6172 		return error;
6173 	}
6174 
6175 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
6176 		device_printf(sc->sc_dev, "%s: could not add broadcast node\n",
6177 		    __func__);
6178 		return error;
6179 	}
6180 
6181 	/* Configuration has changed, set TX power accordingly. */
6182 	if ((error = ops->set_txpower(sc, ic->ic_curchan, 0)) != 0) {
6183 		device_printf(sc->sc_dev, "%s: could not set TX power\n",
6184 		    __func__);
6185 		return error;
6186 	}
6187 
6188 	if ((error = iwn_set_critical_temp(sc)) != 0) {
6189 		device_printf(sc->sc_dev,
6190 		    "%s: could not set critical temperature\n", __func__);
6191 		return error;
6192 	}
6193 
6194 	/* Set power saving level to CAM during initialization. */
6195 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
6196 		device_printf(sc->sc_dev,
6197 		    "%s: could not set power saving level\n", __func__);
6198 		return error;
6199 	}
6200 
6201 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6202 
6203 	return 0;
6204 }
6205 
6206 /*
6207  * Add an ssid element to a frame.
6208  */
6209 static uint8_t *
6210 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
6211 {
6212 	*frm++ = IEEE80211_ELEMID_SSID;
6213 	*frm++ = len;
6214 	memcpy(frm, ssid, len);
6215 	return frm + len;
6216 }
6217 
6218 static uint16_t
6219 iwn_get_active_dwell_time(struct iwn_softc *sc,
6220     struct ieee80211_channel *c, uint8_t n_probes)
6221 {
6222 	/* No channel? Default to 2GHz settings */
6223 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6224 		return (IWN_ACTIVE_DWELL_TIME_2GHZ +
6225 		IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
6226 	}
6227 
6228 	/* 5GHz dwell time */
6229 	return (IWN_ACTIVE_DWELL_TIME_5GHZ +
6230 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
6231 }
6232 
6233 /*
6234  * Limit the total dwell time to 85% of the beacon interval.
6235  *
6236  * Returns the dwell time in milliseconds.
6237  */
6238 static uint16_t
6239 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
6240 {
6241 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
6242 	struct ieee80211vap *vap = NULL;
6243 	int bintval = 0;
6244 
6245 	/* bintval is in TU (1.024mS) */
6246 	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
6247 		vap = TAILQ_FIRST(&ic->ic_vaps);
6248 		bintval = vap->iv_bss->ni_intval;
6249 	}
6250 
6251 	/*
6252 	 * If it's non-zero, we should calculate the minimum of
6253 	 * it and the DWELL_BASE.
6254 	 *
6255 	 * XXX Yes, the math should take into account that bintval
6256 	 * is 1.024mS, not 1mS..
6257 	 */
6258 	if (bintval > 0) {
6259 		DPRINTF(sc, IWN_DEBUG_SCAN,
6260 		    "%s: bintval=%d\n",
6261 		    __func__,
6262 		    bintval);
6263 		return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
6264 	}
6265 
6266 	/* No association context? Default */
6267 	return (IWN_PASSIVE_DWELL_BASE);
6268 }
6269 
6270 static uint16_t
6271 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c)
6272 {
6273 	uint16_t passive;
6274 
6275 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6276 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
6277 	} else {
6278 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
6279 	}
6280 
6281 	/* Clamp to the beacon interval if we're associated */
6282 	return (iwn_limit_dwell(sc, passive));
6283 }
6284 
6285 static int
6286 iwn_scan(struct iwn_softc *sc)
6287 {
6288 	struct ifnet *ifp = sc->sc_ifp;
6289 	struct ieee80211com *ic = ifp->if_l2com;
6290 	struct ieee80211_scan_state *ss = ic->ic_scan;	/*XXX*/
6291 	struct ieee80211_node *ni = ss->ss_vap->iv_bss;
6292 	struct iwn_scan_hdr *hdr;
6293 	struct iwn_cmd_data *tx;
6294 	struct iwn_scan_essid *essid;
6295 	struct iwn_scan_chan *chan;
6296 	struct ieee80211_frame *wh;
6297 	struct ieee80211_rateset *rs;
6298 	struct ieee80211_channel *c;
6299 	uint8_t *buf, *frm;
6300 	uint16_t rxchain;
6301 	uint8_t txant;
6302 	int buflen, error;
6303 	int is_active;
6304 	uint16_t dwell_active, dwell_passive;
6305 	uint32_t extra, scan_service_time;
6306 
6307 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6308 
6309 	/*
6310 	 * We are absolutely not allowed to send a scan command when another
6311 	 * scan command is pending.
6312 	 */
6313 	if (sc->sc_is_scanning) {
6314 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
6315 		    __func__);
6316 		return (EAGAIN);
6317 	}
6318 
6319 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6320 	buf = kmalloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_INTWAIT | M_ZERO);
6321 	hdr = (struct iwn_scan_hdr *)buf;
6322 	/*
6323 	 * Move to the next channel if no frames are received within 10ms
6324 	 * after sending the probe request.
6325 	 */
6326 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
6327 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
6328 	/*
6329 	 * Max needs to be greater than active and passive and quiet!
6330 	 * It's also in microseconds!
6331 	 */
6332 	hdr->max_svc = htole32(250 * 1024);
6333 
6334 	/*
6335 	 * Reset scan: interval=100
6336 	 * Normal scan: interval=becaon interval
6337 	 * suspend_time: 100 (TU)
6338 	 *
6339 	 */
6340 	extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22;
6341 	//scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024);
6342 	scan_service_time = (4 << 22) | (100 * 1024);	/* Hardcode for now! */
6343 	hdr->pause_svc = htole32(scan_service_time);
6344 
6345 	/* Select antennas for scanning. */
6346 	rxchain =
6347 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6348 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
6349 	    IWN_RXCHAIN_DRIVER_FORCE;
6350 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) &&
6351 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
6352 		/* Ant A must be avoided in 5GHz because of an HW bug. */
6353 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
6354 	} else	/* Use all available RX antennas. */
6355 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
6356 	hdr->rxchain = htole16(rxchain);
6357 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
6358 
6359 	tx = (struct iwn_cmd_data *)(hdr + 1);
6360 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
6361 	tx->id = sc->broadcast_id;
6362 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
6363 
6364 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) {
6365 		/* Send probe requests at 6Mbps. */
6366 		tx->rate = htole32(0xd);
6367 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
6368 	} else {
6369 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
6370 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
6371 		    sc->rxon->associd && sc->rxon->chan > 14)
6372 			tx->rate = htole32(0xd);
6373 		else {
6374 			/* Send probe requests at 1Mbps. */
6375 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
6376 		}
6377 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
6378 	}
6379 	/* Use the first valid TX antenna. */
6380 	txant = IWN_LSB(sc->txchainmask);
6381 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
6382 
6383 	/*
6384 	 * Only do active scanning if we're announcing a probe request
6385 	 * for a given SSID (or more, if we ever add it to the driver.)
6386 	 */
6387 	is_active = 0;
6388 
6389 	/*
6390 	 * If we're scanning for a specific SSID, add it to the command.
6391 	 */
6392 	essid = (struct iwn_scan_essid *)(tx + 1);
6393 	if (ss->ss_ssid[0].len != 0) {
6394 		essid[0].id = IEEE80211_ELEMID_SSID;
6395 		essid[0].len = ss->ss_ssid[0].len;
6396 		memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
6397 	}
6398 
6399 	DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n",
6400 	    __func__,
6401 	    ss->ss_ssid[0].len,
6402 	    ss->ss_ssid[0].len,
6403 	    ss->ss_ssid[0].ssid);
6404 
6405 	if (ss->ss_nssid > 0)
6406 		is_active = 1;
6407 
6408 	/*
6409 	 * Build a probe request frame.  Most of the following code is a
6410 	 * copy & paste of what is done in net80211.
6411 	 */
6412 	wh = (struct ieee80211_frame *)(essid + 20);
6413 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
6414 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
6415 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
6416 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
6417 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
6418 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
6419 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
6420 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
6421 
6422 	frm = (uint8_t *)(wh + 1);
6423 	frm = ieee80211_add_ssid(frm, NULL, 0);
6424 	frm = ieee80211_add_rates(frm, rs);
6425 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
6426 		frm = ieee80211_add_xrates(frm, rs);
6427 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
6428 		frm = ieee80211_add_htcap(frm, ni);
6429 
6430 	/* Set length of probe request. */
6431 	tx->len = htole16(frm - (uint8_t *)wh);
6432 
6433 	/*
6434 	 * If active scanning is requested but a certain channel is
6435 	 * marked passive, we can do active scanning if we detect
6436 	 * transmissions.
6437 	 *
6438 	 * There is an issue with some firmware versions that triggers
6439 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
6440 	 * on a radar channel even though this means that we should NOT
6441 	 * send probes.
6442 	 *
6443 	 * The "good CRC threshold" is the number of frames that we
6444 	 * need to receive during our dwell time on a channel before
6445 	 * sending out probes -- setting this to a huge value will
6446 	 * mean we never reach it, but at the same time work around
6447 	 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER
6448 	 * here instead of IWL_GOOD_CRC_TH_DISABLED.
6449 	 *
6450 	 * This was fixed in later versions along with some other
6451 	 * scan changes, and the threshold behaves as a flag in those
6452 	 * versions.
6453 	 */
6454 
6455 	/*
6456 	 * If we're doing active scanning, set the crc_threshold
6457 	 * to a suitable value.  This is different to active veruss
6458 	 * passive scanning depending upon the channel flags; the
6459 	 * firmware will obey that particular check for us.
6460 	 */
6461 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
6462 		hdr->crc_threshold = is_active ?
6463 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
6464 	else
6465 		hdr->crc_threshold = is_active ?
6466 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
6467 
6468 	c = ic->ic_curchan;
6469 	chan = (struct iwn_scan_chan *)frm;
6470 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
6471 	chan->flags = 0;
6472 	if (ss->ss_nssid > 0)
6473 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
6474 	chan->dsp_gain = 0x6e;
6475 
6476 	/*
6477 	 * Set the passive/active flag depending upon the channel mode.
6478 	 * XXX TODO: take the is_active flag into account as well?
6479 	 */
6480 	if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
6481 		chan->flags |= htole32(IWN_CHAN_PASSIVE);
6482 	else
6483 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
6484 
6485 	/*
6486 	 * Calculate the active/passive dwell times.
6487 	 */
6488 
6489 	dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid);
6490 	dwell_passive = iwn_get_passive_dwell_time(sc, c);
6491 
6492 	/* Make sure they're valid */
6493 	if (dwell_passive <= dwell_active)
6494 		dwell_passive = dwell_active + 1;
6495 
6496 	chan->active = htole16(dwell_active);
6497 	chan->passive = htole16(dwell_passive);
6498 
6499 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
6500 	    !(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
6501 		chan->rf_gain = 0x3b;
6502 	} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
6503 		chan->rf_gain = 0x3b;
6504 	} else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
6505 		chan->rf_gain = 0x28;
6506 	} else {
6507 		chan->rf_gain = 0x28;
6508 	}
6509 
6510 	DPRINTF(sc, IWN_DEBUG_STATE,
6511 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
6512 	    "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x "
6513 	    "isactive=%d numssid=%d\n", __func__,
6514 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
6515 	    dwell_active, dwell_passive, scan_service_time,
6516 	    hdr->crc_threshold, is_active, ss->ss_nssid);
6517 
6518 	hdr->nchan++;
6519 	chan++;
6520 	buflen = (uint8_t *)chan - buf;
6521 	hdr->len = htole16(buflen);
6522 
6523 	if (sc->sc_is_scanning) {
6524 		device_printf(sc->sc_dev,
6525 		    "%s: called with is_scanning set!\n",
6526 		    __func__);
6527 	}
6528 	sc->sc_is_scanning = 1;
6529 
6530 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
6531 	    hdr->nchan);
6532 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
6533 	kfree(buf, M_DEVBUF);
6534 
6535 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6536 
6537 	return error;
6538 }
6539 
6540 static int
6541 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
6542 {
6543 	struct iwn_ops *ops = &sc->ops;
6544 	struct ifnet *ifp = sc->sc_ifp;
6545 	struct ieee80211com *ic = ifp->if_l2com;
6546 	struct ieee80211_node *ni = vap->iv_bss;
6547 	int error;
6548 
6549 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6550 
6551 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6552 	/* Update adapter configuration. */
6553 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
6554 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
6555 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6556 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
6557 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6558 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
6559 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
6560 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
6561 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
6562 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
6563 		sc->rxon->cck_mask  = 0;
6564 		sc->rxon->ofdm_mask = 0x15;
6565 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
6566 		sc->rxon->cck_mask  = 0x03;
6567 		sc->rxon->ofdm_mask = 0;
6568 	} else {
6569 		/* Assume 802.11b/g. */
6570 		sc->rxon->cck_mask  = 0x0f;
6571 		sc->rxon->ofdm_mask = 0x15;
6572 	}
6573 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
6574 	    sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask,
6575 	    sc->rxon->ofdm_mask);
6576 	if (sc->sc_is_scanning)
6577 		device_printf(sc->sc_dev,
6578 		    "%s: is_scanning set, before RXON\n",
6579 		    __func__);
6580 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
6581 	if (error != 0) {
6582 		device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n",
6583 		    __func__, error);
6584 		return error;
6585 	}
6586 
6587 	/* Configuration has changed, set TX power accordingly. */
6588 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
6589 		device_printf(sc->sc_dev,
6590 		    "%s: could not set TX power, error %d\n", __func__, error);
6591 		return error;
6592 	}
6593 	/*
6594 	 * Reconfiguring RXON clears the firmware nodes table so we must
6595 	 * add the broadcast node again.
6596 	 */
6597 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
6598 		device_printf(sc->sc_dev,
6599 		    "%s: could not add broadcast node, error %d\n", __func__,
6600 		    error);
6601 		return error;
6602 	}
6603 
6604 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6605 
6606 	return 0;
6607 }
6608 
6609 static int
6610 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
6611 {
6612 	struct iwn_ops *ops = &sc->ops;
6613 	struct ifnet *ifp = sc->sc_ifp;
6614 	struct ieee80211com *ic = ifp->if_l2com;
6615 	struct ieee80211_node *ni = vap->iv_bss;
6616 	struct iwn_node_info node;
6617 	uint32_t htflags = 0;
6618 	int error;
6619 
6620 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6621 
6622 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6623 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
6624 		/* Link LED blinks while monitoring. */
6625 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
6626 		return 0;
6627 	}
6628 	if ((error = iwn_set_timing(sc, ni)) != 0) {
6629 		device_printf(sc->sc_dev,
6630 		    "%s: could not set timing, error %d\n", __func__, error);
6631 		return error;
6632 	}
6633 
6634 	/* Update adapter configuration. */
6635 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
6636 	sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd));
6637 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
6638 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6639 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
6640 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6641 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
6642 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
6643 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
6644 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
6645 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
6646 		sc->rxon->cck_mask  = 0;
6647 		sc->rxon->ofdm_mask = 0x15;
6648 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
6649 		sc->rxon->cck_mask  = 0x03;
6650 		sc->rxon->ofdm_mask = 0;
6651 	} else {
6652 		/* Assume 802.11b/g. */
6653 		sc->rxon->cck_mask  = 0x0f;
6654 		sc->rxon->ofdm_mask = 0x15;
6655 	}
6656 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
6657 		htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
6658 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
6659 			switch (ic->ic_curhtprotmode) {
6660 			case IEEE80211_HTINFO_OPMODE_HT20PR:
6661 				htflags |= IWN_RXON_HT_MODEPURE40;
6662 				break;
6663 			default:
6664 				htflags |= IWN_RXON_HT_MODEMIXED;
6665 				break;
6666 			}
6667 		}
6668 		if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
6669 			htflags |= IWN_RXON_HT_HT40MINUS;
6670 	}
6671 	sc->rxon->flags |= htole32(htflags);
6672 	sc->rxon->filter |= htole32(IWN_FILTER_BSS);
6673 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x\n",
6674 	    sc->rxon->chan, sc->rxon->flags);
6675 	if (sc->sc_is_scanning)
6676 		device_printf(sc->sc_dev,
6677 		    "%s: is_scanning set, before RXON\n",
6678 		    __func__);
6679 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
6680 	if (error != 0) {
6681 		device_printf(sc->sc_dev,
6682 		    "%s: could not update configuration, error %d\n", __func__,
6683 		    error);
6684 		return error;
6685 	}
6686 
6687 	/* Configuration has changed, set TX power accordingly. */
6688 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
6689 		device_printf(sc->sc_dev,
6690 		    "%s: could not set TX power, error %d\n", __func__, error);
6691 		return error;
6692 	}
6693 
6694 	/* Fake a join to initialize the TX rate. */
6695 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
6696 	iwn_newassoc(ni, 1);
6697 
6698 	/* Add BSS node. */
6699 	memset(&node, 0, sizeof node);
6700 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
6701 	node.id = IWN_ID_BSS;
6702 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
6703 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
6704 		case IEEE80211_HTCAP_SMPS_ENA:
6705 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
6706 			break;
6707 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
6708 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
6709 			break;
6710 		}
6711 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
6712 		    IWN_AMDPU_DENSITY(5));	/* 4us */
6713 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
6714 			node.htflags |= htole32(IWN_NODE_HT40);
6715 	}
6716 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
6717 	error = ops->add_node(sc, &node, 1);
6718 	if (error != 0) {
6719 		device_printf(sc->sc_dev,
6720 		    "%s: could not add BSS node, error %d\n", __func__, error);
6721 		return error;
6722 	}
6723 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
6724 	    __func__, node.id);
6725 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
6726 		device_printf(sc->sc_dev,
6727 		    "%s: could not setup link quality for node %d, error %d\n",
6728 		    __func__, node.id, error);
6729 		return error;
6730 	}
6731 
6732 	if ((error = iwn_init_sensitivity(sc)) != 0) {
6733 		device_printf(sc->sc_dev,
6734 		    "%s: could not set sensitivity, error %d\n", __func__,
6735 		    error);
6736 		return error;
6737 	}
6738 	/* Start periodic calibration timer. */
6739 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
6740 	sc->calib_cnt = 0;
6741 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
6742 	    sc);
6743 
6744 	/* Link LED always on while associated. */
6745 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
6746 
6747 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6748 
6749 	return 0;
6750 }
6751 
6752 /*
6753  * This function is called by upper layer when an ADDBA request is received
6754  * from another STA and before the ADDBA response is sent.
6755  */
6756 static int
6757 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
6758     int baparamset, int batimeout, int baseqctl)
6759 {
6760 #define MS(_v, _f)	(((_v) & _f) >> _f##_S)
6761 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
6762 	struct iwn_ops *ops = &sc->ops;
6763 	struct iwn_node *wn = (void *)ni;
6764 	struct iwn_node_info node;
6765 	uint16_t ssn;
6766 	uint8_t tid;
6767 	int error;
6768 
6769 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6770 
6771 	tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID);
6772 	ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START);
6773 
6774 	memset(&node, 0, sizeof node);
6775 	node.id = wn->id;
6776 	node.control = IWN_NODE_UPDATE;
6777 	node.flags = IWN_FLAG_SET_ADDBA;
6778 	node.addba_tid = tid;
6779 	node.addba_ssn = htole16(ssn);
6780 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
6781 	    wn->id, tid, ssn);
6782 	error = ops->add_node(sc, &node, 1);
6783 	if (error != 0)
6784 		return error;
6785 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
6786 #undef MS
6787 }
6788 
6789 /*
6790  * This function is called by upper layer on teardown of an HT-immediate
6791  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
6792  */
6793 static void
6794 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
6795 {
6796 	struct ieee80211com *ic = ni->ni_ic;
6797 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
6798 	struct iwn_ops *ops = &sc->ops;
6799 	struct iwn_node *wn = (void *)ni;
6800 	struct iwn_node_info node;
6801 	uint8_t tid;
6802 
6803 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6804 
6805 	/* XXX: tid as an argument */
6806 	for (tid = 0; tid < WME_NUM_TID; tid++) {
6807 		if (&ni->ni_rx_ampdu[tid] == rap)
6808 			break;
6809 	}
6810 
6811 	memset(&node, 0, sizeof node);
6812 	node.id = wn->id;
6813 	node.control = IWN_NODE_UPDATE;
6814 	node.flags = IWN_FLAG_SET_DELBA;
6815 	node.delba_tid = tid;
6816 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
6817 	(void)ops->add_node(sc, &node, 1);
6818 	sc->sc_ampdu_rx_stop(ni, rap);
6819 }
6820 
6821 static int
6822 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
6823     int dialogtoken, int baparamset, int batimeout)
6824 {
6825 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
6826 	int qid;
6827 
6828 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6829 
6830 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
6831 		if (sc->qid2tap[qid] == NULL)
6832 			break;
6833 	}
6834 	if (qid == sc->ntxqs) {
6835 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
6836 		    __func__);
6837 		return 0;
6838 	}
6839 	tap->txa_private = kmalloc(sizeof(int), M_DEVBUF, M_INTWAIT);
6840 	sc->qid2tap[qid] = tap;
6841 	*(int *)tap->txa_private = qid;
6842 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
6843 	    batimeout);
6844 }
6845 
6846 static int
6847 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
6848     int code, int baparamset, int batimeout)
6849 {
6850 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
6851 	int qid = *(int *)tap->txa_private;
6852 	uint8_t tid = tap->txa_ac;
6853 	int ret;
6854 
6855 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6856 
6857 	if (code == IEEE80211_STATUS_SUCCESS) {
6858 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
6859 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
6860 		if (ret != 1)
6861 			return ret;
6862 	} else {
6863 		sc->qid2tap[qid] = NULL;
6864 		kfree(tap->txa_private, M_DEVBUF);
6865 		tap->txa_private = NULL;
6866 	}
6867 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
6868 }
6869 
6870 /*
6871  * This function is called by upper layer when an ADDBA response is received
6872  * from another STA.
6873  */
6874 static int
6875 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
6876     uint8_t tid)
6877 {
6878 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
6879 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
6880 	struct iwn_ops *ops = &sc->ops;
6881 	struct iwn_node *wn = (void *)ni;
6882 	struct iwn_node_info node;
6883 	int error, qid;
6884 
6885 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6886 
6887 	/* Enable TX for the specified RA/TID. */
6888 	wn->disable_tid &= ~(1 << tid);
6889 	memset(&node, 0, sizeof node);
6890 	node.id = wn->id;
6891 	node.control = IWN_NODE_UPDATE;
6892 	node.flags = IWN_FLAG_SET_DISABLE_TID;
6893 	node.disable_tid = htole16(wn->disable_tid);
6894 	error = ops->add_node(sc, &node, 1);
6895 	if (error != 0)
6896 		return 0;
6897 
6898 	if ((error = iwn_nic_lock(sc)) != 0)
6899 		return 0;
6900 	qid = *(int *)tap->txa_private;
6901 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
6902 	    __func__, wn->id, tid, tap->txa_start, qid);
6903 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
6904 	iwn_nic_unlock(sc);
6905 
6906 	iwn_set_link_quality(sc, ni);
6907 	return 1;
6908 }
6909 
6910 static void
6911 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
6912 {
6913 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
6914 	struct iwn_ops *ops = &sc->ops;
6915 	uint8_t tid = tap->txa_ac;
6916 	int qid;
6917 
6918 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6919 
6920 	sc->sc_addba_stop(ni, tap);
6921 
6922 	if (tap->txa_private == NULL)
6923 		return;
6924 
6925 	qid = *(int *)tap->txa_private;
6926 	if (sc->txq[qid].queued != 0)
6927 		return;
6928 	if (iwn_nic_lock(sc) != 0)
6929 		return;
6930 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
6931 	iwn_nic_unlock(sc);
6932 	sc->qid2tap[qid] = NULL;
6933 	kfree(tap->txa_private, M_DEVBUF);
6934 	tap->txa_private = NULL;
6935 }
6936 
6937 static void
6938 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
6939     int qid, uint8_t tid, uint16_t ssn)
6940 {
6941 	struct iwn_node *wn = (void *)ni;
6942 
6943 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6944 
6945 	/* Stop TX scheduler while we're changing its configuration. */
6946 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6947 	    IWN4965_TXQ_STATUS_CHGACT);
6948 
6949 	/* Assign RA/TID translation to the queue. */
6950 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
6951 	    wn->id << 4 | tid);
6952 
6953 	/* Enable chain-building mode for the queue. */
6954 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
6955 
6956 	/* Set starting sequence number from the ADDBA request. */
6957 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
6958 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
6959 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
6960 
6961 	/* Set scheduler window size. */
6962 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
6963 	    IWN_SCHED_WINSZ);
6964 	/* Set scheduler frame limit. */
6965 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
6966 	    IWN_SCHED_LIMIT << 16);
6967 
6968 	/* Enable interrupts for the queue. */
6969 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
6970 
6971 	/* Mark the queue as active. */
6972 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6973 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
6974 	    iwn_tid2fifo[tid] << 1);
6975 }
6976 
6977 static void
6978 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
6979 {
6980 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6981 
6982 	/* Stop TX scheduler while we're changing its configuration. */
6983 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6984 	    IWN4965_TXQ_STATUS_CHGACT);
6985 
6986 	/* Set starting sequence number from the ADDBA request. */
6987 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
6988 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
6989 
6990 	/* Disable interrupts for the queue. */
6991 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
6992 
6993 	/* Mark the queue as inactive. */
6994 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6995 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
6996 }
6997 
6998 static void
6999 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7000     int qid, uint8_t tid, uint16_t ssn)
7001 {
7002 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7003 
7004 	struct iwn_node *wn = (void *)ni;
7005 
7006 	/* Stop TX scheduler while we're changing its configuration. */
7007 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7008 	    IWN5000_TXQ_STATUS_CHGACT);
7009 
7010 	/* Assign RA/TID translation to the queue. */
7011 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
7012 	    wn->id << 4 | tid);
7013 
7014 	/* Enable chain-building mode for the queue. */
7015 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
7016 
7017 	/* Enable aggregation for the queue. */
7018 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7019 
7020 	/* Set starting sequence number from the ADDBA request. */
7021 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7022 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7023 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7024 
7025 	/* Set scheduler window size and frame limit. */
7026 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7027 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7028 
7029 	/* Enable interrupts for the queue. */
7030 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7031 
7032 	/* Mark the queue as active. */
7033 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7034 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
7035 }
7036 
7037 static void
7038 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7039 {
7040 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7041 
7042 	/* Stop TX scheduler while we're changing its configuration. */
7043 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7044 	    IWN5000_TXQ_STATUS_CHGACT);
7045 
7046 	/* Disable aggregation for the queue. */
7047 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7048 
7049 	/* Set starting sequence number from the ADDBA request. */
7050 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7051 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7052 
7053 	/* Disable interrupts for the queue. */
7054 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7055 
7056 	/* Mark the queue as inactive. */
7057 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7058 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
7059 }
7060 
7061 /*
7062  * Query calibration tables from the initialization firmware.  We do this
7063  * only once at first boot.  Called from a process context.
7064  */
7065 static int
7066 iwn5000_query_calibration(struct iwn_softc *sc)
7067 {
7068 	struct iwn5000_calib_config cmd;
7069 	int error;
7070 
7071 	memset(&cmd, 0, sizeof cmd);
7072 	cmd.ucode.once.enable = 0xffffffff;
7073 	cmd.ucode.once.start  = 0xffffffff;
7074 	cmd.ucode.once.send   = 0xffffffff;
7075 	cmd.ucode.flags       = 0xffffffff;
7076 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
7077 	    __func__);
7078 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
7079 	if (error != 0)
7080 		return error;
7081 
7082 	/* Wait at most two seconds for calibration to complete. */
7083 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
7084 		error = zsleep(sc, &wlan_global_serializer, 0, "iwncal", 2 * hz);
7085 	return error;
7086 }
7087 
7088 /*
7089  * Send calibration results to the runtime firmware.  These results were
7090  * obtained on first boot from the initialization firmware.
7091  */
7092 static int
7093 iwn5000_send_calibration(struct iwn_softc *sc)
7094 {
7095 	int idx, error;
7096 
7097 	for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) {
7098 		if (!(sc->base_params->calib_need & (1<<idx))) {
7099 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7100 			    "No need of calib %d\n",
7101 			    idx);
7102 			continue; /* no need for this calib */
7103 		}
7104 		if (sc->calibcmd[idx].buf == NULL) {
7105 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7106 			    "Need calib idx : %d but no available data\n",
7107 			    idx);
7108 			continue;
7109 		}
7110 
7111 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7112 		    "send calibration result idx=%d len=%d\n", idx,
7113 		    sc->calibcmd[idx].len);
7114 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
7115 		    sc->calibcmd[idx].len, 0);
7116 		if (error != 0) {
7117 			device_printf(sc->sc_dev,
7118 			    "%s: could not send calibration result, error %d\n",
7119 			    __func__, error);
7120 			return error;
7121 		}
7122 	}
7123 	return 0;
7124 }
7125 
7126 static int
7127 iwn5000_send_wimax_coex(struct iwn_softc *sc)
7128 {
7129 	struct iwn5000_wimax_coex wimax;
7130 
7131 #ifdef notyet
7132 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
7133 		/* Enable WiMAX coexistence for combo adapters. */
7134 		wimax.flags =
7135 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
7136 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
7137 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
7138 		    IWN_WIMAX_COEX_ENABLE;
7139 		memcpy(wimax.events, iwn6050_wimax_events,
7140 		    sizeof iwn6050_wimax_events);
7141 	} else
7142 #endif
7143 	{
7144 		/* Disable WiMAX coexistence. */
7145 		wimax.flags = 0;
7146 		memset(wimax.events, 0, sizeof wimax.events);
7147 	}
7148 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
7149 	    __func__);
7150 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
7151 }
7152 
7153 static int
7154 iwn5000_crystal_calib(struct iwn_softc *sc)
7155 {
7156 	struct iwn5000_phy_calib_crystal cmd;
7157 
7158 	memset(&cmd, 0, sizeof cmd);
7159 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
7160 	cmd.ngroups = 1;
7161 	cmd.isvalid = 1;
7162 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
7163 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
7164 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
7165 	    cmd.cap_pin[0], cmd.cap_pin[1]);
7166 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7167 }
7168 
7169 static int
7170 iwn5000_temp_offset_calib(struct iwn_softc *sc)
7171 {
7172 	struct iwn5000_phy_calib_temp_offset cmd;
7173 
7174 	memset(&cmd, 0, sizeof cmd);
7175 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7176 	cmd.ngroups = 1;
7177 	cmd.isvalid = 1;
7178 	if (sc->eeprom_temp != 0)
7179 		cmd.offset = htole16(sc->eeprom_temp);
7180 	else
7181 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
7182 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
7183 	    le16toh(cmd.offset));
7184 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7185 }
7186 
7187 static int
7188 iwn5000_temp_offset_calibv2(struct iwn_softc *sc)
7189 {
7190 	struct iwn5000_phy_calib_temp_offsetv2 cmd;
7191 
7192 	memset(&cmd, 0, sizeof cmd);
7193 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7194 	cmd.ngroups = 1;
7195 	cmd.isvalid = 1;
7196 	if (sc->eeprom_temp != 0) {
7197 		cmd.offset_low = htole16(sc->eeprom_temp);
7198 		cmd.offset_high = htole16(sc->eeprom_temp_high);
7199 	} else {
7200 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
7201 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
7202 	}
7203 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
7204 
7205 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7206 	    "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n",
7207 	    le16toh(cmd.offset_low),
7208 	    le16toh(cmd.offset_high),
7209 	    le16toh(cmd.burnt_voltage_ref));
7210 
7211 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7212 }
7213 
7214 /*
7215  * This function is called after the runtime firmware notifies us of its
7216  * readiness (called in a process context).
7217  */
7218 static int
7219 iwn4965_post_alive(struct iwn_softc *sc)
7220 {
7221 	int error, qid;
7222 
7223 	if ((error = iwn_nic_lock(sc)) != 0)
7224 		return error;
7225 
7226 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7227 
7228 	/* Clear TX scheduler state in SRAM. */
7229 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7230 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
7231 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
7232 
7233 	/* Set physical address of TX scheduler rings (1KB aligned). */
7234 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7235 
7236 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7237 
7238 	/* Disable chain mode for all our 16 queues. */
7239 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
7240 
7241 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
7242 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
7243 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7244 
7245 		/* Set scheduler window size. */
7246 		iwn_mem_write(sc, sc->sched_base +
7247 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
7248 		/* Set scheduler frame limit. */
7249 		iwn_mem_write(sc, sc->sched_base +
7250 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7251 		    IWN_SCHED_LIMIT << 16);
7252 	}
7253 
7254 	/* Enable interrupts for all our 16 queues. */
7255 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
7256 	/* Identify TX FIFO rings (0-7). */
7257 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
7258 
7259 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7260 	for (qid = 0; qid < 7; qid++) {
7261 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
7262 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7263 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
7264 	}
7265 	iwn_nic_unlock(sc);
7266 	return 0;
7267 }
7268 
7269 /*
7270  * This function is called after the initialization or runtime firmware
7271  * notifies us of its readiness (called in a process context).
7272  */
7273 static int
7274 iwn5000_post_alive(struct iwn_softc *sc)
7275 {
7276 	int error, qid;
7277 
7278 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7279 
7280 	/* Switch to using ICT interrupt mode. */
7281 	iwn5000_ict_reset(sc);
7282 
7283 	if ((error = iwn_nic_lock(sc)) != 0){
7284 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
7285 		return error;
7286 	}
7287 
7288 	/* Clear TX scheduler state in SRAM. */
7289 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7290 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
7291 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
7292 
7293 	/* Set physical address of TX scheduler rings (1KB aligned). */
7294 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7295 
7296 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7297 
7298 	/* Enable chain mode for all queues, except command queue. */
7299 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
7300 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf);
7301 	else
7302 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
7303 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
7304 
7305 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
7306 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
7307 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7308 
7309 		iwn_mem_write(sc, sc->sched_base +
7310 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
7311 		/* Set scheduler window size and frame limit. */
7312 		iwn_mem_write(sc, sc->sched_base +
7313 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7314 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7315 	}
7316 
7317 	/* Enable interrupts for all our 20 queues. */
7318 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
7319 	/* Identify TX FIFO rings (0-7). */
7320 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
7321 
7322 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7323 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) {
7324 		/* Mark TX rings as active. */
7325 		for (qid = 0; qid < 11; qid++) {
7326 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 };
7327 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7328 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7329 		}
7330 	} else {
7331 		/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7332 		for (qid = 0; qid < 7; qid++) {
7333 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
7334 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7335 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7336 		}
7337 	}
7338 	iwn_nic_unlock(sc);
7339 
7340 	/* Configure WiMAX coexistence for combo adapters. */
7341 	error = iwn5000_send_wimax_coex(sc);
7342 	if (error != 0) {
7343 		device_printf(sc->sc_dev,
7344 		    "%s: could not configure WiMAX coexistence, error %d\n",
7345 		    __func__, error);
7346 		return error;
7347 	}
7348 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
7349 		/* Perform crystal calibration. */
7350 		error = iwn5000_crystal_calib(sc);
7351 		if (error != 0) {
7352 			device_printf(sc->sc_dev,
7353 			    "%s: crystal calibration failed, error %d\n",
7354 			    __func__, error);
7355 			return error;
7356 		}
7357 	}
7358 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
7359 		/* Query calibration from the initialization firmware. */
7360 		if ((error = iwn5000_query_calibration(sc)) != 0) {
7361 			device_printf(sc->sc_dev,
7362 			    "%s: could not query calibration, error %d\n",
7363 			    __func__, error);
7364 			return error;
7365 		}
7366 		/*
7367 		 * We have the calibration results now, reboot with the
7368 		 * runtime firmware (call ourselves recursively!)
7369 		 */
7370 		iwn_hw_stop(sc);
7371 		error = iwn_hw_init(sc);
7372 	} else {
7373 		/* Send calibration results to runtime firmware. */
7374 		error = iwn5000_send_calibration(sc);
7375 	}
7376 
7377 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7378 
7379 	return error;
7380 }
7381 
7382 /*
7383  * The firmware boot code is small and is intended to be copied directly into
7384  * the NIC internal memory (no DMA transfer).
7385  */
7386 static int
7387 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
7388 {
7389 	int error, ntries;
7390 
7391 	size /= sizeof (uint32_t);
7392 
7393 	if ((error = iwn_nic_lock(sc)) != 0)
7394 		return error;
7395 
7396 	/* Copy microcode image into NIC memory. */
7397 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
7398 	    (const uint32_t *)ucode, size);
7399 
7400 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
7401 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
7402 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
7403 
7404 	/* Start boot load now. */
7405 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
7406 
7407 	/* Wait for transfer to complete. */
7408 	for (ntries = 0; ntries < 1000; ntries++) {
7409 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
7410 		    IWN_BSM_WR_CTRL_START))
7411 			break;
7412 		DELAY(10);
7413 	}
7414 	if (ntries == 1000) {
7415 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7416 		    __func__);
7417 		iwn_nic_unlock(sc);
7418 		return ETIMEDOUT;
7419 	}
7420 
7421 	/* Enable boot after power up. */
7422 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
7423 
7424 	iwn_nic_unlock(sc);
7425 	return 0;
7426 }
7427 
7428 static int
7429 iwn4965_load_firmware(struct iwn_softc *sc)
7430 {
7431 	struct iwn_fw_info *fw = &sc->fw;
7432 	struct iwn_dma_info *dma = &sc->fw_dma;
7433 	int error;
7434 
7435 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
7436 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
7437 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7438 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7439 	    fw->init.text, fw->init.textsz);
7440 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7441 
7442 	/* Tell adapter where to find initialization sections. */
7443 	if ((error = iwn_nic_lock(sc)) != 0)
7444 		return error;
7445 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7446 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
7447 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7448 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7449 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
7450 	iwn_nic_unlock(sc);
7451 
7452 	/* Load firmware boot code. */
7453 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
7454 	if (error != 0) {
7455 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7456 		    __func__);
7457 		return error;
7458 	}
7459 	/* Now press "execute". */
7460 	IWN_WRITE(sc, IWN_RESET, 0);
7461 
7462 	/* Wait at most one second for first alive notification. */
7463 	if ((error = zsleep(sc, &wlan_global_serializer, 0, "iwninit", hz)) != 0) {
7464 		device_printf(sc->sc_dev,
7465 		    "%s: timeout waiting for adapter to initialize, error %d\n",
7466 		    __func__, error);
7467 		return error;
7468 	}
7469 
7470 	/* Retrieve current temperature for initial TX power calibration. */
7471 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
7472 	sc->temp = iwn4965_get_temperature(sc);
7473 
7474 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
7475 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
7476 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7477 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7478 	    fw->main.text, fw->main.textsz);
7479 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7480 
7481 	/* Tell adapter where to find runtime sections. */
7482 	if ((error = iwn_nic_lock(sc)) != 0)
7483 		return error;
7484 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7485 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
7486 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7487 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7488 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
7489 	    IWN_FW_UPDATED | fw->main.textsz);
7490 	iwn_nic_unlock(sc);
7491 
7492 	return 0;
7493 }
7494 
7495 static int
7496 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
7497     const uint8_t *section, int size)
7498 {
7499 	struct iwn_dma_info *dma = &sc->fw_dma;
7500 	int error;
7501 
7502 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7503 
7504 	/* Copy firmware section into pre-allocated DMA-safe memory. */
7505 	memcpy(dma->vaddr, section, size);
7506 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7507 
7508 	if ((error = iwn_nic_lock(sc)) != 0)
7509 		return error;
7510 
7511 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
7512 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
7513 
7514 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
7515 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
7516 	    IWN_LOADDR(dma->paddr));
7517 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
7518 	    IWN_HIADDR(dma->paddr) << 28 | size);
7519 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
7520 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
7521 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
7522 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
7523 
7524 	/* Kick Flow Handler to start DMA transfer. */
7525 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
7526 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
7527 
7528 	iwn_nic_unlock(sc);
7529 
7530 	/* Wait at most five seconds for FH DMA transfer to complete. */
7531 	return zsleep(sc, &wlan_global_serializer, 0, "iwninit", 5 * hz);
7532 }
7533 
7534 static int
7535 iwn5000_load_firmware(struct iwn_softc *sc)
7536 {
7537 	struct iwn_fw_part *fw;
7538 	int error;
7539 
7540 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7541 
7542 	/* Load the initialization firmware on first boot only. */
7543 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
7544 	    &sc->fw.main : &sc->fw.init;
7545 
7546 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
7547 	    fw->text, fw->textsz);
7548 	if (error != 0) {
7549 		device_printf(sc->sc_dev,
7550 		    "%s: could not load firmware %s section, error %d\n",
7551 		    __func__, ".text", error);
7552 		return error;
7553 	}
7554 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
7555 	    fw->data, fw->datasz);
7556 	if (error != 0) {
7557 		device_printf(sc->sc_dev,
7558 		    "%s: could not load firmware %s section, error %d\n",
7559 		    __func__, ".data", error);
7560 		return error;
7561 	}
7562 
7563 	/* Now press "execute". */
7564 	IWN_WRITE(sc, IWN_RESET, 0);
7565 	return 0;
7566 }
7567 
7568 /*
7569  * Extract text and data sections from a legacy firmware image.
7570  */
7571 static int
7572 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
7573 {
7574 	const uint32_t *ptr;
7575 	size_t hdrlen = 24;
7576 	uint32_t rev;
7577 
7578 	ptr = (const uint32_t *)fw->data;
7579 	rev = le32toh(*ptr++);
7580 
7581 	/* Check firmware API version. */
7582 	if (IWN_FW_API(rev) <= 1) {
7583 		device_printf(sc->sc_dev,
7584 		    "%s: bad firmware, need API version >=2\n", __func__);
7585 		return EINVAL;
7586 	}
7587 	if (IWN_FW_API(rev) >= 3) {
7588 		/* Skip build number (version 2 header). */
7589 		hdrlen += 4;
7590 		ptr++;
7591 	}
7592 	if (fw->size < hdrlen) {
7593 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
7594 		    __func__, fw->size);
7595 		return EINVAL;
7596 	}
7597 	fw->main.textsz = le32toh(*ptr++);
7598 	fw->main.datasz = le32toh(*ptr++);
7599 	fw->init.textsz = le32toh(*ptr++);
7600 	fw->init.datasz = le32toh(*ptr++);
7601 	fw->boot.textsz = le32toh(*ptr++);
7602 
7603 	/* Check that all firmware sections fit. */
7604 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
7605 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
7606 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
7607 		    __func__, fw->size);
7608 		return EINVAL;
7609 	}
7610 
7611 	/* Get pointers to firmware sections. */
7612 	fw->main.text = (const uint8_t *)ptr;
7613 	fw->main.data = fw->main.text + fw->main.textsz;
7614 	fw->init.text = fw->main.data + fw->main.datasz;
7615 	fw->init.data = fw->init.text + fw->init.textsz;
7616 	fw->boot.text = fw->init.data + fw->init.datasz;
7617 	return 0;
7618 }
7619 
7620 /*
7621  * Extract text and data sections from a TLV firmware image.
7622  */
7623 static int
7624 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
7625     uint16_t alt)
7626 {
7627 	const struct iwn_fw_tlv_hdr *hdr;
7628 	const struct iwn_fw_tlv *tlv;
7629 	const uint8_t *ptr, *end;
7630 	uint64_t altmask;
7631 	uint32_t len, tmp;
7632 
7633 	if (fw->size < sizeof (*hdr)) {
7634 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
7635 		    __func__, fw->size);
7636 		return EINVAL;
7637 	}
7638 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
7639 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
7640 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
7641 		    __func__, le32toh(hdr->signature));
7642 		return EINVAL;
7643 	}
7644 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
7645 	    le32toh(hdr->build));
7646 
7647 	/*
7648 	 * Select the closest supported alternative that is less than
7649 	 * or equal to the specified one.
7650 	 */
7651 	altmask = le64toh(hdr->altmask);
7652 	while (alt > 0 && !(altmask & (1ULL << alt)))
7653 		alt--;	/* Downgrade. */
7654 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
7655 
7656 	ptr = (const uint8_t *)(hdr + 1);
7657 	end = (const uint8_t *)(fw->data + fw->size);
7658 
7659 	/* Parse type-length-value fields. */
7660 	while (ptr + sizeof (*tlv) <= end) {
7661 		tlv = (const struct iwn_fw_tlv *)ptr;
7662 		len = le32toh(tlv->len);
7663 
7664 		ptr += sizeof (*tlv);
7665 		if (ptr + len > end) {
7666 			device_printf(sc->sc_dev,
7667 			    "%s: firmware too short: %zu bytes\n", __func__,
7668 			    fw->size);
7669 			return EINVAL;
7670 		}
7671 		/* Skip other alternatives. */
7672 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
7673 			goto next;
7674 
7675 		switch (le16toh(tlv->type)) {
7676 		case IWN_FW_TLV_MAIN_TEXT:
7677 			fw->main.text = ptr;
7678 			fw->main.textsz = len;
7679 			break;
7680 		case IWN_FW_TLV_MAIN_DATA:
7681 			fw->main.data = ptr;
7682 			fw->main.datasz = len;
7683 			break;
7684 		case IWN_FW_TLV_INIT_TEXT:
7685 			fw->init.text = ptr;
7686 			fw->init.textsz = len;
7687 			break;
7688 		case IWN_FW_TLV_INIT_DATA:
7689 			fw->init.data = ptr;
7690 			fw->init.datasz = len;
7691 			break;
7692 		case IWN_FW_TLV_BOOT_TEXT:
7693 			fw->boot.text = ptr;
7694 			fw->boot.textsz = len;
7695 			break;
7696 		case IWN_FW_TLV_ENH_SENS:
7697 			if (!len)
7698 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
7699 			break;
7700 		case IWN_FW_TLV_PHY_CALIB:
7701 			tmp = le32toh(*ptr);
7702 			if (tmp < 253) {
7703 				sc->reset_noise_gain = tmp;
7704 				sc->noise_gain = tmp + 1;
7705 			}
7706 			break;
7707 		case IWN_FW_TLV_PAN:
7708 			sc->sc_flags |= IWN_FLAG_PAN_SUPPORT;
7709 			DPRINTF(sc, IWN_DEBUG_RESET,
7710 			    "PAN Support found: %d\n", 1);
7711 			break;
7712 		case IWN_FW_TLV_FLAGS:
7713 			if (len < sizeof(uint32_t))
7714 				break;
7715 			if (len % sizeof(uint32_t))
7716 				break;
7717 			sc->tlv_feature_flags = le32toh(*ptr);
7718 			DPRINTF(sc, IWN_DEBUG_RESET,
7719 			    "%s: feature: 0x%08x\n",
7720 			    __func__,
7721 			    sc->tlv_feature_flags);
7722 			break;
7723 		case IWN_FW_TLV_PBREQ_MAXLEN:
7724 		case IWN_FW_TLV_RUNT_EVTLOG_PTR:
7725 		case IWN_FW_TLV_RUNT_EVTLOG_SIZE:
7726 		case IWN_FW_TLV_RUNT_ERRLOG_PTR:
7727 		case IWN_FW_TLV_INIT_EVTLOG_PTR:
7728 		case IWN_FW_TLV_INIT_EVTLOG_SIZE:
7729 		case IWN_FW_TLV_INIT_ERRLOG_PTR:
7730 		case IWN_FW_TLV_WOWLAN_INST:
7731 		case IWN_FW_TLV_WOWLAN_DATA:
7732 			DPRINTF(sc, IWN_DEBUG_RESET,
7733 			    "TLV type %d reconized but not handled\n",
7734 			    le16toh(tlv->type));
7735 			break;
7736 		default:
7737 			DPRINTF(sc, IWN_DEBUG_RESET,
7738 			    "TLV type %d not handled\n", le16toh(tlv->type));
7739 			break;
7740 		}
7741  next:		/* TLV fields are 32-bit aligned. */
7742 		ptr += (len + 3) & ~3;
7743 	}
7744 	return 0;
7745 }
7746 
7747 static int
7748 iwn_read_firmware(struct iwn_softc *sc)
7749 {
7750 	struct iwn_fw_info *fw = &sc->fw;
7751 	int error;
7752 
7753 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7754 
7755 	wlan_assert_serialized();
7756 	memset(fw, 0, sizeof (*fw));
7757 
7758 	/*
7759 	 * Read firmware image from filesystem.  The firmware can block
7760 	 * in a taskq and deadlock against our serializer so unlock
7761 	 * while we do tihs.
7762 	 */
7763 	wlan_serialize_exit();
7764 	sc->fw_fp = firmware_get(sc->fwname);
7765 	wlan_serialize_enter();
7766 	if (sc->fw_fp == NULL) {
7767 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
7768 		    __func__, sc->fwname);
7769 		return EINVAL;
7770 	}
7771 
7772 	fw->size = sc->fw_fp->datasize;
7773 	fw->data = (const uint8_t *)sc->fw_fp->data;
7774 	if (fw->size < sizeof (uint32_t)) {
7775 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
7776 		    __func__, fw->size);
7777 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
7778 		sc->fw_fp = NULL;
7779 		return EINVAL;
7780 	}
7781 
7782 	/* Retrieve text and data sections. */
7783 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
7784 		error = iwn_read_firmware_leg(sc, fw);
7785 	else
7786 		error = iwn_read_firmware_tlv(sc, fw, 1);
7787 	if (error != 0) {
7788 		device_printf(sc->sc_dev,
7789 		    "%s: could not read firmware sections, error %d\n",
7790 		    __func__, error);
7791 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
7792 		sc->fw_fp = NULL;
7793 		return error;
7794 	}
7795 
7796 	/* Make sure text and data sections fit in hardware memory. */
7797 	if (fw->main.textsz > sc->fw_text_maxsz ||
7798 	    fw->main.datasz > sc->fw_data_maxsz ||
7799 	    fw->init.textsz > sc->fw_text_maxsz ||
7800 	    fw->init.datasz > sc->fw_data_maxsz ||
7801 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
7802 	    (fw->boot.textsz & 3) != 0) {
7803 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
7804 		    __func__);
7805 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
7806 		sc->fw_fp = NULL;
7807 		return EINVAL;
7808 	}
7809 
7810 	/* We can proceed with loading the firmware. */
7811 	return 0;
7812 }
7813 
7814 static int
7815 iwn_clock_wait(struct iwn_softc *sc)
7816 {
7817 	int ntries;
7818 
7819 	/* Set "initialization complete" bit. */
7820 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
7821 
7822 	/* Wait for clock stabilization. */
7823 	for (ntries = 0; ntries < 2500; ntries++) {
7824 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
7825 			return 0;
7826 		DELAY(10);
7827 	}
7828 	device_printf(sc->sc_dev,
7829 	    "%s: timeout waiting for clock stabilization\n", __func__);
7830 	return ETIMEDOUT;
7831 }
7832 
7833 static int
7834 iwn_apm_init(struct iwn_softc *sc)
7835 {
7836 	uint32_t reg;
7837 	int error;
7838 
7839 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7840 
7841 	/* Disable L0s exit timer (NMI bug workaround). */
7842 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
7843 	/* Don't wait for ICH L0s (ICH bug workaround). */
7844 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
7845 
7846 	/* Set FH wait threshold to max (HW bug under stress workaround). */
7847 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
7848 
7849 	/* Enable HAP INTA to move adapter from L1a to L0s. */
7850 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
7851 
7852 	/* Retrieve PCIe Active State Power Management (ASPM). */
7853 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
7854 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
7855 	if (reg & 0x02)	/* L1 Entry enabled. */
7856 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
7857 	else
7858 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
7859 
7860 	if (sc->base_params->pll_cfg_val)
7861 		IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val);
7862 
7863 	/* Wait for clock stabilization before accessing prph. */
7864 	if ((error = iwn_clock_wait(sc)) != 0)
7865 		return error;
7866 
7867 	if ((error = iwn_nic_lock(sc)) != 0)
7868 		return error;
7869 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
7870 		/* Enable DMA and BSM (Bootstrap State Machine). */
7871 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
7872 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
7873 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
7874 	} else {
7875 		/* Enable DMA. */
7876 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
7877 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
7878 	}
7879 	DELAY(20);
7880 	/* Disable L1-Active. */
7881 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
7882 	iwn_nic_unlock(sc);
7883 
7884 	return 0;
7885 }
7886 
7887 static void
7888 iwn_apm_stop_master(struct iwn_softc *sc)
7889 {
7890 	int ntries;
7891 
7892 	/* Stop busmaster DMA activity. */
7893 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
7894 	for (ntries = 0; ntries < 100; ntries++) {
7895 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
7896 			return;
7897 		DELAY(10);
7898 	}
7899 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
7900 }
7901 
7902 static void
7903 iwn_apm_stop(struct iwn_softc *sc)
7904 {
7905 	iwn_apm_stop_master(sc);
7906 
7907 	/* Reset the entire device. */
7908 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
7909 	DELAY(10);
7910 	/* Clear "initialization complete" bit. */
7911 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
7912 }
7913 
7914 static int
7915 iwn4965_nic_config(struct iwn_softc *sc)
7916 {
7917 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7918 
7919 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
7920 		/*
7921 		 * I don't believe this to be correct but this is what the
7922 		 * vendor driver is doing. Probably the bits should not be
7923 		 * shifted in IWN_RFCFG_*.
7924 		 */
7925 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
7926 		    IWN_RFCFG_TYPE(sc->rfcfg) |
7927 		    IWN_RFCFG_STEP(sc->rfcfg) |
7928 		    IWN_RFCFG_DASH(sc->rfcfg));
7929 	}
7930 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
7931 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
7932 	return 0;
7933 }
7934 
7935 static int
7936 iwn5000_nic_config(struct iwn_softc *sc)
7937 {
7938 	uint32_t tmp;
7939 	int error;
7940 
7941 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7942 
7943 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
7944 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
7945 		    IWN_RFCFG_TYPE(sc->rfcfg) |
7946 		    IWN_RFCFG_STEP(sc->rfcfg) |
7947 		    IWN_RFCFG_DASH(sc->rfcfg));
7948 	}
7949 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
7950 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
7951 
7952 	if ((error = iwn_nic_lock(sc)) != 0)
7953 		return error;
7954 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
7955 
7956 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
7957 		/*
7958 		 * Select first Switching Voltage Regulator (1.32V) to
7959 		 * solve a stability issue related to noisy DC2DC line
7960 		 * in the silicon of 1000 Series.
7961 		 */
7962 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
7963 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
7964 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
7965 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
7966 	}
7967 	iwn_nic_unlock(sc);
7968 
7969 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
7970 		/* Use internal power amplifier only. */
7971 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
7972 	}
7973 	if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) {
7974 		/* Indicate that ROM calibration version is >=6. */
7975 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
7976 	}
7977 	if (sc->base_params->additional_gp_drv_bit)
7978 		IWN_SETBITS(sc, IWN_GP_DRIVER,
7979 		    sc->base_params->additional_gp_drv_bit);
7980 	return 0;
7981 }
7982 
7983 /*
7984  * Take NIC ownership over Intel Active Management Technology (AMT).
7985  */
7986 static int
7987 iwn_hw_prepare(struct iwn_softc *sc)
7988 {
7989 	int ntries;
7990 
7991 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7992 
7993 	/* Check if hardware is ready. */
7994 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
7995 	for (ntries = 0; ntries < 5; ntries++) {
7996 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
7997 		    IWN_HW_IF_CONFIG_NIC_READY)
7998 			return 0;
7999 		DELAY(10);
8000 	}
8001 
8002 	/* Hardware not ready, force into ready state. */
8003 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
8004 	for (ntries = 0; ntries < 15000; ntries++) {
8005 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
8006 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
8007 			break;
8008 		DELAY(10);
8009 	}
8010 	if (ntries == 15000)
8011 		return ETIMEDOUT;
8012 
8013 	/* Hardware should be ready now. */
8014 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8015 	for (ntries = 0; ntries < 5; ntries++) {
8016 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8017 		    IWN_HW_IF_CONFIG_NIC_READY)
8018 			return 0;
8019 		DELAY(10);
8020 	}
8021 	return ETIMEDOUT;
8022 }
8023 
8024 static int
8025 iwn_hw_init(struct iwn_softc *sc)
8026 {
8027 	struct iwn_ops *ops = &sc->ops;
8028 	int error, chnl, qid;
8029 
8030 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8031 
8032 	/* Clear pending interrupts. */
8033 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8034 
8035 	if ((error = iwn_apm_init(sc)) != 0) {
8036 		device_printf(sc->sc_dev,
8037 		    "%s: could not power ON adapter, error %d\n", __func__,
8038 		    error);
8039 		return error;
8040 	}
8041 
8042 	/* Select VMAIN power source. */
8043 	if ((error = iwn_nic_lock(sc)) != 0)
8044 		return error;
8045 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
8046 	iwn_nic_unlock(sc);
8047 
8048 	/* Perform adapter-specific initialization. */
8049 	if ((error = ops->nic_config(sc)) != 0)
8050 		return error;
8051 
8052 	/* Initialize RX ring. */
8053 	if ((error = iwn_nic_lock(sc)) != 0)
8054 		return error;
8055 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
8056 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
8057 	/* Set physical address of RX ring (256-byte aligned). */
8058 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
8059 	/* Set physical address of RX status (16-byte aligned). */
8060 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
8061 	/* Enable RX. */
8062 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
8063 	    IWN_FH_RX_CONFIG_ENA           |
8064 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
8065 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
8066 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
8067 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
8068 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
8069 	iwn_nic_unlock(sc);
8070 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
8071 
8072 	if ((error = iwn_nic_lock(sc)) != 0)
8073 		return error;
8074 
8075 	/* Initialize TX scheduler. */
8076 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8077 
8078 	/* Set physical address of "keep warm" page (16-byte aligned). */
8079 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
8080 
8081 	/* Initialize TX rings. */
8082 	for (qid = 0; qid < sc->ntxqs; qid++) {
8083 		struct iwn_tx_ring *txq = &sc->txq[qid];
8084 
8085 		/* Set physical address of TX ring (256-byte aligned). */
8086 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
8087 		    txq->desc_dma.paddr >> 8);
8088 	}
8089 	iwn_nic_unlock(sc);
8090 
8091 	/* Enable DMA channels. */
8092 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8093 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
8094 		    IWN_FH_TX_CONFIG_DMA_ENA |
8095 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
8096 	}
8097 
8098 	/* Clear "radio off" and "commands blocked" bits. */
8099 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8100 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
8101 
8102 	/* Clear pending interrupts. */
8103 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8104 	/* Enable interrupt coalescing. */
8105 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
8106 	/* Enable interrupts. */
8107 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8108 
8109 	/* _Really_ make sure "radio off" bit is cleared! */
8110 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8111 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8112 
8113 	/* Enable shadow registers. */
8114 	if (sc->base_params->shadow_reg_enable)
8115 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
8116 
8117 	if ((error = ops->load_firmware(sc)) != 0) {
8118 		device_printf(sc->sc_dev,
8119 		    "%s: could not load firmware, error %d\n", __func__,
8120 		    error);
8121 		return error;
8122 	}
8123 	/* Wait at most one second for firmware alive notification. */
8124 	if ((error = zsleep(sc, &wlan_global_serializer, 0, "iwninit", hz)) != 0) {
8125 		device_printf(sc->sc_dev,
8126 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8127 		    __func__, error);
8128 		return error;
8129 	}
8130 	/* Do post-firmware initialization. */
8131 
8132 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8133 
8134 	return ops->post_alive(sc);
8135 }
8136 
8137 static void
8138 iwn_hw_stop(struct iwn_softc *sc)
8139 {
8140 	int chnl, qid, ntries;
8141 
8142 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8143 
8144 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
8145 
8146 	/* Disable interrupts. */
8147 	IWN_WRITE(sc, IWN_INT_MASK, 0);
8148 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8149 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
8150 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8151 
8152 	/* Make sure we no longer hold the NIC lock. */
8153 	iwn_nic_unlock(sc);
8154 
8155 	/* Stop TX scheduler. */
8156 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8157 
8158 	/* Stop all DMA channels. */
8159 	if (iwn_nic_lock(sc) == 0) {
8160 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8161 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
8162 			for (ntries = 0; ntries < 200; ntries++) {
8163 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
8164 				    IWN_FH_TX_STATUS_IDLE(chnl))
8165 					break;
8166 				DELAY(10);
8167 			}
8168 		}
8169 		iwn_nic_unlock(sc);
8170 	}
8171 
8172 	/* Stop RX ring. */
8173 	iwn_reset_rx_ring(sc, &sc->rxq);
8174 
8175 	/* Reset all TX rings. */
8176 	for (qid = 0; qid < sc->ntxqs; qid++)
8177 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
8178 
8179 	if (iwn_nic_lock(sc) == 0) {
8180 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
8181 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8182 		iwn_nic_unlock(sc);
8183 	}
8184 	DELAY(5);
8185 	/* Power OFF adapter. */
8186 	iwn_apm_stop(sc);
8187 }
8188 
8189 static void
8190 iwn_radio_on_task(void *arg0, int pending)
8191 {
8192 	struct iwn_softc *sc = arg0;
8193 	struct ifnet *ifp;
8194 	struct ieee80211com *ic;
8195 	struct ieee80211vap *vap;
8196 
8197 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8198 
8199 	wlan_serialize_enter();
8200 	ifp = sc->sc_ifp;
8201 	ic = ifp->if_l2com;
8202 	vap = TAILQ_FIRST(&ic->ic_vaps);
8203 	if (vap != NULL) {
8204 		iwn_init_locked(sc);
8205 		ieee80211_init(vap);
8206 	}
8207 	wlan_serialize_exit();
8208 }
8209 
8210 static void
8211 iwn_radio_off_task(void *arg0, int pending)
8212 {
8213 	struct iwn_softc *sc = arg0;
8214 	struct ifnet *ifp;
8215 	struct ieee80211com *ic;
8216 	struct ieee80211vap *vap;
8217 
8218 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8219 
8220 	wlan_serialize_enter();
8221 	ifp = sc->sc_ifp;
8222 	ic = ifp->if_l2com;
8223 	vap = TAILQ_FIRST(&ic->ic_vaps);
8224 	iwn_stop_locked(sc);
8225 	if (vap != NULL)
8226 		ieee80211_stop(vap);
8227 
8228 	/* Enable interrupts to get RF toggle notification. */
8229 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8230 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8231 	wlan_serialize_exit();
8232 }
8233 
8234 static void
8235 iwn_init_locked(struct iwn_softc *sc)
8236 {
8237 	struct ifnet *ifp = sc->sc_ifp;
8238 	int error;
8239 
8240 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8241 
8242 	/*
8243 	 * Make sure we hold the serializer or we will have timing issues
8244 	 * with the wlan subsystem.
8245 	 */
8246 	wlan_assert_serialized();
8247 	if ((error = iwn_hw_prepare(sc)) != 0) {
8248 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
8249 		    __func__, error);
8250 		goto fail;
8251 	}
8252 
8253 	/* Initialize interrupt mask to default value. */
8254 	sc->int_mask = IWN_INT_MASK_DEF;
8255 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8256 
8257 	/* Check that the radio is not disabled by hardware switch. */
8258 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
8259 		device_printf(sc->sc_dev,
8260 		    "radio is disabled by hardware switch\n");
8261 		/* Enable interrupts to get RF toggle notifications. */
8262 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
8263 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8264 		return;
8265 	}
8266 
8267 	/* Read firmware images from the filesystem. */
8268 	if ((error = iwn_read_firmware(sc)) != 0) {
8269 		device_printf(sc->sc_dev,
8270 		    "%s: could not read firmware, error %d\n", __func__,
8271 		    error);
8272 		goto fail;
8273 	}
8274 
8275 	/* Initialize hardware and upload firmware. */
8276 	error = iwn_hw_init(sc);
8277 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8278 	sc->fw_fp = NULL;
8279 	if (error != 0) {
8280 		device_printf(sc->sc_dev,
8281 		    "%s: could not initialize hardware, error %d\n", __func__,
8282 		    error);
8283 		goto fail;
8284 	}
8285 
8286 	/* Configure adapter now that it is ready. */
8287 	if ((error = iwn_config(sc)) != 0) {
8288 		device_printf(sc->sc_dev,
8289 		    "%s: could not configure device, error %d\n", __func__,
8290 		    error);
8291 		goto fail;
8292 	}
8293 
8294 	ifq_clr_oactive(&ifp->if_snd);
8295 	ifp->if_flags |= IFF_RUNNING;
8296 
8297 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog_timeout, sc);
8298 
8299 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8300 
8301 	return;
8302 
8303 fail:	iwn_stop_locked(sc);
8304 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
8305 }
8306 
8307 static void
8308 iwn_init(void *arg)
8309 {
8310 	struct iwn_softc *sc = arg;
8311 	struct ifnet *ifp = sc->sc_ifp;
8312 	struct ieee80211com *ic = ifp->if_l2com;
8313 
8314 	wlan_assert_serialized();
8315 	iwn_init_locked(sc);
8316 
8317 	if (ifp->if_flags & IFF_RUNNING)
8318 		ieee80211_start_all(ic);
8319 }
8320 
8321 static void
8322 iwn_stop_locked(struct iwn_softc *sc)
8323 {
8324 	struct ifnet *ifp = sc->sc_ifp;
8325 
8326 	sc->sc_is_scanning = 0;
8327 	sc->sc_tx_timer = 0;
8328 	callout_stop(&sc->watchdog_to);
8329 	callout_stop(&sc->calib_to);
8330 	ifp->if_flags &= ~IFF_RUNNING;
8331 	ifq_clr_oactive(&ifp->if_snd);
8332 
8333 	/* Power OFF hardware. */
8334 	iwn_hw_stop(sc);
8335 }
8336 
8337 static void
8338 iwn_stop(struct iwn_softc *sc)
8339 {
8340 	wlan_serialize_enter();
8341 	iwn_stop_locked(sc);
8342 	wlan_serialize_exit();
8343 }
8344 
8345 /*
8346  * Callback from net80211 to start a scan.
8347  */
8348 static void
8349 iwn_scan_start(struct ieee80211com *ic)
8350 {
8351 	struct ifnet *ifp = ic->ic_ifp;
8352 	struct iwn_softc *sc = ifp->if_softc;
8353 
8354 	/* make the link LED blink while we're scanning */
8355 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
8356 }
8357 
8358 /*
8359  * Callback from net80211 to terminate a scan.
8360  */
8361 static void
8362 iwn_scan_end(struct ieee80211com *ic)
8363 {
8364 	struct ifnet *ifp = ic->ic_ifp;
8365 	struct iwn_softc *sc = ifp->if_softc;
8366 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8367 
8368 	if (vap->iv_state == IEEE80211_S_RUN) {
8369 		/* Set link LED to ON status if we are associated */
8370 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
8371 	}
8372 }
8373 
8374 /*
8375  * Callback from net80211 to force a channel change.
8376  */
8377 static void
8378 iwn_set_channel(struct ieee80211com *ic)
8379 {
8380 	const struct ieee80211_channel *c = ic->ic_curchan;
8381 	struct ifnet *ifp = ic->ic_ifp;
8382 	struct iwn_softc *sc = ifp->if_softc;
8383 	int error;
8384 
8385 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8386 
8387 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
8388 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
8389 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
8390 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
8391 
8392 	/*
8393 	 * Only need to set the channel in Monitor mode. AP scanning and auth
8394 	 * are already taken care of by their respective firmware commands.
8395 	 */
8396 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
8397 		error = iwn_config(sc);
8398 		if (error != 0)
8399 		device_printf(sc->sc_dev,
8400 		    "%s: error %d settting channel\n", __func__, error);
8401 	}
8402 }
8403 
8404 /*
8405  * Callback from net80211 to start scanning of the current channel.
8406  */
8407 static void
8408 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
8409 {
8410 	struct ieee80211vap *vap = ss->ss_vap;
8411 	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
8412 	int error;
8413 
8414 	error = iwn_scan(sc);
8415 	if (error != 0)
8416 		ieee80211_cancel_scan(vap);
8417 }
8418 
8419 /*
8420  * Callback from net80211 to handle the minimum dwell time being met.
8421  * The intent is to terminate the scan but we just let the firmware
8422  * notify us when it's finished as we have no safe way to abort it.
8423  */
8424 static void
8425 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
8426 {
8427 	/* NB: don't try to abort scan; wait for firmware to finish */
8428 }
8429 
8430 static void
8431 iwn_hw_reset_task(void *arg0, int pending)
8432 {
8433 	struct iwn_softc *sc = arg0;
8434 	struct ifnet *ifp;
8435 	struct ieee80211com *ic;
8436 
8437 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8438 
8439 	wlan_serialize_enter();
8440 	ifp = sc->sc_ifp;
8441 	ic = ifp->if_l2com;
8442 	iwn_stop_locked(sc);
8443 	iwn_init_locked(sc);
8444 	ieee80211_notify_radio(ic, 1);
8445 	wlan_serialize_exit();
8446 }
8447 #ifdef	IWN_DEBUG
8448 #define	IWN_DESC(x) case x:	return #x
8449 #define	COUNTOF(array) (sizeof(array) / sizeof(array[0]))
8450 
8451 /*
8452  * Translate CSR code to string
8453  */
8454 static char *iwn_get_csr_string(int csr)
8455 {
8456 	switch (csr) {
8457 		IWN_DESC(IWN_HW_IF_CONFIG);
8458 		IWN_DESC(IWN_INT_COALESCING);
8459 		IWN_DESC(IWN_INT);
8460 		IWN_DESC(IWN_INT_MASK);
8461 		IWN_DESC(IWN_FH_INT);
8462 		IWN_DESC(IWN_GPIO_IN);
8463 		IWN_DESC(IWN_RESET);
8464 		IWN_DESC(IWN_GP_CNTRL);
8465 		IWN_DESC(IWN_HW_REV);
8466 		IWN_DESC(IWN_EEPROM);
8467 		IWN_DESC(IWN_EEPROM_GP);
8468 		IWN_DESC(IWN_OTP_GP);
8469 		IWN_DESC(IWN_GIO);
8470 		IWN_DESC(IWN_GP_UCODE);
8471 		IWN_DESC(IWN_GP_DRIVER);
8472 		IWN_DESC(IWN_UCODE_GP1);
8473 		IWN_DESC(IWN_UCODE_GP2);
8474 		IWN_DESC(IWN_LED);
8475 		IWN_DESC(IWN_DRAM_INT_TBL);
8476 		IWN_DESC(IWN_GIO_CHICKEN);
8477 		IWN_DESC(IWN_ANA_PLL);
8478 		IWN_DESC(IWN_HW_REV_WA);
8479 		IWN_DESC(IWN_DBG_HPET_MEM);
8480 	default:
8481 		return "UNKNOWN CSR";
8482 	}
8483 }
8484 
8485 /*
8486  * This function print firmware register
8487  */
8488 static void
8489 iwn_debug_register(struct iwn_softc *sc)
8490 {
8491 	int i;
8492 	static const uint32_t csr_tbl[] = {
8493 		IWN_HW_IF_CONFIG,
8494 		IWN_INT_COALESCING,
8495 		IWN_INT,
8496 		IWN_INT_MASK,
8497 		IWN_FH_INT,
8498 		IWN_GPIO_IN,
8499 		IWN_RESET,
8500 		IWN_GP_CNTRL,
8501 		IWN_HW_REV,
8502 		IWN_EEPROM,
8503 		IWN_EEPROM_GP,
8504 		IWN_OTP_GP,
8505 		IWN_GIO,
8506 		IWN_GP_UCODE,
8507 		IWN_GP_DRIVER,
8508 		IWN_UCODE_GP1,
8509 		IWN_UCODE_GP2,
8510 		IWN_LED,
8511 		IWN_DRAM_INT_TBL,
8512 		IWN_GIO_CHICKEN,
8513 		IWN_ANA_PLL,
8514 		IWN_HW_REV_WA,
8515 		IWN_DBG_HPET_MEM,
8516 	};
8517 	DPRINTF(sc, IWN_DEBUG_REGISTER,
8518 	    "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s",
8519 	    "\n");
8520 	for (i = 0; i <  COUNTOF(csr_tbl); i++){
8521 		DPRINTF(sc, IWN_DEBUG_REGISTER,"  %10s: 0x%08x ",
8522 			iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i]));
8523 		if ((i+1) % 3 == 0)
8524 			DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
8525 	}
8526 	DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
8527 }
8528 #endif
8529