xref: /dragonfly/sys/dev/netif/iwn/if_iwn.c (revision e314d7e2)
1 /*-
2  * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr>
3  * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org>
4  * Copyright (c) 2008 Sam Leffler, Errno Consulting
5  * Copyright (c) 2011 Intel Corporation
6  * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr>
7  * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  *
21  * $FreeBSD: head/sys/dev/iwn/if_iwn.c 258118 2013-11-14 07:27:00Z adrian $
22  */
23 
24 /*
25  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
26  * adapters.
27  */
28 
29 #include "opt_wlan.h"
30 #include "opt_iwn.h"
31 
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/sysctl.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/socket.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/stdbool.h>
41 #include <sys/bus.h>
42 #include <sys/rman.h>
43 #include <sys/endian.h>
44 #include <sys/firmware.h>
45 #include <sys/limits.h>
46 #include <sys/module.h>
47 #include <sys/queue.h>
48 #include <sys/taskqueue.h>
49 #include <sys/libkern.h>
50 
51 #include <sys/resource.h>
52 #include <machine/clock.h>
53 
54 #include <bus/pci/pcireg.h>
55 #include <bus/pci/pcivar.h>
56 
57 #include <net/bpf.h>
58 #include <net/if.h>
59 #include <net/if_var.h>
60 #include <net/if_arp.h>
61 #include <net/ifq_var.h>
62 #include <net/ethernet.h>
63 #include <net/if_dl.h>
64 #include <net/if_media.h>
65 #include <net/if_types.h>
66 
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/in_var.h>
70 #include <netinet/if_ether.h>
71 #include <netinet/ip.h>
72 
73 #include <netproto/802_11/ieee80211_var.h>
74 #include <netproto/802_11/ieee80211_radiotap.h>
75 #include <netproto/802_11/ieee80211_regdomain.h>
76 #include <netproto/802_11/ieee80211_ratectl.h>
77 
78 #include "if_iwnreg.h"
79 #include "if_iwnvar.h"
80 #include "if_iwn_devid.h"
81 #include "if_iwn_chip_cfg.h"
82 #include "if_iwn_debug.h"
83 #include "if_iwn_ioctl.h"
84 
85 #define IWN_LOCK(sc)
86 #define IWN_UNLOCK(sc)
87 
88 struct iwn_ident {
89 	uint16_t	vendor;
90 	uint16_t	device;
91 	const char	*name;
92 };
93 
94 static const struct iwn_ident iwn_ident_table[] = {
95 	{ 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205"		},
96 	{ 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000"		},
97 	{ 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000"		},
98 	{ 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205"		},
99 	{ 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250"	},
100 	{ 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250"	},
101 	{ 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030"		},
102 	{ 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030"		},
103 	{ 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230"		},
104 	{ 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230"		},
105 	{ 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150"	},
106 	{ 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150"	},
107 	{ 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
108 	{ 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
109 	/* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */
110 	{ 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230"		},
111 	{ 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230"		},
112 	{ 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130"		},
113 	{ 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130"		},
114 	{ 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100"		},
115 	{ 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100"		},
116 	{ 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105"		},
117 	{ 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105"		},
118 	{ 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135"		},
119 	{ 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135"		},
120 	{ 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965"		},
121 	{ 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300"		},
122 	{ 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200"		},
123 	{ 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965"		},
124 	{ 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965"		},
125 	{ 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100"			},
126 	{ 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965"		},
127 	{ 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300"		},
128 	{ 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300"		},
129 	{ 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100"			},
130 	{ 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300"		},
131 	{ 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200"		},
132 	{ 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350"			},
133 	{ 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350"			},
134 	{ 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150"			},
135 	{ 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150"			},
136 	{ 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235"		},
137 	{ 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235"		},
138 	{ 0, 0, NULL }
139 };
140 
141 static int	iwn_pci_probe(device_t);
142 static int	iwn_pci_attach(device_t);
143 static int	iwn4965_attach(struct iwn_softc *, uint16_t);
144 static int	iwn5000_attach(struct iwn_softc *, uint16_t);
145 static int	iwn_config_specific(struct iwn_softc *, uint16_t);
146 static void	iwn_radiotap_attach(struct iwn_softc *);
147 static void	iwn_sysctlattach(struct iwn_softc *);
148 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
149 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
150 		    const uint8_t [IEEE80211_ADDR_LEN],
151 		    const uint8_t [IEEE80211_ADDR_LEN]);
152 static void	iwn_vap_delete(struct ieee80211vap *);
153 static int	iwn_pci_detach(device_t);
154 static int	iwn_pci_shutdown(device_t);
155 static int	iwn_pci_suspend(device_t);
156 static int	iwn_pci_resume(device_t);
157 static int	iwn_nic_lock(struct iwn_softc *);
158 static int	iwn_eeprom_lock(struct iwn_softc *);
159 static int	iwn_init_otprom(struct iwn_softc *);
160 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
161 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
162 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
163 		    void **, bus_size_t, bus_size_t);
164 static void	iwn_dma_contig_free(struct iwn_dma_info *);
165 static int	iwn_alloc_sched(struct iwn_softc *);
166 static void	iwn_free_sched(struct iwn_softc *);
167 static int	iwn_alloc_kw(struct iwn_softc *);
168 static void	iwn_free_kw(struct iwn_softc *);
169 static int	iwn_alloc_ict(struct iwn_softc *);
170 static void	iwn_free_ict(struct iwn_softc *);
171 static int	iwn_alloc_fwmem(struct iwn_softc *);
172 static void	iwn_free_fwmem(struct iwn_softc *);
173 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
174 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
175 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
176 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
177 		    int);
178 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
179 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
180 static void	iwn5000_ict_reset(struct iwn_softc *);
181 static int	iwn_read_eeprom(struct iwn_softc *,
182 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
183 static void	iwn4965_read_eeprom(struct iwn_softc *);
184 #ifdef	IWN_DEBUG
185 static void	iwn4965_print_power_group(struct iwn_softc *, int);
186 #endif
187 static void	iwn5000_read_eeprom(struct iwn_softc *);
188 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
189 static void	iwn_read_eeprom_band(struct iwn_softc *, int);
190 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int);
191 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
192 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
193 		    struct ieee80211_channel *);
194 static int	iwn_setregdomain(struct ieee80211com *,
195 		    struct ieee80211_regdomain *, int,
196 		    struct ieee80211_channel[]);
197 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
198 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
199 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
200 static void	iwn_newassoc(struct ieee80211_node *, int);
201 static int	iwn_media_change(struct ifnet *);
202 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
203 static void	iwn_calib_timeout(void *);
204 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
205 		    struct iwn_rx_data *);
206 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
207 		    struct iwn_rx_data *);
208 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
209 		    struct iwn_rx_data *);
210 static void	iwn5000_rx_calib_results(struct iwn_softc *,
211 		    struct iwn_rx_desc *, struct iwn_rx_data *);
212 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
213 		    struct iwn_rx_data *);
214 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
215 		    struct iwn_rx_data *);
216 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
217 		    struct iwn_rx_data *);
218 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
219 		    uint8_t);
220 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, void *);
221 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
222 static void	iwn_notif_intr(struct iwn_softc *);
223 static void	iwn_wakeup_intr(struct iwn_softc *);
224 static void	iwn_rftoggle_intr(struct iwn_softc *);
225 static void	iwn_fatal_intr(struct iwn_softc *);
226 static void	iwn_intr(void *);
227 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
228 		    uint16_t);
229 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
230 		    uint16_t);
231 #ifdef notyet
232 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
233 #endif
234 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
235 		    struct ieee80211_node *);
236 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
237 		    struct ieee80211_node *,
238 		    const struct ieee80211_bpf_params *params);
239 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
240 		    const struct ieee80211_bpf_params *);
241 static void	iwn_start(struct ifnet *, struct ifaltq_subque *);
242 static void	iwn_start_locked(struct ifnet *);
243 static void	iwn_watchdog_timeout(void *);
244 static int	iwn_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
245 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
246 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
247 		    int);
248 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
249 		    int);
250 static int	iwn_set_link_quality(struct iwn_softc *,
251 		    struct ieee80211_node *);
252 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
253 static int	iwn_updateedca(struct ieee80211com *);
254 static void	iwn_update_mcast(struct ifnet *);
255 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
256 static int	iwn_set_critical_temp(struct iwn_softc *);
257 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
258 static void	iwn4965_power_calibration(struct iwn_softc *, int);
259 static int	iwn4965_set_txpower(struct iwn_softc *,
260 		    struct ieee80211_channel *, int);
261 static int	iwn5000_set_txpower(struct iwn_softc *,
262 		    struct ieee80211_channel *, int);
263 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
264 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
265 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
266 static int	iwn4965_get_temperature(struct iwn_softc *);
267 static int	iwn5000_get_temperature(struct iwn_softc *);
268 static int	iwn_init_sensitivity(struct iwn_softc *);
269 static void	iwn_collect_noise(struct iwn_softc *,
270 		    const struct iwn_rx_general_stats *);
271 static int	iwn4965_init_gains(struct iwn_softc *);
272 static int	iwn5000_init_gains(struct iwn_softc *);
273 static int	iwn4965_set_gains(struct iwn_softc *);
274 static int	iwn5000_set_gains(struct iwn_softc *);
275 static void	iwn_tune_sensitivity(struct iwn_softc *,
276 		    const struct iwn_rx_stats *);
277 static void	iwn_save_stats_counters(struct iwn_softc *,
278 		    const struct iwn_stats *);
279 static int	iwn_send_sensitivity(struct iwn_softc *);
280 static void	iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *);
281 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
282 static int	iwn_send_btcoex(struct iwn_softc *);
283 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
284 static int	iwn5000_runtime_calib(struct iwn_softc *);
285 static int	iwn_config(struct iwn_softc *);
286 static uint8_t	*ieee80211_add_ssid(uint8_t *, const uint8_t *, u_int);
287 static int	iwn_scan(struct iwn_softc *, struct ieee80211vap *,
288 		    struct ieee80211_scan_state *, struct ieee80211_channel *);
289 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
290 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
291 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
292 		    struct ieee80211_rx_ampdu *, int, int, int);
293 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
294 		    struct ieee80211_rx_ampdu *);
295 static int	iwn_addba_request(struct ieee80211_node *,
296 		    struct ieee80211_tx_ampdu *, int, int, int);
297 static int	iwn_addba_response(struct ieee80211_node *,
298 		    struct ieee80211_tx_ampdu *, int, int, int);
299 static int	iwn_ampdu_tx_start(struct ieee80211com *,
300 		    struct ieee80211_node *, uint8_t);
301 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
302 		    struct ieee80211_tx_ampdu *);
303 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
304 		    struct ieee80211_node *, int, uint8_t, uint16_t);
305 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
306 		    uint8_t, uint16_t);
307 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
308 		    struct ieee80211_node *, int, uint8_t, uint16_t);
309 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
310 		    uint8_t, uint16_t);
311 static int	iwn5000_query_calibration(struct iwn_softc *);
312 static int	iwn5000_send_calibration(struct iwn_softc *);
313 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
314 static int	iwn5000_crystal_calib(struct iwn_softc *);
315 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
316 static int	iwn5000_temp_offset_calibv2(struct iwn_softc *);
317 static int	iwn4965_post_alive(struct iwn_softc *);
318 static int	iwn5000_post_alive(struct iwn_softc *);
319 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
320 		    int);
321 static int	iwn4965_load_firmware(struct iwn_softc *);
322 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
323 		    const uint8_t *, int);
324 static int	iwn5000_load_firmware(struct iwn_softc *);
325 static int	iwn_read_firmware_leg(struct iwn_softc *,
326 		    struct iwn_fw_info *);
327 static int	iwn_read_firmware_tlv(struct iwn_softc *,
328 		    struct iwn_fw_info *, uint16_t);
329 static int	iwn_read_firmware(struct iwn_softc *);
330 static int	iwn_clock_wait(struct iwn_softc *);
331 static int	iwn_apm_init(struct iwn_softc *);
332 static void	iwn_apm_stop_master(struct iwn_softc *);
333 static void	iwn_apm_stop(struct iwn_softc *);
334 static int	iwn4965_nic_config(struct iwn_softc *);
335 static int	iwn5000_nic_config(struct iwn_softc *);
336 static int	iwn_hw_prepare(struct iwn_softc *);
337 static int	iwn_hw_init(struct iwn_softc *);
338 static void	iwn_hw_stop(struct iwn_softc *);
339 static void	iwn_radio_on_task(void *, int);
340 static void	iwn_radio_off_task(void *, int);
341 static void	iwn_panicked_task(void *, int);
342 static void	iwn_init_locked(struct iwn_softc *);
343 static void	iwn_init(void *);
344 static void	iwn_stop_locked(struct iwn_softc *);
345 static void	iwn_scan_start(struct ieee80211com *);
346 static void	iwn_scan_end(struct ieee80211com *);
347 static void	iwn_set_channel(struct ieee80211com *);
348 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
349 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
350 static void	iwn_hw_reset_task(void *, int);
351 #ifdef	IWN_DEBUG
352 static char	*iwn_get_csr_string(int);
353 static void	iwn_debug_register(struct iwn_softc *);
354 #endif
355 
356 static device_method_t iwn_methods[] = {
357 	/* Device interface */
358 	DEVMETHOD(device_probe,		iwn_pci_probe),
359 	DEVMETHOD(device_attach,	iwn_pci_attach),
360 	DEVMETHOD(device_detach,	iwn_pci_detach),
361 	DEVMETHOD(device_shutdown,	iwn_pci_shutdown),
362 	DEVMETHOD(device_suspend,	iwn_pci_suspend),
363 	DEVMETHOD(device_resume,	iwn_pci_resume),
364 
365 	DEVMETHOD_END
366 };
367 
368 static driver_t iwn_driver = {
369 	"iwn",
370 	iwn_methods,
371 	sizeof(struct iwn_softc)
372 };
373 static devclass_t iwn_devclass;
374 
375 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL);
376 
377 MODULE_VERSION(iwn, 1);
378 
379 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
380 MODULE_DEPEND(iwn, pci, 1, 1, 1);
381 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
382 MODULE_DEPEND(iwn, wlan_amrr, 1, 1, 1);
383 
384 static int
385 iwn_pci_probe(device_t dev)
386 {
387 	const struct iwn_ident *ident;
388 
389 	/* no wlan serializer needed */
390 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
391 		if (pci_get_vendor(dev) == ident->vendor &&
392 		    pci_get_device(dev) == ident->device) {
393 			device_set_desc(dev, ident->name);
394 			return (BUS_PROBE_DEFAULT);
395 		}
396 	}
397 	return ENXIO;
398 }
399 
400 static int
401 iwn_pci_attach(device_t dev)
402 {
403 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
404 	struct ieee80211com *ic;
405 	struct ifnet *ifp;
406 	int i, error, rid;
407 	uint8_t macaddr[IEEE80211_ADDR_LEN];
408 	char ethstr[ETHER_ADDRSTRLEN + 1];
409 
410 	wlan_serialize_enter();
411 
412 	sc->sc_dev = dev;
413 	sc->sc_dmat = NULL;
414 
415 	if (bus_dma_tag_create(sc->sc_dmat,
416 		       1, 0,
417 		       BUS_SPACE_MAXADDR_32BIT,
418 		       BUS_SPACE_MAXADDR,
419 		       NULL, NULL,
420 		       BUS_SPACE_MAXSIZE,
421 		       IWN_MAX_SCATTER,
422 		       BUS_SPACE_MAXSIZE,
423 		       BUS_DMA_ALLOCNOW,
424 		       &sc->sc_dmat)) {
425 		device_printf(dev, "cannot allocate DMA tag\n");
426 		error = ENOMEM;
427 		goto fail;
428 	}
429 
430 	/* prepare sysctl tree for use in sub modules */
431 	sysctl_ctx_init(&sc->sc_sysctl_ctx);
432 	sc->sc_sysctl_tree = SYSCTL_ADD_NODE(&sc->sc_sysctl_ctx,
433 		SYSCTL_STATIC_CHILDREN(_hw),
434 		OID_AUTO,
435 		device_get_nameunit(sc->sc_dev),
436 		CTLFLAG_RD, 0, "");
437 
438 #ifdef	IWN_DEBUG
439 	error = resource_int_value(device_get_name(sc->sc_dev),
440 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
441 	if (error != 0)
442 		sc->sc_debug = 0;
443 #else
444 	sc->sc_debug = 0;
445 #endif
446 
447 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__);
448 
449 	/*
450 	 * Get the offset of the PCI Express Capability Structure in PCI
451 	 * Configuration Space.
452 	 */
453 	error = pci_find_extcap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
454 	if (error != 0) {
455 		device_printf(dev, "PCIe capability structure not found!\n");
456 		goto fail2;
457 	}
458 
459 	/* Clear device-specific "PCI retry timeout" register (41h). */
460 	pci_write_config(dev, 0x41, 0, 1);
461 
462 	/* Enable bus-mastering. */
463 	pci_enable_busmaster(dev);
464 
465 	rid = PCIR_BAR(0);
466 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
467 	    RF_ACTIVE);
468 	if (sc->mem == NULL) {
469 		device_printf(dev, "can't map mem space\n");
470 		error = ENOMEM;
471 		goto fail2;
472 	}
473 	sc->sc_st = rman_get_bustag(sc->mem);
474 	sc->sc_sh = rman_get_bushandle(sc->mem);
475 
476 	rid = 0;
477 #ifdef OLD_MSI
478 	i = 1;
479 	if (pci_alloc_msi(dev, &i) == 0)
480 		rid = 1;
481 #endif
482 	/* Install interrupt handler. */
483 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
484 	    (rid != 0 ? 0 : RF_SHAREABLE));
485 	if (sc->irq == NULL) {
486 		device_printf(dev, "can't map interrupt\n");
487 		error = ENOMEM;
488 		goto fail;
489 	}
490 
491 	/* Read hardware revision and attach. */
492 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT)
493 	    & IWN_HW_REV_TYPE_MASK;
494 	sc->subdevice_id = pci_get_subdevice(dev);
495 	/*
496 	 * 4965 versus 5000 and later have different methods.
497 	 * Let's set those up first.
498 	 */
499 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
500 		error = iwn4965_attach(sc, pci_get_device(dev));
501 	else
502 		error = iwn5000_attach(sc, pci_get_device(dev));
503 	if (error != 0) {
504 		device_printf(dev, "could not attach device, error %d\n",
505 		    error);
506 		goto fail;
507 	}
508 
509 	/*
510 	 * Next, let's setup the various parameters of each NIC.
511 	 */
512 	error = iwn_config_specific(sc, pci_get_device(dev));
513 	if (error != 0) {
514 		device_printf(dev, "could not attach device, error %d\n",
515 		    error);
516 		goto fail;
517 	}
518 
519 	if ((error = iwn_hw_prepare(sc)) != 0) {
520 		device_printf(dev, "hardware not ready, error %d\n", error);
521 		goto fail;
522 	}
523 
524 	/* Allocate DMA memory for firmware transfers. */
525 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
526 		device_printf(dev,
527 		    "could not allocate memory for firmware, error %d\n",
528 		    error);
529 		goto fail;
530 	}
531 
532 	/* Allocate "Keep Warm" page. */
533 	if ((error = iwn_alloc_kw(sc)) != 0) {
534 		device_printf(dev,
535 		    "could not allocate keep warm page, error %d\n", error);
536 		goto fail;
537 	}
538 
539 	/* Allocate ICT table for 5000 Series. */
540 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
541 	    (error = iwn_alloc_ict(sc)) != 0) {
542 		device_printf(dev, "could not allocate ICT table, error %d\n",
543 		    error);
544 		goto fail;
545 	}
546 
547 	/* Allocate TX scheduler "rings". */
548 	if ((error = iwn_alloc_sched(sc)) != 0) {
549 		device_printf(dev,
550 		    "could not allocate TX scheduler rings, error %d\n", error);
551 		goto fail;
552 	}
553 
554 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
555 	for (i = 0; i < sc->ntxqs; i++) {
556 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
557 			device_printf(dev,
558 			    "could not allocate TX ring %d, error %d\n", i,
559 			    error);
560 			goto fail;
561 		}
562 	}
563 
564 	/* Allocate RX ring. */
565 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
566 		device_printf(dev, "could not allocate RX ring, error %d\n",
567 		    error);
568 		goto fail;
569 	}
570 
571 	/* Clear pending interrupts. */
572 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
573 
574 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
575 	if (ifp == NULL) {
576 		device_printf(dev, "can not allocate ifnet structure\n");
577 		goto fail;
578 	}
579 
580 	ic = ifp->if_l2com;
581 	ic->ic_ifp = ifp;
582 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
583 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
584 
585 	/* Set device capabilities. */
586 	ic->ic_caps =
587 		  IEEE80211_C_STA		/* station mode supported */
588 		| IEEE80211_C_MONITOR		/* monitor mode supported */
589 		| IEEE80211_C_BGSCAN		/* background scanning */
590 		| IEEE80211_C_TXPMGT		/* tx power management */
591 		| IEEE80211_C_SHSLOT		/* short slot time supported */
592 		| IEEE80211_C_WPA
593 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
594 #if 0
595 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
596 #endif
597 		| IEEE80211_C_WME		/* WME */
598 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
599 		;
600 
601 	/* Read MAC address, channels, etc from EEPROM. */
602 	if ((error = iwn_read_eeprom(sc, macaddr)) != 0) {
603 		device_printf(dev, "could not read EEPROM, error %d\n",
604 		    error);
605 		goto fail;
606 	}
607 
608 	/* Count the number of available chains. */
609 	sc->ntxchains =
610 	    ((sc->txchainmask >> 2) & 1) +
611 	    ((sc->txchainmask >> 1) & 1) +
612 	    ((sc->txchainmask >> 0) & 1);
613 	sc->nrxchains =
614 	    ((sc->rxchainmask >> 2) & 1) +
615 	    ((sc->rxchainmask >> 1) & 1) +
616 	    ((sc->rxchainmask >> 0) & 1);
617 	if (bootverbose) {
618 		device_printf(dev, "MIMO %dT%dR, %.4s, address %s\n",
619 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
620 		    kether_ntoa(macaddr, ethstr));
621 	}
622 
623 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
624 #ifdef notyet
625 		ic->ic_rxstream = sc->nrxchains;
626 		ic->ic_txstream = sc->ntxchains;
627 #endif
628 
629 		/*
630 		 * The NICs we currently support cap out at 2x2 support
631 		 * separate from the chains being used.
632 		 *
633 		 * This is a total hack to work around that until some
634 		 * per-device method is implemented to return the
635 		 * actual stream support.
636 		 *
637 		 * XXX Note: the 5350 is a 3x3 device; so we shouldn't
638 		 * cap this!  But, anything that touches rates in the
639 		 * driver needs to be audited first before 3x3 is enabled.
640 		 */
641 #ifdef notyet
642 		if (ic->ic_rxstream > 2)
643 			ic->ic_rxstream = 2;
644 		if (ic->ic_txstream > 2)
645 			ic->ic_txstream = 2;
646 #endif
647 
648 		ic->ic_htcaps =
649 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
650 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
651 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
652 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
653 #ifdef notyet
654 			| IEEE80211_HTCAP_GREENFIELD
655 #if IWN_RBUF_SIZE == 8192
656 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
657 #else
658 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
659 #endif
660 #endif
661 			/* s/w capabilities */
662 			| IEEE80211_HTC_HT		/* HT operation */
663 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
664 #ifdef notyet
665 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
666 #endif
667 			;
668 	}
669 
670 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
671 	ifp->if_softc = sc;
672 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
673 	ifp->if_init = iwn_init;
674 	ifp->if_ioctl = iwn_ioctl;
675 	ifp->if_start = iwn_start;
676 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
677 #ifdef notyet
678 	ifq_set_ready(&ifp->if_snd);
679 #endif
680 
681 	ieee80211_ifattach(ic, macaddr);
682 	ic->ic_vap_create = iwn_vap_create;
683 	ic->ic_vap_delete = iwn_vap_delete;
684 	ic->ic_raw_xmit = iwn_raw_xmit;
685 	ic->ic_node_alloc = iwn_node_alloc;
686 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
687 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
688 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
689 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
690 	sc->sc_addba_request = ic->ic_addba_request;
691 	ic->ic_addba_request = iwn_addba_request;
692 	sc->sc_addba_response = ic->ic_addba_response;
693 	ic->ic_addba_response = iwn_addba_response;
694 	sc->sc_addba_stop = ic->ic_addba_stop;
695 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
696 	ic->ic_newassoc = iwn_newassoc;
697 	ic->ic_wme.wme_update = iwn_updateedca;
698 	ic->ic_update_mcast = iwn_update_mcast;
699 	ic->ic_scan_start = iwn_scan_start;
700 	ic->ic_scan_end = iwn_scan_end;
701 	ic->ic_set_channel = iwn_set_channel;
702 	ic->ic_scan_curchan = iwn_scan_curchan;
703 	ic->ic_scan_mindwell = iwn_scan_mindwell;
704 	ic->ic_setregdomain = iwn_setregdomain;
705 
706 	iwn_radiotap_attach(sc);
707 
708 	callout_init(&sc->calib_to);
709 	callout_init(&sc->watchdog_to);
710 	TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset_task, sc);
711 	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on_task, sc);
712 	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off_task, sc);
713 	TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked_task, sc);
714 
715 	sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK,
716 	    taskqueue_thread_enqueue, &sc->sc_tq);
717 	error = taskqueue_start_threads(&sc->sc_tq, 1, TDPRI_KERN_DAEMON, -1,
718 	    "iwn_taskq");
719 	if (error != 0) {
720 		device_printf(dev, "can't start threads, error %d\n", error);
721 		goto fail;
722 	}
723 
724 	iwn_sysctlattach(sc);
725 
726 	/*
727 	 * Hook our interrupt after all initialization is complete.
728 	 */
729 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
730 			       iwn_intr, sc, &sc->sc_ih,
731 			       &wlan_global_serializer);
732 	if (error != 0) {
733 		device_printf(dev, "can't establish interrupt, error %d\n",
734 		    error);
735 		goto fail;
736 	}
737 
738 #if 0
739 	device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n",
740 	    __func__,
741 	    sizeof(struct iwn_stats),
742 	    sizeof(struct iwn_stats_bt));
743 #endif
744 
745 	if (bootverbose)
746 		ieee80211_announce(ic);
747 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
748 	wlan_serialize_exit();
749 	return 0;
750 fail:
751 	wlan_serialize_exit();
752 	iwn_pci_detach(dev);
753 	wlan_serialize_enter();
754 fail2:
755 	wlan_serialize_exit();
756 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
757 	return error;
758 }
759 
760 /*
761  * Define specific configuration based on device id and subdevice id
762  * pid : PCI device id
763  */
764 static int
765 iwn_config_specific(struct iwn_softc *sc, uint16_t pid)
766 {
767 
768 	switch (pid) {
769 /* 4965 series */
770 	case IWN_DID_4965_1:
771 	case IWN_DID_4965_2:
772 	case IWN_DID_4965_3:
773 	case IWN_DID_4965_4:
774 		sc->base_params = &iwn4965_base_params;
775 		sc->limits = &iwn4965_sensitivity_limits;
776 		sc->fwname = "iwn4965fw";
777 		/* Override chains masks, ROM is known to be broken. */
778 		sc->txchainmask = IWN_ANT_AB;
779 		sc->rxchainmask = IWN_ANT_ABC;
780 		/* Enable normal btcoex */
781 		sc->sc_flags |= IWN_FLAG_BTCOEX;
782 		break;
783 /* 1000 Series */
784 	case IWN_DID_1000_1:
785 	case IWN_DID_1000_2:
786 		switch(sc->subdevice_id) {
787 			case	IWN_SDID_1000_1:
788 			case	IWN_SDID_1000_2:
789 			case	IWN_SDID_1000_3:
790 			case	IWN_SDID_1000_4:
791 			case	IWN_SDID_1000_5:
792 			case	IWN_SDID_1000_6:
793 			case	IWN_SDID_1000_7:
794 			case	IWN_SDID_1000_8:
795 			case	IWN_SDID_1000_9:
796 			case	IWN_SDID_1000_10:
797 			case	IWN_SDID_1000_11:
798 			case	IWN_SDID_1000_12:
799 				sc->limits = &iwn1000_sensitivity_limits;
800 				sc->base_params = &iwn1000_base_params;
801 				sc->fwname = "iwn1000fw";
802 				break;
803 			default:
804 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
805 				    "0x%04x rev %d not supported (subdevice)\n", pid,
806 				    sc->subdevice_id,sc->hw_type);
807 				return ENOTSUP;
808 		}
809 		break;
810 /* 6x00 Series */
811 	case IWN_DID_6x00_2:
812 	case IWN_DID_6x00_4:
813 	case IWN_DID_6x00_1:
814 	case IWN_DID_6x00_3:
815 		sc->fwname = "iwn6000fw";
816 		sc->limits = &iwn6000_sensitivity_limits;
817 		switch(sc->subdevice_id) {
818 			case IWN_SDID_6x00_1:
819 			case IWN_SDID_6x00_2:
820 			case IWN_SDID_6x00_8:
821 				//iwl6000_3agn_cfg
822 				sc->base_params = &iwn_6000_base_params;
823 				break;
824 			case IWN_SDID_6x00_3:
825 			case IWN_SDID_6x00_6:
826 			case IWN_SDID_6x00_9:
827 				////iwl6000i_2agn
828 			case IWN_SDID_6x00_4:
829 			case IWN_SDID_6x00_7:
830 			case IWN_SDID_6x00_10:
831 				//iwl6000i_2abg_cfg
832 			case IWN_SDID_6x00_5:
833 				//iwl6000i_2bg_cfg
834 				sc->base_params = &iwn_6000i_base_params;
835 				sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
836 				sc->txchainmask = IWN_ANT_BC;
837 				sc->rxchainmask = IWN_ANT_BC;
838 				break;
839 			default:
840 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
841 				    "0x%04x rev %d not supported (subdevice)\n", pid,
842 				    sc->subdevice_id,sc->hw_type);
843 				return ENOTSUP;
844 		}
845 		break;
846 /* 6x05 Series */
847 	case IWN_DID_6x05_1:
848 	case IWN_DID_6x05_2:
849 		switch(sc->subdevice_id) {
850 			case IWN_SDID_6x05_1:
851 			case IWN_SDID_6x05_4:
852 			case IWN_SDID_6x05_6:
853 				//iwl6005_2agn_cfg
854 			case IWN_SDID_6x05_2:
855 			case IWN_SDID_6x05_5:
856 			case IWN_SDID_6x05_7:
857 				//iwl6005_2abg_cfg
858 			case IWN_SDID_6x05_3:
859 				//iwl6005_2bg_cfg
860 			case IWN_SDID_6x05_8:
861 			case IWN_SDID_6x05_9:
862 				//iwl6005_2agn_sff_cfg
863 			case IWN_SDID_6x05_10:
864 				//iwl6005_2agn_d_cfg
865 			case IWN_SDID_6x05_11:
866 				//iwl6005_2agn_mow1_cfg
867 			case IWN_SDID_6x05_12:
868 				//iwl6005_2agn_mow2_cfg
869 				sc->fwname = "iwn6000g2afw";
870 				sc->limits = &iwn6000_sensitivity_limits;
871 				sc->base_params = &iwn_6000g2_base_params;
872 				break;
873 			default:
874 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
875 				    "0x%04x rev %d not supported (subdevice)\n", pid,
876 				    sc->subdevice_id,sc->hw_type);
877 				return ENOTSUP;
878 		}
879 		break;
880 /* 6x35 Series */
881 	case IWN_DID_6035_1:
882 	case IWN_DID_6035_2:
883 		switch(sc->subdevice_id) {
884 			case IWN_SDID_6035_1:
885 			case IWN_SDID_6035_2:
886 			case IWN_SDID_6035_3:
887 			case IWN_SDID_6035_4:
888 				sc->fwname = "iwn6000g2bfw";
889 				sc->limits = &iwn6235_sensitivity_limits;
890 				sc->base_params = &iwn_6235_base_params;
891 				break;
892 			default:
893 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
894 				    "0x%04x rev %d not supported (subdevice)\n", pid,
895 				    sc->subdevice_id,sc->hw_type);
896 				return ENOTSUP;
897 		}
898 		break;
899 /* 6x50 WiFi/WiMax Series */
900 	case IWN_DID_6050_1:
901 	case IWN_DID_6050_2:
902 		switch(sc->subdevice_id) {
903 			case IWN_SDID_6050_1:
904 			case IWN_SDID_6050_3:
905 			case IWN_SDID_6050_5:
906 				//iwl6050_2agn_cfg
907 			case IWN_SDID_6050_2:
908 			case IWN_SDID_6050_4:
909 			case IWN_SDID_6050_6:
910 				//iwl6050_2abg_cfg
911 				sc->fwname = "iwn6050fw";
912 				sc->txchainmask = IWN_ANT_AB;
913 				sc->rxchainmask = IWN_ANT_AB;
914 				sc->limits = &iwn6000_sensitivity_limits;
915 				sc->base_params = &iwn_6050_base_params;
916 				break;
917 			default:
918 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
919 				    "0x%04x rev %d not supported (subdevice)\n", pid,
920 				    sc->subdevice_id,sc->hw_type);
921 				return ENOTSUP;
922 		}
923 		break;
924 /* 6150 WiFi/WiMax Series */
925 	case IWN_DID_6150_1:
926 	case IWN_DID_6150_2:
927 		switch(sc->subdevice_id) {
928 			case IWN_SDID_6150_1:
929 			case IWN_SDID_6150_3:
930 			case IWN_SDID_6150_5:
931 				// iwl6150_bgn_cfg
932 			case IWN_SDID_6150_2:
933 			case IWN_SDID_6150_4:
934 			case IWN_SDID_6150_6:
935 				//iwl6150_bg_cfg
936 				sc->fwname = "iwn6050fw";
937 				sc->limits = &iwn6000_sensitivity_limits;
938 				sc->base_params = &iwn_6150_base_params;
939 				break;
940 			default:
941 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
942 				    "0x%04x rev %d not supported (subdevice)\n", pid,
943 				    sc->subdevice_id,sc->hw_type);
944 				return ENOTSUP;
945 		}
946 		break;
947 /* 6030 Series and 1030 Series */
948 	case IWN_DID_x030_1:
949 	case IWN_DID_x030_2:
950 	case IWN_DID_x030_3:
951 	case IWN_DID_x030_4:
952 		switch(sc->subdevice_id) {
953 			case IWN_SDID_x030_1:
954 			case IWN_SDID_x030_3:
955 			case IWN_SDID_x030_5:
956 			// iwl1030_bgn_cfg
957 			case IWN_SDID_x030_2:
958 			case IWN_SDID_x030_4:
959 			case IWN_SDID_x030_6:
960 			//iwl1030_bg_cfg
961 			case IWN_SDID_x030_7:
962 			case IWN_SDID_x030_10:
963 			case IWN_SDID_x030_14:
964 			//iwl6030_2agn_cfg
965 			case IWN_SDID_x030_8:
966 			case IWN_SDID_x030_11:
967 			case IWN_SDID_x030_15:
968 			// iwl6030_2bgn_cfg
969 			case IWN_SDID_x030_9:
970 			case IWN_SDID_x030_12:
971 			case IWN_SDID_x030_16:
972 			// iwl6030_2abg_cfg
973 			case IWN_SDID_x030_13:
974 			//iwl6030_2bg_cfg
975 				sc->fwname = "iwn6000g2bfw";
976 				sc->limits = &iwn6000_sensitivity_limits;
977 				sc->base_params = &iwn_6000g2b_base_params;
978 				break;
979 			default:
980 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
981 				    "0x%04x rev %d not supported (subdevice)\n", pid,
982 				    sc->subdevice_id,sc->hw_type);
983 				return ENOTSUP;
984 		}
985 		break;
986 /* 130 Series WiFi */
987 /* XXX: This series will need adjustment for rate.
988  * see rx_with_siso_diversity in linux kernel
989  */
990 	case IWN_DID_130_1:
991 	case IWN_DID_130_2:
992 		switch(sc->subdevice_id) {
993 			case IWN_SDID_130_1:
994 			case IWN_SDID_130_3:
995 			case IWN_SDID_130_5:
996 			//iwl130_bgn_cfg
997 			case IWN_SDID_130_2:
998 			case IWN_SDID_130_4:
999 			case IWN_SDID_130_6:
1000 			//iwl130_bg_cfg
1001 				sc->fwname = "iwn6000g2bfw";
1002 				sc->limits = &iwn6000_sensitivity_limits;
1003 				sc->base_params = &iwn_6000g2b_base_params;
1004 				break;
1005 			default:
1006 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1007 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1008 				    sc->subdevice_id,sc->hw_type);
1009 				return ENOTSUP;
1010 		}
1011 		break;
1012 /* 100 Series WiFi */
1013 	case IWN_DID_100_1:
1014 	case IWN_DID_100_2:
1015 		switch(sc->subdevice_id) {
1016 			case IWN_SDID_100_1:
1017 			case IWN_SDID_100_2:
1018 			case IWN_SDID_100_3:
1019 			case IWN_SDID_100_4:
1020 			case IWN_SDID_100_5:
1021 			case IWN_SDID_100_6:
1022 				sc->limits = &iwn1000_sensitivity_limits;
1023 				sc->base_params = &iwn1000_base_params;
1024 				sc->fwname = "iwn100fw";
1025 				break;
1026 			default:
1027 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1028 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1029 				    sc->subdevice_id,sc->hw_type);
1030 				return ENOTSUP;
1031 		}
1032 		break;
1033 
1034 /* 105 Series */
1035 /* XXX: This series will need adjustment for rate.
1036  * see rx_with_siso_diversity in linux kernel
1037  */
1038 	case IWN_DID_105_1:
1039 	case IWN_DID_105_2:
1040 		switch(sc->subdevice_id) {
1041 			case IWN_SDID_105_1:
1042 			case IWN_SDID_105_2:
1043 			case IWN_SDID_105_3:
1044 			//iwl105_bgn_cfg
1045 			case IWN_SDID_105_4:
1046 			//iwl105_bgn_d_cfg
1047 				sc->limits = &iwn2030_sensitivity_limits;
1048 				sc->base_params = &iwn2000_base_params;
1049 				sc->fwname = "iwn105fw";
1050 				break;
1051 			default:
1052 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1053 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1054 				    sc->subdevice_id,sc->hw_type);
1055 				return ENOTSUP;
1056 		}
1057 		break;
1058 
1059 /* 135 Series */
1060 /* XXX: This series will need adjustment for rate.
1061  * see rx_with_siso_diversity in linux kernel
1062  */
1063 	case IWN_DID_135_1:
1064 	case IWN_DID_135_2:
1065 		switch(sc->subdevice_id) {
1066 			case IWN_SDID_135_1:
1067 			case IWN_SDID_135_2:
1068 			case IWN_SDID_135_3:
1069 				sc->limits = &iwn2030_sensitivity_limits;
1070 				sc->base_params = &iwn2030_base_params;
1071 				sc->fwname = "iwn135fw";
1072 				break;
1073 			default:
1074 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1075 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1076 				    sc->subdevice_id,sc->hw_type);
1077 				return ENOTSUP;
1078 		}
1079 		break;
1080 
1081 /* 2x00 Series */
1082 	case IWN_DID_2x00_1:
1083 	case IWN_DID_2x00_2:
1084 		switch(sc->subdevice_id) {
1085 			case IWN_SDID_2x00_1:
1086 			case IWN_SDID_2x00_2:
1087 			case IWN_SDID_2x00_3:
1088 			//iwl2000_2bgn_cfg
1089 			case IWN_SDID_2x00_4:
1090 			//iwl2000_2bgn_d_cfg
1091 				sc->limits = &iwn2030_sensitivity_limits;
1092 				sc->base_params = &iwn2000_base_params;
1093 				sc->fwname = "iwn2000fw";
1094 				break;
1095 			default:
1096 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1097 				    "0x%04x rev %d not supported (subdevice) \n",
1098 				    pid, sc->subdevice_id, sc->hw_type);
1099 				return ENOTSUP;
1100 		}
1101 		break;
1102 /* 2x30 Series */
1103 	case IWN_DID_2x30_1:
1104 	case IWN_DID_2x30_2:
1105 		switch(sc->subdevice_id) {
1106 			case IWN_SDID_2x30_1:
1107 			case IWN_SDID_2x30_3:
1108 			case IWN_SDID_2x30_5:
1109 			//iwl100_bgn_cfg
1110 			case IWN_SDID_2x30_2:
1111 			case IWN_SDID_2x30_4:
1112 			case IWN_SDID_2x30_6:
1113 			//iwl100_bg_cfg
1114 				sc->limits = &iwn2030_sensitivity_limits;
1115 				sc->base_params = &iwn2030_base_params;
1116 				sc->fwname = "iwn2030fw";
1117 				break;
1118 			default:
1119 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1120 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1121 				    sc->subdevice_id,sc->hw_type);
1122 				return ENOTSUP;
1123 		}
1124 		break;
1125 /* 5x00 Series */
1126 	case IWN_DID_5x00_1:
1127 	case IWN_DID_5x00_2:
1128 	case IWN_DID_5x00_3:
1129 	case IWN_DID_5x00_4:
1130 		sc->limits = &iwn5000_sensitivity_limits;
1131 		sc->base_params = &iwn5000_base_params;
1132 		sc->fwname = "iwn5000fw";
1133 		switch(sc->subdevice_id) {
1134 			case IWN_SDID_5x00_1:
1135 			case IWN_SDID_5x00_2:
1136 			case IWN_SDID_5x00_3:
1137 			case IWN_SDID_5x00_4:
1138 			case IWN_SDID_5x00_9:
1139 			case IWN_SDID_5x00_10:
1140 			case IWN_SDID_5x00_11:
1141 			case IWN_SDID_5x00_12:
1142 			case IWN_SDID_5x00_17:
1143 			case IWN_SDID_5x00_18:
1144 			case IWN_SDID_5x00_19:
1145 			case IWN_SDID_5x00_20:
1146 			//iwl5100_agn_cfg
1147 				sc->txchainmask = IWN_ANT_B;
1148 				sc->rxchainmask = IWN_ANT_AB;
1149 				break;
1150 			case IWN_SDID_5x00_5:
1151 			case IWN_SDID_5x00_6:
1152 			case IWN_SDID_5x00_13:
1153 			case IWN_SDID_5x00_14:
1154 			case IWN_SDID_5x00_21:
1155 			case IWN_SDID_5x00_22:
1156 			//iwl5100_bgn_cfg
1157 				sc->txchainmask = IWN_ANT_B;
1158 				sc->rxchainmask = IWN_ANT_AB;
1159 				break;
1160 			case IWN_SDID_5x00_7:
1161 			case IWN_SDID_5x00_8:
1162 			case IWN_SDID_5x00_15:
1163 			case IWN_SDID_5x00_16:
1164 			case IWN_SDID_5x00_23:
1165 			case IWN_SDID_5x00_24:
1166 			//iwl5100_abg_cfg
1167 				sc->txchainmask = IWN_ANT_B;
1168 				sc->rxchainmask = IWN_ANT_AB;
1169 				break;
1170 			case IWN_SDID_5x00_25:
1171 			case IWN_SDID_5x00_26:
1172 			case IWN_SDID_5x00_27:
1173 			case IWN_SDID_5x00_28:
1174 			case IWN_SDID_5x00_29:
1175 			case IWN_SDID_5x00_30:
1176 			case IWN_SDID_5x00_31:
1177 			case IWN_SDID_5x00_32:
1178 			case IWN_SDID_5x00_33:
1179 			case IWN_SDID_5x00_34:
1180 			case IWN_SDID_5x00_35:
1181 			case IWN_SDID_5x00_36:
1182 			//iwl5300_agn_cfg
1183 				sc->txchainmask = IWN_ANT_ABC;
1184 				sc->rxchainmask = IWN_ANT_ABC;
1185 				break;
1186 			default:
1187 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1188 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1189 				    sc->subdevice_id,sc->hw_type);
1190 				return ENOTSUP;
1191 		}
1192 		break;
1193 /* 5x50 Series */
1194 	case IWN_DID_5x50_1:
1195 	case IWN_DID_5x50_2:
1196 	case IWN_DID_5x50_3:
1197 	case IWN_DID_5x50_4:
1198 		sc->limits = &iwn5000_sensitivity_limits;
1199 		sc->base_params = &iwn5000_base_params;
1200 		sc->fwname = "iwn5000fw";
1201 		switch(sc->subdevice_id) {
1202 			case IWN_SDID_5x50_1:
1203 			case IWN_SDID_5x50_2:
1204 			case IWN_SDID_5x50_3:
1205 			//iwl5350_agn_cfg
1206 				sc->limits = &iwn5000_sensitivity_limits;
1207 				sc->base_params = &iwn5000_base_params;
1208 				sc->fwname = "iwn5000fw";
1209 				break;
1210 			case IWN_SDID_5x50_4:
1211 			case IWN_SDID_5x50_5:
1212 			case IWN_SDID_5x50_8:
1213 			case IWN_SDID_5x50_9:
1214 			case IWN_SDID_5x50_10:
1215 			case IWN_SDID_5x50_11:
1216 			//iwl5150_agn_cfg
1217 			case IWN_SDID_5x50_6:
1218 			case IWN_SDID_5x50_7:
1219 			case IWN_SDID_5x50_12:
1220 			case IWN_SDID_5x50_13:
1221 			//iwl5150_abg_cfg
1222 				sc->limits = &iwn5000_sensitivity_limits;
1223 				sc->fwname = "iwn5150fw";
1224 				sc->base_params = &iwn_5x50_base_params;
1225 				break;
1226 			default:
1227 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1228 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1229 				    sc->subdevice_id,sc->hw_type);
1230 				return ENOTSUP;
1231 		}
1232 		break;
1233 	default:
1234 		device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x"
1235 		    "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id,
1236 		     sc->hw_type);
1237 		return ENOTSUP;
1238 	}
1239 	return 0;
1240 }
1241 
1242 static int
1243 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
1244 {
1245 	struct iwn_ops *ops = &sc->ops;
1246 
1247 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1248 	ops->load_firmware = iwn4965_load_firmware;
1249 	ops->read_eeprom = iwn4965_read_eeprom;
1250 	ops->post_alive = iwn4965_post_alive;
1251 	ops->nic_config = iwn4965_nic_config;
1252 	ops->update_sched = iwn4965_update_sched;
1253 	ops->get_temperature = iwn4965_get_temperature;
1254 	ops->get_rssi = iwn4965_get_rssi;
1255 	ops->set_txpower = iwn4965_set_txpower;
1256 	ops->init_gains = iwn4965_init_gains;
1257 	ops->set_gains = iwn4965_set_gains;
1258 	ops->add_node = iwn4965_add_node;
1259 	ops->tx_done = iwn4965_tx_done;
1260 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
1261 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
1262 	sc->ntxqs = IWN4965_NTXQUEUES;
1263 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
1264 	sc->ndmachnls = IWN4965_NDMACHNLS;
1265 	sc->broadcast_id = IWN4965_ID_BROADCAST;
1266 	sc->rxonsz = IWN4965_RXONSZ;
1267 	sc->schedsz = IWN4965_SCHEDSZ;
1268 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
1269 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
1270 	sc->fwsz = IWN4965_FWSZ;
1271 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
1272 	sc->limits = &iwn4965_sensitivity_limits;
1273 	sc->fwname = "iwn4965fw";
1274 	/* Override chains masks, ROM is known to be broken. */
1275 	sc->txchainmask = IWN_ANT_AB;
1276 	sc->rxchainmask = IWN_ANT_ABC;
1277 	/* Enable normal btcoex */
1278 	sc->sc_flags |= IWN_FLAG_BTCOEX;
1279 
1280 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1281 
1282 	return 0;
1283 }
1284 
1285 static int
1286 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
1287 {
1288 	struct iwn_ops *ops = &sc->ops;
1289 
1290 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1291 
1292 	ops->load_firmware = iwn5000_load_firmware;
1293 	ops->read_eeprom = iwn5000_read_eeprom;
1294 	ops->post_alive = iwn5000_post_alive;
1295 	ops->nic_config = iwn5000_nic_config;
1296 	ops->update_sched = iwn5000_update_sched;
1297 	ops->get_temperature = iwn5000_get_temperature;
1298 	ops->get_rssi = iwn5000_get_rssi;
1299 	ops->set_txpower = iwn5000_set_txpower;
1300 	ops->init_gains = iwn5000_init_gains;
1301 	ops->set_gains = iwn5000_set_gains;
1302 	ops->add_node = iwn5000_add_node;
1303 	ops->tx_done = iwn5000_tx_done;
1304 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
1305 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
1306 	sc->ntxqs = IWN5000_NTXQUEUES;
1307 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
1308 	sc->ndmachnls = IWN5000_NDMACHNLS;
1309 	sc->broadcast_id = IWN5000_ID_BROADCAST;
1310 	sc->rxonsz = IWN5000_RXONSZ;
1311 	sc->schedsz = IWN5000_SCHEDSZ;
1312 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
1313 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
1314 	sc->fwsz = IWN5000_FWSZ;
1315 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
1316 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
1317 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
1318 
1319 	return 0;
1320 }
1321 
1322 /*
1323  * Attach the interface to 802.11 radiotap.
1324  */
1325 static void
1326 iwn_radiotap_attach(struct iwn_softc *sc)
1327 {
1328 	struct ifnet *ifp = sc->sc_ifp;
1329 	struct ieee80211com *ic = ifp->if_l2com;
1330 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1331 	ieee80211_radiotap_attach(ic,
1332 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
1333 		IWN_TX_RADIOTAP_PRESENT,
1334 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
1335 		IWN_RX_RADIOTAP_PRESENT);
1336 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1337 }
1338 
1339 static void
1340 iwn_sysctlattach(struct iwn_softc *sc)
1341 {
1342 #ifdef	IWN_DEBUG
1343 	struct sysctl_ctx_list *ctx;
1344 	struct sysctl_oid *tree;
1345 
1346 	ctx = &sc->sc_sysctl_ctx;
1347 	tree = sc->sc_sysctl_tree;
1348 
1349 	if (tree) {
1350 		device_printf(sc->sc_dev, "can't add sysctl node\n");
1351 		return;
1352 	}
1353 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1354 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
1355 		"control debugging printfs");
1356 #endif
1357 }
1358 
1359 static struct ieee80211vap *
1360 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1361     enum ieee80211_opmode opmode, int flags,
1362     const uint8_t bssid[IEEE80211_ADDR_LEN],
1363     const uint8_t mac[IEEE80211_ADDR_LEN])
1364 {
1365 	struct iwn_vap *ivp;
1366 	struct ieee80211vap *vap;
1367 	uint8_t mac1[IEEE80211_ADDR_LEN];
1368 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
1369 
1370 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
1371 		return NULL;
1372 
1373 	IEEE80211_ADDR_COPY(mac1, mac);
1374 
1375 	ivp = kmalloc(sizeof(struct iwn_vap), M_80211_VAP, M_INTWAIT | M_ZERO);
1376 	vap = &ivp->iv_vap;
1377 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac1);
1378 	ivp->ctx = IWN_RXON_BSS_CTX;
1379 	IEEE80211_ADDR_COPY(ivp->macaddr, mac1);
1380 	vap->iv_bmissthreshold = 10;		/* override default */
1381 	/* Override with driver methods. */
1382 	ivp->iv_newstate = vap->iv_newstate;
1383 	vap->iv_newstate = iwn_newstate;
1384 	sc->ivap[IWN_RXON_BSS_CTX] = vap;
1385 
1386 	ieee80211_ratectl_init(vap);
1387 	/* Complete setup. */
1388 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status);
1389 	ic->ic_opmode = opmode;
1390 	return vap;
1391 }
1392 
1393 static void
1394 iwn_vap_delete(struct ieee80211vap *vap)
1395 {
1396 	struct iwn_vap *ivp = IWN_VAP(vap);
1397 
1398 	ieee80211_ratectl_deinit(vap);
1399 	ieee80211_vap_detach(vap);
1400 	kfree(ivp, M_80211_VAP);
1401 }
1402 
1403 static int
1404 iwn_pci_detach(device_t dev)
1405 {
1406 	struct iwn_softc *sc = device_get_softc(dev);
1407 	struct ifnet *ifp = sc->sc_ifp;
1408 	struct ieee80211com *ic;
1409 	int qid;
1410 
1411 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1412 
1413 	wlan_serialize_enter();
1414 
1415 	if (ifp != NULL) {
1416 		ic = ifp->if_l2com;
1417 
1418 		ieee80211_draintask(ic, &sc->sc_reinit_task);
1419 		ieee80211_draintask(ic, &sc->sc_radioon_task);
1420 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
1421 
1422 		iwn_stop_locked(sc);
1423 
1424 #if 0
1425 		// We don't need this for DragonFly as our taskqueue_free()
1426 		// is running all remaining tasks before terminating.
1427 		taskqueue_drain_all(sc->sc_tq);
1428 #endif
1429 		taskqueue_free(sc->sc_tq);
1430 
1431 		callout_stop(&sc->watchdog_to);
1432 		callout_stop(&sc->calib_to);
1433 		ieee80211_ifdetach(ic);
1434 	}
1435 
1436 	/* cleanup sysctl nodes */
1437 	sysctl_ctx_free(&sc->sc_sysctl_ctx);
1438 
1439 	/* Uninstall interrupt handler. */
1440 	if (sc->irq != NULL) {
1441 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
1442 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
1443 		    sc->irq);
1444 		pci_release_msi(dev);
1445 		sc->irq = NULL;
1446 	}
1447 
1448 	/* Free DMA resources. */
1449 	iwn_free_rx_ring(sc, &sc->rxq);
1450 	for (qid = 0; qid < sc->ntxqs; qid++)
1451 		iwn_free_tx_ring(sc, &sc->txq[qid]);
1452 	iwn_free_sched(sc);
1453 	iwn_free_kw(sc);
1454 	if (sc->ict != NULL) {
1455 		iwn_free_ict(sc);
1456 		sc->ict = NULL;
1457 	}
1458 	iwn_free_fwmem(sc);
1459 
1460 	if (sc->mem != NULL) {
1461 		bus_release_resource(dev, SYS_RES_MEMORY,
1462 		    rman_get_rid(sc->mem), sc->mem);
1463 		sc->mem = NULL;
1464 	}
1465 
1466 	if (ifp != NULL) {
1467 		if_free(ifp);
1468 		sc->sc_ifp = NULL;
1469 	}
1470 
1471 	bus_dma_tag_destroy(sc->sc_dmat);
1472 
1473 	wlan_serialize_exit();
1474 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__);
1475 	return 0;
1476 }
1477 
1478 static int
1479 iwn_pci_shutdown(device_t dev)
1480 {
1481 	struct iwn_softc *sc = device_get_softc(dev);
1482 
1483 	wlan_serialize_enter();
1484 	iwn_stop_locked(sc);
1485 	wlan_serialize_exit();
1486 
1487 	return 0;
1488 }
1489 
1490 static int
1491 iwn_pci_suspend(device_t dev)
1492 {
1493 	struct iwn_softc *sc = device_get_softc(dev);
1494 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1495 
1496 	ieee80211_suspend_all(ic);
1497 	return 0;
1498 }
1499 
1500 static int
1501 iwn_pci_resume(device_t dev)
1502 {
1503 	struct iwn_softc *sc = device_get_softc(dev);
1504 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1505 
1506 	/* Clear device-specific "PCI retry timeout" register (41h). */
1507 	pci_write_config(dev, 0x41, 0, 1);
1508 
1509 	ieee80211_resume_all(ic);
1510 	return 0;
1511 }
1512 
1513 static int
1514 iwn_nic_lock(struct iwn_softc *sc)
1515 {
1516 	int ntries;
1517 
1518 	/* Request exclusive access to NIC. */
1519 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1520 
1521 	/* Spin until we actually get the lock. */
1522 	for (ntries = 0; ntries < 1000; ntries++) {
1523 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1524 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1525 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1526 			return 0;
1527 		DELAY(10);
1528 	}
1529 	return ETIMEDOUT;
1530 }
1531 
1532 static __inline void
1533 iwn_nic_unlock(struct iwn_softc *sc)
1534 {
1535 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1536 }
1537 
1538 static __inline uint32_t
1539 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1540 {
1541 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1542 	IWN_BARRIER_READ_WRITE(sc);
1543 	return IWN_READ(sc, IWN_PRPH_RDATA);
1544 }
1545 
1546 static __inline void
1547 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1548 {
1549 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1550 	IWN_BARRIER_WRITE(sc);
1551 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1552 }
1553 
1554 static __inline void
1555 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1556 {
1557 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1558 }
1559 
1560 static __inline void
1561 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1562 {
1563 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1564 }
1565 
1566 static __inline void
1567 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1568     const uint32_t *data, int count)
1569 {
1570 	for (; count > 0; count--, data++, addr += 4)
1571 		iwn_prph_write(sc, addr, *data);
1572 }
1573 
1574 static __inline uint32_t
1575 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1576 {
1577 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1578 	IWN_BARRIER_READ_WRITE(sc);
1579 	return IWN_READ(sc, IWN_MEM_RDATA);
1580 }
1581 
1582 static __inline void
1583 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1584 {
1585 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1586 	IWN_BARRIER_WRITE(sc);
1587 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1588 }
1589 
1590 static __inline void
1591 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1592 {
1593 	uint32_t tmp;
1594 
1595 	tmp = iwn_mem_read(sc, addr & ~3);
1596 	if (addr & 3)
1597 		tmp = (tmp & 0x0000ffff) | data << 16;
1598 	else
1599 		tmp = (tmp & 0xffff0000) | data;
1600 	iwn_mem_write(sc, addr & ~3, tmp);
1601 }
1602 
1603 static __inline void
1604 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1605     int count)
1606 {
1607 	for (; count > 0; count--, addr += 4)
1608 		*data++ = iwn_mem_read(sc, addr);
1609 }
1610 
1611 static __inline void
1612 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1613     int count)
1614 {
1615 	for (; count > 0; count--, addr += 4)
1616 		iwn_mem_write(sc, addr, val);
1617 }
1618 
1619 static int
1620 iwn_eeprom_lock(struct iwn_softc *sc)
1621 {
1622 	int i, ntries;
1623 
1624 	for (i = 0; i < 100; i++) {
1625 		/* Request exclusive access to EEPROM. */
1626 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1627 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1628 
1629 		/* Spin until we actually get the lock. */
1630 		for (ntries = 0; ntries < 100; ntries++) {
1631 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1632 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1633 				return 0;
1634 			DELAY(10);
1635 		}
1636 	}
1637 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__);
1638 	return ETIMEDOUT;
1639 }
1640 
1641 static __inline void
1642 iwn_eeprom_unlock(struct iwn_softc *sc)
1643 {
1644 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1645 }
1646 
1647 /*
1648  * Initialize access by host to One Time Programmable ROM.
1649  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1650  */
1651 static int
1652 iwn_init_otprom(struct iwn_softc *sc)
1653 {
1654 	uint16_t prev, base, next;
1655 	int count, error;
1656 
1657 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1658 
1659 	/* Wait for clock stabilization before accessing prph. */
1660 	if ((error = iwn_clock_wait(sc)) != 0)
1661 		return error;
1662 
1663 	if ((error = iwn_nic_lock(sc)) != 0)
1664 		return error;
1665 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1666 	DELAY(5);
1667 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1668 	iwn_nic_unlock(sc);
1669 
1670 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1671 	if (sc->base_params->shadow_ram_support) {
1672 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1673 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1674 	}
1675 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1676 	/* Clear ECC status. */
1677 	IWN_SETBITS(sc, IWN_OTP_GP,
1678 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1679 
1680 	/*
1681 	 * Find the block before last block (contains the EEPROM image)
1682 	 * for HW without OTP shadow RAM.
1683 	 */
1684 	if (! sc->base_params->shadow_ram_support) {
1685 		/* Switch to absolute addressing mode. */
1686 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1687 		base = prev = 0;
1688 		for (count = 0; count < sc->base_params->max_ll_items;
1689 		    count++) {
1690 			error = iwn_read_prom_data(sc, base, &next, 2);
1691 			if (error != 0)
1692 				return error;
1693 			if (next == 0)	/* End of linked-list. */
1694 				break;
1695 			prev = base;
1696 			base = le16toh(next);
1697 		}
1698 		if (count == 0 || count == sc->base_params->max_ll_items)
1699 			return EIO;
1700 		/* Skip "next" word. */
1701 		sc->prom_base = prev + 1;
1702 	}
1703 
1704 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1705 
1706 	return 0;
1707 }
1708 
1709 static int
1710 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1711 {
1712 	uint8_t *out = data;
1713 	uint32_t val, tmp;
1714 	int ntries;
1715 
1716 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1717 
1718 	addr += sc->prom_base;
1719 	for (; count > 0; count -= 2, addr++) {
1720 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1721 		for (ntries = 0; ntries < 10; ntries++) {
1722 			val = IWN_READ(sc, IWN_EEPROM);
1723 			if (val & IWN_EEPROM_READ_VALID)
1724 				break;
1725 			DELAY(5);
1726 		}
1727 		if (ntries == 10) {
1728 			device_printf(sc->sc_dev,
1729 			    "timeout reading ROM at 0x%x\n", addr);
1730 			return ETIMEDOUT;
1731 		}
1732 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1733 			/* OTPROM, check for ECC errors. */
1734 			tmp = IWN_READ(sc, IWN_OTP_GP);
1735 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1736 				device_printf(sc->sc_dev,
1737 				    "OTPROM ECC error at 0x%x\n", addr);
1738 				return EIO;
1739 			}
1740 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1741 				/* Correctable ECC error, clear bit. */
1742 				IWN_SETBITS(sc, IWN_OTP_GP,
1743 				    IWN_OTP_GP_ECC_CORR_STTS);
1744 			}
1745 		}
1746 		*out++ = val >> 16;
1747 		if (count > 1)
1748 			*out++ = val >> 24;
1749 	}
1750 
1751 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1752 
1753 	return 0;
1754 }
1755 
1756 static void
1757 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1758 {
1759 	if (error != 0)
1760 		return;
1761 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1762 	*(bus_addr_t *)arg = segs[0].ds_addr;
1763 }
1764 
1765 static int
1766 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1767     void **kvap, bus_size_t size, bus_size_t alignment)
1768 {
1769 	int error;
1770 
1771 	dma->tag = NULL;
1772 	dma->size = size;
1773 
1774 	error = bus_dma_tag_create(sc->sc_dmat, alignment,
1775 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1776 	    1, size, BUS_DMA_NOWAIT, &dma->tag);
1777 	if (error != 0)
1778 		goto fail;
1779 
1780 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1781 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1782 	if (error != 0)
1783 		goto fail;
1784 
1785 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1786 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1787 	if (error != 0)
1788 		goto fail;
1789 
1790 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1791 
1792 	if (kvap != NULL)
1793 		*kvap = dma->vaddr;
1794 
1795 	return 0;
1796 
1797 fail:	iwn_dma_contig_free(dma);
1798 	return error;
1799 }
1800 
1801 static void
1802 iwn_dma_contig_free(struct iwn_dma_info *dma)
1803 {
1804 	if (dma->vaddr != NULL) {
1805 		bus_dmamap_sync(dma->tag, dma->map,
1806 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1807 		bus_dmamap_unload(dma->tag, dma->map);
1808 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1809 		dma->vaddr = NULL;
1810 	}
1811 	if (dma->tag != NULL) {
1812 		bus_dma_tag_destroy(dma->tag);
1813 		dma->tag = NULL;
1814 	}
1815 }
1816 
1817 static int
1818 iwn_alloc_sched(struct iwn_softc *sc)
1819 {
1820 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1821 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1822 	    sc->schedsz, 1024);
1823 }
1824 
1825 static void
1826 iwn_free_sched(struct iwn_softc *sc)
1827 {
1828 	iwn_dma_contig_free(&sc->sched_dma);
1829 }
1830 
1831 static int
1832 iwn_alloc_kw(struct iwn_softc *sc)
1833 {
1834 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1835 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1836 }
1837 
1838 static void
1839 iwn_free_kw(struct iwn_softc *sc)
1840 {
1841 	iwn_dma_contig_free(&sc->kw_dma);
1842 }
1843 
1844 static int
1845 iwn_alloc_ict(struct iwn_softc *sc)
1846 {
1847 	/* ICT table must be aligned on a 4KB boundary. */
1848 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1849 	    IWN_ICT_SIZE, 4096);
1850 }
1851 
1852 static void
1853 iwn_free_ict(struct iwn_softc *sc)
1854 {
1855 	iwn_dma_contig_free(&sc->ict_dma);
1856 }
1857 
1858 static int
1859 iwn_alloc_fwmem(struct iwn_softc *sc)
1860 {
1861 	/* Must be aligned on a 16-byte boundary. */
1862 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1863 }
1864 
1865 static void
1866 iwn_free_fwmem(struct iwn_softc *sc)
1867 {
1868 	iwn_dma_contig_free(&sc->fw_dma);
1869 }
1870 
1871 static int
1872 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1873 {
1874 	bus_size_t size;
1875 	int i, error;
1876 
1877 	ring->cur = 0;
1878 
1879 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1880 
1881 	/* Allocate RX descriptors (256-byte aligned). */
1882 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1883 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1884 	    size, 256);
1885 	if (error != 0) {
1886 		device_printf(sc->sc_dev,
1887 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1888 		    __func__, error);
1889 		goto fail;
1890 	}
1891 
1892 	/* Allocate RX status area (16-byte aligned). */
1893 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1894 	    sizeof (struct iwn_rx_status), 16);
1895 	if (error != 0) {
1896 		device_printf(sc->sc_dev,
1897 		    "%s: could not allocate RX status DMA memory, error %d\n",
1898 		    __func__, error);
1899 		goto fail;
1900 	}
1901 
1902 	/* Create RX buffer DMA tag. */
1903 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
1904 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1905 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, BUS_DMA_NOWAIT, &ring->data_dmat);
1906 	if (error != 0) {
1907 		device_printf(sc->sc_dev,
1908 		    "%s: could not create RX buf DMA tag, error %d\n",
1909 		    __func__, error);
1910 		goto fail;
1911 	}
1912 
1913 	/*
1914 	 * Allocate and map RX buffers.
1915 	 */
1916 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1917 		struct iwn_rx_data *data = &ring->data[i];
1918 		bus_addr_t paddr;
1919 
1920 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1921 		if (error != 0) {
1922 			device_printf(sc->sc_dev,
1923 			    "%s: could not create RX buf DMA map, error %d\n",
1924 			    __func__, error);
1925 			goto fail;
1926 		}
1927 
1928 		data->m = m_getjcl(MB_DONTWAIT, MT_DATA,
1929 				   M_PKTHDR, IWN_RBUF_SIZE);
1930 		if (data->m == NULL) {
1931 			device_printf(sc->sc_dev,
1932 			    "%s: could not allocate RX mbuf\n", __func__);
1933 			error = ENOBUFS;
1934 			goto fail;
1935 		}
1936 
1937 		error = bus_dmamap_load(ring->data_dmat, data->map,
1938 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1939 		    &paddr, BUS_DMA_NOWAIT);
1940 		if (error != 0 && error != EFBIG) {
1941 			device_printf(sc->sc_dev,
1942 			    "%s: can't not map mbuf, error %d\n", __func__,
1943 			    error);
1944 			goto fail;
1945 		}
1946 
1947 		/* Set physical address of RX buffer (256-byte aligned). */
1948 		ring->desc[i] = htole32(paddr >> 8);
1949 	}
1950 
1951 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1952 	    BUS_DMASYNC_PREWRITE);
1953 
1954 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
1955 
1956 	return 0;
1957 
1958 fail:	iwn_free_rx_ring(sc, ring);
1959 
1960 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
1961 
1962 	return error;
1963 }
1964 
1965 static void
1966 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1967 {
1968 	int ntries;
1969 
1970 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
1971 
1972 	if (iwn_nic_lock(sc) == 0) {
1973 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1974 		for (ntries = 0; ntries < 1000; ntries++) {
1975 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1976 			    IWN_FH_RX_STATUS_IDLE)
1977 				break;
1978 			DELAY(10);
1979 		}
1980 		iwn_nic_unlock(sc);
1981 	}
1982 	ring->cur = 0;
1983 	sc->last_rx_valid = 0;
1984 }
1985 
1986 static void
1987 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1988 {
1989 	int i;
1990 
1991 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1992 
1993 	iwn_dma_contig_free(&ring->desc_dma);
1994 	iwn_dma_contig_free(&ring->stat_dma);
1995 
1996 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1997 		struct iwn_rx_data *data = &ring->data[i];
1998 
1999 		if (data->m != NULL) {
2000 			bus_dmamap_sync(ring->data_dmat, data->map,
2001 			    BUS_DMASYNC_POSTREAD);
2002 			bus_dmamap_unload(ring->data_dmat, data->map);
2003 			m_freem(data->m);
2004 			data->m = NULL;
2005 		}
2006 		if (data->map != NULL)
2007 			bus_dmamap_destroy(ring->data_dmat, data->map);
2008 	}
2009 	if (ring->data_dmat != NULL) {
2010 		bus_dma_tag_destroy(ring->data_dmat);
2011 		ring->data_dmat = NULL;
2012 	}
2013 }
2014 
2015 static int
2016 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
2017 {
2018 	bus_addr_t paddr;
2019 	bus_size_t size;
2020 	int i, error;
2021 
2022 	ring->qid = qid;
2023 	ring->queued = 0;
2024 	ring->cur = 0;
2025 
2026 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2027 
2028 	/* Allocate TX descriptors (256-byte aligned). */
2029 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
2030 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
2031 	    size, 256);
2032 	if (error != 0) {
2033 		device_printf(sc->sc_dev,
2034 		    "%s: could not allocate TX ring DMA memory, error %d\n",
2035 		    __func__, error);
2036 		goto fail;
2037 	}
2038 
2039 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
2040 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
2041 	    size, 4);
2042 	if (error != 0) {
2043 		device_printf(sc->sc_dev,
2044 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
2045 		    __func__, error);
2046 		goto fail;
2047 	}
2048 
2049 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
2050 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
2051 	    IWN_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, &ring->data_dmat);
2052 	if (error != 0) {
2053 		device_printf(sc->sc_dev,
2054 		    "%s: could not create TX buf DMA tag, error %d\n",
2055 		    __func__, error);
2056 		goto fail;
2057 	}
2058 
2059 	paddr = ring->cmd_dma.paddr;
2060 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2061 		struct iwn_tx_data *data = &ring->data[i];
2062 
2063 		data->cmd_paddr = paddr;
2064 		data->scratch_paddr = paddr + 12;
2065 		paddr += sizeof (struct iwn_tx_cmd);
2066 
2067 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2068 		if (error != 0) {
2069 			device_printf(sc->sc_dev,
2070 			    "%s: could not create TX buf DMA map, error %d\n",
2071 			    __func__, error);
2072 			goto fail;
2073 		}
2074 	}
2075 
2076 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2077 
2078 	return 0;
2079 
2080 fail:	iwn_free_tx_ring(sc, ring);
2081 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2082 	return error;
2083 }
2084 
2085 static void
2086 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2087 {
2088 	int i;
2089 
2090 	DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__);
2091 
2092 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2093 		struct iwn_tx_data *data = &ring->data[i];
2094 
2095 		if (data->m != NULL) {
2096 			bus_dmamap_sync(ring->data_dmat, data->map,
2097 			    BUS_DMASYNC_POSTWRITE);
2098 			bus_dmamap_unload(ring->data_dmat, data->map);
2099 			m_freem(data->m);
2100 			data->m = NULL;
2101 		}
2102 	}
2103 	/* Clear TX descriptors. */
2104 	memset(ring->desc, 0, ring->desc_dma.size);
2105 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2106 	    BUS_DMASYNC_PREWRITE);
2107 	sc->qfullmsk &= ~(1 << ring->qid);
2108 	ring->queued = 0;
2109 	ring->cur = 0;
2110 }
2111 
2112 static void
2113 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2114 {
2115 	int i;
2116 
2117 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
2118 
2119 	iwn_dma_contig_free(&ring->desc_dma);
2120 	iwn_dma_contig_free(&ring->cmd_dma);
2121 
2122 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2123 		struct iwn_tx_data *data = &ring->data[i];
2124 
2125 		if (data->m != NULL) {
2126 			bus_dmamap_sync(ring->data_dmat, data->map,
2127 			    BUS_DMASYNC_POSTWRITE);
2128 			bus_dmamap_unload(ring->data_dmat, data->map);
2129 			m_freem(data->m);
2130 		}
2131 		if (data->map != NULL)
2132 			bus_dmamap_destroy(ring->data_dmat, data->map);
2133 	}
2134 	if (ring->data_dmat != NULL) {
2135 		bus_dma_tag_destroy(ring->data_dmat);
2136 		ring->data_dmat = NULL;
2137 	}
2138 }
2139 
2140 static void
2141 iwn5000_ict_reset(struct iwn_softc *sc)
2142 {
2143 	/* Disable interrupts. */
2144 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2145 
2146 	/* Reset ICT table. */
2147 	memset(sc->ict, 0, IWN_ICT_SIZE);
2148 	sc->ict_cur = 0;
2149 
2150 	/* Set physical address of ICT table (4KB aligned). */
2151 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
2152 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
2153 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
2154 
2155 	/* Enable periodic RX interrupt. */
2156 	sc->int_mask |= IWN_INT_RX_PERIODIC;
2157 	/* Switch to ICT interrupt mode in driver. */
2158 	sc->sc_flags |= IWN_FLAG_USE_ICT;
2159 
2160 	/* Re-enable interrupts. */
2161 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
2162 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2163 }
2164 
2165 static int
2166 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2167 {
2168 	struct iwn_ops *ops = &sc->ops;
2169 	uint16_t val;
2170 	int error;
2171 
2172 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2173 
2174 	/* Check whether adapter has an EEPROM or an OTPROM. */
2175 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
2176 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
2177 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
2178 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
2179 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
2180 
2181 	/* Adapter has to be powered on for EEPROM access to work. */
2182 	if ((error = iwn_apm_init(sc)) != 0) {
2183 		device_printf(sc->sc_dev,
2184 		    "%s: could not power ON adapter, error %d\n", __func__,
2185 		    error);
2186 		return error;
2187 	}
2188 
2189 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
2190 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
2191 		return EIO;
2192 	}
2193 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2194 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
2195 		    __func__, error);
2196 		return error;
2197 	}
2198 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
2199 		if ((error = iwn_init_otprom(sc)) != 0) {
2200 			device_printf(sc->sc_dev,
2201 			    "%s: could not initialize OTPROM, error %d\n",
2202 			    __func__, error);
2203 			return error;
2204 		}
2205 	}
2206 
2207 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
2208 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
2209 	/* Check if HT support is bonded out. */
2210 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
2211 		sc->sc_flags |= IWN_FLAG_HAS_11N;
2212 
2213 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
2214 	sc->rfcfg = le16toh(val);
2215 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
2216 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
2217 	if (sc->txchainmask == 0)
2218 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
2219 	if (sc->rxchainmask == 0)
2220 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
2221 
2222 	/* Read MAC address. */
2223 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
2224 
2225 	/* Read adapter-specific information from EEPROM. */
2226 	ops->read_eeprom(sc);
2227 
2228 	iwn_apm_stop(sc);	/* Power OFF adapter. */
2229 
2230 	iwn_eeprom_unlock(sc);
2231 
2232 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2233 
2234 	return 0;
2235 }
2236 
2237 static void
2238 iwn4965_read_eeprom(struct iwn_softc *sc)
2239 {
2240 	uint32_t addr;
2241 	uint16_t val;
2242 	int i;
2243 
2244 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2245 
2246 	/* Read regulatory domain (4 ASCII characters). */
2247 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
2248 
2249 	/* Read the list of authorized channels (20MHz ones only). */
2250 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2251 		addr = iwn4965_regulatory_bands[i];
2252 		iwn_read_eeprom_channels(sc, i, addr);
2253 	}
2254 
2255 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
2256 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
2257 	sc->maxpwr2GHz = val & 0xff;
2258 	sc->maxpwr5GHz = val >> 8;
2259 	/* Check that EEPROM values are within valid range. */
2260 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2261 		sc->maxpwr5GHz = 38;
2262 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2263 		sc->maxpwr2GHz = 38;
2264 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2265 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2266 
2267 	/* Read samples for each TX power group. */
2268 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
2269 	    sizeof sc->bands);
2270 
2271 	/* Read voltage at which samples were taken. */
2272 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
2273 	sc->eeprom_voltage = (int16_t)le16toh(val);
2274 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2275 	    sc->eeprom_voltage);
2276 
2277 #ifdef IWN_DEBUG
2278 	/* Print samples. */
2279 	if (sc->sc_debug & IWN_DEBUG_ANY) {
2280 		for (i = 0; i < IWN_NBANDS - 1; i++)
2281 			iwn4965_print_power_group(sc, i);
2282 	}
2283 #endif
2284 
2285 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2286 }
2287 
2288 #ifdef IWN_DEBUG
2289 static void
2290 iwn4965_print_power_group(struct iwn_softc *sc, int i)
2291 {
2292 	struct iwn4965_eeprom_band *band = &sc->bands[i];
2293 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
2294 	int j, c;
2295 
2296 	kprintf("===band %d===\n", i);
2297 	kprintf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2298 	kprintf("chan1 num=%d\n", chans[0].num);
2299 	for (c = 0; c < 2; c++) {
2300 		for (j = 0; j < IWN_NSAMPLES; j++) {
2301 			kprintf("chain %d, sample %d: temp=%d gain=%d "
2302 			    "power=%d pa_det=%d\n", c, j,
2303 			    chans[0].samples[c][j].temp,
2304 			    chans[0].samples[c][j].gain,
2305 			    chans[0].samples[c][j].power,
2306 			    chans[0].samples[c][j].pa_det);
2307 		}
2308 	}
2309 	kprintf("chan2 num=%d\n", chans[1].num);
2310 	for (c = 0; c < 2; c++) {
2311 		for (j = 0; j < IWN_NSAMPLES; j++) {
2312 			kprintf("chain %d, sample %d: temp=%d gain=%d "
2313 			    "power=%d pa_det=%d\n", c, j,
2314 			    chans[1].samples[c][j].temp,
2315 			    chans[1].samples[c][j].gain,
2316 			    chans[1].samples[c][j].power,
2317 			    chans[1].samples[c][j].pa_det);
2318 		}
2319 	}
2320 }
2321 #endif
2322 
2323 static void
2324 iwn5000_read_eeprom(struct iwn_softc *sc)
2325 {
2326 	struct iwn5000_eeprom_calib_hdr hdr;
2327 	int32_t volt;
2328 	uint32_t base, addr;
2329 	uint16_t val;
2330 	int i;
2331 
2332 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2333 
2334 	/* Read regulatory domain (4 ASCII characters). */
2335 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2336 	base = le16toh(val);
2337 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
2338 	    sc->eeprom_domain, 4);
2339 
2340 	/* Read the list of authorized channels (20MHz ones only). */
2341 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2342 		addr =  base + sc->base_params->regulatory_bands[i];
2343 		iwn_read_eeprom_channels(sc, i, addr);
2344 	}
2345 
2346 	/* Read enhanced TX power information for 6000 Series. */
2347 	if (sc->base_params->enhanced_TX_power)
2348 		iwn_read_eeprom_enhinfo(sc);
2349 
2350 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
2351 	base = le16toh(val);
2352 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
2353 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2354 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
2355 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
2356 	sc->calib_ver = hdr.version;
2357 
2358 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
2359 		sc->eeprom_voltage = le16toh(hdr.volt);
2360 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2361 		sc->eeprom_temp_high=le16toh(val);
2362 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2363 		sc->eeprom_temp = le16toh(val);
2364 	}
2365 
2366 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
2367 		/* Compute temperature offset. */
2368 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2369 		sc->eeprom_temp = le16toh(val);
2370 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2371 		volt = le16toh(val);
2372 		sc->temp_off = sc->eeprom_temp - (volt / -5);
2373 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
2374 		    sc->eeprom_temp, volt, sc->temp_off);
2375 	} else {
2376 		/* Read crystal calibration. */
2377 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
2378 		    &sc->eeprom_crystal, sizeof (uint32_t));
2379 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
2380 		    le32toh(sc->eeprom_crystal));
2381 	}
2382 
2383 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2384 
2385 }
2386 
2387 /*
2388  * Translate EEPROM flags to net80211.
2389  */
2390 static uint32_t
2391 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
2392 {
2393 	uint32_t nflags;
2394 
2395 	nflags = 0;
2396 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2397 		nflags |= IEEE80211_CHAN_PASSIVE;
2398 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
2399 		nflags |= IEEE80211_CHAN_NOADHOC;
2400 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
2401 		nflags |= IEEE80211_CHAN_DFS;
2402 		/* XXX apparently IBSS may still be marked */
2403 		nflags |= IEEE80211_CHAN_NOADHOC;
2404 	}
2405 
2406 	return nflags;
2407 }
2408 
2409 static void
2410 iwn_read_eeprom_band(struct iwn_softc *sc, int n)
2411 {
2412 	struct ifnet *ifp = sc->sc_ifp;
2413 	struct ieee80211com *ic = ifp->if_l2com;
2414 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2415 	const struct iwn_chan_band *band = &iwn_bands[n];
2416 	struct ieee80211_channel *c;
2417 	uint8_t chan;
2418 	int i, nflags;
2419 
2420 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2421 
2422 	for (i = 0; i < band->nchan; i++) {
2423 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2424 			DPRINTF(sc, IWN_DEBUG_RESET,
2425 			    "skip chan %d flags 0x%x maxpwr %d\n",
2426 			    band->chan[i], channels[i].flags,
2427 			    channels[i].maxpwr);
2428 			continue;
2429 		}
2430 		chan = band->chan[i];
2431 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2432 
2433 		c = &ic->ic_channels[ic->ic_nchans++];
2434 		c->ic_ieee = chan;
2435 		c->ic_maxregpower = channels[i].maxpwr;
2436 		c->ic_maxpower = 2*c->ic_maxregpower;
2437 
2438 		if (n == 0) {	/* 2GHz band */
2439 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G);
2440 			/* G =>'s B is supported */
2441 			c->ic_flags = IEEE80211_CHAN_B | nflags;
2442 			c = &ic->ic_channels[ic->ic_nchans++];
2443 			c[0] = c[-1];
2444 			c->ic_flags = IEEE80211_CHAN_G | nflags;
2445 		} else {	/* 5GHz band */
2446 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
2447 			c->ic_flags = IEEE80211_CHAN_A | nflags;
2448 		}
2449 
2450 		/* Save maximum allowed TX power for this channel. */
2451 		sc->maxpwr[chan] = channels[i].maxpwr;
2452 
2453 		DPRINTF(sc, IWN_DEBUG_RESET,
2454 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
2455 		    channels[i].flags, channels[i].maxpwr);
2456 
2457 		if (sc->sc_flags & IWN_FLAG_HAS_11N) {
2458 			/* add HT20, HT40 added separately */
2459 			c = &ic->ic_channels[ic->ic_nchans++];
2460 			c[0] = c[-1];
2461 			c->ic_flags |= IEEE80211_CHAN_HT20;
2462 		}
2463 	}
2464 
2465 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2466 
2467 }
2468 
2469 static void
2470 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n)
2471 {
2472 	struct ifnet *ifp = sc->sc_ifp;
2473 	struct ieee80211com *ic = ifp->if_l2com;
2474 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2475 	const struct iwn_chan_band *band = &iwn_bands[n];
2476 	struct ieee80211_channel *c, *cent, *extc;
2477 	uint8_t chan;
2478 	int i, nflags;
2479 
2480 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__);
2481 
2482 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) {
2483 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__);
2484 		return;
2485 	}
2486 
2487 	for (i = 0; i < band->nchan; i++) {
2488 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2489 			DPRINTF(sc, IWN_DEBUG_RESET,
2490 			    "skip chan %d flags 0x%x maxpwr %d\n",
2491 			    band->chan[i], channels[i].flags,
2492 			    channels[i].maxpwr);
2493 			continue;
2494 		}
2495 		chan = band->chan[i];
2496 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2497 
2498 		/*
2499 		 * Each entry defines an HT40 channel pair; find the
2500 		 * center channel, then the extension channel above.
2501 		 */
2502 		cent = ieee80211_find_channel_byieee(ic, chan,
2503 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
2504 		if (cent == NULL) {	/* XXX shouldn't happen */
2505 			device_printf(sc->sc_dev,
2506 			    "%s: no entry for channel %d\n", __func__, chan);
2507 			continue;
2508 		}
2509 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
2510 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
2511 		if (extc == NULL) {
2512 			DPRINTF(sc, IWN_DEBUG_RESET,
2513 			    "%s: skip chan %d, extension channel not found\n",
2514 			    __func__, chan);
2515 			continue;
2516 		}
2517 
2518 		DPRINTF(sc, IWN_DEBUG_RESET,
2519 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2520 		    chan, channels[i].flags, channels[i].maxpwr);
2521 
2522 		c = &ic->ic_channels[ic->ic_nchans++];
2523 		c[0] = cent[0];
2524 		c->ic_extieee = extc->ic_ieee;
2525 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2526 		c->ic_flags |= IEEE80211_CHAN_HT40U | nflags;
2527 		c = &ic->ic_channels[ic->ic_nchans++];
2528 		c[0] = extc[0];
2529 		c->ic_extieee = cent->ic_ieee;
2530 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2531 		c->ic_flags |= IEEE80211_CHAN_HT40D | nflags;
2532 	}
2533 
2534 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2535 
2536 }
2537 
2538 static void
2539 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2540 {
2541 	struct ifnet *ifp = sc->sc_ifp;
2542 	struct ieee80211com *ic = ifp->if_l2com;
2543 
2544 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
2545 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
2546 
2547 	if (n < 5)
2548 		iwn_read_eeprom_band(sc, n);
2549 	else
2550 		iwn_read_eeprom_ht40(sc, n);
2551 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2552 }
2553 
2554 static struct iwn_eeprom_chan *
2555 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
2556 {
2557 	int band, chan, i, j;
2558 
2559 	if (IEEE80211_IS_CHAN_HT40(c)) {
2560 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
2561 		if (IEEE80211_IS_CHAN_HT40D(c))
2562 			chan = c->ic_extieee;
2563 		else
2564 			chan = c->ic_ieee;
2565 		for (i = 0; i < iwn_bands[band].nchan; i++) {
2566 			if (iwn_bands[band].chan[i] == chan)
2567 				return &sc->eeprom_channels[band][i];
2568 		}
2569 	} else {
2570 		for (j = 0; j < 5; j++) {
2571 			for (i = 0; i < iwn_bands[j].nchan; i++) {
2572 				if (iwn_bands[j].chan[i] == c->ic_ieee)
2573 					return &sc->eeprom_channels[j][i];
2574 			}
2575 		}
2576 	}
2577 	return NULL;
2578 }
2579 
2580 /*
2581  * Enforce flags read from EEPROM.
2582  */
2583 static int
2584 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
2585     int nchan, struct ieee80211_channel chans[])
2586 {
2587 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2588 	int i;
2589 
2590 	for (i = 0; i < nchan; i++) {
2591 		struct ieee80211_channel *c = &chans[i];
2592 		struct iwn_eeprom_chan *channel;
2593 
2594 		channel = iwn_find_eeprom_channel(sc, c);
2595 		if (channel == NULL) {
2596 			if_printf(ic->ic_ifp,
2597 			    "%s: invalid channel %u freq %u/0x%x\n",
2598 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2599 			return EINVAL;
2600 		}
2601 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2602 	}
2603 
2604 	return 0;
2605 }
2606 
2607 static void
2608 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2609 {
2610 	struct iwn_eeprom_enhinfo enhinfo[35];
2611 	struct ifnet *ifp = sc->sc_ifp;
2612 	struct ieee80211com *ic = ifp->if_l2com;
2613 	struct ieee80211_channel *c;
2614 	uint16_t val, base;
2615 	int8_t maxpwr;
2616 	uint8_t flags;
2617 	int i, j;
2618 
2619 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2620 
2621 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2622 	base = le16toh(val);
2623 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2624 	    enhinfo, sizeof enhinfo);
2625 
2626 	for (i = 0; i < nitems(enhinfo); i++) {
2627 		flags = enhinfo[i].flags;
2628 		if (!(flags & IWN_ENHINFO_VALID))
2629 			continue;	/* Skip invalid entries. */
2630 
2631 		maxpwr = 0;
2632 		if (sc->txchainmask & IWN_ANT_A)
2633 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2634 		if (sc->txchainmask & IWN_ANT_B)
2635 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2636 		if (sc->txchainmask & IWN_ANT_C)
2637 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2638 		if (sc->ntxchains == 2)
2639 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2640 		else if (sc->ntxchains == 3)
2641 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2642 
2643 		for (j = 0; j < ic->ic_nchans; j++) {
2644 			c = &ic->ic_channels[j];
2645 			if ((flags & IWN_ENHINFO_5GHZ)) {
2646 				if (!IEEE80211_IS_CHAN_A(c))
2647 					continue;
2648 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2649 				if (!IEEE80211_IS_CHAN_G(c))
2650 					continue;
2651 			} else if (!IEEE80211_IS_CHAN_B(c))
2652 				continue;
2653 			if ((flags & IWN_ENHINFO_HT40)) {
2654 				if (!IEEE80211_IS_CHAN_HT40(c))
2655 					continue;
2656 			} else {
2657 				if (IEEE80211_IS_CHAN_HT40(c))
2658 					continue;
2659 			}
2660 			if (enhinfo[i].chan != 0 &&
2661 			    enhinfo[i].chan != c->ic_ieee)
2662 				continue;
2663 
2664 			DPRINTF(sc, IWN_DEBUG_RESET,
2665 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2666 			    c->ic_flags, maxpwr / 2);
2667 			c->ic_maxregpower = maxpwr / 2;
2668 			c->ic_maxpower = maxpwr;
2669 		}
2670 	}
2671 
2672 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2673 
2674 }
2675 
2676 static struct ieee80211_node *
2677 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2678 {
2679 	return kmalloc(sizeof(struct iwn_node), M_80211_NODE,
2680 		       M_INTWAIT | M_ZERO);
2681 }
2682 
2683 static __inline int
2684 rate2plcp(int rate)
2685 {
2686 	switch (rate & 0xff) {
2687 	case 12:	return 0xd;
2688 	case 18:	return 0xf;
2689 	case 24:	return 0x5;
2690 	case 36:	return 0x7;
2691 	case 48:	return 0x9;
2692 	case 72:	return 0xb;
2693 	case 96:	return 0x1;
2694 	case 108:	return 0x3;
2695 	case 2:		return 10;
2696 	case 4:		return 20;
2697 	case 11:	return 55;
2698 	case 22:	return 110;
2699 	}
2700 	return 0;
2701 }
2702 
2703 /*
2704  * Calculate the required PLCP value from the given rate,
2705  * to the given node.
2706  *
2707  * This will take the node configuration (eg 11n, rate table
2708  * setup, etc) into consideration.
2709  */
2710 static uint32_t
2711 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2712     uint8_t rate)
2713 {
2714 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
2715 	struct ieee80211com *ic = ni->ni_ic;
2716 	uint8_t txant1, txant2;
2717 	uint32_t plcp = 0;
2718 	int ridx;
2719 
2720 	/* Use the first valid TX antenna. */
2721 	txant1 = IWN_LSB(sc->txchainmask);
2722 	txant2 = IWN_LSB(sc->txchainmask & ~txant1);
2723 
2724 	/*
2725 	 * If it's an MCS rate, let's set the plcp correctly
2726 	 * and set the relevant flags based on the node config.
2727 	 */
2728 	if (rate & IEEE80211_RATE_MCS) {
2729 		/*
2730 		 * Set the initial PLCP value to be between 0->31 for
2731 		 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2732 		 * flag.
2733 		 */
2734 		plcp = RV(rate) | IWN_RFLAG_MCS;
2735 
2736 		/*
2737 		 * XXX the following should only occur if both
2738 		 * the local configuration _and_ the remote node
2739 		 * advertise these capabilities.  Thus this code
2740 		 * may need fixing!
2741 		 */
2742 
2743 		/*
2744 		 * Set the channel width and guard interval.
2745 		 */
2746 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2747 			plcp |= IWN_RFLAG_HT40;
2748 			if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2749 				plcp |= IWN_RFLAG_SGI;
2750 		} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) {
2751 			plcp |= IWN_RFLAG_SGI;
2752 		}
2753 
2754 		/*
2755 		 * If it's a two stream rate, enable TX on both
2756 		 * antennas.
2757 		 *
2758 		 * XXX three stream rates?
2759 		 */
2760 		if (rate > 0x87)
2761 			plcp |= IWN_RFLAG_ANT(txant1 | txant2);
2762 		else
2763 			plcp |= IWN_RFLAG_ANT(txant1);
2764 	} else {
2765 		/*
2766 		 * Set the initial PLCP - fine for both
2767 		 * OFDM and CCK rates.
2768 		 */
2769 		plcp = rate2plcp(rate);
2770 
2771 		/* Set CCK flag if it's CCK */
2772 
2773 		/* XXX It would be nice to have a method
2774 		 * to map the ridx -> phy table entry
2775 		 * so we could just query that, rather than
2776 		 * this hack to check against IWN_RIDX_OFDM6.
2777 		 */
2778 		ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2779 		    rate & IEEE80211_RATE_VAL);
2780 		if (ridx < IWN_RIDX_OFDM6 &&
2781 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2782 			plcp |= IWN_RFLAG_CCK;
2783 
2784 		/* Set antenna configuration */
2785 		plcp |= IWN_RFLAG_ANT(txant1);
2786 	}
2787 
2788 	DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2789 	    __func__,
2790 	    rate,
2791 	    plcp);
2792 
2793 	return (htole32(plcp));
2794 #undef	RV
2795 }
2796 
2797 static void
2798 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2799 {
2800 	/* Doesn't do anything at the moment */
2801 }
2802 
2803 static int
2804 iwn_media_change(struct ifnet *ifp)
2805 {
2806 	int error;
2807 
2808 	error = ieee80211_media_change(ifp);
2809 	/* NB: only the fixed rate can change and that doesn't need a reset */
2810 	return (error == ENETRESET ? 0 : error);
2811 }
2812 
2813 static int
2814 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2815 {
2816 	struct iwn_vap *ivp = IWN_VAP(vap);
2817 	struct ieee80211com *ic = vap->iv_ic;
2818 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2819 	int error = 0;
2820 
2821 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2822 
2823 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2824 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2825 
2826 	callout_stop(&sc->calib_to);
2827 
2828 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
2829 
2830 	switch (nstate) {
2831 	case IEEE80211_S_ASSOC:
2832 		if (vap->iv_state != IEEE80211_S_RUN)
2833 			break;
2834 		/* FALLTHROUGH */
2835 	case IEEE80211_S_AUTH:
2836 		if (vap->iv_state == IEEE80211_S_AUTH)
2837 			break;
2838 
2839 		/*
2840 		 * !AUTH -> AUTH transition requires state reset to handle
2841 		 * reassociations correctly.
2842 		 */
2843 		sc->rxon->associd = 0;
2844 		sc->rxon->filter &= ~htole32(IWN_FILTER_BSS);
2845 		sc->calib.state = IWN_CALIB_STATE_INIT;
2846 
2847 		if ((error = iwn_auth(sc, vap)) != 0) {
2848 			device_printf(sc->sc_dev,
2849 			    "%s: could not move to auth state\n", __func__);
2850 		}
2851 		break;
2852 
2853 	case IEEE80211_S_RUN:
2854 		/*
2855 		 * RUN -> RUN transition; Just restart the timers.
2856 		 */
2857 		if (vap->iv_state == IEEE80211_S_RUN) {
2858 			sc->calib_cnt = 0;
2859 			break;
2860 		}
2861 
2862 		/*
2863 		 * !RUN -> RUN requires setting the association id
2864 		 * which is done with a firmware cmd.  We also defer
2865 		 * starting the timers until that work is done.
2866 		 */
2867 		if ((error = iwn_run(sc, vap)) != 0) {
2868 			device_printf(sc->sc_dev,
2869 			    "%s: could not move to run state\n", __func__);
2870 		}
2871 		break;
2872 
2873 	case IEEE80211_S_INIT:
2874 		sc->calib.state = IWN_CALIB_STATE_INIT;
2875 		break;
2876 
2877 	default:
2878 		break;
2879 	}
2880 	if (error != 0){
2881 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2882 		return error;
2883 	}
2884 
2885 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2886 
2887 	return ivp->iv_newstate(vap, nstate, arg);
2888 }
2889 
2890 static void
2891 iwn_calib_timeout(void *arg)
2892 {
2893 	struct iwn_softc *sc = arg;
2894 
2895 	wlan_serialize_enter();
2896 
2897 	/* Force automatic TX power calibration every 60 secs. */
2898 	if (++sc->calib_cnt >= 120) {
2899 		uint32_t flags = 0;
2900 
2901 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2902 		    "sending request for statistics");
2903 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2904 		    sizeof flags, 1);
2905 		sc->calib_cnt = 0;
2906 	}
2907 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2908 	    sc);
2909 	wlan_serialize_exit();
2910 }
2911 
2912 /*
2913  * Process an RX_PHY firmware notification.  This is usually immediately
2914  * followed by an MPDU_RX_DONE notification.
2915  */
2916 static void
2917 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2918     struct iwn_rx_data *data)
2919 {
2920 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2921 
2922 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2923 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2924 
2925 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2926 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2927 	sc->last_rx_valid = 1;
2928 }
2929 
2930 /*
2931  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2932  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2933  */
2934 static void
2935 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2936     struct iwn_rx_data *data)
2937 {
2938 	struct iwn_ops *ops = &sc->ops;
2939 	struct ifnet *ifp = sc->sc_ifp;
2940 	struct ieee80211com *ic = ifp->if_l2com;
2941 	struct iwn_rx_ring *ring = &sc->rxq;
2942 	struct ieee80211_frame *wh;
2943 	struct ieee80211_node *ni;
2944 	struct mbuf *m, *m1;
2945 	struct iwn_rx_stat *stat;
2946 	caddr_t head;
2947 	bus_addr_t paddr;
2948 	uint32_t flags;
2949 	int error, len, rssi, nf;
2950 
2951 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2952 
2953 	if (desc->type == IWN_MPDU_RX_DONE) {
2954 		/* Check for prior RX_PHY notification. */
2955 		if (!sc->last_rx_valid) {
2956 			DPRINTF(sc, IWN_DEBUG_ANY,
2957 			    "%s: missing RX_PHY\n", __func__);
2958 			return;
2959 		}
2960 		stat = &sc->last_rx_stat;
2961 	} else
2962 		stat = (struct iwn_rx_stat *)(desc + 1);
2963 
2964 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2965 
2966 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2967 		device_printf(sc->sc_dev,
2968 		    "%s: invalid RX statistic header, len %d\n", __func__,
2969 		    stat->cfg_phy_len);
2970 		return;
2971 	}
2972 	if (desc->type == IWN_MPDU_RX_DONE) {
2973 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2974 		head = (caddr_t)(mpdu + 1);
2975 		len = le16toh(mpdu->len);
2976 	} else {
2977 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
2978 		len = le16toh(stat->len);
2979 	}
2980 
2981 	flags = le32toh(*(uint32_t *)(head + len));
2982 
2983 	/* Discard frames with a bad FCS early. */
2984 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2985 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
2986 		    __func__, flags);
2987 		IFNET_STAT_INC(ifp, ierrors, 1);
2988 		return;
2989 	}
2990 	/* Discard frames that are too short. */
2991 	if (len < sizeof (*wh)) {
2992 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
2993 		    __func__, len);
2994 		IFNET_STAT_INC(ifp, ierrors, 1);
2995 		return;
2996 	}
2997 
2998 	m1 = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
2999 	if (m1 == NULL) {
3000 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
3001 		    __func__);
3002 		IFNET_STAT_INC(ifp, ierrors, 1);
3003 		return;
3004 	}
3005 	bus_dmamap_unload(ring->data_dmat, data->map);
3006 
3007 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
3008 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3009 	if (error != 0 && error != EFBIG) {
3010 		device_printf(sc->sc_dev,
3011 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
3012 		m_freem(m1);
3013 
3014 		/* Try to reload the old mbuf. */
3015 		error = bus_dmamap_load(ring->data_dmat, data->map,
3016 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
3017 		    &paddr, BUS_DMA_NOWAIT);
3018 		if (error != 0 && error != EFBIG) {
3019 			panic("%s: could not load old RX mbuf", __func__);
3020 		}
3021 		/* Physical address may have changed. */
3022 		ring->desc[ring->cur] = htole32(paddr >> 8);
3023 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
3024 		    BUS_DMASYNC_PREWRITE);
3025 		IFNET_STAT_INC(ifp, ierrors, 1);
3026 		return;
3027 	}
3028 
3029 	m = data->m;
3030 	data->m = m1;
3031 	/* Update RX descriptor. */
3032 	ring->desc[ring->cur] = htole32(paddr >> 8);
3033 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3034 	    BUS_DMASYNC_PREWRITE);
3035 
3036 	/* Finalize mbuf. */
3037 	m->m_pkthdr.rcvif = ifp;
3038 	m->m_data = head;
3039 	m->m_pkthdr.len = m->m_len = len;
3040 
3041 	/* Grab a reference to the source node. */
3042 	wh = mtod(m, struct ieee80211_frame *);
3043 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
3044 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
3045 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
3046 
3047 	rssi = ops->get_rssi(sc, stat);
3048 
3049 	if (ieee80211_radiotap_active(ic)) {
3050 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
3051 
3052 		tap->wr_flags = 0;
3053 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
3054 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3055 		tap->wr_dbm_antsignal = (int8_t)rssi;
3056 		tap->wr_dbm_antnoise = (int8_t)nf;
3057 		tap->wr_tsft = stat->tstamp;
3058 		switch (stat->rate) {
3059 		/* CCK rates. */
3060 		case  10: tap->wr_rate =   2; break;
3061 		case  20: tap->wr_rate =   4; break;
3062 		case  55: tap->wr_rate =  11; break;
3063 		case 110: tap->wr_rate =  22; break;
3064 		/* OFDM rates. */
3065 		case 0xd: tap->wr_rate =  12; break;
3066 		case 0xf: tap->wr_rate =  18; break;
3067 		case 0x5: tap->wr_rate =  24; break;
3068 		case 0x7: tap->wr_rate =  36; break;
3069 		case 0x9: tap->wr_rate =  48; break;
3070 		case 0xb: tap->wr_rate =  72; break;
3071 		case 0x1: tap->wr_rate =  96; break;
3072 		case 0x3: tap->wr_rate = 108; break;
3073 		/* Unknown rate: should not happen. */
3074 		default:  tap->wr_rate =   0;
3075 		}
3076 	}
3077 
3078 	/* Send the frame to the 802.11 layer. */
3079 	if (ni != NULL) {
3080 		if (ni->ni_flags & IEEE80211_NODE_HT)
3081 			m->m_flags |= M_AMPDU;
3082 		(void)ieee80211_input(ni, m, rssi - nf, nf);
3083 		/* Node is no longer needed. */
3084 		ieee80211_free_node(ni);
3085 	} else {
3086 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
3087 	}
3088 
3089 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3090 
3091 }
3092 
3093 /* Process an incoming Compressed BlockAck. */
3094 static void
3095 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3096     struct iwn_rx_data *data)
3097 {
3098 	struct iwn_ops *ops = &sc->ops;
3099 	struct ifnet *ifp = sc->sc_ifp;
3100 	struct iwn_node *wn;
3101 	struct ieee80211_node *ni;
3102 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
3103 	struct iwn_tx_ring *txq;
3104 	struct iwn_tx_data *txdata;
3105 	struct ieee80211_tx_ampdu *tap;
3106 	struct mbuf *m;
3107 	uint64_t bitmap;
3108 	uint16_t ssn;
3109 	uint8_t tid;
3110 	int ackfailcnt = 0, i, lastidx, qid, *res, shift;
3111 
3112 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3113 
3114 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3115 
3116 	qid = le16toh(ba->qid);
3117 	txq = &sc->txq[ba->qid];
3118 	tap = sc->qid2tap[ba->qid];
3119 	tid = tap->txa_ac;
3120 	wn = (void *)tap->txa_ni;
3121 
3122 	res = NULL;
3123 	ssn = 0;
3124 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3125 		res = tap->txa_private;
3126 		ssn = tap->txa_start & 0xfff;
3127 	}
3128 
3129 	for (lastidx = le16toh(ba->ssn) & 0xff; txq->read != lastidx;) {
3130 		txdata = &txq->data[txq->read];
3131 
3132 		/* Unmap and free mbuf. */
3133 		bus_dmamap_sync(txq->data_dmat, txdata->map,
3134 		    BUS_DMASYNC_POSTWRITE);
3135 		bus_dmamap_unload(txq->data_dmat, txdata->map);
3136 		m = txdata->m, txdata->m = NULL;
3137 		ni = txdata->ni, txdata->ni = NULL;
3138 
3139 		KASSERT(ni != NULL, ("no node"));
3140 		KASSERT(m != NULL, ("no mbuf"));
3141 
3142 		ieee80211_tx_complete(ni, m, 1);
3143 
3144 		txq->queued--;
3145 		txq->read = (txq->read + 1) % IWN_TX_RING_COUNT;
3146 	}
3147 
3148 	if (txq->queued == 0 && res != NULL) {
3149 		iwn_nic_lock(sc);
3150 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3151 		iwn_nic_unlock(sc);
3152 		sc->qid2tap[qid] = NULL;
3153 		kfree(res, M_DEVBUF);
3154 		return;
3155 	}
3156 
3157 	if (wn->agg[tid].bitmap == 0)
3158 		return;
3159 
3160 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
3161 	if (shift < 0)
3162 		shift += 0x100;
3163 
3164 	if (wn->agg[tid].nframes > (64 - shift))
3165 		return;
3166 
3167 	ni = tap->txa_ni;
3168 	bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap;
3169 	for (i = 0; bitmap; i++) {
3170 		if ((bitmap & 1) == 0) {
3171 			IFNET_STAT_INC(ifp, oerrors, 1);
3172 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3173 			    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
3174 		} else {
3175 			IFNET_STAT_INC(ifp, opackets, 1);
3176 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3177 			    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
3178 		}
3179 		bitmap >>= 1;
3180 	}
3181 
3182 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3183 
3184 }
3185 
3186 /*
3187  * Process a CALIBRATION_RESULT notification sent by the initialization
3188  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
3189  */
3190 static void
3191 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3192     struct iwn_rx_data *data)
3193 {
3194 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
3195 	int len, idx = -1;
3196 
3197 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3198 
3199 	/* Runtime firmware should not send such a notification. */
3200 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE){
3201 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received after clib done\n",
3202 	    __func__);
3203 		return;
3204 	}
3205 	len = (le32toh(desc->len) & 0x3fff) - 4;
3206 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3207 
3208 	switch (calib->code) {
3209 	case IWN5000_PHY_CALIB_DC:
3210 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC)
3211 			idx = 0;
3212 		break;
3213 	case IWN5000_PHY_CALIB_LO:
3214 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO)
3215 			idx = 1;
3216 		break;
3217 	case IWN5000_PHY_CALIB_TX_IQ:
3218 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ)
3219 			idx = 2;
3220 		break;
3221 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
3222 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC)
3223 			idx = 3;
3224 		break;
3225 	case IWN5000_PHY_CALIB_BASE_BAND:
3226 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND)
3227 			idx = 4;
3228 		break;
3229 	}
3230 	if (idx == -1)	/* Ignore other results. */
3231 		return;
3232 
3233 	/* Save calibration result. */
3234 	if (sc->calibcmd[idx].buf != NULL)
3235 		kfree(sc->calibcmd[idx].buf, M_DEVBUF);
3236 	sc->calibcmd[idx].buf = kmalloc(len, M_DEVBUF, M_INTWAIT);
3237 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3238 	    "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len);
3239 	sc->calibcmd[idx].len = len;
3240 	memcpy(sc->calibcmd[idx].buf, calib, len);
3241 }
3242 
3243 static void
3244 iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib,
3245     struct iwn_stats *stats, int len)
3246 {
3247 	struct iwn_stats_bt *stats_bt;
3248 	struct iwn_stats *lstats;
3249 
3250 	/*
3251 	 * First - check whether the length is the bluetooth or normal.
3252 	 *
3253 	 * If it's normal - just copy it and bump out.
3254 	 * Otherwise we have to convert things.
3255 	 */
3256 
3257 	if (len == sizeof(struct iwn_stats) + 4) {
3258 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3259 		sc->last_stat_valid = 1;
3260 		return;
3261 	}
3262 
3263 	/*
3264 	 * If it's not the bluetooth size - log, then just copy.
3265 	 */
3266 	if (len != sizeof(struct iwn_stats_bt) + 4) {
3267 		DPRINTF(sc, IWN_DEBUG_STATS,
3268 		    "%s: size of rx statistics (%d) not an expected size!\n",
3269 		    __func__,
3270 		    len);
3271 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3272 		sc->last_stat_valid = 1;
3273 		return;
3274 	}
3275 
3276 	/*
3277 	 * Ok. Time to copy.
3278 	 */
3279 	stats_bt = (struct iwn_stats_bt *) stats;
3280 	lstats = &sc->last_stat;
3281 
3282 	/* flags */
3283 	lstats->flags = stats_bt->flags;
3284 	/* rx_bt */
3285 	memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm,
3286 	    sizeof(struct iwn_rx_phy_stats));
3287 	memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck,
3288 	    sizeof(struct iwn_rx_phy_stats));
3289 	memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common,
3290 	    sizeof(struct iwn_rx_general_stats));
3291 	memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht,
3292 	    sizeof(struct iwn_rx_ht_phy_stats));
3293 	/* tx */
3294 	memcpy(&lstats->tx, &stats_bt->tx,
3295 	    sizeof(struct iwn_tx_stats));
3296 	/* general */
3297 	memcpy(&lstats->general, &stats_bt->general,
3298 	    sizeof(struct iwn_general_stats));
3299 
3300 	/* XXX TODO: Squirrel away the extra bluetooth stats somewhere */
3301 	sc->last_stat_valid = 1;
3302 }
3303 
3304 /*
3305  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
3306  * The latter is sent by the firmware after each received beacon.
3307  */
3308 static void
3309 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3310     struct iwn_rx_data *data)
3311 {
3312 	struct iwn_ops *ops = &sc->ops;
3313 	struct ifnet *ifp = sc->sc_ifp;
3314 	struct ieee80211com *ic = ifp->if_l2com;
3315 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3316 	struct iwn_calib_state *calib = &sc->calib;
3317 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
3318 	struct iwn_stats *lstats;
3319 	int temp;
3320 
3321 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3322 
3323 	/* Ignore statistics received during a scan. */
3324 	if (vap->iv_state != IEEE80211_S_RUN ||
3325 	    (ic->ic_flags & IEEE80211_F_SCAN)){
3326 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n",
3327 	    __func__);
3328 		return;
3329 	}
3330 
3331 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3332 
3333 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS,
3334 	    "%s: received statistics, cmd %d, len %d\n",
3335 	    __func__, desc->type, le16toh(desc->len));
3336 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
3337 
3338 	/*
3339 	 * Collect/track general statistics for reporting.
3340 	 *
3341 	 * This takes care of ensuring that the bluetooth sized message
3342 	 * will be correctly converted to the legacy sized message.
3343 	 */
3344 	iwn_stats_update(sc, calib, stats, le16toh(desc->len));
3345 
3346 	/*
3347 	 * And now, let's take a reference of it to use!
3348 	 */
3349 	lstats = &sc->last_stat;
3350 
3351 	/* Test if temperature has changed. */
3352 	if (lstats->general.temp != sc->rawtemp) {
3353 		/* Convert "raw" temperature to degC. */
3354 		sc->rawtemp = stats->general.temp;
3355 		temp = ops->get_temperature(sc);
3356 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
3357 		    __func__, temp);
3358 
3359 		/* Update TX power if need be (4965AGN only). */
3360 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3361 			iwn4965_power_calibration(sc, temp);
3362 	}
3363 
3364 	if (desc->type != IWN_BEACON_STATISTICS)
3365 		return;	/* Reply to a statistics request. */
3366 
3367 	sc->noise = iwn_get_noise(&lstats->rx.general);
3368 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
3369 
3370 	/* Test that RSSI and noise are present in stats report. */
3371 	if (le32toh(lstats->rx.general.flags) != 1) {
3372 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
3373 		    "received statistics without RSSI");
3374 		return;
3375 	}
3376 
3377 	if (calib->state == IWN_CALIB_STATE_ASSOC)
3378 		iwn_collect_noise(sc, &lstats->rx.general);
3379 	else if (calib->state == IWN_CALIB_STATE_RUN) {
3380 		iwn_tune_sensitivity(sc, &lstats->rx);
3381 		/*
3382 		 * XXX TODO: Only run the RX recovery if we're associated!
3383 		 */
3384 		iwn_check_rx_recovery(sc, lstats);
3385 		iwn_save_stats_counters(sc, lstats);
3386 	}
3387 
3388 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3389 }
3390 
3391 /*
3392  * Save the relevant statistic counters for the next calibration
3393  * pass.
3394  */
3395 static void
3396 iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs)
3397 {
3398 	struct iwn_calib_state *calib = &sc->calib;
3399 
3400 	/* Save counters values for next call. */
3401 	calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp);
3402 	calib->fa_cck = le32toh(rs->rx.cck.fa);
3403 	calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp);
3404 	calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp);
3405 	calib->fa_ofdm = le32toh(rs->rx.ofdm.fa);
3406 
3407 	/* Last time we received these tick values */
3408 	sc->last_calib_ticks = ticks;
3409 }
3410 
3411 /*
3412  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
3413  * and 5000 adapters have different incompatible TX status formats.
3414  */
3415 static void
3416 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3417     struct iwn_rx_data *data)
3418 {
3419 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
3420 	struct iwn_tx_ring *ring;
3421 	int qid;
3422 
3423 	qid = desc->qid & 0xf;
3424 	ring = &sc->txq[qid];
3425 
3426 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3427 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
3428 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
3429 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
3430 	    le32toh(stat->status));
3431 
3432 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3433 	if (qid >= sc->firstaggqueue) {
3434 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3435 		    &stat->status);
3436 	} else {
3437 		iwn_tx_done(sc, desc, stat->ackfailcnt,
3438 		    le32toh(stat->status) & 0xff);
3439 	}
3440 }
3441 
3442 static void
3443 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3444     struct iwn_rx_data *data)
3445 {
3446 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
3447 	struct iwn_tx_ring *ring;
3448 	int qid;
3449 
3450 	qid = desc->qid & 0xf;
3451 	ring = &sc->txq[qid];
3452 
3453 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3454 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
3455 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
3456 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
3457 	    le32toh(stat->status));
3458 
3459 #ifdef notyet
3460 	/* Reset TX scheduler slot. */
3461 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
3462 #endif
3463 
3464 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3465 	if (qid >= sc->firstaggqueue) {
3466 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3467 		    &stat->status);
3468 	} else {
3469 		iwn_tx_done(sc, desc, stat->ackfailcnt,
3470 		    le16toh(stat->status) & 0xff);
3471 	}
3472 }
3473 
3474 /*
3475  * Adapter-independent backend for TX_DONE firmware notifications.
3476  */
3477 static void
3478 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
3479     uint8_t status)
3480 {
3481 	struct ifnet *ifp = sc->sc_ifp;
3482 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
3483 	struct iwn_tx_data *data = &ring->data[desc->idx];
3484 	struct mbuf *m;
3485 	struct ieee80211_node *ni;
3486 	struct ieee80211vap *vap;
3487 
3488 	KASSERT(data->ni != NULL, ("no node"));
3489 
3490 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3491 
3492 	/* Unmap and free mbuf. */
3493 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
3494 	bus_dmamap_unload(ring->data_dmat, data->map);
3495 	m = data->m, data->m = NULL;
3496 	ni = data->ni, data->ni = NULL;
3497 	vap = ni->ni_vap;
3498 
3499 	/*
3500 	 * Update rate control statistics for the node.
3501 	 */
3502 	if (status & IWN_TX_FAIL) {
3503 		IFNET_STAT_INC(ifp, oerrors, 1);
3504 		ieee80211_ratectl_tx_complete(vap, ni,
3505 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
3506 	} else {
3507 		IFNET_STAT_INC(ifp, opackets, 1);
3508 		ieee80211_ratectl_tx_complete(vap, ni,
3509 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
3510 	}
3511 
3512 	/*
3513 	 * Channels marked for "radar" require traffic to be received
3514 	 * to unlock before we can transmit.  Until traffic is seen
3515 	 * any attempt to transmit is returned immediately with status
3516 	 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
3517 	 * happen on first authenticate after scanning.  To workaround
3518 	 * this we ignore a failure of this sort in AUTH state so the
3519 	 * 802.11 layer will fall back to using a timeout to wait for
3520 	 * the AUTH reply.  This allows the firmware time to see
3521 	 * traffic so a subsequent retry of AUTH succeeds.  It's
3522 	 * unclear why the firmware does not maintain state for
3523 	 * channels recently visited as this would allow immediate
3524 	 * use of the channel after a scan (where we see traffic).
3525 	 */
3526 	if (status == IWN_TX_FAIL_TX_LOCKED &&
3527 	    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
3528 		ieee80211_tx_complete(ni, m, 0);
3529 	else
3530 		ieee80211_tx_complete(ni, m,
3531 		    (status & IWN_TX_FAIL) != 0);
3532 
3533 	sc->sc_tx_timer = 0;
3534 	if (--ring->queued < IWN_TX_RING_LOMARK) {
3535 		sc->qfullmsk &= ~(1 << ring->qid);
3536 		if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) {
3537 			ifq_clr_oactive(&ifp->if_snd);
3538 			iwn_start_locked(ifp);
3539 		}
3540 	}
3541 
3542 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3543 
3544 }
3545 
3546 /*
3547  * Process a "command done" firmware notification.  This is where we wakeup
3548  * processes waiting for a synchronous command completion.
3549  */
3550 static void
3551 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3552 {
3553 	struct iwn_tx_ring *ring;
3554 	struct iwn_tx_data *data;
3555 	int cmd_queue_num;
3556 
3557 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
3558 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
3559 	else
3560 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
3561 
3562 	if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num)
3563 		return;	/* Not a command ack. */
3564 
3565 	ring = &sc->txq[cmd_queue_num];
3566 	data = &ring->data[desc->idx];
3567 
3568 	/* If the command was mapped in an mbuf, free it. */
3569 	if (data->m != NULL) {
3570 		bus_dmamap_sync(ring->data_dmat, data->map,
3571 		    BUS_DMASYNC_POSTWRITE);
3572 		bus_dmamap_unload(ring->data_dmat, data->map);
3573 		m_freem(data->m);
3574 		data->m = NULL;
3575 	}
3576 	wakeup(&ring->desc[desc->idx]);
3577 }
3578 
3579 static void
3580 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes,
3581     void *stat)
3582 {
3583 	struct iwn_ops *ops = &sc->ops;
3584 	struct ifnet *ifp = sc->sc_ifp;
3585 	struct iwn_tx_ring *ring = &sc->txq[qid];
3586 	struct iwn_tx_data *data;
3587 	struct mbuf *m;
3588 	struct iwn_node *wn;
3589 	struct ieee80211_node *ni;
3590 	struct ieee80211_tx_ampdu *tap;
3591 	uint64_t bitmap;
3592 	uint32_t *status = stat;
3593 	uint16_t *aggstatus = stat;
3594 	uint16_t ssn;
3595 	uint8_t tid;
3596 	int bit, i, lastidx, *res, seqno, shift, start;
3597 
3598 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3599 
3600 	if (nframes == 1) {
3601 		if ((*status & 0xff) != 1 && (*status & 0xff) != 2) {
3602 #ifdef	NOT_YET
3603 			kprintf("ieee80211_send_bar()\n");
3604 #endif
3605 			/*
3606 			 * If we completely fail a transmit, make sure a
3607 			 * notification is pushed up to the rate control
3608 			 * layer.
3609 			 */
3610 			tap = sc->qid2tap[qid];
3611 			tid = tap->txa_ac;
3612 			wn = (void *)tap->txa_ni;
3613 			ni = tap->txa_ni;
3614 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3615 			    IEEE80211_RATECTL_TX_FAILURE, &nframes, NULL);
3616 		}
3617 	}
3618 
3619 	bitmap = 0;
3620 	start = idx;
3621 	for (i = 0; i < nframes; i++) {
3622 		if (le16toh(aggstatus[i * 2]) & 0xc)
3623 			continue;
3624 
3625 		idx = le16toh(aggstatus[2*i + 1]) & 0xff;
3626 		bit = idx - start;
3627 		shift = 0;
3628 		if (bit >= 64) {
3629 			shift = 0x100 - idx + start;
3630 			bit = 0;
3631 			start = idx;
3632 		} else if (bit <= -64)
3633 			bit = 0x100 - start + idx;
3634 		else if (bit < 0) {
3635 			shift = start - idx;
3636 			start = idx;
3637 			bit = 0;
3638 		}
3639 		bitmap = bitmap << shift;
3640 		bitmap |= 1ULL << bit;
3641 	}
3642 	tap = sc->qid2tap[qid];
3643 	tid = tap->txa_ac;
3644 	wn = (void *)tap->txa_ni;
3645 	wn->agg[tid].bitmap = bitmap;
3646 	wn->agg[tid].startidx = start;
3647 	wn->agg[tid].nframes = nframes;
3648 
3649 	res = NULL;
3650 	ssn = 0;
3651 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3652 		res = tap->txa_private;
3653 		ssn = tap->txa_start & 0xfff;
3654 	}
3655 
3656 	seqno = le32toh(*(status + nframes)) & 0xfff;
3657 	for (lastidx = (seqno & 0xff); ring->read != lastidx;) {
3658 		data = &ring->data[ring->read];
3659 
3660 		/* Unmap and free mbuf. */
3661 		bus_dmamap_sync(ring->data_dmat, data->map,
3662 		    BUS_DMASYNC_POSTWRITE);
3663 		bus_dmamap_unload(ring->data_dmat, data->map);
3664 		m = data->m, data->m = NULL;
3665 		ni = data->ni, data->ni = NULL;
3666 
3667 		KASSERT(ni != NULL, ("no node"));
3668 		KASSERT(m != NULL, ("no mbuf"));
3669 
3670 		ieee80211_tx_complete(ni, m, 1);
3671 
3672 		ring->queued--;
3673 		ring->read = (ring->read + 1) % IWN_TX_RING_COUNT;
3674 	}
3675 
3676 	if (ring->queued == 0 && res != NULL) {
3677 		iwn_nic_lock(sc);
3678 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3679 		iwn_nic_unlock(sc);
3680 		sc->qid2tap[qid] = NULL;
3681 		kfree(res, M_DEVBUF);
3682 		return;
3683 	}
3684 
3685 	sc->sc_tx_timer = 0;
3686 	if (ring->queued < IWN_TX_RING_LOMARK) {
3687 		sc->qfullmsk &= ~(1 << ring->qid);
3688 		if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) {
3689 			ifq_clr_oactive(&ifp->if_snd);
3690 			iwn_start_locked(ifp);
3691 		}
3692 	}
3693 
3694 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3695 
3696 }
3697 
3698 /*
3699  * Process an INT_FH_RX or INT_SW_RX interrupt.
3700  */
3701 static void
3702 iwn_notif_intr(struct iwn_softc *sc)
3703 {
3704 	struct iwn_ops *ops = &sc->ops;
3705 	struct ifnet *ifp = sc->sc_ifp;
3706 	struct ieee80211com *ic = ifp->if_l2com;
3707 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3708 	uint16_t hw;
3709 
3710 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
3711 	    BUS_DMASYNC_POSTREAD);
3712 
3713 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
3714 	while (sc->rxq.cur != hw) {
3715 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
3716 		struct iwn_rx_desc *desc;
3717 
3718 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3719 		    BUS_DMASYNC_POSTREAD);
3720 		desc = mtod(data->m, struct iwn_rx_desc *);
3721 
3722 		DPRINTF(sc, IWN_DEBUG_RECV,
3723 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
3724 		    __func__, sc->rxq.cur, desc->qid & 0xf, desc->idx, desc->flags,
3725 		    desc->type, iwn_intr_str(desc->type),
3726 		    le16toh(desc->len));
3727 
3728 		if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF))	/* Reply to a command. */
3729 			iwn_cmd_done(sc, desc);
3730 
3731 		switch (desc->type) {
3732 		case IWN_RX_PHY:
3733 			iwn_rx_phy(sc, desc, data);
3734 			break;
3735 
3736 		case IWN_RX_DONE:		/* 4965AGN only. */
3737 		case IWN_MPDU_RX_DONE:
3738 			/* An 802.11 frame has been received. */
3739 			iwn_rx_done(sc, desc, data);
3740 			break;
3741 
3742 		case IWN_RX_COMPRESSED_BA:
3743 			/* A Compressed BlockAck has been received. */
3744 			iwn_rx_compressed_ba(sc, desc, data);
3745 			break;
3746 
3747 		case IWN_TX_DONE:
3748 			/* An 802.11 frame has been transmitted. */
3749 			ops->tx_done(sc, desc, data);
3750 			break;
3751 
3752 		case IWN_RX_STATISTICS:
3753 		case IWN_BEACON_STATISTICS:
3754 			iwn_rx_statistics(sc, desc, data);
3755 			break;
3756 
3757 		case IWN_BEACON_MISSED:
3758 		{
3759 			struct iwn_beacon_missed *miss =
3760 			    (struct iwn_beacon_missed *)(desc + 1);
3761 			int misses;
3762 
3763 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3764 			    BUS_DMASYNC_POSTREAD);
3765 			misses = le32toh(miss->consecutive);
3766 
3767 			DPRINTF(sc, IWN_DEBUG_STATE,
3768 			    "%s: beacons missed %d/%d\n", __func__,
3769 			    misses, le32toh(miss->total));
3770 			/*
3771 			 * If more than 5 consecutive beacons are missed,
3772 			 * reinitialize the sensitivity state machine.
3773 			 */
3774 			if (vap->iv_state == IEEE80211_S_RUN &&
3775 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3776 				if (misses > 5)
3777 					(void)iwn_init_sensitivity(sc);
3778 				if (misses >= vap->iv_bmissthreshold) {
3779 					ieee80211_beacon_miss(ic);
3780 				}
3781 			}
3782 			break;
3783 		}
3784 		case IWN_UC_READY:
3785 		{
3786 			struct iwn_ucode_info *uc =
3787 			    (struct iwn_ucode_info *)(desc + 1);
3788 
3789 			/* The microcontroller is ready. */
3790 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3791 			    BUS_DMASYNC_POSTREAD);
3792 			DPRINTF(sc, IWN_DEBUG_RESET,
3793 			    "microcode alive notification version=%d.%d "
3794 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
3795 			    uc->subtype, le32toh(uc->valid));
3796 
3797 			if (le32toh(uc->valid) != 1) {
3798 				device_printf(sc->sc_dev,
3799 				    "microcontroller initialization failed");
3800 				break;
3801 			}
3802 			if (uc->subtype == IWN_UCODE_INIT) {
3803 				/* Save microcontroller report. */
3804 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
3805 			}
3806 			/* Save the address of the error log in SRAM. */
3807 			sc->errptr = le32toh(uc->errptr);
3808 			break;
3809 		}
3810 		case IWN_STATE_CHANGED:
3811 		{
3812 			/*
3813 			 * State change allows hardware switch change to be
3814 			 * noted. However, we handle this in iwn_intr as we
3815 			 * get both the enable/disble intr.
3816 			 */
3817 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3818 			    BUS_DMASYNC_POSTREAD);
3819 #ifdef	IWN_DEBUG
3820 			uint32_t *status = (uint32_t *)(desc + 1);
3821 			DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE,
3822 			    "state changed to %x\n",
3823 			    le32toh(*status));
3824 #endif
3825 			break;
3826 		}
3827 		case IWN_START_SCAN:
3828 		{
3829 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3830 			    BUS_DMASYNC_POSTREAD);
3831 #ifdef	IWN_DEBUG
3832 			struct iwn_start_scan *scan =
3833 			    (struct iwn_start_scan *)(desc + 1);
3834 			DPRINTF(sc, IWN_DEBUG_ANY,
3835 			    "%s: scanning channel %d status %x\n",
3836 			    __func__, scan->chan, le32toh(scan->status));
3837 #endif
3838 			break;
3839 		}
3840 		case IWN_STOP_SCAN:
3841 		{
3842 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3843 			    BUS_DMASYNC_POSTREAD);
3844 #ifdef	IWN_DEBUG
3845 			struct iwn_stop_scan *scan =
3846 			    (struct iwn_stop_scan *)(desc + 1);
3847 			DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN,
3848 			    "scan finished nchan=%d status=%d chan=%d\n",
3849 			    scan->nchan, scan->status, scan->chan);
3850 #endif
3851 			sc->sc_is_scanning = 0;
3852 			ieee80211_scan_next(vap);
3853 			break;
3854 		}
3855 		case IWN5000_CALIBRATION_RESULT:
3856 			iwn5000_rx_calib_results(sc, desc, data);
3857 			break;
3858 
3859 		case IWN5000_CALIBRATION_DONE:
3860 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
3861 			wakeup(sc);
3862 			break;
3863 		}
3864 
3865 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
3866 	}
3867 
3868 	/* Tell the firmware what we have processed. */
3869 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
3870 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
3871 }
3872 
3873 /*
3874  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
3875  * from power-down sleep mode.
3876  */
3877 static void
3878 iwn_wakeup_intr(struct iwn_softc *sc)
3879 {
3880 	int qid;
3881 
3882 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
3883 	    __func__);
3884 
3885 	/* Wakeup RX and TX rings. */
3886 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
3887 	for (qid = 0; qid < sc->ntxqs; qid++) {
3888 		struct iwn_tx_ring *ring = &sc->txq[qid];
3889 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
3890 	}
3891 }
3892 
3893 static void
3894 iwn_rftoggle_intr(struct iwn_softc *sc)
3895 {
3896 	struct ifnet *ifp = sc->sc_ifp;
3897 	struct ieee80211com *ic = ifp->if_l2com;
3898 	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
3899 
3900 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
3901 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
3902 	if (tmp & IWN_GP_CNTRL_RFKILL)
3903 		ieee80211_runtask(ic, &sc->sc_radioon_task);
3904 	else
3905 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
3906 }
3907 
3908 /*
3909  * Dump the error log of the firmware when a firmware panic occurs.  Although
3910  * we can't debug the firmware because it is neither open source nor free, it
3911  * can help us to identify certain classes of problems.
3912  */
3913 static void
3914 iwn_fatal_intr(struct iwn_softc *sc)
3915 {
3916 	struct iwn_fw_dump dump;
3917 	int i;
3918 
3919 	/* Force a complete recalibration on next init. */
3920 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
3921 
3922 	/* Check that the error log address is valid. */
3923 	if (sc->errptr < IWN_FW_DATA_BASE ||
3924 	    sc->errptr + sizeof (dump) >
3925 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
3926 		kprintf("%s: bad firmware error log address 0x%08x\n", __func__,
3927 		    sc->errptr);
3928 		return;
3929 	}
3930 	if (iwn_nic_lock(sc) != 0) {
3931 		kprintf("%s: could not read firmware error log\n", __func__);
3932 		return;
3933 	}
3934 	/* Read firmware error log from SRAM. */
3935 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
3936 	    sizeof (dump) / sizeof (uint32_t));
3937 	iwn_nic_unlock(sc);
3938 
3939 	if (dump.valid == 0) {
3940 		kprintf("%s: firmware error log is empty\n", __func__);
3941 		return;
3942 	}
3943 	kprintf("firmware error log:\n");
3944 	kprintf("  error type      = \"%s\" (0x%08X)\n",
3945 	    (dump.id < nitems(iwn_fw_errmsg)) ?
3946 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
3947 	    dump.id);
3948 	kprintf("  program counter = 0x%08X\n", dump.pc);
3949 	kprintf("  source line     = 0x%08X\n", dump.src_line);
3950 	kprintf("  error data      = 0x%08X%08X\n",
3951 	    dump.error_data[0], dump.error_data[1]);
3952 	kprintf("  branch link     = 0x%08X%08X\n",
3953 	    dump.branch_link[0], dump.branch_link[1]);
3954 	kprintf("  interrupt link  = 0x%08X%08X\n",
3955 	    dump.interrupt_link[0], dump.interrupt_link[1]);
3956 	kprintf("  time            = %u\n", dump.time[0]);
3957 
3958 	/* Dump driver status (TX and RX rings) while we're here. */
3959 	kprintf("driver status:\n");
3960 	for (i = 0; i < sc->ntxqs; i++) {
3961 		struct iwn_tx_ring *ring = &sc->txq[i];
3962 		kprintf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
3963 		    i, ring->qid, ring->cur, ring->queued);
3964 	}
3965 	kprintf("  rx ring: cur=%d\n", sc->rxq.cur);
3966 }
3967 
3968 static void
3969 iwn_intr(void *arg)
3970 {
3971 	struct iwn_softc *sc = arg;
3972 	struct ifnet *ifp = sc->sc_ifp;
3973 	uint32_t r1, r2, tmp;
3974 
3975 	/* Disable interrupts. */
3976 	IWN_WRITE(sc, IWN_INT_MASK, 0);
3977 
3978 	/* Read interrupts from ICT (fast) or from registers (slow). */
3979 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3980 		tmp = 0;
3981 		while (sc->ict[sc->ict_cur] != 0) {
3982 			tmp |= sc->ict[sc->ict_cur];
3983 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
3984 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
3985 		}
3986 		tmp = le32toh(tmp);
3987 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
3988 			tmp = 0;
3989 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
3990 			tmp |= 0x8000;
3991 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
3992 		r2 = 0;	/* Unused. */
3993 	} else {
3994 		r1 = IWN_READ(sc, IWN_INT);
3995 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
3996 			return;	/* Hardware gone! */
3997 		r2 = IWN_READ(sc, IWN_FH_INT);
3998 	}
3999 
4000 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n"
4001     , r1, r2);
4002 
4003 	if (r1 == 0 && r2 == 0)
4004 		goto done;	/* Interrupt not for us. */
4005 
4006 	/* Acknowledge interrupts. */
4007 	IWN_WRITE(sc, IWN_INT, r1);
4008 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
4009 		IWN_WRITE(sc, IWN_FH_INT, r2);
4010 
4011 	if (r1 & IWN_INT_RF_TOGGLED) {
4012 		iwn_rftoggle_intr(sc);
4013 		goto done;
4014 	}
4015 	if (r1 & IWN_INT_CT_REACHED) {
4016 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
4017 		    __func__);
4018 	}
4019 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
4020 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
4021 		    __func__);
4022 #ifdef	IWN_DEBUG
4023 		iwn_debug_register(sc);
4024 #endif
4025 		/* Dump firmware error log and stop. */
4026 		iwn_fatal_intr(sc);
4027 
4028 		taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task);
4029 		goto done;
4030 	}
4031 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
4032 	    (r2 & IWN_FH_INT_RX)) {
4033 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4034 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
4035 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
4036 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4037 			    IWN_INT_PERIODIC_DIS);
4038 			iwn_notif_intr(sc);
4039 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
4040 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4041 				    IWN_INT_PERIODIC_ENA);
4042 			}
4043 		} else
4044 			iwn_notif_intr(sc);
4045 	}
4046 
4047 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
4048 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
4049 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
4050 		wakeup(sc);	/* FH DMA transfer completed. */
4051 	}
4052 
4053 	if (r1 & IWN_INT_ALIVE)
4054 		wakeup(sc);	/* Firmware is alive. */
4055 
4056 	if (r1 & IWN_INT_WAKEUP)
4057 		iwn_wakeup_intr(sc);
4058 
4059 done:
4060 	/* Re-enable interrupts. */
4061 	if (ifp->if_flags & IFF_UP)
4062 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4063 }
4064 
4065 /*
4066  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
4067  * 5000 adapters use a slightly different format).
4068  */
4069 static void
4070 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4071     uint16_t len)
4072 {
4073 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
4074 
4075 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4076 
4077 	*w = htole16(len + 8);
4078 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4079 	    BUS_DMASYNC_PREWRITE);
4080 	if (idx < IWN_SCHED_WINSZ) {
4081 		*(w + IWN_TX_RING_COUNT) = *w;
4082 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4083 		    BUS_DMASYNC_PREWRITE);
4084 	}
4085 }
4086 
4087 static void
4088 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4089     uint16_t len)
4090 {
4091 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4092 
4093 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4094 
4095 	*w = htole16(id << 12 | (len + 8));
4096 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4097 	    BUS_DMASYNC_PREWRITE);
4098 	if (idx < IWN_SCHED_WINSZ) {
4099 		*(w + IWN_TX_RING_COUNT) = *w;
4100 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4101 		    BUS_DMASYNC_PREWRITE);
4102 	}
4103 }
4104 
4105 #ifdef notyet
4106 static void
4107 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
4108 {
4109 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4110 
4111 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4112 
4113 	*w = (*w & htole16(0xf000)) | htole16(1);
4114 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4115 	    BUS_DMASYNC_PREWRITE);
4116 	if (idx < IWN_SCHED_WINSZ) {
4117 		*(w + IWN_TX_RING_COUNT) = *w;
4118 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4119 		    BUS_DMASYNC_PREWRITE);
4120 	}
4121 }
4122 #endif
4123 
4124 /*
4125  * Check whether OFDM 11g protection will be enabled for the given rate.
4126  *
4127  * The original driver code only enabled protection for OFDM rates.
4128  * It didn't check to see whether it was operating in 11a or 11bg mode.
4129  */
4130 static int
4131 iwn_check_rate_needs_protection(struct iwn_softc *sc,
4132     struct ieee80211vap *vap, uint8_t rate)
4133 {
4134 	struct ieee80211com *ic = vap->iv_ic;
4135 
4136 	/*
4137 	 * Not in 2GHz mode? Then there's no need to enable OFDM
4138 	 * 11bg protection.
4139 	 */
4140 	if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
4141 		return (0);
4142 	}
4143 
4144 	/*
4145 	 * 11bg protection not enabled? Then don't use it.
4146 	 */
4147 	if ((ic->ic_flags & IEEE80211_F_USEPROT) == 0)
4148 		return (0);
4149 
4150 	/*
4151 	 * If it's an 11n rate, then for now we enable
4152 	 * protection.
4153 	 */
4154 	if (rate & IEEE80211_RATE_MCS) {
4155 		return (1);
4156 	}
4157 
4158 	/*
4159 	 * Do a rate table lookup.  If the PHY is CCK,
4160 	 * don't do protection.
4161 	 */
4162 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK)
4163 		return (0);
4164 
4165 	/*
4166 	 * Yup, enable protection.
4167 	 */
4168 	return (1);
4169 }
4170 
4171 /*
4172  * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into
4173  * the link quality table that reflects this particular entry.
4174  */
4175 static int
4176 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni,
4177     uint8_t rate)
4178 {
4179 	struct ieee80211_rateset *rs;
4180 	int is_11n;
4181 	int nr;
4182 	int i;
4183 	uint8_t cmp_rate;
4184 
4185 	/*
4186 	 * Figure out if we're using 11n or not here.
4187 	 */
4188 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0)
4189 		is_11n = 1;
4190 	else
4191 		is_11n = 0;
4192 
4193 	/*
4194 	 * Use the correct rate table.
4195 	 */
4196 	if (is_11n) {
4197 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4198 		nr = ni->ni_htrates.rs_nrates;
4199 	} else {
4200 		rs = &ni->ni_rates;
4201 		nr = rs->rs_nrates;
4202 	}
4203 
4204 	/*
4205 	 * Find the relevant link quality entry in the table.
4206 	 */
4207 	for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) {
4208 		/*
4209 		 * The link quality table index starts at 0 == highest
4210 		 * rate, so we walk the rate table backwards.
4211 		 */
4212 		cmp_rate = rs->rs_rates[(nr - 1) - i];
4213 		if (rate & IEEE80211_RATE_MCS)
4214 			cmp_rate |= IEEE80211_RATE_MCS;
4215 
4216 #if 0
4217 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n",
4218 		    __func__,
4219 		    i,
4220 		    nr,
4221 		    rate,
4222 		    cmp_rate);
4223 #endif
4224 
4225 		if (cmp_rate == rate)
4226 			return (i);
4227 	}
4228 
4229 	/* Failed? Start at the end */
4230 	return (IWN_MAX_TX_RETRIES - 1);
4231 }
4232 
4233 static int
4234 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
4235 {
4236 	struct iwn_ops *ops = &sc->ops;
4237 	const struct ieee80211_txparam *tp;
4238 	struct ieee80211vap *vap = ni->ni_vap;
4239 	struct ieee80211com *ic = ni->ni_ic;
4240 	struct iwn_node *wn = (void *)ni;
4241 	struct iwn_tx_ring *ring;
4242 	struct iwn_tx_desc *desc;
4243 	struct iwn_tx_data *data;
4244 	struct iwn_tx_cmd *cmd;
4245 	struct iwn_cmd_data *tx;
4246 	struct ieee80211_frame *wh;
4247 	struct ieee80211_key *k = NULL;
4248 	struct mbuf *m1;
4249 	uint32_t flags;
4250 	uint16_t qos;
4251 	u_int hdrlen;
4252 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4253 	uint8_t tid, type;
4254 	int ac, i, totlen, error, pad, nsegs = 0, rate;
4255 
4256 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4257 
4258 	wh = mtod(m, struct ieee80211_frame *);
4259 	hdrlen = ieee80211_anyhdrsize(wh);
4260 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4261 
4262 	/* Select EDCA Access Category and TX ring for this frame. */
4263 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
4264 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
4265 		tid = qos & IEEE80211_QOS_TID;
4266 	} else {
4267 		qos = 0;
4268 		tid = 0;
4269 	}
4270 	ac = M_WME_GETAC(m);
4271 	if (m->m_flags & M_AMPDU_MPDU) {
4272 		uint16_t seqno;
4273 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
4274 
4275 		if (!IEEE80211_AMPDU_RUNNING(tap)) {
4276 			m_freem(m);
4277 			return EINVAL;
4278 		}
4279 
4280 		/*
4281 		 * Queue this frame to the hardware ring that we've
4282 		 * negotiated AMPDU TX on.
4283 		 *
4284 		 * Note that the sequence number must match the TX slot
4285 		 * being used!
4286 		 */
4287 		ac = *(int *)tap->txa_private;
4288 		seqno = ni->ni_txseqs[tid];
4289 		*(uint16_t *)wh->i_seq =
4290 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4291 		ring = &sc->txq[ac];
4292 		if ((seqno % 256) != ring->cur) {
4293 			device_printf(sc->sc_dev,
4294 			    "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n",
4295 			    __func__,
4296 			    m,
4297 			    seqno,
4298 			    seqno % 256,
4299 			    ring->cur);
4300 		}
4301 		ni->ni_txseqs[tid]++;
4302 	}
4303 	ring = &sc->txq[ac];
4304 	desc = &ring->desc[ring->cur];
4305 	data = &ring->data[ring->cur];
4306 
4307 	/* Choose a TX rate index. */
4308 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
4309 	if (type == IEEE80211_FC0_TYPE_MGT)
4310 		rate = tp->mgmtrate;
4311 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
4312 		rate = tp->mcastrate;
4313 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
4314 		rate = tp->ucastrate;
4315 	else if (m->m_flags & M_EAPOL)
4316 		rate = tp->mgmtrate;
4317 	else {
4318 		/* XXX pass pktlen */
4319 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
4320 		rate = ni->ni_txrate;
4321 	}
4322 
4323 	/* Encrypt the frame if need be. */
4324 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
4325 		/* Retrieve key for TX. */
4326 		k = ieee80211_crypto_encap(ni, m);
4327 		if (k == NULL) {
4328 			m_freem(m);
4329 			return ENOBUFS;
4330 		}
4331 		/* 802.11 header may have moved. */
4332 		wh = mtod(m, struct ieee80211_frame *);
4333 	}
4334 	totlen = m->m_pkthdr.len;
4335 
4336 	if (ieee80211_radiotap_active_vap(vap)) {
4337 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4338 
4339 		tap->wt_flags = 0;
4340 		tap->wt_rate = rate;
4341 		if (k != NULL)
4342 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4343 
4344 		ieee80211_radiotap_tx(vap, m);
4345 	}
4346 
4347 	/* Prepare TX firmware command. */
4348 	cmd = &ring->cmd[ring->cur];
4349 	cmd->code = IWN_CMD_TX_DATA;
4350 	cmd->flags = 0;
4351 	cmd->qid = ring->qid;
4352 	cmd->idx = ring->cur;
4353 
4354 	tx = (struct iwn_cmd_data *)cmd->data;
4355 	/* NB: No need to clear tx, all fields are reinitialized here. */
4356 	tx->scratch = 0;	/* clear "scratch" area */
4357 
4358 	flags = 0;
4359 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4360 		/* Unicast frame, check if an ACK is expected. */
4361 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
4362 		    IEEE80211_QOS_ACKPOLICY_NOACK)
4363 			flags |= IWN_TX_NEED_ACK;
4364 	}
4365 	if ((wh->i_fc[0] &
4366 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
4367 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
4368 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
4369 
4370 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
4371 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
4372 
4373 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
4374 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4375 		/* NB: Group frames are sent using CCK in 802.11b/g. */
4376 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
4377 			flags |= IWN_TX_NEED_RTS;
4378 		} else if (iwn_check_rate_needs_protection(sc, vap, rate)) {
4379 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4380 				flags |= IWN_TX_NEED_CTS;
4381 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4382 				flags |= IWN_TX_NEED_RTS;
4383 		}
4384 
4385 		/* XXX HT protection? */
4386 
4387 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
4388 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4389 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
4390 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
4391 				flags |= IWN_TX_NEED_PROTECTION;
4392 			} else
4393 				flags |= IWN_TX_FULL_TXOP;
4394 		}
4395 	}
4396 
4397 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
4398 	    type != IEEE80211_FC0_TYPE_DATA)
4399 		tx->id = sc->broadcast_id;
4400 	else
4401 		tx->id = wn->id;
4402 
4403 	if (type == IEEE80211_FC0_TYPE_MGT) {
4404 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4405 
4406 		/* Tell HW to set timestamp in probe responses. */
4407 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4408 			flags |= IWN_TX_INSERT_TSTAMP;
4409 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4410 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4411 			tx->timeout = htole16(3);
4412 		else
4413 			tx->timeout = htole16(2);
4414 	} else
4415 		tx->timeout = htole16(0);
4416 
4417 	if (hdrlen & 3) {
4418 		/* First segment length must be a multiple of 4. */
4419 		flags |= IWN_TX_NEED_PADDING;
4420 		pad = 4 - (hdrlen & 3);
4421 	} else
4422 		pad = 0;
4423 
4424 	tx->len = htole16(totlen);
4425 	tx->tid = tid;
4426 	tx->rts_ntries = 60;
4427 	tx->data_ntries = 15;
4428 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4429 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4430 	if (tx->id == sc->broadcast_id) {
4431 		/* Group or management frame. */
4432 		tx->linkq = 0;
4433 	} else {
4434 		tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate);
4435 		flags |= IWN_TX_LINKQ;	/* enable MRR */
4436 	}
4437 
4438 	/* Set physical address of "scratch area". */
4439 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4440 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4441 
4442 	/* Copy 802.11 header in TX command. */
4443 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4444 
4445 	/* Trim 802.11 header. */
4446 	m_adj(m, hdrlen);
4447 	tx->security = 0;
4448 	tx->flags = htole32(flags);
4449 
4450 	error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
4451 					     m, segs, IWN_MAX_SCATTER - 1,
4452 					     &nsegs, BUS_DMA_NOWAIT);
4453 	if (error != 0) {
4454 		if (error != EFBIG) {
4455 			device_printf(sc->sc_dev,
4456 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4457 			m_freem(m);
4458 			return error;
4459 		}
4460 		/* Too many DMA segments, linearize mbuf. */
4461 		m1 = m_defrag(m, MB_DONTWAIT);
4462 		if (m1 == NULL) {
4463 			device_printf(sc->sc_dev,
4464 			    "%s: could not defrag mbuf\n", __func__);
4465 			m_freem(m);
4466 			return ENOBUFS;
4467 		}
4468 		m = m1;
4469 
4470 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
4471 						      data->map, m, segs,
4472 						      IWN_MAX_SCATTER - 1,
4473 						      &nsegs, BUS_DMA_NOWAIT);
4474 		if (error != 0) {
4475 			device_printf(sc->sc_dev,
4476 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4477 			m_freem(m);
4478 			return error;
4479 		}
4480 	}
4481 
4482 	data->m = m;
4483 	data->ni = ni;
4484 
4485 	DPRINTF(sc, IWN_DEBUG_XMIT,
4486 	    "%s: qid %d idx %d len %d nsegs %d rate %04x plcp 0x%08x\n",
4487 	    __func__,
4488 	    ring->qid,
4489 	    ring->cur,
4490 	    m->m_pkthdr.len,
4491 	    nsegs,
4492 	    rate,
4493 	    tx->rate);
4494 
4495 	/* Fill TX descriptor. */
4496 	desc->nsegs = 1;
4497 	if (m->m_len != 0)
4498 		desc->nsegs += nsegs;
4499 	/* First DMA segment is used by the TX command. */
4500 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4501 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4502 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4503 	/* Other DMA segments are for data payload. */
4504 	seg = &segs[0];
4505 	for (i = 1; i <= nsegs; i++) {
4506 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4507 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4508 		    seg->ds_len << 4);
4509 		seg++;
4510 	}
4511 
4512 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4513 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4514 	    BUS_DMASYNC_PREWRITE);
4515 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4516 	    BUS_DMASYNC_PREWRITE);
4517 
4518 	/* Update TX scheduler. */
4519 	if (ring->qid >= sc->firstaggqueue)
4520 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4521 
4522 	/* Kick TX ring. */
4523 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4524 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4525 
4526 	/* Mark TX ring as full if we reach a certain threshold. */
4527 	if (++ring->queued > IWN_TX_RING_HIMARK)
4528 		sc->qfullmsk |= 1 << ring->qid;
4529 
4530 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4531 
4532 	return 0;
4533 }
4534 
4535 static int
4536 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
4537     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
4538 {
4539 	struct iwn_ops *ops = &sc->ops;
4540 //	struct ifnet *ifp = sc->sc_ifp;
4541 	struct ieee80211vap *vap = ni->ni_vap;
4542 //	struct ieee80211com *ic = ifp->if_l2com;
4543 	struct iwn_tx_cmd *cmd;
4544 	struct iwn_cmd_data *tx;
4545 	struct ieee80211_frame *wh;
4546 	struct iwn_tx_ring *ring;
4547 	struct iwn_tx_desc *desc;
4548 	struct iwn_tx_data *data;
4549 	struct mbuf *m1;
4550 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4551 	uint32_t flags;
4552 	u_int hdrlen;
4553 	int ac, totlen, error, pad, nsegs = 0, i, rate;
4554 	uint8_t type;
4555 
4556 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4557 
4558 	wh = mtod(m, struct ieee80211_frame *);
4559 	hdrlen = ieee80211_anyhdrsize(wh);
4560 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4561 
4562 	ac = params->ibp_pri & 3;
4563 
4564 	ring = &sc->txq[ac];
4565 	desc = &ring->desc[ring->cur];
4566 	data = &ring->data[ring->cur];
4567 
4568 	/* Choose a TX rate. */
4569 	rate = params->ibp_rate0;
4570 	totlen = m->m_pkthdr.len;
4571 
4572 	/* Prepare TX firmware command. */
4573 	cmd = &ring->cmd[ring->cur];
4574 	cmd->code = IWN_CMD_TX_DATA;
4575 	cmd->flags = 0;
4576 	cmd->qid = ring->qid;
4577 	cmd->idx = ring->cur;
4578 
4579 	tx = (struct iwn_cmd_data *)cmd->data;
4580 	/* NB: No need to clear tx, all fields are reinitialized here. */
4581 	tx->scratch = 0;	/* clear "scratch" area */
4582 
4583 	flags = 0;
4584 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
4585 		flags |= IWN_TX_NEED_ACK;
4586 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
4587 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4588 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4589 			flags &= ~IWN_TX_NEED_RTS;
4590 			flags |= IWN_TX_NEED_PROTECTION;
4591 		} else
4592 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
4593 	}
4594 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
4595 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4596 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4597 			flags &= ~IWN_TX_NEED_CTS;
4598 			flags |= IWN_TX_NEED_PROTECTION;
4599 		} else
4600 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
4601 	}
4602 	if (type == IEEE80211_FC0_TYPE_MGT) {
4603 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4604 
4605 		/* Tell HW to set timestamp in probe responses. */
4606 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4607 			flags |= IWN_TX_INSERT_TSTAMP;
4608 
4609 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4610 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4611 			tx->timeout = htole16(3);
4612 		else
4613 			tx->timeout = htole16(2);
4614 	} else
4615 		tx->timeout = htole16(0);
4616 
4617 	if (hdrlen & 3) {
4618 		/* First segment length must be a multiple of 4. */
4619 		flags |= IWN_TX_NEED_PADDING;
4620 		pad = 4 - (hdrlen & 3);
4621 	} else
4622 		pad = 0;
4623 
4624 	if (ieee80211_radiotap_active_vap(vap)) {
4625 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4626 
4627 		tap->wt_flags = 0;
4628 		tap->wt_rate = rate;
4629 
4630 		ieee80211_radiotap_tx(vap, m);
4631 	}
4632 
4633 	tx->len = htole16(totlen);
4634 	tx->tid = 0;
4635 	tx->id = sc->broadcast_id;
4636 	tx->rts_ntries = params->ibp_try1;
4637 	tx->data_ntries = params->ibp_try0;
4638 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4639 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4640 
4641 	/* Group or management frame. */
4642 	tx->linkq = 0;
4643 
4644 	/* Set physical address of "scratch area". */
4645 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4646 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4647 
4648 	/* Copy 802.11 header in TX command. */
4649 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4650 
4651 	/* Trim 802.11 header. */
4652 	m_adj(m, hdrlen);
4653 	tx->security = 0;
4654 	tx->flags = htole32(flags);
4655 
4656 	error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
4657 					     m, segs,
4658 					     IWN_MAX_SCATTER - 1,
4659 					     &nsegs, BUS_DMA_NOWAIT);
4660 	if (error != 0) {
4661 		if (error != EFBIG) {
4662 			device_printf(sc->sc_dev,
4663 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4664 			m_freem(m);
4665 			return error;
4666 		}
4667 		/* Too many DMA segments, linearize mbuf. */
4668 		m1 = m_defrag(m, M_NOWAIT);
4669 		if (m1 == NULL) {
4670 			device_printf(sc->sc_dev,
4671 			    "%s: could not defrag mbuf\n", __func__);
4672 			m_freem(m);
4673 			return ENOBUFS;
4674 		}
4675 		m = m1;
4676 
4677 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
4678 						     data->map, m, segs,
4679 						     IWN_MAX_SCATTER - 1,
4680 						     &nsegs, BUS_DMA_NOWAIT);
4681 		if (error != 0) {
4682 			device_printf(sc->sc_dev,
4683 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4684 			m_freem(m);
4685 			return error;
4686 		}
4687 	}
4688 
4689 	data->m = m;
4690 	data->ni = ni;
4691 
4692 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
4693 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
4694 
4695 	/* Fill TX descriptor. */
4696 	desc->nsegs = 1;
4697 	if (m->m_len != 0)
4698 		desc->nsegs += nsegs;
4699 	/* First DMA segment is used by the TX command. */
4700 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4701 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4702 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4703 	/* Other DMA segments are for data payload. */
4704 	seg = &segs[0];
4705 	for (i = 1; i <= nsegs; i++) {
4706 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4707 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4708 		    seg->ds_len << 4);
4709 		seg++;
4710 	}
4711 
4712 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4713 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4714 	    BUS_DMASYNC_PREWRITE);
4715 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4716 	    BUS_DMASYNC_PREWRITE);
4717 
4718 	/* Update TX scheduler. */
4719 	if (ring->qid >= sc->firstaggqueue)
4720 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4721 
4722 	/* Kick TX ring. */
4723 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4724 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4725 
4726 	/* Mark TX ring as full if we reach a certain threshold. */
4727 	if (++ring->queued > IWN_TX_RING_HIMARK)
4728 		sc->qfullmsk |= 1 << ring->qid;
4729 
4730 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4731 
4732 	return 0;
4733 }
4734 
4735 static int
4736 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
4737     const struct ieee80211_bpf_params *params)
4738 {
4739 	struct ieee80211com *ic = ni->ni_ic;
4740 	struct ifnet *ifp = ic->ic_ifp;
4741 	struct iwn_softc *sc = ifp->if_softc;
4742 	int error = 0;
4743 
4744 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4745 
4746 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
4747 		ieee80211_free_node(ni);
4748 		m_freem(m);
4749 		return ENETDOWN;
4750 	}
4751 
4752 	if (params == NULL) {
4753 		/*
4754 		 * Legacy path; interpret frame contents to decide
4755 		 * precisely how to send the frame.
4756 		 */
4757 		error = iwn_tx_data(sc, m, ni);
4758 	} else {
4759 		/*
4760 		 * Caller supplied explicit parameters to use in
4761 		 * sending the frame.
4762 		 */
4763 		error = iwn_tx_data_raw(sc, m, ni, params);
4764 	}
4765 	if (error != 0) {
4766 		/* NB: m is reclaimed on tx failure */
4767 		ieee80211_free_node(ni);
4768 		IFNET_STAT_INC(ifp, oerrors, 1);
4769 	}
4770 	sc->sc_tx_timer = 5;
4771 
4772 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4773 
4774 	return error;
4775 }
4776 
4777 static void
4778 iwn_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
4779 {
4780 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
4781 	iwn_start_locked(ifp);
4782 }
4783 
4784 static void
4785 iwn_start_locked(struct ifnet *ifp)
4786 {
4787 	struct iwn_softc *sc = ifp->if_softc;
4788 	struct ieee80211_node *ni;
4789 	struct mbuf *m;
4790 
4791 	wlan_assert_serialized();
4792 
4793 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
4794 	    ifq_is_oactive(&ifp->if_snd))
4795 		return;
4796 
4797 	for (;;) {
4798 		if (sc->qfullmsk != 0) {
4799 			ifq_set_oactive(&ifp->if_snd);
4800 			break;
4801 		}
4802 		m = ifq_dequeue(&ifp->if_snd);
4803 		if (m == NULL)
4804 			break;
4805 		KKASSERT(M_TRAILINGSPACE(m) >= 0);
4806 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4807 		if (iwn_tx_data(sc, m, ni) != 0) {
4808 			ieee80211_free_node(ni);
4809 			IFNET_STAT_INC(ifp, oerrors, 1);
4810 			continue;
4811 		}
4812 		sc->sc_tx_timer = 5;
4813 	}
4814 }
4815 
4816 static void
4817 iwn_watchdog_timeout(void *arg)
4818 {
4819 	struct iwn_softc *sc = arg;
4820 	struct ifnet *ifp = sc->sc_ifp;
4821 	struct ieee80211com *ic = ifp->if_l2com;
4822 
4823 	wlan_serialize_enter();
4824 
4825 	KASSERT(ifp->if_flags & IFF_RUNNING, ("not running"));
4826 
4827 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4828 
4829 	if (sc->sc_tx_timer > 0) {
4830 		if (--sc->sc_tx_timer == 0) {
4831 			if_printf(ifp, "device timeout\n");
4832 			ieee80211_runtask(ic, &sc->sc_reinit_task);
4833 			wlan_serialize_exit();
4834 			return;
4835 		}
4836 	}
4837 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog_timeout, sc);
4838 	wlan_serialize_exit();
4839 }
4840 
4841 static int
4842 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *ucred)
4843 {
4844 	struct iwn_softc *sc = ifp->if_softc;
4845 	struct ieee80211com *ic = ifp->if_l2com;
4846 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4847 	struct ifreq *ifr = (struct ifreq *) data;
4848 	int error = 0, startall = 0, stop = 0;
4849 
4850 	wlan_assert_serialized();
4851 
4852 	switch (cmd) {
4853 	case SIOCGIFADDR:
4854 		error = ether_ioctl(ifp, cmd, data);
4855 		break;
4856 	case SIOCSIFFLAGS:
4857 		if (ifp->if_flags & IFF_UP) {
4858 			if (!(ifp->if_flags & IFF_RUNNING)) {
4859 				iwn_init_locked(sc);
4860 				if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
4861 					startall = 1;
4862 				else
4863 					stop = 1;
4864 			}
4865 		} else {
4866 			if (ifp->if_flags & IFF_RUNNING)
4867 				iwn_stop_locked(sc);
4868 		}
4869 		if (startall)
4870 			ieee80211_start_all(ic);
4871 		else if (vap != NULL && stop)
4872 			ieee80211_stop(vap);
4873 		break;
4874 	case SIOCGIFMEDIA:
4875 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
4876 		break;
4877 	case SIOCGIWNSTATS:
4878 		IWN_LOCK(sc);
4879 		/* XXX validate permissions/memory/etc? */
4880 		error = copyout(&sc->last_stat, ifr->ifr_data,
4881 		    sizeof(struct iwn_stats));
4882 		IWN_UNLOCK(sc);
4883 		break;
4884 	case SIOCZIWNSTATS:
4885 		IWN_LOCK(sc);
4886 		memset(&sc->last_stat, 0, sizeof(struct iwn_stats));
4887 		IWN_UNLOCK(sc);
4888 		error = 0;
4889 		break;
4890 	default:
4891 		error = EINVAL;
4892 		break;
4893 	}
4894 	return error;
4895 }
4896 
4897 /*
4898  * Send a command to the firmware.
4899  */
4900 static int
4901 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
4902 {
4903 	struct iwn_tx_ring *ring;
4904 	struct iwn_tx_desc *desc;
4905 	struct iwn_tx_data *data;
4906 	struct iwn_tx_cmd *cmd;
4907 	struct mbuf *m;
4908 	bus_addr_t paddr;
4909 	int totlen, error;
4910 	int cmd_queue_num;
4911 
4912 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4913 
4914 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
4915 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
4916 	else
4917 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
4918 
4919 	ring = &sc->txq[cmd_queue_num];
4920 	desc = &ring->desc[ring->cur];
4921 	data = &ring->data[ring->cur];
4922 	totlen = 4 + size;
4923 
4924 	if (size > sizeof cmd->data) {
4925 		/* Command is too large to fit in a descriptor. */
4926 		if (totlen > MJUMPAGESIZE)
4927 			return EINVAL;
4928 		m = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
4929 		if (m == NULL)
4930 			return ENOMEM;
4931 		cmd = mtod(m, struct iwn_tx_cmd *);
4932 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
4933 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
4934 		if (error != 0) {
4935 			m_freem(m);
4936 			return error;
4937 		}
4938 		data->m = m;
4939 	} else {
4940 		cmd = &ring->cmd[ring->cur];
4941 		paddr = data->cmd_paddr;
4942 	}
4943 
4944 	cmd->code = code;
4945 	cmd->flags = 0;
4946 	cmd->qid = ring->qid;
4947 	cmd->idx = ring->cur;
4948 	memcpy(cmd->data, buf, size);
4949 
4950 	desc->nsegs = 1;
4951 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
4952 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
4953 
4954 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
4955 	    __func__, iwn_intr_str(cmd->code), cmd->code,
4956 	    cmd->flags, cmd->qid, cmd->idx);
4957 
4958 	if (size > sizeof cmd->data) {
4959 		bus_dmamap_sync(ring->data_dmat, data->map,
4960 		    BUS_DMASYNC_PREWRITE);
4961 	} else {
4962 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4963 		    BUS_DMASYNC_PREWRITE);
4964 	}
4965 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4966 	    BUS_DMASYNC_PREWRITE);
4967 
4968 	/* Kick command ring. */
4969 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4970 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4971 
4972 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4973 
4974 	return async ? 0 : zsleep(desc, &wlan_global_serializer, 0, "iwncmd", hz);
4975 }
4976 
4977 static int
4978 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
4979 {
4980 	struct iwn4965_node_info hnode;
4981 	caddr_t src, dst;
4982 
4983 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4984 
4985 	/*
4986 	 * We use the node structure for 5000 Series internally (it is
4987 	 * a superset of the one for 4965AGN). We thus copy the common
4988 	 * fields before sending the command.
4989 	 */
4990 	src = (caddr_t)node;
4991 	dst = (caddr_t)&hnode;
4992 	memcpy(dst, src, 48);
4993 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
4994 	memcpy(dst + 48, src + 72, 20);
4995 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
4996 }
4997 
4998 static int
4999 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5000 {
5001 
5002 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5003 
5004 	/* Direct mapping. */
5005 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
5006 }
5007 
5008 static int
5009 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
5010 {
5011 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
5012 	struct iwn_node *wn = (void *)ni;
5013 	struct ieee80211_rateset *rs;
5014 	struct iwn_cmd_link_quality linkq;
5015 	uint8_t txant;
5016 	int i, rate, txrate;
5017 	int is_11n;
5018 
5019 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5020 
5021 	/* Use the first valid TX antenna. */
5022 	txant = IWN_LSB(sc->txchainmask);
5023 
5024 	memset(&linkq, 0, sizeof linkq);
5025 	linkq.id = wn->id;
5026 	linkq.antmsk_1stream = txant;
5027 
5028 	/*
5029 	 * The '2 stream' setup is a bit .. odd.
5030 	 *
5031 	 * For NICs that support only 1 antenna, default to IWN_ANT_AB or
5032 	 * the firmware panics (eg Intel 5100.)
5033 	 *
5034 	 * For NICs that support two antennas, we use ANT_AB.
5035 	 *
5036 	 * For NICs that support three antennas, we use the two that
5037 	 * wasn't the default one.
5038 	 *
5039 	 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict
5040 	 * this to only one antenna.
5041 	 */
5042 
5043 	/* So - if there's no secondary antenna, assume IWN_ANT_AB */
5044 
5045 	/* Default - transmit on the other antennas */
5046 	linkq.antmsk_2stream = (sc->txchainmask & ~IWN_LSB(sc->txchainmask));
5047 
5048 	/* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */
5049 	if (linkq.antmsk_2stream == 0)
5050 		linkq.antmsk_2stream = IWN_ANT_AB;
5051 
5052 	/*
5053 	 * If the NIC is a two-stream TX NIC, configure the TX mask to
5054 	 * the default chainmask
5055 	 */
5056 	else if (sc->ntxchains == 2)
5057 		linkq.antmsk_2stream = sc->txchainmask;
5058 
5059 	linkq.ampdu_max = 32;		/* XXX negotiated? */
5060 	linkq.ampdu_threshold = 3;
5061 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5062 
5063 	DPRINTF(sc, IWN_DEBUG_XMIT,
5064 	    "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n",
5065 	    __func__,
5066 	    linkq.antmsk_1stream,
5067 	    linkq.antmsk_2stream,
5068 	    sc->ntxchains);
5069 
5070 	/*
5071 	 * Are we using 11n rates? Ensure the channel is
5072 	 * 11n _and_ we have some 11n rates, or don't
5073 	 * try.
5074 	 */
5075 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) {
5076 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
5077 		is_11n = 1;
5078 	} else {
5079 		rs = &ni->ni_rates;
5080 		is_11n = 0;
5081 	}
5082 
5083 	/* Start at highest available bit-rate. */
5084 	/*
5085 	 * XXX this is all very dirty!
5086 	 */
5087 	if (is_11n)
5088 		txrate = ni->ni_htrates.rs_nrates - 1;
5089 	else
5090 		txrate = rs->rs_nrates - 1;
5091 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
5092 		uint32_t plcp;
5093 
5094 		if (is_11n)
5095 			rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate];
5096 		else
5097 			rate = RV(rs->rs_rates[txrate]);
5098 
5099 		DPRINTF(sc, IWN_DEBUG_XMIT,
5100 		    "%s: i=%d, txrate=%d, rate=0x%02x\n",
5101 		    __func__,
5102 		    i,
5103 		    txrate,
5104 		    rate);
5105 
5106 		/* Do rate -> PLCP config mapping */
5107 		plcp = iwn_rate_to_plcp(sc, ni, rate);
5108 		linkq.retry[i] = plcp;
5109 
5110 		/*
5111 		 * The mimo field is an index into the table which
5112 		 * indicates the first index where it and subsequent entries
5113 		 * will not be using MIMO.
5114 		 *
5115 		 * Since we're filling linkq from 0..15 and we're filling
5116 		 * from the higest MCS rates to the lowest rates, if we
5117 		 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie,
5118 		 * the next entry.)  That way if the next entry is a non-MIMO
5119 		 * entry, we're already pointing at it.
5120 		 */
5121 		if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
5122 		    RV(le32toh(plcp)) > 7)
5123 			linkq.mimo = i + 1;
5124 
5125 		/* Next retry at immediate lower bit-rate. */
5126 		if (txrate > 0)
5127 			txrate--;
5128 	}
5129 
5130 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5131 
5132 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
5133 #undef	RV
5134 }
5135 
5136 /*
5137  * Broadcast node is used to send group-addressed and management frames.
5138  */
5139 static int
5140 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
5141 {
5142 	struct iwn_ops *ops = &sc->ops;
5143 	struct ifnet *ifp = sc->sc_ifp;
5144 	struct ieee80211com *ic = ifp->if_l2com;
5145 	struct iwn_node_info node;
5146 	struct iwn_cmd_link_quality linkq;
5147 	uint8_t txant;
5148 	int i, error;
5149 
5150 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5151 
5152 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5153 
5154 	memset(&node, 0, sizeof node);
5155 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
5156 	node.id = sc->broadcast_id;
5157 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
5158 	if ((error = ops->add_node(sc, &node, async)) != 0)
5159 		return error;
5160 
5161 	/* Use the first valid TX antenna. */
5162 	txant = IWN_LSB(sc->txchainmask);
5163 
5164 	memset(&linkq, 0, sizeof linkq);
5165 	linkq.id = sc->broadcast_id;
5166 	linkq.antmsk_1stream = txant;
5167 	linkq.antmsk_2stream = IWN_ANT_AB;
5168 	linkq.ampdu_max = 64;
5169 	linkq.ampdu_threshold = 3;
5170 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5171 
5172 	/* Use lowest mandatory bit-rate. */
5173 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
5174 		linkq.retry[0] = htole32(0xd);
5175 	else
5176 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
5177 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
5178 	/* Use same bit-rate for all TX retries. */
5179 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
5180 		linkq.retry[i] = linkq.retry[0];
5181 	}
5182 
5183 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5184 
5185 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
5186 }
5187 
5188 static int
5189 iwn_updateedca(struct ieee80211com *ic)
5190 {
5191 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
5192 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
5193 	struct iwn_edca_params cmd;
5194 	int aci;
5195 
5196 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5197 
5198 	memset(&cmd, 0, sizeof cmd);
5199 	cmd.flags = htole32(IWN_EDCA_UPDATE);
5200 	for (aci = 0; aci < WME_NUM_AC; aci++) {
5201 		const struct wmeParams *ac =
5202 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
5203 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
5204 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
5205 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
5206 		cmd.ac[aci].txoplimit =
5207 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
5208 	}
5209 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5210 
5211 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5212 
5213 	return 0;
5214 #undef IWN_EXP2
5215 }
5216 
5217 static void
5218 iwn_update_mcast(struct ifnet *ifp)
5219 {
5220 	/* Ignore */
5221 }
5222 
5223 static void
5224 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
5225 {
5226 	struct iwn_cmd_led led;
5227 
5228 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5229 
5230 #if 0
5231 	/* XXX don't set LEDs during scan? */
5232 	if (sc->sc_is_scanning)
5233 		return;
5234 #endif
5235 
5236 	/* Clear microcode LED ownership. */
5237 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
5238 
5239 	led.which = which;
5240 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
5241 	led.off = off;
5242 	led.on = on;
5243 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
5244 }
5245 
5246 /*
5247  * Set the critical temperature at which the firmware will stop the radio
5248  * and notify us.
5249  */
5250 static int
5251 iwn_set_critical_temp(struct iwn_softc *sc)
5252 {
5253 	struct iwn_critical_temp crit;
5254 	int32_t temp;
5255 
5256 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5257 
5258 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
5259 
5260 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
5261 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
5262 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
5263 		temp = IWN_CTOK(110);
5264 	else
5265 		temp = 110;
5266 	memset(&crit, 0, sizeof crit);
5267 	crit.tempR = htole32(temp);
5268 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
5269 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
5270 }
5271 
5272 static int
5273 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
5274 {
5275 	struct iwn_cmd_timing cmd;
5276 	uint64_t val, mod;
5277 
5278 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5279 
5280 	memset(&cmd, 0, sizeof cmd);
5281 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
5282 	cmd.bintval = htole16(ni->ni_intval);
5283 	cmd.lintval = htole16(10);
5284 
5285 	/* Compute remaining time until next beacon. */
5286 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
5287 	mod = le64toh(cmd.tstamp) % val;
5288 	cmd.binitval = htole32((uint32_t)(val - mod));
5289 
5290 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
5291 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
5292 
5293 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
5294 }
5295 
5296 static void
5297 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
5298 {
5299 	struct ifnet *ifp = sc->sc_ifp;
5300 	struct ieee80211com *ic = ifp->if_l2com;
5301 
5302 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5303 
5304 	/* Adjust TX power if need be (delta >= 3 degC). */
5305 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
5306 	    __func__, sc->temp, temp);
5307 	if (abs(temp - sc->temp) >= 3) {
5308 		/* Record temperature of last calibration. */
5309 		sc->temp = temp;
5310 		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
5311 	}
5312 }
5313 
5314 /*
5315  * Set TX power for current channel (each rate has its own power settings).
5316  * This function takes into account the regulatory information from EEPROM,
5317  * the current temperature and the current voltage.
5318  */
5319 static int
5320 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5321     int async)
5322 {
5323 /* Fixed-point arithmetic division using a n-bit fractional part. */
5324 #define fdivround(a, b, n)	\
5325 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
5326 /* Linear interpolation. */
5327 #define interpolate(x, x1, y1, x2, y2, n)	\
5328 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
5329 
5330 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
5331 	struct iwn_ucode_info *uc = &sc->ucode_info;
5332 	struct iwn4965_cmd_txpower cmd;
5333 	struct iwn4965_eeprom_chan_samples *chans;
5334 	const uint8_t *rf_gain, *dsp_gain;
5335 	int32_t vdiff, tdiff;
5336 	int i, c, grp, maxpwr;
5337 	uint8_t chan;
5338 
5339 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5340 	/* Retrieve current channel from last RXON. */
5341 	chan = sc->rxon->chan;
5342 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
5343 	    chan);
5344 
5345 	memset(&cmd, 0, sizeof cmd);
5346 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
5347 	cmd.chan = chan;
5348 
5349 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
5350 		maxpwr   = sc->maxpwr5GHz;
5351 		rf_gain  = iwn4965_rf_gain_5ghz;
5352 		dsp_gain = iwn4965_dsp_gain_5ghz;
5353 	} else {
5354 		maxpwr   = sc->maxpwr2GHz;
5355 		rf_gain  = iwn4965_rf_gain_2ghz;
5356 		dsp_gain = iwn4965_dsp_gain_2ghz;
5357 	}
5358 
5359 	/* Compute voltage compensation. */
5360 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
5361 	if (vdiff > 0)
5362 		vdiff *= 2;
5363 	if (abs(vdiff) > 2)
5364 		vdiff = 0;
5365 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5366 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
5367 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
5368 
5369 	/* Get channel attenuation group. */
5370 	if (chan <= 20)		/* 1-20 */
5371 		grp = 4;
5372 	else if (chan <= 43)	/* 34-43 */
5373 		grp = 0;
5374 	else if (chan <= 70)	/* 44-70 */
5375 		grp = 1;
5376 	else if (chan <= 124)	/* 71-124 */
5377 		grp = 2;
5378 	else			/* 125-200 */
5379 		grp = 3;
5380 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5381 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
5382 
5383 	/* Get channel sub-band. */
5384 	for (i = 0; i < IWN_NBANDS; i++)
5385 		if (sc->bands[i].lo != 0 &&
5386 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
5387 			break;
5388 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
5389 		return EINVAL;
5390 	chans = sc->bands[i].chans;
5391 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5392 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
5393 
5394 	for (c = 0; c < 2; c++) {
5395 		uint8_t power, gain, temp;
5396 		int maxchpwr, pwr, ridx, idx;
5397 
5398 		power = interpolate(chan,
5399 		    chans[0].num, chans[0].samples[c][1].power,
5400 		    chans[1].num, chans[1].samples[c][1].power, 1);
5401 		gain  = interpolate(chan,
5402 		    chans[0].num, chans[0].samples[c][1].gain,
5403 		    chans[1].num, chans[1].samples[c][1].gain, 1);
5404 		temp  = interpolate(chan,
5405 		    chans[0].num, chans[0].samples[c][1].temp,
5406 		    chans[1].num, chans[1].samples[c][1].temp, 1);
5407 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5408 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
5409 		    __func__, c, power, gain, temp);
5410 
5411 		/* Compute temperature compensation. */
5412 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
5413 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5414 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
5415 		    __func__, tdiff, sc->temp, temp);
5416 
5417 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
5418 			/* Convert dBm to half-dBm. */
5419 			maxchpwr = sc->maxpwr[chan] * 2;
5420 			if ((ridx / 8) & 1)
5421 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
5422 
5423 			pwr = maxpwr;
5424 
5425 			/* Adjust TX power based on rate. */
5426 			if ((ridx % 8) == 5)
5427 				pwr -= 15;	/* OFDM48: -7.5dB */
5428 			else if ((ridx % 8) == 6)
5429 				pwr -= 17;	/* OFDM54: -8.5dB */
5430 			else if ((ridx % 8) == 7)
5431 				pwr -= 20;	/* OFDM60: -10dB */
5432 			else
5433 				pwr -= 10;	/* Others: -5dB */
5434 
5435 			/* Do not exceed channel max TX power. */
5436 			if (pwr > maxchpwr)
5437 				pwr = maxchpwr;
5438 
5439 			idx = gain - (pwr - power) - tdiff - vdiff;
5440 			if ((ridx / 8) & 1)	/* MIMO */
5441 				idx += (int32_t)le32toh(uc->atten[grp][c]);
5442 
5443 			if (cmd.band == 0)
5444 				idx += 9;	/* 5GHz */
5445 			if (ridx == IWN_RIDX_MAX)
5446 				idx += 5;	/* CCK */
5447 
5448 			/* Make sure idx stays in a valid range. */
5449 			if (idx < 0)
5450 				idx = 0;
5451 			else if (idx > IWN4965_MAX_PWR_INDEX)
5452 				idx = IWN4965_MAX_PWR_INDEX;
5453 
5454 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5455 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
5456 			    __func__, c, ridx, idx);
5457 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
5458 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
5459 		}
5460 	}
5461 
5462 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5463 	    "%s: set tx power for chan %d\n", __func__, chan);
5464 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
5465 
5466 #undef interpolate
5467 #undef fdivround
5468 }
5469 
5470 static int
5471 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5472     int async)
5473 {
5474 	struct iwn5000_cmd_txpower cmd;
5475 
5476 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5477 
5478 	/*
5479 	 * TX power calibration is handled automatically by the firmware
5480 	 * for 5000 Series.
5481 	 */
5482 	memset(&cmd, 0, sizeof cmd);
5483 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
5484 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
5485 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
5486 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting TX power\n", __func__);
5487 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
5488 }
5489 
5490 /*
5491  * Retrieve the maximum RSSI (in dBm) among receivers.
5492  */
5493 static int
5494 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5495 {
5496 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
5497 	uint8_t mask, agc;
5498 	int rssi;
5499 
5500 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5501 
5502 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
5503 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
5504 
5505 	rssi = 0;
5506 	if (mask & IWN_ANT_A)
5507 		rssi = MAX(rssi, phy->rssi[0]);
5508 	if (mask & IWN_ANT_B)
5509 		rssi = MAX(rssi, phy->rssi[2]);
5510 	if (mask & IWN_ANT_C)
5511 		rssi = MAX(rssi, phy->rssi[4]);
5512 
5513 	DPRINTF(sc, IWN_DEBUG_RECV,
5514 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
5515 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
5516 	    rssi - agc - IWN_RSSI_TO_DBM);
5517 	return rssi - agc - IWN_RSSI_TO_DBM;
5518 }
5519 
5520 static int
5521 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5522 {
5523 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
5524 	uint8_t agc;
5525 	int rssi;
5526 
5527 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5528 
5529 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
5530 
5531 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
5532 		   le16toh(phy->rssi[1]) & 0xff);
5533 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
5534 
5535 	DPRINTF(sc, IWN_DEBUG_RECV,
5536 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
5537 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
5538 	    rssi - agc - IWN_RSSI_TO_DBM);
5539 	return rssi - agc - IWN_RSSI_TO_DBM;
5540 }
5541 
5542 /*
5543  * Retrieve the average noise (in dBm) among receivers.
5544  */
5545 static int
5546 iwn_get_noise(const struct iwn_rx_general_stats *stats)
5547 {
5548 	int i, total, nbant, noise;
5549 
5550 	total = nbant = 0;
5551 	for (i = 0; i < 3; i++) {
5552 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
5553 			continue;
5554 		total += noise;
5555 		nbant++;
5556 	}
5557 	/* There should be at least one antenna but check anyway. */
5558 	return (nbant == 0) ? -127 : (total / nbant) - 107;
5559 }
5560 
5561 /*
5562  * Compute temperature (in degC) from last received statistics.
5563  */
5564 static int
5565 iwn4965_get_temperature(struct iwn_softc *sc)
5566 {
5567 	struct iwn_ucode_info *uc = &sc->ucode_info;
5568 	int32_t r1, r2, r3, r4, temp;
5569 
5570 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5571 
5572 	r1 = le32toh(uc->temp[0].chan20MHz);
5573 	r2 = le32toh(uc->temp[1].chan20MHz);
5574 	r3 = le32toh(uc->temp[2].chan20MHz);
5575 	r4 = le32toh(sc->rawtemp);
5576 
5577 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
5578 		return 0;
5579 
5580 	/* Sign-extend 23-bit R4 value to 32-bit. */
5581 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
5582 	/* Compute temperature in Kelvin. */
5583 	temp = (259 * (r4 - r2)) / (r3 - r1);
5584 	temp = (temp * 97) / 100 + 8;
5585 
5586 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
5587 	    IWN_KTOC(temp));
5588 	return IWN_KTOC(temp);
5589 }
5590 
5591 static int
5592 iwn5000_get_temperature(struct iwn_softc *sc)
5593 {
5594 	int32_t temp;
5595 
5596 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5597 
5598 	/*
5599 	 * Temperature is not used by the driver for 5000 Series because
5600 	 * TX power calibration is handled by firmware.
5601 	 */
5602 	temp = le32toh(sc->rawtemp);
5603 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
5604 		temp = (temp / -5) + sc->temp_off;
5605 		temp = IWN_KTOC(temp);
5606 	}
5607 	return temp;
5608 }
5609 
5610 /*
5611  * Initialize sensitivity calibration state machine.
5612  */
5613 static int
5614 iwn_init_sensitivity(struct iwn_softc *sc)
5615 {
5616 	struct iwn_ops *ops = &sc->ops;
5617 	struct iwn_calib_state *calib = &sc->calib;
5618 	uint32_t flags;
5619 	int error;
5620 
5621 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5622 
5623 	/* Reset calibration state machine. */
5624 	memset(calib, 0, sizeof (*calib));
5625 	calib->state = IWN_CALIB_STATE_INIT;
5626 	calib->cck_state = IWN_CCK_STATE_HIFA;
5627 	/* Set initial correlation values. */
5628 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
5629 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
5630 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
5631 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
5632 	calib->cck_x4      = 125;
5633 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
5634 	calib->energy_cck  = sc->limits->energy_cck;
5635 
5636 	/* Write initial sensitivity. */
5637 	if ((error = iwn_send_sensitivity(sc)) != 0)
5638 		return error;
5639 
5640 	/* Write initial gains. */
5641 	if ((error = ops->init_gains(sc)) != 0)
5642 		return error;
5643 
5644 	/* Request statistics at each beacon interval. */
5645 	flags = 0;
5646 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
5647 	    __func__);
5648 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
5649 }
5650 
5651 /*
5652  * Collect noise and RSSI statistics for the first 20 beacons received
5653  * after association and use them to determine connected antennas and
5654  * to set differential gains.
5655  */
5656 static void
5657 iwn_collect_noise(struct iwn_softc *sc,
5658     const struct iwn_rx_general_stats *stats)
5659 {
5660 	struct iwn_ops *ops = &sc->ops;
5661 	struct iwn_calib_state *calib = &sc->calib;
5662 	struct ifnet *ifp = sc->sc_ifp;
5663 	struct ieee80211com *ic = ifp->if_l2com;
5664 	uint32_t val;
5665 	int i;
5666 
5667 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5668 
5669 	/* Accumulate RSSI and noise for all 3 antennas. */
5670 	for (i = 0; i < 3; i++) {
5671 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
5672 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
5673 	}
5674 	/* NB: We update differential gains only once after 20 beacons. */
5675 	if (++calib->nbeacons < 20)
5676 		return;
5677 
5678 	/* Determine highest average RSSI. */
5679 	val = MAX(calib->rssi[0], calib->rssi[1]);
5680 	val = MAX(calib->rssi[2], val);
5681 
5682 	/* Determine which antennas are connected. */
5683 	sc->chainmask = sc->rxchainmask;
5684 	for (i = 0; i < 3; i++)
5685 		if (val - calib->rssi[i] > 15 * 20)
5686 			sc->chainmask &= ~(1 << i);
5687 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5688 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
5689 	    __func__, sc->rxchainmask, sc->chainmask);
5690 
5691 	/* If none of the TX antennas are connected, keep at least one. */
5692 	if ((sc->chainmask & sc->txchainmask) == 0)
5693 		sc->chainmask |= IWN_LSB(sc->txchainmask);
5694 
5695 	(void)ops->set_gains(sc);
5696 	calib->state = IWN_CALIB_STATE_RUN;
5697 
5698 #ifdef notyet
5699 	/* XXX Disable RX chains with no antennas connected. */
5700 	sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
5701 	if (sc->sc_is_scanning)
5702 		device_printf(sc->sc_dev,
5703 		    "%s: is_scanning set, before RXON\n",
5704 		    __func__);
5705 	(void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
5706 #endif
5707 
5708 	/* Enable power-saving mode if requested by user. */
5709 	if (ic->ic_flags & IEEE80211_F_PMGTON)
5710 		(void)iwn_set_pslevel(sc, 0, 3, 1);
5711 
5712 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5713 
5714 }
5715 
5716 static int
5717 iwn4965_init_gains(struct iwn_softc *sc)
5718 {
5719 	struct iwn_phy_calib_gain cmd;
5720 
5721 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5722 
5723 	memset(&cmd, 0, sizeof cmd);
5724 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5725 	/* Differential gains initially set to 0 for all 3 antennas. */
5726 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5727 	    "%s: setting initial differential gains\n", __func__);
5728 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5729 }
5730 
5731 static int
5732 iwn5000_init_gains(struct iwn_softc *sc)
5733 {
5734 	struct iwn_phy_calib cmd;
5735 
5736 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5737 
5738 	memset(&cmd, 0, sizeof cmd);
5739 	cmd.code = sc->reset_noise_gain;
5740 	cmd.ngroups = 1;
5741 	cmd.isvalid = 1;
5742 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5743 	    "%s: setting initial differential gains\n", __func__);
5744 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5745 }
5746 
5747 static int
5748 iwn4965_set_gains(struct iwn_softc *sc)
5749 {
5750 	struct iwn_calib_state *calib = &sc->calib;
5751 	struct iwn_phy_calib_gain cmd;
5752 	int i, delta, noise;
5753 
5754 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5755 
5756 	/* Get minimal noise among connected antennas. */
5757 	noise = INT_MAX;	/* NB: There's at least one antenna. */
5758 	for (i = 0; i < 3; i++)
5759 		if (sc->chainmask & (1 << i))
5760 			noise = MIN(calib->noise[i], noise);
5761 
5762 	memset(&cmd, 0, sizeof cmd);
5763 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5764 	/* Set differential gains for connected antennas. */
5765 	for (i = 0; i < 3; i++) {
5766 		if (sc->chainmask & (1 << i)) {
5767 			/* Compute attenuation (in unit of 1.5dB). */
5768 			delta = (noise - (int32_t)calib->noise[i]) / 30;
5769 			/* NB: delta <= 0 */
5770 			/* Limit to [-4.5dB,0]. */
5771 			cmd.gain[i] = MIN(abs(delta), 3);
5772 			if (delta < 0)
5773 				cmd.gain[i] |= 1 << 2;	/* sign bit */
5774 		}
5775 	}
5776 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5777 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
5778 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
5779 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5780 }
5781 
5782 static int
5783 iwn5000_set_gains(struct iwn_softc *sc)
5784 {
5785 	struct iwn_calib_state *calib = &sc->calib;
5786 	struct iwn_phy_calib_gain cmd;
5787 	int i, ant, div, delta;
5788 
5789 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5790 
5791 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
5792 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
5793 
5794 	memset(&cmd, 0, sizeof cmd);
5795 	cmd.code = sc->noise_gain;
5796 	cmd.ngroups = 1;
5797 	cmd.isvalid = 1;
5798 	/* Get first available RX antenna as referential. */
5799 	ant = IWN_LSB(sc->rxchainmask);
5800 	/* Set differential gains for other antennas. */
5801 	for (i = ant + 1; i < 3; i++) {
5802 		if (sc->chainmask & (1 << i)) {
5803 			/* The delta is relative to antenna "ant". */
5804 			delta = ((int32_t)calib->noise[ant] -
5805 			    (int32_t)calib->noise[i]) / div;
5806 			/* Limit to [-4.5dB,+4.5dB]. */
5807 			cmd.gain[i - 1] = MIN(abs(delta), 3);
5808 			if (delta < 0)
5809 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
5810 		}
5811 	}
5812 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5813 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
5814 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
5815 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5816 }
5817 
5818 /*
5819  * Tune RF RX sensitivity based on the number of false alarms detected
5820  * during the last beacon period.
5821  */
5822 static void
5823 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
5824 {
5825 #define inc(val, inc, max)			\
5826 	if ((val) < (max)) {			\
5827 		if ((val) < (max) - (inc))	\
5828 			(val) += (inc);		\
5829 		else				\
5830 			(val) = (max);		\
5831 		needs_update = 1;		\
5832 	}
5833 #define dec(val, dec, min)			\
5834 	if ((val) > (min)) {			\
5835 		if ((val) > (min) + (dec))	\
5836 			(val) -= (dec);		\
5837 		else				\
5838 			(val) = (min);		\
5839 		needs_update = 1;		\
5840 	}
5841 
5842 	const struct iwn_sensitivity_limits *limits = sc->limits;
5843 	struct iwn_calib_state *calib = &sc->calib;
5844 	uint32_t val, rxena, fa;
5845 	uint32_t energy[3], energy_min;
5846 	uint8_t noise[3], noise_ref;
5847 	int i, needs_update = 0;
5848 
5849 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5850 
5851 	/* Check that we've been enabled long enough. */
5852 	if ((rxena = le32toh(stats->general.load)) == 0){
5853 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__);
5854 		return;
5855 	}
5856 
5857 	/* Compute number of false alarms since last call for OFDM. */
5858 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
5859 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
5860 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
5861 
5862 	if (fa > 50 * rxena) {
5863 		/* High false alarm count, decrease sensitivity. */
5864 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5865 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
5866 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
5867 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
5868 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
5869 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
5870 
5871 	} else if (fa < 5 * rxena) {
5872 		/* Low false alarm count, increase sensitivity. */
5873 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5874 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
5875 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
5876 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
5877 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
5878 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
5879 	}
5880 
5881 	/* Compute maximum noise among 3 receivers. */
5882 	for (i = 0; i < 3; i++)
5883 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
5884 	val = MAX(noise[0], noise[1]);
5885 	val = MAX(noise[2], val);
5886 	/* Insert it into our samples table. */
5887 	calib->noise_samples[calib->cur_noise_sample] = val;
5888 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
5889 
5890 	/* Compute maximum noise among last 20 samples. */
5891 	noise_ref = calib->noise_samples[0];
5892 	for (i = 1; i < 20; i++)
5893 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
5894 
5895 	/* Compute maximum energy among 3 receivers. */
5896 	for (i = 0; i < 3; i++)
5897 		energy[i] = le32toh(stats->general.energy[i]);
5898 	val = MIN(energy[0], energy[1]);
5899 	val = MIN(energy[2], val);
5900 	/* Insert it into our samples table. */
5901 	calib->energy_samples[calib->cur_energy_sample] = val;
5902 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
5903 
5904 	/* Compute minimum energy among last 10 samples. */
5905 	energy_min = calib->energy_samples[0];
5906 	for (i = 1; i < 10; i++)
5907 		energy_min = MAX(energy_min, calib->energy_samples[i]);
5908 	energy_min += 6;
5909 
5910 	/* Compute number of false alarms since last call for CCK. */
5911 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
5912 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
5913 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
5914 
5915 	if (fa > 50 * rxena) {
5916 		/* High false alarm count, decrease sensitivity. */
5917 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5918 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
5919 		calib->cck_state = IWN_CCK_STATE_HIFA;
5920 		calib->low_fa = 0;
5921 
5922 		if (calib->cck_x4 > 160) {
5923 			calib->noise_ref = noise_ref;
5924 			if (calib->energy_cck > 2)
5925 				dec(calib->energy_cck, 2, energy_min);
5926 		}
5927 		if (calib->cck_x4 < 160) {
5928 			calib->cck_x4 = 161;
5929 			needs_update = 1;
5930 		} else
5931 			inc(calib->cck_x4, 3, limits->max_cck_x4);
5932 
5933 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
5934 
5935 	} else if (fa < 5 * rxena) {
5936 		/* Low false alarm count, increase sensitivity. */
5937 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5938 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
5939 		calib->cck_state = IWN_CCK_STATE_LOFA;
5940 		calib->low_fa++;
5941 
5942 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
5943 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
5944 		     calib->low_fa > 100)) {
5945 			inc(calib->energy_cck, 2, limits->min_energy_cck);
5946 			dec(calib->cck_x4,     3, limits->min_cck_x4);
5947 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
5948 		}
5949 	} else {
5950 		/* Not worth to increase or decrease sensitivity. */
5951 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5952 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
5953 		calib->low_fa = 0;
5954 		calib->noise_ref = noise_ref;
5955 
5956 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
5957 			/* Previous interval had many false alarms. */
5958 			dec(calib->energy_cck, 8, energy_min);
5959 		}
5960 		calib->cck_state = IWN_CCK_STATE_INIT;
5961 	}
5962 
5963 	if (needs_update)
5964 		(void)iwn_send_sensitivity(sc);
5965 
5966 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5967 
5968 #undef dec
5969 #undef inc
5970 }
5971 
5972 static int
5973 iwn_send_sensitivity(struct iwn_softc *sc)
5974 {
5975 	struct iwn_calib_state *calib = &sc->calib;
5976 	struct iwn_enhanced_sensitivity_cmd cmd;
5977 	int len;
5978 
5979 	memset(&cmd, 0, sizeof cmd);
5980 	len = sizeof (struct iwn_sensitivity_cmd);
5981 	cmd.which = IWN_SENSITIVITY_WORKTBL;
5982 	/* OFDM modulation. */
5983 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
5984 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
5985 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
5986 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
5987 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
5988 	cmd.energy_ofdm_th     = htole16(62);
5989 	/* CCK modulation. */
5990 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
5991 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
5992 	cmd.energy_cck         = htole16(calib->energy_cck);
5993 	/* Barker modulation: use default values. */
5994 	cmd.corr_barker        = htole16(190);
5995 	cmd.corr_barker_mrc    = htole16(sc->limits->barker_mrc);
5996 
5997 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5998 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
5999 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
6000 	    calib->ofdm_mrc_x4, calib->cck_x4,
6001 	    calib->cck_mrc_x4, calib->energy_cck);
6002 
6003 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
6004 		goto send;
6005 	/* Enhanced sensitivity settings. */
6006 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
6007 	cmd.ofdm_det_slope_mrc = htole16(668);
6008 	cmd.ofdm_det_icept_mrc = htole16(4);
6009 	cmd.ofdm_det_slope     = htole16(486);
6010 	cmd.ofdm_det_icept     = htole16(37);
6011 	cmd.cck_det_slope_mrc  = htole16(853);
6012 	cmd.cck_det_icept_mrc  = htole16(4);
6013 	cmd.cck_det_slope      = htole16(476);
6014 	cmd.cck_det_icept      = htole16(99);
6015 send:
6016 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
6017 }
6018 
6019 /*
6020  * Look at the increase of PLCP errors over time; if it exceeds
6021  * a programmed threshold then trigger an RF retune.
6022  */
6023 static void
6024 iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs)
6025 {
6026 	int32_t delta_ofdm, delta_ht, delta_cck;
6027 	struct iwn_calib_state *calib = &sc->calib;
6028 	int delta_ticks, cur_ticks;
6029 	int delta_msec;
6030 	int thresh;
6031 
6032 	/*
6033 	 * Calculate the difference between the current and
6034 	 * previous statistics.
6035 	 */
6036 	delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck;
6037 	delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6038 	delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht;
6039 
6040 	/*
6041 	 * Calculate the delta in time between successive statistics
6042 	 * messages.  Yes, it can roll over; so we make sure that
6043 	 * this doesn't happen.
6044 	 *
6045 	 * XXX go figure out what to do about rollover
6046 	 * XXX go figure out what to do if ticks rolls over to -ve instead!
6047 	 * XXX go stab signed integer overflow undefined-ness in the face.
6048 	 */
6049 	cur_ticks = ticks;
6050 	delta_ticks = cur_ticks - sc->last_calib_ticks;
6051 
6052 	/*
6053 	 * If any are negative, then the firmware likely reset; so just
6054 	 * bail.  We'll pick this up next time.
6055 	 */
6056 	if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0)
6057 		return;
6058 
6059 	/*
6060 	 * delta_ticks is in ticks; we need to convert it up to milliseconds
6061 	 * so we can do some useful math with it.
6062 	 */
6063 	delta_msec = ticks_to_msecs(delta_ticks);
6064 
6065 	/*
6066 	 * Calculate what our threshold is given the current delta_msec.
6067 	 */
6068 	thresh = sc->base_params->plcp_err_threshold * delta_msec;
6069 
6070 	DPRINTF(sc, IWN_DEBUG_STATE,
6071 	    "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n",
6072 	    __func__,
6073 	    delta_msec,
6074 	    delta_cck,
6075 	    delta_ofdm,
6076 	    delta_ht,
6077 	    (delta_msec + delta_cck + delta_ofdm + delta_ht),
6078 	    thresh);
6079 
6080 	/*
6081 	 * If we need a retune, then schedule a single channel scan
6082 	 * to a channel that isn't the currently active one!
6083 	 *
6084 	 * The math from linux iwlwifi:
6085 	 *
6086 	 * if ((delta * 100 / msecs) > threshold)
6087 	 */
6088 	if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) {
6089 		DPRINTF(sc, IWN_DEBUG_ANY,
6090 		    "%s: PLCP error threshold raw (%d) comparison (%d) "
6091 		    "over limit (%d); retune!\n",
6092 		    __func__,
6093 		    (delta_cck + delta_ofdm + delta_ht),
6094 		    (delta_cck + delta_ofdm + delta_ht) * 100,
6095 		    thresh);
6096 	}
6097 }
6098 
6099 /*
6100  * Set STA mode power saving level (between 0 and 5).
6101  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
6102  */
6103 static int
6104 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
6105 {
6106 	struct iwn_pmgt_cmd cmd;
6107 	const struct iwn_pmgt *pmgt;
6108 	uint32_t max, skip_dtim;
6109 	uint32_t reg;
6110 	int i;
6111 
6112 	DPRINTF(sc, IWN_DEBUG_PWRSAVE,
6113 	    "%s: dtim=%d, level=%d, async=%d\n",
6114 	    __func__,
6115 	    dtim,
6116 	    level,
6117 	    async);
6118 
6119 	/* Select which PS parameters to use. */
6120 	if (dtim <= 2)
6121 		pmgt = &iwn_pmgt[0][level];
6122 	else if (dtim <= 10)
6123 		pmgt = &iwn_pmgt[1][level];
6124 	else
6125 		pmgt = &iwn_pmgt[2][level];
6126 
6127 	memset(&cmd, 0, sizeof cmd);
6128 	if (level != 0)	/* not CAM */
6129 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
6130 	if (level == 5)
6131 		cmd.flags |= htole16(IWN_PS_FAST_PD);
6132 	/* Retrieve PCIe Active State Power Management (ASPM). */
6133 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
6134 	if (!(reg & 0x1))	/* L0s Entry disabled. */
6135 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
6136 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
6137 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
6138 
6139 	if (dtim == 0) {
6140 		dtim = 1;
6141 		skip_dtim = 0;
6142 	} else
6143 		skip_dtim = pmgt->skip_dtim;
6144 	if (skip_dtim != 0) {
6145 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
6146 		max = pmgt->intval[4];
6147 		if (max == (uint32_t)-1)
6148 			max = dtim * (skip_dtim + 1);
6149 		else if (max > dtim)
6150 			max = (max / dtim) * dtim;
6151 	} else
6152 		max = dtim;
6153 	for (i = 0; i < 5; i++)
6154 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
6155 
6156 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
6157 	    level);
6158 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
6159 }
6160 
6161 static int
6162 iwn_send_btcoex(struct iwn_softc *sc)
6163 {
6164 	struct iwn_bluetooth cmd;
6165 
6166 	memset(&cmd, 0, sizeof cmd);
6167 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
6168 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
6169 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
6170 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
6171 	    __func__);
6172 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
6173 }
6174 
6175 static int
6176 iwn_send_advanced_btcoex(struct iwn_softc *sc)
6177 {
6178 	static const uint32_t btcoex_3wire[12] = {
6179 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
6180 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
6181 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
6182 	};
6183 	struct iwn6000_btcoex_config btconfig;
6184 	struct iwn2000_btcoex_config btconfig2k;
6185 	struct iwn_btcoex_priotable btprio;
6186 	struct iwn_btcoex_prot btprot;
6187 	int error, i;
6188 	uint8_t flags;
6189 
6190 	memset(&btconfig, 0, sizeof btconfig);
6191 	memset(&btconfig2k, 0, sizeof btconfig2k);
6192 
6193 	flags = IWN_BT_FLAG_COEX6000_MODE_3W <<
6194 	    IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2
6195 
6196 	if (sc->base_params->bt_sco_disable)
6197 		flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6198 	else
6199 		flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6200 
6201 	flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION;
6202 
6203 	/* Default flags result is 145 as old value */
6204 
6205 	/*
6206 	 * Flags value has to be review. Values must change if we
6207 	 * which to disable it
6208 	 */
6209 	if (sc->base_params->bt_session_2) {
6210 		btconfig2k.flags = flags;
6211 		btconfig2k.max_kill = 5;
6212 		btconfig2k.bt3_t7_timer = 1;
6213 		btconfig2k.kill_ack = htole32(0xffff0000);
6214 		btconfig2k.kill_cts = htole32(0xffff0000);
6215 		btconfig2k.sample_time = 2;
6216 		btconfig2k.bt3_t2_timer = 0xc;
6217 
6218 		for (i = 0; i < 12; i++)
6219 			btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]);
6220 		btconfig2k.valid = htole16(0xff);
6221 		btconfig2k.prio_boost = htole32(0xf0);
6222 		DPRINTF(sc, IWN_DEBUG_RESET,
6223 		    "%s: configuring advanced bluetooth coexistence"
6224 		    " session 2, flags : 0x%x\n",
6225 		    __func__,
6226 		    flags);
6227 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k,
6228 		    sizeof(btconfig2k), 1);
6229 	} else {
6230 		btconfig.flags = flags;
6231 		btconfig.max_kill = 5;
6232 		btconfig.bt3_t7_timer = 1;
6233 		btconfig.kill_ack = htole32(0xffff0000);
6234 		btconfig.kill_cts = htole32(0xffff0000);
6235 		btconfig.sample_time = 2;
6236 		btconfig.bt3_t2_timer = 0xc;
6237 
6238 		for (i = 0; i < 12; i++)
6239 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
6240 		btconfig.valid = htole16(0xff);
6241 		btconfig.prio_boost = 0xf0;
6242 		DPRINTF(sc, IWN_DEBUG_RESET,
6243 		    "%s: configuring advanced bluetooth coexistence,"
6244 		    " flags : 0x%x\n",
6245 		    __func__,
6246 		    flags);
6247 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
6248 		    sizeof(btconfig), 1);
6249 	}
6250 
6251 	if (error != 0)
6252 		return error;
6253 
6254 	memset(&btprio, 0, sizeof btprio);
6255 	btprio.calib_init1 = 0x6;
6256 	btprio.calib_init2 = 0x7;
6257 	btprio.calib_periodic_low1 = 0x2;
6258 	btprio.calib_periodic_low2 = 0x3;
6259 	btprio.calib_periodic_high1 = 0x4;
6260 	btprio.calib_periodic_high2 = 0x5;
6261 	btprio.dtim = 0x6;
6262 	btprio.scan52 = 0x8;
6263 	btprio.scan24 = 0xa;
6264 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
6265 	    1);
6266 	if (error != 0)
6267 		return error;
6268 
6269 	/* Force BT state machine change. */
6270 	memset(&btprot, 0, sizeof btprot);
6271 	btprot.open = 1;
6272 	btprot.type = 1;
6273 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6274 	if (error != 0)
6275 		return error;
6276 	btprot.open = 0;
6277 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6278 }
6279 
6280 static int
6281 iwn5000_runtime_calib(struct iwn_softc *sc)
6282 {
6283 	struct iwn5000_calib_config cmd;
6284 
6285 	memset(&cmd, 0, sizeof cmd);
6286 	cmd.ucode.once.enable = 0xffffffff;
6287 	cmd.ucode.once.start = IWN5000_CALIB_DC;
6288 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6289 	    "%s: configuring runtime calibration\n", __func__);
6290 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
6291 }
6292 
6293 static int
6294 iwn_config(struct iwn_softc *sc)
6295 {
6296 	struct iwn_ops *ops = &sc->ops;
6297 	struct ifnet *ifp = sc->sc_ifp;
6298 	struct ieee80211com *ic = ifp->if_l2com;
6299 	uint32_t txmask;
6300 	uint16_t rxchain;
6301 	int error;
6302 
6303 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6304 
6305 	if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET)
6306 	    && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) {
6307 		device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are"
6308 		    " exclusive each together. Review NIC config file. Conf"
6309 		    " :  0x%08x Flags :  0x%08x  \n", __func__,
6310 		    sc->base_params->calib_need,
6311 		    (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET |
6312 		    IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2));
6313 		return (EINVAL);
6314 	}
6315 
6316 	/* Compute temperature calib if needed. Will be send by send calib */
6317 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) {
6318 		error = iwn5000_temp_offset_calib(sc);
6319 		if (error != 0) {
6320 			device_printf(sc->sc_dev,
6321 			    "%s: could not set temperature offset\n", __func__);
6322 			return (error);
6323 		}
6324 	} else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
6325 		error = iwn5000_temp_offset_calibv2(sc);
6326 		if (error != 0) {
6327 			device_printf(sc->sc_dev,
6328 			    "%s: could not compute temperature offset v2\n",
6329 			    __func__);
6330 			return (error);
6331 		}
6332 	}
6333 
6334 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6335 		/* Configure runtime DC calibration. */
6336 		error = iwn5000_runtime_calib(sc);
6337 		if (error != 0) {
6338 			device_printf(sc->sc_dev,
6339 			    "%s: could not configure runtime calibration\n",
6340 			    __func__);
6341 			return error;
6342 		}
6343 	}
6344 
6345 	/* Configure valid TX chains for >=5000 Series. */
6346 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
6347 		txmask = htole32(sc->txchainmask);
6348 		DPRINTF(sc, IWN_DEBUG_RESET,
6349 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
6350 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
6351 		    sizeof txmask, 0);
6352 		if (error != 0) {
6353 			device_printf(sc->sc_dev,
6354 			    "%s: could not configure valid TX chains, "
6355 			    "error %d\n", __func__, error);
6356 			return error;
6357 		}
6358 	}
6359 
6360 	/* Configure bluetooth coexistence. */
6361 	error = 0;
6362 
6363 	/* Configure bluetooth coexistence if needed. */
6364 	if (sc->base_params->bt_mode == IWN_BT_ADVANCED)
6365 		error = iwn_send_advanced_btcoex(sc);
6366 	if (sc->base_params->bt_mode == IWN_BT_SIMPLE)
6367 		error = iwn_send_btcoex(sc);
6368 
6369 	if (error != 0) {
6370 		device_printf(sc->sc_dev,
6371 		    "%s: could not configure bluetooth coexistence, error %d\n",
6372 		    __func__, error);
6373 		return error;
6374 	}
6375 
6376 	/* Set mode, channel, RX filter and enable RX. */
6377 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6378 	memset(sc->rxon, 0, sizeof (struct iwn_rxon));
6379 	IEEE80211_ADDR_COPY(sc->rxon->myaddr, IF_LLADDR(ifp));
6380 	IEEE80211_ADDR_COPY(sc->rxon->wlap, IF_LLADDR(ifp));
6381 	sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
6382 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6383 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
6384 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6385 	switch (ic->ic_opmode) {
6386 	case IEEE80211_M_STA:
6387 		sc->rxon->mode = IWN_MODE_STA;
6388 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST);
6389 		break;
6390 	case IEEE80211_M_MONITOR:
6391 		sc->rxon->mode = IWN_MODE_MONITOR;
6392 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST |
6393 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
6394 		break;
6395 	default:
6396 		/* Should not get there. */
6397 		break;
6398 	}
6399 	sc->rxon->cck_mask  = 0x0f;	/* not yet negotiated */
6400 	sc->rxon->ofdm_mask = 0xff;	/* not yet negotiated */
6401 	sc->rxon->ht_single_mask = 0xff;
6402 	sc->rxon->ht_dual_mask = 0xff;
6403 	sc->rxon->ht_triple_mask = 0xff;
6404 	rxchain =
6405 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6406 	    IWN_RXCHAIN_MIMO_COUNT(2) |
6407 	    IWN_RXCHAIN_IDLE_COUNT(2);
6408 	sc->rxon->rxchain = htole16(rxchain);
6409 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__);
6410 	if (sc->sc_is_scanning)
6411 		device_printf(sc->sc_dev,
6412 		    "%s: is_scanning set, before RXON\n",
6413 		    __func__);
6414 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 0);
6415 	if (error != 0) {
6416 		device_printf(sc->sc_dev, "%s: RXON command failed\n",
6417 		    __func__);
6418 		return error;
6419 	}
6420 
6421 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
6422 		device_printf(sc->sc_dev, "%s: could not add broadcast node\n",
6423 		    __func__);
6424 		return error;
6425 	}
6426 
6427 	/* Configuration has changed, set TX power accordingly. */
6428 	if ((error = ops->set_txpower(sc, ic->ic_curchan, 0)) != 0) {
6429 		device_printf(sc->sc_dev, "%s: could not set TX power\n",
6430 		    __func__);
6431 		return error;
6432 	}
6433 
6434 	if ((error = iwn_set_critical_temp(sc)) != 0) {
6435 		device_printf(sc->sc_dev,
6436 		    "%s: could not set critical temperature\n", __func__);
6437 		return error;
6438 	}
6439 
6440 	/* Set power saving level to CAM during initialization. */
6441 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
6442 		device_printf(sc->sc_dev,
6443 		    "%s: could not set power saving level\n", __func__);
6444 		return error;
6445 	}
6446 
6447 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6448 
6449 	return 0;
6450 }
6451 
6452 /*
6453  * Add an ssid element to a frame.
6454  */
6455 static uint8_t *
6456 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
6457 {
6458 	*frm++ = IEEE80211_ELEMID_SSID;
6459 	*frm++ = len;
6460 	memcpy(frm, ssid, len);
6461 	return frm + len;
6462 }
6463 
6464 static uint16_t
6465 iwn_get_active_dwell_time(struct iwn_softc *sc,
6466     struct ieee80211_channel *c, uint8_t n_probes)
6467 {
6468 	/* No channel? Default to 2GHz settings */
6469 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6470 		return (IWN_ACTIVE_DWELL_TIME_2GHZ +
6471 		IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
6472 	}
6473 
6474 	/* 5GHz dwell time */
6475 	return (IWN_ACTIVE_DWELL_TIME_5GHZ +
6476 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
6477 }
6478 
6479 /*
6480  * Limit the total dwell time to 85% of the beacon interval.
6481  *
6482  * Returns the dwell time in milliseconds.
6483  */
6484 static uint16_t
6485 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
6486 {
6487 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
6488 	struct ieee80211vap *vap = NULL;
6489 	int bintval = 0;
6490 
6491 	/* bintval is in TU (1.024mS) */
6492 	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
6493 		vap = TAILQ_FIRST(&ic->ic_vaps);
6494 		bintval = vap->iv_bss->ni_intval;
6495 	}
6496 
6497 	/*
6498 	 * If it's non-zero, we should calculate the minimum of
6499 	 * it and the DWELL_BASE.
6500 	 *
6501 	 * XXX Yes, the math should take into account that bintval
6502 	 * is 1.024mS, not 1mS..
6503 	 */
6504 	if (bintval > 0) {
6505 		DPRINTF(sc, IWN_DEBUG_SCAN,
6506 		    "%s: bintval=%d\n",
6507 		    __func__,
6508 		    bintval);
6509 		return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
6510 	}
6511 
6512 	/* No association context? Default */
6513 	return (IWN_PASSIVE_DWELL_BASE);
6514 }
6515 
6516 static uint16_t
6517 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c)
6518 {
6519 	uint16_t passive;
6520 
6521 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6522 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
6523 	} else {
6524 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
6525 	}
6526 
6527 	/* Clamp to the beacon interval if we're associated */
6528 	return (iwn_limit_dwell(sc, passive));
6529 }
6530 
6531 static int
6532 iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap,
6533     struct ieee80211_scan_state *ss, struct ieee80211_channel *c)
6534 {
6535 	struct ifnet *ifp = sc->sc_ifp;
6536 	struct ieee80211com *ic = ifp->if_l2com;
6537 	struct ieee80211_node *ni = vap->iv_bss;
6538 	struct iwn_scan_hdr *hdr;
6539 	struct iwn_cmd_data *tx;
6540 	struct iwn_scan_essid *essid;
6541 	struct iwn_scan_chan *chan;
6542 	struct ieee80211_frame *wh;
6543 	struct ieee80211_rateset *rs;
6544 	uint8_t *buf, *frm;
6545 	uint16_t rxchain;
6546 	uint8_t txant;
6547 	int buflen, error;
6548 	int is_active;
6549 	uint16_t dwell_active, dwell_passive;
6550 	uint32_t extra, scan_service_time;
6551 
6552 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6553 
6554 	/*
6555 	 * We are absolutely not allowed to send a scan command when another
6556 	 * scan command is pending.
6557 	 */
6558 	if (sc->sc_is_scanning) {
6559 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
6560 		    __func__);
6561 		return (EAGAIN);
6562 	}
6563 
6564 	/* Assign the scan channel */
6565 	c = ic->ic_curchan;
6566 
6567 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6568 	buf = kmalloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_INTWAIT | M_ZERO);
6569 	hdr = (struct iwn_scan_hdr *)buf;
6570 	/*
6571 	 * Move to the next channel if no frames are received within 10ms
6572 	 * after sending the probe request.
6573 	 */
6574 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
6575 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
6576 	/*
6577 	 * Max needs to be greater than active and passive and quiet!
6578 	 * It's also in microseconds!
6579 	 */
6580 	hdr->max_svc = htole32(250 * 1024);
6581 
6582 	/*
6583 	 * Reset scan: interval=100
6584 	 * Normal scan: interval=becaon interval
6585 	 * suspend_time: 100 (TU)
6586 	 *
6587 	 */
6588 	extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22;
6589 	//scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024);
6590 	scan_service_time = (4 << 22) | (100 * 1024);	/* Hardcode for now! */
6591 	hdr->pause_svc = htole32(scan_service_time);
6592 
6593 	/* Select antennas for scanning. */
6594 	rxchain =
6595 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6596 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
6597 	    IWN_RXCHAIN_DRIVER_FORCE;
6598 	if (IEEE80211_IS_CHAN_A(c) &&
6599 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
6600 		/* Ant A must be avoided in 5GHz because of an HW bug. */
6601 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
6602 	} else	/* Use all available RX antennas. */
6603 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
6604 	hdr->rxchain = htole16(rxchain);
6605 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
6606 
6607 	tx = (struct iwn_cmd_data *)(hdr + 1);
6608 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
6609 	tx->id = sc->broadcast_id;
6610 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
6611 
6612 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
6613 		/* Send probe requests at 6Mbps. */
6614 		tx->rate = htole32(0xd);
6615 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
6616 	} else {
6617 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
6618 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
6619 		    sc->rxon->associd && sc->rxon->chan > 14)
6620 			tx->rate = htole32(0xd);
6621 		else {
6622 			/* Send probe requests at 1Mbps. */
6623 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
6624 		}
6625 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
6626 	}
6627 	/* Use the first valid TX antenna. */
6628 	txant = IWN_LSB(sc->txchainmask);
6629 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
6630 
6631 	/*
6632 	 * Only do active scanning if we're announcing a probe request
6633 	 * for a given SSID (or more, if we ever add it to the driver.)
6634 	 */
6635 	is_active = 0;
6636 
6637 	/*
6638 	 * If we're scanning for a specific SSID, add it to the command.
6639 	 *
6640 	 * XXX maybe look at adding support for scanning multiple SSIDs?
6641 	 */
6642 	essid = (struct iwn_scan_essid *)(tx + 1);
6643 	if (ss != NULL) {
6644 		if (ss->ss_ssid[0].len != 0) {
6645 			essid[0].id = IEEE80211_ELEMID_SSID;
6646 			essid[0].len = ss->ss_ssid[0].len;
6647 			memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
6648 		}
6649 
6650 		DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n",
6651 		    __func__,
6652 		    ss->ss_ssid[0].len,
6653 		    ss->ss_ssid[0].len,
6654 		    ss->ss_ssid[0].ssid);
6655 
6656 		if (ss->ss_nssid > 0)
6657 			is_active = 1;
6658 	}
6659 
6660 	/*
6661 	 * Build a probe request frame.  Most of the following code is a
6662 	 * copy & paste of what is done in net80211.
6663 	 */
6664 	wh = (struct ieee80211_frame *)(essid + 20);
6665 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
6666 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
6667 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
6668 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
6669 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
6670 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
6671 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
6672 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
6673 
6674 	frm = (uint8_t *)(wh + 1);
6675 	frm = ieee80211_add_ssid(frm, NULL, 0);
6676 	frm = ieee80211_add_rates(frm, rs);
6677 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
6678 		frm = ieee80211_add_xrates(frm, rs);
6679 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
6680 		frm = ieee80211_add_htcap(frm, ni);
6681 
6682 	/* Set length of probe request. */
6683 	tx->len = htole16(frm - (uint8_t *)wh);
6684 
6685 	/*
6686 	 * If active scanning is requested but a certain channel is
6687 	 * marked passive, we can do active scanning if we detect
6688 	 * transmissions.
6689 	 *
6690 	 * There is an issue with some firmware versions that triggers
6691 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
6692 	 * on a radar channel even though this means that we should NOT
6693 	 * send probes.
6694 	 *
6695 	 * The "good CRC threshold" is the number of frames that we
6696 	 * need to receive during our dwell time on a channel before
6697 	 * sending out probes -- setting this to a huge value will
6698 	 * mean we never reach it, but at the same time work around
6699 	 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER
6700 	 * here instead of IWL_GOOD_CRC_TH_DISABLED.
6701 	 *
6702 	 * This was fixed in later versions along with some other
6703 	 * scan changes, and the threshold behaves as a flag in those
6704 	 * versions.
6705 	 */
6706 
6707 	/*
6708 	 * If we're doing active scanning, set the crc_threshold
6709 	 * to a suitable value.  This is different to active veruss
6710 	 * passive scanning depending upon the channel flags; the
6711 	 * firmware will obey that particular check for us.
6712 	 */
6713 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
6714 		hdr->crc_threshold = is_active ?
6715 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
6716 	else
6717 		hdr->crc_threshold = is_active ?
6718 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
6719 
6720 	chan = (struct iwn_scan_chan *)frm;
6721 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
6722 	chan->flags = 0;
6723 	if (ss->ss_nssid > 0)
6724 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
6725 	chan->dsp_gain = 0x6e;
6726 
6727 	/*
6728 	 * Set the passive/active flag depending upon the channel mode.
6729 	 * XXX TODO: take the is_active flag into account as well?
6730 	 */
6731 	if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
6732 		chan->flags |= htole32(IWN_CHAN_PASSIVE);
6733 	else
6734 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
6735 
6736 	/*
6737 	 * Calculate the active/passive dwell times.
6738 	 */
6739 
6740 	dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid);
6741 	dwell_passive = iwn_get_passive_dwell_time(sc, c);
6742 
6743 	/* Make sure they're valid */
6744 	if (dwell_passive <= dwell_active)
6745 		dwell_passive = dwell_active + 1;
6746 
6747 	chan->active = htole16(dwell_active);
6748 	chan->passive = htole16(dwell_passive);
6749 
6750 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
6751 	    !(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
6752 		chan->rf_gain = 0x3b;
6753 	} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
6754 		chan->rf_gain = 0x3b;
6755 	} else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
6756 		chan->rf_gain = 0x28;
6757 	} else {
6758 		chan->rf_gain = 0x28;
6759 	}
6760 
6761 	DPRINTF(sc, IWN_DEBUG_STATE,
6762 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
6763 	    "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x "
6764 	    "isactive=%d numssid=%d\n", __func__,
6765 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
6766 	    dwell_active, dwell_passive, scan_service_time,
6767 	    hdr->crc_threshold, is_active, ss->ss_nssid);
6768 
6769 	hdr->nchan++;
6770 	chan++;
6771 	buflen = (uint8_t *)chan - buf;
6772 	hdr->len = htole16(buflen);
6773 
6774 	if (sc->sc_is_scanning) {
6775 		device_printf(sc->sc_dev,
6776 		    "%s: called with is_scanning set!\n",
6777 		    __func__);
6778 	}
6779 	sc->sc_is_scanning = 1;
6780 
6781 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
6782 	    hdr->nchan);
6783 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
6784 	kfree(buf, M_DEVBUF);
6785 
6786 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6787 
6788 	return error;
6789 }
6790 
6791 static int
6792 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
6793 {
6794 	struct iwn_ops *ops = &sc->ops;
6795 	struct ifnet *ifp = sc->sc_ifp;
6796 	struct ieee80211com *ic = ifp->if_l2com;
6797 	struct ieee80211_node *ni = vap->iv_bss;
6798 	int error;
6799 
6800 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6801 
6802 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6803 	/* Update adapter configuration. */
6804 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
6805 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
6806 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6807 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
6808 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6809 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
6810 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
6811 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
6812 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
6813 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
6814 		sc->rxon->cck_mask  = 0;
6815 		sc->rxon->ofdm_mask = 0x15;
6816 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
6817 		sc->rxon->cck_mask  = 0x03;
6818 		sc->rxon->ofdm_mask = 0;
6819 	} else {
6820 		/* Assume 802.11b/g. */
6821 		sc->rxon->cck_mask  = 0x03;
6822 		sc->rxon->ofdm_mask = 0x15;
6823 	}
6824 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
6825 	    sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask,
6826 	    sc->rxon->ofdm_mask);
6827 	if (sc->sc_is_scanning)
6828 		device_printf(sc->sc_dev,
6829 		    "%s: is_scanning set, before RXON\n",
6830 		    __func__);
6831 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
6832 	if (error != 0) {
6833 		device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n",
6834 		    __func__, error);
6835 		return error;
6836 	}
6837 
6838 	/* Configuration has changed, set TX power accordingly. */
6839 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
6840 		device_printf(sc->sc_dev,
6841 		    "%s: could not set TX power, error %d\n", __func__, error);
6842 		return error;
6843 	}
6844 	/*
6845 	 * Reconfiguring RXON clears the firmware nodes table so we must
6846 	 * add the broadcast node again.
6847 	 */
6848 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
6849 		device_printf(sc->sc_dev,
6850 		    "%s: could not add broadcast node, error %d\n", __func__,
6851 		    error);
6852 		return error;
6853 	}
6854 
6855 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6856 
6857 	return 0;
6858 }
6859 
6860 static int
6861 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
6862 {
6863 	struct iwn_ops *ops = &sc->ops;
6864 	struct ifnet *ifp = sc->sc_ifp;
6865 	struct ieee80211com *ic = ifp->if_l2com;
6866 	struct ieee80211_node *ni = vap->iv_bss;
6867 	struct iwn_node_info node;
6868 	uint32_t htflags = 0;
6869 	int error;
6870 
6871 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6872 
6873 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6874 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
6875 		/* Link LED blinks while monitoring. */
6876 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
6877 		return 0;
6878 	}
6879 	if ((error = iwn_set_timing(sc, ni)) != 0) {
6880 		device_printf(sc->sc_dev,
6881 		    "%s: could not set timing, error %d\n", __func__, error);
6882 		return error;
6883 	}
6884 
6885 	/* Update adapter configuration. */
6886 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
6887 	sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd));
6888 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
6889 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6890 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
6891 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6892 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
6893 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
6894 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
6895 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
6896 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
6897 		sc->rxon->cck_mask  = 0;
6898 		sc->rxon->ofdm_mask = 0x15;
6899 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
6900 		sc->rxon->cck_mask  = 0x03;
6901 		sc->rxon->ofdm_mask = 0;
6902 	} else {
6903 		/* Assume 802.11b/g. */
6904 		sc->rxon->cck_mask  = 0x0f;
6905 		sc->rxon->ofdm_mask = 0x15;
6906 	}
6907 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
6908 		htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
6909 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
6910 			switch (ic->ic_curhtprotmode) {
6911 			case IEEE80211_HTINFO_OPMODE_HT20PR:
6912 				htflags |= IWN_RXON_HT_MODEPURE40;
6913 				break;
6914 			default:
6915 				htflags |= IWN_RXON_HT_MODEMIXED;
6916 				break;
6917 			}
6918 		}
6919 		if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
6920 			htflags |= IWN_RXON_HT_HT40MINUS;
6921 	}
6922 	sc->rxon->flags |= htole32(htflags);
6923 	sc->rxon->filter |= htole32(IWN_FILTER_BSS);
6924 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x\n",
6925 	    sc->rxon->chan, sc->rxon->flags);
6926 	if (sc->sc_is_scanning)
6927 		device_printf(sc->sc_dev,
6928 		    "%s: is_scanning set, before RXON\n",
6929 		    __func__);
6930 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
6931 	if (error != 0) {
6932 		device_printf(sc->sc_dev,
6933 		    "%s: could not update configuration, error %d\n", __func__,
6934 		    error);
6935 		return error;
6936 	}
6937 
6938 	/* Configuration has changed, set TX power accordingly. */
6939 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
6940 		device_printf(sc->sc_dev,
6941 		    "%s: could not set TX power, error %d\n", __func__, error);
6942 		return error;
6943 	}
6944 
6945 	/* Fake a join to initialize the TX rate. */
6946 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
6947 	iwn_newassoc(ni, 1);
6948 
6949 	/* Add BSS node. */
6950 	memset(&node, 0, sizeof node);
6951 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
6952 	node.id = IWN_ID_BSS;
6953 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
6954 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
6955 		case IEEE80211_HTCAP_SMPS_ENA:
6956 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
6957 			break;
6958 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
6959 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
6960 			break;
6961 		}
6962 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
6963 		    IWN_AMDPU_DENSITY(5));	/* 4us */
6964 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
6965 			node.htflags |= htole32(IWN_NODE_HT40);
6966 	}
6967 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
6968 	error = ops->add_node(sc, &node, 1);
6969 	if (error != 0) {
6970 		device_printf(sc->sc_dev,
6971 		    "%s: could not add BSS node, error %d\n", __func__, error);
6972 		return error;
6973 	}
6974 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
6975 	    __func__, node.id);
6976 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
6977 		device_printf(sc->sc_dev,
6978 		    "%s: could not setup link quality for node %d, error %d\n",
6979 		    __func__, node.id, error);
6980 		return error;
6981 	}
6982 
6983 	if ((error = iwn_init_sensitivity(sc)) != 0) {
6984 		device_printf(sc->sc_dev,
6985 		    "%s: could not set sensitivity, error %d\n", __func__,
6986 		    error);
6987 		return error;
6988 	}
6989 	/* Start periodic calibration timer. */
6990 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
6991 	sc->calib_cnt = 0;
6992 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
6993 	    sc);
6994 
6995 	/* Link LED always on while associated. */
6996 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
6997 
6998 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6999 
7000 	return 0;
7001 }
7002 
7003 /*
7004  * This function is called by upper layer when an ADDBA request is received
7005  * from another STA and before the ADDBA response is sent.
7006  */
7007 static int
7008 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
7009     int baparamset, int batimeout, int baseqctl)
7010 {
7011 #define MS(_v, _f)	(((_v) & _f) >> _f##_S)
7012 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7013 	struct iwn_ops *ops = &sc->ops;
7014 	struct iwn_node *wn = (void *)ni;
7015 	struct iwn_node_info node;
7016 	uint16_t ssn;
7017 	uint8_t tid;
7018 	int error;
7019 
7020 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7021 
7022 	tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID);
7023 	ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START);
7024 
7025 	memset(&node, 0, sizeof node);
7026 	node.id = wn->id;
7027 	node.control = IWN_NODE_UPDATE;
7028 	node.flags = IWN_FLAG_SET_ADDBA;
7029 	node.addba_tid = tid;
7030 	node.addba_ssn = htole16(ssn);
7031 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
7032 	    wn->id, tid, ssn);
7033 	error = ops->add_node(sc, &node, 1);
7034 	if (error != 0)
7035 		return error;
7036 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
7037 #undef MS
7038 }
7039 
7040 /*
7041  * This function is called by upper layer on teardown of an HT-immediate
7042  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
7043  */
7044 static void
7045 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
7046 {
7047 	struct ieee80211com *ic = ni->ni_ic;
7048 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
7049 	struct iwn_ops *ops = &sc->ops;
7050 	struct iwn_node *wn = (void *)ni;
7051 	struct iwn_node_info node;
7052 	uint8_t tid;
7053 
7054 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7055 
7056 	/* XXX: tid as an argument */
7057 	for (tid = 0; tid < WME_NUM_TID; tid++) {
7058 		if (&ni->ni_rx_ampdu[tid] == rap)
7059 			break;
7060 	}
7061 
7062 	memset(&node, 0, sizeof node);
7063 	node.id = wn->id;
7064 	node.control = IWN_NODE_UPDATE;
7065 	node.flags = IWN_FLAG_SET_DELBA;
7066 	node.delba_tid = tid;
7067 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
7068 	(void)ops->add_node(sc, &node, 1);
7069 	sc->sc_ampdu_rx_stop(ni, rap);
7070 }
7071 
7072 static int
7073 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7074     int dialogtoken, int baparamset, int batimeout)
7075 {
7076 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7077 	int qid;
7078 
7079 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7080 
7081 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
7082 		if (sc->qid2tap[qid] == NULL)
7083 			break;
7084 	}
7085 	if (qid == sc->ntxqs) {
7086 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
7087 		    __func__);
7088 		return 0;
7089 	}
7090 	tap->txa_private = kmalloc(sizeof(int), M_DEVBUF, M_INTWAIT);
7091 	sc->qid2tap[qid] = tap;
7092 	*(int *)tap->txa_private = qid;
7093 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
7094 	    batimeout);
7095 }
7096 
7097 static int
7098 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7099     int code, int baparamset, int batimeout)
7100 {
7101 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7102 	int qid = *(int *)tap->txa_private;
7103 	uint8_t tid = tap->txa_ac;
7104 	int ret;
7105 
7106 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7107 
7108 	if (code == IEEE80211_STATUS_SUCCESS) {
7109 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
7110 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
7111 		if (ret != 1)
7112 			return ret;
7113 	} else {
7114 		sc->qid2tap[qid] = NULL;
7115 		kfree(tap->txa_private, M_DEVBUF);
7116 		tap->txa_private = NULL;
7117 	}
7118 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
7119 }
7120 
7121 /*
7122  * This function is called by upper layer when an ADDBA response is received
7123  * from another STA.
7124  */
7125 static int
7126 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
7127     uint8_t tid)
7128 {
7129 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
7130 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7131 	struct iwn_ops *ops = &sc->ops;
7132 	struct iwn_node *wn = (void *)ni;
7133 	struct iwn_node_info node;
7134 	int error, qid;
7135 
7136 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7137 
7138 	/* Enable TX for the specified RA/TID. */
7139 	wn->disable_tid &= ~(1 << tid);
7140 	memset(&node, 0, sizeof node);
7141 	node.id = wn->id;
7142 	node.control = IWN_NODE_UPDATE;
7143 	node.flags = IWN_FLAG_SET_DISABLE_TID;
7144 	node.disable_tid = htole16(wn->disable_tid);
7145 	error = ops->add_node(sc, &node, 1);
7146 	if (error != 0)
7147 		return 0;
7148 
7149 	if ((error = iwn_nic_lock(sc)) != 0)
7150 		return 0;
7151 	qid = *(int *)tap->txa_private;
7152 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
7153 	    __func__, wn->id, tid, tap->txa_start, qid);
7154 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
7155 	iwn_nic_unlock(sc);
7156 
7157 	iwn_set_link_quality(sc, ni);
7158 	return 1;
7159 }
7160 
7161 static void
7162 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
7163 {
7164 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7165 	struct iwn_ops *ops = &sc->ops;
7166 	uint8_t tid = tap->txa_ac;
7167 	int qid;
7168 
7169 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7170 
7171 	sc->sc_addba_stop(ni, tap);
7172 
7173 	if (tap->txa_private == NULL)
7174 		return;
7175 
7176 	qid = *(int *)tap->txa_private;
7177 	if (sc->txq[qid].queued != 0)
7178 		return;
7179 	if (iwn_nic_lock(sc) != 0)
7180 		return;
7181 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
7182 	iwn_nic_unlock(sc);
7183 	sc->qid2tap[qid] = NULL;
7184 	kfree(tap->txa_private, M_DEVBUF);
7185 	tap->txa_private = NULL;
7186 }
7187 
7188 static void
7189 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7190     int qid, uint8_t tid, uint16_t ssn)
7191 {
7192 	struct iwn_node *wn = (void *)ni;
7193 
7194 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7195 
7196 	/* Stop TX scheduler while we're changing its configuration. */
7197 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7198 	    IWN4965_TXQ_STATUS_CHGACT);
7199 
7200 	/* Assign RA/TID translation to the queue. */
7201 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
7202 	    wn->id << 4 | tid);
7203 
7204 	/* Enable chain-building mode for the queue. */
7205 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
7206 
7207 	/* Set starting sequence number from the ADDBA request. */
7208 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7209 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7210 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7211 
7212 	/* Set scheduler window size. */
7213 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
7214 	    IWN_SCHED_WINSZ);
7215 	/* Set scheduler frame limit. */
7216 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7217 	    IWN_SCHED_LIMIT << 16);
7218 
7219 	/* Enable interrupts for the queue. */
7220 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7221 
7222 	/* Mark the queue as active. */
7223 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7224 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
7225 	    iwn_tid2fifo[tid] << 1);
7226 }
7227 
7228 static void
7229 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7230 {
7231 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7232 
7233 	/* Stop TX scheduler while we're changing its configuration. */
7234 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7235 	    IWN4965_TXQ_STATUS_CHGACT);
7236 
7237 	/* Set starting sequence number from the ADDBA request. */
7238 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7239 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7240 
7241 	/* Disable interrupts for the queue. */
7242 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7243 
7244 	/* Mark the queue as inactive. */
7245 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7246 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
7247 }
7248 
7249 static void
7250 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7251     int qid, uint8_t tid, uint16_t ssn)
7252 {
7253 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7254 
7255 	struct iwn_node *wn = (void *)ni;
7256 
7257 	/* Stop TX scheduler while we're changing its configuration. */
7258 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7259 	    IWN5000_TXQ_STATUS_CHGACT);
7260 
7261 	/* Assign RA/TID translation to the queue. */
7262 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
7263 	    wn->id << 4 | tid);
7264 
7265 	/* Enable chain-building mode for the queue. */
7266 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
7267 
7268 	/* Enable aggregation for the queue. */
7269 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7270 
7271 	/* Set starting sequence number from the ADDBA request. */
7272 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7273 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7274 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7275 
7276 	/* Set scheduler window size and frame limit. */
7277 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7278 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7279 
7280 	/* Enable interrupts for the queue. */
7281 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7282 
7283 	/* Mark the queue as active. */
7284 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7285 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
7286 }
7287 
7288 static void
7289 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7290 {
7291 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7292 
7293 	/* Stop TX scheduler while we're changing its configuration. */
7294 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7295 	    IWN5000_TXQ_STATUS_CHGACT);
7296 
7297 	/* Disable aggregation for the queue. */
7298 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7299 
7300 	/* Set starting sequence number from the ADDBA request. */
7301 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7302 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7303 
7304 	/* Disable interrupts for the queue. */
7305 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7306 
7307 	/* Mark the queue as inactive. */
7308 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7309 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
7310 }
7311 
7312 /*
7313  * Query calibration tables from the initialization firmware.  We do this
7314  * only once at first boot.  Called from a process context.
7315  */
7316 static int
7317 iwn5000_query_calibration(struct iwn_softc *sc)
7318 {
7319 	struct iwn5000_calib_config cmd;
7320 	int error;
7321 
7322 	memset(&cmd, 0, sizeof cmd);
7323 	cmd.ucode.once.enable = htole32(0xffffffff);
7324 	cmd.ucode.once.start  = htole32(0xffffffff);
7325 	cmd.ucode.once.send   = htole32(0xffffffff);
7326 	cmd.ucode.flags       = htole32(0xffffffff);
7327 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
7328 	    __func__);
7329 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
7330 	if (error != 0)
7331 		return error;
7332 
7333 	/* Wait at most two seconds for calibration to complete. */
7334 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
7335 		error = zsleep(sc, &wlan_global_serializer, 0, "iwncal", 2 * hz);
7336 	return error;
7337 }
7338 
7339 /*
7340  * Send calibration results to the runtime firmware.  These results were
7341  * obtained on first boot from the initialization firmware.
7342  */
7343 static int
7344 iwn5000_send_calibration(struct iwn_softc *sc)
7345 {
7346 	int idx, error;
7347 
7348 	for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) {
7349 		if (!(sc->base_params->calib_need & (1<<idx))) {
7350 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7351 			    "No need of calib %d\n",
7352 			    idx);
7353 			continue; /* no need for this calib */
7354 		}
7355 		if (sc->calibcmd[idx].buf == NULL) {
7356 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7357 			    "Need calib idx : %d but no available data\n",
7358 			    idx);
7359 			continue;
7360 		}
7361 
7362 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7363 		    "send calibration result idx=%d len=%d\n", idx,
7364 		    sc->calibcmd[idx].len);
7365 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
7366 		    sc->calibcmd[idx].len, 0);
7367 		if (error != 0) {
7368 			device_printf(sc->sc_dev,
7369 			    "%s: could not send calibration result, error %d\n",
7370 			    __func__, error);
7371 			return error;
7372 		}
7373 	}
7374 	return 0;
7375 }
7376 
7377 static int
7378 iwn5000_send_wimax_coex(struct iwn_softc *sc)
7379 {
7380 	struct iwn5000_wimax_coex wimax;
7381 
7382 #if 0
7383 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
7384 		/* Enable WiMAX coexistence for combo adapters. */
7385 		wimax.flags =
7386 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
7387 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
7388 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
7389 		    IWN_WIMAX_COEX_ENABLE;
7390 		memcpy(wimax.events, iwn6050_wimax_events,
7391 		    sizeof iwn6050_wimax_events);
7392 	} else
7393 #endif
7394 	{
7395 		/* Disable WiMAX coexistence. */
7396 		wimax.flags = 0;
7397 		memset(wimax.events, 0, sizeof wimax.events);
7398 	}
7399 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
7400 	    __func__);
7401 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
7402 }
7403 
7404 static int
7405 iwn5000_crystal_calib(struct iwn_softc *sc)
7406 {
7407 	struct iwn5000_phy_calib_crystal cmd;
7408 
7409 	memset(&cmd, 0, sizeof cmd);
7410 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
7411 	cmd.ngroups = 1;
7412 	cmd.isvalid = 1;
7413 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
7414 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
7415 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
7416 	    cmd.cap_pin[0], cmd.cap_pin[1]);
7417 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7418 }
7419 
7420 static int
7421 iwn5000_temp_offset_calib(struct iwn_softc *sc)
7422 {
7423 	struct iwn5000_phy_calib_temp_offset cmd;
7424 
7425 	memset(&cmd, 0, sizeof cmd);
7426 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7427 	cmd.ngroups = 1;
7428 	cmd.isvalid = 1;
7429 	if (sc->eeprom_temp != 0)
7430 		cmd.offset = htole16(sc->eeprom_temp);
7431 	else
7432 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
7433 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
7434 	    le16toh(cmd.offset));
7435 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7436 }
7437 
7438 static int
7439 iwn5000_temp_offset_calibv2(struct iwn_softc *sc)
7440 {
7441 	struct iwn5000_phy_calib_temp_offsetv2 cmd;
7442 
7443 	memset(&cmd, 0, sizeof cmd);
7444 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7445 	cmd.ngroups = 1;
7446 	cmd.isvalid = 1;
7447 	if (sc->eeprom_temp != 0) {
7448 		cmd.offset_low = htole16(sc->eeprom_temp);
7449 		cmd.offset_high = htole16(sc->eeprom_temp_high);
7450 	} else {
7451 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
7452 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
7453 	}
7454 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
7455 
7456 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7457 	    "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n",
7458 	    le16toh(cmd.offset_low),
7459 	    le16toh(cmd.offset_high),
7460 	    le16toh(cmd.burnt_voltage_ref));
7461 
7462 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7463 }
7464 
7465 /*
7466  * This function is called after the runtime firmware notifies us of its
7467  * readiness (called in a process context).
7468  */
7469 static int
7470 iwn4965_post_alive(struct iwn_softc *sc)
7471 {
7472 	int error, qid;
7473 
7474 	if ((error = iwn_nic_lock(sc)) != 0)
7475 		return error;
7476 
7477 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7478 
7479 	/* Clear TX scheduler state in SRAM. */
7480 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7481 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
7482 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
7483 
7484 	/* Set physical address of TX scheduler rings (1KB aligned). */
7485 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7486 
7487 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7488 
7489 	/* Disable chain mode for all our 16 queues. */
7490 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
7491 
7492 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
7493 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
7494 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7495 
7496 		/* Set scheduler window size. */
7497 		iwn_mem_write(sc, sc->sched_base +
7498 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
7499 		/* Set scheduler frame limit. */
7500 		iwn_mem_write(sc, sc->sched_base +
7501 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7502 		    IWN_SCHED_LIMIT << 16);
7503 	}
7504 
7505 	/* Enable interrupts for all our 16 queues. */
7506 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
7507 	/* Identify TX FIFO rings (0-7). */
7508 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
7509 
7510 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7511 	for (qid = 0; qid < 7; qid++) {
7512 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
7513 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7514 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
7515 	}
7516 	iwn_nic_unlock(sc);
7517 	return 0;
7518 }
7519 
7520 /*
7521  * This function is called after the initialization or runtime firmware
7522  * notifies us of its readiness (called in a process context).
7523  */
7524 static int
7525 iwn5000_post_alive(struct iwn_softc *sc)
7526 {
7527 	int error, qid;
7528 
7529 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7530 
7531 	/* Switch to using ICT interrupt mode. */
7532 	iwn5000_ict_reset(sc);
7533 
7534 	if ((error = iwn_nic_lock(sc)) != 0){
7535 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
7536 		return error;
7537 	}
7538 
7539 	/* Clear TX scheduler state in SRAM. */
7540 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7541 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
7542 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
7543 
7544 	/* Set physical address of TX scheduler rings (1KB aligned). */
7545 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7546 
7547 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7548 
7549 	/* Enable chain mode for all queues, except command queue. */
7550 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
7551 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf);
7552 	else
7553 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
7554 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
7555 
7556 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
7557 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
7558 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7559 
7560 		iwn_mem_write(sc, sc->sched_base +
7561 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
7562 		/* Set scheduler window size and frame limit. */
7563 		iwn_mem_write(sc, sc->sched_base +
7564 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7565 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7566 	}
7567 
7568 	/* Enable interrupts for all our 20 queues. */
7569 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
7570 	/* Identify TX FIFO rings (0-7). */
7571 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
7572 
7573 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7574 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) {
7575 		/* Mark TX rings as active. */
7576 		for (qid = 0; qid < 11; qid++) {
7577 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 };
7578 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7579 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7580 		}
7581 	} else {
7582 		/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7583 		for (qid = 0; qid < 7; qid++) {
7584 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
7585 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7586 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7587 		}
7588 	}
7589 	iwn_nic_unlock(sc);
7590 
7591 	/* Configure WiMAX coexistence for combo adapters. */
7592 	error = iwn5000_send_wimax_coex(sc);
7593 	if (error != 0) {
7594 		device_printf(sc->sc_dev,
7595 		    "%s: could not configure WiMAX coexistence, error %d\n",
7596 		    __func__, error);
7597 		return error;
7598 	}
7599 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
7600 		/* Perform crystal calibration. */
7601 		error = iwn5000_crystal_calib(sc);
7602 		if (error != 0) {
7603 			device_printf(sc->sc_dev,
7604 			    "%s: crystal calibration failed, error %d\n",
7605 			    __func__, error);
7606 			return error;
7607 		}
7608 	}
7609 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
7610 		/* Query calibration from the initialization firmware. */
7611 		if ((error = iwn5000_query_calibration(sc)) != 0) {
7612 			device_printf(sc->sc_dev,
7613 			    "%s: could not query calibration, error %d\n",
7614 			    __func__, error);
7615 			return error;
7616 		}
7617 		/*
7618 		 * We have the calibration results now, reboot with the
7619 		 * runtime firmware (call ourselves recursively!)
7620 		 */
7621 		iwn_hw_stop(sc);
7622 		error = iwn_hw_init(sc);
7623 	} else {
7624 		/* Send calibration results to runtime firmware. */
7625 		error = iwn5000_send_calibration(sc);
7626 	}
7627 
7628 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7629 
7630 	return error;
7631 }
7632 
7633 /*
7634  * The firmware boot code is small and is intended to be copied directly into
7635  * the NIC internal memory (no DMA transfer).
7636  */
7637 static int
7638 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
7639 {
7640 	int error, ntries;
7641 
7642 	size /= sizeof (uint32_t);
7643 
7644 	if ((error = iwn_nic_lock(sc)) != 0)
7645 		return error;
7646 
7647 	/* Copy microcode image into NIC memory. */
7648 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
7649 	    (const uint32_t *)ucode, size);
7650 
7651 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
7652 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
7653 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
7654 
7655 	/* Start boot load now. */
7656 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
7657 
7658 	/* Wait for transfer to complete. */
7659 	for (ntries = 0; ntries < 1000; ntries++) {
7660 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
7661 		    IWN_BSM_WR_CTRL_START))
7662 			break;
7663 		DELAY(10);
7664 	}
7665 	if (ntries == 1000) {
7666 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7667 		    __func__);
7668 		iwn_nic_unlock(sc);
7669 		return ETIMEDOUT;
7670 	}
7671 
7672 	/* Enable boot after power up. */
7673 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
7674 
7675 	iwn_nic_unlock(sc);
7676 	return 0;
7677 }
7678 
7679 static int
7680 iwn4965_load_firmware(struct iwn_softc *sc)
7681 {
7682 	struct iwn_fw_info *fw = &sc->fw;
7683 	struct iwn_dma_info *dma = &sc->fw_dma;
7684 	int error;
7685 
7686 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
7687 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
7688 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7689 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7690 	    fw->init.text, fw->init.textsz);
7691 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7692 
7693 	/* Tell adapter where to find initialization sections. */
7694 	if ((error = iwn_nic_lock(sc)) != 0)
7695 		return error;
7696 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7697 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
7698 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7699 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7700 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
7701 	iwn_nic_unlock(sc);
7702 
7703 	/* Load firmware boot code. */
7704 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
7705 	if (error != 0) {
7706 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7707 		    __func__);
7708 		return error;
7709 	}
7710 	/* Now press "execute". */
7711 	IWN_WRITE(sc, IWN_RESET, 0);
7712 
7713 	/* Wait at most one second for first alive notification. */
7714 	if ((error = zsleep(sc, &wlan_global_serializer, 0, "iwninit", hz)) != 0) {
7715 		device_printf(sc->sc_dev,
7716 		    "%s: timeout waiting for adapter to initialize, error %d\n",
7717 		    __func__, error);
7718 		return error;
7719 	}
7720 
7721 	/* Retrieve current temperature for initial TX power calibration. */
7722 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
7723 	sc->temp = iwn4965_get_temperature(sc);
7724 
7725 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
7726 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
7727 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7728 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7729 	    fw->main.text, fw->main.textsz);
7730 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7731 
7732 	/* Tell adapter where to find runtime sections. */
7733 	if ((error = iwn_nic_lock(sc)) != 0)
7734 		return error;
7735 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7736 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
7737 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7738 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7739 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
7740 	    IWN_FW_UPDATED | fw->main.textsz);
7741 	iwn_nic_unlock(sc);
7742 
7743 	return 0;
7744 }
7745 
7746 static int
7747 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
7748     const uint8_t *section, int size)
7749 {
7750 	struct iwn_dma_info *dma = &sc->fw_dma;
7751 	int error;
7752 
7753 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7754 
7755 	/* Copy firmware section into pre-allocated DMA-safe memory. */
7756 	memcpy(dma->vaddr, section, size);
7757 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7758 
7759 	if ((error = iwn_nic_lock(sc)) != 0)
7760 		return error;
7761 
7762 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
7763 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
7764 
7765 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
7766 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
7767 	    IWN_LOADDR(dma->paddr));
7768 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
7769 	    IWN_HIADDR(dma->paddr) << 28 | size);
7770 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
7771 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
7772 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
7773 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
7774 
7775 	/* Kick Flow Handler to start DMA transfer. */
7776 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
7777 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
7778 
7779 	iwn_nic_unlock(sc);
7780 
7781 	/* Wait at most five seconds for FH DMA transfer to complete. */
7782 	return zsleep(sc, &wlan_global_serializer, 0, "iwninit", 5 * hz);
7783 }
7784 
7785 static int
7786 iwn5000_load_firmware(struct iwn_softc *sc)
7787 {
7788 	struct iwn_fw_part *fw;
7789 	int error;
7790 
7791 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7792 
7793 	/* Load the initialization firmware on first boot only. */
7794 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
7795 	    &sc->fw.main : &sc->fw.init;
7796 
7797 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
7798 	    fw->text, fw->textsz);
7799 	if (error != 0) {
7800 		device_printf(sc->sc_dev,
7801 		    "%s: could not load firmware %s section, error %d\n",
7802 		    __func__, ".text", error);
7803 		return error;
7804 	}
7805 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
7806 	    fw->data, fw->datasz);
7807 	if (error != 0) {
7808 		device_printf(sc->sc_dev,
7809 		    "%s: could not load firmware %s section, error %d\n",
7810 		    __func__, ".data", error);
7811 		return error;
7812 	}
7813 
7814 	/* Now press "execute". */
7815 	IWN_WRITE(sc, IWN_RESET, 0);
7816 	return 0;
7817 }
7818 
7819 /*
7820  * Extract text and data sections from a legacy firmware image.
7821  */
7822 static int
7823 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
7824 {
7825 	const uint32_t *ptr;
7826 	size_t hdrlen = 24;
7827 	uint32_t rev;
7828 
7829 	ptr = (const uint32_t *)fw->data;
7830 	rev = le32toh(*ptr++);
7831 
7832 	/* Check firmware API version. */
7833 	if (IWN_FW_API(rev) <= 1) {
7834 		device_printf(sc->sc_dev,
7835 		    "%s: bad firmware, need API version >=2\n", __func__);
7836 		return EINVAL;
7837 	}
7838 	if (IWN_FW_API(rev) >= 3) {
7839 		/* Skip build number (version 2 header). */
7840 		hdrlen += 4;
7841 		ptr++;
7842 	}
7843 	if (fw->size < hdrlen) {
7844 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
7845 		    __func__, fw->size);
7846 		return EINVAL;
7847 	}
7848 	fw->main.textsz = le32toh(*ptr++);
7849 	fw->main.datasz = le32toh(*ptr++);
7850 	fw->init.textsz = le32toh(*ptr++);
7851 	fw->init.datasz = le32toh(*ptr++);
7852 	fw->boot.textsz = le32toh(*ptr++);
7853 
7854 	/* Check that all firmware sections fit. */
7855 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
7856 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
7857 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
7858 		    __func__, fw->size);
7859 		return EINVAL;
7860 	}
7861 
7862 	/* Get pointers to firmware sections. */
7863 	fw->main.text = (const uint8_t *)ptr;
7864 	fw->main.data = fw->main.text + fw->main.textsz;
7865 	fw->init.text = fw->main.data + fw->main.datasz;
7866 	fw->init.data = fw->init.text + fw->init.textsz;
7867 	fw->boot.text = fw->init.data + fw->init.datasz;
7868 	return 0;
7869 }
7870 
7871 /*
7872  * Extract text and data sections from a TLV firmware image.
7873  */
7874 static int
7875 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
7876     uint16_t alt)
7877 {
7878 	const struct iwn_fw_tlv_hdr *hdr;
7879 	const struct iwn_fw_tlv *tlv;
7880 	const uint8_t *ptr, *end;
7881 	uint64_t altmask;
7882 	uint32_t len, tmp;
7883 
7884 	if (fw->size < sizeof (*hdr)) {
7885 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
7886 		    __func__, fw->size);
7887 		return EINVAL;
7888 	}
7889 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
7890 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
7891 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
7892 		    __func__, le32toh(hdr->signature));
7893 		return EINVAL;
7894 	}
7895 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
7896 	    le32toh(hdr->build));
7897 
7898 	/*
7899 	 * Select the closest supported alternative that is less than
7900 	 * or equal to the specified one.
7901 	 */
7902 	altmask = le64toh(hdr->altmask);
7903 	while (alt > 0 && !(altmask & (1ULL << alt)))
7904 		alt--;	/* Downgrade. */
7905 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
7906 
7907 	ptr = (const uint8_t *)(hdr + 1);
7908 	end = (const uint8_t *)(fw->data + fw->size);
7909 
7910 	/* Parse type-length-value fields. */
7911 	while (ptr + sizeof (*tlv) <= end) {
7912 		tlv = (const struct iwn_fw_tlv *)ptr;
7913 		len = le32toh(tlv->len);
7914 
7915 		ptr += sizeof (*tlv);
7916 		if (ptr + len > end) {
7917 			device_printf(sc->sc_dev,
7918 			    "%s: firmware too short: %zu bytes\n", __func__,
7919 			    fw->size);
7920 			return EINVAL;
7921 		}
7922 		/* Skip other alternatives. */
7923 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
7924 			goto next;
7925 
7926 		switch (le16toh(tlv->type)) {
7927 		case IWN_FW_TLV_MAIN_TEXT:
7928 			fw->main.text = ptr;
7929 			fw->main.textsz = len;
7930 			break;
7931 		case IWN_FW_TLV_MAIN_DATA:
7932 			fw->main.data = ptr;
7933 			fw->main.datasz = len;
7934 			break;
7935 		case IWN_FW_TLV_INIT_TEXT:
7936 			fw->init.text = ptr;
7937 			fw->init.textsz = len;
7938 			break;
7939 		case IWN_FW_TLV_INIT_DATA:
7940 			fw->init.data = ptr;
7941 			fw->init.datasz = len;
7942 			break;
7943 		case IWN_FW_TLV_BOOT_TEXT:
7944 			fw->boot.text = ptr;
7945 			fw->boot.textsz = len;
7946 			break;
7947 		case IWN_FW_TLV_ENH_SENS:
7948 			if (!len)
7949 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
7950 			break;
7951 		case IWN_FW_TLV_PHY_CALIB:
7952 			tmp = le32toh(*ptr);
7953 			if (tmp < 253) {
7954 				sc->reset_noise_gain = tmp;
7955 				sc->noise_gain = tmp + 1;
7956 			}
7957 			break;
7958 		case IWN_FW_TLV_PAN:
7959 			sc->sc_flags |= IWN_FLAG_PAN_SUPPORT;
7960 			DPRINTF(sc, IWN_DEBUG_RESET,
7961 			    "PAN Support found: %d\n", 1);
7962 			break;
7963 		case IWN_FW_TLV_FLAGS:
7964 			if (len < sizeof(uint32_t))
7965 				break;
7966 			if (len % sizeof(uint32_t))
7967 				break;
7968 			sc->tlv_feature_flags = le32toh(*ptr);
7969 			DPRINTF(sc, IWN_DEBUG_RESET,
7970 			    "%s: feature: 0x%08x\n",
7971 			    __func__,
7972 			    sc->tlv_feature_flags);
7973 			break;
7974 		case IWN_FW_TLV_PBREQ_MAXLEN:
7975 		case IWN_FW_TLV_RUNT_EVTLOG_PTR:
7976 		case IWN_FW_TLV_RUNT_EVTLOG_SIZE:
7977 		case IWN_FW_TLV_RUNT_ERRLOG_PTR:
7978 		case IWN_FW_TLV_INIT_EVTLOG_PTR:
7979 		case IWN_FW_TLV_INIT_EVTLOG_SIZE:
7980 		case IWN_FW_TLV_INIT_ERRLOG_PTR:
7981 		case IWN_FW_TLV_WOWLAN_INST:
7982 		case IWN_FW_TLV_WOWLAN_DATA:
7983 			DPRINTF(sc, IWN_DEBUG_RESET,
7984 			    "TLV type %d recognized but not handled\n",
7985 			    le16toh(tlv->type));
7986 			break;
7987 		default:
7988 			DPRINTF(sc, IWN_DEBUG_RESET,
7989 			    "TLV type %d not handled\n", le16toh(tlv->type));
7990 			break;
7991 		}
7992  next:		/* TLV fields are 32-bit aligned. */
7993 		ptr += (len + 3) & ~3;
7994 	}
7995 	return 0;
7996 }
7997 
7998 static int
7999 iwn_read_firmware(struct iwn_softc *sc)
8000 {
8001 	struct iwn_fw_info *fw = &sc->fw;
8002 	int error;
8003 
8004 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8005 
8006 	wlan_assert_serialized();
8007 	memset(fw, 0, sizeof (*fw));
8008 
8009 	/*
8010 	 * Read firmware image from filesystem.  The firmware can block
8011 	 * in a taskq and deadlock against our serializer so unlock
8012 	 * while we do tihs.
8013 	 */
8014 	wlan_serialize_exit();
8015 	sc->fw_fp = firmware_get(sc->fwname);
8016 	wlan_serialize_enter();
8017 	if (sc->fw_fp == NULL) {
8018 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
8019 		    __func__, sc->fwname);
8020 		return EINVAL;
8021 	}
8022 
8023 	fw->size = sc->fw_fp->datasize;
8024 	fw->data = (const uint8_t *)sc->fw_fp->data;
8025 	if (fw->size < sizeof (uint32_t)) {
8026 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8027 		    __func__, fw->size);
8028 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8029 		sc->fw_fp = NULL;
8030 		return EINVAL;
8031 	}
8032 
8033 	/* Retrieve text and data sections. */
8034 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
8035 		error = iwn_read_firmware_leg(sc, fw);
8036 	else
8037 		error = iwn_read_firmware_tlv(sc, fw, 1);
8038 	if (error != 0) {
8039 		device_printf(sc->sc_dev,
8040 		    "%s: could not read firmware sections, error %d\n",
8041 		    __func__, error);
8042 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8043 		sc->fw_fp = NULL;
8044 		return error;
8045 	}
8046 
8047 	/* Make sure text and data sections fit in hardware memory. */
8048 	if (fw->main.textsz > sc->fw_text_maxsz ||
8049 	    fw->main.datasz > sc->fw_data_maxsz ||
8050 	    fw->init.textsz > sc->fw_text_maxsz ||
8051 	    fw->init.datasz > sc->fw_data_maxsz ||
8052 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
8053 	    (fw->boot.textsz & 3) != 0) {
8054 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
8055 		    __func__);
8056 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8057 		sc->fw_fp = NULL;
8058 		return EINVAL;
8059 	}
8060 
8061 	/* We can proceed with loading the firmware. */
8062 	return 0;
8063 }
8064 
8065 static int
8066 iwn_clock_wait(struct iwn_softc *sc)
8067 {
8068 	int ntries;
8069 
8070 	/* Set "initialization complete" bit. */
8071 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8072 
8073 	/* Wait for clock stabilization. */
8074 	for (ntries = 0; ntries < 2500; ntries++) {
8075 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
8076 			return 0;
8077 		DELAY(10);
8078 	}
8079 	device_printf(sc->sc_dev,
8080 	    "%s: timeout waiting for clock stabilization\n", __func__);
8081 	return ETIMEDOUT;
8082 }
8083 
8084 static int
8085 iwn_apm_init(struct iwn_softc *sc)
8086 {
8087 	uint32_t reg;
8088 	int error;
8089 
8090 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8091 
8092 	/* Disable L0s exit timer (NMI bug workaround). */
8093 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
8094 	/* Don't wait for ICH L0s (ICH bug workaround). */
8095 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
8096 
8097 	/* Set FH wait threshold to max (HW bug under stress workaround). */
8098 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
8099 
8100 	/* Enable HAP INTA to move adapter from L1a to L0s. */
8101 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
8102 
8103 	/* Retrieve PCIe Active State Power Management (ASPM). */
8104 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
8105 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
8106 	if (reg & 0x02)	/* L1 Entry enabled. */
8107 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8108 	else
8109 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8110 
8111 	if (sc->base_params->pll_cfg_val)
8112 		IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val);
8113 
8114 	/* Wait for clock stabilization before accessing prph. */
8115 	if ((error = iwn_clock_wait(sc)) != 0)
8116 		return error;
8117 
8118 	if ((error = iwn_nic_lock(sc)) != 0)
8119 		return error;
8120 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
8121 		/* Enable DMA and BSM (Bootstrap State Machine). */
8122 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8123 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
8124 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
8125 	} else {
8126 		/* Enable DMA. */
8127 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8128 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8129 	}
8130 	DELAY(20);
8131 	/* Disable L1-Active. */
8132 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
8133 	iwn_nic_unlock(sc);
8134 
8135 	return 0;
8136 }
8137 
8138 static void
8139 iwn_apm_stop_master(struct iwn_softc *sc)
8140 {
8141 	int ntries;
8142 
8143 	/* Stop busmaster DMA activity. */
8144 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
8145 	for (ntries = 0; ntries < 100; ntries++) {
8146 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
8147 			return;
8148 		DELAY(10);
8149 	}
8150 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
8151 }
8152 
8153 static void
8154 iwn_apm_stop(struct iwn_softc *sc)
8155 {
8156 	iwn_apm_stop_master(sc);
8157 
8158 	/* Reset the entire device. */
8159 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
8160 	DELAY(10);
8161 	/* Clear "initialization complete" bit. */
8162 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8163 }
8164 
8165 static int
8166 iwn4965_nic_config(struct iwn_softc *sc)
8167 {
8168 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8169 
8170 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
8171 		/*
8172 		 * I don't believe this to be correct but this is what the
8173 		 * vendor driver is doing. Probably the bits should not be
8174 		 * shifted in IWN_RFCFG_*.
8175 		 */
8176 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8177 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8178 		    IWN_RFCFG_STEP(sc->rfcfg) |
8179 		    IWN_RFCFG_DASH(sc->rfcfg));
8180 	}
8181 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8182 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8183 	return 0;
8184 }
8185 
8186 static int
8187 iwn5000_nic_config(struct iwn_softc *sc)
8188 {
8189 	uint32_t tmp;
8190 	int error;
8191 
8192 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8193 
8194 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
8195 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8196 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8197 		    IWN_RFCFG_STEP(sc->rfcfg) |
8198 		    IWN_RFCFG_DASH(sc->rfcfg));
8199 	}
8200 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8201 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8202 
8203 	if ((error = iwn_nic_lock(sc)) != 0)
8204 		return error;
8205 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
8206 
8207 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
8208 		/*
8209 		 * Select first Switching Voltage Regulator (1.32V) to
8210 		 * solve a stability issue related to noisy DC2DC line
8211 		 * in the silicon of 1000 Series.
8212 		 */
8213 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
8214 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
8215 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
8216 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
8217 	}
8218 	iwn_nic_unlock(sc);
8219 
8220 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
8221 		/* Use internal power amplifier only. */
8222 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
8223 	}
8224 	if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) {
8225 		/* Indicate that ROM calibration version is >=6. */
8226 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
8227 	}
8228 	if (sc->base_params->additional_gp_drv_bit)
8229 		IWN_SETBITS(sc, IWN_GP_DRIVER,
8230 		    sc->base_params->additional_gp_drv_bit);
8231 	return 0;
8232 }
8233 
8234 /*
8235  * Take NIC ownership over Intel Active Management Technology (AMT).
8236  */
8237 static int
8238 iwn_hw_prepare(struct iwn_softc *sc)
8239 {
8240 	int ntries;
8241 
8242 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8243 
8244 	/* Check if hardware is ready. */
8245 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8246 	for (ntries = 0; ntries < 5; ntries++) {
8247 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8248 		    IWN_HW_IF_CONFIG_NIC_READY)
8249 			return 0;
8250 		DELAY(10);
8251 	}
8252 
8253 	/* Hardware not ready, force into ready state. */
8254 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
8255 	for (ntries = 0; ntries < 15000; ntries++) {
8256 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
8257 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
8258 			break;
8259 		DELAY(10);
8260 	}
8261 	if (ntries == 15000)
8262 		return ETIMEDOUT;
8263 
8264 	/* Hardware should be ready now. */
8265 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8266 	for (ntries = 0; ntries < 5; ntries++) {
8267 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8268 		    IWN_HW_IF_CONFIG_NIC_READY)
8269 			return 0;
8270 		DELAY(10);
8271 	}
8272 	return ETIMEDOUT;
8273 }
8274 
8275 static int
8276 iwn_hw_init(struct iwn_softc *sc)
8277 {
8278 	struct iwn_ops *ops = &sc->ops;
8279 	int error, chnl, qid;
8280 
8281 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8282 
8283 	/* Clear pending interrupts. */
8284 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8285 
8286 	if ((error = iwn_apm_init(sc)) != 0) {
8287 		device_printf(sc->sc_dev,
8288 		    "%s: could not power ON adapter, error %d\n", __func__,
8289 		    error);
8290 		return error;
8291 	}
8292 
8293 	/* Select VMAIN power source. */
8294 	if ((error = iwn_nic_lock(sc)) != 0)
8295 		return error;
8296 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
8297 	iwn_nic_unlock(sc);
8298 
8299 	/* Perform adapter-specific initialization. */
8300 	if ((error = ops->nic_config(sc)) != 0)
8301 		return error;
8302 
8303 	/* Initialize RX ring. */
8304 	if ((error = iwn_nic_lock(sc)) != 0)
8305 		return error;
8306 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
8307 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
8308 	/* Set physical address of RX ring (256-byte aligned). */
8309 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
8310 	/* Set physical address of RX status (16-byte aligned). */
8311 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
8312 	/* Enable RX. */
8313 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
8314 	    IWN_FH_RX_CONFIG_ENA           |
8315 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
8316 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
8317 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
8318 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
8319 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
8320 	iwn_nic_unlock(sc);
8321 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
8322 
8323 	if ((error = iwn_nic_lock(sc)) != 0)
8324 		return error;
8325 
8326 	/* Initialize TX scheduler. */
8327 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8328 
8329 	/* Set physical address of "keep warm" page (16-byte aligned). */
8330 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
8331 
8332 	/* Initialize TX rings. */
8333 	for (qid = 0; qid < sc->ntxqs; qid++) {
8334 		struct iwn_tx_ring *txq = &sc->txq[qid];
8335 
8336 		/* Set physical address of TX ring (256-byte aligned). */
8337 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
8338 		    txq->desc_dma.paddr >> 8);
8339 	}
8340 	iwn_nic_unlock(sc);
8341 
8342 	/* Enable DMA channels. */
8343 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8344 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
8345 		    IWN_FH_TX_CONFIG_DMA_ENA |
8346 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
8347 	}
8348 
8349 	/* Clear "radio off" and "commands blocked" bits. */
8350 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8351 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
8352 
8353 	/* Clear pending interrupts. */
8354 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8355 	/* Enable interrupt coalescing. */
8356 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
8357 	/* Enable interrupts. */
8358 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8359 
8360 	/* _Really_ make sure "radio off" bit is cleared! */
8361 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8362 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8363 
8364 	/* Enable shadow registers. */
8365 	if (sc->base_params->shadow_reg_enable)
8366 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
8367 
8368 	if ((error = ops->load_firmware(sc)) != 0) {
8369 		device_printf(sc->sc_dev,
8370 		    "%s: could not load firmware, error %d\n", __func__,
8371 		    error);
8372 		return error;
8373 	}
8374 	/* Wait at most one second for firmware alive notification. */
8375 	if ((error = zsleep(sc, &wlan_global_serializer, 0, "iwninit", hz)) != 0) {
8376 		device_printf(sc->sc_dev,
8377 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8378 		    __func__, error);
8379 		return error;
8380 	}
8381 	/* Do post-firmware initialization. */
8382 
8383 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8384 
8385 	return ops->post_alive(sc);
8386 }
8387 
8388 static void
8389 iwn_hw_stop(struct iwn_softc *sc)
8390 {
8391 	int chnl, qid, ntries;
8392 
8393 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8394 
8395 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
8396 
8397 	/* Disable interrupts. */
8398 	IWN_WRITE(sc, IWN_INT_MASK, 0);
8399 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8400 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
8401 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8402 
8403 	/* Make sure we no longer hold the NIC lock. */
8404 	iwn_nic_unlock(sc);
8405 
8406 	/* Stop TX scheduler. */
8407 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8408 
8409 	/* Stop all DMA channels. */
8410 	if (iwn_nic_lock(sc) == 0) {
8411 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8412 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
8413 			for (ntries = 0; ntries < 200; ntries++) {
8414 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
8415 				    IWN_FH_TX_STATUS_IDLE(chnl))
8416 					break;
8417 				DELAY(10);
8418 			}
8419 		}
8420 		iwn_nic_unlock(sc);
8421 	}
8422 
8423 	/* Stop RX ring. */
8424 	iwn_reset_rx_ring(sc, &sc->rxq);
8425 
8426 	/* Reset all TX rings. */
8427 	for (qid = 0; qid < sc->ntxqs; qid++)
8428 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
8429 
8430 	if (iwn_nic_lock(sc) == 0) {
8431 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
8432 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8433 		iwn_nic_unlock(sc);
8434 	}
8435 	DELAY(5);
8436 	/* Power OFF adapter. */
8437 	iwn_apm_stop(sc);
8438 }
8439 
8440 static void
8441 iwn_radio_on_task(void *arg0, int pending)
8442 {
8443 	struct iwn_softc *sc = arg0;
8444 	struct ifnet *ifp;
8445 	struct ieee80211com *ic;
8446 	struct ieee80211vap *vap;
8447 
8448 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8449 
8450 	wlan_serialize_enter();
8451 	ifp = sc->sc_ifp;
8452 	ic = ifp->if_l2com;
8453 	vap = TAILQ_FIRST(&ic->ic_vaps);
8454 	if (vap != NULL) {
8455 		iwn_init_locked(sc);
8456 		ieee80211_init(vap);
8457 	}
8458 	wlan_serialize_exit();
8459 }
8460 
8461 static void
8462 iwn_radio_off_task(void *arg0, int pending)
8463 {
8464 	struct iwn_softc *sc = arg0;
8465 	struct ifnet *ifp;
8466 	struct ieee80211com *ic;
8467 	struct ieee80211vap *vap;
8468 
8469 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8470 
8471 	wlan_serialize_enter();
8472 	ifp = sc->sc_ifp;
8473 	ic = ifp->if_l2com;
8474 	vap = TAILQ_FIRST(&ic->ic_vaps);
8475 	iwn_stop_locked(sc);
8476 	if (vap != NULL)
8477 		ieee80211_stop(vap);
8478 
8479 	/* Enable interrupts to get RF toggle notification. */
8480 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8481 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8482 	wlan_serialize_exit();
8483 }
8484 
8485 static void
8486 iwn_panicked_task(void *arg0, int pending)
8487 {
8488 	struct iwn_softc *sc = arg0;
8489 	struct ifnet *ifp = sc->sc_ifp;
8490 	struct ieee80211com *ic = ifp->if_l2com;
8491 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8492 	int error;
8493 
8494 	if (vap == NULL) {
8495 		kprintf("%s: null vap\n", __func__);
8496 		return;
8497 	}
8498 
8499 	device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
8500 	    "resetting...\n", __func__, vap->iv_state);
8501 
8502 	wlan_serialize_enter();
8503 
8504 	iwn_stop_locked(sc);
8505 	iwn_init_locked(sc);
8506 	if (vap->iv_state >= IEEE80211_S_AUTH &&
8507 	    (error = iwn_auth(sc, vap)) != 0) {
8508 		device_printf(sc->sc_dev,
8509 		    "%s: could not move to auth state\n", __func__);
8510 	}
8511 	if (vap->iv_state >= IEEE80211_S_RUN &&
8512 	    (error = iwn_run(sc, vap)) != 0) {
8513 		device_printf(sc->sc_dev,
8514 		    "%s: could not move to run state\n", __func__);
8515 	}
8516 
8517 	/* Only run start once the NIC is in a useful state, like associated */
8518 	iwn_start_locked(sc->sc_ifp);
8519 
8520 	wlan_serialize_exit();
8521 }
8522 
8523 static void
8524 iwn_init_locked(struct iwn_softc *sc)
8525 {
8526 	struct ifnet *ifp = sc->sc_ifp;
8527 	int error;
8528 
8529 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8530 
8531 	/*
8532 	 * Make sure we hold the serializer or we will have timing issues
8533 	 * with the wlan subsystem.
8534 	 */
8535 	wlan_assert_serialized();
8536 	if ((error = iwn_hw_prepare(sc)) != 0) {
8537 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
8538 		    __func__, error);
8539 		goto fail;
8540 	}
8541 
8542 	/* Initialize interrupt mask to default value. */
8543 	sc->int_mask = IWN_INT_MASK_DEF;
8544 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8545 
8546 	/* Check that the radio is not disabled by hardware switch. */
8547 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
8548 		device_printf(sc->sc_dev,
8549 		    "radio is disabled by hardware switch\n");
8550 		/* Enable interrupts to get RF toggle notifications. */
8551 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
8552 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8553 		return;
8554 	}
8555 
8556 	/* Read firmware images from the filesystem. */
8557 	if ((error = iwn_read_firmware(sc)) != 0) {
8558 		device_printf(sc->sc_dev,
8559 		    "%s: could not read firmware, error %d\n", __func__,
8560 		    error);
8561 		goto fail;
8562 	}
8563 
8564 	/* Initialize hardware and upload firmware. */
8565 	error = iwn_hw_init(sc);
8566 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8567 	sc->fw_fp = NULL;
8568 	if (error != 0) {
8569 		device_printf(sc->sc_dev,
8570 		    "%s: could not initialize hardware, error %d\n", __func__,
8571 		    error);
8572 		goto fail;
8573 	}
8574 
8575 	/* Configure adapter now that it is ready. */
8576 	if ((error = iwn_config(sc)) != 0) {
8577 		device_printf(sc->sc_dev,
8578 		    "%s: could not configure device, error %d\n", __func__,
8579 		    error);
8580 		goto fail;
8581 	}
8582 
8583 	ifq_clr_oactive(&ifp->if_snd);
8584 	ifp->if_flags |= IFF_RUNNING;
8585 
8586 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog_timeout, sc);
8587 
8588 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8589 
8590 	return;
8591 
8592 fail:	iwn_stop_locked(sc);
8593 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
8594 }
8595 
8596 static void
8597 iwn_init(void *arg)
8598 {
8599 	struct iwn_softc *sc = arg;
8600 	struct ifnet *ifp = sc->sc_ifp;
8601 	struct ieee80211com *ic = ifp->if_l2com;
8602 
8603 	wlan_assert_serialized();
8604 	iwn_init_locked(sc);
8605 
8606 	if (ifp->if_flags & IFF_RUNNING)
8607 		ieee80211_start_all(ic);
8608 }
8609 
8610 static void
8611 iwn_stop_locked(struct iwn_softc *sc)
8612 {
8613 	struct ifnet *ifp = sc->sc_ifp;
8614 
8615 	sc->sc_is_scanning = 0;
8616 	sc->sc_tx_timer = 0;
8617 	callout_stop(&sc->watchdog_to);
8618 	callout_stop(&sc->calib_to);
8619 	ifp->if_flags &= ~IFF_RUNNING;
8620 	ifq_clr_oactive(&ifp->if_snd);
8621 
8622 	/* Power OFF hardware. */
8623 	iwn_hw_stop(sc);
8624 }
8625 
8626 /*
8627  * Callback from net80211 to start a scan.
8628  */
8629 static void
8630 iwn_scan_start(struct ieee80211com *ic)
8631 {
8632 	struct ifnet *ifp = ic->ic_ifp;
8633 	struct iwn_softc *sc = ifp->if_softc;
8634 
8635 	/* make the link LED blink while we're scanning */
8636 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
8637 }
8638 
8639 /*
8640  * Callback from net80211 to terminate a scan.
8641  */
8642 static void
8643 iwn_scan_end(struct ieee80211com *ic)
8644 {
8645 	struct ifnet *ifp = ic->ic_ifp;
8646 	struct iwn_softc *sc = ifp->if_softc;
8647 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8648 
8649 	if (vap->iv_state == IEEE80211_S_RUN) {
8650 		/* Set link LED to ON status if we are associated */
8651 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
8652 	}
8653 }
8654 
8655 /*
8656  * Callback from net80211 to force a channel change.
8657  */
8658 static void
8659 iwn_set_channel(struct ieee80211com *ic)
8660 {
8661 	const struct ieee80211_channel *c = ic->ic_curchan;
8662 	struct ifnet *ifp = ic->ic_ifp;
8663 	struct iwn_softc *sc = ifp->if_softc;
8664 	int error;
8665 
8666 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8667 
8668 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
8669 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
8670 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
8671 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
8672 
8673 	/*
8674 	 * Only need to set the channel in Monitor mode. AP scanning and auth
8675 	 * are already taken care of by their respective firmware commands.
8676 	 */
8677 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
8678 		error = iwn_config(sc);
8679 		if (error != 0)
8680 		device_printf(sc->sc_dev,
8681 		    "%s: error %d settting channel\n", __func__, error);
8682 	}
8683 }
8684 
8685 /*
8686  * Callback from net80211 to start scanning of the current channel.
8687  */
8688 static void
8689 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
8690 {
8691 	struct ieee80211vap *vap = ss->ss_vap;
8692 	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
8693 	struct ieee80211com *ic = vap->iv_ic;
8694 	int error;
8695 
8696 	error = iwn_scan(sc, vap, ss, ic->ic_curchan);
8697 	if (error != 0)
8698 		ieee80211_cancel_scan(vap);
8699 }
8700 
8701 /*
8702  * Callback from net80211 to handle the minimum dwell time being met.
8703  * The intent is to terminate the scan but we just let the firmware
8704  * notify us when it's finished as we have no safe way to abort it.
8705  */
8706 static void
8707 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
8708 {
8709 	/* NB: don't try to abort scan; wait for firmware to finish */
8710 }
8711 
8712 static void
8713 iwn_hw_reset_task(void *arg0, int pending)
8714 {
8715 	struct iwn_softc *sc = arg0;
8716 	struct ifnet *ifp;
8717 	struct ieee80211com *ic;
8718 
8719 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8720 
8721 	wlan_serialize_enter();
8722 	ifp = sc->sc_ifp;
8723 	ic = ifp->if_l2com;
8724 	iwn_stop_locked(sc);
8725 	iwn_init_locked(sc);
8726 	ieee80211_notify_radio(ic, 1);
8727 	wlan_serialize_exit();
8728 }
8729 #ifdef	IWN_DEBUG
8730 #define	IWN_DESC(x) case x:	return #x
8731 #define	COUNTOF(array) (sizeof(array) / sizeof(array[0]))
8732 
8733 /*
8734  * Translate CSR code to string
8735  */
8736 static char *iwn_get_csr_string(int csr)
8737 {
8738 	switch (csr) {
8739 		IWN_DESC(IWN_HW_IF_CONFIG);
8740 		IWN_DESC(IWN_INT_COALESCING);
8741 		IWN_DESC(IWN_INT);
8742 		IWN_DESC(IWN_INT_MASK);
8743 		IWN_DESC(IWN_FH_INT);
8744 		IWN_DESC(IWN_GPIO_IN);
8745 		IWN_DESC(IWN_RESET);
8746 		IWN_DESC(IWN_GP_CNTRL);
8747 		IWN_DESC(IWN_HW_REV);
8748 		IWN_DESC(IWN_EEPROM);
8749 		IWN_DESC(IWN_EEPROM_GP);
8750 		IWN_DESC(IWN_OTP_GP);
8751 		IWN_DESC(IWN_GIO);
8752 		IWN_DESC(IWN_GP_UCODE);
8753 		IWN_DESC(IWN_GP_DRIVER);
8754 		IWN_DESC(IWN_UCODE_GP1);
8755 		IWN_DESC(IWN_UCODE_GP2);
8756 		IWN_DESC(IWN_LED);
8757 		IWN_DESC(IWN_DRAM_INT_TBL);
8758 		IWN_DESC(IWN_GIO_CHICKEN);
8759 		IWN_DESC(IWN_ANA_PLL);
8760 		IWN_DESC(IWN_HW_REV_WA);
8761 		IWN_DESC(IWN_DBG_HPET_MEM);
8762 	default:
8763 		return "UNKNOWN CSR";
8764 	}
8765 }
8766 
8767 /*
8768  * This function print firmware register
8769  */
8770 static void
8771 iwn_debug_register(struct iwn_softc *sc)
8772 {
8773 	int i;
8774 	static const uint32_t csr_tbl[] = {
8775 		IWN_HW_IF_CONFIG,
8776 		IWN_INT_COALESCING,
8777 		IWN_INT,
8778 		IWN_INT_MASK,
8779 		IWN_FH_INT,
8780 		IWN_GPIO_IN,
8781 		IWN_RESET,
8782 		IWN_GP_CNTRL,
8783 		IWN_HW_REV,
8784 		IWN_EEPROM,
8785 		IWN_EEPROM_GP,
8786 		IWN_OTP_GP,
8787 		IWN_GIO,
8788 		IWN_GP_UCODE,
8789 		IWN_GP_DRIVER,
8790 		IWN_UCODE_GP1,
8791 		IWN_UCODE_GP2,
8792 		IWN_LED,
8793 		IWN_DRAM_INT_TBL,
8794 		IWN_GIO_CHICKEN,
8795 		IWN_ANA_PLL,
8796 		IWN_HW_REV_WA,
8797 		IWN_DBG_HPET_MEM,
8798 	};
8799 	DPRINTF(sc, IWN_DEBUG_REGISTER,
8800 	    "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s",
8801 	    "\n");
8802 	for (i = 0; i <  COUNTOF(csr_tbl); i++){
8803 		DPRINTF(sc, IWN_DEBUG_REGISTER,"  %10s: 0x%08x ",
8804 			iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i]));
8805 		if ((i+1) % 3 == 0)
8806 			DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
8807 	}
8808 	DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
8809 }
8810 #endif
8811