xref: /dragonfly/sys/dev/netif/iwn/if_iwn.c (revision f503b4c4)
1 /*-
2  * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr>
3  * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org>
4  * Copyright (c) 2008 Sam Leffler, Errno Consulting
5  * Copyright (c) 2011 Intel Corporation
6  * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr>
7  * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  *
21  * $FreeBSD: head/sys/dev/iwn/if_iwn.c 258118 2013-11-14 07:27:00Z adrian $
22  */
23 
24 /*
25  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
26  * adapters.
27  */
28 
29 #include "opt_wlan.h"
30 #include "opt_iwn.h"
31 
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/sysctl.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/socket.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/stdbool.h>
41 #include <sys/bus.h>
42 #include <sys/rman.h>
43 #include <sys/endian.h>
44 #include <sys/firmware.h>
45 #include <sys/limits.h>
46 #include <sys/module.h>
47 #include <sys/queue.h>
48 #include <sys/taskqueue.h>
49 #include <sys/libkern.h>
50 
51 #include <sys/resource.h>
52 #include <machine/clock.h>
53 
54 #include <bus/pci/pcireg.h>
55 #include <bus/pci/pcivar.h>
56 
57 #include <net/bpf.h>
58 #include <net/if.h>
59 #include <net/if_var.h>
60 #include <net/if_arp.h>
61 #include <net/ifq_var.h>
62 #include <net/ethernet.h>
63 #include <net/if_dl.h>
64 #include <net/if_media.h>
65 #include <net/if_types.h>
66 
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/in_var.h>
70 #include <netinet/if_ether.h>
71 #include <netinet/ip.h>
72 
73 #include <netproto/802_11/ieee80211_var.h>
74 #include <netproto/802_11/ieee80211_radiotap.h>
75 #include <netproto/802_11/ieee80211_regdomain.h>
76 #include <netproto/802_11/ieee80211_ratectl.h>
77 
78 #include "if_iwnreg.h"
79 #include "if_iwnvar.h"
80 #include "if_iwn_devid.h"
81 #include "if_iwn_chip_cfg.h"
82 #include "if_iwn_debug.h"
83 #include "if_iwn_ioctl.h"
84 
85 #define nitems(ary)	(sizeof(ary) / sizeof((ary)[0]))
86 
87 #define IWN_LOCK(sc)
88 #define IWN_UNLOCK(sc)
89 
90 struct iwn_ident {
91 	uint16_t	vendor;
92 	uint16_t	device;
93 	const char	*name;
94 };
95 
96 static const struct iwn_ident iwn_ident_table[] = {
97 	{ 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205"		},
98 	{ 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000"		},
99 	{ 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000"		},
100 	{ 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205"		},
101 	{ 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250"	},
102 	{ 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250"	},
103 	{ 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030"		},
104 	{ 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030"		},
105 	{ 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230"		},
106 	{ 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230"		},
107 	{ 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150"	},
108 	{ 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150"	},
109 	{ 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
110 	{ 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
111 	/* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */
112 	{ 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230"		},
113 	{ 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230"		},
114 	{ 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130"		},
115 	{ 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130"		},
116 	{ 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100"		},
117 	{ 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100"		},
118 	{ 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105"		},
119 	{ 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105"		},
120 	{ 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135"		},
121 	{ 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135"		},
122 	{ 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965"		},
123 	{ 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300"		},
124 	{ 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200"		},
125 	{ 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965"		},
126 	{ 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965"		},
127 	{ 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100"			},
128 	{ 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965"		},
129 	{ 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300"		},
130 	{ 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300"		},
131 	{ 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100"			},
132 	{ 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300"		},
133 	{ 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200"		},
134 	{ 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350"			},
135 	{ 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350"			},
136 	{ 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150"			},
137 	{ 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150"			},
138 	{ 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235"		},
139 	{ 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235"		},
140 	{ 0, 0, NULL }
141 };
142 
143 static int	iwn_pci_probe(device_t);
144 static int	iwn_pci_attach(device_t);
145 static int	iwn4965_attach(struct iwn_softc *, uint16_t);
146 static int	iwn5000_attach(struct iwn_softc *, uint16_t);
147 static int	iwn_config_specific(struct iwn_softc *, uint16_t);
148 static void	iwn_radiotap_attach(struct iwn_softc *);
149 static void	iwn_sysctlattach(struct iwn_softc *);
150 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
151 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
152 		    const uint8_t [IEEE80211_ADDR_LEN],
153 		    const uint8_t [IEEE80211_ADDR_LEN]);
154 static void	iwn_vap_delete(struct ieee80211vap *);
155 static int	iwn_pci_detach(device_t);
156 static int	iwn_pci_shutdown(device_t);
157 static int	iwn_pci_suspend(device_t);
158 static int	iwn_pci_resume(device_t);
159 static int	iwn_nic_lock(struct iwn_softc *);
160 static int	iwn_eeprom_lock(struct iwn_softc *);
161 static int	iwn_init_otprom(struct iwn_softc *);
162 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
163 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
164 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
165 		    void **, bus_size_t, bus_size_t);
166 static void	iwn_dma_contig_free(struct iwn_dma_info *);
167 static int	iwn_alloc_sched(struct iwn_softc *);
168 static void	iwn_free_sched(struct iwn_softc *);
169 static int	iwn_alloc_kw(struct iwn_softc *);
170 static void	iwn_free_kw(struct iwn_softc *);
171 static int	iwn_alloc_ict(struct iwn_softc *);
172 static void	iwn_free_ict(struct iwn_softc *);
173 static int	iwn_alloc_fwmem(struct iwn_softc *);
174 static void	iwn_free_fwmem(struct iwn_softc *);
175 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
176 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
177 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
178 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
179 		    int);
180 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
181 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
182 static void	iwn5000_ict_reset(struct iwn_softc *);
183 static int	iwn_read_eeprom(struct iwn_softc *,
184 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
185 static void	iwn4965_read_eeprom(struct iwn_softc *);
186 #ifdef	IWN_DEBUG
187 static void	iwn4965_print_power_group(struct iwn_softc *, int);
188 #endif
189 static void	iwn5000_read_eeprom(struct iwn_softc *);
190 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
191 static void	iwn_read_eeprom_band(struct iwn_softc *, int);
192 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int);
193 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
194 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
195 		    struct ieee80211_channel *);
196 static int	iwn_setregdomain(struct ieee80211com *,
197 		    struct ieee80211_regdomain *, int,
198 		    struct ieee80211_channel[]);
199 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
200 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
201 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
202 static void	iwn_newassoc(struct ieee80211_node *, int);
203 static int	iwn_media_change(struct ifnet *);
204 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
205 static void	iwn_calib_timeout(void *);
206 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
207 		    struct iwn_rx_data *);
208 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
209 		    struct iwn_rx_data *);
210 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
211 		    struct iwn_rx_data *);
212 static void	iwn5000_rx_calib_results(struct iwn_softc *,
213 		    struct iwn_rx_desc *, struct iwn_rx_data *);
214 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
215 		    struct iwn_rx_data *);
216 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
217 		    struct iwn_rx_data *);
218 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
219 		    struct iwn_rx_data *);
220 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
221 		    uint8_t);
222 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, void *);
223 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
224 static void	iwn_notif_intr(struct iwn_softc *);
225 static void	iwn_wakeup_intr(struct iwn_softc *);
226 static void	iwn_rftoggle_intr(struct iwn_softc *);
227 static void	iwn_fatal_intr(struct iwn_softc *);
228 static void	iwn_intr(void *);
229 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
230 		    uint16_t);
231 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
232 		    uint16_t);
233 #ifdef notyet
234 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
235 #endif
236 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
237 		    struct ieee80211_node *);
238 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
239 		    struct ieee80211_node *,
240 		    const struct ieee80211_bpf_params *params);
241 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
242 		    const struct ieee80211_bpf_params *);
243 static void	iwn_start(struct ifnet *, struct ifaltq_subque *);
244 static void	iwn_start_locked(struct ifnet *);
245 static void	iwn_watchdog_timeout(void *);
246 static int	iwn_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
247 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
248 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
249 		    int);
250 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
251 		    int);
252 static int	iwn_set_link_quality(struct iwn_softc *,
253 		    struct ieee80211_node *);
254 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
255 static int	iwn_updateedca(struct ieee80211com *);
256 static void	iwn_update_mcast(struct ifnet *);
257 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
258 static int	iwn_set_critical_temp(struct iwn_softc *);
259 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
260 static void	iwn4965_power_calibration(struct iwn_softc *, int);
261 static int	iwn4965_set_txpower(struct iwn_softc *,
262 		    struct ieee80211_channel *, int);
263 static int	iwn5000_set_txpower(struct iwn_softc *,
264 		    struct ieee80211_channel *, int);
265 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
266 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
267 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
268 static int	iwn4965_get_temperature(struct iwn_softc *);
269 static int	iwn5000_get_temperature(struct iwn_softc *);
270 static int	iwn_init_sensitivity(struct iwn_softc *);
271 static void	iwn_collect_noise(struct iwn_softc *,
272 		    const struct iwn_rx_general_stats *);
273 static int	iwn4965_init_gains(struct iwn_softc *);
274 static int	iwn5000_init_gains(struct iwn_softc *);
275 static int	iwn4965_set_gains(struct iwn_softc *);
276 static int	iwn5000_set_gains(struct iwn_softc *);
277 static void	iwn_tune_sensitivity(struct iwn_softc *,
278 		    const struct iwn_rx_stats *);
279 static void	iwn_save_stats_counters(struct iwn_softc *,
280 		    const struct iwn_stats *);
281 static int	iwn_send_sensitivity(struct iwn_softc *);
282 static void	iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *);
283 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
284 static int	iwn_send_btcoex(struct iwn_softc *);
285 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
286 static int	iwn5000_runtime_calib(struct iwn_softc *);
287 static int	iwn_config(struct iwn_softc *);
288 static uint8_t	*ieee80211_add_ssid(uint8_t *, const uint8_t *, u_int);
289 static int	iwn_scan(struct iwn_softc *, struct ieee80211vap *,
290 		    struct ieee80211_scan_state *, struct ieee80211_channel *);
291 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
292 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
293 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
294 		    struct ieee80211_rx_ampdu *, int, int, int);
295 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
296 		    struct ieee80211_rx_ampdu *);
297 static int	iwn_addba_request(struct ieee80211_node *,
298 		    struct ieee80211_tx_ampdu *, int, int, int);
299 static int	iwn_addba_response(struct ieee80211_node *,
300 		    struct ieee80211_tx_ampdu *, int, int, int);
301 static int	iwn_ampdu_tx_start(struct ieee80211com *,
302 		    struct ieee80211_node *, uint8_t);
303 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
304 		    struct ieee80211_tx_ampdu *);
305 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
306 		    struct ieee80211_node *, int, uint8_t, uint16_t);
307 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
308 		    uint8_t, uint16_t);
309 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
310 		    struct ieee80211_node *, int, uint8_t, uint16_t);
311 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
312 		    uint8_t, uint16_t);
313 static int	iwn5000_query_calibration(struct iwn_softc *);
314 static int	iwn5000_send_calibration(struct iwn_softc *);
315 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
316 static int	iwn5000_crystal_calib(struct iwn_softc *);
317 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
318 static int	iwn5000_temp_offset_calibv2(struct iwn_softc *);
319 static int	iwn4965_post_alive(struct iwn_softc *);
320 static int	iwn5000_post_alive(struct iwn_softc *);
321 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
322 		    int);
323 static int	iwn4965_load_firmware(struct iwn_softc *);
324 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
325 		    const uint8_t *, int);
326 static int	iwn5000_load_firmware(struct iwn_softc *);
327 static int	iwn_read_firmware_leg(struct iwn_softc *,
328 		    struct iwn_fw_info *);
329 static int	iwn_read_firmware_tlv(struct iwn_softc *,
330 		    struct iwn_fw_info *, uint16_t);
331 static int	iwn_read_firmware(struct iwn_softc *);
332 static int	iwn_clock_wait(struct iwn_softc *);
333 static int	iwn_apm_init(struct iwn_softc *);
334 static void	iwn_apm_stop_master(struct iwn_softc *);
335 static void	iwn_apm_stop(struct iwn_softc *);
336 static int	iwn4965_nic_config(struct iwn_softc *);
337 static int	iwn5000_nic_config(struct iwn_softc *);
338 static int	iwn_hw_prepare(struct iwn_softc *);
339 static int	iwn_hw_init(struct iwn_softc *);
340 static void	iwn_hw_stop(struct iwn_softc *);
341 static void	iwn_radio_on_task(void *, int);
342 static void	iwn_radio_off_task(void *, int);
343 static void	iwn_panicked_task(void *, int);
344 static void	iwn_init_locked(struct iwn_softc *);
345 static void	iwn_init(void *);
346 static void	iwn_stop_locked(struct iwn_softc *);
347 static void	iwn_scan_start(struct ieee80211com *);
348 static void	iwn_scan_end(struct ieee80211com *);
349 static void	iwn_set_channel(struct ieee80211com *);
350 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
351 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
352 static void	iwn_hw_reset_task(void *, int);
353 #ifdef	IWN_DEBUG
354 static char	*iwn_get_csr_string(int);
355 static void	iwn_debug_register(struct iwn_softc *);
356 #endif
357 
358 static device_method_t iwn_methods[] = {
359 	/* Device interface */
360 	DEVMETHOD(device_probe,		iwn_pci_probe),
361 	DEVMETHOD(device_attach,	iwn_pci_attach),
362 	DEVMETHOD(device_detach,	iwn_pci_detach),
363 	DEVMETHOD(device_shutdown,	iwn_pci_shutdown),
364 	DEVMETHOD(device_suspend,	iwn_pci_suspend),
365 	DEVMETHOD(device_resume,	iwn_pci_resume),
366 
367 	DEVMETHOD_END
368 };
369 
370 static driver_t iwn_driver = {
371 	"iwn",
372 	iwn_methods,
373 	sizeof(struct iwn_softc)
374 };
375 static devclass_t iwn_devclass;
376 
377 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL);
378 
379 MODULE_VERSION(iwn, 1);
380 
381 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
382 MODULE_DEPEND(iwn, pci, 1, 1, 1);
383 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
384 MODULE_DEPEND(iwn, wlan_amrr, 1, 1, 1);
385 
386 static int
387 iwn_pci_probe(device_t dev)
388 {
389 	const struct iwn_ident *ident;
390 
391 	/* no wlan serializer needed */
392 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
393 		if (pci_get_vendor(dev) == ident->vendor &&
394 		    pci_get_device(dev) == ident->device) {
395 			device_set_desc(dev, ident->name);
396 			return (BUS_PROBE_DEFAULT);
397 		}
398 	}
399 	return ENXIO;
400 }
401 
402 static int
403 iwn_pci_attach(device_t dev)
404 {
405 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
406 	struct ieee80211com *ic;
407 	struct ifnet *ifp;
408 	int i, error, rid;
409 	uint8_t macaddr[IEEE80211_ADDR_LEN];
410 	char ethstr[ETHER_ADDRSTRLEN + 1];
411 
412 	wlan_serialize_enter();
413 
414 	sc->sc_dev = dev;
415 	sc->sc_dmat = NULL;
416 
417 	if (bus_dma_tag_create(sc->sc_dmat,
418 		       1, 0,
419 		       BUS_SPACE_MAXADDR_32BIT,
420 		       BUS_SPACE_MAXADDR,
421 		       NULL, NULL,
422 		       BUS_SPACE_MAXSIZE,
423 		       IWN_MAX_SCATTER,
424 		       BUS_SPACE_MAXSIZE,
425 		       BUS_DMA_ALLOCNOW,
426 		       &sc->sc_dmat)) {
427 		device_printf(dev, "cannot allocate DMA tag\n");
428 		error = ENOMEM;
429 		goto fail;
430 	}
431 
432 	/* prepare sysctl tree for use in sub modules */
433 	sysctl_ctx_init(&sc->sc_sysctl_ctx);
434 	sc->sc_sysctl_tree = SYSCTL_ADD_NODE(&sc->sc_sysctl_ctx,
435 		SYSCTL_STATIC_CHILDREN(_hw),
436 		OID_AUTO,
437 		device_get_nameunit(sc->sc_dev),
438 		CTLFLAG_RD, 0, "");
439 
440 #ifdef	IWN_DEBUG
441 	error = resource_int_value(device_get_name(sc->sc_dev),
442 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
443 	if (error != 0)
444 		sc->sc_debug = 0;
445 #else
446 	sc->sc_debug = 0;
447 #endif
448 
449 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__);
450 
451 	/*
452 	 * Get the offset of the PCI Express Capability Structure in PCI
453 	 * Configuration Space.
454 	 */
455 	error = pci_find_extcap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
456 	if (error != 0) {
457 		device_printf(dev, "PCIe capability structure not found!\n");
458 		goto fail2;
459 	}
460 
461 	/* Clear device-specific "PCI retry timeout" register (41h). */
462 	pci_write_config(dev, 0x41, 0, 1);
463 
464 	/* Enable bus-mastering. */
465 	pci_enable_busmaster(dev);
466 
467 	rid = PCIR_BAR(0);
468 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
469 	    RF_ACTIVE);
470 	if (sc->mem == NULL) {
471 		device_printf(dev, "can't map mem space\n");
472 		error = ENOMEM;
473 		goto fail2;
474 	}
475 	sc->sc_st = rman_get_bustag(sc->mem);
476 	sc->sc_sh = rman_get_bushandle(sc->mem);
477 
478 	rid = 0;
479 #ifdef OLD_MSI
480 	i = 1;
481 	if (pci_alloc_msi(dev, &i) == 0)
482 		rid = 1;
483 #endif
484 	/* Install interrupt handler. */
485 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
486 	    (rid != 0 ? 0 : RF_SHAREABLE));
487 	if (sc->irq == NULL) {
488 		device_printf(dev, "can't map interrupt\n");
489 		error = ENOMEM;
490 		goto fail;
491 	}
492 
493 	/* Read hardware revision and attach. */
494 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT)
495 	    & IWN_HW_REV_TYPE_MASK;
496 	sc->subdevice_id = pci_get_subdevice(dev);
497 	/*
498 	 * 4965 versus 5000 and later have different methods.
499 	 * Let's set those up first.
500 	 */
501 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
502 		error = iwn4965_attach(sc, pci_get_device(dev));
503 	else
504 		error = iwn5000_attach(sc, pci_get_device(dev));
505 	if (error != 0) {
506 		device_printf(dev, "could not attach device, error %d\n",
507 		    error);
508 		goto fail;
509 	}
510 
511 	/*
512 	 * Next, let's setup the various parameters of each NIC.
513 	 */
514 	error = iwn_config_specific(sc, pci_get_device(dev));
515 	if (error != 0) {
516 		device_printf(dev, "could not attach device, error %d\n",
517 		    error);
518 		goto fail;
519 	}
520 
521 	if ((error = iwn_hw_prepare(sc)) != 0) {
522 		device_printf(dev, "hardware not ready, error %d\n", error);
523 		goto fail;
524 	}
525 
526 	/* Allocate DMA memory for firmware transfers. */
527 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
528 		device_printf(dev,
529 		    "could not allocate memory for firmware, error %d\n",
530 		    error);
531 		goto fail;
532 	}
533 
534 	/* Allocate "Keep Warm" page. */
535 	if ((error = iwn_alloc_kw(sc)) != 0) {
536 		device_printf(dev,
537 		    "could not allocate keep warm page, error %d\n", error);
538 		goto fail;
539 	}
540 
541 	/* Allocate ICT table for 5000 Series. */
542 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
543 	    (error = iwn_alloc_ict(sc)) != 0) {
544 		device_printf(dev, "could not allocate ICT table, error %d\n",
545 		    error);
546 		goto fail;
547 	}
548 
549 	/* Allocate TX scheduler "rings". */
550 	if ((error = iwn_alloc_sched(sc)) != 0) {
551 		device_printf(dev,
552 		    "could not allocate TX scheduler rings, error %d\n", error);
553 		goto fail;
554 	}
555 
556 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
557 	for (i = 0; i < sc->ntxqs; i++) {
558 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
559 			device_printf(dev,
560 			    "could not allocate TX ring %d, error %d\n", i,
561 			    error);
562 			goto fail;
563 		}
564 	}
565 
566 	/* Allocate RX ring. */
567 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
568 		device_printf(dev, "could not allocate RX ring, error %d\n",
569 		    error);
570 		goto fail;
571 	}
572 
573 	/* Clear pending interrupts. */
574 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
575 
576 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
577 	if (ifp == NULL) {
578 		device_printf(dev, "can not allocate ifnet structure\n");
579 		goto fail;
580 	}
581 
582 	ic = ifp->if_l2com;
583 	ic->ic_ifp = ifp;
584 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
585 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
586 
587 	/* Set device capabilities. */
588 	ic->ic_caps =
589 		  IEEE80211_C_STA		/* station mode supported */
590 		| IEEE80211_C_MONITOR		/* monitor mode supported */
591 		| IEEE80211_C_BGSCAN		/* background scanning */
592 		| IEEE80211_C_TXPMGT		/* tx power management */
593 		| IEEE80211_C_SHSLOT		/* short slot time supported */
594 		| IEEE80211_C_WPA
595 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
596 #if 0
597 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
598 #endif
599 		| IEEE80211_C_WME		/* WME */
600 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
601 		;
602 
603 	/* Read MAC address, channels, etc from EEPROM. */
604 	if ((error = iwn_read_eeprom(sc, macaddr)) != 0) {
605 		device_printf(dev, "could not read EEPROM, error %d\n",
606 		    error);
607 		goto fail;
608 	}
609 
610 	/* Count the number of available chains. */
611 	sc->ntxchains =
612 	    ((sc->txchainmask >> 2) & 1) +
613 	    ((sc->txchainmask >> 1) & 1) +
614 	    ((sc->txchainmask >> 0) & 1);
615 	sc->nrxchains =
616 	    ((sc->rxchainmask >> 2) & 1) +
617 	    ((sc->rxchainmask >> 1) & 1) +
618 	    ((sc->rxchainmask >> 0) & 1);
619 	if (bootverbose) {
620 		device_printf(dev, "MIMO %dT%dR, %.4s, address %s\n",
621 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
622 		    kether_ntoa(macaddr, ethstr));
623 	}
624 
625 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
626 #ifdef notyet
627 		ic->ic_rxstream = sc->nrxchains;
628 		ic->ic_txstream = sc->ntxchains;
629 #endif
630 
631 		/*
632 		 * The NICs we currently support cap out at 2x2 support
633 		 * separate from the chains being used.
634 		 *
635 		 * This is a total hack to work around that until some
636 		 * per-device method is implemented to return the
637 		 * actual stream support.
638 		 *
639 		 * XXX Note: the 5350 is a 3x3 device; so we shouldn't
640 		 * cap this!  But, anything that touches rates in the
641 		 * driver needs to be audited first before 3x3 is enabled.
642 		 */
643 #ifdef notyet
644 		if (ic->ic_rxstream > 2)
645 			ic->ic_rxstream = 2;
646 		if (ic->ic_txstream > 2)
647 			ic->ic_txstream = 2;
648 #endif
649 
650 		ic->ic_htcaps =
651 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
652 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
653 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
654 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
655 #ifdef notyet
656 			| IEEE80211_HTCAP_GREENFIELD
657 #if IWN_RBUF_SIZE == 8192
658 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
659 #else
660 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
661 #endif
662 #endif
663 			/* s/w capabilities */
664 			| IEEE80211_HTC_HT		/* HT operation */
665 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
666 #ifdef notyet
667 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
668 #endif
669 			;
670 	}
671 
672 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
673 	ifp->if_softc = sc;
674 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
675 	ifp->if_init = iwn_init;
676 	ifp->if_ioctl = iwn_ioctl;
677 	ifp->if_start = iwn_start;
678 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
679 #ifdef notyet
680 	ifq_set_ready(&ifp->if_snd);
681 #endif
682 
683 	ieee80211_ifattach(ic, macaddr);
684 	ic->ic_vap_create = iwn_vap_create;
685 	ic->ic_vap_delete = iwn_vap_delete;
686 	ic->ic_raw_xmit = iwn_raw_xmit;
687 	ic->ic_node_alloc = iwn_node_alloc;
688 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
689 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
690 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
691 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
692 	sc->sc_addba_request = ic->ic_addba_request;
693 	ic->ic_addba_request = iwn_addba_request;
694 	sc->sc_addba_response = ic->ic_addba_response;
695 	ic->ic_addba_response = iwn_addba_response;
696 	sc->sc_addba_stop = ic->ic_addba_stop;
697 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
698 	ic->ic_newassoc = iwn_newassoc;
699 	ic->ic_wme.wme_update = iwn_updateedca;
700 	ic->ic_update_mcast = iwn_update_mcast;
701 	ic->ic_scan_start = iwn_scan_start;
702 	ic->ic_scan_end = iwn_scan_end;
703 	ic->ic_set_channel = iwn_set_channel;
704 	ic->ic_scan_curchan = iwn_scan_curchan;
705 	ic->ic_scan_mindwell = iwn_scan_mindwell;
706 	ic->ic_setregdomain = iwn_setregdomain;
707 
708 	iwn_radiotap_attach(sc);
709 
710 	callout_init(&sc->calib_to);
711 	callout_init(&sc->watchdog_to);
712 	TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset_task, sc);
713 	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on_task, sc);
714 	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off_task, sc);
715 	TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked_task, sc);
716 
717 	sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK,
718 	    taskqueue_thread_enqueue, &sc->sc_tq);
719 	error = taskqueue_start_threads(&sc->sc_tq, 1, TDPRI_KERN_DAEMON, -1,
720 	    "iwn_taskq");
721 	if (error != 0) {
722 		device_printf(dev, "can't start threads, error %d\n", error);
723 		goto fail;
724 	}
725 
726 	iwn_sysctlattach(sc);
727 
728 	/*
729 	 * Hook our interrupt after all initialization is complete.
730 	 */
731 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
732 			       iwn_intr, sc, &sc->sc_ih,
733 			       &wlan_global_serializer);
734 	if (error != 0) {
735 		device_printf(dev, "can't establish interrupt, error %d\n",
736 		    error);
737 		goto fail;
738 	}
739 
740 #if 0
741 	device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n",
742 	    __func__,
743 	    sizeof(struct iwn_stats),
744 	    sizeof(struct iwn_stats_bt));
745 #endif
746 
747 	if (bootverbose)
748 		ieee80211_announce(ic);
749 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
750 	wlan_serialize_exit();
751 	return 0;
752 fail:
753 	wlan_serialize_exit();
754 	iwn_pci_detach(dev);
755 	wlan_serialize_enter();
756 fail2:
757 	wlan_serialize_exit();
758 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
759 	return error;
760 }
761 
762 /*
763  * Define specific configuration based on device id and subdevice id
764  * pid : PCI device id
765  */
766 static int
767 iwn_config_specific(struct iwn_softc *sc, uint16_t pid)
768 {
769 
770 	switch (pid) {
771 /* 4965 series */
772 	case IWN_DID_4965_1:
773 	case IWN_DID_4965_2:
774 	case IWN_DID_4965_3:
775 	case IWN_DID_4965_4:
776 		sc->base_params = &iwn4965_base_params;
777 		sc->limits = &iwn4965_sensitivity_limits;
778 		sc->fwname = "iwn4965fw";
779 		/* Override chains masks, ROM is known to be broken. */
780 		sc->txchainmask = IWN_ANT_AB;
781 		sc->rxchainmask = IWN_ANT_ABC;
782 		/* Enable normal btcoex */
783 		sc->sc_flags |= IWN_FLAG_BTCOEX;
784 		break;
785 /* 1000 Series */
786 	case IWN_DID_1000_1:
787 	case IWN_DID_1000_2:
788 		switch(sc->subdevice_id) {
789 			case	IWN_SDID_1000_1:
790 			case	IWN_SDID_1000_2:
791 			case	IWN_SDID_1000_3:
792 			case	IWN_SDID_1000_4:
793 			case	IWN_SDID_1000_5:
794 			case	IWN_SDID_1000_6:
795 			case	IWN_SDID_1000_7:
796 			case	IWN_SDID_1000_8:
797 			case	IWN_SDID_1000_9:
798 			case	IWN_SDID_1000_10:
799 			case	IWN_SDID_1000_11:
800 			case	IWN_SDID_1000_12:
801 				sc->limits = &iwn1000_sensitivity_limits;
802 				sc->base_params = &iwn1000_base_params;
803 				sc->fwname = "iwn1000fw";
804 				break;
805 			default:
806 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
807 				    "0x%04x rev %d not supported (subdevice)\n", pid,
808 				    sc->subdevice_id,sc->hw_type);
809 				return ENOTSUP;
810 		}
811 		break;
812 /* 6x00 Series */
813 	case IWN_DID_6x00_2:
814 	case IWN_DID_6x00_4:
815 	case IWN_DID_6x00_1:
816 	case IWN_DID_6x00_3:
817 		sc->fwname = "iwn6000fw";
818 		sc->limits = &iwn6000_sensitivity_limits;
819 		switch(sc->subdevice_id) {
820 			case IWN_SDID_6x00_1:
821 			case IWN_SDID_6x00_2:
822 			case IWN_SDID_6x00_8:
823 				//iwl6000_3agn_cfg
824 				sc->base_params = &iwn_6000_base_params;
825 				break;
826 			case IWN_SDID_6x00_3:
827 			case IWN_SDID_6x00_6:
828 			case IWN_SDID_6x00_9:
829 				////iwl6000i_2agn
830 			case IWN_SDID_6x00_4:
831 			case IWN_SDID_6x00_7:
832 			case IWN_SDID_6x00_10:
833 				//iwl6000i_2abg_cfg
834 			case IWN_SDID_6x00_5:
835 				//iwl6000i_2bg_cfg
836 				sc->base_params = &iwn_6000i_base_params;
837 				sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
838 				sc->txchainmask = IWN_ANT_BC;
839 				sc->rxchainmask = IWN_ANT_BC;
840 				break;
841 			default:
842 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
843 				    "0x%04x rev %d not supported (subdevice)\n", pid,
844 				    sc->subdevice_id,sc->hw_type);
845 				return ENOTSUP;
846 		}
847 		break;
848 /* 6x05 Series */
849 	case IWN_DID_6x05_1:
850 	case IWN_DID_6x05_2:
851 		switch(sc->subdevice_id) {
852 			case IWN_SDID_6x05_1:
853 			case IWN_SDID_6x05_4:
854 			case IWN_SDID_6x05_6:
855 				//iwl6005_2agn_cfg
856 			case IWN_SDID_6x05_2:
857 			case IWN_SDID_6x05_5:
858 			case IWN_SDID_6x05_7:
859 				//iwl6005_2abg_cfg
860 			case IWN_SDID_6x05_3:
861 				//iwl6005_2bg_cfg
862 			case IWN_SDID_6x05_8:
863 			case IWN_SDID_6x05_9:
864 				//iwl6005_2agn_sff_cfg
865 			case IWN_SDID_6x05_10:
866 				//iwl6005_2agn_d_cfg
867 			case IWN_SDID_6x05_11:
868 				//iwl6005_2agn_mow1_cfg
869 			case IWN_SDID_6x05_12:
870 				//iwl6005_2agn_mow2_cfg
871 				sc->fwname = "iwn6000g2afw";
872 				sc->limits = &iwn6000_sensitivity_limits;
873 				sc->base_params = &iwn_6000g2_base_params;
874 				break;
875 			default:
876 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
877 				    "0x%04x rev %d not supported (subdevice)\n", pid,
878 				    sc->subdevice_id,sc->hw_type);
879 				return ENOTSUP;
880 		}
881 		break;
882 /* 6x35 Series */
883 	case IWN_DID_6035_1:
884 	case IWN_DID_6035_2:
885 		switch(sc->subdevice_id) {
886 			case IWN_SDID_6035_1:
887 			case IWN_SDID_6035_2:
888 			case IWN_SDID_6035_3:
889 			case IWN_SDID_6035_4:
890 				sc->fwname = "iwn6000g2bfw";
891 				sc->limits = &iwn6235_sensitivity_limits;
892 				sc->base_params = &iwn_6235_base_params;
893 				break;
894 			default:
895 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
896 				    "0x%04x rev %d not supported (subdevice)\n", pid,
897 				    sc->subdevice_id,sc->hw_type);
898 				return ENOTSUP;
899 		}
900 		break;
901 /* 6x50 WiFi/WiMax Series */
902 	case IWN_DID_6050_1:
903 	case IWN_DID_6050_2:
904 		switch(sc->subdevice_id) {
905 			case IWN_SDID_6050_1:
906 			case IWN_SDID_6050_3:
907 			case IWN_SDID_6050_5:
908 				//iwl6050_2agn_cfg
909 			case IWN_SDID_6050_2:
910 			case IWN_SDID_6050_4:
911 			case IWN_SDID_6050_6:
912 				//iwl6050_2abg_cfg
913 				sc->fwname = "iwn6050fw";
914 				sc->txchainmask = IWN_ANT_AB;
915 				sc->rxchainmask = IWN_ANT_AB;
916 				sc->limits = &iwn6000_sensitivity_limits;
917 				sc->base_params = &iwn_6050_base_params;
918 				break;
919 			default:
920 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
921 				    "0x%04x rev %d not supported (subdevice)\n", pid,
922 				    sc->subdevice_id,sc->hw_type);
923 				return ENOTSUP;
924 		}
925 		break;
926 /* 6150 WiFi/WiMax Series */
927 	case IWN_DID_6150_1:
928 	case IWN_DID_6150_2:
929 		switch(sc->subdevice_id) {
930 			case IWN_SDID_6150_1:
931 			case IWN_SDID_6150_3:
932 			case IWN_SDID_6150_5:
933 				// iwl6150_bgn_cfg
934 			case IWN_SDID_6150_2:
935 			case IWN_SDID_6150_4:
936 			case IWN_SDID_6150_6:
937 				//iwl6150_bg_cfg
938 				sc->fwname = "iwn6050fw";
939 				sc->limits = &iwn6000_sensitivity_limits;
940 				sc->base_params = &iwn_6150_base_params;
941 				break;
942 			default:
943 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
944 				    "0x%04x rev %d not supported (subdevice)\n", pid,
945 				    sc->subdevice_id,sc->hw_type);
946 				return ENOTSUP;
947 		}
948 		break;
949 /* 6030 Series and 1030 Series */
950 	case IWN_DID_x030_1:
951 	case IWN_DID_x030_2:
952 	case IWN_DID_x030_3:
953 	case IWN_DID_x030_4:
954 		switch(sc->subdevice_id) {
955 			case IWN_SDID_x030_1:
956 			case IWN_SDID_x030_3:
957 			case IWN_SDID_x030_5:
958 			// iwl1030_bgn_cfg
959 			case IWN_SDID_x030_2:
960 			case IWN_SDID_x030_4:
961 			case IWN_SDID_x030_6:
962 			//iwl1030_bg_cfg
963 			case IWN_SDID_x030_7:
964 			case IWN_SDID_x030_10:
965 			case IWN_SDID_x030_14:
966 			//iwl6030_2agn_cfg
967 			case IWN_SDID_x030_8:
968 			case IWN_SDID_x030_11:
969 			case IWN_SDID_x030_15:
970 			// iwl6030_2bgn_cfg
971 			case IWN_SDID_x030_9:
972 			case IWN_SDID_x030_12:
973 			case IWN_SDID_x030_16:
974 			// iwl6030_2abg_cfg
975 			case IWN_SDID_x030_13:
976 			//iwl6030_2bg_cfg
977 				sc->fwname = "iwn6000g2bfw";
978 				sc->limits = &iwn6000_sensitivity_limits;
979 				sc->base_params = &iwn_6000g2b_base_params;
980 				break;
981 			default:
982 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
983 				    "0x%04x rev %d not supported (subdevice)\n", pid,
984 				    sc->subdevice_id,sc->hw_type);
985 				return ENOTSUP;
986 		}
987 		break;
988 /* 130 Series WiFi */
989 /* XXX: This series will need adjustment for rate.
990  * see rx_with_siso_diversity in linux kernel
991  */
992 	case IWN_DID_130_1:
993 	case IWN_DID_130_2:
994 		switch(sc->subdevice_id) {
995 			case IWN_SDID_130_1:
996 			case IWN_SDID_130_3:
997 			case IWN_SDID_130_5:
998 			//iwl130_bgn_cfg
999 			case IWN_SDID_130_2:
1000 			case IWN_SDID_130_4:
1001 			case IWN_SDID_130_6:
1002 			//iwl130_bg_cfg
1003 				sc->fwname = "iwn6000g2bfw";
1004 				sc->limits = &iwn6000_sensitivity_limits;
1005 				sc->base_params = &iwn_6000g2b_base_params;
1006 				break;
1007 			default:
1008 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1009 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1010 				    sc->subdevice_id,sc->hw_type);
1011 				return ENOTSUP;
1012 		}
1013 		break;
1014 /* 100 Series WiFi */
1015 	case IWN_DID_100_1:
1016 	case IWN_DID_100_2:
1017 		switch(sc->subdevice_id) {
1018 			case IWN_SDID_100_1:
1019 			case IWN_SDID_100_2:
1020 			case IWN_SDID_100_3:
1021 			case IWN_SDID_100_4:
1022 			case IWN_SDID_100_5:
1023 			case IWN_SDID_100_6:
1024 				sc->limits = &iwn1000_sensitivity_limits;
1025 				sc->base_params = &iwn1000_base_params;
1026 				sc->fwname = "iwn100fw";
1027 				break;
1028 			default:
1029 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1030 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1031 				    sc->subdevice_id,sc->hw_type);
1032 				return ENOTSUP;
1033 		}
1034 		break;
1035 
1036 /* 105 Series */
1037 /* XXX: This series will need adjustment for rate.
1038  * see rx_with_siso_diversity in linux kernel
1039  */
1040 	case IWN_DID_105_1:
1041 	case IWN_DID_105_2:
1042 		switch(sc->subdevice_id) {
1043 			case IWN_SDID_105_1:
1044 			case IWN_SDID_105_2:
1045 			case IWN_SDID_105_3:
1046 			//iwl105_bgn_cfg
1047 			case IWN_SDID_105_4:
1048 			//iwl105_bgn_d_cfg
1049 				sc->limits = &iwn2030_sensitivity_limits;
1050 				sc->base_params = &iwn2000_base_params;
1051 				sc->fwname = "iwn105fw";
1052 				break;
1053 			default:
1054 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1055 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1056 				    sc->subdevice_id,sc->hw_type);
1057 				return ENOTSUP;
1058 		}
1059 		break;
1060 
1061 /* 135 Series */
1062 /* XXX: This series will need adjustment for rate.
1063  * see rx_with_siso_diversity in linux kernel
1064  */
1065 	case IWN_DID_135_1:
1066 	case IWN_DID_135_2:
1067 		switch(sc->subdevice_id) {
1068 			case IWN_SDID_135_1:
1069 			case IWN_SDID_135_2:
1070 			case IWN_SDID_135_3:
1071 				sc->limits = &iwn2030_sensitivity_limits;
1072 				sc->base_params = &iwn2030_base_params;
1073 				sc->fwname = "iwn135fw";
1074 				break;
1075 			default:
1076 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1077 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1078 				    sc->subdevice_id,sc->hw_type);
1079 				return ENOTSUP;
1080 		}
1081 		break;
1082 
1083 /* 2x00 Series */
1084 	case IWN_DID_2x00_1:
1085 	case IWN_DID_2x00_2:
1086 		switch(sc->subdevice_id) {
1087 			case IWN_SDID_2x00_1:
1088 			case IWN_SDID_2x00_2:
1089 			case IWN_SDID_2x00_3:
1090 			//iwl2000_2bgn_cfg
1091 			case IWN_SDID_2x00_4:
1092 			//iwl2000_2bgn_d_cfg
1093 				sc->limits = &iwn2030_sensitivity_limits;
1094 				sc->base_params = &iwn2000_base_params;
1095 				sc->fwname = "iwn2000fw";
1096 				break;
1097 			default:
1098 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1099 				    "0x%04x rev %d not supported (subdevice) \n",
1100 				    pid, sc->subdevice_id, sc->hw_type);
1101 				return ENOTSUP;
1102 		}
1103 		break;
1104 /* 2x30 Series */
1105 	case IWN_DID_2x30_1:
1106 	case IWN_DID_2x30_2:
1107 		switch(sc->subdevice_id) {
1108 			case IWN_SDID_2x30_1:
1109 			case IWN_SDID_2x30_3:
1110 			case IWN_SDID_2x30_5:
1111 			//iwl100_bgn_cfg
1112 			case IWN_SDID_2x30_2:
1113 			case IWN_SDID_2x30_4:
1114 			case IWN_SDID_2x30_6:
1115 			//iwl100_bg_cfg
1116 				sc->limits = &iwn2030_sensitivity_limits;
1117 				sc->base_params = &iwn2030_base_params;
1118 				sc->fwname = "iwn2030fw";
1119 				break;
1120 			default:
1121 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1122 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1123 				    sc->subdevice_id,sc->hw_type);
1124 				return ENOTSUP;
1125 		}
1126 		break;
1127 /* 5x00 Series */
1128 	case IWN_DID_5x00_1:
1129 	case IWN_DID_5x00_2:
1130 	case IWN_DID_5x00_3:
1131 	case IWN_DID_5x00_4:
1132 		sc->limits = &iwn5000_sensitivity_limits;
1133 		sc->base_params = &iwn5000_base_params;
1134 		sc->fwname = "iwn5000fw";
1135 		switch(sc->subdevice_id) {
1136 			case IWN_SDID_5x00_1:
1137 			case IWN_SDID_5x00_2:
1138 			case IWN_SDID_5x00_3:
1139 			case IWN_SDID_5x00_4:
1140 			case IWN_SDID_5x00_9:
1141 			case IWN_SDID_5x00_10:
1142 			case IWN_SDID_5x00_11:
1143 			case IWN_SDID_5x00_12:
1144 			case IWN_SDID_5x00_17:
1145 			case IWN_SDID_5x00_18:
1146 			case IWN_SDID_5x00_19:
1147 			case IWN_SDID_5x00_20:
1148 			//iwl5100_agn_cfg
1149 				sc->txchainmask = IWN_ANT_B;
1150 				sc->rxchainmask = IWN_ANT_AB;
1151 				break;
1152 			case IWN_SDID_5x00_5:
1153 			case IWN_SDID_5x00_6:
1154 			case IWN_SDID_5x00_13:
1155 			case IWN_SDID_5x00_14:
1156 			case IWN_SDID_5x00_21:
1157 			case IWN_SDID_5x00_22:
1158 			//iwl5100_bgn_cfg
1159 				sc->txchainmask = IWN_ANT_B;
1160 				sc->rxchainmask = IWN_ANT_AB;
1161 				break;
1162 			case IWN_SDID_5x00_7:
1163 			case IWN_SDID_5x00_8:
1164 			case IWN_SDID_5x00_15:
1165 			case IWN_SDID_5x00_16:
1166 			case IWN_SDID_5x00_23:
1167 			case IWN_SDID_5x00_24:
1168 			//iwl5100_abg_cfg
1169 				sc->txchainmask = IWN_ANT_B;
1170 				sc->rxchainmask = IWN_ANT_AB;
1171 				break;
1172 			case IWN_SDID_5x00_25:
1173 			case IWN_SDID_5x00_26:
1174 			case IWN_SDID_5x00_27:
1175 			case IWN_SDID_5x00_28:
1176 			case IWN_SDID_5x00_29:
1177 			case IWN_SDID_5x00_30:
1178 			case IWN_SDID_5x00_31:
1179 			case IWN_SDID_5x00_32:
1180 			case IWN_SDID_5x00_33:
1181 			case IWN_SDID_5x00_34:
1182 			case IWN_SDID_5x00_35:
1183 			case IWN_SDID_5x00_36:
1184 			//iwl5300_agn_cfg
1185 				sc->txchainmask = IWN_ANT_ABC;
1186 				sc->rxchainmask = IWN_ANT_ABC;
1187 				break;
1188 			default:
1189 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1190 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1191 				    sc->subdevice_id,sc->hw_type);
1192 				return ENOTSUP;
1193 		}
1194 		break;
1195 /* 5x50 Series */
1196 	case IWN_DID_5x50_1:
1197 	case IWN_DID_5x50_2:
1198 	case IWN_DID_5x50_3:
1199 	case IWN_DID_5x50_4:
1200 		sc->limits = &iwn5000_sensitivity_limits;
1201 		sc->base_params = &iwn5000_base_params;
1202 		sc->fwname = "iwn5000fw";
1203 		switch(sc->subdevice_id) {
1204 			case IWN_SDID_5x50_1:
1205 			case IWN_SDID_5x50_2:
1206 			case IWN_SDID_5x50_3:
1207 			//iwl5350_agn_cfg
1208 				sc->limits = &iwn5000_sensitivity_limits;
1209 				sc->base_params = &iwn5000_base_params;
1210 				sc->fwname = "iwn5000fw";
1211 				break;
1212 			case IWN_SDID_5x50_4:
1213 			case IWN_SDID_5x50_5:
1214 			case IWN_SDID_5x50_8:
1215 			case IWN_SDID_5x50_9:
1216 			case IWN_SDID_5x50_10:
1217 			case IWN_SDID_5x50_11:
1218 			//iwl5150_agn_cfg
1219 			case IWN_SDID_5x50_6:
1220 			case IWN_SDID_5x50_7:
1221 			case IWN_SDID_5x50_12:
1222 			case IWN_SDID_5x50_13:
1223 			//iwl5150_abg_cfg
1224 				sc->limits = &iwn5000_sensitivity_limits;
1225 				sc->fwname = "iwn5150fw";
1226 				sc->base_params = &iwn_5x50_base_params;
1227 				break;
1228 			default:
1229 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1230 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1231 				    sc->subdevice_id,sc->hw_type);
1232 				return ENOTSUP;
1233 		}
1234 		break;
1235 	default:
1236 		device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x"
1237 		    "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id,
1238 		     sc->hw_type);
1239 		return ENOTSUP;
1240 	}
1241 	return 0;
1242 }
1243 
1244 static int
1245 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
1246 {
1247 	struct iwn_ops *ops = &sc->ops;
1248 
1249 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1250 	ops->load_firmware = iwn4965_load_firmware;
1251 	ops->read_eeprom = iwn4965_read_eeprom;
1252 	ops->post_alive = iwn4965_post_alive;
1253 	ops->nic_config = iwn4965_nic_config;
1254 	ops->update_sched = iwn4965_update_sched;
1255 	ops->get_temperature = iwn4965_get_temperature;
1256 	ops->get_rssi = iwn4965_get_rssi;
1257 	ops->set_txpower = iwn4965_set_txpower;
1258 	ops->init_gains = iwn4965_init_gains;
1259 	ops->set_gains = iwn4965_set_gains;
1260 	ops->add_node = iwn4965_add_node;
1261 	ops->tx_done = iwn4965_tx_done;
1262 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
1263 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
1264 	sc->ntxqs = IWN4965_NTXQUEUES;
1265 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
1266 	sc->ndmachnls = IWN4965_NDMACHNLS;
1267 	sc->broadcast_id = IWN4965_ID_BROADCAST;
1268 	sc->rxonsz = IWN4965_RXONSZ;
1269 	sc->schedsz = IWN4965_SCHEDSZ;
1270 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
1271 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
1272 	sc->fwsz = IWN4965_FWSZ;
1273 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
1274 	sc->limits = &iwn4965_sensitivity_limits;
1275 	sc->fwname = "iwn4965fw";
1276 	/* Override chains masks, ROM is known to be broken. */
1277 	sc->txchainmask = IWN_ANT_AB;
1278 	sc->rxchainmask = IWN_ANT_ABC;
1279 	/* Enable normal btcoex */
1280 	sc->sc_flags |= IWN_FLAG_BTCOEX;
1281 
1282 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1283 
1284 	return 0;
1285 }
1286 
1287 static int
1288 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
1289 {
1290 	struct iwn_ops *ops = &sc->ops;
1291 
1292 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1293 
1294 	ops->load_firmware = iwn5000_load_firmware;
1295 	ops->read_eeprom = iwn5000_read_eeprom;
1296 	ops->post_alive = iwn5000_post_alive;
1297 	ops->nic_config = iwn5000_nic_config;
1298 	ops->update_sched = iwn5000_update_sched;
1299 	ops->get_temperature = iwn5000_get_temperature;
1300 	ops->get_rssi = iwn5000_get_rssi;
1301 	ops->set_txpower = iwn5000_set_txpower;
1302 	ops->init_gains = iwn5000_init_gains;
1303 	ops->set_gains = iwn5000_set_gains;
1304 	ops->add_node = iwn5000_add_node;
1305 	ops->tx_done = iwn5000_tx_done;
1306 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
1307 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
1308 	sc->ntxqs = IWN5000_NTXQUEUES;
1309 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
1310 	sc->ndmachnls = IWN5000_NDMACHNLS;
1311 	sc->broadcast_id = IWN5000_ID_BROADCAST;
1312 	sc->rxonsz = IWN5000_RXONSZ;
1313 	sc->schedsz = IWN5000_SCHEDSZ;
1314 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
1315 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
1316 	sc->fwsz = IWN5000_FWSZ;
1317 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
1318 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
1319 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
1320 
1321 	return 0;
1322 }
1323 
1324 /*
1325  * Attach the interface to 802.11 radiotap.
1326  */
1327 static void
1328 iwn_radiotap_attach(struct iwn_softc *sc)
1329 {
1330 	struct ifnet *ifp = sc->sc_ifp;
1331 	struct ieee80211com *ic = ifp->if_l2com;
1332 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1333 	ieee80211_radiotap_attach(ic,
1334 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
1335 		IWN_TX_RADIOTAP_PRESENT,
1336 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
1337 		IWN_RX_RADIOTAP_PRESENT);
1338 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1339 }
1340 
1341 static void
1342 iwn_sysctlattach(struct iwn_softc *sc)
1343 {
1344 #ifdef	IWN_DEBUG
1345 	struct sysctl_ctx_list *ctx;
1346 	struct sysctl_oid *tree;
1347 
1348 	ctx = &sc->sc_sysctl_ctx;
1349 	tree = sc->sc_sysctl_tree;
1350 
1351 	if (tree) {
1352 		device_printf(sc->sc_dev, "can't add sysctl node\n");
1353 		return;
1354 	}
1355 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1356 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
1357 		"control debugging printfs");
1358 #endif
1359 }
1360 
1361 static struct ieee80211vap *
1362 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1363     enum ieee80211_opmode opmode, int flags,
1364     const uint8_t bssid[IEEE80211_ADDR_LEN],
1365     const uint8_t mac[IEEE80211_ADDR_LEN])
1366 {
1367 	struct iwn_vap *ivp;
1368 	struct ieee80211vap *vap;
1369 	uint8_t mac1[IEEE80211_ADDR_LEN];
1370 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
1371 
1372 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
1373 		return NULL;
1374 
1375 	IEEE80211_ADDR_COPY(mac1, mac);
1376 
1377 	ivp = kmalloc(sizeof(struct iwn_vap), M_80211_VAP, M_INTWAIT | M_ZERO);
1378 	vap = &ivp->iv_vap;
1379 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac1);
1380 	ivp->ctx = IWN_RXON_BSS_CTX;
1381 	IEEE80211_ADDR_COPY(ivp->macaddr, mac1);
1382 	vap->iv_bmissthreshold = 10;		/* override default */
1383 	/* Override with driver methods. */
1384 	ivp->iv_newstate = vap->iv_newstate;
1385 	vap->iv_newstate = iwn_newstate;
1386 	sc->ivap[IWN_RXON_BSS_CTX] = vap;
1387 
1388 	ieee80211_ratectl_init(vap);
1389 	/* Complete setup. */
1390 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status);
1391 	ic->ic_opmode = opmode;
1392 	return vap;
1393 }
1394 
1395 static void
1396 iwn_vap_delete(struct ieee80211vap *vap)
1397 {
1398 	struct iwn_vap *ivp = IWN_VAP(vap);
1399 
1400 	ieee80211_ratectl_deinit(vap);
1401 	ieee80211_vap_detach(vap);
1402 	kfree(ivp, M_80211_VAP);
1403 }
1404 
1405 static int
1406 iwn_pci_detach(device_t dev)
1407 {
1408 	struct iwn_softc *sc = device_get_softc(dev);
1409 	struct ifnet *ifp = sc->sc_ifp;
1410 	struct ieee80211com *ic;
1411 	int qid;
1412 
1413 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1414 
1415 	wlan_serialize_enter();
1416 
1417 	if (ifp != NULL) {
1418 		ic = ifp->if_l2com;
1419 
1420 		ieee80211_draintask(ic, &sc->sc_reinit_task);
1421 		ieee80211_draintask(ic, &sc->sc_radioon_task);
1422 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
1423 
1424 		iwn_stop_locked(sc);
1425 
1426 #if 0
1427 		// We don't need this for DragonFly as our taskqueue_free()
1428 		// is running all remaining tasks before terminating.
1429 		taskqueue_drain_all(sc->sc_tq);
1430 #endif
1431 		taskqueue_free(sc->sc_tq);
1432 
1433 		callout_stop(&sc->watchdog_to);
1434 		callout_stop(&sc->calib_to);
1435 		ieee80211_ifdetach(ic);
1436 	}
1437 
1438 	/* cleanup sysctl nodes */
1439 	sysctl_ctx_free(&sc->sc_sysctl_ctx);
1440 
1441 	/* Uninstall interrupt handler. */
1442 	if (sc->irq != NULL) {
1443 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
1444 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
1445 		    sc->irq);
1446 		pci_release_msi(dev);
1447 		sc->irq = NULL;
1448 	}
1449 
1450 	/* Free DMA resources. */
1451 	iwn_free_rx_ring(sc, &sc->rxq);
1452 	for (qid = 0; qid < sc->ntxqs; qid++)
1453 		iwn_free_tx_ring(sc, &sc->txq[qid]);
1454 	iwn_free_sched(sc);
1455 	iwn_free_kw(sc);
1456 	if (sc->ict != NULL) {
1457 		iwn_free_ict(sc);
1458 		sc->ict = NULL;
1459 	}
1460 	iwn_free_fwmem(sc);
1461 
1462 	if (sc->mem != NULL) {
1463 		bus_release_resource(dev, SYS_RES_MEMORY,
1464 		    rman_get_rid(sc->mem), sc->mem);
1465 		sc->mem = NULL;
1466 	}
1467 
1468 	if (ifp != NULL) {
1469 		if_free(ifp);
1470 		sc->sc_ifp = NULL;
1471 	}
1472 
1473 	bus_dma_tag_destroy(sc->sc_dmat);
1474 
1475 	wlan_serialize_exit();
1476 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__);
1477 	return 0;
1478 }
1479 
1480 static int
1481 iwn_pci_shutdown(device_t dev)
1482 {
1483 	struct iwn_softc *sc = device_get_softc(dev);
1484 
1485 	wlan_serialize_enter();
1486 	iwn_stop_locked(sc);
1487 	wlan_serialize_exit();
1488 
1489 	return 0;
1490 }
1491 
1492 static int
1493 iwn_pci_suspend(device_t dev)
1494 {
1495 	struct iwn_softc *sc = device_get_softc(dev);
1496 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1497 
1498 	ieee80211_suspend_all(ic);
1499 	return 0;
1500 }
1501 
1502 static int
1503 iwn_pci_resume(device_t dev)
1504 {
1505 	struct iwn_softc *sc = device_get_softc(dev);
1506 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1507 
1508 	/* Clear device-specific "PCI retry timeout" register (41h). */
1509 	pci_write_config(dev, 0x41, 0, 1);
1510 
1511 	ieee80211_resume_all(ic);
1512 	return 0;
1513 }
1514 
1515 static int
1516 iwn_nic_lock(struct iwn_softc *sc)
1517 {
1518 	int ntries;
1519 
1520 	/* Request exclusive access to NIC. */
1521 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1522 
1523 	/* Spin until we actually get the lock. */
1524 	for (ntries = 0; ntries < 1000; ntries++) {
1525 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1526 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1527 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1528 			return 0;
1529 		DELAY(10);
1530 	}
1531 	return ETIMEDOUT;
1532 }
1533 
1534 static __inline void
1535 iwn_nic_unlock(struct iwn_softc *sc)
1536 {
1537 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1538 }
1539 
1540 static __inline uint32_t
1541 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1542 {
1543 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1544 	IWN_BARRIER_READ_WRITE(sc);
1545 	return IWN_READ(sc, IWN_PRPH_RDATA);
1546 }
1547 
1548 static __inline void
1549 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1550 {
1551 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1552 	IWN_BARRIER_WRITE(sc);
1553 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1554 }
1555 
1556 static __inline void
1557 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1558 {
1559 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1560 }
1561 
1562 static __inline void
1563 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1564 {
1565 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1566 }
1567 
1568 static __inline void
1569 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1570     const uint32_t *data, int count)
1571 {
1572 	for (; count > 0; count--, data++, addr += 4)
1573 		iwn_prph_write(sc, addr, *data);
1574 }
1575 
1576 static __inline uint32_t
1577 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1578 {
1579 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1580 	IWN_BARRIER_READ_WRITE(sc);
1581 	return IWN_READ(sc, IWN_MEM_RDATA);
1582 }
1583 
1584 static __inline void
1585 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1586 {
1587 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1588 	IWN_BARRIER_WRITE(sc);
1589 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1590 }
1591 
1592 static __inline void
1593 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1594 {
1595 	uint32_t tmp;
1596 
1597 	tmp = iwn_mem_read(sc, addr & ~3);
1598 	if (addr & 3)
1599 		tmp = (tmp & 0x0000ffff) | data << 16;
1600 	else
1601 		tmp = (tmp & 0xffff0000) | data;
1602 	iwn_mem_write(sc, addr & ~3, tmp);
1603 }
1604 
1605 static __inline void
1606 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1607     int count)
1608 {
1609 	for (; count > 0; count--, addr += 4)
1610 		*data++ = iwn_mem_read(sc, addr);
1611 }
1612 
1613 static __inline void
1614 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1615     int count)
1616 {
1617 	for (; count > 0; count--, addr += 4)
1618 		iwn_mem_write(sc, addr, val);
1619 }
1620 
1621 static int
1622 iwn_eeprom_lock(struct iwn_softc *sc)
1623 {
1624 	int i, ntries;
1625 
1626 	for (i = 0; i < 100; i++) {
1627 		/* Request exclusive access to EEPROM. */
1628 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1629 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1630 
1631 		/* Spin until we actually get the lock. */
1632 		for (ntries = 0; ntries < 100; ntries++) {
1633 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1634 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1635 				return 0;
1636 			DELAY(10);
1637 		}
1638 	}
1639 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__);
1640 	return ETIMEDOUT;
1641 }
1642 
1643 static __inline void
1644 iwn_eeprom_unlock(struct iwn_softc *sc)
1645 {
1646 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1647 }
1648 
1649 /*
1650  * Initialize access by host to One Time Programmable ROM.
1651  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1652  */
1653 static int
1654 iwn_init_otprom(struct iwn_softc *sc)
1655 {
1656 	uint16_t prev, base, next;
1657 	int count, error;
1658 
1659 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1660 
1661 	/* Wait for clock stabilization before accessing prph. */
1662 	if ((error = iwn_clock_wait(sc)) != 0)
1663 		return error;
1664 
1665 	if ((error = iwn_nic_lock(sc)) != 0)
1666 		return error;
1667 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1668 	DELAY(5);
1669 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1670 	iwn_nic_unlock(sc);
1671 
1672 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1673 	if (sc->base_params->shadow_ram_support) {
1674 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1675 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1676 	}
1677 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1678 	/* Clear ECC status. */
1679 	IWN_SETBITS(sc, IWN_OTP_GP,
1680 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1681 
1682 	/*
1683 	 * Find the block before last block (contains the EEPROM image)
1684 	 * for HW without OTP shadow RAM.
1685 	 */
1686 	if (! sc->base_params->shadow_ram_support) {
1687 		/* Switch to absolute addressing mode. */
1688 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1689 		base = prev = 0;
1690 		for (count = 0; count < sc->base_params->max_ll_items;
1691 		    count++) {
1692 			error = iwn_read_prom_data(sc, base, &next, 2);
1693 			if (error != 0)
1694 				return error;
1695 			if (next == 0)	/* End of linked-list. */
1696 				break;
1697 			prev = base;
1698 			base = le16toh(next);
1699 		}
1700 		if (count == 0 || count == sc->base_params->max_ll_items)
1701 			return EIO;
1702 		/* Skip "next" word. */
1703 		sc->prom_base = prev + 1;
1704 	}
1705 
1706 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1707 
1708 	return 0;
1709 }
1710 
1711 static int
1712 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1713 {
1714 	uint8_t *out = data;
1715 	uint32_t val, tmp;
1716 	int ntries;
1717 
1718 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1719 
1720 	addr += sc->prom_base;
1721 	for (; count > 0; count -= 2, addr++) {
1722 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1723 		for (ntries = 0; ntries < 10; ntries++) {
1724 			val = IWN_READ(sc, IWN_EEPROM);
1725 			if (val & IWN_EEPROM_READ_VALID)
1726 				break;
1727 			DELAY(5);
1728 		}
1729 		if (ntries == 10) {
1730 			device_printf(sc->sc_dev,
1731 			    "timeout reading ROM at 0x%x\n", addr);
1732 			return ETIMEDOUT;
1733 		}
1734 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1735 			/* OTPROM, check for ECC errors. */
1736 			tmp = IWN_READ(sc, IWN_OTP_GP);
1737 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1738 				device_printf(sc->sc_dev,
1739 				    "OTPROM ECC error at 0x%x\n", addr);
1740 				return EIO;
1741 			}
1742 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1743 				/* Correctable ECC error, clear bit. */
1744 				IWN_SETBITS(sc, IWN_OTP_GP,
1745 				    IWN_OTP_GP_ECC_CORR_STTS);
1746 			}
1747 		}
1748 		*out++ = val >> 16;
1749 		if (count > 1)
1750 			*out++ = val >> 24;
1751 	}
1752 
1753 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1754 
1755 	return 0;
1756 }
1757 
1758 static void
1759 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1760 {
1761 	if (error != 0)
1762 		return;
1763 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1764 	*(bus_addr_t *)arg = segs[0].ds_addr;
1765 }
1766 
1767 static int
1768 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1769     void **kvap, bus_size_t size, bus_size_t alignment)
1770 {
1771 	int error;
1772 
1773 	dma->tag = NULL;
1774 	dma->size = size;
1775 
1776 	error = bus_dma_tag_create(sc->sc_dmat, alignment,
1777 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1778 	    1, size, BUS_DMA_NOWAIT, &dma->tag);
1779 	if (error != 0)
1780 		goto fail;
1781 
1782 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1783 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1784 	if (error != 0)
1785 		goto fail;
1786 
1787 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1788 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1789 	if (error != 0)
1790 		goto fail;
1791 
1792 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1793 
1794 	if (kvap != NULL)
1795 		*kvap = dma->vaddr;
1796 
1797 	return 0;
1798 
1799 fail:	iwn_dma_contig_free(dma);
1800 	return error;
1801 }
1802 
1803 static void
1804 iwn_dma_contig_free(struct iwn_dma_info *dma)
1805 {
1806 	if (dma->vaddr != NULL) {
1807 		bus_dmamap_sync(dma->tag, dma->map,
1808 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1809 		bus_dmamap_unload(dma->tag, dma->map);
1810 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1811 		dma->vaddr = NULL;
1812 	}
1813 	if (dma->tag != NULL) {
1814 		bus_dma_tag_destroy(dma->tag);
1815 		dma->tag = NULL;
1816 	}
1817 }
1818 
1819 static int
1820 iwn_alloc_sched(struct iwn_softc *sc)
1821 {
1822 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1823 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1824 	    sc->schedsz, 1024);
1825 }
1826 
1827 static void
1828 iwn_free_sched(struct iwn_softc *sc)
1829 {
1830 	iwn_dma_contig_free(&sc->sched_dma);
1831 }
1832 
1833 static int
1834 iwn_alloc_kw(struct iwn_softc *sc)
1835 {
1836 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1837 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1838 }
1839 
1840 static void
1841 iwn_free_kw(struct iwn_softc *sc)
1842 {
1843 	iwn_dma_contig_free(&sc->kw_dma);
1844 }
1845 
1846 static int
1847 iwn_alloc_ict(struct iwn_softc *sc)
1848 {
1849 	/* ICT table must be aligned on a 4KB boundary. */
1850 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1851 	    IWN_ICT_SIZE, 4096);
1852 }
1853 
1854 static void
1855 iwn_free_ict(struct iwn_softc *sc)
1856 {
1857 	iwn_dma_contig_free(&sc->ict_dma);
1858 }
1859 
1860 static int
1861 iwn_alloc_fwmem(struct iwn_softc *sc)
1862 {
1863 	/* Must be aligned on a 16-byte boundary. */
1864 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1865 }
1866 
1867 static void
1868 iwn_free_fwmem(struct iwn_softc *sc)
1869 {
1870 	iwn_dma_contig_free(&sc->fw_dma);
1871 }
1872 
1873 static int
1874 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1875 {
1876 	bus_size_t size;
1877 	int i, error;
1878 
1879 	ring->cur = 0;
1880 
1881 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1882 
1883 	/* Allocate RX descriptors (256-byte aligned). */
1884 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1885 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1886 	    size, 256);
1887 	if (error != 0) {
1888 		device_printf(sc->sc_dev,
1889 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1890 		    __func__, error);
1891 		goto fail;
1892 	}
1893 
1894 	/* Allocate RX status area (16-byte aligned). */
1895 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1896 	    sizeof (struct iwn_rx_status), 16);
1897 	if (error != 0) {
1898 		device_printf(sc->sc_dev,
1899 		    "%s: could not allocate RX status DMA memory, error %d\n",
1900 		    __func__, error);
1901 		goto fail;
1902 	}
1903 
1904 	/* Create RX buffer DMA tag. */
1905 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
1906 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1907 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, BUS_DMA_NOWAIT, &ring->data_dmat);
1908 	if (error != 0) {
1909 		device_printf(sc->sc_dev,
1910 		    "%s: could not create RX buf DMA tag, error %d\n",
1911 		    __func__, error);
1912 		goto fail;
1913 	}
1914 
1915 	/*
1916 	 * Allocate and map RX buffers.
1917 	 */
1918 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1919 		struct iwn_rx_data *data = &ring->data[i];
1920 		bus_addr_t paddr;
1921 
1922 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1923 		if (error != 0) {
1924 			device_printf(sc->sc_dev,
1925 			    "%s: could not create RX buf DMA map, error %d\n",
1926 			    __func__, error);
1927 			goto fail;
1928 		}
1929 
1930 		data->m = m_getjcl(MB_DONTWAIT, MT_DATA,
1931 				   M_PKTHDR, IWN_RBUF_SIZE);
1932 		if (data->m == NULL) {
1933 			device_printf(sc->sc_dev,
1934 			    "%s: could not allocate RX mbuf\n", __func__);
1935 			error = ENOBUFS;
1936 			goto fail;
1937 		}
1938 
1939 		error = bus_dmamap_load(ring->data_dmat, data->map,
1940 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1941 		    &paddr, BUS_DMA_NOWAIT);
1942 		if (error != 0 && error != EFBIG) {
1943 			device_printf(sc->sc_dev,
1944 			    "%s: can't not map mbuf, error %d\n", __func__,
1945 			    error);
1946 			goto fail;
1947 		}
1948 
1949 		/* Set physical address of RX buffer (256-byte aligned). */
1950 		ring->desc[i] = htole32(paddr >> 8);
1951 	}
1952 
1953 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1954 	    BUS_DMASYNC_PREWRITE);
1955 
1956 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
1957 
1958 	return 0;
1959 
1960 fail:	iwn_free_rx_ring(sc, ring);
1961 
1962 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
1963 
1964 	return error;
1965 }
1966 
1967 static void
1968 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1969 {
1970 	int ntries;
1971 
1972 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
1973 
1974 	if (iwn_nic_lock(sc) == 0) {
1975 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1976 		for (ntries = 0; ntries < 1000; ntries++) {
1977 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1978 			    IWN_FH_RX_STATUS_IDLE)
1979 				break;
1980 			DELAY(10);
1981 		}
1982 		iwn_nic_unlock(sc);
1983 	}
1984 	ring->cur = 0;
1985 	sc->last_rx_valid = 0;
1986 }
1987 
1988 static void
1989 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1990 {
1991 	int i;
1992 
1993 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1994 
1995 	iwn_dma_contig_free(&ring->desc_dma);
1996 	iwn_dma_contig_free(&ring->stat_dma);
1997 
1998 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1999 		struct iwn_rx_data *data = &ring->data[i];
2000 
2001 		if (data->m != NULL) {
2002 			bus_dmamap_sync(ring->data_dmat, data->map,
2003 			    BUS_DMASYNC_POSTREAD);
2004 			bus_dmamap_unload(ring->data_dmat, data->map);
2005 			m_freem(data->m);
2006 			data->m = NULL;
2007 		}
2008 		if (data->map != NULL)
2009 			bus_dmamap_destroy(ring->data_dmat, data->map);
2010 	}
2011 	if (ring->data_dmat != NULL) {
2012 		bus_dma_tag_destroy(ring->data_dmat);
2013 		ring->data_dmat = NULL;
2014 	}
2015 }
2016 
2017 static int
2018 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
2019 {
2020 	bus_addr_t paddr;
2021 	bus_size_t size;
2022 	int i, error;
2023 
2024 	ring->qid = qid;
2025 	ring->queued = 0;
2026 	ring->cur = 0;
2027 
2028 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2029 
2030 	/* Allocate TX descriptors (256-byte aligned). */
2031 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
2032 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
2033 	    size, 256);
2034 	if (error != 0) {
2035 		device_printf(sc->sc_dev,
2036 		    "%s: could not allocate TX ring DMA memory, error %d\n",
2037 		    __func__, error);
2038 		goto fail;
2039 	}
2040 
2041 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
2042 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
2043 	    size, 4);
2044 	if (error != 0) {
2045 		device_printf(sc->sc_dev,
2046 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
2047 		    __func__, error);
2048 		goto fail;
2049 	}
2050 
2051 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
2052 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
2053 	    IWN_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, &ring->data_dmat);
2054 	if (error != 0) {
2055 		device_printf(sc->sc_dev,
2056 		    "%s: could not create TX buf DMA tag, error %d\n",
2057 		    __func__, error);
2058 		goto fail;
2059 	}
2060 
2061 	paddr = ring->cmd_dma.paddr;
2062 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2063 		struct iwn_tx_data *data = &ring->data[i];
2064 
2065 		data->cmd_paddr = paddr;
2066 		data->scratch_paddr = paddr + 12;
2067 		paddr += sizeof (struct iwn_tx_cmd);
2068 
2069 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2070 		if (error != 0) {
2071 			device_printf(sc->sc_dev,
2072 			    "%s: could not create TX buf DMA map, error %d\n",
2073 			    __func__, error);
2074 			goto fail;
2075 		}
2076 	}
2077 
2078 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2079 
2080 	return 0;
2081 
2082 fail:	iwn_free_tx_ring(sc, ring);
2083 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2084 	return error;
2085 }
2086 
2087 static void
2088 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2089 {
2090 	int i;
2091 
2092 	DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__);
2093 
2094 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2095 		struct iwn_tx_data *data = &ring->data[i];
2096 
2097 		if (data->m != NULL) {
2098 			bus_dmamap_sync(ring->data_dmat, data->map,
2099 			    BUS_DMASYNC_POSTWRITE);
2100 			bus_dmamap_unload(ring->data_dmat, data->map);
2101 			m_freem(data->m);
2102 			data->m = NULL;
2103 		}
2104 	}
2105 	/* Clear TX descriptors. */
2106 	memset(ring->desc, 0, ring->desc_dma.size);
2107 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2108 	    BUS_DMASYNC_PREWRITE);
2109 	sc->qfullmsk &= ~(1 << ring->qid);
2110 	ring->queued = 0;
2111 	ring->cur = 0;
2112 }
2113 
2114 static void
2115 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2116 {
2117 	int i;
2118 
2119 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
2120 
2121 	iwn_dma_contig_free(&ring->desc_dma);
2122 	iwn_dma_contig_free(&ring->cmd_dma);
2123 
2124 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2125 		struct iwn_tx_data *data = &ring->data[i];
2126 
2127 		if (data->m != NULL) {
2128 			bus_dmamap_sync(ring->data_dmat, data->map,
2129 			    BUS_DMASYNC_POSTWRITE);
2130 			bus_dmamap_unload(ring->data_dmat, data->map);
2131 			m_freem(data->m);
2132 		}
2133 		if (data->map != NULL)
2134 			bus_dmamap_destroy(ring->data_dmat, data->map);
2135 	}
2136 	if (ring->data_dmat != NULL) {
2137 		bus_dma_tag_destroy(ring->data_dmat);
2138 		ring->data_dmat = NULL;
2139 	}
2140 }
2141 
2142 static void
2143 iwn5000_ict_reset(struct iwn_softc *sc)
2144 {
2145 	/* Disable interrupts. */
2146 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2147 
2148 	/* Reset ICT table. */
2149 	memset(sc->ict, 0, IWN_ICT_SIZE);
2150 	sc->ict_cur = 0;
2151 
2152 	/* Set physical address of ICT table (4KB aligned). */
2153 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
2154 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
2155 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
2156 
2157 	/* Enable periodic RX interrupt. */
2158 	sc->int_mask |= IWN_INT_RX_PERIODIC;
2159 	/* Switch to ICT interrupt mode in driver. */
2160 	sc->sc_flags |= IWN_FLAG_USE_ICT;
2161 
2162 	/* Re-enable interrupts. */
2163 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
2164 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2165 }
2166 
2167 static int
2168 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2169 {
2170 	struct iwn_ops *ops = &sc->ops;
2171 	uint16_t val;
2172 	int error;
2173 
2174 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2175 
2176 	/* Check whether adapter has an EEPROM or an OTPROM. */
2177 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
2178 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
2179 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
2180 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
2181 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
2182 
2183 	/* Adapter has to be powered on for EEPROM access to work. */
2184 	if ((error = iwn_apm_init(sc)) != 0) {
2185 		device_printf(sc->sc_dev,
2186 		    "%s: could not power ON adapter, error %d\n", __func__,
2187 		    error);
2188 		return error;
2189 	}
2190 
2191 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
2192 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
2193 		return EIO;
2194 	}
2195 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2196 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
2197 		    __func__, error);
2198 		return error;
2199 	}
2200 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
2201 		if ((error = iwn_init_otprom(sc)) != 0) {
2202 			device_printf(sc->sc_dev,
2203 			    "%s: could not initialize OTPROM, error %d\n",
2204 			    __func__, error);
2205 			return error;
2206 		}
2207 	}
2208 
2209 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
2210 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
2211 	/* Check if HT support is bonded out. */
2212 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
2213 		sc->sc_flags |= IWN_FLAG_HAS_11N;
2214 
2215 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
2216 	sc->rfcfg = le16toh(val);
2217 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
2218 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
2219 	if (sc->txchainmask == 0)
2220 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
2221 	if (sc->rxchainmask == 0)
2222 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
2223 
2224 	/* Read MAC address. */
2225 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
2226 
2227 	/* Read adapter-specific information from EEPROM. */
2228 	ops->read_eeprom(sc);
2229 
2230 	iwn_apm_stop(sc);	/* Power OFF adapter. */
2231 
2232 	iwn_eeprom_unlock(sc);
2233 
2234 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2235 
2236 	return 0;
2237 }
2238 
2239 static void
2240 iwn4965_read_eeprom(struct iwn_softc *sc)
2241 {
2242 	uint32_t addr;
2243 	uint16_t val;
2244 	int i;
2245 
2246 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2247 
2248 	/* Read regulatory domain (4 ASCII characters). */
2249 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
2250 
2251 	/* Read the list of authorized channels (20MHz ones only). */
2252 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2253 		addr = iwn4965_regulatory_bands[i];
2254 		iwn_read_eeprom_channels(sc, i, addr);
2255 	}
2256 
2257 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
2258 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
2259 	sc->maxpwr2GHz = val & 0xff;
2260 	sc->maxpwr5GHz = val >> 8;
2261 	/* Check that EEPROM values are within valid range. */
2262 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2263 		sc->maxpwr5GHz = 38;
2264 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2265 		sc->maxpwr2GHz = 38;
2266 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2267 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2268 
2269 	/* Read samples for each TX power group. */
2270 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
2271 	    sizeof sc->bands);
2272 
2273 	/* Read voltage at which samples were taken. */
2274 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
2275 	sc->eeprom_voltage = (int16_t)le16toh(val);
2276 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2277 	    sc->eeprom_voltage);
2278 
2279 #ifdef IWN_DEBUG
2280 	/* Print samples. */
2281 	if (sc->sc_debug & IWN_DEBUG_ANY) {
2282 		for (i = 0; i < IWN_NBANDS - 1; i++)
2283 			iwn4965_print_power_group(sc, i);
2284 	}
2285 #endif
2286 
2287 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2288 }
2289 
2290 #ifdef IWN_DEBUG
2291 static void
2292 iwn4965_print_power_group(struct iwn_softc *sc, int i)
2293 {
2294 	struct iwn4965_eeprom_band *band = &sc->bands[i];
2295 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
2296 	int j, c;
2297 
2298 	kprintf("===band %d===\n", i);
2299 	kprintf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2300 	kprintf("chan1 num=%d\n", chans[0].num);
2301 	for (c = 0; c < 2; c++) {
2302 		for (j = 0; j < IWN_NSAMPLES; j++) {
2303 			kprintf("chain %d, sample %d: temp=%d gain=%d "
2304 			    "power=%d pa_det=%d\n", c, j,
2305 			    chans[0].samples[c][j].temp,
2306 			    chans[0].samples[c][j].gain,
2307 			    chans[0].samples[c][j].power,
2308 			    chans[0].samples[c][j].pa_det);
2309 		}
2310 	}
2311 	kprintf("chan2 num=%d\n", chans[1].num);
2312 	for (c = 0; c < 2; c++) {
2313 		for (j = 0; j < IWN_NSAMPLES; j++) {
2314 			kprintf("chain %d, sample %d: temp=%d gain=%d "
2315 			    "power=%d pa_det=%d\n", c, j,
2316 			    chans[1].samples[c][j].temp,
2317 			    chans[1].samples[c][j].gain,
2318 			    chans[1].samples[c][j].power,
2319 			    chans[1].samples[c][j].pa_det);
2320 		}
2321 	}
2322 }
2323 #endif
2324 
2325 static void
2326 iwn5000_read_eeprom(struct iwn_softc *sc)
2327 {
2328 	struct iwn5000_eeprom_calib_hdr hdr;
2329 	int32_t volt;
2330 	uint32_t base, addr;
2331 	uint16_t val;
2332 	int i;
2333 
2334 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2335 
2336 	/* Read regulatory domain (4 ASCII characters). */
2337 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2338 	base = le16toh(val);
2339 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
2340 	    sc->eeprom_domain, 4);
2341 
2342 	/* Read the list of authorized channels (20MHz ones only). */
2343 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2344 		addr =  base + sc->base_params->regulatory_bands[i];
2345 		iwn_read_eeprom_channels(sc, i, addr);
2346 	}
2347 
2348 	/* Read enhanced TX power information for 6000 Series. */
2349 	if (sc->base_params->enhanced_TX_power)
2350 		iwn_read_eeprom_enhinfo(sc);
2351 
2352 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
2353 	base = le16toh(val);
2354 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
2355 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2356 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
2357 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
2358 	sc->calib_ver = hdr.version;
2359 
2360 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
2361 		sc->eeprom_voltage = le16toh(hdr.volt);
2362 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2363 		sc->eeprom_temp_high=le16toh(val);
2364 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2365 		sc->eeprom_temp = le16toh(val);
2366 	}
2367 
2368 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
2369 		/* Compute temperature offset. */
2370 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2371 		sc->eeprom_temp = le16toh(val);
2372 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2373 		volt = le16toh(val);
2374 		sc->temp_off = sc->eeprom_temp - (volt / -5);
2375 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
2376 		    sc->eeprom_temp, volt, sc->temp_off);
2377 	} else {
2378 		/* Read crystal calibration. */
2379 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
2380 		    &sc->eeprom_crystal, sizeof (uint32_t));
2381 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
2382 		    le32toh(sc->eeprom_crystal));
2383 	}
2384 
2385 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2386 
2387 }
2388 
2389 /*
2390  * Translate EEPROM flags to net80211.
2391  */
2392 static uint32_t
2393 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
2394 {
2395 	uint32_t nflags;
2396 
2397 	nflags = 0;
2398 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2399 		nflags |= IEEE80211_CHAN_PASSIVE;
2400 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
2401 		nflags |= IEEE80211_CHAN_NOADHOC;
2402 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
2403 		nflags |= IEEE80211_CHAN_DFS;
2404 		/* XXX apparently IBSS may still be marked */
2405 		nflags |= IEEE80211_CHAN_NOADHOC;
2406 	}
2407 
2408 	return nflags;
2409 }
2410 
2411 static void
2412 iwn_read_eeprom_band(struct iwn_softc *sc, int n)
2413 {
2414 	struct ifnet *ifp = sc->sc_ifp;
2415 	struct ieee80211com *ic = ifp->if_l2com;
2416 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2417 	const struct iwn_chan_band *band = &iwn_bands[n];
2418 	struct ieee80211_channel *c;
2419 	uint8_t chan;
2420 	int i, nflags;
2421 
2422 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2423 
2424 	for (i = 0; i < band->nchan; i++) {
2425 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2426 			DPRINTF(sc, IWN_DEBUG_RESET,
2427 			    "skip chan %d flags 0x%x maxpwr %d\n",
2428 			    band->chan[i], channels[i].flags,
2429 			    channels[i].maxpwr);
2430 			continue;
2431 		}
2432 		chan = band->chan[i];
2433 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2434 
2435 		c = &ic->ic_channels[ic->ic_nchans++];
2436 		c->ic_ieee = chan;
2437 		c->ic_maxregpower = channels[i].maxpwr;
2438 		c->ic_maxpower = 2*c->ic_maxregpower;
2439 
2440 		if (n == 0) {	/* 2GHz band */
2441 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G);
2442 			/* G =>'s B is supported */
2443 			c->ic_flags = IEEE80211_CHAN_B | nflags;
2444 			c = &ic->ic_channels[ic->ic_nchans++];
2445 			c[0] = c[-1];
2446 			c->ic_flags = IEEE80211_CHAN_G | nflags;
2447 		} else {	/* 5GHz band */
2448 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
2449 			c->ic_flags = IEEE80211_CHAN_A | nflags;
2450 		}
2451 
2452 		/* Save maximum allowed TX power for this channel. */
2453 		sc->maxpwr[chan] = channels[i].maxpwr;
2454 
2455 		DPRINTF(sc, IWN_DEBUG_RESET,
2456 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
2457 		    channels[i].flags, channels[i].maxpwr);
2458 
2459 		if (sc->sc_flags & IWN_FLAG_HAS_11N) {
2460 			/* add HT20, HT40 added separately */
2461 			c = &ic->ic_channels[ic->ic_nchans++];
2462 			c[0] = c[-1];
2463 			c->ic_flags |= IEEE80211_CHAN_HT20;
2464 		}
2465 	}
2466 
2467 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2468 
2469 }
2470 
2471 static void
2472 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n)
2473 {
2474 	struct ifnet *ifp = sc->sc_ifp;
2475 	struct ieee80211com *ic = ifp->if_l2com;
2476 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2477 	const struct iwn_chan_band *band = &iwn_bands[n];
2478 	struct ieee80211_channel *c, *cent, *extc;
2479 	uint8_t chan;
2480 	int i, nflags;
2481 
2482 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__);
2483 
2484 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) {
2485 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__);
2486 		return;
2487 	}
2488 
2489 	for (i = 0; i < band->nchan; i++) {
2490 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2491 			DPRINTF(sc, IWN_DEBUG_RESET,
2492 			    "skip chan %d flags 0x%x maxpwr %d\n",
2493 			    band->chan[i], channels[i].flags,
2494 			    channels[i].maxpwr);
2495 			continue;
2496 		}
2497 		chan = band->chan[i];
2498 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2499 
2500 		/*
2501 		 * Each entry defines an HT40 channel pair; find the
2502 		 * center channel, then the extension channel above.
2503 		 */
2504 		cent = ieee80211_find_channel_byieee(ic, chan,
2505 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
2506 		if (cent == NULL) {	/* XXX shouldn't happen */
2507 			device_printf(sc->sc_dev,
2508 			    "%s: no entry for channel %d\n", __func__, chan);
2509 			continue;
2510 		}
2511 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
2512 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
2513 		if (extc == NULL) {
2514 			DPRINTF(sc, IWN_DEBUG_RESET,
2515 			    "%s: skip chan %d, extension channel not found\n",
2516 			    __func__, chan);
2517 			continue;
2518 		}
2519 
2520 		DPRINTF(sc, IWN_DEBUG_RESET,
2521 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2522 		    chan, channels[i].flags, channels[i].maxpwr);
2523 
2524 		c = &ic->ic_channels[ic->ic_nchans++];
2525 		c[0] = cent[0];
2526 		c->ic_extieee = extc->ic_ieee;
2527 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2528 		c->ic_flags |= IEEE80211_CHAN_HT40U | nflags;
2529 		c = &ic->ic_channels[ic->ic_nchans++];
2530 		c[0] = extc[0];
2531 		c->ic_extieee = cent->ic_ieee;
2532 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2533 		c->ic_flags |= IEEE80211_CHAN_HT40D | nflags;
2534 	}
2535 
2536 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2537 
2538 }
2539 
2540 static void
2541 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2542 {
2543 	struct ifnet *ifp = sc->sc_ifp;
2544 	struct ieee80211com *ic = ifp->if_l2com;
2545 
2546 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
2547 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
2548 
2549 	if (n < 5)
2550 		iwn_read_eeprom_band(sc, n);
2551 	else
2552 		iwn_read_eeprom_ht40(sc, n);
2553 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2554 }
2555 
2556 static struct iwn_eeprom_chan *
2557 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
2558 {
2559 	int band, chan, i, j;
2560 
2561 	if (IEEE80211_IS_CHAN_HT40(c)) {
2562 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
2563 		if (IEEE80211_IS_CHAN_HT40D(c))
2564 			chan = c->ic_extieee;
2565 		else
2566 			chan = c->ic_ieee;
2567 		for (i = 0; i < iwn_bands[band].nchan; i++) {
2568 			if (iwn_bands[band].chan[i] == chan)
2569 				return &sc->eeprom_channels[band][i];
2570 		}
2571 	} else {
2572 		for (j = 0; j < 5; j++) {
2573 			for (i = 0; i < iwn_bands[j].nchan; i++) {
2574 				if (iwn_bands[j].chan[i] == c->ic_ieee)
2575 					return &sc->eeprom_channels[j][i];
2576 			}
2577 		}
2578 	}
2579 	return NULL;
2580 }
2581 
2582 /*
2583  * Enforce flags read from EEPROM.
2584  */
2585 static int
2586 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
2587     int nchan, struct ieee80211_channel chans[])
2588 {
2589 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2590 	int i;
2591 
2592 	for (i = 0; i < nchan; i++) {
2593 		struct ieee80211_channel *c = &chans[i];
2594 		struct iwn_eeprom_chan *channel;
2595 
2596 		channel = iwn_find_eeprom_channel(sc, c);
2597 		if (channel == NULL) {
2598 			if_printf(ic->ic_ifp,
2599 			    "%s: invalid channel %u freq %u/0x%x\n",
2600 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2601 			return EINVAL;
2602 		}
2603 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2604 	}
2605 
2606 	return 0;
2607 }
2608 
2609 static void
2610 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2611 {
2612 	struct iwn_eeprom_enhinfo enhinfo[35];
2613 	struct ifnet *ifp = sc->sc_ifp;
2614 	struct ieee80211com *ic = ifp->if_l2com;
2615 	struct ieee80211_channel *c;
2616 	uint16_t val, base;
2617 	int8_t maxpwr;
2618 	uint8_t flags;
2619 	int i, j;
2620 
2621 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2622 
2623 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2624 	base = le16toh(val);
2625 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2626 	    enhinfo, sizeof enhinfo);
2627 
2628 	for (i = 0; i < nitems(enhinfo); i++) {
2629 		flags = enhinfo[i].flags;
2630 		if (!(flags & IWN_ENHINFO_VALID))
2631 			continue;	/* Skip invalid entries. */
2632 
2633 		maxpwr = 0;
2634 		if (sc->txchainmask & IWN_ANT_A)
2635 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2636 		if (sc->txchainmask & IWN_ANT_B)
2637 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2638 		if (sc->txchainmask & IWN_ANT_C)
2639 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2640 		if (sc->ntxchains == 2)
2641 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2642 		else if (sc->ntxchains == 3)
2643 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2644 
2645 		for (j = 0; j < ic->ic_nchans; j++) {
2646 			c = &ic->ic_channels[j];
2647 			if ((flags & IWN_ENHINFO_5GHZ)) {
2648 				if (!IEEE80211_IS_CHAN_A(c))
2649 					continue;
2650 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2651 				if (!IEEE80211_IS_CHAN_G(c))
2652 					continue;
2653 			} else if (!IEEE80211_IS_CHAN_B(c))
2654 				continue;
2655 			if ((flags & IWN_ENHINFO_HT40)) {
2656 				if (!IEEE80211_IS_CHAN_HT40(c))
2657 					continue;
2658 			} else {
2659 				if (IEEE80211_IS_CHAN_HT40(c))
2660 					continue;
2661 			}
2662 			if (enhinfo[i].chan != 0 &&
2663 			    enhinfo[i].chan != c->ic_ieee)
2664 				continue;
2665 
2666 			DPRINTF(sc, IWN_DEBUG_RESET,
2667 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2668 			    c->ic_flags, maxpwr / 2);
2669 			c->ic_maxregpower = maxpwr / 2;
2670 			c->ic_maxpower = maxpwr;
2671 		}
2672 	}
2673 
2674 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2675 
2676 }
2677 
2678 static struct ieee80211_node *
2679 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2680 {
2681 	return kmalloc(sizeof(struct iwn_node), M_80211_NODE,
2682 		       M_INTWAIT | M_ZERO);
2683 }
2684 
2685 static __inline int
2686 rate2plcp(int rate)
2687 {
2688 	switch (rate & 0xff) {
2689 	case 12:	return 0xd;
2690 	case 18:	return 0xf;
2691 	case 24:	return 0x5;
2692 	case 36:	return 0x7;
2693 	case 48:	return 0x9;
2694 	case 72:	return 0xb;
2695 	case 96:	return 0x1;
2696 	case 108:	return 0x3;
2697 	case 2:		return 10;
2698 	case 4:		return 20;
2699 	case 11:	return 55;
2700 	case 22:	return 110;
2701 	}
2702 	return 0;
2703 }
2704 
2705 /*
2706  * Calculate the required PLCP value from the given rate,
2707  * to the given node.
2708  *
2709  * This will take the node configuration (eg 11n, rate table
2710  * setup, etc) into consideration.
2711  */
2712 static uint32_t
2713 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2714     uint8_t rate)
2715 {
2716 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
2717 	struct ieee80211com *ic = ni->ni_ic;
2718 	uint8_t txant1, txant2;
2719 	uint32_t plcp = 0;
2720 	int ridx;
2721 
2722 	/* Use the first valid TX antenna. */
2723 	txant1 = IWN_LSB(sc->txchainmask);
2724 	txant2 = IWN_LSB(sc->txchainmask & ~txant1);
2725 
2726 	/*
2727 	 * If it's an MCS rate, let's set the plcp correctly
2728 	 * and set the relevant flags based on the node config.
2729 	 */
2730 	if (rate & IEEE80211_RATE_MCS) {
2731 		/*
2732 		 * Set the initial PLCP value to be between 0->31 for
2733 		 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2734 		 * flag.
2735 		 */
2736 		plcp = RV(rate) | IWN_RFLAG_MCS;
2737 
2738 		/*
2739 		 * XXX the following should only occur if both
2740 		 * the local configuration _and_ the remote node
2741 		 * advertise these capabilities.  Thus this code
2742 		 * may need fixing!
2743 		 */
2744 
2745 		/*
2746 		 * Set the channel width and guard interval.
2747 		 */
2748 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2749 			plcp |= IWN_RFLAG_HT40;
2750 			if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2751 				plcp |= IWN_RFLAG_SGI;
2752 		} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) {
2753 			plcp |= IWN_RFLAG_SGI;
2754 		}
2755 
2756 		/*
2757 		 * If it's a two stream rate, enable TX on both
2758 		 * antennas.
2759 		 *
2760 		 * XXX three stream rates?
2761 		 */
2762 		if (rate > 0x87)
2763 			plcp |= IWN_RFLAG_ANT(txant1 | txant2);
2764 		else
2765 			plcp |= IWN_RFLAG_ANT(txant1);
2766 	} else {
2767 		/*
2768 		 * Set the initial PLCP - fine for both
2769 		 * OFDM and CCK rates.
2770 		 */
2771 		plcp = rate2plcp(rate);
2772 
2773 		/* Set CCK flag if it's CCK */
2774 
2775 		/* XXX It would be nice to have a method
2776 		 * to map the ridx -> phy table entry
2777 		 * so we could just query that, rather than
2778 		 * this hack to check against IWN_RIDX_OFDM6.
2779 		 */
2780 		ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2781 		    rate & IEEE80211_RATE_VAL);
2782 		if (ridx < IWN_RIDX_OFDM6 &&
2783 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2784 			plcp |= IWN_RFLAG_CCK;
2785 
2786 		/* Set antenna configuration */
2787 		plcp |= IWN_RFLAG_ANT(txant1);
2788 	}
2789 
2790 	DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2791 	    __func__,
2792 	    rate,
2793 	    plcp);
2794 
2795 	return (htole32(plcp));
2796 #undef	RV
2797 }
2798 
2799 static void
2800 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2801 {
2802 	/* Doesn't do anything at the moment */
2803 }
2804 
2805 static int
2806 iwn_media_change(struct ifnet *ifp)
2807 {
2808 	int error;
2809 
2810 	error = ieee80211_media_change(ifp);
2811 	/* NB: only the fixed rate can change and that doesn't need a reset */
2812 	return (error == ENETRESET ? 0 : error);
2813 }
2814 
2815 static int
2816 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2817 {
2818 	struct iwn_vap *ivp = IWN_VAP(vap);
2819 	struct ieee80211com *ic = vap->iv_ic;
2820 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2821 	int error = 0;
2822 
2823 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2824 
2825 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2826 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2827 
2828 	callout_stop(&sc->calib_to);
2829 
2830 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
2831 
2832 	switch (nstate) {
2833 	case IEEE80211_S_ASSOC:
2834 		if (vap->iv_state != IEEE80211_S_RUN)
2835 			break;
2836 		/* FALLTHROUGH */
2837 	case IEEE80211_S_AUTH:
2838 		if (vap->iv_state == IEEE80211_S_AUTH)
2839 			break;
2840 
2841 		/*
2842 		 * !AUTH -> AUTH transition requires state reset to handle
2843 		 * reassociations correctly.
2844 		 */
2845 		sc->rxon->associd = 0;
2846 		sc->rxon->filter &= ~htole32(IWN_FILTER_BSS);
2847 		sc->calib.state = IWN_CALIB_STATE_INIT;
2848 
2849 		if ((error = iwn_auth(sc, vap)) != 0) {
2850 			device_printf(sc->sc_dev,
2851 			    "%s: could not move to auth state\n", __func__);
2852 		}
2853 		break;
2854 
2855 	case IEEE80211_S_RUN:
2856 		/*
2857 		 * RUN -> RUN transition; Just restart the timers.
2858 		 */
2859 		if (vap->iv_state == IEEE80211_S_RUN) {
2860 			sc->calib_cnt = 0;
2861 			break;
2862 		}
2863 
2864 		/*
2865 		 * !RUN -> RUN requires setting the association id
2866 		 * which is done with a firmware cmd.  We also defer
2867 		 * starting the timers until that work is done.
2868 		 */
2869 		if ((error = iwn_run(sc, vap)) != 0) {
2870 			device_printf(sc->sc_dev,
2871 			    "%s: could not move to run state\n", __func__);
2872 		}
2873 		break;
2874 
2875 	case IEEE80211_S_INIT:
2876 		sc->calib.state = IWN_CALIB_STATE_INIT;
2877 		break;
2878 
2879 	default:
2880 		break;
2881 	}
2882 	if (error != 0){
2883 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2884 		return error;
2885 	}
2886 
2887 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2888 
2889 	return ivp->iv_newstate(vap, nstate, arg);
2890 }
2891 
2892 static void
2893 iwn_calib_timeout(void *arg)
2894 {
2895 	struct iwn_softc *sc = arg;
2896 
2897 	wlan_serialize_enter();
2898 
2899 	/* Force automatic TX power calibration every 60 secs. */
2900 	if (++sc->calib_cnt >= 120) {
2901 		uint32_t flags = 0;
2902 
2903 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2904 		    "sending request for statistics");
2905 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2906 		    sizeof flags, 1);
2907 		sc->calib_cnt = 0;
2908 	}
2909 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2910 	    sc);
2911 	wlan_serialize_exit();
2912 }
2913 
2914 /*
2915  * Process an RX_PHY firmware notification.  This is usually immediately
2916  * followed by an MPDU_RX_DONE notification.
2917  */
2918 static void
2919 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2920     struct iwn_rx_data *data)
2921 {
2922 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2923 
2924 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2925 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2926 
2927 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2928 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2929 	sc->last_rx_valid = 1;
2930 }
2931 
2932 /*
2933  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2934  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2935  */
2936 static void
2937 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2938     struct iwn_rx_data *data)
2939 {
2940 	struct iwn_ops *ops = &sc->ops;
2941 	struct ifnet *ifp = sc->sc_ifp;
2942 	struct ieee80211com *ic = ifp->if_l2com;
2943 	struct iwn_rx_ring *ring = &sc->rxq;
2944 	struct ieee80211_frame *wh;
2945 	struct ieee80211_node *ni;
2946 	struct mbuf *m, *m1;
2947 	struct iwn_rx_stat *stat;
2948 	caddr_t head;
2949 	bus_addr_t paddr;
2950 	uint32_t flags;
2951 	int error, len, rssi, nf;
2952 
2953 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2954 
2955 	if (desc->type == IWN_MPDU_RX_DONE) {
2956 		/* Check for prior RX_PHY notification. */
2957 		if (!sc->last_rx_valid) {
2958 			DPRINTF(sc, IWN_DEBUG_ANY,
2959 			    "%s: missing RX_PHY\n", __func__);
2960 			return;
2961 		}
2962 		stat = &sc->last_rx_stat;
2963 	} else
2964 		stat = (struct iwn_rx_stat *)(desc + 1);
2965 
2966 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2967 
2968 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2969 		device_printf(sc->sc_dev,
2970 		    "%s: invalid RX statistic header, len %d\n", __func__,
2971 		    stat->cfg_phy_len);
2972 		return;
2973 	}
2974 	if (desc->type == IWN_MPDU_RX_DONE) {
2975 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2976 		head = (caddr_t)(mpdu + 1);
2977 		len = le16toh(mpdu->len);
2978 	} else {
2979 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
2980 		len = le16toh(stat->len);
2981 	}
2982 
2983 	flags = le32toh(*(uint32_t *)(head + len));
2984 
2985 	/* Discard frames with a bad FCS early. */
2986 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2987 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
2988 		    __func__, flags);
2989 		IFNET_STAT_INC(ifp, ierrors, 1);
2990 		return;
2991 	}
2992 	/* Discard frames that are too short. */
2993 	if (len < sizeof (*wh)) {
2994 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
2995 		    __func__, len);
2996 		IFNET_STAT_INC(ifp, ierrors, 1);
2997 		return;
2998 	}
2999 
3000 	m1 = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
3001 	if (m1 == NULL) {
3002 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
3003 		    __func__);
3004 		IFNET_STAT_INC(ifp, ierrors, 1);
3005 		return;
3006 	}
3007 	bus_dmamap_unload(ring->data_dmat, data->map);
3008 
3009 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
3010 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3011 	if (error != 0 && error != EFBIG) {
3012 		device_printf(sc->sc_dev,
3013 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
3014 		m_freem(m1);
3015 
3016 		/* Try to reload the old mbuf. */
3017 		error = bus_dmamap_load(ring->data_dmat, data->map,
3018 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
3019 		    &paddr, BUS_DMA_NOWAIT);
3020 		if (error != 0 && error != EFBIG) {
3021 			panic("%s: could not load old RX mbuf", __func__);
3022 		}
3023 		/* Physical address may have changed. */
3024 		ring->desc[ring->cur] = htole32(paddr >> 8);
3025 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
3026 		    BUS_DMASYNC_PREWRITE);
3027 		IFNET_STAT_INC(ifp, ierrors, 1);
3028 		return;
3029 	}
3030 
3031 	m = data->m;
3032 	data->m = m1;
3033 	/* Update RX descriptor. */
3034 	ring->desc[ring->cur] = htole32(paddr >> 8);
3035 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3036 	    BUS_DMASYNC_PREWRITE);
3037 
3038 	/* Finalize mbuf. */
3039 	m->m_pkthdr.rcvif = ifp;
3040 	m->m_data = head;
3041 	m->m_pkthdr.len = m->m_len = len;
3042 
3043 	/* Grab a reference to the source node. */
3044 	wh = mtod(m, struct ieee80211_frame *);
3045 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
3046 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
3047 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
3048 
3049 	rssi = ops->get_rssi(sc, stat);
3050 
3051 	if (ieee80211_radiotap_active(ic)) {
3052 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
3053 
3054 		tap->wr_flags = 0;
3055 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
3056 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3057 		tap->wr_dbm_antsignal = (int8_t)rssi;
3058 		tap->wr_dbm_antnoise = (int8_t)nf;
3059 		tap->wr_tsft = stat->tstamp;
3060 		switch (stat->rate) {
3061 		/* CCK rates. */
3062 		case  10: tap->wr_rate =   2; break;
3063 		case  20: tap->wr_rate =   4; break;
3064 		case  55: tap->wr_rate =  11; break;
3065 		case 110: tap->wr_rate =  22; break;
3066 		/* OFDM rates. */
3067 		case 0xd: tap->wr_rate =  12; break;
3068 		case 0xf: tap->wr_rate =  18; break;
3069 		case 0x5: tap->wr_rate =  24; break;
3070 		case 0x7: tap->wr_rate =  36; break;
3071 		case 0x9: tap->wr_rate =  48; break;
3072 		case 0xb: tap->wr_rate =  72; break;
3073 		case 0x1: tap->wr_rate =  96; break;
3074 		case 0x3: tap->wr_rate = 108; break;
3075 		/* Unknown rate: should not happen. */
3076 		default:  tap->wr_rate =   0;
3077 		}
3078 	}
3079 
3080 	/* Send the frame to the 802.11 layer. */
3081 	if (ni != NULL) {
3082 		if (ni->ni_flags & IEEE80211_NODE_HT)
3083 			m->m_flags |= M_AMPDU;
3084 		(void)ieee80211_input(ni, m, rssi - nf, nf);
3085 		/* Node is no longer needed. */
3086 		ieee80211_free_node(ni);
3087 	} else {
3088 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
3089 	}
3090 
3091 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3092 
3093 }
3094 
3095 /* Process an incoming Compressed BlockAck. */
3096 static void
3097 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3098     struct iwn_rx_data *data)
3099 {
3100 	struct iwn_ops *ops = &sc->ops;
3101 	struct ifnet *ifp = sc->sc_ifp;
3102 	struct iwn_node *wn;
3103 	struct ieee80211_node *ni;
3104 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
3105 	struct iwn_tx_ring *txq;
3106 	struct iwn_tx_data *txdata;
3107 	struct ieee80211_tx_ampdu *tap;
3108 	struct mbuf *m;
3109 	uint64_t bitmap;
3110 	uint16_t ssn;
3111 	uint8_t tid;
3112 	int ackfailcnt = 0, i, lastidx, qid, *res, shift;
3113 
3114 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3115 
3116 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3117 
3118 	qid = le16toh(ba->qid);
3119 	txq = &sc->txq[ba->qid];
3120 	tap = sc->qid2tap[ba->qid];
3121 	tid = tap->txa_ac;
3122 	wn = (void *)tap->txa_ni;
3123 
3124 	res = NULL;
3125 	ssn = 0;
3126 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3127 		res = tap->txa_private;
3128 		ssn = tap->txa_start & 0xfff;
3129 	}
3130 
3131 	for (lastidx = le16toh(ba->ssn) & 0xff; txq->read != lastidx;) {
3132 		txdata = &txq->data[txq->read];
3133 
3134 		/* Unmap and free mbuf. */
3135 		bus_dmamap_sync(txq->data_dmat, txdata->map,
3136 		    BUS_DMASYNC_POSTWRITE);
3137 		bus_dmamap_unload(txq->data_dmat, txdata->map);
3138 		m = txdata->m, txdata->m = NULL;
3139 		ni = txdata->ni, txdata->ni = NULL;
3140 
3141 		KASSERT(ni != NULL, ("no node"));
3142 		KASSERT(m != NULL, ("no mbuf"));
3143 
3144 		ieee80211_tx_complete(ni, m, 1);
3145 
3146 		txq->queued--;
3147 		txq->read = (txq->read + 1) % IWN_TX_RING_COUNT;
3148 	}
3149 
3150 	if (txq->queued == 0 && res != NULL) {
3151 		iwn_nic_lock(sc);
3152 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3153 		iwn_nic_unlock(sc);
3154 		sc->qid2tap[qid] = NULL;
3155 		kfree(res, M_DEVBUF);
3156 		return;
3157 	}
3158 
3159 	if (wn->agg[tid].bitmap == 0)
3160 		return;
3161 
3162 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
3163 	if (shift < 0)
3164 		shift += 0x100;
3165 
3166 	if (wn->agg[tid].nframes > (64 - shift))
3167 		return;
3168 
3169 	ni = tap->txa_ni;
3170 	bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap;
3171 	for (i = 0; bitmap; i++) {
3172 		if ((bitmap & 1) == 0) {
3173 			IFNET_STAT_INC(ifp, oerrors, 1);
3174 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3175 			    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
3176 		} else {
3177 			IFNET_STAT_INC(ifp, opackets, 1);
3178 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3179 			    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
3180 		}
3181 		bitmap >>= 1;
3182 	}
3183 
3184 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3185 
3186 }
3187 
3188 /*
3189  * Process a CALIBRATION_RESULT notification sent by the initialization
3190  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
3191  */
3192 static void
3193 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3194     struct iwn_rx_data *data)
3195 {
3196 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
3197 	int len, idx = -1;
3198 
3199 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3200 
3201 	/* Runtime firmware should not send such a notification. */
3202 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE){
3203 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received after clib done\n",
3204 	    __func__);
3205 		return;
3206 	}
3207 	len = (le32toh(desc->len) & 0x3fff) - 4;
3208 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3209 
3210 	switch (calib->code) {
3211 	case IWN5000_PHY_CALIB_DC:
3212 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC)
3213 			idx = 0;
3214 		break;
3215 	case IWN5000_PHY_CALIB_LO:
3216 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO)
3217 			idx = 1;
3218 		break;
3219 	case IWN5000_PHY_CALIB_TX_IQ:
3220 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ)
3221 			idx = 2;
3222 		break;
3223 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
3224 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC)
3225 			idx = 3;
3226 		break;
3227 	case IWN5000_PHY_CALIB_BASE_BAND:
3228 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND)
3229 			idx = 4;
3230 		break;
3231 	}
3232 	if (idx == -1)	/* Ignore other results. */
3233 		return;
3234 
3235 	/* Save calibration result. */
3236 	if (sc->calibcmd[idx].buf != NULL)
3237 		kfree(sc->calibcmd[idx].buf, M_DEVBUF);
3238 	sc->calibcmd[idx].buf = kmalloc(len, M_DEVBUF, M_INTWAIT);
3239 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3240 	    "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len);
3241 	sc->calibcmd[idx].len = len;
3242 	memcpy(sc->calibcmd[idx].buf, calib, len);
3243 }
3244 
3245 static void
3246 iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib,
3247     struct iwn_stats *stats, int len)
3248 {
3249 	struct iwn_stats_bt *stats_bt;
3250 	struct iwn_stats *lstats;
3251 
3252 	/*
3253 	 * First - check whether the length is the bluetooth or normal.
3254 	 *
3255 	 * If it's normal - just copy it and bump out.
3256 	 * Otherwise we have to convert things.
3257 	 */
3258 
3259 	if (len == sizeof(struct iwn_stats) + 4) {
3260 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3261 		sc->last_stat_valid = 1;
3262 		return;
3263 	}
3264 
3265 	/*
3266 	 * If it's not the bluetooth size - log, then just copy.
3267 	 */
3268 	if (len != sizeof(struct iwn_stats_bt) + 4) {
3269 		DPRINTF(sc, IWN_DEBUG_STATS,
3270 		    "%s: size of rx statistics (%d) not an expected size!\n",
3271 		    __func__,
3272 		    len);
3273 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3274 		sc->last_stat_valid = 1;
3275 		return;
3276 	}
3277 
3278 	/*
3279 	 * Ok. Time to copy.
3280 	 */
3281 	stats_bt = (struct iwn_stats_bt *) stats;
3282 	lstats = &sc->last_stat;
3283 
3284 	/* flags */
3285 	lstats->flags = stats_bt->flags;
3286 	/* rx_bt */
3287 	memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm,
3288 	    sizeof(struct iwn_rx_phy_stats));
3289 	memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck,
3290 	    sizeof(struct iwn_rx_phy_stats));
3291 	memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common,
3292 	    sizeof(struct iwn_rx_general_stats));
3293 	memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht,
3294 	    sizeof(struct iwn_rx_ht_phy_stats));
3295 	/* tx */
3296 	memcpy(&lstats->tx, &stats_bt->tx,
3297 	    sizeof(struct iwn_tx_stats));
3298 	/* general */
3299 	memcpy(&lstats->general, &stats_bt->general,
3300 	    sizeof(struct iwn_general_stats));
3301 
3302 	/* XXX TODO: Squirrel away the extra bluetooth stats somewhere */
3303 	sc->last_stat_valid = 1;
3304 }
3305 
3306 /*
3307  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
3308  * The latter is sent by the firmware after each received beacon.
3309  */
3310 static void
3311 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3312     struct iwn_rx_data *data)
3313 {
3314 	struct iwn_ops *ops = &sc->ops;
3315 	struct ifnet *ifp = sc->sc_ifp;
3316 	struct ieee80211com *ic = ifp->if_l2com;
3317 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3318 	struct iwn_calib_state *calib = &sc->calib;
3319 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
3320 	struct iwn_stats *lstats;
3321 	int temp;
3322 
3323 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3324 
3325 	/* Ignore statistics received during a scan. */
3326 	if (vap->iv_state != IEEE80211_S_RUN ||
3327 	    (ic->ic_flags & IEEE80211_F_SCAN)){
3328 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n",
3329 	    __func__);
3330 		return;
3331 	}
3332 
3333 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3334 
3335 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS,
3336 	    "%s: received statistics, cmd %d, len %d\n",
3337 	    __func__, desc->type, le16toh(desc->len));
3338 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
3339 
3340 	/*
3341 	 * Collect/track general statistics for reporting.
3342 	 *
3343 	 * This takes care of ensuring that the bluetooth sized message
3344 	 * will be correctly converted to the legacy sized message.
3345 	 */
3346 	iwn_stats_update(sc, calib, stats, le16toh(desc->len));
3347 
3348 	/*
3349 	 * And now, let's take a reference of it to use!
3350 	 */
3351 	lstats = &sc->last_stat;
3352 
3353 	/* Test if temperature has changed. */
3354 	if (lstats->general.temp != sc->rawtemp) {
3355 		/* Convert "raw" temperature to degC. */
3356 		sc->rawtemp = stats->general.temp;
3357 		temp = ops->get_temperature(sc);
3358 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
3359 		    __func__, temp);
3360 
3361 		/* Update TX power if need be (4965AGN only). */
3362 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3363 			iwn4965_power_calibration(sc, temp);
3364 	}
3365 
3366 	if (desc->type != IWN_BEACON_STATISTICS)
3367 		return;	/* Reply to a statistics request. */
3368 
3369 	sc->noise = iwn_get_noise(&lstats->rx.general);
3370 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
3371 
3372 	/* Test that RSSI and noise are present in stats report. */
3373 	if (le32toh(lstats->rx.general.flags) != 1) {
3374 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
3375 		    "received statistics without RSSI");
3376 		return;
3377 	}
3378 
3379 	if (calib->state == IWN_CALIB_STATE_ASSOC)
3380 		iwn_collect_noise(sc, &lstats->rx.general);
3381 	else if (calib->state == IWN_CALIB_STATE_RUN) {
3382 		iwn_tune_sensitivity(sc, &lstats->rx);
3383 		/*
3384 		 * XXX TODO: Only run the RX recovery if we're associated!
3385 		 */
3386 		iwn_check_rx_recovery(sc, lstats);
3387 		iwn_save_stats_counters(sc, lstats);
3388 	}
3389 
3390 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3391 }
3392 
3393 /*
3394  * Save the relevant statistic counters for the next calibration
3395  * pass.
3396  */
3397 static void
3398 iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs)
3399 {
3400 	struct iwn_calib_state *calib = &sc->calib;
3401 
3402 	/* Save counters values for next call. */
3403 	calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp);
3404 	calib->fa_cck = le32toh(rs->rx.cck.fa);
3405 	calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp);
3406 	calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp);
3407 	calib->fa_ofdm = le32toh(rs->rx.ofdm.fa);
3408 
3409 	/* Last time we received these tick values */
3410 	sc->last_calib_ticks = ticks;
3411 }
3412 
3413 /*
3414  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
3415  * and 5000 adapters have different incompatible TX status formats.
3416  */
3417 static void
3418 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3419     struct iwn_rx_data *data)
3420 {
3421 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
3422 	struct iwn_tx_ring *ring;
3423 	int qid;
3424 
3425 	qid = desc->qid & 0xf;
3426 	ring = &sc->txq[qid];
3427 
3428 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3429 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
3430 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
3431 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
3432 	    le32toh(stat->status));
3433 
3434 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3435 	if (qid >= sc->firstaggqueue) {
3436 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3437 		    &stat->status);
3438 	} else {
3439 		iwn_tx_done(sc, desc, stat->ackfailcnt,
3440 		    le32toh(stat->status) & 0xff);
3441 	}
3442 }
3443 
3444 static void
3445 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3446     struct iwn_rx_data *data)
3447 {
3448 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
3449 	struct iwn_tx_ring *ring;
3450 	int qid;
3451 
3452 	qid = desc->qid & 0xf;
3453 	ring = &sc->txq[qid];
3454 
3455 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3456 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
3457 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
3458 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
3459 	    le32toh(stat->status));
3460 
3461 #ifdef notyet
3462 	/* Reset TX scheduler slot. */
3463 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
3464 #endif
3465 
3466 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3467 	if (qid >= sc->firstaggqueue) {
3468 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3469 		    &stat->status);
3470 	} else {
3471 		iwn_tx_done(sc, desc, stat->ackfailcnt,
3472 		    le16toh(stat->status) & 0xff);
3473 	}
3474 }
3475 
3476 /*
3477  * Adapter-independent backend for TX_DONE firmware notifications.
3478  */
3479 static void
3480 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
3481     uint8_t status)
3482 {
3483 	struct ifnet *ifp = sc->sc_ifp;
3484 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
3485 	struct iwn_tx_data *data = &ring->data[desc->idx];
3486 	struct mbuf *m;
3487 	struct ieee80211_node *ni;
3488 	struct ieee80211vap *vap;
3489 
3490 	KASSERT(data->ni != NULL, ("no node"));
3491 
3492 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3493 
3494 	/* Unmap and free mbuf. */
3495 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
3496 	bus_dmamap_unload(ring->data_dmat, data->map);
3497 	m = data->m, data->m = NULL;
3498 	ni = data->ni, data->ni = NULL;
3499 	vap = ni->ni_vap;
3500 
3501 	/*
3502 	 * Update rate control statistics for the node.
3503 	 */
3504 	if (status & IWN_TX_FAIL) {
3505 		IFNET_STAT_INC(ifp, oerrors, 1);
3506 		ieee80211_ratectl_tx_complete(vap, ni,
3507 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
3508 	} else {
3509 		IFNET_STAT_INC(ifp, opackets, 1);
3510 		ieee80211_ratectl_tx_complete(vap, ni,
3511 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
3512 	}
3513 
3514 	/*
3515 	 * Channels marked for "radar" require traffic to be received
3516 	 * to unlock before we can transmit.  Until traffic is seen
3517 	 * any attempt to transmit is returned immediately with status
3518 	 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
3519 	 * happen on first authenticate after scanning.  To workaround
3520 	 * this we ignore a failure of this sort in AUTH state so the
3521 	 * 802.11 layer will fall back to using a timeout to wait for
3522 	 * the AUTH reply.  This allows the firmware time to see
3523 	 * traffic so a subsequent retry of AUTH succeeds.  It's
3524 	 * unclear why the firmware does not maintain state for
3525 	 * channels recently visited as this would allow immediate
3526 	 * use of the channel after a scan (where we see traffic).
3527 	 */
3528 	if (status == IWN_TX_FAIL_TX_LOCKED &&
3529 	    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
3530 		ieee80211_tx_complete(ni, m, 0);
3531 	else
3532 		ieee80211_tx_complete(ni, m,
3533 		    (status & IWN_TX_FAIL) != 0);
3534 
3535 	sc->sc_tx_timer = 0;
3536 	if (--ring->queued < IWN_TX_RING_LOMARK) {
3537 		sc->qfullmsk &= ~(1 << ring->qid);
3538 		if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) {
3539 			ifq_clr_oactive(&ifp->if_snd);
3540 			iwn_start_locked(ifp);
3541 		}
3542 	}
3543 
3544 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3545 
3546 }
3547 
3548 /*
3549  * Process a "command done" firmware notification.  This is where we wakeup
3550  * processes waiting for a synchronous command completion.
3551  */
3552 static void
3553 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3554 {
3555 	struct iwn_tx_ring *ring;
3556 	struct iwn_tx_data *data;
3557 	int cmd_queue_num;
3558 
3559 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
3560 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
3561 	else
3562 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
3563 
3564 	if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num)
3565 		return;	/* Not a command ack. */
3566 
3567 	ring = &sc->txq[cmd_queue_num];
3568 	data = &ring->data[desc->idx];
3569 
3570 	/* If the command was mapped in an mbuf, free it. */
3571 	if (data->m != NULL) {
3572 		bus_dmamap_sync(ring->data_dmat, data->map,
3573 		    BUS_DMASYNC_POSTWRITE);
3574 		bus_dmamap_unload(ring->data_dmat, data->map);
3575 		m_freem(data->m);
3576 		data->m = NULL;
3577 	}
3578 	wakeup(&ring->desc[desc->idx]);
3579 }
3580 
3581 static void
3582 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes,
3583     void *stat)
3584 {
3585 	struct iwn_ops *ops = &sc->ops;
3586 	struct ifnet *ifp = sc->sc_ifp;
3587 	struct iwn_tx_ring *ring = &sc->txq[qid];
3588 	struct iwn_tx_data *data;
3589 	struct mbuf *m;
3590 	struct iwn_node *wn;
3591 	struct ieee80211_node *ni;
3592 	struct ieee80211_tx_ampdu *tap;
3593 	uint64_t bitmap;
3594 	uint32_t *status = stat;
3595 	uint16_t *aggstatus = stat;
3596 	uint16_t ssn;
3597 	uint8_t tid;
3598 	int bit, i, lastidx, *res, seqno, shift, start;
3599 
3600 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3601 
3602 	if (nframes == 1) {
3603 		if ((*status & 0xff) != 1 && (*status & 0xff) != 2) {
3604 #ifdef	NOT_YET
3605 			kprintf("ieee80211_send_bar()\n");
3606 #endif
3607 			/*
3608 			 * If we completely fail a transmit, make sure a
3609 			 * notification is pushed up to the rate control
3610 			 * layer.
3611 			 */
3612 			tap = sc->qid2tap[qid];
3613 			tid = tap->txa_ac;
3614 			wn = (void *)tap->txa_ni;
3615 			ni = tap->txa_ni;
3616 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3617 			    IEEE80211_RATECTL_TX_FAILURE, &nframes, NULL);
3618 		}
3619 	}
3620 
3621 	bitmap = 0;
3622 	start = idx;
3623 	for (i = 0; i < nframes; i++) {
3624 		if (le16toh(aggstatus[i * 2]) & 0xc)
3625 			continue;
3626 
3627 		idx = le16toh(aggstatus[2*i + 1]) & 0xff;
3628 		bit = idx - start;
3629 		shift = 0;
3630 		if (bit >= 64) {
3631 			shift = 0x100 - idx + start;
3632 			bit = 0;
3633 			start = idx;
3634 		} else if (bit <= -64)
3635 			bit = 0x100 - start + idx;
3636 		else if (bit < 0) {
3637 			shift = start - idx;
3638 			start = idx;
3639 			bit = 0;
3640 		}
3641 		bitmap = bitmap << shift;
3642 		bitmap |= 1ULL << bit;
3643 	}
3644 	tap = sc->qid2tap[qid];
3645 	tid = tap->txa_ac;
3646 	wn = (void *)tap->txa_ni;
3647 	wn->agg[tid].bitmap = bitmap;
3648 	wn->agg[tid].startidx = start;
3649 	wn->agg[tid].nframes = nframes;
3650 
3651 	res = NULL;
3652 	ssn = 0;
3653 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3654 		res = tap->txa_private;
3655 		ssn = tap->txa_start & 0xfff;
3656 	}
3657 
3658 	seqno = le32toh(*(status + nframes)) & 0xfff;
3659 	for (lastidx = (seqno & 0xff); ring->read != lastidx;) {
3660 		data = &ring->data[ring->read];
3661 
3662 		/* Unmap and free mbuf. */
3663 		bus_dmamap_sync(ring->data_dmat, data->map,
3664 		    BUS_DMASYNC_POSTWRITE);
3665 		bus_dmamap_unload(ring->data_dmat, data->map);
3666 		m = data->m, data->m = NULL;
3667 		ni = data->ni, data->ni = NULL;
3668 
3669 		KASSERT(ni != NULL, ("no node"));
3670 		KASSERT(m != NULL, ("no mbuf"));
3671 
3672 		ieee80211_tx_complete(ni, m, 1);
3673 
3674 		ring->queued--;
3675 		ring->read = (ring->read + 1) % IWN_TX_RING_COUNT;
3676 	}
3677 
3678 	if (ring->queued == 0 && res != NULL) {
3679 		iwn_nic_lock(sc);
3680 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3681 		iwn_nic_unlock(sc);
3682 		sc->qid2tap[qid] = NULL;
3683 		kfree(res, M_DEVBUF);
3684 		return;
3685 	}
3686 
3687 	sc->sc_tx_timer = 0;
3688 	if (ring->queued < IWN_TX_RING_LOMARK) {
3689 		sc->qfullmsk &= ~(1 << ring->qid);
3690 		if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) {
3691 			ifq_clr_oactive(&ifp->if_snd);
3692 			iwn_start_locked(ifp);
3693 		}
3694 	}
3695 
3696 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3697 
3698 }
3699 
3700 /*
3701  * Process an INT_FH_RX or INT_SW_RX interrupt.
3702  */
3703 static void
3704 iwn_notif_intr(struct iwn_softc *sc)
3705 {
3706 	struct iwn_ops *ops = &sc->ops;
3707 	struct ifnet *ifp = sc->sc_ifp;
3708 	struct ieee80211com *ic = ifp->if_l2com;
3709 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3710 	uint16_t hw;
3711 
3712 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
3713 	    BUS_DMASYNC_POSTREAD);
3714 
3715 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
3716 	while (sc->rxq.cur != hw) {
3717 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
3718 		struct iwn_rx_desc *desc;
3719 
3720 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3721 		    BUS_DMASYNC_POSTREAD);
3722 		desc = mtod(data->m, struct iwn_rx_desc *);
3723 
3724 		DPRINTF(sc, IWN_DEBUG_RECV,
3725 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
3726 		    __func__, sc->rxq.cur, desc->qid & 0xf, desc->idx, desc->flags,
3727 		    desc->type, iwn_intr_str(desc->type),
3728 		    le16toh(desc->len));
3729 
3730 		if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF))	/* Reply to a command. */
3731 			iwn_cmd_done(sc, desc);
3732 
3733 		switch (desc->type) {
3734 		case IWN_RX_PHY:
3735 			iwn_rx_phy(sc, desc, data);
3736 			break;
3737 
3738 		case IWN_RX_DONE:		/* 4965AGN only. */
3739 		case IWN_MPDU_RX_DONE:
3740 			/* An 802.11 frame has been received. */
3741 			iwn_rx_done(sc, desc, data);
3742 			break;
3743 
3744 		case IWN_RX_COMPRESSED_BA:
3745 			/* A Compressed BlockAck has been received. */
3746 			iwn_rx_compressed_ba(sc, desc, data);
3747 			break;
3748 
3749 		case IWN_TX_DONE:
3750 			/* An 802.11 frame has been transmitted. */
3751 			ops->tx_done(sc, desc, data);
3752 			break;
3753 
3754 		case IWN_RX_STATISTICS:
3755 		case IWN_BEACON_STATISTICS:
3756 			iwn_rx_statistics(sc, desc, data);
3757 			break;
3758 
3759 		case IWN_BEACON_MISSED:
3760 		{
3761 			struct iwn_beacon_missed *miss =
3762 			    (struct iwn_beacon_missed *)(desc + 1);
3763 			int misses;
3764 
3765 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3766 			    BUS_DMASYNC_POSTREAD);
3767 			misses = le32toh(miss->consecutive);
3768 
3769 			DPRINTF(sc, IWN_DEBUG_STATE,
3770 			    "%s: beacons missed %d/%d\n", __func__,
3771 			    misses, le32toh(miss->total));
3772 			/*
3773 			 * If more than 5 consecutive beacons are missed,
3774 			 * reinitialize the sensitivity state machine.
3775 			 */
3776 			if (vap->iv_state == IEEE80211_S_RUN &&
3777 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3778 				if (misses > 5)
3779 					(void)iwn_init_sensitivity(sc);
3780 				if (misses >= vap->iv_bmissthreshold) {
3781 					ieee80211_beacon_miss(ic);
3782 				}
3783 			}
3784 			break;
3785 		}
3786 		case IWN_UC_READY:
3787 		{
3788 			struct iwn_ucode_info *uc =
3789 			    (struct iwn_ucode_info *)(desc + 1);
3790 
3791 			/* The microcontroller is ready. */
3792 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3793 			    BUS_DMASYNC_POSTREAD);
3794 			DPRINTF(sc, IWN_DEBUG_RESET,
3795 			    "microcode alive notification version=%d.%d "
3796 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
3797 			    uc->subtype, le32toh(uc->valid));
3798 
3799 			if (le32toh(uc->valid) != 1) {
3800 				device_printf(sc->sc_dev,
3801 				    "microcontroller initialization failed");
3802 				break;
3803 			}
3804 			if (uc->subtype == IWN_UCODE_INIT) {
3805 				/* Save microcontroller report. */
3806 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
3807 			}
3808 			/* Save the address of the error log in SRAM. */
3809 			sc->errptr = le32toh(uc->errptr);
3810 			break;
3811 		}
3812 		case IWN_STATE_CHANGED:
3813 		{
3814 			/*
3815 			 * State change allows hardware switch change to be
3816 			 * noted. However, we handle this in iwn_intr as we
3817 			 * get both the enable/disble intr.
3818 			 */
3819 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3820 			    BUS_DMASYNC_POSTREAD);
3821 #ifdef	IWN_DEBUG
3822 			uint32_t *status = (uint32_t *)(desc + 1);
3823 			DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE,
3824 			    "state changed to %x\n",
3825 			    le32toh(*status));
3826 #endif
3827 			break;
3828 		}
3829 		case IWN_START_SCAN:
3830 		{
3831 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3832 			    BUS_DMASYNC_POSTREAD);
3833 #ifdef	IWN_DEBUG
3834 			struct iwn_start_scan *scan =
3835 			    (struct iwn_start_scan *)(desc + 1);
3836 			DPRINTF(sc, IWN_DEBUG_ANY,
3837 			    "%s: scanning channel %d status %x\n",
3838 			    __func__, scan->chan, le32toh(scan->status));
3839 #endif
3840 			break;
3841 		}
3842 		case IWN_STOP_SCAN:
3843 		{
3844 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3845 			    BUS_DMASYNC_POSTREAD);
3846 #ifdef	IWN_DEBUG
3847 			struct iwn_stop_scan *scan =
3848 			    (struct iwn_stop_scan *)(desc + 1);
3849 			DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN,
3850 			    "scan finished nchan=%d status=%d chan=%d\n",
3851 			    scan->nchan, scan->status, scan->chan);
3852 #endif
3853 			sc->sc_is_scanning = 0;
3854 			ieee80211_scan_next(vap);
3855 			break;
3856 		}
3857 		case IWN5000_CALIBRATION_RESULT:
3858 			iwn5000_rx_calib_results(sc, desc, data);
3859 			break;
3860 
3861 		case IWN5000_CALIBRATION_DONE:
3862 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
3863 			wakeup(sc);
3864 			break;
3865 		}
3866 
3867 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
3868 	}
3869 
3870 	/* Tell the firmware what we have processed. */
3871 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
3872 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
3873 }
3874 
3875 /*
3876  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
3877  * from power-down sleep mode.
3878  */
3879 static void
3880 iwn_wakeup_intr(struct iwn_softc *sc)
3881 {
3882 	int qid;
3883 
3884 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
3885 	    __func__);
3886 
3887 	/* Wakeup RX and TX rings. */
3888 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
3889 	for (qid = 0; qid < sc->ntxqs; qid++) {
3890 		struct iwn_tx_ring *ring = &sc->txq[qid];
3891 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
3892 	}
3893 }
3894 
3895 static void
3896 iwn_rftoggle_intr(struct iwn_softc *sc)
3897 {
3898 	struct ifnet *ifp = sc->sc_ifp;
3899 	struct ieee80211com *ic = ifp->if_l2com;
3900 	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
3901 
3902 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
3903 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
3904 	if (tmp & IWN_GP_CNTRL_RFKILL)
3905 		ieee80211_runtask(ic, &sc->sc_radioon_task);
3906 	else
3907 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
3908 }
3909 
3910 /*
3911  * Dump the error log of the firmware when a firmware panic occurs.  Although
3912  * we can't debug the firmware because it is neither open source nor free, it
3913  * can help us to identify certain classes of problems.
3914  */
3915 static void
3916 iwn_fatal_intr(struct iwn_softc *sc)
3917 {
3918 	struct iwn_fw_dump dump;
3919 	int i;
3920 
3921 	/* Force a complete recalibration on next init. */
3922 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
3923 
3924 	/* Check that the error log address is valid. */
3925 	if (sc->errptr < IWN_FW_DATA_BASE ||
3926 	    sc->errptr + sizeof (dump) >
3927 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
3928 		kprintf("%s: bad firmware error log address 0x%08x\n", __func__,
3929 		    sc->errptr);
3930 		return;
3931 	}
3932 	if (iwn_nic_lock(sc) != 0) {
3933 		kprintf("%s: could not read firmware error log\n", __func__);
3934 		return;
3935 	}
3936 	/* Read firmware error log from SRAM. */
3937 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
3938 	    sizeof (dump) / sizeof (uint32_t));
3939 	iwn_nic_unlock(sc);
3940 
3941 	if (dump.valid == 0) {
3942 		kprintf("%s: firmware error log is empty\n", __func__);
3943 		return;
3944 	}
3945 	kprintf("firmware error log:\n");
3946 	kprintf("  error type      = \"%s\" (0x%08X)\n",
3947 	    (dump.id < nitems(iwn_fw_errmsg)) ?
3948 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
3949 	    dump.id);
3950 	kprintf("  program counter = 0x%08X\n", dump.pc);
3951 	kprintf("  source line     = 0x%08X\n", dump.src_line);
3952 	kprintf("  error data      = 0x%08X%08X\n",
3953 	    dump.error_data[0], dump.error_data[1]);
3954 	kprintf("  branch link     = 0x%08X%08X\n",
3955 	    dump.branch_link[0], dump.branch_link[1]);
3956 	kprintf("  interrupt link  = 0x%08X%08X\n",
3957 	    dump.interrupt_link[0], dump.interrupt_link[1]);
3958 	kprintf("  time            = %u\n", dump.time[0]);
3959 
3960 	/* Dump driver status (TX and RX rings) while we're here. */
3961 	kprintf("driver status:\n");
3962 	for (i = 0; i < sc->ntxqs; i++) {
3963 		struct iwn_tx_ring *ring = &sc->txq[i];
3964 		kprintf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
3965 		    i, ring->qid, ring->cur, ring->queued);
3966 	}
3967 	kprintf("  rx ring: cur=%d\n", sc->rxq.cur);
3968 }
3969 
3970 static void
3971 iwn_intr(void *arg)
3972 {
3973 	struct iwn_softc *sc = arg;
3974 	struct ifnet *ifp = sc->sc_ifp;
3975 	uint32_t r1, r2, tmp;
3976 
3977 	/* Disable interrupts. */
3978 	IWN_WRITE(sc, IWN_INT_MASK, 0);
3979 
3980 	/* Read interrupts from ICT (fast) or from registers (slow). */
3981 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3982 		tmp = 0;
3983 		while (sc->ict[sc->ict_cur] != 0) {
3984 			tmp |= sc->ict[sc->ict_cur];
3985 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
3986 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
3987 		}
3988 		tmp = le32toh(tmp);
3989 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
3990 			tmp = 0;
3991 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
3992 			tmp |= 0x8000;
3993 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
3994 		r2 = 0;	/* Unused. */
3995 	} else {
3996 		r1 = IWN_READ(sc, IWN_INT);
3997 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
3998 			return;	/* Hardware gone! */
3999 		r2 = IWN_READ(sc, IWN_FH_INT);
4000 	}
4001 
4002 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n"
4003     , r1, r2);
4004 
4005 	if (r1 == 0 && r2 == 0)
4006 		goto done;	/* Interrupt not for us. */
4007 
4008 	/* Acknowledge interrupts. */
4009 	IWN_WRITE(sc, IWN_INT, r1);
4010 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
4011 		IWN_WRITE(sc, IWN_FH_INT, r2);
4012 
4013 	if (r1 & IWN_INT_RF_TOGGLED) {
4014 		iwn_rftoggle_intr(sc);
4015 		goto done;
4016 	}
4017 	if (r1 & IWN_INT_CT_REACHED) {
4018 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
4019 		    __func__);
4020 	}
4021 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
4022 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
4023 		    __func__);
4024 #ifdef	IWN_DEBUG
4025 		iwn_debug_register(sc);
4026 #endif
4027 		/* Dump firmware error log and stop. */
4028 		iwn_fatal_intr(sc);
4029 
4030 		taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task);
4031 		goto done;
4032 	}
4033 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
4034 	    (r2 & IWN_FH_INT_RX)) {
4035 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4036 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
4037 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
4038 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4039 			    IWN_INT_PERIODIC_DIS);
4040 			iwn_notif_intr(sc);
4041 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
4042 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4043 				    IWN_INT_PERIODIC_ENA);
4044 			}
4045 		} else
4046 			iwn_notif_intr(sc);
4047 	}
4048 
4049 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
4050 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
4051 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
4052 		wakeup(sc);	/* FH DMA transfer completed. */
4053 	}
4054 
4055 	if (r1 & IWN_INT_ALIVE)
4056 		wakeup(sc);	/* Firmware is alive. */
4057 
4058 	if (r1 & IWN_INT_WAKEUP)
4059 		iwn_wakeup_intr(sc);
4060 
4061 done:
4062 	/* Re-enable interrupts. */
4063 	if (ifp->if_flags & IFF_UP)
4064 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4065 }
4066 
4067 /*
4068  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
4069  * 5000 adapters use a slightly different format).
4070  */
4071 static void
4072 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4073     uint16_t len)
4074 {
4075 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
4076 
4077 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4078 
4079 	*w = htole16(len + 8);
4080 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4081 	    BUS_DMASYNC_PREWRITE);
4082 	if (idx < IWN_SCHED_WINSZ) {
4083 		*(w + IWN_TX_RING_COUNT) = *w;
4084 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4085 		    BUS_DMASYNC_PREWRITE);
4086 	}
4087 }
4088 
4089 static void
4090 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4091     uint16_t len)
4092 {
4093 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4094 
4095 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4096 
4097 	*w = htole16(id << 12 | (len + 8));
4098 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4099 	    BUS_DMASYNC_PREWRITE);
4100 	if (idx < IWN_SCHED_WINSZ) {
4101 		*(w + IWN_TX_RING_COUNT) = *w;
4102 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4103 		    BUS_DMASYNC_PREWRITE);
4104 	}
4105 }
4106 
4107 #ifdef notyet
4108 static void
4109 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
4110 {
4111 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4112 
4113 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4114 
4115 	*w = (*w & htole16(0xf000)) | htole16(1);
4116 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4117 	    BUS_DMASYNC_PREWRITE);
4118 	if (idx < IWN_SCHED_WINSZ) {
4119 		*(w + IWN_TX_RING_COUNT) = *w;
4120 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4121 		    BUS_DMASYNC_PREWRITE);
4122 	}
4123 }
4124 #endif
4125 
4126 /*
4127  * Check whether OFDM 11g protection will be enabled for the given rate.
4128  *
4129  * The original driver code only enabled protection for OFDM rates.
4130  * It didn't check to see whether it was operating in 11a or 11bg mode.
4131  */
4132 static int
4133 iwn_check_rate_needs_protection(struct iwn_softc *sc,
4134     struct ieee80211vap *vap, uint8_t rate)
4135 {
4136 	struct ieee80211com *ic = vap->iv_ic;
4137 
4138 	/*
4139 	 * Not in 2GHz mode? Then there's no need to enable OFDM
4140 	 * 11bg protection.
4141 	 */
4142 	if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
4143 		return (0);
4144 	}
4145 
4146 	/*
4147 	 * 11bg protection not enabled? Then don't use it.
4148 	 */
4149 	if ((ic->ic_flags & IEEE80211_F_USEPROT) == 0)
4150 		return (0);
4151 
4152 	/*
4153 	 * If it's an 11n rate, then for now we enable
4154 	 * protection.
4155 	 */
4156 	if (rate & IEEE80211_RATE_MCS) {
4157 		return (1);
4158 	}
4159 
4160 	/*
4161 	 * Do a rate table lookup.  If the PHY is CCK,
4162 	 * don't do protection.
4163 	 */
4164 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK)
4165 		return (0);
4166 
4167 	/*
4168 	 * Yup, enable protection.
4169 	 */
4170 	return (1);
4171 }
4172 
4173 /*
4174  * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into
4175  * the link quality table that reflects this particular entry.
4176  */
4177 static int
4178 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni,
4179     uint8_t rate)
4180 {
4181 	struct ieee80211_rateset *rs;
4182 	int is_11n;
4183 	int nr;
4184 	int i;
4185 	uint8_t cmp_rate;
4186 
4187 	/*
4188 	 * Figure out if we're using 11n or not here.
4189 	 */
4190 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0)
4191 		is_11n = 1;
4192 	else
4193 		is_11n = 0;
4194 
4195 	/*
4196 	 * Use the correct rate table.
4197 	 */
4198 	if (is_11n) {
4199 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4200 		nr = ni->ni_htrates.rs_nrates;
4201 	} else {
4202 		rs = &ni->ni_rates;
4203 		nr = rs->rs_nrates;
4204 	}
4205 
4206 	/*
4207 	 * Find the relevant link quality entry in the table.
4208 	 */
4209 	for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) {
4210 		/*
4211 		 * The link quality table index starts at 0 == highest
4212 		 * rate, so we walk the rate table backwards.
4213 		 */
4214 		cmp_rate = rs->rs_rates[(nr - 1) - i];
4215 		if (rate & IEEE80211_RATE_MCS)
4216 			cmp_rate |= IEEE80211_RATE_MCS;
4217 
4218 #if 0
4219 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n",
4220 		    __func__,
4221 		    i,
4222 		    nr,
4223 		    rate,
4224 		    cmp_rate);
4225 #endif
4226 
4227 		if (cmp_rate == rate)
4228 			return (i);
4229 	}
4230 
4231 	/* Failed? Start at the end */
4232 	return (IWN_MAX_TX_RETRIES - 1);
4233 }
4234 
4235 static int
4236 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
4237 {
4238 	struct iwn_ops *ops = &sc->ops;
4239 	const struct ieee80211_txparam *tp;
4240 	struct ieee80211vap *vap = ni->ni_vap;
4241 	struct ieee80211com *ic = ni->ni_ic;
4242 	struct iwn_node *wn = (void *)ni;
4243 	struct iwn_tx_ring *ring;
4244 	struct iwn_tx_desc *desc;
4245 	struct iwn_tx_data *data;
4246 	struct iwn_tx_cmd *cmd;
4247 	struct iwn_cmd_data *tx;
4248 	struct ieee80211_frame *wh;
4249 	struct ieee80211_key *k = NULL;
4250 	struct mbuf *m1;
4251 	uint32_t flags;
4252 	uint16_t qos;
4253 	u_int hdrlen;
4254 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4255 	uint8_t tid, type;
4256 	int ac, i, totlen, error, pad, nsegs = 0, rate;
4257 
4258 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4259 
4260 	wh = mtod(m, struct ieee80211_frame *);
4261 	hdrlen = ieee80211_anyhdrsize(wh);
4262 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4263 
4264 	/* Select EDCA Access Category and TX ring for this frame. */
4265 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
4266 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
4267 		tid = qos & IEEE80211_QOS_TID;
4268 	} else {
4269 		qos = 0;
4270 		tid = 0;
4271 	}
4272 	ac = M_WME_GETAC(m);
4273 	if (m->m_flags & M_AMPDU_MPDU) {
4274 		uint16_t seqno;
4275 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
4276 
4277 		if (!IEEE80211_AMPDU_RUNNING(tap)) {
4278 			m_freem(m);
4279 			return EINVAL;
4280 		}
4281 
4282 		/*
4283 		 * Queue this frame to the hardware ring that we've
4284 		 * negotiated AMPDU TX on.
4285 		 *
4286 		 * Note that the sequence number must match the TX slot
4287 		 * being used!
4288 		 */
4289 		ac = *(int *)tap->txa_private;
4290 		seqno = ni->ni_txseqs[tid];
4291 		*(uint16_t *)wh->i_seq =
4292 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4293 		ring = &sc->txq[ac];
4294 		if ((seqno % 256) != ring->cur) {
4295 			device_printf(sc->sc_dev,
4296 			    "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n",
4297 			    __func__,
4298 			    m,
4299 			    seqno,
4300 			    seqno % 256,
4301 			    ring->cur);
4302 		}
4303 		ni->ni_txseqs[tid]++;
4304 	}
4305 	ring = &sc->txq[ac];
4306 	desc = &ring->desc[ring->cur];
4307 	data = &ring->data[ring->cur];
4308 
4309 	/* Choose a TX rate index. */
4310 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
4311 	if (type == IEEE80211_FC0_TYPE_MGT)
4312 		rate = tp->mgmtrate;
4313 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
4314 		rate = tp->mcastrate;
4315 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
4316 		rate = tp->ucastrate;
4317 	else if (m->m_flags & M_EAPOL)
4318 		rate = tp->mgmtrate;
4319 	else {
4320 		/* XXX pass pktlen */
4321 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
4322 		rate = ni->ni_txrate;
4323 	}
4324 
4325 	/* Encrypt the frame if need be. */
4326 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
4327 		/* Retrieve key for TX. */
4328 		k = ieee80211_crypto_encap(ni, m);
4329 		if (k == NULL) {
4330 			m_freem(m);
4331 			return ENOBUFS;
4332 		}
4333 		/* 802.11 header may have moved. */
4334 		wh = mtod(m, struct ieee80211_frame *);
4335 	}
4336 	totlen = m->m_pkthdr.len;
4337 
4338 	if (ieee80211_radiotap_active_vap(vap)) {
4339 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4340 
4341 		tap->wt_flags = 0;
4342 		tap->wt_rate = rate;
4343 		if (k != NULL)
4344 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4345 
4346 		ieee80211_radiotap_tx(vap, m);
4347 	}
4348 
4349 	/* Prepare TX firmware command. */
4350 	cmd = &ring->cmd[ring->cur];
4351 	cmd->code = IWN_CMD_TX_DATA;
4352 	cmd->flags = 0;
4353 	cmd->qid = ring->qid;
4354 	cmd->idx = ring->cur;
4355 
4356 	tx = (struct iwn_cmd_data *)cmd->data;
4357 	/* NB: No need to clear tx, all fields are reinitialized here. */
4358 	tx->scratch = 0;	/* clear "scratch" area */
4359 
4360 	flags = 0;
4361 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4362 		/* Unicast frame, check if an ACK is expected. */
4363 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
4364 		    IEEE80211_QOS_ACKPOLICY_NOACK)
4365 			flags |= IWN_TX_NEED_ACK;
4366 	}
4367 	if ((wh->i_fc[0] &
4368 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
4369 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
4370 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
4371 
4372 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
4373 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
4374 
4375 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
4376 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4377 		/* NB: Group frames are sent using CCK in 802.11b/g. */
4378 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
4379 			flags |= IWN_TX_NEED_RTS;
4380 		} else if (iwn_check_rate_needs_protection(sc, vap, rate)) {
4381 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4382 				flags |= IWN_TX_NEED_CTS;
4383 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4384 				flags |= IWN_TX_NEED_RTS;
4385 		}
4386 
4387 		/* XXX HT protection? */
4388 
4389 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
4390 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4391 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
4392 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
4393 				flags |= IWN_TX_NEED_PROTECTION;
4394 			} else
4395 				flags |= IWN_TX_FULL_TXOP;
4396 		}
4397 	}
4398 
4399 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
4400 	    type != IEEE80211_FC0_TYPE_DATA)
4401 		tx->id = sc->broadcast_id;
4402 	else
4403 		tx->id = wn->id;
4404 
4405 	if (type == IEEE80211_FC0_TYPE_MGT) {
4406 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4407 
4408 		/* Tell HW to set timestamp in probe responses. */
4409 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4410 			flags |= IWN_TX_INSERT_TSTAMP;
4411 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4412 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4413 			tx->timeout = htole16(3);
4414 		else
4415 			tx->timeout = htole16(2);
4416 	} else
4417 		tx->timeout = htole16(0);
4418 
4419 	if (hdrlen & 3) {
4420 		/* First segment length must be a multiple of 4. */
4421 		flags |= IWN_TX_NEED_PADDING;
4422 		pad = 4 - (hdrlen & 3);
4423 	} else
4424 		pad = 0;
4425 
4426 	tx->len = htole16(totlen);
4427 	tx->tid = tid;
4428 	tx->rts_ntries = 60;
4429 	tx->data_ntries = 15;
4430 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4431 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4432 	if (tx->id == sc->broadcast_id) {
4433 		/* Group or management frame. */
4434 		tx->linkq = 0;
4435 	} else {
4436 		tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate);
4437 		flags |= IWN_TX_LINKQ;	/* enable MRR */
4438 	}
4439 
4440 	/* Set physical address of "scratch area". */
4441 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4442 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4443 
4444 	/* Copy 802.11 header in TX command. */
4445 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4446 
4447 	/* Trim 802.11 header. */
4448 	m_adj(m, hdrlen);
4449 	tx->security = 0;
4450 	tx->flags = htole32(flags);
4451 
4452 	error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
4453 					     m, segs, IWN_MAX_SCATTER - 1,
4454 					     &nsegs, BUS_DMA_NOWAIT);
4455 	if (error != 0) {
4456 		if (error != EFBIG) {
4457 			device_printf(sc->sc_dev,
4458 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4459 			m_freem(m);
4460 			return error;
4461 		}
4462 		/* Too many DMA segments, linearize mbuf. */
4463 		m1 = m_defrag(m, MB_DONTWAIT);
4464 		if (m1 == NULL) {
4465 			device_printf(sc->sc_dev,
4466 			    "%s: could not defrag mbuf\n", __func__);
4467 			m_freem(m);
4468 			return ENOBUFS;
4469 		}
4470 		m = m1;
4471 
4472 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
4473 						      data->map, m, segs,
4474 						      IWN_MAX_SCATTER - 1,
4475 						      &nsegs, BUS_DMA_NOWAIT);
4476 		if (error != 0) {
4477 			device_printf(sc->sc_dev,
4478 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4479 			m_freem(m);
4480 			return error;
4481 		}
4482 	}
4483 
4484 	data->m = m;
4485 	data->ni = ni;
4486 
4487 	DPRINTF(sc, IWN_DEBUG_XMIT,
4488 	    "%s: qid %d idx %d len %d nsegs %d rate %04x plcp 0x%08x\n",
4489 	    __func__,
4490 	    ring->qid,
4491 	    ring->cur,
4492 	    m->m_pkthdr.len,
4493 	    nsegs,
4494 	    rate,
4495 	    tx->rate);
4496 
4497 	/* Fill TX descriptor. */
4498 	desc->nsegs = 1;
4499 	if (m->m_len != 0)
4500 		desc->nsegs += nsegs;
4501 	/* First DMA segment is used by the TX command. */
4502 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4503 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4504 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4505 	/* Other DMA segments are for data payload. */
4506 	seg = &segs[0];
4507 	for (i = 1; i <= nsegs; i++) {
4508 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4509 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4510 		    seg->ds_len << 4);
4511 		seg++;
4512 	}
4513 
4514 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4515 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4516 	    BUS_DMASYNC_PREWRITE);
4517 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4518 	    BUS_DMASYNC_PREWRITE);
4519 
4520 	/* Update TX scheduler. */
4521 	if (ring->qid >= sc->firstaggqueue)
4522 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4523 
4524 	/* Kick TX ring. */
4525 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4526 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4527 
4528 	/* Mark TX ring as full if we reach a certain threshold. */
4529 	if (++ring->queued > IWN_TX_RING_HIMARK)
4530 		sc->qfullmsk |= 1 << ring->qid;
4531 
4532 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4533 
4534 	return 0;
4535 }
4536 
4537 static int
4538 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
4539     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
4540 {
4541 	struct iwn_ops *ops = &sc->ops;
4542 //	struct ifnet *ifp = sc->sc_ifp;
4543 	struct ieee80211vap *vap = ni->ni_vap;
4544 //	struct ieee80211com *ic = ifp->if_l2com;
4545 	struct iwn_tx_cmd *cmd;
4546 	struct iwn_cmd_data *tx;
4547 	struct ieee80211_frame *wh;
4548 	struct iwn_tx_ring *ring;
4549 	struct iwn_tx_desc *desc;
4550 	struct iwn_tx_data *data;
4551 	struct mbuf *m1;
4552 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4553 	uint32_t flags;
4554 	u_int hdrlen;
4555 	int ac, totlen, error, pad, nsegs = 0, i, rate;
4556 	uint8_t type;
4557 
4558 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4559 
4560 	wh = mtod(m, struct ieee80211_frame *);
4561 	hdrlen = ieee80211_anyhdrsize(wh);
4562 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4563 
4564 	ac = params->ibp_pri & 3;
4565 
4566 	ring = &sc->txq[ac];
4567 	desc = &ring->desc[ring->cur];
4568 	data = &ring->data[ring->cur];
4569 
4570 	/* Choose a TX rate. */
4571 	rate = params->ibp_rate0;
4572 	totlen = m->m_pkthdr.len;
4573 
4574 	/* Prepare TX firmware command. */
4575 	cmd = &ring->cmd[ring->cur];
4576 	cmd->code = IWN_CMD_TX_DATA;
4577 	cmd->flags = 0;
4578 	cmd->qid = ring->qid;
4579 	cmd->idx = ring->cur;
4580 
4581 	tx = (struct iwn_cmd_data *)cmd->data;
4582 	/* NB: No need to clear tx, all fields are reinitialized here. */
4583 	tx->scratch = 0;	/* clear "scratch" area */
4584 
4585 	flags = 0;
4586 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
4587 		flags |= IWN_TX_NEED_ACK;
4588 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
4589 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4590 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4591 			flags &= ~IWN_TX_NEED_RTS;
4592 			flags |= IWN_TX_NEED_PROTECTION;
4593 		} else
4594 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
4595 	}
4596 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
4597 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4598 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4599 			flags &= ~IWN_TX_NEED_CTS;
4600 			flags |= IWN_TX_NEED_PROTECTION;
4601 		} else
4602 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
4603 	}
4604 	if (type == IEEE80211_FC0_TYPE_MGT) {
4605 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4606 
4607 		/* Tell HW to set timestamp in probe responses. */
4608 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4609 			flags |= IWN_TX_INSERT_TSTAMP;
4610 
4611 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4612 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4613 			tx->timeout = htole16(3);
4614 		else
4615 			tx->timeout = htole16(2);
4616 	} else
4617 		tx->timeout = htole16(0);
4618 
4619 	if (hdrlen & 3) {
4620 		/* First segment length must be a multiple of 4. */
4621 		flags |= IWN_TX_NEED_PADDING;
4622 		pad = 4 - (hdrlen & 3);
4623 	} else
4624 		pad = 0;
4625 
4626 	if (ieee80211_radiotap_active_vap(vap)) {
4627 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4628 
4629 		tap->wt_flags = 0;
4630 		tap->wt_rate = rate;
4631 
4632 		ieee80211_radiotap_tx(vap, m);
4633 	}
4634 
4635 	tx->len = htole16(totlen);
4636 	tx->tid = 0;
4637 	tx->id = sc->broadcast_id;
4638 	tx->rts_ntries = params->ibp_try1;
4639 	tx->data_ntries = params->ibp_try0;
4640 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4641 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4642 
4643 	/* Group or management frame. */
4644 	tx->linkq = 0;
4645 
4646 	/* Set physical address of "scratch area". */
4647 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4648 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4649 
4650 	/* Copy 802.11 header in TX command. */
4651 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4652 
4653 	/* Trim 802.11 header. */
4654 	m_adj(m, hdrlen);
4655 	tx->security = 0;
4656 	tx->flags = htole32(flags);
4657 
4658 	error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
4659 					     m, segs,
4660 					     IWN_MAX_SCATTER - 1,
4661 					     &nsegs, BUS_DMA_NOWAIT);
4662 	if (error != 0) {
4663 		if (error != EFBIG) {
4664 			device_printf(sc->sc_dev,
4665 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4666 			m_freem(m);
4667 			return error;
4668 		}
4669 		/* Too many DMA segments, linearize mbuf. */
4670 		m1 = m_defrag(m, M_NOWAIT);
4671 		if (m1 == NULL) {
4672 			device_printf(sc->sc_dev,
4673 			    "%s: could not defrag mbuf\n", __func__);
4674 			m_freem(m);
4675 			return ENOBUFS;
4676 		}
4677 		m = m1;
4678 
4679 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
4680 						     data->map, m, segs,
4681 						     IWN_MAX_SCATTER - 1,
4682 						     &nsegs, BUS_DMA_NOWAIT);
4683 		if (error != 0) {
4684 			device_printf(sc->sc_dev,
4685 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4686 			m_freem(m);
4687 			return error;
4688 		}
4689 	}
4690 
4691 	data->m = m;
4692 	data->ni = ni;
4693 
4694 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
4695 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
4696 
4697 	/* Fill TX descriptor. */
4698 	desc->nsegs = 1;
4699 	if (m->m_len != 0)
4700 		desc->nsegs += nsegs;
4701 	/* First DMA segment is used by the TX command. */
4702 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4703 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4704 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4705 	/* Other DMA segments are for data payload. */
4706 	seg = &segs[0];
4707 	for (i = 1; i <= nsegs; i++) {
4708 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4709 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4710 		    seg->ds_len << 4);
4711 		seg++;
4712 	}
4713 
4714 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4715 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4716 	    BUS_DMASYNC_PREWRITE);
4717 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4718 	    BUS_DMASYNC_PREWRITE);
4719 
4720 	/* Update TX scheduler. */
4721 	if (ring->qid >= sc->firstaggqueue)
4722 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4723 
4724 	/* Kick TX ring. */
4725 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4726 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4727 
4728 	/* Mark TX ring as full if we reach a certain threshold. */
4729 	if (++ring->queued > IWN_TX_RING_HIMARK)
4730 		sc->qfullmsk |= 1 << ring->qid;
4731 
4732 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4733 
4734 	return 0;
4735 }
4736 
4737 static int
4738 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
4739     const struct ieee80211_bpf_params *params)
4740 {
4741 	struct ieee80211com *ic = ni->ni_ic;
4742 	struct ifnet *ifp = ic->ic_ifp;
4743 	struct iwn_softc *sc = ifp->if_softc;
4744 	int error = 0;
4745 
4746 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4747 
4748 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
4749 		ieee80211_free_node(ni);
4750 		m_freem(m);
4751 		return ENETDOWN;
4752 	}
4753 
4754 	if (params == NULL) {
4755 		/*
4756 		 * Legacy path; interpret frame contents to decide
4757 		 * precisely how to send the frame.
4758 		 */
4759 		error = iwn_tx_data(sc, m, ni);
4760 	} else {
4761 		/*
4762 		 * Caller supplied explicit parameters to use in
4763 		 * sending the frame.
4764 		 */
4765 		error = iwn_tx_data_raw(sc, m, ni, params);
4766 	}
4767 	if (error != 0) {
4768 		/* NB: m is reclaimed on tx failure */
4769 		ieee80211_free_node(ni);
4770 		IFNET_STAT_INC(ifp, oerrors, 1);
4771 	}
4772 	sc->sc_tx_timer = 5;
4773 
4774 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4775 
4776 	return error;
4777 }
4778 
4779 static void
4780 iwn_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
4781 {
4782 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
4783 	iwn_start_locked(ifp);
4784 }
4785 
4786 static void
4787 iwn_start_locked(struct ifnet *ifp)
4788 {
4789 	struct iwn_softc *sc = ifp->if_softc;
4790 	struct ieee80211_node *ni;
4791 	struct mbuf *m;
4792 
4793 	wlan_assert_serialized();
4794 
4795 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
4796 	    ifq_is_oactive(&ifp->if_snd))
4797 		return;
4798 
4799 	for (;;) {
4800 		if (sc->qfullmsk != 0) {
4801 			ifq_set_oactive(&ifp->if_snd);
4802 			break;
4803 		}
4804 		m = ifq_dequeue(&ifp->if_snd);
4805 		if (m == NULL)
4806 			break;
4807 		KKASSERT(M_TRAILINGSPACE(m) >= 0);
4808 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4809 		if (iwn_tx_data(sc, m, ni) != 0) {
4810 			ieee80211_free_node(ni);
4811 			IFNET_STAT_INC(ifp, oerrors, 1);
4812 			continue;
4813 		}
4814 		sc->sc_tx_timer = 5;
4815 	}
4816 }
4817 
4818 static void
4819 iwn_watchdog_timeout(void *arg)
4820 {
4821 	struct iwn_softc *sc = arg;
4822 	struct ifnet *ifp = sc->sc_ifp;
4823 	struct ieee80211com *ic = ifp->if_l2com;
4824 
4825 	wlan_serialize_enter();
4826 
4827 	KASSERT(ifp->if_flags & IFF_RUNNING, ("not running"));
4828 
4829 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4830 
4831 	if (sc->sc_tx_timer > 0) {
4832 		if (--sc->sc_tx_timer == 0) {
4833 			if_printf(ifp, "device timeout\n");
4834 			ieee80211_runtask(ic, &sc->sc_reinit_task);
4835 			wlan_serialize_exit();
4836 			return;
4837 		}
4838 	}
4839 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog_timeout, sc);
4840 	wlan_serialize_exit();
4841 }
4842 
4843 static int
4844 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *ucred)
4845 {
4846 	struct iwn_softc *sc = ifp->if_softc;
4847 	struct ieee80211com *ic = ifp->if_l2com;
4848 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4849 	struct ifreq *ifr = (struct ifreq *) data;
4850 	int error = 0, startall = 0, stop = 0;
4851 
4852 	wlan_assert_serialized();
4853 
4854 	switch (cmd) {
4855 	case SIOCGIFADDR:
4856 		error = ether_ioctl(ifp, cmd, data);
4857 		break;
4858 	case SIOCSIFFLAGS:
4859 		if (ifp->if_flags & IFF_UP) {
4860 			if (!(ifp->if_flags & IFF_RUNNING)) {
4861 				iwn_init_locked(sc);
4862 				if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
4863 					startall = 1;
4864 				else
4865 					stop = 1;
4866 			}
4867 		} else {
4868 			if (ifp->if_flags & IFF_RUNNING)
4869 				iwn_stop_locked(sc);
4870 		}
4871 		if (startall)
4872 			ieee80211_start_all(ic);
4873 		else if (vap != NULL && stop)
4874 			ieee80211_stop(vap);
4875 		break;
4876 	case SIOCGIFMEDIA:
4877 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
4878 		break;
4879 	case SIOCGIWNSTATS:
4880 		IWN_LOCK(sc);
4881 		/* XXX validate permissions/memory/etc? */
4882 		error = copyout(&sc->last_stat, ifr->ifr_data,
4883 		    sizeof(struct iwn_stats));
4884 		IWN_UNLOCK(sc);
4885 		break;
4886 	case SIOCZIWNSTATS:
4887 		IWN_LOCK(sc);
4888 		memset(&sc->last_stat, 0, sizeof(struct iwn_stats));
4889 		IWN_UNLOCK(sc);
4890 		error = 0;
4891 		break;
4892 	default:
4893 		error = EINVAL;
4894 		break;
4895 	}
4896 	return error;
4897 }
4898 
4899 /*
4900  * Send a command to the firmware.
4901  */
4902 static int
4903 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
4904 {
4905 	struct iwn_tx_ring *ring;
4906 	struct iwn_tx_desc *desc;
4907 	struct iwn_tx_data *data;
4908 	struct iwn_tx_cmd *cmd;
4909 	struct mbuf *m;
4910 	bus_addr_t paddr;
4911 	int totlen, error;
4912 	int cmd_queue_num;
4913 
4914 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4915 
4916 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
4917 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
4918 	else
4919 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
4920 
4921 	ring = &sc->txq[cmd_queue_num];
4922 	desc = &ring->desc[ring->cur];
4923 	data = &ring->data[ring->cur];
4924 	totlen = 4 + size;
4925 
4926 	if (size > sizeof cmd->data) {
4927 		/* Command is too large to fit in a descriptor. */
4928 		if (totlen > MJUMPAGESIZE)
4929 			return EINVAL;
4930 		m = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
4931 		if (m == NULL)
4932 			return ENOMEM;
4933 		cmd = mtod(m, struct iwn_tx_cmd *);
4934 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
4935 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
4936 		if (error != 0) {
4937 			m_freem(m);
4938 			return error;
4939 		}
4940 		data->m = m;
4941 	} else {
4942 		cmd = &ring->cmd[ring->cur];
4943 		paddr = data->cmd_paddr;
4944 	}
4945 
4946 	cmd->code = code;
4947 	cmd->flags = 0;
4948 	cmd->qid = ring->qid;
4949 	cmd->idx = ring->cur;
4950 	memcpy(cmd->data, buf, size);
4951 
4952 	desc->nsegs = 1;
4953 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
4954 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
4955 
4956 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
4957 	    __func__, iwn_intr_str(cmd->code), cmd->code,
4958 	    cmd->flags, cmd->qid, cmd->idx);
4959 
4960 	if (size > sizeof cmd->data) {
4961 		bus_dmamap_sync(ring->data_dmat, data->map,
4962 		    BUS_DMASYNC_PREWRITE);
4963 	} else {
4964 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4965 		    BUS_DMASYNC_PREWRITE);
4966 	}
4967 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4968 	    BUS_DMASYNC_PREWRITE);
4969 
4970 	/* Kick command ring. */
4971 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4972 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4973 
4974 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4975 
4976 	return async ? 0 : zsleep(desc, &wlan_global_serializer, 0, "iwncmd", hz);
4977 }
4978 
4979 static int
4980 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
4981 {
4982 	struct iwn4965_node_info hnode;
4983 	caddr_t src, dst;
4984 
4985 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4986 
4987 	/*
4988 	 * We use the node structure for 5000 Series internally (it is
4989 	 * a superset of the one for 4965AGN). We thus copy the common
4990 	 * fields before sending the command.
4991 	 */
4992 	src = (caddr_t)node;
4993 	dst = (caddr_t)&hnode;
4994 	memcpy(dst, src, 48);
4995 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
4996 	memcpy(dst + 48, src + 72, 20);
4997 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
4998 }
4999 
5000 static int
5001 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5002 {
5003 
5004 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5005 
5006 	/* Direct mapping. */
5007 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
5008 }
5009 
5010 static int
5011 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
5012 {
5013 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
5014 	struct iwn_node *wn = (void *)ni;
5015 	struct ieee80211_rateset *rs;
5016 	struct iwn_cmd_link_quality linkq;
5017 	uint8_t txant;
5018 	int i, rate, txrate;
5019 	int is_11n;
5020 
5021 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5022 
5023 	/* Use the first valid TX antenna. */
5024 	txant = IWN_LSB(sc->txchainmask);
5025 
5026 	memset(&linkq, 0, sizeof linkq);
5027 	linkq.id = wn->id;
5028 	linkq.antmsk_1stream = txant;
5029 
5030 	/*
5031 	 * The '2 stream' setup is a bit .. odd.
5032 	 *
5033 	 * For NICs that support only 1 antenna, default to IWN_ANT_AB or
5034 	 * the firmware panics (eg Intel 5100.)
5035 	 *
5036 	 * For NICs that support two antennas, we use ANT_AB.
5037 	 *
5038 	 * For NICs that support three antennas, we use the two that
5039 	 * wasn't the default one.
5040 	 *
5041 	 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict
5042 	 * this to only one antenna.
5043 	 */
5044 
5045 	/* So - if there's no secondary antenna, assume IWN_ANT_AB */
5046 
5047 	/* Default - transmit on the other antennas */
5048 	linkq.antmsk_2stream = (sc->txchainmask & ~IWN_LSB(sc->txchainmask));
5049 
5050 	/* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */
5051 	if (linkq.antmsk_2stream == 0)
5052 		linkq.antmsk_2stream = IWN_ANT_AB;
5053 
5054 	/*
5055 	 * If the NIC is a two-stream TX NIC, configure the TX mask to
5056 	 * the default chainmask
5057 	 */
5058 	else if (sc->ntxchains == 2)
5059 		linkq.antmsk_2stream = sc->txchainmask;
5060 
5061 	linkq.ampdu_max = 32;		/* XXX negotiated? */
5062 	linkq.ampdu_threshold = 3;
5063 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5064 
5065 	DPRINTF(sc, IWN_DEBUG_XMIT,
5066 	    "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n",
5067 	    __func__,
5068 	    linkq.antmsk_1stream,
5069 	    linkq.antmsk_2stream,
5070 	    sc->ntxchains);
5071 
5072 	/*
5073 	 * Are we using 11n rates? Ensure the channel is
5074 	 * 11n _and_ we have some 11n rates, or don't
5075 	 * try.
5076 	 */
5077 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) {
5078 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
5079 		is_11n = 1;
5080 	} else {
5081 		rs = &ni->ni_rates;
5082 		is_11n = 0;
5083 	}
5084 
5085 	/* Start at highest available bit-rate. */
5086 	/*
5087 	 * XXX this is all very dirty!
5088 	 */
5089 	if (is_11n)
5090 		txrate = ni->ni_htrates.rs_nrates - 1;
5091 	else
5092 		txrate = rs->rs_nrates - 1;
5093 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
5094 		uint32_t plcp;
5095 
5096 		if (is_11n)
5097 			rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate];
5098 		else
5099 			rate = RV(rs->rs_rates[txrate]);
5100 
5101 		DPRINTF(sc, IWN_DEBUG_XMIT,
5102 		    "%s: i=%d, txrate=%d, rate=0x%02x\n",
5103 		    __func__,
5104 		    i,
5105 		    txrate,
5106 		    rate);
5107 
5108 		/* Do rate -> PLCP config mapping */
5109 		plcp = iwn_rate_to_plcp(sc, ni, rate);
5110 		linkq.retry[i] = plcp;
5111 
5112 		/*
5113 		 * The mimo field is an index into the table which
5114 		 * indicates the first index where it and subsequent entries
5115 		 * will not be using MIMO.
5116 		 *
5117 		 * Since we're filling linkq from 0..15 and we're filling
5118 		 * from the higest MCS rates to the lowest rates, if we
5119 		 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie,
5120 		 * the next entry.)  That way if the next entry is a non-MIMO
5121 		 * entry, we're already pointing at it.
5122 		 */
5123 		if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
5124 		    RV(le32toh(plcp)) > 7)
5125 			linkq.mimo = i + 1;
5126 
5127 		/* Next retry at immediate lower bit-rate. */
5128 		if (txrate > 0)
5129 			txrate--;
5130 	}
5131 
5132 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5133 
5134 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
5135 #undef	RV
5136 }
5137 
5138 /*
5139  * Broadcast node is used to send group-addressed and management frames.
5140  */
5141 static int
5142 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
5143 {
5144 	struct iwn_ops *ops = &sc->ops;
5145 	struct ifnet *ifp = sc->sc_ifp;
5146 	struct ieee80211com *ic = ifp->if_l2com;
5147 	struct iwn_node_info node;
5148 	struct iwn_cmd_link_quality linkq;
5149 	uint8_t txant;
5150 	int i, error;
5151 
5152 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5153 
5154 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5155 
5156 	memset(&node, 0, sizeof node);
5157 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
5158 	node.id = sc->broadcast_id;
5159 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
5160 	if ((error = ops->add_node(sc, &node, async)) != 0)
5161 		return error;
5162 
5163 	/* Use the first valid TX antenna. */
5164 	txant = IWN_LSB(sc->txchainmask);
5165 
5166 	memset(&linkq, 0, sizeof linkq);
5167 	linkq.id = sc->broadcast_id;
5168 	linkq.antmsk_1stream = txant;
5169 	linkq.antmsk_2stream = IWN_ANT_AB;
5170 	linkq.ampdu_max = 64;
5171 	linkq.ampdu_threshold = 3;
5172 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5173 
5174 	/* Use lowest mandatory bit-rate. */
5175 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
5176 		linkq.retry[0] = htole32(0xd);
5177 	else
5178 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
5179 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
5180 	/* Use same bit-rate for all TX retries. */
5181 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
5182 		linkq.retry[i] = linkq.retry[0];
5183 	}
5184 
5185 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5186 
5187 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
5188 }
5189 
5190 static int
5191 iwn_updateedca(struct ieee80211com *ic)
5192 {
5193 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
5194 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
5195 	struct iwn_edca_params cmd;
5196 	int aci;
5197 
5198 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5199 
5200 	memset(&cmd, 0, sizeof cmd);
5201 	cmd.flags = htole32(IWN_EDCA_UPDATE);
5202 	for (aci = 0; aci < WME_NUM_AC; aci++) {
5203 		const struct wmeParams *ac =
5204 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
5205 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
5206 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
5207 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
5208 		cmd.ac[aci].txoplimit =
5209 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
5210 	}
5211 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5212 
5213 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5214 
5215 	return 0;
5216 #undef IWN_EXP2
5217 }
5218 
5219 static void
5220 iwn_update_mcast(struct ifnet *ifp)
5221 {
5222 	/* Ignore */
5223 }
5224 
5225 static void
5226 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
5227 {
5228 	struct iwn_cmd_led led;
5229 
5230 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5231 
5232 #if 0
5233 	/* XXX don't set LEDs during scan? */
5234 	if (sc->sc_is_scanning)
5235 		return;
5236 #endif
5237 
5238 	/* Clear microcode LED ownership. */
5239 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
5240 
5241 	led.which = which;
5242 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
5243 	led.off = off;
5244 	led.on = on;
5245 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
5246 }
5247 
5248 /*
5249  * Set the critical temperature at which the firmware will stop the radio
5250  * and notify us.
5251  */
5252 static int
5253 iwn_set_critical_temp(struct iwn_softc *sc)
5254 {
5255 	struct iwn_critical_temp crit;
5256 	int32_t temp;
5257 
5258 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5259 
5260 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
5261 
5262 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
5263 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
5264 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
5265 		temp = IWN_CTOK(110);
5266 	else
5267 		temp = 110;
5268 	memset(&crit, 0, sizeof crit);
5269 	crit.tempR = htole32(temp);
5270 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
5271 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
5272 }
5273 
5274 static int
5275 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
5276 {
5277 	struct iwn_cmd_timing cmd;
5278 	uint64_t val, mod;
5279 
5280 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5281 
5282 	memset(&cmd, 0, sizeof cmd);
5283 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
5284 	cmd.bintval = htole16(ni->ni_intval);
5285 	cmd.lintval = htole16(10);
5286 
5287 	/* Compute remaining time until next beacon. */
5288 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
5289 	mod = le64toh(cmd.tstamp) % val;
5290 	cmd.binitval = htole32((uint32_t)(val - mod));
5291 
5292 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
5293 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
5294 
5295 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
5296 }
5297 
5298 static void
5299 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
5300 {
5301 	struct ifnet *ifp = sc->sc_ifp;
5302 	struct ieee80211com *ic = ifp->if_l2com;
5303 
5304 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5305 
5306 	/* Adjust TX power if need be (delta >= 3 degC). */
5307 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
5308 	    __func__, sc->temp, temp);
5309 	if (abs(temp - sc->temp) >= 3) {
5310 		/* Record temperature of last calibration. */
5311 		sc->temp = temp;
5312 		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
5313 	}
5314 }
5315 
5316 /*
5317  * Set TX power for current channel (each rate has its own power settings).
5318  * This function takes into account the regulatory information from EEPROM,
5319  * the current temperature and the current voltage.
5320  */
5321 static int
5322 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5323     int async)
5324 {
5325 /* Fixed-point arithmetic division using a n-bit fractional part. */
5326 #define fdivround(a, b, n)	\
5327 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
5328 /* Linear interpolation. */
5329 #define interpolate(x, x1, y1, x2, y2, n)	\
5330 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
5331 
5332 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
5333 	struct iwn_ucode_info *uc = &sc->ucode_info;
5334 	struct iwn4965_cmd_txpower cmd;
5335 	struct iwn4965_eeprom_chan_samples *chans;
5336 	const uint8_t *rf_gain, *dsp_gain;
5337 	int32_t vdiff, tdiff;
5338 	int i, c, grp, maxpwr;
5339 	uint8_t chan;
5340 
5341 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5342 	/* Retrieve current channel from last RXON. */
5343 	chan = sc->rxon->chan;
5344 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
5345 	    chan);
5346 
5347 	memset(&cmd, 0, sizeof cmd);
5348 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
5349 	cmd.chan = chan;
5350 
5351 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
5352 		maxpwr   = sc->maxpwr5GHz;
5353 		rf_gain  = iwn4965_rf_gain_5ghz;
5354 		dsp_gain = iwn4965_dsp_gain_5ghz;
5355 	} else {
5356 		maxpwr   = sc->maxpwr2GHz;
5357 		rf_gain  = iwn4965_rf_gain_2ghz;
5358 		dsp_gain = iwn4965_dsp_gain_2ghz;
5359 	}
5360 
5361 	/* Compute voltage compensation. */
5362 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
5363 	if (vdiff > 0)
5364 		vdiff *= 2;
5365 	if (abs(vdiff) > 2)
5366 		vdiff = 0;
5367 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5368 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
5369 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
5370 
5371 	/* Get channel attenuation group. */
5372 	if (chan <= 20)		/* 1-20 */
5373 		grp = 4;
5374 	else if (chan <= 43)	/* 34-43 */
5375 		grp = 0;
5376 	else if (chan <= 70)	/* 44-70 */
5377 		grp = 1;
5378 	else if (chan <= 124)	/* 71-124 */
5379 		grp = 2;
5380 	else			/* 125-200 */
5381 		grp = 3;
5382 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5383 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
5384 
5385 	/* Get channel sub-band. */
5386 	for (i = 0; i < IWN_NBANDS; i++)
5387 		if (sc->bands[i].lo != 0 &&
5388 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
5389 			break;
5390 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
5391 		return EINVAL;
5392 	chans = sc->bands[i].chans;
5393 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5394 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
5395 
5396 	for (c = 0; c < 2; c++) {
5397 		uint8_t power, gain, temp;
5398 		int maxchpwr, pwr, ridx, idx;
5399 
5400 		power = interpolate(chan,
5401 		    chans[0].num, chans[0].samples[c][1].power,
5402 		    chans[1].num, chans[1].samples[c][1].power, 1);
5403 		gain  = interpolate(chan,
5404 		    chans[0].num, chans[0].samples[c][1].gain,
5405 		    chans[1].num, chans[1].samples[c][1].gain, 1);
5406 		temp  = interpolate(chan,
5407 		    chans[0].num, chans[0].samples[c][1].temp,
5408 		    chans[1].num, chans[1].samples[c][1].temp, 1);
5409 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5410 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
5411 		    __func__, c, power, gain, temp);
5412 
5413 		/* Compute temperature compensation. */
5414 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
5415 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5416 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
5417 		    __func__, tdiff, sc->temp, temp);
5418 
5419 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
5420 			/* Convert dBm to half-dBm. */
5421 			maxchpwr = sc->maxpwr[chan] * 2;
5422 			if ((ridx / 8) & 1)
5423 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
5424 
5425 			pwr = maxpwr;
5426 
5427 			/* Adjust TX power based on rate. */
5428 			if ((ridx % 8) == 5)
5429 				pwr -= 15;	/* OFDM48: -7.5dB */
5430 			else if ((ridx % 8) == 6)
5431 				pwr -= 17;	/* OFDM54: -8.5dB */
5432 			else if ((ridx % 8) == 7)
5433 				pwr -= 20;	/* OFDM60: -10dB */
5434 			else
5435 				pwr -= 10;	/* Others: -5dB */
5436 
5437 			/* Do not exceed channel max TX power. */
5438 			if (pwr > maxchpwr)
5439 				pwr = maxchpwr;
5440 
5441 			idx = gain - (pwr - power) - tdiff - vdiff;
5442 			if ((ridx / 8) & 1)	/* MIMO */
5443 				idx += (int32_t)le32toh(uc->atten[grp][c]);
5444 
5445 			if (cmd.band == 0)
5446 				idx += 9;	/* 5GHz */
5447 			if (ridx == IWN_RIDX_MAX)
5448 				idx += 5;	/* CCK */
5449 
5450 			/* Make sure idx stays in a valid range. */
5451 			if (idx < 0)
5452 				idx = 0;
5453 			else if (idx > IWN4965_MAX_PWR_INDEX)
5454 				idx = IWN4965_MAX_PWR_INDEX;
5455 
5456 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5457 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
5458 			    __func__, c, ridx, idx);
5459 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
5460 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
5461 		}
5462 	}
5463 
5464 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5465 	    "%s: set tx power for chan %d\n", __func__, chan);
5466 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
5467 
5468 #undef interpolate
5469 #undef fdivround
5470 }
5471 
5472 static int
5473 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5474     int async)
5475 {
5476 	struct iwn5000_cmd_txpower cmd;
5477 
5478 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5479 
5480 	/*
5481 	 * TX power calibration is handled automatically by the firmware
5482 	 * for 5000 Series.
5483 	 */
5484 	memset(&cmd, 0, sizeof cmd);
5485 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
5486 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
5487 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
5488 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting TX power\n", __func__);
5489 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
5490 }
5491 
5492 /*
5493  * Retrieve the maximum RSSI (in dBm) among receivers.
5494  */
5495 static int
5496 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5497 {
5498 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
5499 	uint8_t mask, agc;
5500 	int rssi;
5501 
5502 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5503 
5504 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
5505 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
5506 
5507 	rssi = 0;
5508 	if (mask & IWN_ANT_A)
5509 		rssi = MAX(rssi, phy->rssi[0]);
5510 	if (mask & IWN_ANT_B)
5511 		rssi = MAX(rssi, phy->rssi[2]);
5512 	if (mask & IWN_ANT_C)
5513 		rssi = MAX(rssi, phy->rssi[4]);
5514 
5515 	DPRINTF(sc, IWN_DEBUG_RECV,
5516 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
5517 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
5518 	    rssi - agc - IWN_RSSI_TO_DBM);
5519 	return rssi - agc - IWN_RSSI_TO_DBM;
5520 }
5521 
5522 static int
5523 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5524 {
5525 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
5526 	uint8_t agc;
5527 	int rssi;
5528 
5529 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5530 
5531 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
5532 
5533 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
5534 		   le16toh(phy->rssi[1]) & 0xff);
5535 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
5536 
5537 	DPRINTF(sc, IWN_DEBUG_RECV,
5538 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
5539 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
5540 	    rssi - agc - IWN_RSSI_TO_DBM);
5541 	return rssi - agc - IWN_RSSI_TO_DBM;
5542 }
5543 
5544 /*
5545  * Retrieve the average noise (in dBm) among receivers.
5546  */
5547 static int
5548 iwn_get_noise(const struct iwn_rx_general_stats *stats)
5549 {
5550 	int i, total, nbant, noise;
5551 
5552 	total = nbant = 0;
5553 	for (i = 0; i < 3; i++) {
5554 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
5555 			continue;
5556 		total += noise;
5557 		nbant++;
5558 	}
5559 	/* There should be at least one antenna but check anyway. */
5560 	return (nbant == 0) ? -127 : (total / nbant) - 107;
5561 }
5562 
5563 /*
5564  * Compute temperature (in degC) from last received statistics.
5565  */
5566 static int
5567 iwn4965_get_temperature(struct iwn_softc *sc)
5568 {
5569 	struct iwn_ucode_info *uc = &sc->ucode_info;
5570 	int32_t r1, r2, r3, r4, temp;
5571 
5572 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5573 
5574 	r1 = le32toh(uc->temp[0].chan20MHz);
5575 	r2 = le32toh(uc->temp[1].chan20MHz);
5576 	r3 = le32toh(uc->temp[2].chan20MHz);
5577 	r4 = le32toh(sc->rawtemp);
5578 
5579 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
5580 		return 0;
5581 
5582 	/* Sign-extend 23-bit R4 value to 32-bit. */
5583 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
5584 	/* Compute temperature in Kelvin. */
5585 	temp = (259 * (r4 - r2)) / (r3 - r1);
5586 	temp = (temp * 97) / 100 + 8;
5587 
5588 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
5589 	    IWN_KTOC(temp));
5590 	return IWN_KTOC(temp);
5591 }
5592 
5593 static int
5594 iwn5000_get_temperature(struct iwn_softc *sc)
5595 {
5596 	int32_t temp;
5597 
5598 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5599 
5600 	/*
5601 	 * Temperature is not used by the driver for 5000 Series because
5602 	 * TX power calibration is handled by firmware.
5603 	 */
5604 	temp = le32toh(sc->rawtemp);
5605 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
5606 		temp = (temp / -5) + sc->temp_off;
5607 		temp = IWN_KTOC(temp);
5608 	}
5609 	return temp;
5610 }
5611 
5612 /*
5613  * Initialize sensitivity calibration state machine.
5614  */
5615 static int
5616 iwn_init_sensitivity(struct iwn_softc *sc)
5617 {
5618 	struct iwn_ops *ops = &sc->ops;
5619 	struct iwn_calib_state *calib = &sc->calib;
5620 	uint32_t flags;
5621 	int error;
5622 
5623 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5624 
5625 	/* Reset calibration state machine. */
5626 	memset(calib, 0, sizeof (*calib));
5627 	calib->state = IWN_CALIB_STATE_INIT;
5628 	calib->cck_state = IWN_CCK_STATE_HIFA;
5629 	/* Set initial correlation values. */
5630 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
5631 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
5632 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
5633 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
5634 	calib->cck_x4      = 125;
5635 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
5636 	calib->energy_cck  = sc->limits->energy_cck;
5637 
5638 	/* Write initial sensitivity. */
5639 	if ((error = iwn_send_sensitivity(sc)) != 0)
5640 		return error;
5641 
5642 	/* Write initial gains. */
5643 	if ((error = ops->init_gains(sc)) != 0)
5644 		return error;
5645 
5646 	/* Request statistics at each beacon interval. */
5647 	flags = 0;
5648 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
5649 	    __func__);
5650 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
5651 }
5652 
5653 /*
5654  * Collect noise and RSSI statistics for the first 20 beacons received
5655  * after association and use them to determine connected antennas and
5656  * to set differential gains.
5657  */
5658 static void
5659 iwn_collect_noise(struct iwn_softc *sc,
5660     const struct iwn_rx_general_stats *stats)
5661 {
5662 	struct iwn_ops *ops = &sc->ops;
5663 	struct iwn_calib_state *calib = &sc->calib;
5664 	struct ifnet *ifp = sc->sc_ifp;
5665 	struct ieee80211com *ic = ifp->if_l2com;
5666 	uint32_t val;
5667 	int i;
5668 
5669 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5670 
5671 	/* Accumulate RSSI and noise for all 3 antennas. */
5672 	for (i = 0; i < 3; i++) {
5673 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
5674 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
5675 	}
5676 	/* NB: We update differential gains only once after 20 beacons. */
5677 	if (++calib->nbeacons < 20)
5678 		return;
5679 
5680 	/* Determine highest average RSSI. */
5681 	val = MAX(calib->rssi[0], calib->rssi[1]);
5682 	val = MAX(calib->rssi[2], val);
5683 
5684 	/* Determine which antennas are connected. */
5685 	sc->chainmask = sc->rxchainmask;
5686 	for (i = 0; i < 3; i++)
5687 		if (val - calib->rssi[i] > 15 * 20)
5688 			sc->chainmask &= ~(1 << i);
5689 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5690 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
5691 	    __func__, sc->rxchainmask, sc->chainmask);
5692 
5693 	/* If none of the TX antennas are connected, keep at least one. */
5694 	if ((sc->chainmask & sc->txchainmask) == 0)
5695 		sc->chainmask |= IWN_LSB(sc->txchainmask);
5696 
5697 	(void)ops->set_gains(sc);
5698 	calib->state = IWN_CALIB_STATE_RUN;
5699 
5700 #ifdef notyet
5701 	/* XXX Disable RX chains with no antennas connected. */
5702 	sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
5703 	if (sc->sc_is_scanning)
5704 		device_printf(sc->sc_dev,
5705 		    "%s: is_scanning set, before RXON\n",
5706 		    __func__);
5707 	(void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
5708 #endif
5709 
5710 	/* Enable power-saving mode if requested by user. */
5711 	if (ic->ic_flags & IEEE80211_F_PMGTON)
5712 		(void)iwn_set_pslevel(sc, 0, 3, 1);
5713 
5714 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5715 
5716 }
5717 
5718 static int
5719 iwn4965_init_gains(struct iwn_softc *sc)
5720 {
5721 	struct iwn_phy_calib_gain cmd;
5722 
5723 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5724 
5725 	memset(&cmd, 0, sizeof cmd);
5726 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5727 	/* Differential gains initially set to 0 for all 3 antennas. */
5728 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5729 	    "%s: setting initial differential gains\n", __func__);
5730 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5731 }
5732 
5733 static int
5734 iwn5000_init_gains(struct iwn_softc *sc)
5735 {
5736 	struct iwn_phy_calib cmd;
5737 
5738 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5739 
5740 	memset(&cmd, 0, sizeof cmd);
5741 	cmd.code = sc->reset_noise_gain;
5742 	cmd.ngroups = 1;
5743 	cmd.isvalid = 1;
5744 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5745 	    "%s: setting initial differential gains\n", __func__);
5746 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5747 }
5748 
5749 static int
5750 iwn4965_set_gains(struct iwn_softc *sc)
5751 {
5752 	struct iwn_calib_state *calib = &sc->calib;
5753 	struct iwn_phy_calib_gain cmd;
5754 	int i, delta, noise;
5755 
5756 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5757 
5758 	/* Get minimal noise among connected antennas. */
5759 	noise = INT_MAX;	/* NB: There's at least one antenna. */
5760 	for (i = 0; i < 3; i++)
5761 		if (sc->chainmask & (1 << i))
5762 			noise = MIN(calib->noise[i], noise);
5763 
5764 	memset(&cmd, 0, sizeof cmd);
5765 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5766 	/* Set differential gains for connected antennas. */
5767 	for (i = 0; i < 3; i++) {
5768 		if (sc->chainmask & (1 << i)) {
5769 			/* Compute attenuation (in unit of 1.5dB). */
5770 			delta = (noise - (int32_t)calib->noise[i]) / 30;
5771 			/* NB: delta <= 0 */
5772 			/* Limit to [-4.5dB,0]. */
5773 			cmd.gain[i] = MIN(abs(delta), 3);
5774 			if (delta < 0)
5775 				cmd.gain[i] |= 1 << 2;	/* sign bit */
5776 		}
5777 	}
5778 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5779 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
5780 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
5781 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5782 }
5783 
5784 static int
5785 iwn5000_set_gains(struct iwn_softc *sc)
5786 {
5787 	struct iwn_calib_state *calib = &sc->calib;
5788 	struct iwn_phy_calib_gain cmd;
5789 	int i, ant, div, delta;
5790 
5791 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5792 
5793 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
5794 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
5795 
5796 	memset(&cmd, 0, sizeof cmd);
5797 	cmd.code = sc->noise_gain;
5798 	cmd.ngroups = 1;
5799 	cmd.isvalid = 1;
5800 	/* Get first available RX antenna as referential. */
5801 	ant = IWN_LSB(sc->rxchainmask);
5802 	/* Set differential gains for other antennas. */
5803 	for (i = ant + 1; i < 3; i++) {
5804 		if (sc->chainmask & (1 << i)) {
5805 			/* The delta is relative to antenna "ant". */
5806 			delta = ((int32_t)calib->noise[ant] -
5807 			    (int32_t)calib->noise[i]) / div;
5808 			/* Limit to [-4.5dB,+4.5dB]. */
5809 			cmd.gain[i - 1] = MIN(abs(delta), 3);
5810 			if (delta < 0)
5811 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
5812 		}
5813 	}
5814 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5815 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
5816 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
5817 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5818 }
5819 
5820 /*
5821  * Tune RF RX sensitivity based on the number of false alarms detected
5822  * during the last beacon period.
5823  */
5824 static void
5825 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
5826 {
5827 #define inc(val, inc, max)			\
5828 	if ((val) < (max)) {			\
5829 		if ((val) < (max) - (inc))	\
5830 			(val) += (inc);		\
5831 		else				\
5832 			(val) = (max);		\
5833 		needs_update = 1;		\
5834 	}
5835 #define dec(val, dec, min)			\
5836 	if ((val) > (min)) {			\
5837 		if ((val) > (min) + (dec))	\
5838 			(val) -= (dec);		\
5839 		else				\
5840 			(val) = (min);		\
5841 		needs_update = 1;		\
5842 	}
5843 
5844 	const struct iwn_sensitivity_limits *limits = sc->limits;
5845 	struct iwn_calib_state *calib = &sc->calib;
5846 	uint32_t val, rxena, fa;
5847 	uint32_t energy[3], energy_min;
5848 	uint8_t noise[3], noise_ref;
5849 	int i, needs_update = 0;
5850 
5851 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5852 
5853 	/* Check that we've been enabled long enough. */
5854 	if ((rxena = le32toh(stats->general.load)) == 0){
5855 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__);
5856 		return;
5857 	}
5858 
5859 	/* Compute number of false alarms since last call for OFDM. */
5860 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
5861 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
5862 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
5863 
5864 	if (fa > 50 * rxena) {
5865 		/* High false alarm count, decrease sensitivity. */
5866 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5867 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
5868 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
5869 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
5870 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
5871 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
5872 
5873 	} else if (fa < 5 * rxena) {
5874 		/* Low false alarm count, increase sensitivity. */
5875 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5876 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
5877 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
5878 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
5879 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
5880 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
5881 	}
5882 
5883 	/* Compute maximum noise among 3 receivers. */
5884 	for (i = 0; i < 3; i++)
5885 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
5886 	val = MAX(noise[0], noise[1]);
5887 	val = MAX(noise[2], val);
5888 	/* Insert it into our samples table. */
5889 	calib->noise_samples[calib->cur_noise_sample] = val;
5890 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
5891 
5892 	/* Compute maximum noise among last 20 samples. */
5893 	noise_ref = calib->noise_samples[0];
5894 	for (i = 1; i < 20; i++)
5895 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
5896 
5897 	/* Compute maximum energy among 3 receivers. */
5898 	for (i = 0; i < 3; i++)
5899 		energy[i] = le32toh(stats->general.energy[i]);
5900 	val = MIN(energy[0], energy[1]);
5901 	val = MIN(energy[2], val);
5902 	/* Insert it into our samples table. */
5903 	calib->energy_samples[calib->cur_energy_sample] = val;
5904 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
5905 
5906 	/* Compute minimum energy among last 10 samples. */
5907 	energy_min = calib->energy_samples[0];
5908 	for (i = 1; i < 10; i++)
5909 		energy_min = MAX(energy_min, calib->energy_samples[i]);
5910 	energy_min += 6;
5911 
5912 	/* Compute number of false alarms since last call for CCK. */
5913 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
5914 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
5915 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
5916 
5917 	if (fa > 50 * rxena) {
5918 		/* High false alarm count, decrease sensitivity. */
5919 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5920 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
5921 		calib->cck_state = IWN_CCK_STATE_HIFA;
5922 		calib->low_fa = 0;
5923 
5924 		if (calib->cck_x4 > 160) {
5925 			calib->noise_ref = noise_ref;
5926 			if (calib->energy_cck > 2)
5927 				dec(calib->energy_cck, 2, energy_min);
5928 		}
5929 		if (calib->cck_x4 < 160) {
5930 			calib->cck_x4 = 161;
5931 			needs_update = 1;
5932 		} else
5933 			inc(calib->cck_x4, 3, limits->max_cck_x4);
5934 
5935 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
5936 
5937 	} else if (fa < 5 * rxena) {
5938 		/* Low false alarm count, increase sensitivity. */
5939 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5940 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
5941 		calib->cck_state = IWN_CCK_STATE_LOFA;
5942 		calib->low_fa++;
5943 
5944 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
5945 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
5946 		     calib->low_fa > 100)) {
5947 			inc(calib->energy_cck, 2, limits->min_energy_cck);
5948 			dec(calib->cck_x4,     3, limits->min_cck_x4);
5949 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
5950 		}
5951 	} else {
5952 		/* Not worth to increase or decrease sensitivity. */
5953 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5954 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
5955 		calib->low_fa = 0;
5956 		calib->noise_ref = noise_ref;
5957 
5958 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
5959 			/* Previous interval had many false alarms. */
5960 			dec(calib->energy_cck, 8, energy_min);
5961 		}
5962 		calib->cck_state = IWN_CCK_STATE_INIT;
5963 	}
5964 
5965 	if (needs_update)
5966 		(void)iwn_send_sensitivity(sc);
5967 
5968 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5969 
5970 #undef dec
5971 #undef inc
5972 }
5973 
5974 static int
5975 iwn_send_sensitivity(struct iwn_softc *sc)
5976 {
5977 	struct iwn_calib_state *calib = &sc->calib;
5978 	struct iwn_enhanced_sensitivity_cmd cmd;
5979 	int len;
5980 
5981 	memset(&cmd, 0, sizeof cmd);
5982 	len = sizeof (struct iwn_sensitivity_cmd);
5983 	cmd.which = IWN_SENSITIVITY_WORKTBL;
5984 	/* OFDM modulation. */
5985 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
5986 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
5987 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
5988 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
5989 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
5990 	cmd.energy_ofdm_th     = htole16(62);
5991 	/* CCK modulation. */
5992 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
5993 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
5994 	cmd.energy_cck         = htole16(calib->energy_cck);
5995 	/* Barker modulation: use default values. */
5996 	cmd.corr_barker        = htole16(190);
5997 	cmd.corr_barker_mrc    = htole16(sc->limits->barker_mrc);
5998 
5999 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6000 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
6001 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
6002 	    calib->ofdm_mrc_x4, calib->cck_x4,
6003 	    calib->cck_mrc_x4, calib->energy_cck);
6004 
6005 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
6006 		goto send;
6007 	/* Enhanced sensitivity settings. */
6008 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
6009 	cmd.ofdm_det_slope_mrc = htole16(668);
6010 	cmd.ofdm_det_icept_mrc = htole16(4);
6011 	cmd.ofdm_det_slope     = htole16(486);
6012 	cmd.ofdm_det_icept     = htole16(37);
6013 	cmd.cck_det_slope_mrc  = htole16(853);
6014 	cmd.cck_det_icept_mrc  = htole16(4);
6015 	cmd.cck_det_slope      = htole16(476);
6016 	cmd.cck_det_icept      = htole16(99);
6017 send:
6018 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
6019 }
6020 
6021 /*
6022  * Look at the increase of PLCP errors over time; if it exceeds
6023  * a programmed threshold then trigger an RF retune.
6024  */
6025 static void
6026 iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs)
6027 {
6028 	int32_t delta_ofdm, delta_ht, delta_cck;
6029 	struct iwn_calib_state *calib = &sc->calib;
6030 	int delta_ticks, cur_ticks;
6031 	int delta_msec;
6032 	int thresh;
6033 
6034 	/*
6035 	 * Calculate the difference between the current and
6036 	 * previous statistics.
6037 	 */
6038 	delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck;
6039 	delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6040 	delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht;
6041 
6042 	/*
6043 	 * Calculate the delta in time between successive statistics
6044 	 * messages.  Yes, it can roll over; so we make sure that
6045 	 * this doesn't happen.
6046 	 *
6047 	 * XXX go figure out what to do about rollover
6048 	 * XXX go figure out what to do if ticks rolls over to -ve instead!
6049 	 * XXX go stab signed integer overflow undefined-ness in the face.
6050 	 */
6051 	cur_ticks = ticks;
6052 	delta_ticks = cur_ticks - sc->last_calib_ticks;
6053 
6054 	/*
6055 	 * If any are negative, then the firmware likely reset; so just
6056 	 * bail.  We'll pick this up next time.
6057 	 */
6058 	if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0)
6059 		return;
6060 
6061 	/*
6062 	 * delta_ticks is in ticks; we need to convert it up to milliseconds
6063 	 * so we can do some useful math with it.
6064 	 */
6065 	delta_msec = ticks_to_msecs(delta_ticks);
6066 
6067 	/*
6068 	 * Calculate what our threshold is given the current delta_msec.
6069 	 */
6070 	thresh = sc->base_params->plcp_err_threshold * delta_msec;
6071 
6072 	DPRINTF(sc, IWN_DEBUG_STATE,
6073 	    "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n",
6074 	    __func__,
6075 	    delta_msec,
6076 	    delta_cck,
6077 	    delta_ofdm,
6078 	    delta_ht,
6079 	    (delta_msec + delta_cck + delta_ofdm + delta_ht),
6080 	    thresh);
6081 
6082 	/*
6083 	 * If we need a retune, then schedule a single channel scan
6084 	 * to a channel that isn't the currently active one!
6085 	 *
6086 	 * The math from linux iwlwifi:
6087 	 *
6088 	 * if ((delta * 100 / msecs) > threshold)
6089 	 */
6090 	if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) {
6091 		DPRINTF(sc, IWN_DEBUG_ANY,
6092 		    "%s: PLCP error threshold raw (%d) comparison (%d) "
6093 		    "over limit (%d); retune!\n",
6094 		    __func__,
6095 		    (delta_cck + delta_ofdm + delta_ht),
6096 		    (delta_cck + delta_ofdm + delta_ht) * 100,
6097 		    thresh);
6098 	}
6099 }
6100 
6101 /*
6102  * Set STA mode power saving level (between 0 and 5).
6103  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
6104  */
6105 static int
6106 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
6107 {
6108 	struct iwn_pmgt_cmd cmd;
6109 	const struct iwn_pmgt *pmgt;
6110 	uint32_t max, skip_dtim;
6111 	uint32_t reg;
6112 	int i;
6113 
6114 	DPRINTF(sc, IWN_DEBUG_PWRSAVE,
6115 	    "%s: dtim=%d, level=%d, async=%d\n",
6116 	    __func__,
6117 	    dtim,
6118 	    level,
6119 	    async);
6120 
6121 	/* Select which PS parameters to use. */
6122 	if (dtim <= 2)
6123 		pmgt = &iwn_pmgt[0][level];
6124 	else if (dtim <= 10)
6125 		pmgt = &iwn_pmgt[1][level];
6126 	else
6127 		pmgt = &iwn_pmgt[2][level];
6128 
6129 	memset(&cmd, 0, sizeof cmd);
6130 	if (level != 0)	/* not CAM */
6131 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
6132 	if (level == 5)
6133 		cmd.flags |= htole16(IWN_PS_FAST_PD);
6134 	/* Retrieve PCIe Active State Power Management (ASPM). */
6135 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
6136 	if (!(reg & 0x1))	/* L0s Entry disabled. */
6137 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
6138 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
6139 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
6140 
6141 	if (dtim == 0) {
6142 		dtim = 1;
6143 		skip_dtim = 0;
6144 	} else
6145 		skip_dtim = pmgt->skip_dtim;
6146 	if (skip_dtim != 0) {
6147 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
6148 		max = pmgt->intval[4];
6149 		if (max == (uint32_t)-1)
6150 			max = dtim * (skip_dtim + 1);
6151 		else if (max > dtim)
6152 			max = (max / dtim) * dtim;
6153 	} else
6154 		max = dtim;
6155 	for (i = 0; i < 5; i++)
6156 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
6157 
6158 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
6159 	    level);
6160 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
6161 }
6162 
6163 static int
6164 iwn_send_btcoex(struct iwn_softc *sc)
6165 {
6166 	struct iwn_bluetooth cmd;
6167 
6168 	memset(&cmd, 0, sizeof cmd);
6169 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
6170 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
6171 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
6172 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
6173 	    __func__);
6174 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
6175 }
6176 
6177 static int
6178 iwn_send_advanced_btcoex(struct iwn_softc *sc)
6179 {
6180 	static const uint32_t btcoex_3wire[12] = {
6181 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
6182 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
6183 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
6184 	};
6185 	struct iwn6000_btcoex_config btconfig;
6186 	struct iwn2000_btcoex_config btconfig2k;
6187 	struct iwn_btcoex_priotable btprio;
6188 	struct iwn_btcoex_prot btprot;
6189 	int error, i;
6190 	uint8_t flags;
6191 
6192 	memset(&btconfig, 0, sizeof btconfig);
6193 	memset(&btconfig2k, 0, sizeof btconfig2k);
6194 
6195 	flags = IWN_BT_FLAG_COEX6000_MODE_3W <<
6196 	    IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2
6197 
6198 	if (sc->base_params->bt_sco_disable)
6199 		flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6200 	else
6201 		flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6202 
6203 	flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION;
6204 
6205 	/* Default flags result is 145 as old value */
6206 
6207 	/*
6208 	 * Flags value has to be review. Values must change if we
6209 	 * which to disable it
6210 	 */
6211 	if (sc->base_params->bt_session_2) {
6212 		btconfig2k.flags = flags;
6213 		btconfig2k.max_kill = 5;
6214 		btconfig2k.bt3_t7_timer = 1;
6215 		btconfig2k.kill_ack = htole32(0xffff0000);
6216 		btconfig2k.kill_cts = htole32(0xffff0000);
6217 		btconfig2k.sample_time = 2;
6218 		btconfig2k.bt3_t2_timer = 0xc;
6219 
6220 		for (i = 0; i < 12; i++)
6221 			btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]);
6222 		btconfig2k.valid = htole16(0xff);
6223 		btconfig2k.prio_boost = htole32(0xf0);
6224 		DPRINTF(sc, IWN_DEBUG_RESET,
6225 		    "%s: configuring advanced bluetooth coexistence"
6226 		    " session 2, flags : 0x%x\n",
6227 		    __func__,
6228 		    flags);
6229 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k,
6230 		    sizeof(btconfig2k), 1);
6231 	} else {
6232 		btconfig.flags = flags;
6233 		btconfig.max_kill = 5;
6234 		btconfig.bt3_t7_timer = 1;
6235 		btconfig.kill_ack = htole32(0xffff0000);
6236 		btconfig.kill_cts = htole32(0xffff0000);
6237 		btconfig.sample_time = 2;
6238 		btconfig.bt3_t2_timer = 0xc;
6239 
6240 		for (i = 0; i < 12; i++)
6241 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
6242 		btconfig.valid = htole16(0xff);
6243 		btconfig.prio_boost = 0xf0;
6244 		DPRINTF(sc, IWN_DEBUG_RESET,
6245 		    "%s: configuring advanced bluetooth coexistence,"
6246 		    " flags : 0x%x\n",
6247 		    __func__,
6248 		    flags);
6249 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
6250 		    sizeof(btconfig), 1);
6251 	}
6252 
6253 	if (error != 0)
6254 		return error;
6255 
6256 	memset(&btprio, 0, sizeof btprio);
6257 	btprio.calib_init1 = 0x6;
6258 	btprio.calib_init2 = 0x7;
6259 	btprio.calib_periodic_low1 = 0x2;
6260 	btprio.calib_periodic_low2 = 0x3;
6261 	btprio.calib_periodic_high1 = 0x4;
6262 	btprio.calib_periodic_high2 = 0x5;
6263 	btprio.dtim = 0x6;
6264 	btprio.scan52 = 0x8;
6265 	btprio.scan24 = 0xa;
6266 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
6267 	    1);
6268 	if (error != 0)
6269 		return error;
6270 
6271 	/* Force BT state machine change. */
6272 	memset(&btprot, 0, sizeof btprot);
6273 	btprot.open = 1;
6274 	btprot.type = 1;
6275 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6276 	if (error != 0)
6277 		return error;
6278 	btprot.open = 0;
6279 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6280 }
6281 
6282 static int
6283 iwn5000_runtime_calib(struct iwn_softc *sc)
6284 {
6285 	struct iwn5000_calib_config cmd;
6286 
6287 	memset(&cmd, 0, sizeof cmd);
6288 	cmd.ucode.once.enable = 0xffffffff;
6289 	cmd.ucode.once.start = IWN5000_CALIB_DC;
6290 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6291 	    "%s: configuring runtime calibration\n", __func__);
6292 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
6293 }
6294 
6295 static int
6296 iwn_config(struct iwn_softc *sc)
6297 {
6298 	struct iwn_ops *ops = &sc->ops;
6299 	struct ifnet *ifp = sc->sc_ifp;
6300 	struct ieee80211com *ic = ifp->if_l2com;
6301 	uint32_t txmask;
6302 	uint16_t rxchain;
6303 	int error;
6304 
6305 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6306 
6307 	if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET)
6308 	    && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) {
6309 		device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are"
6310 		    " exclusive each together. Review NIC config file. Conf"
6311 		    " :  0x%08x Flags :  0x%08x  \n", __func__,
6312 		    sc->base_params->calib_need,
6313 		    (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET |
6314 		    IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2));
6315 		return (EINVAL);
6316 	}
6317 
6318 	/* Compute temperature calib if needed. Will be send by send calib */
6319 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) {
6320 		error = iwn5000_temp_offset_calib(sc);
6321 		if (error != 0) {
6322 			device_printf(sc->sc_dev,
6323 			    "%s: could not set temperature offset\n", __func__);
6324 			return (error);
6325 		}
6326 	} else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
6327 		error = iwn5000_temp_offset_calibv2(sc);
6328 		if (error != 0) {
6329 			device_printf(sc->sc_dev,
6330 			    "%s: could not compute temperature offset v2\n",
6331 			    __func__);
6332 			return (error);
6333 		}
6334 	}
6335 
6336 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6337 		/* Configure runtime DC calibration. */
6338 		error = iwn5000_runtime_calib(sc);
6339 		if (error != 0) {
6340 			device_printf(sc->sc_dev,
6341 			    "%s: could not configure runtime calibration\n",
6342 			    __func__);
6343 			return error;
6344 		}
6345 	}
6346 
6347 	/* Configure valid TX chains for >=5000 Series. */
6348 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
6349 		txmask = htole32(sc->txchainmask);
6350 		DPRINTF(sc, IWN_DEBUG_RESET,
6351 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
6352 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
6353 		    sizeof txmask, 0);
6354 		if (error != 0) {
6355 			device_printf(sc->sc_dev,
6356 			    "%s: could not configure valid TX chains, "
6357 			    "error %d\n", __func__, error);
6358 			return error;
6359 		}
6360 	}
6361 
6362 	/* Configure bluetooth coexistence. */
6363 	error = 0;
6364 
6365 	/* Configure bluetooth coexistence if needed. */
6366 	if (sc->base_params->bt_mode == IWN_BT_ADVANCED)
6367 		error = iwn_send_advanced_btcoex(sc);
6368 	if (sc->base_params->bt_mode == IWN_BT_SIMPLE)
6369 		error = iwn_send_btcoex(sc);
6370 
6371 	if (error != 0) {
6372 		device_printf(sc->sc_dev,
6373 		    "%s: could not configure bluetooth coexistence, error %d\n",
6374 		    __func__, error);
6375 		return error;
6376 	}
6377 
6378 	/* Set mode, channel, RX filter and enable RX. */
6379 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6380 	memset(sc->rxon, 0, sizeof (struct iwn_rxon));
6381 	IEEE80211_ADDR_COPY(sc->rxon->myaddr, IF_LLADDR(ifp));
6382 	IEEE80211_ADDR_COPY(sc->rxon->wlap, IF_LLADDR(ifp));
6383 	sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
6384 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6385 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
6386 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6387 	switch (ic->ic_opmode) {
6388 	case IEEE80211_M_STA:
6389 		sc->rxon->mode = IWN_MODE_STA;
6390 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST);
6391 		break;
6392 	case IEEE80211_M_MONITOR:
6393 		sc->rxon->mode = IWN_MODE_MONITOR;
6394 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST |
6395 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
6396 		break;
6397 	default:
6398 		/* Should not get there. */
6399 		break;
6400 	}
6401 	sc->rxon->cck_mask  = 0x0f;	/* not yet negotiated */
6402 	sc->rxon->ofdm_mask = 0xff;	/* not yet negotiated */
6403 	sc->rxon->ht_single_mask = 0xff;
6404 	sc->rxon->ht_dual_mask = 0xff;
6405 	sc->rxon->ht_triple_mask = 0xff;
6406 	rxchain =
6407 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6408 	    IWN_RXCHAIN_MIMO_COUNT(2) |
6409 	    IWN_RXCHAIN_IDLE_COUNT(2);
6410 	sc->rxon->rxchain = htole16(rxchain);
6411 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__);
6412 	if (sc->sc_is_scanning)
6413 		device_printf(sc->sc_dev,
6414 		    "%s: is_scanning set, before RXON\n",
6415 		    __func__);
6416 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 0);
6417 	if (error != 0) {
6418 		device_printf(sc->sc_dev, "%s: RXON command failed\n",
6419 		    __func__);
6420 		return error;
6421 	}
6422 
6423 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
6424 		device_printf(sc->sc_dev, "%s: could not add broadcast node\n",
6425 		    __func__);
6426 		return error;
6427 	}
6428 
6429 	/* Configuration has changed, set TX power accordingly. */
6430 	if ((error = ops->set_txpower(sc, ic->ic_curchan, 0)) != 0) {
6431 		device_printf(sc->sc_dev, "%s: could not set TX power\n",
6432 		    __func__);
6433 		return error;
6434 	}
6435 
6436 	if ((error = iwn_set_critical_temp(sc)) != 0) {
6437 		device_printf(sc->sc_dev,
6438 		    "%s: could not set critical temperature\n", __func__);
6439 		return error;
6440 	}
6441 
6442 	/* Set power saving level to CAM during initialization. */
6443 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
6444 		device_printf(sc->sc_dev,
6445 		    "%s: could not set power saving level\n", __func__);
6446 		return error;
6447 	}
6448 
6449 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6450 
6451 	return 0;
6452 }
6453 
6454 /*
6455  * Add an ssid element to a frame.
6456  */
6457 static uint8_t *
6458 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
6459 {
6460 	*frm++ = IEEE80211_ELEMID_SSID;
6461 	*frm++ = len;
6462 	memcpy(frm, ssid, len);
6463 	return frm + len;
6464 }
6465 
6466 static uint16_t
6467 iwn_get_active_dwell_time(struct iwn_softc *sc,
6468     struct ieee80211_channel *c, uint8_t n_probes)
6469 {
6470 	/* No channel? Default to 2GHz settings */
6471 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6472 		return (IWN_ACTIVE_DWELL_TIME_2GHZ +
6473 		IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
6474 	}
6475 
6476 	/* 5GHz dwell time */
6477 	return (IWN_ACTIVE_DWELL_TIME_5GHZ +
6478 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
6479 }
6480 
6481 /*
6482  * Limit the total dwell time to 85% of the beacon interval.
6483  *
6484  * Returns the dwell time in milliseconds.
6485  */
6486 static uint16_t
6487 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
6488 {
6489 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
6490 	struct ieee80211vap *vap = NULL;
6491 	int bintval = 0;
6492 
6493 	/* bintval is in TU (1.024mS) */
6494 	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
6495 		vap = TAILQ_FIRST(&ic->ic_vaps);
6496 		bintval = vap->iv_bss->ni_intval;
6497 	}
6498 
6499 	/*
6500 	 * If it's non-zero, we should calculate the minimum of
6501 	 * it and the DWELL_BASE.
6502 	 *
6503 	 * XXX Yes, the math should take into account that bintval
6504 	 * is 1.024mS, not 1mS..
6505 	 */
6506 	if (bintval > 0) {
6507 		DPRINTF(sc, IWN_DEBUG_SCAN,
6508 		    "%s: bintval=%d\n",
6509 		    __func__,
6510 		    bintval);
6511 		return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
6512 	}
6513 
6514 	/* No association context? Default */
6515 	return (IWN_PASSIVE_DWELL_BASE);
6516 }
6517 
6518 static uint16_t
6519 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c)
6520 {
6521 	uint16_t passive;
6522 
6523 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6524 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
6525 	} else {
6526 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
6527 	}
6528 
6529 	/* Clamp to the beacon interval if we're associated */
6530 	return (iwn_limit_dwell(sc, passive));
6531 }
6532 
6533 static int
6534 iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap,
6535     struct ieee80211_scan_state *ss, struct ieee80211_channel *c)
6536 {
6537 	struct ifnet *ifp = sc->sc_ifp;
6538 	struct ieee80211com *ic = ifp->if_l2com;
6539 	struct ieee80211_node *ni = vap->iv_bss;
6540 	struct iwn_scan_hdr *hdr;
6541 	struct iwn_cmd_data *tx;
6542 	struct iwn_scan_essid *essid;
6543 	struct iwn_scan_chan *chan;
6544 	struct ieee80211_frame *wh;
6545 	struct ieee80211_rateset *rs;
6546 	uint8_t *buf, *frm;
6547 	uint16_t rxchain;
6548 	uint8_t txant;
6549 	int buflen, error;
6550 	int is_active;
6551 	uint16_t dwell_active, dwell_passive;
6552 	uint32_t extra, scan_service_time;
6553 
6554 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6555 
6556 	/*
6557 	 * We are absolutely not allowed to send a scan command when another
6558 	 * scan command is pending.
6559 	 */
6560 	if (sc->sc_is_scanning) {
6561 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
6562 		    __func__);
6563 		return (EAGAIN);
6564 	}
6565 
6566 	/* Assign the scan channel */
6567 	c = ic->ic_curchan;
6568 
6569 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6570 	buf = kmalloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_INTWAIT | M_ZERO);
6571 	hdr = (struct iwn_scan_hdr *)buf;
6572 	/*
6573 	 * Move to the next channel if no frames are received within 10ms
6574 	 * after sending the probe request.
6575 	 */
6576 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
6577 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
6578 	/*
6579 	 * Max needs to be greater than active and passive and quiet!
6580 	 * It's also in microseconds!
6581 	 */
6582 	hdr->max_svc = htole32(250 * 1024);
6583 
6584 	/*
6585 	 * Reset scan: interval=100
6586 	 * Normal scan: interval=becaon interval
6587 	 * suspend_time: 100 (TU)
6588 	 *
6589 	 */
6590 	extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22;
6591 	//scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024);
6592 	scan_service_time = (4 << 22) | (100 * 1024);	/* Hardcode for now! */
6593 	hdr->pause_svc = htole32(scan_service_time);
6594 
6595 	/* Select antennas for scanning. */
6596 	rxchain =
6597 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6598 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
6599 	    IWN_RXCHAIN_DRIVER_FORCE;
6600 	if (IEEE80211_IS_CHAN_A(c) &&
6601 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
6602 		/* Ant A must be avoided in 5GHz because of an HW bug. */
6603 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
6604 	} else	/* Use all available RX antennas. */
6605 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
6606 	hdr->rxchain = htole16(rxchain);
6607 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
6608 
6609 	tx = (struct iwn_cmd_data *)(hdr + 1);
6610 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
6611 	tx->id = sc->broadcast_id;
6612 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
6613 
6614 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
6615 		/* Send probe requests at 6Mbps. */
6616 		tx->rate = htole32(0xd);
6617 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
6618 	} else {
6619 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
6620 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
6621 		    sc->rxon->associd && sc->rxon->chan > 14)
6622 			tx->rate = htole32(0xd);
6623 		else {
6624 			/* Send probe requests at 1Mbps. */
6625 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
6626 		}
6627 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
6628 	}
6629 	/* Use the first valid TX antenna. */
6630 	txant = IWN_LSB(sc->txchainmask);
6631 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
6632 
6633 	/*
6634 	 * Only do active scanning if we're announcing a probe request
6635 	 * for a given SSID (or more, if we ever add it to the driver.)
6636 	 */
6637 	is_active = 0;
6638 
6639 	/*
6640 	 * If we're scanning for a specific SSID, add it to the command.
6641 	 *
6642 	 * XXX maybe look at adding support for scanning multiple SSIDs?
6643 	 */
6644 	essid = (struct iwn_scan_essid *)(tx + 1);
6645 	if (ss != NULL) {
6646 		if (ss->ss_ssid[0].len != 0) {
6647 			essid[0].id = IEEE80211_ELEMID_SSID;
6648 			essid[0].len = ss->ss_ssid[0].len;
6649 			memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
6650 		}
6651 
6652 		DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n",
6653 		    __func__,
6654 		    ss->ss_ssid[0].len,
6655 		    ss->ss_ssid[0].len,
6656 		    ss->ss_ssid[0].ssid);
6657 
6658 		if (ss->ss_nssid > 0)
6659 			is_active = 1;
6660 	}
6661 
6662 	/*
6663 	 * Build a probe request frame.  Most of the following code is a
6664 	 * copy & paste of what is done in net80211.
6665 	 */
6666 	wh = (struct ieee80211_frame *)(essid + 20);
6667 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
6668 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
6669 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
6670 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
6671 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
6672 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
6673 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
6674 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
6675 
6676 	frm = (uint8_t *)(wh + 1);
6677 	frm = ieee80211_add_ssid(frm, NULL, 0);
6678 	frm = ieee80211_add_rates(frm, rs);
6679 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
6680 		frm = ieee80211_add_xrates(frm, rs);
6681 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
6682 		frm = ieee80211_add_htcap(frm, ni);
6683 
6684 	/* Set length of probe request. */
6685 	tx->len = htole16(frm - (uint8_t *)wh);
6686 
6687 	/*
6688 	 * If active scanning is requested but a certain channel is
6689 	 * marked passive, we can do active scanning if we detect
6690 	 * transmissions.
6691 	 *
6692 	 * There is an issue with some firmware versions that triggers
6693 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
6694 	 * on a radar channel even though this means that we should NOT
6695 	 * send probes.
6696 	 *
6697 	 * The "good CRC threshold" is the number of frames that we
6698 	 * need to receive during our dwell time on a channel before
6699 	 * sending out probes -- setting this to a huge value will
6700 	 * mean we never reach it, but at the same time work around
6701 	 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER
6702 	 * here instead of IWL_GOOD_CRC_TH_DISABLED.
6703 	 *
6704 	 * This was fixed in later versions along with some other
6705 	 * scan changes, and the threshold behaves as a flag in those
6706 	 * versions.
6707 	 */
6708 
6709 	/*
6710 	 * If we're doing active scanning, set the crc_threshold
6711 	 * to a suitable value.  This is different to active veruss
6712 	 * passive scanning depending upon the channel flags; the
6713 	 * firmware will obey that particular check for us.
6714 	 */
6715 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
6716 		hdr->crc_threshold = is_active ?
6717 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
6718 	else
6719 		hdr->crc_threshold = is_active ?
6720 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
6721 
6722 	chan = (struct iwn_scan_chan *)frm;
6723 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
6724 	chan->flags = 0;
6725 	if (ss->ss_nssid > 0)
6726 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
6727 	chan->dsp_gain = 0x6e;
6728 
6729 	/*
6730 	 * Set the passive/active flag depending upon the channel mode.
6731 	 * XXX TODO: take the is_active flag into account as well?
6732 	 */
6733 	if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
6734 		chan->flags |= htole32(IWN_CHAN_PASSIVE);
6735 	else
6736 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
6737 
6738 	/*
6739 	 * Calculate the active/passive dwell times.
6740 	 */
6741 
6742 	dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid);
6743 	dwell_passive = iwn_get_passive_dwell_time(sc, c);
6744 
6745 	/* Make sure they're valid */
6746 	if (dwell_passive <= dwell_active)
6747 		dwell_passive = dwell_active + 1;
6748 
6749 	chan->active = htole16(dwell_active);
6750 	chan->passive = htole16(dwell_passive);
6751 
6752 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
6753 	    !(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
6754 		chan->rf_gain = 0x3b;
6755 	} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
6756 		chan->rf_gain = 0x3b;
6757 	} else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
6758 		chan->rf_gain = 0x28;
6759 	} else {
6760 		chan->rf_gain = 0x28;
6761 	}
6762 
6763 	DPRINTF(sc, IWN_DEBUG_STATE,
6764 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
6765 	    "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x "
6766 	    "isactive=%d numssid=%d\n", __func__,
6767 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
6768 	    dwell_active, dwell_passive, scan_service_time,
6769 	    hdr->crc_threshold, is_active, ss->ss_nssid);
6770 
6771 	hdr->nchan++;
6772 	chan++;
6773 	buflen = (uint8_t *)chan - buf;
6774 	hdr->len = htole16(buflen);
6775 
6776 	if (sc->sc_is_scanning) {
6777 		device_printf(sc->sc_dev,
6778 		    "%s: called with is_scanning set!\n",
6779 		    __func__);
6780 	}
6781 	sc->sc_is_scanning = 1;
6782 
6783 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
6784 	    hdr->nchan);
6785 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
6786 	kfree(buf, M_DEVBUF);
6787 
6788 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6789 
6790 	return error;
6791 }
6792 
6793 static int
6794 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
6795 {
6796 	struct iwn_ops *ops = &sc->ops;
6797 	struct ifnet *ifp = sc->sc_ifp;
6798 	struct ieee80211com *ic = ifp->if_l2com;
6799 	struct ieee80211_node *ni = vap->iv_bss;
6800 	int error;
6801 
6802 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6803 
6804 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6805 	/* Update adapter configuration. */
6806 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
6807 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
6808 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6809 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
6810 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6811 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
6812 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
6813 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
6814 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
6815 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
6816 		sc->rxon->cck_mask  = 0;
6817 		sc->rxon->ofdm_mask = 0x15;
6818 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
6819 		sc->rxon->cck_mask  = 0x03;
6820 		sc->rxon->ofdm_mask = 0;
6821 	} else {
6822 		/* Assume 802.11b/g. */
6823 		sc->rxon->cck_mask  = 0x03;
6824 		sc->rxon->ofdm_mask = 0x15;
6825 	}
6826 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
6827 	    sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask,
6828 	    sc->rxon->ofdm_mask);
6829 	if (sc->sc_is_scanning)
6830 		device_printf(sc->sc_dev,
6831 		    "%s: is_scanning set, before RXON\n",
6832 		    __func__);
6833 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
6834 	if (error != 0) {
6835 		device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n",
6836 		    __func__, error);
6837 		return error;
6838 	}
6839 
6840 	/* Configuration has changed, set TX power accordingly. */
6841 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
6842 		device_printf(sc->sc_dev,
6843 		    "%s: could not set TX power, error %d\n", __func__, error);
6844 		return error;
6845 	}
6846 	/*
6847 	 * Reconfiguring RXON clears the firmware nodes table so we must
6848 	 * add the broadcast node again.
6849 	 */
6850 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
6851 		device_printf(sc->sc_dev,
6852 		    "%s: could not add broadcast node, error %d\n", __func__,
6853 		    error);
6854 		return error;
6855 	}
6856 
6857 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6858 
6859 	return 0;
6860 }
6861 
6862 static int
6863 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
6864 {
6865 	struct iwn_ops *ops = &sc->ops;
6866 	struct ifnet *ifp = sc->sc_ifp;
6867 	struct ieee80211com *ic = ifp->if_l2com;
6868 	struct ieee80211_node *ni = vap->iv_bss;
6869 	struct iwn_node_info node;
6870 	uint32_t htflags = 0;
6871 	int error;
6872 
6873 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6874 
6875 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6876 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
6877 		/* Link LED blinks while monitoring. */
6878 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
6879 		return 0;
6880 	}
6881 	if ((error = iwn_set_timing(sc, ni)) != 0) {
6882 		device_printf(sc->sc_dev,
6883 		    "%s: could not set timing, error %d\n", __func__, error);
6884 		return error;
6885 	}
6886 
6887 	/* Update adapter configuration. */
6888 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
6889 	sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd));
6890 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
6891 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6892 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
6893 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6894 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
6895 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
6896 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
6897 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
6898 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
6899 		sc->rxon->cck_mask  = 0;
6900 		sc->rxon->ofdm_mask = 0x15;
6901 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
6902 		sc->rxon->cck_mask  = 0x03;
6903 		sc->rxon->ofdm_mask = 0;
6904 	} else {
6905 		/* Assume 802.11b/g. */
6906 		sc->rxon->cck_mask  = 0x0f;
6907 		sc->rxon->ofdm_mask = 0x15;
6908 	}
6909 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
6910 		htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
6911 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
6912 			switch (ic->ic_curhtprotmode) {
6913 			case IEEE80211_HTINFO_OPMODE_HT20PR:
6914 				htflags |= IWN_RXON_HT_MODEPURE40;
6915 				break;
6916 			default:
6917 				htflags |= IWN_RXON_HT_MODEMIXED;
6918 				break;
6919 			}
6920 		}
6921 		if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
6922 			htflags |= IWN_RXON_HT_HT40MINUS;
6923 	}
6924 	sc->rxon->flags |= htole32(htflags);
6925 	sc->rxon->filter |= htole32(IWN_FILTER_BSS);
6926 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x\n",
6927 	    sc->rxon->chan, sc->rxon->flags);
6928 	if (sc->sc_is_scanning)
6929 		device_printf(sc->sc_dev,
6930 		    "%s: is_scanning set, before RXON\n",
6931 		    __func__);
6932 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
6933 	if (error != 0) {
6934 		device_printf(sc->sc_dev,
6935 		    "%s: could not update configuration, error %d\n", __func__,
6936 		    error);
6937 		return error;
6938 	}
6939 
6940 	/* Configuration has changed, set TX power accordingly. */
6941 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
6942 		device_printf(sc->sc_dev,
6943 		    "%s: could not set TX power, error %d\n", __func__, error);
6944 		return error;
6945 	}
6946 
6947 	/* Fake a join to initialize the TX rate. */
6948 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
6949 	iwn_newassoc(ni, 1);
6950 
6951 	/* Add BSS node. */
6952 	memset(&node, 0, sizeof node);
6953 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
6954 	node.id = IWN_ID_BSS;
6955 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
6956 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
6957 		case IEEE80211_HTCAP_SMPS_ENA:
6958 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
6959 			break;
6960 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
6961 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
6962 			break;
6963 		}
6964 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
6965 		    IWN_AMDPU_DENSITY(5));	/* 4us */
6966 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
6967 			node.htflags |= htole32(IWN_NODE_HT40);
6968 	}
6969 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
6970 	error = ops->add_node(sc, &node, 1);
6971 	if (error != 0) {
6972 		device_printf(sc->sc_dev,
6973 		    "%s: could not add BSS node, error %d\n", __func__, error);
6974 		return error;
6975 	}
6976 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
6977 	    __func__, node.id);
6978 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
6979 		device_printf(sc->sc_dev,
6980 		    "%s: could not setup link quality for node %d, error %d\n",
6981 		    __func__, node.id, error);
6982 		return error;
6983 	}
6984 
6985 	if ((error = iwn_init_sensitivity(sc)) != 0) {
6986 		device_printf(sc->sc_dev,
6987 		    "%s: could not set sensitivity, error %d\n", __func__,
6988 		    error);
6989 		return error;
6990 	}
6991 	/* Start periodic calibration timer. */
6992 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
6993 	sc->calib_cnt = 0;
6994 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
6995 	    sc);
6996 
6997 	/* Link LED always on while associated. */
6998 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
6999 
7000 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7001 
7002 	return 0;
7003 }
7004 
7005 /*
7006  * This function is called by upper layer when an ADDBA request is received
7007  * from another STA and before the ADDBA response is sent.
7008  */
7009 static int
7010 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
7011     int baparamset, int batimeout, int baseqctl)
7012 {
7013 #define MS(_v, _f)	(((_v) & _f) >> _f##_S)
7014 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7015 	struct iwn_ops *ops = &sc->ops;
7016 	struct iwn_node *wn = (void *)ni;
7017 	struct iwn_node_info node;
7018 	uint16_t ssn;
7019 	uint8_t tid;
7020 	int error;
7021 
7022 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7023 
7024 	tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID);
7025 	ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START);
7026 
7027 	memset(&node, 0, sizeof node);
7028 	node.id = wn->id;
7029 	node.control = IWN_NODE_UPDATE;
7030 	node.flags = IWN_FLAG_SET_ADDBA;
7031 	node.addba_tid = tid;
7032 	node.addba_ssn = htole16(ssn);
7033 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
7034 	    wn->id, tid, ssn);
7035 	error = ops->add_node(sc, &node, 1);
7036 	if (error != 0)
7037 		return error;
7038 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
7039 #undef MS
7040 }
7041 
7042 /*
7043  * This function is called by upper layer on teardown of an HT-immediate
7044  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
7045  */
7046 static void
7047 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
7048 {
7049 	struct ieee80211com *ic = ni->ni_ic;
7050 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
7051 	struct iwn_ops *ops = &sc->ops;
7052 	struct iwn_node *wn = (void *)ni;
7053 	struct iwn_node_info node;
7054 	uint8_t tid;
7055 
7056 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7057 
7058 	/* XXX: tid as an argument */
7059 	for (tid = 0; tid < WME_NUM_TID; tid++) {
7060 		if (&ni->ni_rx_ampdu[tid] == rap)
7061 			break;
7062 	}
7063 
7064 	memset(&node, 0, sizeof node);
7065 	node.id = wn->id;
7066 	node.control = IWN_NODE_UPDATE;
7067 	node.flags = IWN_FLAG_SET_DELBA;
7068 	node.delba_tid = tid;
7069 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
7070 	(void)ops->add_node(sc, &node, 1);
7071 	sc->sc_ampdu_rx_stop(ni, rap);
7072 }
7073 
7074 static int
7075 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7076     int dialogtoken, int baparamset, int batimeout)
7077 {
7078 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7079 	int qid;
7080 
7081 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7082 
7083 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
7084 		if (sc->qid2tap[qid] == NULL)
7085 			break;
7086 	}
7087 	if (qid == sc->ntxqs) {
7088 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
7089 		    __func__);
7090 		return 0;
7091 	}
7092 	tap->txa_private = kmalloc(sizeof(int), M_DEVBUF, M_INTWAIT);
7093 	sc->qid2tap[qid] = tap;
7094 	*(int *)tap->txa_private = qid;
7095 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
7096 	    batimeout);
7097 }
7098 
7099 static int
7100 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7101     int code, int baparamset, int batimeout)
7102 {
7103 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7104 	int qid = *(int *)tap->txa_private;
7105 	uint8_t tid = tap->txa_ac;
7106 	int ret;
7107 
7108 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7109 
7110 	if (code == IEEE80211_STATUS_SUCCESS) {
7111 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
7112 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
7113 		if (ret != 1)
7114 			return ret;
7115 	} else {
7116 		sc->qid2tap[qid] = NULL;
7117 		kfree(tap->txa_private, M_DEVBUF);
7118 		tap->txa_private = NULL;
7119 	}
7120 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
7121 }
7122 
7123 /*
7124  * This function is called by upper layer when an ADDBA response is received
7125  * from another STA.
7126  */
7127 static int
7128 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
7129     uint8_t tid)
7130 {
7131 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
7132 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7133 	struct iwn_ops *ops = &sc->ops;
7134 	struct iwn_node *wn = (void *)ni;
7135 	struct iwn_node_info node;
7136 	int error, qid;
7137 
7138 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7139 
7140 	/* Enable TX for the specified RA/TID. */
7141 	wn->disable_tid &= ~(1 << tid);
7142 	memset(&node, 0, sizeof node);
7143 	node.id = wn->id;
7144 	node.control = IWN_NODE_UPDATE;
7145 	node.flags = IWN_FLAG_SET_DISABLE_TID;
7146 	node.disable_tid = htole16(wn->disable_tid);
7147 	error = ops->add_node(sc, &node, 1);
7148 	if (error != 0)
7149 		return 0;
7150 
7151 	if ((error = iwn_nic_lock(sc)) != 0)
7152 		return 0;
7153 	qid = *(int *)tap->txa_private;
7154 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
7155 	    __func__, wn->id, tid, tap->txa_start, qid);
7156 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
7157 	iwn_nic_unlock(sc);
7158 
7159 	iwn_set_link_quality(sc, ni);
7160 	return 1;
7161 }
7162 
7163 static void
7164 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
7165 {
7166 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7167 	struct iwn_ops *ops = &sc->ops;
7168 	uint8_t tid = tap->txa_ac;
7169 	int qid;
7170 
7171 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7172 
7173 	sc->sc_addba_stop(ni, tap);
7174 
7175 	if (tap->txa_private == NULL)
7176 		return;
7177 
7178 	qid = *(int *)tap->txa_private;
7179 	if (sc->txq[qid].queued != 0)
7180 		return;
7181 	if (iwn_nic_lock(sc) != 0)
7182 		return;
7183 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
7184 	iwn_nic_unlock(sc);
7185 	sc->qid2tap[qid] = NULL;
7186 	kfree(tap->txa_private, M_DEVBUF);
7187 	tap->txa_private = NULL;
7188 }
7189 
7190 static void
7191 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7192     int qid, uint8_t tid, uint16_t ssn)
7193 {
7194 	struct iwn_node *wn = (void *)ni;
7195 
7196 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7197 
7198 	/* Stop TX scheduler while we're changing its configuration. */
7199 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7200 	    IWN4965_TXQ_STATUS_CHGACT);
7201 
7202 	/* Assign RA/TID translation to the queue. */
7203 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
7204 	    wn->id << 4 | tid);
7205 
7206 	/* Enable chain-building mode for the queue. */
7207 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
7208 
7209 	/* Set starting sequence number from the ADDBA request. */
7210 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7211 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7212 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7213 
7214 	/* Set scheduler window size. */
7215 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
7216 	    IWN_SCHED_WINSZ);
7217 	/* Set scheduler frame limit. */
7218 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7219 	    IWN_SCHED_LIMIT << 16);
7220 
7221 	/* Enable interrupts for the queue. */
7222 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7223 
7224 	/* Mark the queue as active. */
7225 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7226 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
7227 	    iwn_tid2fifo[tid] << 1);
7228 }
7229 
7230 static void
7231 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7232 {
7233 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7234 
7235 	/* Stop TX scheduler while we're changing its configuration. */
7236 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7237 	    IWN4965_TXQ_STATUS_CHGACT);
7238 
7239 	/* Set starting sequence number from the ADDBA request. */
7240 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7241 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7242 
7243 	/* Disable interrupts for the queue. */
7244 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7245 
7246 	/* Mark the queue as inactive. */
7247 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7248 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
7249 }
7250 
7251 static void
7252 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7253     int qid, uint8_t tid, uint16_t ssn)
7254 {
7255 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7256 
7257 	struct iwn_node *wn = (void *)ni;
7258 
7259 	/* Stop TX scheduler while we're changing its configuration. */
7260 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7261 	    IWN5000_TXQ_STATUS_CHGACT);
7262 
7263 	/* Assign RA/TID translation to the queue. */
7264 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
7265 	    wn->id << 4 | tid);
7266 
7267 	/* Enable chain-building mode for the queue. */
7268 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
7269 
7270 	/* Enable aggregation for the queue. */
7271 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7272 
7273 	/* Set starting sequence number from the ADDBA request. */
7274 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7275 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7276 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7277 
7278 	/* Set scheduler window size and frame limit. */
7279 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7280 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7281 
7282 	/* Enable interrupts for the queue. */
7283 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7284 
7285 	/* Mark the queue as active. */
7286 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7287 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
7288 }
7289 
7290 static void
7291 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7292 {
7293 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7294 
7295 	/* Stop TX scheduler while we're changing its configuration. */
7296 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7297 	    IWN5000_TXQ_STATUS_CHGACT);
7298 
7299 	/* Disable aggregation for the queue. */
7300 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7301 
7302 	/* Set starting sequence number from the ADDBA request. */
7303 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7304 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7305 
7306 	/* Disable interrupts for the queue. */
7307 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7308 
7309 	/* Mark the queue as inactive. */
7310 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7311 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
7312 }
7313 
7314 /*
7315  * Query calibration tables from the initialization firmware.  We do this
7316  * only once at first boot.  Called from a process context.
7317  */
7318 static int
7319 iwn5000_query_calibration(struct iwn_softc *sc)
7320 {
7321 	struct iwn5000_calib_config cmd;
7322 	int error;
7323 
7324 	memset(&cmd, 0, sizeof cmd);
7325 	cmd.ucode.once.enable = htole32(0xffffffff);
7326 	cmd.ucode.once.start  = htole32(0xffffffff);
7327 	cmd.ucode.once.send   = htole32(0xffffffff);
7328 	cmd.ucode.flags       = htole32(0xffffffff);
7329 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
7330 	    __func__);
7331 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
7332 	if (error != 0)
7333 		return error;
7334 
7335 	/* Wait at most two seconds for calibration to complete. */
7336 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
7337 		error = zsleep(sc, &wlan_global_serializer, 0, "iwncal", 2 * hz);
7338 	return error;
7339 }
7340 
7341 /*
7342  * Send calibration results to the runtime firmware.  These results were
7343  * obtained on first boot from the initialization firmware.
7344  */
7345 static int
7346 iwn5000_send_calibration(struct iwn_softc *sc)
7347 {
7348 	int idx, error;
7349 
7350 	for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) {
7351 		if (!(sc->base_params->calib_need & (1<<idx))) {
7352 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7353 			    "No need of calib %d\n",
7354 			    idx);
7355 			continue; /* no need for this calib */
7356 		}
7357 		if (sc->calibcmd[idx].buf == NULL) {
7358 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7359 			    "Need calib idx : %d but no available data\n",
7360 			    idx);
7361 			continue;
7362 		}
7363 
7364 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7365 		    "send calibration result idx=%d len=%d\n", idx,
7366 		    sc->calibcmd[idx].len);
7367 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
7368 		    sc->calibcmd[idx].len, 0);
7369 		if (error != 0) {
7370 			device_printf(sc->sc_dev,
7371 			    "%s: could not send calibration result, error %d\n",
7372 			    __func__, error);
7373 			return error;
7374 		}
7375 	}
7376 	return 0;
7377 }
7378 
7379 static int
7380 iwn5000_send_wimax_coex(struct iwn_softc *sc)
7381 {
7382 	struct iwn5000_wimax_coex wimax;
7383 
7384 #if 0
7385 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
7386 		/* Enable WiMAX coexistence for combo adapters. */
7387 		wimax.flags =
7388 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
7389 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
7390 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
7391 		    IWN_WIMAX_COEX_ENABLE;
7392 		memcpy(wimax.events, iwn6050_wimax_events,
7393 		    sizeof iwn6050_wimax_events);
7394 	} else
7395 #endif
7396 	{
7397 		/* Disable WiMAX coexistence. */
7398 		wimax.flags = 0;
7399 		memset(wimax.events, 0, sizeof wimax.events);
7400 	}
7401 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
7402 	    __func__);
7403 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
7404 }
7405 
7406 static int
7407 iwn5000_crystal_calib(struct iwn_softc *sc)
7408 {
7409 	struct iwn5000_phy_calib_crystal cmd;
7410 
7411 	memset(&cmd, 0, sizeof cmd);
7412 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
7413 	cmd.ngroups = 1;
7414 	cmd.isvalid = 1;
7415 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
7416 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
7417 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
7418 	    cmd.cap_pin[0], cmd.cap_pin[1]);
7419 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7420 }
7421 
7422 static int
7423 iwn5000_temp_offset_calib(struct iwn_softc *sc)
7424 {
7425 	struct iwn5000_phy_calib_temp_offset cmd;
7426 
7427 	memset(&cmd, 0, sizeof cmd);
7428 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7429 	cmd.ngroups = 1;
7430 	cmd.isvalid = 1;
7431 	if (sc->eeprom_temp != 0)
7432 		cmd.offset = htole16(sc->eeprom_temp);
7433 	else
7434 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
7435 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
7436 	    le16toh(cmd.offset));
7437 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7438 }
7439 
7440 static int
7441 iwn5000_temp_offset_calibv2(struct iwn_softc *sc)
7442 {
7443 	struct iwn5000_phy_calib_temp_offsetv2 cmd;
7444 
7445 	memset(&cmd, 0, sizeof cmd);
7446 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7447 	cmd.ngroups = 1;
7448 	cmd.isvalid = 1;
7449 	if (sc->eeprom_temp != 0) {
7450 		cmd.offset_low = htole16(sc->eeprom_temp);
7451 		cmd.offset_high = htole16(sc->eeprom_temp_high);
7452 	} else {
7453 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
7454 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
7455 	}
7456 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
7457 
7458 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7459 	    "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n",
7460 	    le16toh(cmd.offset_low),
7461 	    le16toh(cmd.offset_high),
7462 	    le16toh(cmd.burnt_voltage_ref));
7463 
7464 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7465 }
7466 
7467 /*
7468  * This function is called after the runtime firmware notifies us of its
7469  * readiness (called in a process context).
7470  */
7471 static int
7472 iwn4965_post_alive(struct iwn_softc *sc)
7473 {
7474 	int error, qid;
7475 
7476 	if ((error = iwn_nic_lock(sc)) != 0)
7477 		return error;
7478 
7479 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7480 
7481 	/* Clear TX scheduler state in SRAM. */
7482 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7483 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
7484 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
7485 
7486 	/* Set physical address of TX scheduler rings (1KB aligned). */
7487 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7488 
7489 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7490 
7491 	/* Disable chain mode for all our 16 queues. */
7492 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
7493 
7494 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
7495 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
7496 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7497 
7498 		/* Set scheduler window size. */
7499 		iwn_mem_write(sc, sc->sched_base +
7500 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
7501 		/* Set scheduler frame limit. */
7502 		iwn_mem_write(sc, sc->sched_base +
7503 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7504 		    IWN_SCHED_LIMIT << 16);
7505 	}
7506 
7507 	/* Enable interrupts for all our 16 queues. */
7508 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
7509 	/* Identify TX FIFO rings (0-7). */
7510 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
7511 
7512 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7513 	for (qid = 0; qid < 7; qid++) {
7514 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
7515 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7516 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
7517 	}
7518 	iwn_nic_unlock(sc);
7519 	return 0;
7520 }
7521 
7522 /*
7523  * This function is called after the initialization or runtime firmware
7524  * notifies us of its readiness (called in a process context).
7525  */
7526 static int
7527 iwn5000_post_alive(struct iwn_softc *sc)
7528 {
7529 	int error, qid;
7530 
7531 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7532 
7533 	/* Switch to using ICT interrupt mode. */
7534 	iwn5000_ict_reset(sc);
7535 
7536 	if ((error = iwn_nic_lock(sc)) != 0){
7537 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
7538 		return error;
7539 	}
7540 
7541 	/* Clear TX scheduler state in SRAM. */
7542 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7543 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
7544 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
7545 
7546 	/* Set physical address of TX scheduler rings (1KB aligned). */
7547 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7548 
7549 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7550 
7551 	/* Enable chain mode for all queues, except command queue. */
7552 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
7553 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf);
7554 	else
7555 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
7556 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
7557 
7558 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
7559 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
7560 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7561 
7562 		iwn_mem_write(sc, sc->sched_base +
7563 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
7564 		/* Set scheduler window size and frame limit. */
7565 		iwn_mem_write(sc, sc->sched_base +
7566 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7567 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7568 	}
7569 
7570 	/* Enable interrupts for all our 20 queues. */
7571 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
7572 	/* Identify TX FIFO rings (0-7). */
7573 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
7574 
7575 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7576 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) {
7577 		/* Mark TX rings as active. */
7578 		for (qid = 0; qid < 11; qid++) {
7579 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 };
7580 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7581 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7582 		}
7583 	} else {
7584 		/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7585 		for (qid = 0; qid < 7; qid++) {
7586 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
7587 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7588 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7589 		}
7590 	}
7591 	iwn_nic_unlock(sc);
7592 
7593 	/* Configure WiMAX coexistence for combo adapters. */
7594 	error = iwn5000_send_wimax_coex(sc);
7595 	if (error != 0) {
7596 		device_printf(sc->sc_dev,
7597 		    "%s: could not configure WiMAX coexistence, error %d\n",
7598 		    __func__, error);
7599 		return error;
7600 	}
7601 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
7602 		/* Perform crystal calibration. */
7603 		error = iwn5000_crystal_calib(sc);
7604 		if (error != 0) {
7605 			device_printf(sc->sc_dev,
7606 			    "%s: crystal calibration failed, error %d\n",
7607 			    __func__, error);
7608 			return error;
7609 		}
7610 	}
7611 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
7612 		/* Query calibration from the initialization firmware. */
7613 		if ((error = iwn5000_query_calibration(sc)) != 0) {
7614 			device_printf(sc->sc_dev,
7615 			    "%s: could not query calibration, error %d\n",
7616 			    __func__, error);
7617 			return error;
7618 		}
7619 		/*
7620 		 * We have the calibration results now, reboot with the
7621 		 * runtime firmware (call ourselves recursively!)
7622 		 */
7623 		iwn_hw_stop(sc);
7624 		error = iwn_hw_init(sc);
7625 	} else {
7626 		/* Send calibration results to runtime firmware. */
7627 		error = iwn5000_send_calibration(sc);
7628 	}
7629 
7630 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7631 
7632 	return error;
7633 }
7634 
7635 /*
7636  * The firmware boot code is small and is intended to be copied directly into
7637  * the NIC internal memory (no DMA transfer).
7638  */
7639 static int
7640 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
7641 {
7642 	int error, ntries;
7643 
7644 	size /= sizeof (uint32_t);
7645 
7646 	if ((error = iwn_nic_lock(sc)) != 0)
7647 		return error;
7648 
7649 	/* Copy microcode image into NIC memory. */
7650 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
7651 	    (const uint32_t *)ucode, size);
7652 
7653 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
7654 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
7655 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
7656 
7657 	/* Start boot load now. */
7658 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
7659 
7660 	/* Wait for transfer to complete. */
7661 	for (ntries = 0; ntries < 1000; ntries++) {
7662 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
7663 		    IWN_BSM_WR_CTRL_START))
7664 			break;
7665 		DELAY(10);
7666 	}
7667 	if (ntries == 1000) {
7668 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7669 		    __func__);
7670 		iwn_nic_unlock(sc);
7671 		return ETIMEDOUT;
7672 	}
7673 
7674 	/* Enable boot after power up. */
7675 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
7676 
7677 	iwn_nic_unlock(sc);
7678 	return 0;
7679 }
7680 
7681 static int
7682 iwn4965_load_firmware(struct iwn_softc *sc)
7683 {
7684 	struct iwn_fw_info *fw = &sc->fw;
7685 	struct iwn_dma_info *dma = &sc->fw_dma;
7686 	int error;
7687 
7688 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
7689 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
7690 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7691 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7692 	    fw->init.text, fw->init.textsz);
7693 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7694 
7695 	/* Tell adapter where to find initialization sections. */
7696 	if ((error = iwn_nic_lock(sc)) != 0)
7697 		return error;
7698 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7699 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
7700 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7701 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7702 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
7703 	iwn_nic_unlock(sc);
7704 
7705 	/* Load firmware boot code. */
7706 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
7707 	if (error != 0) {
7708 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7709 		    __func__);
7710 		return error;
7711 	}
7712 	/* Now press "execute". */
7713 	IWN_WRITE(sc, IWN_RESET, 0);
7714 
7715 	/* Wait at most one second for first alive notification. */
7716 	if ((error = zsleep(sc, &wlan_global_serializer, 0, "iwninit", hz)) != 0) {
7717 		device_printf(sc->sc_dev,
7718 		    "%s: timeout waiting for adapter to initialize, error %d\n",
7719 		    __func__, error);
7720 		return error;
7721 	}
7722 
7723 	/* Retrieve current temperature for initial TX power calibration. */
7724 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
7725 	sc->temp = iwn4965_get_temperature(sc);
7726 
7727 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
7728 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
7729 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7730 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7731 	    fw->main.text, fw->main.textsz);
7732 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7733 
7734 	/* Tell adapter where to find runtime sections. */
7735 	if ((error = iwn_nic_lock(sc)) != 0)
7736 		return error;
7737 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7738 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
7739 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7740 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7741 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
7742 	    IWN_FW_UPDATED | fw->main.textsz);
7743 	iwn_nic_unlock(sc);
7744 
7745 	return 0;
7746 }
7747 
7748 static int
7749 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
7750     const uint8_t *section, int size)
7751 {
7752 	struct iwn_dma_info *dma = &sc->fw_dma;
7753 	int error;
7754 
7755 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7756 
7757 	/* Copy firmware section into pre-allocated DMA-safe memory. */
7758 	memcpy(dma->vaddr, section, size);
7759 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7760 
7761 	if ((error = iwn_nic_lock(sc)) != 0)
7762 		return error;
7763 
7764 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
7765 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
7766 
7767 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
7768 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
7769 	    IWN_LOADDR(dma->paddr));
7770 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
7771 	    IWN_HIADDR(dma->paddr) << 28 | size);
7772 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
7773 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
7774 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
7775 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
7776 
7777 	/* Kick Flow Handler to start DMA transfer. */
7778 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
7779 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
7780 
7781 	iwn_nic_unlock(sc);
7782 
7783 	/* Wait at most five seconds for FH DMA transfer to complete. */
7784 	return zsleep(sc, &wlan_global_serializer, 0, "iwninit", 5 * hz);
7785 }
7786 
7787 static int
7788 iwn5000_load_firmware(struct iwn_softc *sc)
7789 {
7790 	struct iwn_fw_part *fw;
7791 	int error;
7792 
7793 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7794 
7795 	/* Load the initialization firmware on first boot only. */
7796 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
7797 	    &sc->fw.main : &sc->fw.init;
7798 
7799 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
7800 	    fw->text, fw->textsz);
7801 	if (error != 0) {
7802 		device_printf(sc->sc_dev,
7803 		    "%s: could not load firmware %s section, error %d\n",
7804 		    __func__, ".text", error);
7805 		return error;
7806 	}
7807 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
7808 	    fw->data, fw->datasz);
7809 	if (error != 0) {
7810 		device_printf(sc->sc_dev,
7811 		    "%s: could not load firmware %s section, error %d\n",
7812 		    __func__, ".data", error);
7813 		return error;
7814 	}
7815 
7816 	/* Now press "execute". */
7817 	IWN_WRITE(sc, IWN_RESET, 0);
7818 	return 0;
7819 }
7820 
7821 /*
7822  * Extract text and data sections from a legacy firmware image.
7823  */
7824 static int
7825 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
7826 {
7827 	const uint32_t *ptr;
7828 	size_t hdrlen = 24;
7829 	uint32_t rev;
7830 
7831 	ptr = (const uint32_t *)fw->data;
7832 	rev = le32toh(*ptr++);
7833 
7834 	/* Check firmware API version. */
7835 	if (IWN_FW_API(rev) <= 1) {
7836 		device_printf(sc->sc_dev,
7837 		    "%s: bad firmware, need API version >=2\n", __func__);
7838 		return EINVAL;
7839 	}
7840 	if (IWN_FW_API(rev) >= 3) {
7841 		/* Skip build number (version 2 header). */
7842 		hdrlen += 4;
7843 		ptr++;
7844 	}
7845 	if (fw->size < hdrlen) {
7846 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
7847 		    __func__, fw->size);
7848 		return EINVAL;
7849 	}
7850 	fw->main.textsz = le32toh(*ptr++);
7851 	fw->main.datasz = le32toh(*ptr++);
7852 	fw->init.textsz = le32toh(*ptr++);
7853 	fw->init.datasz = le32toh(*ptr++);
7854 	fw->boot.textsz = le32toh(*ptr++);
7855 
7856 	/* Check that all firmware sections fit. */
7857 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
7858 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
7859 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
7860 		    __func__, fw->size);
7861 		return EINVAL;
7862 	}
7863 
7864 	/* Get pointers to firmware sections. */
7865 	fw->main.text = (const uint8_t *)ptr;
7866 	fw->main.data = fw->main.text + fw->main.textsz;
7867 	fw->init.text = fw->main.data + fw->main.datasz;
7868 	fw->init.data = fw->init.text + fw->init.textsz;
7869 	fw->boot.text = fw->init.data + fw->init.datasz;
7870 	return 0;
7871 }
7872 
7873 /*
7874  * Extract text and data sections from a TLV firmware image.
7875  */
7876 static int
7877 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
7878     uint16_t alt)
7879 {
7880 	const struct iwn_fw_tlv_hdr *hdr;
7881 	const struct iwn_fw_tlv *tlv;
7882 	const uint8_t *ptr, *end;
7883 	uint64_t altmask;
7884 	uint32_t len, tmp;
7885 
7886 	if (fw->size < sizeof (*hdr)) {
7887 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
7888 		    __func__, fw->size);
7889 		return EINVAL;
7890 	}
7891 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
7892 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
7893 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
7894 		    __func__, le32toh(hdr->signature));
7895 		return EINVAL;
7896 	}
7897 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
7898 	    le32toh(hdr->build));
7899 
7900 	/*
7901 	 * Select the closest supported alternative that is less than
7902 	 * or equal to the specified one.
7903 	 */
7904 	altmask = le64toh(hdr->altmask);
7905 	while (alt > 0 && !(altmask & (1ULL << alt)))
7906 		alt--;	/* Downgrade. */
7907 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
7908 
7909 	ptr = (const uint8_t *)(hdr + 1);
7910 	end = (const uint8_t *)(fw->data + fw->size);
7911 
7912 	/* Parse type-length-value fields. */
7913 	while (ptr + sizeof (*tlv) <= end) {
7914 		tlv = (const struct iwn_fw_tlv *)ptr;
7915 		len = le32toh(tlv->len);
7916 
7917 		ptr += sizeof (*tlv);
7918 		if (ptr + len > end) {
7919 			device_printf(sc->sc_dev,
7920 			    "%s: firmware too short: %zu bytes\n", __func__,
7921 			    fw->size);
7922 			return EINVAL;
7923 		}
7924 		/* Skip other alternatives. */
7925 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
7926 			goto next;
7927 
7928 		switch (le16toh(tlv->type)) {
7929 		case IWN_FW_TLV_MAIN_TEXT:
7930 			fw->main.text = ptr;
7931 			fw->main.textsz = len;
7932 			break;
7933 		case IWN_FW_TLV_MAIN_DATA:
7934 			fw->main.data = ptr;
7935 			fw->main.datasz = len;
7936 			break;
7937 		case IWN_FW_TLV_INIT_TEXT:
7938 			fw->init.text = ptr;
7939 			fw->init.textsz = len;
7940 			break;
7941 		case IWN_FW_TLV_INIT_DATA:
7942 			fw->init.data = ptr;
7943 			fw->init.datasz = len;
7944 			break;
7945 		case IWN_FW_TLV_BOOT_TEXT:
7946 			fw->boot.text = ptr;
7947 			fw->boot.textsz = len;
7948 			break;
7949 		case IWN_FW_TLV_ENH_SENS:
7950 			if (!len)
7951 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
7952 			break;
7953 		case IWN_FW_TLV_PHY_CALIB:
7954 			tmp = le32toh(*ptr);
7955 			if (tmp < 253) {
7956 				sc->reset_noise_gain = tmp;
7957 				sc->noise_gain = tmp + 1;
7958 			}
7959 			break;
7960 		case IWN_FW_TLV_PAN:
7961 			sc->sc_flags |= IWN_FLAG_PAN_SUPPORT;
7962 			DPRINTF(sc, IWN_DEBUG_RESET,
7963 			    "PAN Support found: %d\n", 1);
7964 			break;
7965 		case IWN_FW_TLV_FLAGS:
7966 			if (len < sizeof(uint32_t))
7967 				break;
7968 			if (len % sizeof(uint32_t))
7969 				break;
7970 			sc->tlv_feature_flags = le32toh(*ptr);
7971 			DPRINTF(sc, IWN_DEBUG_RESET,
7972 			    "%s: feature: 0x%08x\n",
7973 			    __func__,
7974 			    sc->tlv_feature_flags);
7975 			break;
7976 		case IWN_FW_TLV_PBREQ_MAXLEN:
7977 		case IWN_FW_TLV_RUNT_EVTLOG_PTR:
7978 		case IWN_FW_TLV_RUNT_EVTLOG_SIZE:
7979 		case IWN_FW_TLV_RUNT_ERRLOG_PTR:
7980 		case IWN_FW_TLV_INIT_EVTLOG_PTR:
7981 		case IWN_FW_TLV_INIT_EVTLOG_SIZE:
7982 		case IWN_FW_TLV_INIT_ERRLOG_PTR:
7983 		case IWN_FW_TLV_WOWLAN_INST:
7984 		case IWN_FW_TLV_WOWLAN_DATA:
7985 			DPRINTF(sc, IWN_DEBUG_RESET,
7986 			    "TLV type %d recognized but not handled\n",
7987 			    le16toh(tlv->type));
7988 			break;
7989 		default:
7990 			DPRINTF(sc, IWN_DEBUG_RESET,
7991 			    "TLV type %d not handled\n", le16toh(tlv->type));
7992 			break;
7993 		}
7994  next:		/* TLV fields are 32-bit aligned. */
7995 		ptr += (len + 3) & ~3;
7996 	}
7997 	return 0;
7998 }
7999 
8000 static int
8001 iwn_read_firmware(struct iwn_softc *sc)
8002 {
8003 	struct iwn_fw_info *fw = &sc->fw;
8004 	int error;
8005 
8006 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8007 
8008 	wlan_assert_serialized();
8009 	memset(fw, 0, sizeof (*fw));
8010 
8011 	/*
8012 	 * Read firmware image from filesystem.  The firmware can block
8013 	 * in a taskq and deadlock against our serializer so unlock
8014 	 * while we do tihs.
8015 	 */
8016 	wlan_serialize_exit();
8017 	sc->fw_fp = firmware_get(sc->fwname);
8018 	wlan_serialize_enter();
8019 	if (sc->fw_fp == NULL) {
8020 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
8021 		    __func__, sc->fwname);
8022 		return EINVAL;
8023 	}
8024 
8025 	fw->size = sc->fw_fp->datasize;
8026 	fw->data = (const uint8_t *)sc->fw_fp->data;
8027 	if (fw->size < sizeof (uint32_t)) {
8028 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8029 		    __func__, fw->size);
8030 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8031 		sc->fw_fp = NULL;
8032 		return EINVAL;
8033 	}
8034 
8035 	/* Retrieve text and data sections. */
8036 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
8037 		error = iwn_read_firmware_leg(sc, fw);
8038 	else
8039 		error = iwn_read_firmware_tlv(sc, fw, 1);
8040 	if (error != 0) {
8041 		device_printf(sc->sc_dev,
8042 		    "%s: could not read firmware sections, error %d\n",
8043 		    __func__, error);
8044 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8045 		sc->fw_fp = NULL;
8046 		return error;
8047 	}
8048 
8049 	/* Make sure text and data sections fit in hardware memory. */
8050 	if (fw->main.textsz > sc->fw_text_maxsz ||
8051 	    fw->main.datasz > sc->fw_data_maxsz ||
8052 	    fw->init.textsz > sc->fw_text_maxsz ||
8053 	    fw->init.datasz > sc->fw_data_maxsz ||
8054 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
8055 	    (fw->boot.textsz & 3) != 0) {
8056 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
8057 		    __func__);
8058 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8059 		sc->fw_fp = NULL;
8060 		return EINVAL;
8061 	}
8062 
8063 	/* We can proceed with loading the firmware. */
8064 	return 0;
8065 }
8066 
8067 static int
8068 iwn_clock_wait(struct iwn_softc *sc)
8069 {
8070 	int ntries;
8071 
8072 	/* Set "initialization complete" bit. */
8073 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8074 
8075 	/* Wait for clock stabilization. */
8076 	for (ntries = 0; ntries < 2500; ntries++) {
8077 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
8078 			return 0;
8079 		DELAY(10);
8080 	}
8081 	device_printf(sc->sc_dev,
8082 	    "%s: timeout waiting for clock stabilization\n", __func__);
8083 	return ETIMEDOUT;
8084 }
8085 
8086 static int
8087 iwn_apm_init(struct iwn_softc *sc)
8088 {
8089 	uint32_t reg;
8090 	int error;
8091 
8092 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8093 
8094 	/* Disable L0s exit timer (NMI bug workaround). */
8095 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
8096 	/* Don't wait for ICH L0s (ICH bug workaround). */
8097 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
8098 
8099 	/* Set FH wait threshold to max (HW bug under stress workaround). */
8100 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
8101 
8102 	/* Enable HAP INTA to move adapter from L1a to L0s. */
8103 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
8104 
8105 	/* Retrieve PCIe Active State Power Management (ASPM). */
8106 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
8107 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
8108 	if (reg & 0x02)	/* L1 Entry enabled. */
8109 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8110 	else
8111 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8112 
8113 	if (sc->base_params->pll_cfg_val)
8114 		IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val);
8115 
8116 	/* Wait for clock stabilization before accessing prph. */
8117 	if ((error = iwn_clock_wait(sc)) != 0)
8118 		return error;
8119 
8120 	if ((error = iwn_nic_lock(sc)) != 0)
8121 		return error;
8122 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
8123 		/* Enable DMA and BSM (Bootstrap State Machine). */
8124 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8125 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
8126 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
8127 	} else {
8128 		/* Enable DMA. */
8129 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8130 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8131 	}
8132 	DELAY(20);
8133 	/* Disable L1-Active. */
8134 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
8135 	iwn_nic_unlock(sc);
8136 
8137 	return 0;
8138 }
8139 
8140 static void
8141 iwn_apm_stop_master(struct iwn_softc *sc)
8142 {
8143 	int ntries;
8144 
8145 	/* Stop busmaster DMA activity. */
8146 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
8147 	for (ntries = 0; ntries < 100; ntries++) {
8148 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
8149 			return;
8150 		DELAY(10);
8151 	}
8152 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
8153 }
8154 
8155 static void
8156 iwn_apm_stop(struct iwn_softc *sc)
8157 {
8158 	iwn_apm_stop_master(sc);
8159 
8160 	/* Reset the entire device. */
8161 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
8162 	DELAY(10);
8163 	/* Clear "initialization complete" bit. */
8164 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8165 }
8166 
8167 static int
8168 iwn4965_nic_config(struct iwn_softc *sc)
8169 {
8170 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8171 
8172 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
8173 		/*
8174 		 * I don't believe this to be correct but this is what the
8175 		 * vendor driver is doing. Probably the bits should not be
8176 		 * shifted in IWN_RFCFG_*.
8177 		 */
8178 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8179 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8180 		    IWN_RFCFG_STEP(sc->rfcfg) |
8181 		    IWN_RFCFG_DASH(sc->rfcfg));
8182 	}
8183 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8184 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8185 	return 0;
8186 }
8187 
8188 static int
8189 iwn5000_nic_config(struct iwn_softc *sc)
8190 {
8191 	uint32_t tmp;
8192 	int error;
8193 
8194 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8195 
8196 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
8197 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8198 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8199 		    IWN_RFCFG_STEP(sc->rfcfg) |
8200 		    IWN_RFCFG_DASH(sc->rfcfg));
8201 	}
8202 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8203 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8204 
8205 	if ((error = iwn_nic_lock(sc)) != 0)
8206 		return error;
8207 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
8208 
8209 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
8210 		/*
8211 		 * Select first Switching Voltage Regulator (1.32V) to
8212 		 * solve a stability issue related to noisy DC2DC line
8213 		 * in the silicon of 1000 Series.
8214 		 */
8215 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
8216 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
8217 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
8218 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
8219 	}
8220 	iwn_nic_unlock(sc);
8221 
8222 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
8223 		/* Use internal power amplifier only. */
8224 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
8225 	}
8226 	if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) {
8227 		/* Indicate that ROM calibration version is >=6. */
8228 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
8229 	}
8230 	if (sc->base_params->additional_gp_drv_bit)
8231 		IWN_SETBITS(sc, IWN_GP_DRIVER,
8232 		    sc->base_params->additional_gp_drv_bit);
8233 	return 0;
8234 }
8235 
8236 /*
8237  * Take NIC ownership over Intel Active Management Technology (AMT).
8238  */
8239 static int
8240 iwn_hw_prepare(struct iwn_softc *sc)
8241 {
8242 	int ntries;
8243 
8244 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8245 
8246 	/* Check if hardware is ready. */
8247 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8248 	for (ntries = 0; ntries < 5; ntries++) {
8249 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8250 		    IWN_HW_IF_CONFIG_NIC_READY)
8251 			return 0;
8252 		DELAY(10);
8253 	}
8254 
8255 	/* Hardware not ready, force into ready state. */
8256 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
8257 	for (ntries = 0; ntries < 15000; ntries++) {
8258 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
8259 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
8260 			break;
8261 		DELAY(10);
8262 	}
8263 	if (ntries == 15000)
8264 		return ETIMEDOUT;
8265 
8266 	/* Hardware should be ready now. */
8267 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8268 	for (ntries = 0; ntries < 5; ntries++) {
8269 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8270 		    IWN_HW_IF_CONFIG_NIC_READY)
8271 			return 0;
8272 		DELAY(10);
8273 	}
8274 	return ETIMEDOUT;
8275 }
8276 
8277 static int
8278 iwn_hw_init(struct iwn_softc *sc)
8279 {
8280 	struct iwn_ops *ops = &sc->ops;
8281 	int error, chnl, qid;
8282 
8283 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8284 
8285 	/* Clear pending interrupts. */
8286 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8287 
8288 	if ((error = iwn_apm_init(sc)) != 0) {
8289 		device_printf(sc->sc_dev,
8290 		    "%s: could not power ON adapter, error %d\n", __func__,
8291 		    error);
8292 		return error;
8293 	}
8294 
8295 	/* Select VMAIN power source. */
8296 	if ((error = iwn_nic_lock(sc)) != 0)
8297 		return error;
8298 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
8299 	iwn_nic_unlock(sc);
8300 
8301 	/* Perform adapter-specific initialization. */
8302 	if ((error = ops->nic_config(sc)) != 0)
8303 		return error;
8304 
8305 	/* Initialize RX ring. */
8306 	if ((error = iwn_nic_lock(sc)) != 0)
8307 		return error;
8308 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
8309 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
8310 	/* Set physical address of RX ring (256-byte aligned). */
8311 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
8312 	/* Set physical address of RX status (16-byte aligned). */
8313 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
8314 	/* Enable RX. */
8315 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
8316 	    IWN_FH_RX_CONFIG_ENA           |
8317 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
8318 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
8319 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
8320 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
8321 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
8322 	iwn_nic_unlock(sc);
8323 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
8324 
8325 	if ((error = iwn_nic_lock(sc)) != 0)
8326 		return error;
8327 
8328 	/* Initialize TX scheduler. */
8329 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8330 
8331 	/* Set physical address of "keep warm" page (16-byte aligned). */
8332 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
8333 
8334 	/* Initialize TX rings. */
8335 	for (qid = 0; qid < sc->ntxqs; qid++) {
8336 		struct iwn_tx_ring *txq = &sc->txq[qid];
8337 
8338 		/* Set physical address of TX ring (256-byte aligned). */
8339 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
8340 		    txq->desc_dma.paddr >> 8);
8341 	}
8342 	iwn_nic_unlock(sc);
8343 
8344 	/* Enable DMA channels. */
8345 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8346 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
8347 		    IWN_FH_TX_CONFIG_DMA_ENA |
8348 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
8349 	}
8350 
8351 	/* Clear "radio off" and "commands blocked" bits. */
8352 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8353 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
8354 
8355 	/* Clear pending interrupts. */
8356 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8357 	/* Enable interrupt coalescing. */
8358 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
8359 	/* Enable interrupts. */
8360 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8361 
8362 	/* _Really_ make sure "radio off" bit is cleared! */
8363 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8364 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8365 
8366 	/* Enable shadow registers. */
8367 	if (sc->base_params->shadow_reg_enable)
8368 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
8369 
8370 	if ((error = ops->load_firmware(sc)) != 0) {
8371 		device_printf(sc->sc_dev,
8372 		    "%s: could not load firmware, error %d\n", __func__,
8373 		    error);
8374 		return error;
8375 	}
8376 	/* Wait at most one second for firmware alive notification. */
8377 	if ((error = zsleep(sc, &wlan_global_serializer, 0, "iwninit", hz)) != 0) {
8378 		device_printf(sc->sc_dev,
8379 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8380 		    __func__, error);
8381 		return error;
8382 	}
8383 	/* Do post-firmware initialization. */
8384 
8385 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8386 
8387 	return ops->post_alive(sc);
8388 }
8389 
8390 static void
8391 iwn_hw_stop(struct iwn_softc *sc)
8392 {
8393 	int chnl, qid, ntries;
8394 
8395 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8396 
8397 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
8398 
8399 	/* Disable interrupts. */
8400 	IWN_WRITE(sc, IWN_INT_MASK, 0);
8401 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8402 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
8403 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8404 
8405 	/* Make sure we no longer hold the NIC lock. */
8406 	iwn_nic_unlock(sc);
8407 
8408 	/* Stop TX scheduler. */
8409 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8410 
8411 	/* Stop all DMA channels. */
8412 	if (iwn_nic_lock(sc) == 0) {
8413 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8414 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
8415 			for (ntries = 0; ntries < 200; ntries++) {
8416 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
8417 				    IWN_FH_TX_STATUS_IDLE(chnl))
8418 					break;
8419 				DELAY(10);
8420 			}
8421 		}
8422 		iwn_nic_unlock(sc);
8423 	}
8424 
8425 	/* Stop RX ring. */
8426 	iwn_reset_rx_ring(sc, &sc->rxq);
8427 
8428 	/* Reset all TX rings. */
8429 	for (qid = 0; qid < sc->ntxqs; qid++)
8430 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
8431 
8432 	if (iwn_nic_lock(sc) == 0) {
8433 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
8434 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8435 		iwn_nic_unlock(sc);
8436 	}
8437 	DELAY(5);
8438 	/* Power OFF adapter. */
8439 	iwn_apm_stop(sc);
8440 }
8441 
8442 static void
8443 iwn_radio_on_task(void *arg0, int pending)
8444 {
8445 	struct iwn_softc *sc = arg0;
8446 	struct ifnet *ifp;
8447 	struct ieee80211com *ic;
8448 	struct ieee80211vap *vap;
8449 
8450 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8451 
8452 	wlan_serialize_enter();
8453 	ifp = sc->sc_ifp;
8454 	ic = ifp->if_l2com;
8455 	vap = TAILQ_FIRST(&ic->ic_vaps);
8456 	if (vap != NULL) {
8457 		iwn_init_locked(sc);
8458 		ieee80211_init(vap);
8459 	}
8460 	wlan_serialize_exit();
8461 }
8462 
8463 static void
8464 iwn_radio_off_task(void *arg0, int pending)
8465 {
8466 	struct iwn_softc *sc = arg0;
8467 	struct ifnet *ifp;
8468 	struct ieee80211com *ic;
8469 	struct ieee80211vap *vap;
8470 
8471 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8472 
8473 	wlan_serialize_enter();
8474 	ifp = sc->sc_ifp;
8475 	ic = ifp->if_l2com;
8476 	vap = TAILQ_FIRST(&ic->ic_vaps);
8477 	iwn_stop_locked(sc);
8478 	if (vap != NULL)
8479 		ieee80211_stop(vap);
8480 
8481 	/* Enable interrupts to get RF toggle notification. */
8482 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8483 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8484 	wlan_serialize_exit();
8485 }
8486 
8487 static void
8488 iwn_panicked_task(void *arg0, int pending)
8489 {
8490 	struct iwn_softc *sc = arg0;
8491 	struct ifnet *ifp = sc->sc_ifp;
8492 	struct ieee80211com *ic = ifp->if_l2com;
8493 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8494 	int error;
8495 
8496 	if (vap == NULL) {
8497 		kprintf("%s: null vap\n", __func__);
8498 		return;
8499 	}
8500 
8501 	device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
8502 	    "resetting...\n", __func__, vap->iv_state);
8503 
8504 	wlan_serialize_enter();
8505 
8506 	iwn_stop_locked(sc);
8507 	iwn_init_locked(sc);
8508 	if (vap->iv_state >= IEEE80211_S_AUTH &&
8509 	    (error = iwn_auth(sc, vap)) != 0) {
8510 		device_printf(sc->sc_dev,
8511 		    "%s: could not move to auth state\n", __func__);
8512 	}
8513 	if (vap->iv_state >= IEEE80211_S_RUN &&
8514 	    (error = iwn_run(sc, vap)) != 0) {
8515 		device_printf(sc->sc_dev,
8516 		    "%s: could not move to run state\n", __func__);
8517 	}
8518 
8519 	/* Only run start once the NIC is in a useful state, like associated */
8520 	iwn_start_locked(sc->sc_ifp);
8521 
8522 	wlan_serialize_exit();
8523 }
8524 
8525 static void
8526 iwn_init_locked(struct iwn_softc *sc)
8527 {
8528 	struct ifnet *ifp = sc->sc_ifp;
8529 	int error;
8530 
8531 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8532 
8533 	/*
8534 	 * Make sure we hold the serializer or we will have timing issues
8535 	 * with the wlan subsystem.
8536 	 */
8537 	wlan_assert_serialized();
8538 	if ((error = iwn_hw_prepare(sc)) != 0) {
8539 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
8540 		    __func__, error);
8541 		goto fail;
8542 	}
8543 
8544 	/* Initialize interrupt mask to default value. */
8545 	sc->int_mask = IWN_INT_MASK_DEF;
8546 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8547 
8548 	/* Check that the radio is not disabled by hardware switch. */
8549 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
8550 		device_printf(sc->sc_dev,
8551 		    "radio is disabled by hardware switch\n");
8552 		/* Enable interrupts to get RF toggle notifications. */
8553 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
8554 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8555 		return;
8556 	}
8557 
8558 	/* Read firmware images from the filesystem. */
8559 	if ((error = iwn_read_firmware(sc)) != 0) {
8560 		device_printf(sc->sc_dev,
8561 		    "%s: could not read firmware, error %d\n", __func__,
8562 		    error);
8563 		goto fail;
8564 	}
8565 
8566 	/* Initialize hardware and upload firmware. */
8567 	error = iwn_hw_init(sc);
8568 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8569 	sc->fw_fp = NULL;
8570 	if (error != 0) {
8571 		device_printf(sc->sc_dev,
8572 		    "%s: could not initialize hardware, error %d\n", __func__,
8573 		    error);
8574 		goto fail;
8575 	}
8576 
8577 	/* Configure adapter now that it is ready. */
8578 	if ((error = iwn_config(sc)) != 0) {
8579 		device_printf(sc->sc_dev,
8580 		    "%s: could not configure device, error %d\n", __func__,
8581 		    error);
8582 		goto fail;
8583 	}
8584 
8585 	ifq_clr_oactive(&ifp->if_snd);
8586 	ifp->if_flags |= IFF_RUNNING;
8587 
8588 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog_timeout, sc);
8589 
8590 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8591 
8592 	return;
8593 
8594 fail:	iwn_stop_locked(sc);
8595 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
8596 }
8597 
8598 static void
8599 iwn_init(void *arg)
8600 {
8601 	struct iwn_softc *sc = arg;
8602 	struct ifnet *ifp = sc->sc_ifp;
8603 	struct ieee80211com *ic = ifp->if_l2com;
8604 
8605 	wlan_assert_serialized();
8606 	iwn_init_locked(sc);
8607 
8608 	if (ifp->if_flags & IFF_RUNNING)
8609 		ieee80211_start_all(ic);
8610 }
8611 
8612 static void
8613 iwn_stop_locked(struct iwn_softc *sc)
8614 {
8615 	struct ifnet *ifp = sc->sc_ifp;
8616 
8617 	sc->sc_is_scanning = 0;
8618 	sc->sc_tx_timer = 0;
8619 	callout_stop(&sc->watchdog_to);
8620 	callout_stop(&sc->calib_to);
8621 	ifp->if_flags &= ~IFF_RUNNING;
8622 	ifq_clr_oactive(&ifp->if_snd);
8623 
8624 	/* Power OFF hardware. */
8625 	iwn_hw_stop(sc);
8626 }
8627 
8628 /*
8629  * Callback from net80211 to start a scan.
8630  */
8631 static void
8632 iwn_scan_start(struct ieee80211com *ic)
8633 {
8634 	struct ifnet *ifp = ic->ic_ifp;
8635 	struct iwn_softc *sc = ifp->if_softc;
8636 
8637 	/* make the link LED blink while we're scanning */
8638 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
8639 }
8640 
8641 /*
8642  * Callback from net80211 to terminate a scan.
8643  */
8644 static void
8645 iwn_scan_end(struct ieee80211com *ic)
8646 {
8647 	struct ifnet *ifp = ic->ic_ifp;
8648 	struct iwn_softc *sc = ifp->if_softc;
8649 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8650 
8651 	if (vap->iv_state == IEEE80211_S_RUN) {
8652 		/* Set link LED to ON status if we are associated */
8653 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
8654 	}
8655 }
8656 
8657 /*
8658  * Callback from net80211 to force a channel change.
8659  */
8660 static void
8661 iwn_set_channel(struct ieee80211com *ic)
8662 {
8663 	const struct ieee80211_channel *c = ic->ic_curchan;
8664 	struct ifnet *ifp = ic->ic_ifp;
8665 	struct iwn_softc *sc = ifp->if_softc;
8666 	int error;
8667 
8668 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8669 
8670 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
8671 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
8672 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
8673 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
8674 
8675 	/*
8676 	 * Only need to set the channel in Monitor mode. AP scanning and auth
8677 	 * are already taken care of by their respective firmware commands.
8678 	 */
8679 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
8680 		error = iwn_config(sc);
8681 		if (error != 0)
8682 		device_printf(sc->sc_dev,
8683 		    "%s: error %d settting channel\n", __func__, error);
8684 	}
8685 }
8686 
8687 /*
8688  * Callback from net80211 to start scanning of the current channel.
8689  */
8690 static void
8691 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
8692 {
8693 	struct ieee80211vap *vap = ss->ss_vap;
8694 	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
8695 	struct ieee80211com *ic = vap->iv_ic;
8696 	int error;
8697 
8698 	error = iwn_scan(sc, vap, ss, ic->ic_curchan);
8699 	if (error != 0)
8700 		ieee80211_cancel_scan(vap);
8701 }
8702 
8703 /*
8704  * Callback from net80211 to handle the minimum dwell time being met.
8705  * The intent is to terminate the scan but we just let the firmware
8706  * notify us when it's finished as we have no safe way to abort it.
8707  */
8708 static void
8709 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
8710 {
8711 	/* NB: don't try to abort scan; wait for firmware to finish */
8712 }
8713 
8714 static void
8715 iwn_hw_reset_task(void *arg0, int pending)
8716 {
8717 	struct iwn_softc *sc = arg0;
8718 	struct ifnet *ifp;
8719 	struct ieee80211com *ic;
8720 
8721 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8722 
8723 	wlan_serialize_enter();
8724 	ifp = sc->sc_ifp;
8725 	ic = ifp->if_l2com;
8726 	iwn_stop_locked(sc);
8727 	iwn_init_locked(sc);
8728 	ieee80211_notify_radio(ic, 1);
8729 	wlan_serialize_exit();
8730 }
8731 #ifdef	IWN_DEBUG
8732 #define	IWN_DESC(x) case x:	return #x
8733 #define	COUNTOF(array) (sizeof(array) / sizeof(array[0]))
8734 
8735 /*
8736  * Translate CSR code to string
8737  */
8738 static char *iwn_get_csr_string(int csr)
8739 {
8740 	switch (csr) {
8741 		IWN_DESC(IWN_HW_IF_CONFIG);
8742 		IWN_DESC(IWN_INT_COALESCING);
8743 		IWN_DESC(IWN_INT);
8744 		IWN_DESC(IWN_INT_MASK);
8745 		IWN_DESC(IWN_FH_INT);
8746 		IWN_DESC(IWN_GPIO_IN);
8747 		IWN_DESC(IWN_RESET);
8748 		IWN_DESC(IWN_GP_CNTRL);
8749 		IWN_DESC(IWN_HW_REV);
8750 		IWN_DESC(IWN_EEPROM);
8751 		IWN_DESC(IWN_EEPROM_GP);
8752 		IWN_DESC(IWN_OTP_GP);
8753 		IWN_DESC(IWN_GIO);
8754 		IWN_DESC(IWN_GP_UCODE);
8755 		IWN_DESC(IWN_GP_DRIVER);
8756 		IWN_DESC(IWN_UCODE_GP1);
8757 		IWN_DESC(IWN_UCODE_GP2);
8758 		IWN_DESC(IWN_LED);
8759 		IWN_DESC(IWN_DRAM_INT_TBL);
8760 		IWN_DESC(IWN_GIO_CHICKEN);
8761 		IWN_DESC(IWN_ANA_PLL);
8762 		IWN_DESC(IWN_HW_REV_WA);
8763 		IWN_DESC(IWN_DBG_HPET_MEM);
8764 	default:
8765 		return "UNKNOWN CSR";
8766 	}
8767 }
8768 
8769 /*
8770  * This function print firmware register
8771  */
8772 static void
8773 iwn_debug_register(struct iwn_softc *sc)
8774 {
8775 	int i;
8776 	static const uint32_t csr_tbl[] = {
8777 		IWN_HW_IF_CONFIG,
8778 		IWN_INT_COALESCING,
8779 		IWN_INT,
8780 		IWN_INT_MASK,
8781 		IWN_FH_INT,
8782 		IWN_GPIO_IN,
8783 		IWN_RESET,
8784 		IWN_GP_CNTRL,
8785 		IWN_HW_REV,
8786 		IWN_EEPROM,
8787 		IWN_EEPROM_GP,
8788 		IWN_OTP_GP,
8789 		IWN_GIO,
8790 		IWN_GP_UCODE,
8791 		IWN_GP_DRIVER,
8792 		IWN_UCODE_GP1,
8793 		IWN_UCODE_GP2,
8794 		IWN_LED,
8795 		IWN_DRAM_INT_TBL,
8796 		IWN_GIO_CHICKEN,
8797 		IWN_ANA_PLL,
8798 		IWN_HW_REV_WA,
8799 		IWN_DBG_HPET_MEM,
8800 	};
8801 	DPRINTF(sc, IWN_DEBUG_REGISTER,
8802 	    "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s",
8803 	    "\n");
8804 	for (i = 0; i <  COUNTOF(csr_tbl); i++){
8805 		DPRINTF(sc, IWN_DEBUG_REGISTER,"  %10s: 0x%08x ",
8806 			iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i]));
8807 		if ((i+1) % 3 == 0)
8808 			DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
8809 	}
8810 	DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
8811 }
8812 #endif
8813