xref: /dragonfly/sys/dev/netif/iwn/if_iwn.c (revision f7df6c8e)
1 /*-
2  * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr>
3  * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org>
4  * Copyright (c) 2008 Sam Leffler, Errno Consulting
5  * Copyright (c) 2011 Intel Corporation
6  * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr>
7  * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  *
21  * $FreeBSD: head/sys/dev/iwn/if_iwn.c 258118 2013-11-14 07:27:00Z adrian $
22  */
23 
24 /*
25  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
26  * adapters.
27  */
28 
29 #include "opt_wlan.h"
30 #include "opt_iwn.h"
31 
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/sysctl.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/socket.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/stdbool.h>
41 #include <sys/bus.h>
42 #include <sys/rman.h>
43 #include <sys/endian.h>
44 #include <sys/firmware.h>
45 #include <sys/limits.h>
46 #include <sys/module.h>
47 #include <sys/queue.h>
48 #include <sys/taskqueue.h>
49 #include <sys/libkern.h>
50 
51 #include <sys/resource.h>
52 #include <machine/clock.h>
53 
54 #include <bus/pci/pcireg.h>
55 #include <bus/pci/pcivar.h>
56 
57 #include <net/bpf.h>
58 #include <net/if.h>
59 #include <net/if_var.h>
60 #include <net/if_arp.h>
61 #include <net/ifq_var.h>
62 #include <net/ethernet.h>
63 #include <net/if_dl.h>
64 #include <net/if_media.h>
65 #include <net/if_types.h>
66 
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/in_var.h>
70 #include <netinet/if_ether.h>
71 #include <netinet/ip.h>
72 
73 #include <netproto/802_11/ieee80211_var.h>
74 #include <netproto/802_11/ieee80211_radiotap.h>
75 #include <netproto/802_11/ieee80211_regdomain.h>
76 #include <netproto/802_11/ieee80211_ratectl.h>
77 
78 #include "if_iwnreg.h"
79 #include "if_iwnvar.h"
80 #include "if_iwn_devid.h"
81 #include "if_iwn_chip_cfg.h"
82 #include "if_iwn_debug.h"
83 #include "if_iwn_ioctl.h"
84 
85 #define IWN_LOCK(sc)
86 #define IWN_UNLOCK(sc)
87 
88 struct iwn_ident {
89 	uint16_t	vendor;
90 	uint16_t	device;
91 	const char	*name;
92 };
93 
94 static const struct iwn_ident iwn_ident_table[] = {
95 	{ 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205"		},
96 	{ 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000"		},
97 	{ 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000"		},
98 	{ 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205"		},
99 	{ 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250"	},
100 	{ 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250"	},
101 	{ 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030"		},
102 	{ 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030"		},
103 	{ 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230"		},
104 	{ 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230"		},
105 	{ 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150"	},
106 	{ 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150"	},
107 	{ 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
108 	{ 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
109 	/* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */
110 	{ 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230"		},
111 	{ 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230"		},
112 	{ 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130"		},
113 	{ 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130"		},
114 	{ 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100"		},
115 	{ 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100"		},
116 	{ 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105"		},
117 	{ 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105"		},
118 	{ 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135"		},
119 	{ 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135"		},
120 	{ 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965"		},
121 	{ 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300"		},
122 	{ 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200"		},
123 	{ 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965"		},
124 	{ 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965"		},
125 	{ 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100"			},
126 	{ 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965"		},
127 	{ 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300"		},
128 	{ 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300"		},
129 	{ 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100"			},
130 	{ 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300"		},
131 	{ 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200"		},
132 	{ 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350"			},
133 	{ 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350"			},
134 	{ 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150"			},
135 	{ 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150"			},
136 	{ 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235"		},
137 	{ 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235"		},
138 	{ 0, 0, NULL }
139 };
140 
141 static int	iwn_pci_probe(device_t);
142 static int	iwn_pci_attach(device_t);
143 static int	iwn4965_attach(struct iwn_softc *, uint16_t);
144 static int	iwn5000_attach(struct iwn_softc *, uint16_t);
145 static int	iwn_config_specific(struct iwn_softc *, uint16_t);
146 static void	iwn_radiotap_attach(struct iwn_softc *);
147 static void	iwn_sysctlattach(struct iwn_softc *);
148 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
149 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
150 		    const uint8_t [IEEE80211_ADDR_LEN],
151 		    const uint8_t [IEEE80211_ADDR_LEN]);
152 static void	iwn_vap_delete(struct ieee80211vap *);
153 static int	iwn_pci_detach(device_t);
154 static int	iwn_pci_shutdown(device_t);
155 static int	iwn_pci_suspend(device_t);
156 static int	iwn_pci_resume(device_t);
157 static int	iwn_nic_lock(struct iwn_softc *);
158 static int	iwn_eeprom_lock(struct iwn_softc *);
159 static int	iwn_init_otprom(struct iwn_softc *);
160 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
161 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
162 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
163 		    void **, bus_size_t, bus_size_t);
164 static void	iwn_dma_contig_free(struct iwn_dma_info *);
165 static int	iwn_alloc_sched(struct iwn_softc *);
166 static void	iwn_free_sched(struct iwn_softc *);
167 static int	iwn_alloc_kw(struct iwn_softc *);
168 static void	iwn_free_kw(struct iwn_softc *);
169 static int	iwn_alloc_ict(struct iwn_softc *);
170 static void	iwn_free_ict(struct iwn_softc *);
171 static int	iwn_alloc_fwmem(struct iwn_softc *);
172 static void	iwn_free_fwmem(struct iwn_softc *);
173 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
174 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
175 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
176 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
177 		    int);
178 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
179 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
180 static void	iwn5000_ict_reset(struct iwn_softc *);
181 static int	iwn_read_eeprom(struct iwn_softc *,
182 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
183 static void	iwn4965_read_eeprom(struct iwn_softc *);
184 #ifdef	IWN_DEBUG
185 static void	iwn4965_print_power_group(struct iwn_softc *, int);
186 #endif
187 static void	iwn5000_read_eeprom(struct iwn_softc *);
188 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
189 static void	iwn_read_eeprom_band(struct iwn_softc *, int);
190 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int);
191 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
192 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
193 		    struct ieee80211_channel *);
194 static int	iwn_setregdomain(struct ieee80211com *,
195 		    struct ieee80211_regdomain *, int,
196 		    struct ieee80211_channel[]);
197 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
198 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
199 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
200 static void	iwn_newassoc(struct ieee80211_node *, int);
201 static int	iwn_media_change(struct ifnet *);
202 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
203 static void	iwn_calib_timeout(void *);
204 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
205 		    struct iwn_rx_data *);
206 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
207 		    struct iwn_rx_data *);
208 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
209 		    struct iwn_rx_data *);
210 static void	iwn5000_rx_calib_results(struct iwn_softc *,
211 		    struct iwn_rx_desc *, struct iwn_rx_data *);
212 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
213 		    struct iwn_rx_data *);
214 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
215 		    struct iwn_rx_data *);
216 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
217 		    struct iwn_rx_data *);
218 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
219 		    uint8_t);
220 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, void *);
221 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
222 static void	iwn_notif_intr(struct iwn_softc *);
223 static void	iwn_wakeup_intr(struct iwn_softc *);
224 static void	iwn_rftoggle_intr(struct iwn_softc *);
225 static void	iwn_fatal_intr(struct iwn_softc *);
226 static void	iwn_intr(void *);
227 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
228 		    uint16_t);
229 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
230 		    uint16_t);
231 #ifdef notyet
232 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
233 #endif
234 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
235 		    struct ieee80211_node *);
236 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
237 		    struct ieee80211_node *,
238 		    const struct ieee80211_bpf_params *params);
239 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
240 		    const struct ieee80211_bpf_params *);
241 static void	iwn_start(struct ifnet *, struct ifaltq_subque *);
242 static void	iwn_start_locked(struct ifnet *);
243 static void	iwn_watchdog_timeout(void *);
244 static int	iwn_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
245 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
246 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
247 		    int);
248 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
249 		    int);
250 static int	iwn_set_link_quality(struct iwn_softc *,
251 		    struct ieee80211_node *);
252 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
253 static int	iwn_updateedca(struct ieee80211com *);
254 static void	iwn_update_mcast(struct ifnet *);
255 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
256 static int	iwn_set_critical_temp(struct iwn_softc *);
257 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
258 static void	iwn4965_power_calibration(struct iwn_softc *, int);
259 static int	iwn4965_set_txpower(struct iwn_softc *,
260 		    struct ieee80211_channel *, int);
261 static int	iwn5000_set_txpower(struct iwn_softc *,
262 		    struct ieee80211_channel *, int);
263 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
264 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
265 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
266 static int	iwn4965_get_temperature(struct iwn_softc *);
267 static int	iwn5000_get_temperature(struct iwn_softc *);
268 static int	iwn_init_sensitivity(struct iwn_softc *);
269 static void	iwn_collect_noise(struct iwn_softc *,
270 		    const struct iwn_rx_general_stats *);
271 static int	iwn4965_init_gains(struct iwn_softc *);
272 static int	iwn5000_init_gains(struct iwn_softc *);
273 static int	iwn4965_set_gains(struct iwn_softc *);
274 static int	iwn5000_set_gains(struct iwn_softc *);
275 static void	iwn_tune_sensitivity(struct iwn_softc *,
276 		    const struct iwn_rx_stats *);
277 static void	iwn_save_stats_counters(struct iwn_softc *,
278 		    const struct iwn_stats *);
279 static int	iwn_send_sensitivity(struct iwn_softc *);
280 static void	iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *);
281 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
282 static int	iwn_send_btcoex(struct iwn_softc *);
283 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
284 static int	iwn5000_runtime_calib(struct iwn_softc *);
285 static int	iwn_config(struct iwn_softc *);
286 static uint8_t	*ieee80211_add_ssid(uint8_t *, const uint8_t *, u_int);
287 static int	iwn_scan(struct iwn_softc *, struct ieee80211vap *,
288 		    struct ieee80211_scan_state *, struct ieee80211_channel *);
289 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
290 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
291 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
292 		    struct ieee80211_rx_ampdu *, int, int, int);
293 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
294 		    struct ieee80211_rx_ampdu *);
295 static int	iwn_addba_request(struct ieee80211_node *,
296 		    struct ieee80211_tx_ampdu *, int, int, int);
297 static int	iwn_addba_response(struct ieee80211_node *,
298 		    struct ieee80211_tx_ampdu *, int, int, int);
299 static int	iwn_ampdu_tx_start(struct ieee80211com *,
300 		    struct ieee80211_node *, uint8_t);
301 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
302 		    struct ieee80211_tx_ampdu *);
303 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
304 		    struct ieee80211_node *, int, uint8_t, uint16_t);
305 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
306 		    uint8_t, uint16_t);
307 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
308 		    struct ieee80211_node *, int, uint8_t, uint16_t);
309 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
310 		    uint8_t, uint16_t);
311 static int	iwn5000_query_calibration(struct iwn_softc *);
312 static int	iwn5000_send_calibration(struct iwn_softc *);
313 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
314 static int	iwn5000_crystal_calib(struct iwn_softc *);
315 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
316 static int	iwn5000_temp_offset_calibv2(struct iwn_softc *);
317 static int	iwn4965_post_alive(struct iwn_softc *);
318 static int	iwn5000_post_alive(struct iwn_softc *);
319 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
320 		    int);
321 static int	iwn4965_load_firmware(struct iwn_softc *);
322 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
323 		    const uint8_t *, int);
324 static int	iwn5000_load_firmware(struct iwn_softc *);
325 static int	iwn_read_firmware_leg(struct iwn_softc *,
326 		    struct iwn_fw_info *);
327 static int	iwn_read_firmware_tlv(struct iwn_softc *,
328 		    struct iwn_fw_info *, uint16_t);
329 static int	iwn_read_firmware(struct iwn_softc *);
330 static int	iwn_clock_wait(struct iwn_softc *);
331 static int	iwn_apm_init(struct iwn_softc *);
332 static void	iwn_apm_stop_master(struct iwn_softc *);
333 static void	iwn_apm_stop(struct iwn_softc *);
334 static int	iwn4965_nic_config(struct iwn_softc *);
335 static int	iwn5000_nic_config(struct iwn_softc *);
336 static int	iwn_hw_prepare(struct iwn_softc *);
337 static int	iwn_hw_init(struct iwn_softc *);
338 static void	iwn_hw_stop(struct iwn_softc *);
339 static void	iwn_radio_on_task(void *, int);
340 static void	iwn_radio_off_task(void *, int);
341 static void	iwn_panicked_task(void *, int);
342 static void	iwn_init_locked(struct iwn_softc *);
343 static void	iwn_init(void *);
344 static void	iwn_stop_locked(struct iwn_softc *);
345 static void	iwn_scan_start(struct ieee80211com *);
346 static void	iwn_scan_end(struct ieee80211com *);
347 static void	iwn_set_channel(struct ieee80211com *);
348 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
349 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
350 static void	iwn_hw_reset_task(void *, int);
351 #ifdef	IWN_DEBUG
352 static char	*iwn_get_csr_string(int);
353 static void	iwn_debug_register(struct iwn_softc *);
354 #endif
355 
356 static device_method_t iwn_methods[] = {
357 	/* Device interface */
358 	DEVMETHOD(device_probe,		iwn_pci_probe),
359 	DEVMETHOD(device_attach,	iwn_pci_attach),
360 	DEVMETHOD(device_detach,	iwn_pci_detach),
361 	DEVMETHOD(device_shutdown,	iwn_pci_shutdown),
362 	DEVMETHOD(device_suspend,	iwn_pci_suspend),
363 	DEVMETHOD(device_resume,	iwn_pci_resume),
364 
365 	DEVMETHOD_END
366 };
367 
368 static driver_t iwn_driver = {
369 	"iwn",
370 	iwn_methods,
371 	sizeof(struct iwn_softc)
372 };
373 static devclass_t iwn_devclass;
374 
375 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL);
376 
377 MODULE_VERSION(iwn, 1);
378 
379 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
380 MODULE_DEPEND(iwn, pci, 1, 1, 1);
381 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
382 MODULE_DEPEND(iwn, wlan_amrr, 1, 1, 1);
383 
384 static int
385 iwn_pci_probe(device_t dev)
386 {
387 	const struct iwn_ident *ident;
388 
389 	/* no wlan serializer needed */
390 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
391 		if (pci_get_vendor(dev) == ident->vendor &&
392 		    pci_get_device(dev) == ident->device) {
393 			device_set_desc(dev, ident->name);
394 			return (BUS_PROBE_DEFAULT);
395 		}
396 	}
397 	return ENXIO;
398 }
399 
400 static int
401 iwn_pci_attach(device_t dev)
402 {
403 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
404 	struct ieee80211com *ic;
405 	struct ifnet *ifp;
406 	int i, error, rid;
407 	uint8_t macaddr[IEEE80211_ADDR_LEN];
408 	char ethstr[ETHER_ADDRSTRLEN + 1];
409 
410 	wlan_serialize_enter();
411 
412 	sc->sc_dev = dev;
413 	sc->sc_dmat = NULL;
414 
415 	if (bus_dma_tag_create(sc->sc_dmat,
416 		       1, 0,
417 		       BUS_SPACE_MAXADDR_32BIT,
418 		       BUS_SPACE_MAXADDR,
419 		       NULL, NULL,
420 		       BUS_SPACE_MAXSIZE,
421 		       IWN_MAX_SCATTER,
422 		       BUS_SPACE_MAXSIZE,
423 		       BUS_DMA_ALLOCNOW,
424 		       &sc->sc_dmat)) {
425 		device_printf(dev, "cannot allocate DMA tag\n");
426 		error = ENOMEM;
427 		goto fail;
428 	}
429 
430 #ifdef	IWN_DEBUG
431 	error = resource_int_value(device_get_name(sc->sc_dev),
432 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
433 	if (error != 0)
434 		sc->sc_debug = 0;
435 #else
436 	sc->sc_debug = 0;
437 #endif
438 
439 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__);
440 
441 	/*
442 	 * Get the offset of the PCI Express Capability Structure in PCI
443 	 * Configuration Space.
444 	 */
445 	error = pci_find_extcap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
446 	if (error != 0) {
447 		device_printf(dev, "PCIe capability structure not found!\n");
448 		goto fail2;
449 	}
450 
451 	/* Clear device-specific "PCI retry timeout" register (41h). */
452 	pci_write_config(dev, 0x41, 0, 1);
453 
454 	/* Enable bus-mastering. */
455 	pci_enable_busmaster(dev);
456 
457 	rid = PCIR_BAR(0);
458 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
459 	    RF_ACTIVE);
460 	if (sc->mem == NULL) {
461 		device_printf(dev, "can't map mem space\n");
462 		error = ENOMEM;
463 		goto fail2;
464 	}
465 	sc->sc_st = rman_get_bustag(sc->mem);
466 	sc->sc_sh = rman_get_bushandle(sc->mem);
467 
468 	rid = 0;
469 #ifdef OLD_MSI
470 	i = 1;
471 	if (pci_alloc_msi(dev, &i) == 0)
472 		rid = 1;
473 #endif
474 	/* Install interrupt handler. */
475 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
476 	    (rid != 0 ? 0 : RF_SHAREABLE));
477 	if (sc->irq == NULL) {
478 		device_printf(dev, "can't map interrupt\n");
479 		error = ENOMEM;
480 		goto fail;
481 	}
482 
483 	/* Read hardware revision and attach. */
484 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT)
485 	    & IWN_HW_REV_TYPE_MASK;
486 	sc->subdevice_id = pci_get_subdevice(dev);
487 	/*
488 	 * 4965 versus 5000 and later have different methods.
489 	 * Let's set those up first.
490 	 */
491 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
492 		error = iwn4965_attach(sc, pci_get_device(dev));
493 	else
494 		error = iwn5000_attach(sc, pci_get_device(dev));
495 	if (error != 0) {
496 		device_printf(dev, "could not attach device, error %d\n",
497 		    error);
498 		goto fail;
499 	}
500 
501 	/*
502 	 * Next, let's setup the various parameters of each NIC.
503 	 */
504 	error = iwn_config_specific(sc, pci_get_device(dev));
505 	if (error != 0) {
506 		device_printf(dev, "could not attach device, error %d\n",
507 		    error);
508 		goto fail;
509 	}
510 
511 	if ((error = iwn_hw_prepare(sc)) != 0) {
512 		device_printf(dev, "hardware not ready, error %d\n", error);
513 		goto fail;
514 	}
515 
516 	/* Allocate DMA memory for firmware transfers. */
517 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
518 		device_printf(dev,
519 		    "could not allocate memory for firmware, error %d\n",
520 		    error);
521 		goto fail;
522 	}
523 
524 	/* Allocate "Keep Warm" page. */
525 	if ((error = iwn_alloc_kw(sc)) != 0) {
526 		device_printf(dev,
527 		    "could not allocate keep warm page, error %d\n", error);
528 		goto fail;
529 	}
530 
531 	/* Allocate ICT table for 5000 Series. */
532 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
533 	    (error = iwn_alloc_ict(sc)) != 0) {
534 		device_printf(dev, "could not allocate ICT table, error %d\n",
535 		    error);
536 		goto fail;
537 	}
538 
539 	/* Allocate TX scheduler "rings". */
540 	if ((error = iwn_alloc_sched(sc)) != 0) {
541 		device_printf(dev,
542 		    "could not allocate TX scheduler rings, error %d\n", error);
543 		goto fail;
544 	}
545 
546 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
547 	for (i = 0; i < sc->ntxqs; i++) {
548 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
549 			device_printf(dev,
550 			    "could not allocate TX ring %d, error %d\n", i,
551 			    error);
552 			goto fail;
553 		}
554 	}
555 
556 	/* Allocate RX ring. */
557 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
558 		device_printf(dev, "could not allocate RX ring, error %d\n",
559 		    error);
560 		goto fail;
561 	}
562 
563 	/* Clear pending interrupts. */
564 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
565 
566 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
567 	if (ifp == NULL) {
568 		device_printf(dev, "can not allocate ifnet structure\n");
569 		goto fail;
570 	}
571 
572 	ic = ifp->if_l2com;
573 	ic->ic_ifp = ifp;
574 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
575 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
576 
577 	/* Set device capabilities. */
578 	ic->ic_caps =
579 		  IEEE80211_C_STA		/* station mode supported */
580 		| IEEE80211_C_MONITOR		/* monitor mode supported */
581 		| IEEE80211_C_BGSCAN		/* background scanning */
582 		| IEEE80211_C_TXPMGT		/* tx power management */
583 		| IEEE80211_C_SHSLOT		/* short slot time supported */
584 		| IEEE80211_C_WPA
585 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
586 #if 0
587 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
588 #endif
589 		| IEEE80211_C_WME		/* WME */
590 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
591 		;
592 
593 	/* Read MAC address, channels, etc from EEPROM. */
594 	if ((error = iwn_read_eeprom(sc, macaddr)) != 0) {
595 		device_printf(dev, "could not read EEPROM, error %d\n",
596 		    error);
597 		goto fail;
598 	}
599 
600 	/* Count the number of available chains. */
601 	sc->ntxchains =
602 	    ((sc->txchainmask >> 2) & 1) +
603 	    ((sc->txchainmask >> 1) & 1) +
604 	    ((sc->txchainmask >> 0) & 1);
605 	sc->nrxchains =
606 	    ((sc->rxchainmask >> 2) & 1) +
607 	    ((sc->rxchainmask >> 1) & 1) +
608 	    ((sc->rxchainmask >> 0) & 1);
609 	if (bootverbose) {
610 		device_printf(dev, "MIMO %dT%dR, %.4s, address %s\n",
611 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
612 		    kether_ntoa(macaddr, ethstr));
613 	}
614 
615 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
616 #ifdef notyet
617 		ic->ic_rxstream = sc->nrxchains;
618 		ic->ic_txstream = sc->ntxchains;
619 #endif
620 
621 		/*
622 		 * The NICs we currently support cap out at 2x2 support
623 		 * separate from the chains being used.
624 		 *
625 		 * This is a total hack to work around that until some
626 		 * per-device method is implemented to return the
627 		 * actual stream support.
628 		 *
629 		 * XXX Note: the 5350 is a 3x3 device; so we shouldn't
630 		 * cap this!  But, anything that touches rates in the
631 		 * driver needs to be audited first before 3x3 is enabled.
632 		 */
633 #ifdef notyet
634 		if (ic->ic_rxstream > 2)
635 			ic->ic_rxstream = 2;
636 		if (ic->ic_txstream > 2)
637 			ic->ic_txstream = 2;
638 #endif
639 
640 		ic->ic_htcaps =
641 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
642 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
643 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
644 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
645 #ifdef notyet
646 			| IEEE80211_HTCAP_GREENFIELD
647 #if IWN_RBUF_SIZE == 8192
648 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
649 #else
650 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
651 #endif
652 #endif
653 			/* s/w capabilities */
654 			| IEEE80211_HTC_HT		/* HT operation */
655 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
656 #ifdef notyet
657 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
658 #endif
659 			;
660 	}
661 
662 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
663 	ifp->if_softc = sc;
664 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
665 	ifp->if_init = iwn_init;
666 	ifp->if_ioctl = iwn_ioctl;
667 	ifp->if_start = iwn_start;
668 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
669 #ifdef notyet
670 	ifq_set_ready(&ifp->if_snd);
671 #endif
672 
673 	ieee80211_ifattach(ic, macaddr);
674 	ic->ic_vap_create = iwn_vap_create;
675 	ic->ic_vap_delete = iwn_vap_delete;
676 	ic->ic_raw_xmit = iwn_raw_xmit;
677 	ic->ic_node_alloc = iwn_node_alloc;
678 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
679 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
680 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
681 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
682 	sc->sc_addba_request = ic->ic_addba_request;
683 	ic->ic_addba_request = iwn_addba_request;
684 	sc->sc_addba_response = ic->ic_addba_response;
685 	ic->ic_addba_response = iwn_addba_response;
686 	sc->sc_addba_stop = ic->ic_addba_stop;
687 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
688 	ic->ic_newassoc = iwn_newassoc;
689 	ic->ic_wme.wme_update = iwn_updateedca;
690 	ic->ic_update_mcast = iwn_update_mcast;
691 	ic->ic_scan_start = iwn_scan_start;
692 	ic->ic_scan_end = iwn_scan_end;
693 	ic->ic_set_channel = iwn_set_channel;
694 	ic->ic_scan_curchan = iwn_scan_curchan;
695 	ic->ic_scan_mindwell = iwn_scan_mindwell;
696 	ic->ic_setregdomain = iwn_setregdomain;
697 
698 	iwn_radiotap_attach(sc);
699 
700 	callout_init(&sc->calib_to);
701 	callout_init(&sc->watchdog_to);
702 	TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset_task, sc);
703 	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on_task, sc);
704 	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off_task, sc);
705 	TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked_task, sc);
706 
707 	sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK,
708 	    taskqueue_thread_enqueue, &sc->sc_tq);
709 	error = taskqueue_start_threads(&sc->sc_tq, 1, TDPRI_KERN_DAEMON, -1,
710 	    "iwn_taskq");
711 	if (error != 0) {
712 		device_printf(dev, "can't start threads, error %d\n", error);
713 		goto fail;
714 	}
715 
716 	iwn_sysctlattach(sc);
717 
718 	/*
719 	 * Hook our interrupt after all initialization is complete.
720 	 */
721 	error = bus_setup_intr(dev, sc->irq, INTR_MPSAFE,
722 			       iwn_intr, sc, &sc->sc_ih,
723 			       &wlan_global_serializer);
724 	if (error != 0) {
725 		device_printf(dev, "can't establish interrupt, error %d\n",
726 		    error);
727 		goto fail;
728 	}
729 
730 #if 0
731 	device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n",
732 	    __func__,
733 	    sizeof(struct iwn_stats),
734 	    sizeof(struct iwn_stats_bt));
735 #endif
736 
737 	if (bootverbose)
738 		ieee80211_announce(ic);
739 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
740 	wlan_serialize_exit();
741 	return 0;
742 fail:
743 	wlan_serialize_exit();
744 	iwn_pci_detach(dev);
745 	wlan_serialize_enter();
746 fail2:
747 	wlan_serialize_exit();
748 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
749 	return error;
750 }
751 
752 /*
753  * Define specific configuration based on device id and subdevice id
754  * pid : PCI device id
755  */
756 static int
757 iwn_config_specific(struct iwn_softc *sc, uint16_t pid)
758 {
759 
760 	switch (pid) {
761 /* 4965 series */
762 	case IWN_DID_4965_1:
763 	case IWN_DID_4965_2:
764 	case IWN_DID_4965_3:
765 	case IWN_DID_4965_4:
766 		sc->base_params = &iwn4965_base_params;
767 		sc->limits = &iwn4965_sensitivity_limits;
768 		sc->fwname = "iwn4965fw";
769 		/* Override chains masks, ROM is known to be broken. */
770 		sc->txchainmask = IWN_ANT_AB;
771 		sc->rxchainmask = IWN_ANT_ABC;
772 		/* Enable normal btcoex */
773 		sc->sc_flags |= IWN_FLAG_BTCOEX;
774 		break;
775 /* 1000 Series */
776 	case IWN_DID_1000_1:
777 	case IWN_DID_1000_2:
778 		switch(sc->subdevice_id) {
779 			case	IWN_SDID_1000_1:
780 			case	IWN_SDID_1000_2:
781 			case	IWN_SDID_1000_3:
782 			case	IWN_SDID_1000_4:
783 			case	IWN_SDID_1000_5:
784 			case	IWN_SDID_1000_6:
785 			case	IWN_SDID_1000_7:
786 			case	IWN_SDID_1000_8:
787 			case	IWN_SDID_1000_9:
788 			case	IWN_SDID_1000_10:
789 			case	IWN_SDID_1000_11:
790 			case	IWN_SDID_1000_12:
791 				sc->limits = &iwn1000_sensitivity_limits;
792 				sc->base_params = &iwn1000_base_params;
793 				sc->fwname = "iwn1000fw";
794 				break;
795 			default:
796 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
797 				    "0x%04x rev %d not supported (subdevice)\n", pid,
798 				    sc->subdevice_id,sc->hw_type);
799 				return ENOTSUP;
800 		}
801 		break;
802 /* 6x00 Series */
803 	case IWN_DID_6x00_2:
804 	case IWN_DID_6x00_4:
805 	case IWN_DID_6x00_1:
806 	case IWN_DID_6x00_3:
807 		sc->fwname = "iwn6000fw";
808 		sc->limits = &iwn6000_sensitivity_limits;
809 		switch(sc->subdevice_id) {
810 			case IWN_SDID_6x00_1:
811 			case IWN_SDID_6x00_2:
812 			case IWN_SDID_6x00_8:
813 				//iwl6000_3agn_cfg
814 				sc->base_params = &iwn_6000_base_params;
815 				break;
816 			case IWN_SDID_6x00_3:
817 			case IWN_SDID_6x00_6:
818 			case IWN_SDID_6x00_9:
819 				////iwl6000i_2agn
820 			case IWN_SDID_6x00_4:
821 			case IWN_SDID_6x00_7:
822 			case IWN_SDID_6x00_10:
823 				//iwl6000i_2abg_cfg
824 			case IWN_SDID_6x00_5:
825 				//iwl6000i_2bg_cfg
826 				sc->base_params = &iwn_6000i_base_params;
827 				sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
828 				sc->txchainmask = IWN_ANT_BC;
829 				sc->rxchainmask = IWN_ANT_BC;
830 				break;
831 			default:
832 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
833 				    "0x%04x rev %d not supported (subdevice)\n", pid,
834 				    sc->subdevice_id,sc->hw_type);
835 				return ENOTSUP;
836 		}
837 		break;
838 /* 6x05 Series */
839 	case IWN_DID_6x05_1:
840 	case IWN_DID_6x05_2:
841 		switch(sc->subdevice_id) {
842 			case IWN_SDID_6x05_1:
843 			case IWN_SDID_6x05_4:
844 			case IWN_SDID_6x05_6:
845 				//iwl6005_2agn_cfg
846 			case IWN_SDID_6x05_2:
847 			case IWN_SDID_6x05_5:
848 			case IWN_SDID_6x05_7:
849 				//iwl6005_2abg_cfg
850 			case IWN_SDID_6x05_3:
851 				//iwl6005_2bg_cfg
852 			case IWN_SDID_6x05_8:
853 			case IWN_SDID_6x05_9:
854 				//iwl6005_2agn_sff_cfg
855 			case IWN_SDID_6x05_10:
856 				//iwl6005_2agn_d_cfg
857 			case IWN_SDID_6x05_11:
858 				//iwl6005_2agn_mow1_cfg
859 			case IWN_SDID_6x05_12:
860 				//iwl6005_2agn_mow2_cfg
861 				sc->fwname = "iwn6000g2afw";
862 				sc->limits = &iwn6000_sensitivity_limits;
863 				sc->base_params = &iwn_6000g2_base_params;
864 				break;
865 			default:
866 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
867 				    "0x%04x rev %d not supported (subdevice)\n", pid,
868 				    sc->subdevice_id,sc->hw_type);
869 				return ENOTSUP;
870 		}
871 		break;
872 /* 6x35 Series */
873 	case IWN_DID_6035_1:
874 	case IWN_DID_6035_2:
875 		switch(sc->subdevice_id) {
876 			case IWN_SDID_6035_1:
877 			case IWN_SDID_6035_2:
878 			case IWN_SDID_6035_3:
879 			case IWN_SDID_6035_4:
880 				sc->fwname = "iwn6000g2bfw";
881 				sc->limits = &iwn6235_sensitivity_limits;
882 				sc->base_params = &iwn_6235_base_params;
883 				break;
884 			default:
885 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
886 				    "0x%04x rev %d not supported (subdevice)\n", pid,
887 				    sc->subdevice_id,sc->hw_type);
888 				return ENOTSUP;
889 		}
890 		break;
891 /* 6x50 WiFi/WiMax Series */
892 	case IWN_DID_6050_1:
893 	case IWN_DID_6050_2:
894 		switch(sc->subdevice_id) {
895 			case IWN_SDID_6050_1:
896 			case IWN_SDID_6050_3:
897 			case IWN_SDID_6050_5:
898 				//iwl6050_2agn_cfg
899 			case IWN_SDID_6050_2:
900 			case IWN_SDID_6050_4:
901 			case IWN_SDID_6050_6:
902 				//iwl6050_2abg_cfg
903 				sc->fwname = "iwn6050fw";
904 				sc->txchainmask = IWN_ANT_AB;
905 				sc->rxchainmask = IWN_ANT_AB;
906 				sc->limits = &iwn6000_sensitivity_limits;
907 				sc->base_params = &iwn_6050_base_params;
908 				break;
909 			default:
910 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
911 				    "0x%04x rev %d not supported (subdevice)\n", pid,
912 				    sc->subdevice_id,sc->hw_type);
913 				return ENOTSUP;
914 		}
915 		break;
916 /* 6150 WiFi/WiMax Series */
917 	case IWN_DID_6150_1:
918 	case IWN_DID_6150_2:
919 		switch(sc->subdevice_id) {
920 			case IWN_SDID_6150_1:
921 			case IWN_SDID_6150_3:
922 			case IWN_SDID_6150_5:
923 				// iwl6150_bgn_cfg
924 			case IWN_SDID_6150_2:
925 			case IWN_SDID_6150_4:
926 			case IWN_SDID_6150_6:
927 				//iwl6150_bg_cfg
928 				sc->fwname = "iwn6050fw";
929 				sc->limits = &iwn6000_sensitivity_limits;
930 				sc->base_params = &iwn_6150_base_params;
931 				break;
932 			default:
933 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
934 				    "0x%04x rev %d not supported (subdevice)\n", pid,
935 				    sc->subdevice_id,sc->hw_type);
936 				return ENOTSUP;
937 		}
938 		break;
939 /* 6030 Series and 1030 Series */
940 	case IWN_DID_x030_1:
941 	case IWN_DID_x030_2:
942 	case IWN_DID_x030_3:
943 	case IWN_DID_x030_4:
944 		switch(sc->subdevice_id) {
945 			case IWN_SDID_x030_1:
946 			case IWN_SDID_x030_3:
947 			case IWN_SDID_x030_5:
948 			// iwl1030_bgn_cfg
949 			case IWN_SDID_x030_2:
950 			case IWN_SDID_x030_4:
951 			case IWN_SDID_x030_6:
952 			//iwl1030_bg_cfg
953 			case IWN_SDID_x030_7:
954 			case IWN_SDID_x030_10:
955 			case IWN_SDID_x030_14:
956 			//iwl6030_2agn_cfg
957 			case IWN_SDID_x030_8:
958 			case IWN_SDID_x030_11:
959 			case IWN_SDID_x030_15:
960 			// iwl6030_2bgn_cfg
961 			case IWN_SDID_x030_9:
962 			case IWN_SDID_x030_12:
963 			case IWN_SDID_x030_16:
964 			// iwl6030_2abg_cfg
965 			case IWN_SDID_x030_13:
966 			//iwl6030_2bg_cfg
967 				sc->fwname = "iwn6000g2bfw";
968 				sc->limits = &iwn6000_sensitivity_limits;
969 				sc->base_params = &iwn_6000g2b_base_params;
970 				break;
971 			default:
972 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
973 				    "0x%04x rev %d not supported (subdevice)\n", pid,
974 				    sc->subdevice_id,sc->hw_type);
975 				return ENOTSUP;
976 		}
977 		break;
978 /* 130 Series WiFi */
979 /* XXX: This series will need adjustment for rate.
980  * see rx_with_siso_diversity in linux kernel
981  */
982 	case IWN_DID_130_1:
983 	case IWN_DID_130_2:
984 		switch(sc->subdevice_id) {
985 			case IWN_SDID_130_1:
986 			case IWN_SDID_130_3:
987 			case IWN_SDID_130_5:
988 			//iwl130_bgn_cfg
989 			case IWN_SDID_130_2:
990 			case IWN_SDID_130_4:
991 			case IWN_SDID_130_6:
992 			//iwl130_bg_cfg
993 				sc->fwname = "iwn6000g2bfw";
994 				sc->limits = &iwn6000_sensitivity_limits;
995 				sc->base_params = &iwn_6000g2b_base_params;
996 				break;
997 			default:
998 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
999 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1000 				    sc->subdevice_id,sc->hw_type);
1001 				return ENOTSUP;
1002 		}
1003 		break;
1004 /* 100 Series WiFi */
1005 	case IWN_DID_100_1:
1006 	case IWN_DID_100_2:
1007 		switch(sc->subdevice_id) {
1008 			case IWN_SDID_100_1:
1009 			case IWN_SDID_100_2:
1010 			case IWN_SDID_100_3:
1011 			case IWN_SDID_100_4:
1012 			case IWN_SDID_100_5:
1013 			case IWN_SDID_100_6:
1014 				sc->limits = &iwn1000_sensitivity_limits;
1015 				sc->base_params = &iwn1000_base_params;
1016 				sc->fwname = "iwn100fw";
1017 				break;
1018 			default:
1019 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1020 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1021 				    sc->subdevice_id,sc->hw_type);
1022 				return ENOTSUP;
1023 		}
1024 		break;
1025 
1026 /* 105 Series */
1027 /* XXX: This series will need adjustment for rate.
1028  * see rx_with_siso_diversity in linux kernel
1029  */
1030 	case IWN_DID_105_1:
1031 	case IWN_DID_105_2:
1032 		switch(sc->subdevice_id) {
1033 			case IWN_SDID_105_1:
1034 			case IWN_SDID_105_2:
1035 			case IWN_SDID_105_3:
1036 			//iwl105_bgn_cfg
1037 			case IWN_SDID_105_4:
1038 			//iwl105_bgn_d_cfg
1039 				sc->limits = &iwn2030_sensitivity_limits;
1040 				sc->base_params = &iwn2000_base_params;
1041 				sc->fwname = "iwn105fw";
1042 				break;
1043 			default:
1044 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1045 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1046 				    sc->subdevice_id,sc->hw_type);
1047 				return ENOTSUP;
1048 		}
1049 		break;
1050 
1051 /* 135 Series */
1052 /* XXX: This series will need adjustment for rate.
1053  * see rx_with_siso_diversity in linux kernel
1054  */
1055 	case IWN_DID_135_1:
1056 	case IWN_DID_135_2:
1057 		switch(sc->subdevice_id) {
1058 			case IWN_SDID_135_1:
1059 			case IWN_SDID_135_2:
1060 			case IWN_SDID_135_3:
1061 				sc->limits = &iwn2030_sensitivity_limits;
1062 				sc->base_params = &iwn2030_base_params;
1063 				sc->fwname = "iwn135fw";
1064 				break;
1065 			default:
1066 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1067 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1068 				    sc->subdevice_id,sc->hw_type);
1069 				return ENOTSUP;
1070 		}
1071 		break;
1072 
1073 /* 2x00 Series */
1074 	case IWN_DID_2x00_1:
1075 	case IWN_DID_2x00_2:
1076 		switch(sc->subdevice_id) {
1077 			case IWN_SDID_2x00_1:
1078 			case IWN_SDID_2x00_2:
1079 			case IWN_SDID_2x00_3:
1080 			//iwl2000_2bgn_cfg
1081 			case IWN_SDID_2x00_4:
1082 			//iwl2000_2bgn_d_cfg
1083 				sc->limits = &iwn2030_sensitivity_limits;
1084 				sc->base_params = &iwn2000_base_params;
1085 				sc->fwname = "iwn2000fw";
1086 				break;
1087 			default:
1088 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1089 				    "0x%04x rev %d not supported (subdevice) \n",
1090 				    pid, sc->subdevice_id, sc->hw_type);
1091 				return ENOTSUP;
1092 		}
1093 		break;
1094 /* 2x30 Series */
1095 	case IWN_DID_2x30_1:
1096 	case IWN_DID_2x30_2:
1097 		switch(sc->subdevice_id) {
1098 			case IWN_SDID_2x30_1:
1099 			case IWN_SDID_2x30_3:
1100 			case IWN_SDID_2x30_5:
1101 			//iwl100_bgn_cfg
1102 			case IWN_SDID_2x30_2:
1103 			case IWN_SDID_2x30_4:
1104 			case IWN_SDID_2x30_6:
1105 			//iwl100_bg_cfg
1106 				sc->limits = &iwn2030_sensitivity_limits;
1107 				sc->base_params = &iwn2030_base_params;
1108 				sc->fwname = "iwn2030fw";
1109 				break;
1110 			default:
1111 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1112 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1113 				    sc->subdevice_id,sc->hw_type);
1114 				return ENOTSUP;
1115 		}
1116 		break;
1117 /* 5x00 Series */
1118 	case IWN_DID_5x00_1:
1119 	case IWN_DID_5x00_2:
1120 	case IWN_DID_5x00_3:
1121 	case IWN_DID_5x00_4:
1122 		sc->limits = &iwn5000_sensitivity_limits;
1123 		sc->base_params = &iwn5000_base_params;
1124 		sc->fwname = "iwn5000fw";
1125 		switch(sc->subdevice_id) {
1126 			case IWN_SDID_5x00_1:
1127 			case IWN_SDID_5x00_2:
1128 			case IWN_SDID_5x00_3:
1129 			case IWN_SDID_5x00_4:
1130 			case IWN_SDID_5x00_9:
1131 			case IWN_SDID_5x00_10:
1132 			case IWN_SDID_5x00_11:
1133 			case IWN_SDID_5x00_12:
1134 			case IWN_SDID_5x00_17:
1135 			case IWN_SDID_5x00_18:
1136 			case IWN_SDID_5x00_19:
1137 			case IWN_SDID_5x00_20:
1138 			//iwl5100_agn_cfg
1139 				sc->txchainmask = IWN_ANT_B;
1140 				sc->rxchainmask = IWN_ANT_AB;
1141 				break;
1142 			case IWN_SDID_5x00_5:
1143 			case IWN_SDID_5x00_6:
1144 			case IWN_SDID_5x00_13:
1145 			case IWN_SDID_5x00_14:
1146 			case IWN_SDID_5x00_21:
1147 			case IWN_SDID_5x00_22:
1148 			//iwl5100_bgn_cfg
1149 				sc->txchainmask = IWN_ANT_B;
1150 				sc->rxchainmask = IWN_ANT_AB;
1151 				break;
1152 			case IWN_SDID_5x00_7:
1153 			case IWN_SDID_5x00_8:
1154 			case IWN_SDID_5x00_15:
1155 			case IWN_SDID_5x00_16:
1156 			case IWN_SDID_5x00_23:
1157 			case IWN_SDID_5x00_24:
1158 			//iwl5100_abg_cfg
1159 				sc->txchainmask = IWN_ANT_B;
1160 				sc->rxchainmask = IWN_ANT_AB;
1161 				break;
1162 			case IWN_SDID_5x00_25:
1163 			case IWN_SDID_5x00_26:
1164 			case IWN_SDID_5x00_27:
1165 			case IWN_SDID_5x00_28:
1166 			case IWN_SDID_5x00_29:
1167 			case IWN_SDID_5x00_30:
1168 			case IWN_SDID_5x00_31:
1169 			case IWN_SDID_5x00_32:
1170 			case IWN_SDID_5x00_33:
1171 			case IWN_SDID_5x00_34:
1172 			case IWN_SDID_5x00_35:
1173 			case IWN_SDID_5x00_36:
1174 			//iwl5300_agn_cfg
1175 				sc->txchainmask = IWN_ANT_ABC;
1176 				sc->rxchainmask = IWN_ANT_ABC;
1177 				break;
1178 			default:
1179 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1180 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1181 				    sc->subdevice_id,sc->hw_type);
1182 				return ENOTSUP;
1183 		}
1184 		break;
1185 /* 5x50 Series */
1186 	case IWN_DID_5x50_1:
1187 	case IWN_DID_5x50_2:
1188 	case IWN_DID_5x50_3:
1189 	case IWN_DID_5x50_4:
1190 		sc->limits = &iwn5000_sensitivity_limits;
1191 		sc->base_params = &iwn5000_base_params;
1192 		sc->fwname = "iwn5000fw";
1193 		switch(sc->subdevice_id) {
1194 			case IWN_SDID_5x50_1:
1195 			case IWN_SDID_5x50_2:
1196 			case IWN_SDID_5x50_3:
1197 			//iwl5350_agn_cfg
1198 				sc->limits = &iwn5000_sensitivity_limits;
1199 				sc->base_params = &iwn5000_base_params;
1200 				sc->fwname = "iwn5000fw";
1201 				break;
1202 			case IWN_SDID_5x50_4:
1203 			case IWN_SDID_5x50_5:
1204 			case IWN_SDID_5x50_8:
1205 			case IWN_SDID_5x50_9:
1206 			case IWN_SDID_5x50_10:
1207 			case IWN_SDID_5x50_11:
1208 			//iwl5150_agn_cfg
1209 			case IWN_SDID_5x50_6:
1210 			case IWN_SDID_5x50_7:
1211 			case IWN_SDID_5x50_12:
1212 			case IWN_SDID_5x50_13:
1213 			//iwl5150_abg_cfg
1214 				sc->limits = &iwn5000_sensitivity_limits;
1215 				sc->fwname = "iwn5150fw";
1216 				sc->base_params = &iwn_5x50_base_params;
1217 				break;
1218 			default:
1219 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1220 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1221 				    sc->subdevice_id,sc->hw_type);
1222 				return ENOTSUP;
1223 		}
1224 		break;
1225 	default:
1226 		device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x"
1227 		    "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id,
1228 		     sc->hw_type);
1229 		return ENOTSUP;
1230 	}
1231 	return 0;
1232 }
1233 
1234 static int
1235 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
1236 {
1237 	struct iwn_ops *ops = &sc->ops;
1238 
1239 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1240 	ops->load_firmware = iwn4965_load_firmware;
1241 	ops->read_eeprom = iwn4965_read_eeprom;
1242 	ops->post_alive = iwn4965_post_alive;
1243 	ops->nic_config = iwn4965_nic_config;
1244 	ops->update_sched = iwn4965_update_sched;
1245 	ops->get_temperature = iwn4965_get_temperature;
1246 	ops->get_rssi = iwn4965_get_rssi;
1247 	ops->set_txpower = iwn4965_set_txpower;
1248 	ops->init_gains = iwn4965_init_gains;
1249 	ops->set_gains = iwn4965_set_gains;
1250 	ops->add_node = iwn4965_add_node;
1251 	ops->tx_done = iwn4965_tx_done;
1252 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
1253 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
1254 	sc->ntxqs = IWN4965_NTXQUEUES;
1255 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
1256 	sc->ndmachnls = IWN4965_NDMACHNLS;
1257 	sc->broadcast_id = IWN4965_ID_BROADCAST;
1258 	sc->rxonsz = IWN4965_RXONSZ;
1259 	sc->schedsz = IWN4965_SCHEDSZ;
1260 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
1261 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
1262 	sc->fwsz = IWN4965_FWSZ;
1263 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
1264 	sc->limits = &iwn4965_sensitivity_limits;
1265 	sc->fwname = "iwn4965fw";
1266 	/* Override chains masks, ROM is known to be broken. */
1267 	sc->txchainmask = IWN_ANT_AB;
1268 	sc->rxchainmask = IWN_ANT_ABC;
1269 	/* Enable normal btcoex */
1270 	sc->sc_flags |= IWN_FLAG_BTCOEX;
1271 
1272 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1273 
1274 	return 0;
1275 }
1276 
1277 static int
1278 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
1279 {
1280 	struct iwn_ops *ops = &sc->ops;
1281 
1282 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1283 
1284 	ops->load_firmware = iwn5000_load_firmware;
1285 	ops->read_eeprom = iwn5000_read_eeprom;
1286 	ops->post_alive = iwn5000_post_alive;
1287 	ops->nic_config = iwn5000_nic_config;
1288 	ops->update_sched = iwn5000_update_sched;
1289 	ops->get_temperature = iwn5000_get_temperature;
1290 	ops->get_rssi = iwn5000_get_rssi;
1291 	ops->set_txpower = iwn5000_set_txpower;
1292 	ops->init_gains = iwn5000_init_gains;
1293 	ops->set_gains = iwn5000_set_gains;
1294 	ops->add_node = iwn5000_add_node;
1295 	ops->tx_done = iwn5000_tx_done;
1296 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
1297 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
1298 	sc->ntxqs = IWN5000_NTXQUEUES;
1299 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
1300 	sc->ndmachnls = IWN5000_NDMACHNLS;
1301 	sc->broadcast_id = IWN5000_ID_BROADCAST;
1302 	sc->rxonsz = IWN5000_RXONSZ;
1303 	sc->schedsz = IWN5000_SCHEDSZ;
1304 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
1305 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
1306 	sc->fwsz = IWN5000_FWSZ;
1307 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
1308 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
1309 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
1310 
1311 	return 0;
1312 }
1313 
1314 /*
1315  * Attach the interface to 802.11 radiotap.
1316  */
1317 static void
1318 iwn_radiotap_attach(struct iwn_softc *sc)
1319 {
1320 	struct ifnet *ifp = sc->sc_ifp;
1321 	struct ieee80211com *ic = ifp->if_l2com;
1322 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1323 	ieee80211_radiotap_attach(ic,
1324 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
1325 		IWN_TX_RADIOTAP_PRESENT,
1326 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
1327 		IWN_RX_RADIOTAP_PRESENT);
1328 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1329 }
1330 
1331 static void
1332 iwn_sysctlattach(struct iwn_softc *sc)
1333 {
1334 #ifdef	IWN_DEBUG
1335 	struct sysctl_ctx_list *ctx;
1336 	struct sysctl_oid *tree;
1337 
1338 	ctx = device_get_sysctl_ctx(sc->sc_dev);
1339 	tree = device_get_sysctl_tree(sc->sc_dev);
1340 
1341 	if (tree) {
1342 		device_printf(sc->sc_dev, "can't add sysctl node\n");
1343 		return;
1344 	}
1345 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1346 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
1347 		"control debugging printfs");
1348 #endif
1349 }
1350 
1351 static struct ieee80211vap *
1352 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1353     enum ieee80211_opmode opmode, int flags,
1354     const uint8_t bssid[IEEE80211_ADDR_LEN],
1355     const uint8_t mac[IEEE80211_ADDR_LEN])
1356 {
1357 	struct iwn_vap *ivp;
1358 	struct ieee80211vap *vap;
1359 	uint8_t mac1[IEEE80211_ADDR_LEN];
1360 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
1361 
1362 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
1363 		return NULL;
1364 
1365 	IEEE80211_ADDR_COPY(mac1, mac);
1366 
1367 	ivp = kmalloc(sizeof(struct iwn_vap), M_80211_VAP, M_INTWAIT | M_ZERO);
1368 	vap = &ivp->iv_vap;
1369 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac1);
1370 	ivp->ctx = IWN_RXON_BSS_CTX;
1371 	IEEE80211_ADDR_COPY(ivp->macaddr, mac1);
1372 	vap->iv_bmissthreshold = 10;		/* override default */
1373 	/* Override with driver methods. */
1374 	ivp->iv_newstate = vap->iv_newstate;
1375 	vap->iv_newstate = iwn_newstate;
1376 	sc->ivap[IWN_RXON_BSS_CTX] = vap;
1377 
1378 	ieee80211_ratectl_init(vap);
1379 	/* Complete setup. */
1380 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status);
1381 	ic->ic_opmode = opmode;
1382 	return vap;
1383 }
1384 
1385 static void
1386 iwn_vap_delete(struct ieee80211vap *vap)
1387 {
1388 	struct iwn_vap *ivp = IWN_VAP(vap);
1389 
1390 	ieee80211_ratectl_deinit(vap);
1391 	ieee80211_vap_detach(vap);
1392 	kfree(ivp, M_80211_VAP);
1393 }
1394 
1395 static int
1396 iwn_pci_detach(device_t dev)
1397 {
1398 	struct iwn_softc *sc = device_get_softc(dev);
1399 	struct ifnet *ifp = sc->sc_ifp;
1400 	struct ieee80211com *ic;
1401 	int qid;
1402 
1403 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1404 
1405 	wlan_serialize_enter();
1406 
1407 	if (ifp != NULL) {
1408 		ic = ifp->if_l2com;
1409 
1410 		ieee80211_draintask(ic, &sc->sc_reinit_task);
1411 		ieee80211_draintask(ic, &sc->sc_radioon_task);
1412 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
1413 
1414 		iwn_stop_locked(sc);
1415 
1416 #if 0
1417 		// We don't need this for DragonFly as our taskqueue_free()
1418 		// is running all remaining tasks before terminating.
1419 		taskqueue_drain_all(sc->sc_tq);
1420 #endif
1421 		taskqueue_free(sc->sc_tq);
1422 
1423 		callout_stop(&sc->watchdog_to);
1424 		callout_stop(&sc->calib_to);
1425 		ieee80211_ifdetach(ic);
1426 	}
1427 
1428 	/* Uninstall interrupt handler. */
1429 	if (sc->irq != NULL) {
1430 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
1431 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
1432 		    sc->irq);
1433 		pci_release_msi(dev);
1434 		sc->irq = NULL;
1435 	}
1436 
1437 	/* Free DMA resources. */
1438 	iwn_free_rx_ring(sc, &sc->rxq);
1439 	for (qid = 0; qid < sc->ntxqs; qid++)
1440 		iwn_free_tx_ring(sc, &sc->txq[qid]);
1441 	iwn_free_sched(sc);
1442 	iwn_free_kw(sc);
1443 	if (sc->ict != NULL) {
1444 		iwn_free_ict(sc);
1445 		sc->ict = NULL;
1446 	}
1447 	iwn_free_fwmem(sc);
1448 
1449 	if (sc->mem != NULL) {
1450 		bus_release_resource(dev, SYS_RES_MEMORY,
1451 		    rman_get_rid(sc->mem), sc->mem);
1452 		sc->mem = NULL;
1453 	}
1454 
1455 	if (ifp != NULL) {
1456 		if_free(ifp);
1457 		sc->sc_ifp = NULL;
1458 	}
1459 
1460 	bus_dma_tag_destroy(sc->sc_dmat);
1461 
1462 	wlan_serialize_exit();
1463 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__);
1464 	return 0;
1465 }
1466 
1467 static int
1468 iwn_pci_shutdown(device_t dev)
1469 {
1470 	struct iwn_softc *sc = device_get_softc(dev);
1471 
1472 	wlan_serialize_enter();
1473 	iwn_stop_locked(sc);
1474 	wlan_serialize_exit();
1475 
1476 	return 0;
1477 }
1478 
1479 static int
1480 iwn_pci_suspend(device_t dev)
1481 {
1482 	struct iwn_softc *sc = device_get_softc(dev);
1483 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1484 
1485 	ieee80211_suspend_all(ic);
1486 	return 0;
1487 }
1488 
1489 static int
1490 iwn_pci_resume(device_t dev)
1491 {
1492 	struct iwn_softc *sc = device_get_softc(dev);
1493 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1494 
1495 	/* Clear device-specific "PCI retry timeout" register (41h). */
1496 	pci_write_config(dev, 0x41, 0, 1);
1497 
1498 	ieee80211_resume_all(ic);
1499 	return 0;
1500 }
1501 
1502 static int
1503 iwn_nic_lock(struct iwn_softc *sc)
1504 {
1505 	int ntries;
1506 
1507 	/* Request exclusive access to NIC. */
1508 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1509 
1510 	/* Spin until we actually get the lock. */
1511 	for (ntries = 0; ntries < 1000; ntries++) {
1512 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1513 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1514 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1515 			return 0;
1516 		DELAY(10);
1517 	}
1518 	return ETIMEDOUT;
1519 }
1520 
1521 static __inline void
1522 iwn_nic_unlock(struct iwn_softc *sc)
1523 {
1524 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1525 }
1526 
1527 static __inline uint32_t
1528 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1529 {
1530 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1531 	IWN_BARRIER_READ_WRITE(sc);
1532 	return IWN_READ(sc, IWN_PRPH_RDATA);
1533 }
1534 
1535 static __inline void
1536 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1537 {
1538 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1539 	IWN_BARRIER_WRITE(sc);
1540 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1541 }
1542 
1543 static __inline void
1544 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1545 {
1546 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1547 }
1548 
1549 static __inline void
1550 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1551 {
1552 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1553 }
1554 
1555 static __inline void
1556 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1557     const uint32_t *data, int count)
1558 {
1559 	for (; count > 0; count--, data++, addr += 4)
1560 		iwn_prph_write(sc, addr, *data);
1561 }
1562 
1563 static __inline uint32_t
1564 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1565 {
1566 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1567 	IWN_BARRIER_READ_WRITE(sc);
1568 	return IWN_READ(sc, IWN_MEM_RDATA);
1569 }
1570 
1571 static __inline void
1572 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1573 {
1574 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1575 	IWN_BARRIER_WRITE(sc);
1576 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1577 }
1578 
1579 static __inline void
1580 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1581 {
1582 	uint32_t tmp;
1583 
1584 	tmp = iwn_mem_read(sc, addr & ~3);
1585 	if (addr & 3)
1586 		tmp = (tmp & 0x0000ffff) | data << 16;
1587 	else
1588 		tmp = (tmp & 0xffff0000) | data;
1589 	iwn_mem_write(sc, addr & ~3, tmp);
1590 }
1591 
1592 static __inline void
1593 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1594     int count)
1595 {
1596 	for (; count > 0; count--, addr += 4)
1597 		*data++ = iwn_mem_read(sc, addr);
1598 }
1599 
1600 static __inline void
1601 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1602     int count)
1603 {
1604 	for (; count > 0; count--, addr += 4)
1605 		iwn_mem_write(sc, addr, val);
1606 }
1607 
1608 static int
1609 iwn_eeprom_lock(struct iwn_softc *sc)
1610 {
1611 	int i, ntries;
1612 
1613 	for (i = 0; i < 100; i++) {
1614 		/* Request exclusive access to EEPROM. */
1615 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1616 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1617 
1618 		/* Spin until we actually get the lock. */
1619 		for (ntries = 0; ntries < 100; ntries++) {
1620 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1621 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1622 				return 0;
1623 			DELAY(10);
1624 		}
1625 	}
1626 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__);
1627 	return ETIMEDOUT;
1628 }
1629 
1630 static __inline void
1631 iwn_eeprom_unlock(struct iwn_softc *sc)
1632 {
1633 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1634 }
1635 
1636 /*
1637  * Initialize access by host to One Time Programmable ROM.
1638  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1639  */
1640 static int
1641 iwn_init_otprom(struct iwn_softc *sc)
1642 {
1643 	uint16_t prev, base, next;
1644 	int count, error;
1645 
1646 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1647 
1648 	/* Wait for clock stabilization before accessing prph. */
1649 	if ((error = iwn_clock_wait(sc)) != 0)
1650 		return error;
1651 
1652 	if ((error = iwn_nic_lock(sc)) != 0)
1653 		return error;
1654 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1655 	DELAY(5);
1656 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1657 	iwn_nic_unlock(sc);
1658 
1659 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1660 	if (sc->base_params->shadow_ram_support) {
1661 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1662 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1663 	}
1664 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1665 	/* Clear ECC status. */
1666 	IWN_SETBITS(sc, IWN_OTP_GP,
1667 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1668 
1669 	/*
1670 	 * Find the block before last block (contains the EEPROM image)
1671 	 * for HW without OTP shadow RAM.
1672 	 */
1673 	if (! sc->base_params->shadow_ram_support) {
1674 		/* Switch to absolute addressing mode. */
1675 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1676 		base = prev = 0;
1677 		for (count = 0; count < sc->base_params->max_ll_items;
1678 		    count++) {
1679 			error = iwn_read_prom_data(sc, base, &next, 2);
1680 			if (error != 0)
1681 				return error;
1682 			if (next == 0)	/* End of linked-list. */
1683 				break;
1684 			prev = base;
1685 			base = le16toh(next);
1686 		}
1687 		if (count == 0 || count == sc->base_params->max_ll_items)
1688 			return EIO;
1689 		/* Skip "next" word. */
1690 		sc->prom_base = prev + 1;
1691 	}
1692 
1693 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1694 
1695 	return 0;
1696 }
1697 
1698 static int
1699 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1700 {
1701 	uint8_t *out = data;
1702 	uint32_t val, tmp;
1703 	int ntries;
1704 
1705 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1706 
1707 	addr += sc->prom_base;
1708 	for (; count > 0; count -= 2, addr++) {
1709 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1710 		for (ntries = 0; ntries < 10; ntries++) {
1711 			val = IWN_READ(sc, IWN_EEPROM);
1712 			if (val & IWN_EEPROM_READ_VALID)
1713 				break;
1714 			DELAY(5);
1715 		}
1716 		if (ntries == 10) {
1717 			device_printf(sc->sc_dev,
1718 			    "timeout reading ROM at 0x%x\n", addr);
1719 			return ETIMEDOUT;
1720 		}
1721 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1722 			/* OTPROM, check for ECC errors. */
1723 			tmp = IWN_READ(sc, IWN_OTP_GP);
1724 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1725 				device_printf(sc->sc_dev,
1726 				    "OTPROM ECC error at 0x%x\n", addr);
1727 				return EIO;
1728 			}
1729 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1730 				/* Correctable ECC error, clear bit. */
1731 				IWN_SETBITS(sc, IWN_OTP_GP,
1732 				    IWN_OTP_GP_ECC_CORR_STTS);
1733 			}
1734 		}
1735 		*out++ = val >> 16;
1736 		if (count > 1)
1737 			*out++ = val >> 24;
1738 	}
1739 
1740 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1741 
1742 	return 0;
1743 }
1744 
1745 static void
1746 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1747 {
1748 	if (error != 0)
1749 		return;
1750 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1751 	*(bus_addr_t *)arg = segs[0].ds_addr;
1752 }
1753 
1754 static int
1755 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1756     void **kvap, bus_size_t size, bus_size_t alignment)
1757 {
1758 	int error;
1759 
1760 	dma->tag = NULL;
1761 	dma->size = size;
1762 
1763 	error = bus_dma_tag_create(sc->sc_dmat, alignment,
1764 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1765 	    1, size, BUS_DMA_NOWAIT, &dma->tag);
1766 	if (error != 0)
1767 		goto fail;
1768 
1769 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1770 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1771 	if (error != 0)
1772 		goto fail;
1773 
1774 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1775 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1776 	if (error != 0)
1777 		goto fail;
1778 
1779 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1780 
1781 	if (kvap != NULL)
1782 		*kvap = dma->vaddr;
1783 
1784 	return 0;
1785 
1786 fail:	iwn_dma_contig_free(dma);
1787 	return error;
1788 }
1789 
1790 static void
1791 iwn_dma_contig_free(struct iwn_dma_info *dma)
1792 {
1793 	if (dma->vaddr != NULL) {
1794 		bus_dmamap_sync(dma->tag, dma->map,
1795 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1796 		bus_dmamap_unload(dma->tag, dma->map);
1797 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1798 		dma->vaddr = NULL;
1799 	}
1800 	if (dma->tag != NULL) {
1801 		bus_dma_tag_destroy(dma->tag);
1802 		dma->tag = NULL;
1803 	}
1804 }
1805 
1806 static int
1807 iwn_alloc_sched(struct iwn_softc *sc)
1808 {
1809 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1810 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1811 	    sc->schedsz, 1024);
1812 }
1813 
1814 static void
1815 iwn_free_sched(struct iwn_softc *sc)
1816 {
1817 	iwn_dma_contig_free(&sc->sched_dma);
1818 }
1819 
1820 static int
1821 iwn_alloc_kw(struct iwn_softc *sc)
1822 {
1823 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1824 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1825 }
1826 
1827 static void
1828 iwn_free_kw(struct iwn_softc *sc)
1829 {
1830 	iwn_dma_contig_free(&sc->kw_dma);
1831 }
1832 
1833 static int
1834 iwn_alloc_ict(struct iwn_softc *sc)
1835 {
1836 	/* ICT table must be aligned on a 4KB boundary. */
1837 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1838 	    IWN_ICT_SIZE, 4096);
1839 }
1840 
1841 static void
1842 iwn_free_ict(struct iwn_softc *sc)
1843 {
1844 	iwn_dma_contig_free(&sc->ict_dma);
1845 }
1846 
1847 static int
1848 iwn_alloc_fwmem(struct iwn_softc *sc)
1849 {
1850 	/* Must be aligned on a 16-byte boundary. */
1851 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1852 }
1853 
1854 static void
1855 iwn_free_fwmem(struct iwn_softc *sc)
1856 {
1857 	iwn_dma_contig_free(&sc->fw_dma);
1858 }
1859 
1860 static int
1861 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1862 {
1863 	bus_size_t size;
1864 	int i, error;
1865 
1866 	ring->cur = 0;
1867 
1868 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1869 
1870 	/* Allocate RX descriptors (256-byte aligned). */
1871 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1872 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1873 	    size, 256);
1874 	if (error != 0) {
1875 		device_printf(sc->sc_dev,
1876 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1877 		    __func__, error);
1878 		goto fail;
1879 	}
1880 
1881 	/* Allocate RX status area (16-byte aligned). */
1882 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1883 	    sizeof (struct iwn_rx_status), 16);
1884 	if (error != 0) {
1885 		device_printf(sc->sc_dev,
1886 		    "%s: could not allocate RX status DMA memory, error %d\n",
1887 		    __func__, error);
1888 		goto fail;
1889 	}
1890 
1891 	/* Create RX buffer DMA tag. */
1892 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
1893 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1894 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, BUS_DMA_NOWAIT, &ring->data_dmat);
1895 	if (error != 0) {
1896 		device_printf(sc->sc_dev,
1897 		    "%s: could not create RX buf DMA tag, error %d\n",
1898 		    __func__, error);
1899 		goto fail;
1900 	}
1901 
1902 	/*
1903 	 * Allocate and map RX buffers.
1904 	 */
1905 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1906 		struct iwn_rx_data *data = &ring->data[i];
1907 		bus_addr_t paddr;
1908 
1909 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1910 		if (error != 0) {
1911 			device_printf(sc->sc_dev,
1912 			    "%s: could not create RX buf DMA map, error %d\n",
1913 			    __func__, error);
1914 			goto fail;
1915 		}
1916 
1917 		data->m = m_getjcl(MB_DONTWAIT, MT_DATA,
1918 				   M_PKTHDR, IWN_RBUF_SIZE);
1919 		if (data->m == NULL) {
1920 			device_printf(sc->sc_dev,
1921 			    "%s: could not allocate RX mbuf\n", __func__);
1922 			error = ENOBUFS;
1923 			goto fail;
1924 		}
1925 
1926 		error = bus_dmamap_load(ring->data_dmat, data->map,
1927 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1928 		    &paddr, BUS_DMA_NOWAIT);
1929 		if (error != 0 && error != EFBIG) {
1930 			device_printf(sc->sc_dev,
1931 			    "%s: can't not map mbuf, error %d\n", __func__,
1932 			    error);
1933 			goto fail;
1934 		}
1935 
1936 		/* Set physical address of RX buffer (256-byte aligned). */
1937 		ring->desc[i] = htole32(paddr >> 8);
1938 	}
1939 
1940 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1941 	    BUS_DMASYNC_PREWRITE);
1942 
1943 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
1944 
1945 	return 0;
1946 
1947 fail:	iwn_free_rx_ring(sc, ring);
1948 
1949 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
1950 
1951 	return error;
1952 }
1953 
1954 static void
1955 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1956 {
1957 	int ntries;
1958 
1959 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
1960 
1961 	if (iwn_nic_lock(sc) == 0) {
1962 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1963 		for (ntries = 0; ntries < 1000; ntries++) {
1964 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1965 			    IWN_FH_RX_STATUS_IDLE)
1966 				break;
1967 			DELAY(10);
1968 		}
1969 		iwn_nic_unlock(sc);
1970 	}
1971 	ring->cur = 0;
1972 	sc->last_rx_valid = 0;
1973 }
1974 
1975 static void
1976 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1977 {
1978 	int i;
1979 
1980 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1981 
1982 	iwn_dma_contig_free(&ring->desc_dma);
1983 	iwn_dma_contig_free(&ring->stat_dma);
1984 
1985 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1986 		struct iwn_rx_data *data = &ring->data[i];
1987 
1988 		if (data->m != NULL) {
1989 			bus_dmamap_sync(ring->data_dmat, data->map,
1990 			    BUS_DMASYNC_POSTREAD);
1991 			bus_dmamap_unload(ring->data_dmat, data->map);
1992 			m_freem(data->m);
1993 			data->m = NULL;
1994 		}
1995 		if (data->map != NULL)
1996 			bus_dmamap_destroy(ring->data_dmat, data->map);
1997 	}
1998 	if (ring->data_dmat != NULL) {
1999 		bus_dma_tag_destroy(ring->data_dmat);
2000 		ring->data_dmat = NULL;
2001 	}
2002 }
2003 
2004 static int
2005 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
2006 {
2007 	bus_addr_t paddr;
2008 	bus_size_t size;
2009 	int i, error;
2010 
2011 	ring->qid = qid;
2012 	ring->queued = 0;
2013 	ring->cur = 0;
2014 
2015 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2016 
2017 	/* Allocate TX descriptors (256-byte aligned). */
2018 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
2019 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
2020 	    size, 256);
2021 	if (error != 0) {
2022 		device_printf(sc->sc_dev,
2023 		    "%s: could not allocate TX ring DMA memory, error %d\n",
2024 		    __func__, error);
2025 		goto fail;
2026 	}
2027 
2028 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
2029 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
2030 	    size, 4);
2031 	if (error != 0) {
2032 		device_printf(sc->sc_dev,
2033 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
2034 		    __func__, error);
2035 		goto fail;
2036 	}
2037 
2038 	error = bus_dma_tag_create(sc->sc_dmat, 1, 0,
2039 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
2040 	    IWN_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, &ring->data_dmat);
2041 	if (error != 0) {
2042 		device_printf(sc->sc_dev,
2043 		    "%s: could not create TX buf DMA tag, error %d\n",
2044 		    __func__, error);
2045 		goto fail;
2046 	}
2047 
2048 	paddr = ring->cmd_dma.paddr;
2049 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2050 		struct iwn_tx_data *data = &ring->data[i];
2051 
2052 		data->cmd_paddr = paddr;
2053 		data->scratch_paddr = paddr + 12;
2054 		paddr += sizeof (struct iwn_tx_cmd);
2055 
2056 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2057 		if (error != 0) {
2058 			device_printf(sc->sc_dev,
2059 			    "%s: could not create TX buf DMA map, error %d\n",
2060 			    __func__, error);
2061 			goto fail;
2062 		}
2063 	}
2064 
2065 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2066 
2067 	return 0;
2068 
2069 fail:	iwn_free_tx_ring(sc, ring);
2070 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2071 	return error;
2072 }
2073 
2074 static void
2075 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2076 {
2077 	int i;
2078 
2079 	DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__);
2080 
2081 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2082 		struct iwn_tx_data *data = &ring->data[i];
2083 
2084 		if (data->m != NULL) {
2085 			bus_dmamap_sync(ring->data_dmat, data->map,
2086 			    BUS_DMASYNC_POSTWRITE);
2087 			bus_dmamap_unload(ring->data_dmat, data->map);
2088 			m_freem(data->m);
2089 			data->m = NULL;
2090 		}
2091 	}
2092 	/* Clear TX descriptors. */
2093 	memset(ring->desc, 0, ring->desc_dma.size);
2094 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2095 	    BUS_DMASYNC_PREWRITE);
2096 	sc->qfullmsk &= ~(1 << ring->qid);
2097 	ring->queued = 0;
2098 	ring->cur = 0;
2099 }
2100 
2101 static void
2102 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2103 {
2104 	int i;
2105 
2106 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
2107 
2108 	iwn_dma_contig_free(&ring->desc_dma);
2109 	iwn_dma_contig_free(&ring->cmd_dma);
2110 
2111 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2112 		struct iwn_tx_data *data = &ring->data[i];
2113 
2114 		if (data->m != NULL) {
2115 			bus_dmamap_sync(ring->data_dmat, data->map,
2116 			    BUS_DMASYNC_POSTWRITE);
2117 			bus_dmamap_unload(ring->data_dmat, data->map);
2118 			m_freem(data->m);
2119 		}
2120 		if (data->map != NULL)
2121 			bus_dmamap_destroy(ring->data_dmat, data->map);
2122 	}
2123 	if (ring->data_dmat != NULL) {
2124 		bus_dma_tag_destroy(ring->data_dmat);
2125 		ring->data_dmat = NULL;
2126 	}
2127 }
2128 
2129 static void
2130 iwn5000_ict_reset(struct iwn_softc *sc)
2131 {
2132 	/* Disable interrupts. */
2133 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2134 
2135 	/* Reset ICT table. */
2136 	memset(sc->ict, 0, IWN_ICT_SIZE);
2137 	sc->ict_cur = 0;
2138 
2139 	/* Set physical address of ICT table (4KB aligned). */
2140 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
2141 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
2142 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
2143 
2144 	/* Enable periodic RX interrupt. */
2145 	sc->int_mask |= IWN_INT_RX_PERIODIC;
2146 	/* Switch to ICT interrupt mode in driver. */
2147 	sc->sc_flags |= IWN_FLAG_USE_ICT;
2148 
2149 	/* Re-enable interrupts. */
2150 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
2151 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2152 }
2153 
2154 static int
2155 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2156 {
2157 	struct iwn_ops *ops = &sc->ops;
2158 	uint16_t val;
2159 	int error;
2160 
2161 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2162 
2163 	/* Check whether adapter has an EEPROM or an OTPROM. */
2164 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
2165 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
2166 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
2167 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
2168 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
2169 
2170 	/* Adapter has to be powered on for EEPROM access to work. */
2171 	if ((error = iwn_apm_init(sc)) != 0) {
2172 		device_printf(sc->sc_dev,
2173 		    "%s: could not power ON adapter, error %d\n", __func__,
2174 		    error);
2175 		return error;
2176 	}
2177 
2178 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
2179 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
2180 		return EIO;
2181 	}
2182 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2183 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
2184 		    __func__, error);
2185 		return error;
2186 	}
2187 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
2188 		if ((error = iwn_init_otprom(sc)) != 0) {
2189 			device_printf(sc->sc_dev,
2190 			    "%s: could not initialize OTPROM, error %d\n",
2191 			    __func__, error);
2192 			return error;
2193 		}
2194 	}
2195 
2196 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
2197 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
2198 	/* Check if HT support is bonded out. */
2199 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
2200 		sc->sc_flags |= IWN_FLAG_HAS_11N;
2201 
2202 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
2203 	sc->rfcfg = le16toh(val);
2204 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
2205 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
2206 	if (sc->txchainmask == 0)
2207 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
2208 	if (sc->rxchainmask == 0)
2209 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
2210 
2211 	/* Read MAC address. */
2212 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
2213 
2214 	/* Read adapter-specific information from EEPROM. */
2215 	ops->read_eeprom(sc);
2216 
2217 	iwn_apm_stop(sc);	/* Power OFF adapter. */
2218 
2219 	iwn_eeprom_unlock(sc);
2220 
2221 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2222 
2223 	return 0;
2224 }
2225 
2226 static void
2227 iwn4965_read_eeprom(struct iwn_softc *sc)
2228 {
2229 	uint32_t addr;
2230 	uint16_t val;
2231 	int i;
2232 
2233 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2234 
2235 	/* Read regulatory domain (4 ASCII characters). */
2236 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
2237 
2238 	/* Read the list of authorized channels (20MHz ones only). */
2239 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2240 		addr = iwn4965_regulatory_bands[i];
2241 		iwn_read_eeprom_channels(sc, i, addr);
2242 	}
2243 
2244 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
2245 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
2246 	sc->maxpwr2GHz = val & 0xff;
2247 	sc->maxpwr5GHz = val >> 8;
2248 	/* Check that EEPROM values are within valid range. */
2249 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2250 		sc->maxpwr5GHz = 38;
2251 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2252 		sc->maxpwr2GHz = 38;
2253 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2254 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2255 
2256 	/* Read samples for each TX power group. */
2257 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
2258 	    sizeof sc->bands);
2259 
2260 	/* Read voltage at which samples were taken. */
2261 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
2262 	sc->eeprom_voltage = (int16_t)le16toh(val);
2263 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2264 	    sc->eeprom_voltage);
2265 
2266 #ifdef IWN_DEBUG
2267 	/* Print samples. */
2268 	if (sc->sc_debug & IWN_DEBUG_ANY) {
2269 		for (i = 0; i < IWN_NBANDS - 1; i++)
2270 			iwn4965_print_power_group(sc, i);
2271 	}
2272 #endif
2273 
2274 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2275 }
2276 
2277 #ifdef IWN_DEBUG
2278 static void
2279 iwn4965_print_power_group(struct iwn_softc *sc, int i)
2280 {
2281 	struct iwn4965_eeprom_band *band = &sc->bands[i];
2282 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
2283 	int j, c;
2284 
2285 	kprintf("===band %d===\n", i);
2286 	kprintf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2287 	kprintf("chan1 num=%d\n", chans[0].num);
2288 	for (c = 0; c < 2; c++) {
2289 		for (j = 0; j < IWN_NSAMPLES; j++) {
2290 			kprintf("chain %d, sample %d: temp=%d gain=%d "
2291 			    "power=%d pa_det=%d\n", c, j,
2292 			    chans[0].samples[c][j].temp,
2293 			    chans[0].samples[c][j].gain,
2294 			    chans[0].samples[c][j].power,
2295 			    chans[0].samples[c][j].pa_det);
2296 		}
2297 	}
2298 	kprintf("chan2 num=%d\n", chans[1].num);
2299 	for (c = 0; c < 2; c++) {
2300 		for (j = 0; j < IWN_NSAMPLES; j++) {
2301 			kprintf("chain %d, sample %d: temp=%d gain=%d "
2302 			    "power=%d pa_det=%d\n", c, j,
2303 			    chans[1].samples[c][j].temp,
2304 			    chans[1].samples[c][j].gain,
2305 			    chans[1].samples[c][j].power,
2306 			    chans[1].samples[c][j].pa_det);
2307 		}
2308 	}
2309 }
2310 #endif
2311 
2312 static void
2313 iwn5000_read_eeprom(struct iwn_softc *sc)
2314 {
2315 	struct iwn5000_eeprom_calib_hdr hdr;
2316 	int32_t volt;
2317 	uint32_t base, addr;
2318 	uint16_t val;
2319 	int i;
2320 
2321 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2322 
2323 	/* Read regulatory domain (4 ASCII characters). */
2324 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2325 	base = le16toh(val);
2326 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
2327 	    sc->eeprom_domain, 4);
2328 
2329 	/* Read the list of authorized channels (20MHz ones only). */
2330 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2331 		addr =  base + sc->base_params->regulatory_bands[i];
2332 		iwn_read_eeprom_channels(sc, i, addr);
2333 	}
2334 
2335 	/* Read enhanced TX power information for 6000 Series. */
2336 	if (sc->base_params->enhanced_TX_power)
2337 		iwn_read_eeprom_enhinfo(sc);
2338 
2339 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
2340 	base = le16toh(val);
2341 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
2342 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2343 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
2344 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
2345 	sc->calib_ver = hdr.version;
2346 
2347 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
2348 		sc->eeprom_voltage = le16toh(hdr.volt);
2349 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2350 		sc->eeprom_temp_high=le16toh(val);
2351 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2352 		sc->eeprom_temp = le16toh(val);
2353 	}
2354 
2355 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
2356 		/* Compute temperature offset. */
2357 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2358 		sc->eeprom_temp = le16toh(val);
2359 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2360 		volt = le16toh(val);
2361 		sc->temp_off = sc->eeprom_temp - (volt / -5);
2362 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
2363 		    sc->eeprom_temp, volt, sc->temp_off);
2364 	} else {
2365 		/* Read crystal calibration. */
2366 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
2367 		    &sc->eeprom_crystal, sizeof (uint32_t));
2368 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
2369 		    le32toh(sc->eeprom_crystal));
2370 	}
2371 
2372 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2373 
2374 }
2375 
2376 /*
2377  * Translate EEPROM flags to net80211.
2378  */
2379 static uint32_t
2380 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
2381 {
2382 	uint32_t nflags;
2383 
2384 	nflags = 0;
2385 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2386 		nflags |= IEEE80211_CHAN_PASSIVE;
2387 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
2388 		nflags |= IEEE80211_CHAN_NOADHOC;
2389 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
2390 		nflags |= IEEE80211_CHAN_DFS;
2391 		/* XXX apparently IBSS may still be marked */
2392 		nflags |= IEEE80211_CHAN_NOADHOC;
2393 	}
2394 
2395 	return nflags;
2396 }
2397 
2398 static void
2399 iwn_read_eeprom_band(struct iwn_softc *sc, int n)
2400 {
2401 	struct ifnet *ifp = sc->sc_ifp;
2402 	struct ieee80211com *ic = ifp->if_l2com;
2403 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2404 	const struct iwn_chan_band *band = &iwn_bands[n];
2405 	struct ieee80211_channel *c;
2406 	uint8_t chan;
2407 	int i, nflags;
2408 
2409 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2410 
2411 	for (i = 0; i < band->nchan; i++) {
2412 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2413 			DPRINTF(sc, IWN_DEBUG_RESET,
2414 			    "skip chan %d flags 0x%x maxpwr %d\n",
2415 			    band->chan[i], channels[i].flags,
2416 			    channels[i].maxpwr);
2417 			continue;
2418 		}
2419 		chan = band->chan[i];
2420 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2421 
2422 		c = &ic->ic_channels[ic->ic_nchans++];
2423 		c->ic_ieee = chan;
2424 		c->ic_maxregpower = channels[i].maxpwr;
2425 		c->ic_maxpower = 2*c->ic_maxregpower;
2426 
2427 		if (n == 0) {	/* 2GHz band */
2428 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G);
2429 			/* G =>'s B is supported */
2430 			c->ic_flags = IEEE80211_CHAN_B | nflags;
2431 			c = &ic->ic_channels[ic->ic_nchans++];
2432 			c[0] = c[-1];
2433 			c->ic_flags = IEEE80211_CHAN_G | nflags;
2434 		} else {	/* 5GHz band */
2435 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
2436 			c->ic_flags = IEEE80211_CHAN_A | nflags;
2437 		}
2438 
2439 		/* Save maximum allowed TX power for this channel. */
2440 		sc->maxpwr[chan] = channels[i].maxpwr;
2441 
2442 		DPRINTF(sc, IWN_DEBUG_RESET,
2443 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
2444 		    channels[i].flags, channels[i].maxpwr);
2445 
2446 		if (sc->sc_flags & IWN_FLAG_HAS_11N) {
2447 			/* add HT20, HT40 added separately */
2448 			c = &ic->ic_channels[ic->ic_nchans++];
2449 			c[0] = c[-1];
2450 			c->ic_flags |= IEEE80211_CHAN_HT20;
2451 		}
2452 	}
2453 
2454 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2455 
2456 }
2457 
2458 static void
2459 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n)
2460 {
2461 	struct ifnet *ifp = sc->sc_ifp;
2462 	struct ieee80211com *ic = ifp->if_l2com;
2463 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2464 	const struct iwn_chan_band *band = &iwn_bands[n];
2465 	struct ieee80211_channel *c, *cent, *extc;
2466 	uint8_t chan;
2467 	int i, nflags;
2468 
2469 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__);
2470 
2471 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) {
2472 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__);
2473 		return;
2474 	}
2475 
2476 	for (i = 0; i < band->nchan; i++) {
2477 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2478 			DPRINTF(sc, IWN_DEBUG_RESET,
2479 			    "skip chan %d flags 0x%x maxpwr %d\n",
2480 			    band->chan[i], channels[i].flags,
2481 			    channels[i].maxpwr);
2482 			continue;
2483 		}
2484 		chan = band->chan[i];
2485 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2486 
2487 		/*
2488 		 * Each entry defines an HT40 channel pair; find the
2489 		 * center channel, then the extension channel above.
2490 		 */
2491 		cent = ieee80211_find_channel_byieee(ic, chan,
2492 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
2493 		if (cent == NULL) {	/* XXX shouldn't happen */
2494 			device_printf(sc->sc_dev,
2495 			    "%s: no entry for channel %d\n", __func__, chan);
2496 			continue;
2497 		}
2498 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
2499 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
2500 		if (extc == NULL) {
2501 			DPRINTF(sc, IWN_DEBUG_RESET,
2502 			    "%s: skip chan %d, extension channel not found\n",
2503 			    __func__, chan);
2504 			continue;
2505 		}
2506 
2507 		DPRINTF(sc, IWN_DEBUG_RESET,
2508 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2509 		    chan, channels[i].flags, channels[i].maxpwr);
2510 
2511 		c = &ic->ic_channels[ic->ic_nchans++];
2512 		c[0] = cent[0];
2513 		c->ic_extieee = extc->ic_ieee;
2514 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2515 		c->ic_flags |= IEEE80211_CHAN_HT40U | nflags;
2516 		c = &ic->ic_channels[ic->ic_nchans++];
2517 		c[0] = extc[0];
2518 		c->ic_extieee = cent->ic_ieee;
2519 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2520 		c->ic_flags |= IEEE80211_CHAN_HT40D | nflags;
2521 	}
2522 
2523 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2524 
2525 }
2526 
2527 static void
2528 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2529 {
2530 	struct ifnet *ifp = sc->sc_ifp;
2531 	struct ieee80211com *ic = ifp->if_l2com;
2532 
2533 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
2534 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
2535 
2536 	if (n < 5)
2537 		iwn_read_eeprom_band(sc, n);
2538 	else
2539 		iwn_read_eeprom_ht40(sc, n);
2540 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2541 }
2542 
2543 static struct iwn_eeprom_chan *
2544 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
2545 {
2546 	int band, chan, i, j;
2547 
2548 	if (IEEE80211_IS_CHAN_HT40(c)) {
2549 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
2550 		if (IEEE80211_IS_CHAN_HT40D(c))
2551 			chan = c->ic_extieee;
2552 		else
2553 			chan = c->ic_ieee;
2554 		for (i = 0; i < iwn_bands[band].nchan; i++) {
2555 			if (iwn_bands[band].chan[i] == chan)
2556 				return &sc->eeprom_channels[band][i];
2557 		}
2558 	} else {
2559 		for (j = 0; j < 5; j++) {
2560 			for (i = 0; i < iwn_bands[j].nchan; i++) {
2561 				if (iwn_bands[j].chan[i] == c->ic_ieee)
2562 					return &sc->eeprom_channels[j][i];
2563 			}
2564 		}
2565 	}
2566 	return NULL;
2567 }
2568 
2569 /*
2570  * Enforce flags read from EEPROM.
2571  */
2572 static int
2573 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
2574     int nchan, struct ieee80211_channel chans[])
2575 {
2576 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2577 	int i;
2578 
2579 	for (i = 0; i < nchan; i++) {
2580 		struct ieee80211_channel *c = &chans[i];
2581 		struct iwn_eeprom_chan *channel;
2582 
2583 		channel = iwn_find_eeprom_channel(sc, c);
2584 		if (channel == NULL) {
2585 			if_printf(ic->ic_ifp,
2586 			    "%s: invalid channel %u freq %u/0x%x\n",
2587 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2588 			return EINVAL;
2589 		}
2590 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2591 	}
2592 
2593 	return 0;
2594 }
2595 
2596 static void
2597 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2598 {
2599 	struct iwn_eeprom_enhinfo enhinfo[35];
2600 	struct ifnet *ifp = sc->sc_ifp;
2601 	struct ieee80211com *ic = ifp->if_l2com;
2602 	struct ieee80211_channel *c;
2603 	uint16_t val, base;
2604 	int8_t maxpwr;
2605 	uint8_t flags;
2606 	int i, j;
2607 
2608 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2609 
2610 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2611 	base = le16toh(val);
2612 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2613 	    enhinfo, sizeof enhinfo);
2614 
2615 	for (i = 0; i < nitems(enhinfo); i++) {
2616 		flags = enhinfo[i].flags;
2617 		if (!(flags & IWN_ENHINFO_VALID))
2618 			continue;	/* Skip invalid entries. */
2619 
2620 		maxpwr = 0;
2621 		if (sc->txchainmask & IWN_ANT_A)
2622 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2623 		if (sc->txchainmask & IWN_ANT_B)
2624 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2625 		if (sc->txchainmask & IWN_ANT_C)
2626 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2627 		if (sc->ntxchains == 2)
2628 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2629 		else if (sc->ntxchains == 3)
2630 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2631 
2632 		for (j = 0; j < ic->ic_nchans; j++) {
2633 			c = &ic->ic_channels[j];
2634 			if ((flags & IWN_ENHINFO_5GHZ)) {
2635 				if (!IEEE80211_IS_CHAN_A(c))
2636 					continue;
2637 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2638 				if (!IEEE80211_IS_CHAN_G(c))
2639 					continue;
2640 			} else if (!IEEE80211_IS_CHAN_B(c))
2641 				continue;
2642 			if ((flags & IWN_ENHINFO_HT40)) {
2643 				if (!IEEE80211_IS_CHAN_HT40(c))
2644 					continue;
2645 			} else {
2646 				if (IEEE80211_IS_CHAN_HT40(c))
2647 					continue;
2648 			}
2649 			if (enhinfo[i].chan != 0 &&
2650 			    enhinfo[i].chan != c->ic_ieee)
2651 				continue;
2652 
2653 			DPRINTF(sc, IWN_DEBUG_RESET,
2654 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2655 			    c->ic_flags, maxpwr / 2);
2656 			c->ic_maxregpower = maxpwr / 2;
2657 			c->ic_maxpower = maxpwr;
2658 		}
2659 	}
2660 
2661 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2662 
2663 }
2664 
2665 static struct ieee80211_node *
2666 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2667 {
2668 	return kmalloc(sizeof(struct iwn_node), M_80211_NODE,
2669 		       M_INTWAIT | M_ZERO);
2670 }
2671 
2672 static __inline int
2673 rate2plcp(int rate)
2674 {
2675 	switch (rate & 0xff) {
2676 	case 12:	return 0xd;
2677 	case 18:	return 0xf;
2678 	case 24:	return 0x5;
2679 	case 36:	return 0x7;
2680 	case 48:	return 0x9;
2681 	case 72:	return 0xb;
2682 	case 96:	return 0x1;
2683 	case 108:	return 0x3;
2684 	case 2:		return 10;
2685 	case 4:		return 20;
2686 	case 11:	return 55;
2687 	case 22:	return 110;
2688 	}
2689 	return 0;
2690 }
2691 
2692 /*
2693  * Calculate the required PLCP value from the given rate,
2694  * to the given node.
2695  *
2696  * This will take the node configuration (eg 11n, rate table
2697  * setup, etc) into consideration.
2698  */
2699 static uint32_t
2700 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2701     uint8_t rate)
2702 {
2703 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
2704 	struct ieee80211com *ic = ni->ni_ic;
2705 	uint8_t txant1, txant2;
2706 	uint32_t plcp = 0;
2707 	int ridx;
2708 
2709 	/* Use the first valid TX antenna. */
2710 	txant1 = IWN_LSB(sc->txchainmask);
2711 	txant2 = IWN_LSB(sc->txchainmask & ~txant1);
2712 
2713 	/*
2714 	 * If it's an MCS rate, let's set the plcp correctly
2715 	 * and set the relevant flags based on the node config.
2716 	 */
2717 	if (rate & IEEE80211_RATE_MCS) {
2718 		/*
2719 		 * Set the initial PLCP value to be between 0->31 for
2720 		 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2721 		 * flag.
2722 		 */
2723 		plcp = RV(rate) | IWN_RFLAG_MCS;
2724 
2725 		/*
2726 		 * XXX the following should only occur if both
2727 		 * the local configuration _and_ the remote node
2728 		 * advertise these capabilities.  Thus this code
2729 		 * may need fixing!
2730 		 */
2731 
2732 		/*
2733 		 * Set the channel width and guard interval.
2734 		 */
2735 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2736 			plcp |= IWN_RFLAG_HT40;
2737 			if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2738 				plcp |= IWN_RFLAG_SGI;
2739 		} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) {
2740 			plcp |= IWN_RFLAG_SGI;
2741 		}
2742 
2743 		/*
2744 		 * If it's a two stream rate, enable TX on both
2745 		 * antennas.
2746 		 *
2747 		 * XXX three stream rates?
2748 		 */
2749 		if (rate > 0x87)
2750 			plcp |= IWN_RFLAG_ANT(txant1 | txant2);
2751 		else
2752 			plcp |= IWN_RFLAG_ANT(txant1);
2753 	} else {
2754 		/*
2755 		 * Set the initial PLCP - fine for both
2756 		 * OFDM and CCK rates.
2757 		 */
2758 		plcp = rate2plcp(rate);
2759 
2760 		/* Set CCK flag if it's CCK */
2761 
2762 		/* XXX It would be nice to have a method
2763 		 * to map the ridx -> phy table entry
2764 		 * so we could just query that, rather than
2765 		 * this hack to check against IWN_RIDX_OFDM6.
2766 		 */
2767 		ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2768 		    rate & IEEE80211_RATE_VAL);
2769 		if (ridx < IWN_RIDX_OFDM6 &&
2770 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2771 			plcp |= IWN_RFLAG_CCK;
2772 
2773 		/* Set antenna configuration */
2774 		plcp |= IWN_RFLAG_ANT(txant1);
2775 	}
2776 
2777 	DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2778 	    __func__,
2779 	    rate,
2780 	    plcp);
2781 
2782 	return (htole32(plcp));
2783 #undef	RV
2784 }
2785 
2786 static void
2787 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2788 {
2789 	/* Doesn't do anything at the moment */
2790 }
2791 
2792 static int
2793 iwn_media_change(struct ifnet *ifp)
2794 {
2795 	int error;
2796 
2797 	error = ieee80211_media_change(ifp);
2798 	/* NB: only the fixed rate can change and that doesn't need a reset */
2799 	return (error == ENETRESET ? 0 : error);
2800 }
2801 
2802 static int
2803 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2804 {
2805 	struct iwn_vap *ivp = IWN_VAP(vap);
2806 	struct ieee80211com *ic = vap->iv_ic;
2807 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2808 	int error = 0;
2809 
2810 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2811 
2812 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2813 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2814 
2815 	callout_stop(&sc->calib_to);
2816 
2817 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
2818 
2819 	switch (nstate) {
2820 	case IEEE80211_S_ASSOC:
2821 		if (vap->iv_state != IEEE80211_S_RUN)
2822 			break;
2823 		/* FALLTHROUGH */
2824 	case IEEE80211_S_AUTH:
2825 		if (vap->iv_state == IEEE80211_S_AUTH)
2826 			break;
2827 
2828 		/*
2829 		 * !AUTH -> AUTH transition requires state reset to handle
2830 		 * reassociations correctly.
2831 		 */
2832 		sc->rxon->associd = 0;
2833 		sc->rxon->filter &= ~htole32(IWN_FILTER_BSS);
2834 		sc->calib.state = IWN_CALIB_STATE_INIT;
2835 
2836 		if ((error = iwn_auth(sc, vap)) != 0) {
2837 			device_printf(sc->sc_dev,
2838 			    "%s: could not move to auth state\n", __func__);
2839 		}
2840 		break;
2841 
2842 	case IEEE80211_S_RUN:
2843 		/*
2844 		 * RUN -> RUN transition; Just restart the timers.
2845 		 */
2846 		if (vap->iv_state == IEEE80211_S_RUN) {
2847 			sc->calib_cnt = 0;
2848 			break;
2849 		}
2850 
2851 		/*
2852 		 * !RUN -> RUN requires setting the association id
2853 		 * which is done with a firmware cmd.  We also defer
2854 		 * starting the timers until that work is done.
2855 		 */
2856 		if ((error = iwn_run(sc, vap)) != 0) {
2857 			device_printf(sc->sc_dev,
2858 			    "%s: could not move to run state\n", __func__);
2859 		}
2860 		break;
2861 
2862 	case IEEE80211_S_INIT:
2863 		sc->calib.state = IWN_CALIB_STATE_INIT;
2864 		break;
2865 
2866 	default:
2867 		break;
2868 	}
2869 	if (error != 0){
2870 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2871 		return error;
2872 	}
2873 
2874 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2875 
2876 	return ivp->iv_newstate(vap, nstate, arg);
2877 }
2878 
2879 static void
2880 iwn_calib_timeout(void *arg)
2881 {
2882 	struct iwn_softc *sc = arg;
2883 
2884 	wlan_serialize_enter();
2885 
2886 	/* Force automatic TX power calibration every 60 secs. */
2887 	if (++sc->calib_cnt >= 120) {
2888 		uint32_t flags = 0;
2889 
2890 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2891 		    "sending request for statistics");
2892 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2893 		    sizeof flags, 1);
2894 		sc->calib_cnt = 0;
2895 	}
2896 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2897 	    sc);
2898 	wlan_serialize_exit();
2899 }
2900 
2901 /*
2902  * Process an RX_PHY firmware notification.  This is usually immediately
2903  * followed by an MPDU_RX_DONE notification.
2904  */
2905 static void
2906 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2907     struct iwn_rx_data *data)
2908 {
2909 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2910 
2911 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2912 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2913 
2914 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2915 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2916 	sc->last_rx_valid = 1;
2917 }
2918 
2919 /*
2920  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2921  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2922  */
2923 static void
2924 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2925     struct iwn_rx_data *data)
2926 {
2927 	struct iwn_ops *ops = &sc->ops;
2928 	struct ifnet *ifp = sc->sc_ifp;
2929 	struct ieee80211com *ic = ifp->if_l2com;
2930 	struct iwn_rx_ring *ring = &sc->rxq;
2931 	struct ieee80211_frame *wh;
2932 	struct ieee80211_node *ni;
2933 	struct mbuf *m, *m1;
2934 	struct iwn_rx_stat *stat;
2935 	caddr_t head;
2936 	bus_addr_t paddr;
2937 	uint32_t flags;
2938 	int error, len, rssi, nf;
2939 
2940 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2941 
2942 	if (desc->type == IWN_MPDU_RX_DONE) {
2943 		/* Check for prior RX_PHY notification. */
2944 		if (!sc->last_rx_valid) {
2945 			DPRINTF(sc, IWN_DEBUG_ANY,
2946 			    "%s: missing RX_PHY\n", __func__);
2947 			return;
2948 		}
2949 		stat = &sc->last_rx_stat;
2950 	} else
2951 		stat = (struct iwn_rx_stat *)(desc + 1);
2952 
2953 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2954 
2955 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2956 		device_printf(sc->sc_dev,
2957 		    "%s: invalid RX statistic header, len %d\n", __func__,
2958 		    stat->cfg_phy_len);
2959 		return;
2960 	}
2961 	if (desc->type == IWN_MPDU_RX_DONE) {
2962 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2963 		head = (caddr_t)(mpdu + 1);
2964 		len = le16toh(mpdu->len);
2965 	} else {
2966 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
2967 		len = le16toh(stat->len);
2968 	}
2969 
2970 	flags = le32toh(*(uint32_t *)(head + len));
2971 
2972 	/* Discard frames with a bad FCS early. */
2973 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2974 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
2975 		    __func__, flags);
2976 		IFNET_STAT_INC(ifp, ierrors, 1);
2977 		return;
2978 	}
2979 	/* Discard frames that are too short. */
2980 	if (len < sizeof (*wh)) {
2981 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
2982 		    __func__, len);
2983 		IFNET_STAT_INC(ifp, ierrors, 1);
2984 		return;
2985 	}
2986 
2987 	m1 = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
2988 	if (m1 == NULL) {
2989 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
2990 		    __func__);
2991 		IFNET_STAT_INC(ifp, ierrors, 1);
2992 		return;
2993 	}
2994 	bus_dmamap_unload(ring->data_dmat, data->map);
2995 
2996 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
2997 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2998 	if (error != 0 && error != EFBIG) {
2999 		device_printf(sc->sc_dev,
3000 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
3001 		m_freem(m1);
3002 
3003 		/* Try to reload the old mbuf. */
3004 		error = bus_dmamap_load(ring->data_dmat, data->map,
3005 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
3006 		    &paddr, BUS_DMA_NOWAIT);
3007 		if (error != 0 && error != EFBIG) {
3008 			panic("%s: could not load old RX mbuf", __func__);
3009 		}
3010 		/* Physical address may have changed. */
3011 		ring->desc[ring->cur] = htole32(paddr >> 8);
3012 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
3013 		    BUS_DMASYNC_PREWRITE);
3014 		IFNET_STAT_INC(ifp, ierrors, 1);
3015 		return;
3016 	}
3017 
3018 	m = data->m;
3019 	data->m = m1;
3020 	/* Update RX descriptor. */
3021 	ring->desc[ring->cur] = htole32(paddr >> 8);
3022 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3023 	    BUS_DMASYNC_PREWRITE);
3024 
3025 	/* Finalize mbuf. */
3026 	m->m_pkthdr.rcvif = ifp;
3027 	m->m_data = head;
3028 	m->m_pkthdr.len = m->m_len = len;
3029 
3030 	/* Grab a reference to the source node. */
3031 	wh = mtod(m, struct ieee80211_frame *);
3032 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
3033 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
3034 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
3035 
3036 	rssi = ops->get_rssi(sc, stat);
3037 
3038 	if (ieee80211_radiotap_active(ic)) {
3039 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
3040 
3041 		tap->wr_flags = 0;
3042 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
3043 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3044 		tap->wr_dbm_antsignal = (int8_t)rssi;
3045 		tap->wr_dbm_antnoise = (int8_t)nf;
3046 		tap->wr_tsft = stat->tstamp;
3047 		switch (stat->rate) {
3048 		/* CCK rates. */
3049 		case  10: tap->wr_rate =   2; break;
3050 		case  20: tap->wr_rate =   4; break;
3051 		case  55: tap->wr_rate =  11; break;
3052 		case 110: tap->wr_rate =  22; break;
3053 		/* OFDM rates. */
3054 		case 0xd: tap->wr_rate =  12; break;
3055 		case 0xf: tap->wr_rate =  18; break;
3056 		case 0x5: tap->wr_rate =  24; break;
3057 		case 0x7: tap->wr_rate =  36; break;
3058 		case 0x9: tap->wr_rate =  48; break;
3059 		case 0xb: tap->wr_rate =  72; break;
3060 		case 0x1: tap->wr_rate =  96; break;
3061 		case 0x3: tap->wr_rate = 108; break;
3062 		/* Unknown rate: should not happen. */
3063 		default:  tap->wr_rate =   0;
3064 		}
3065 	}
3066 
3067 	/* Send the frame to the 802.11 layer. */
3068 	if (ni != NULL) {
3069 		if (ni->ni_flags & IEEE80211_NODE_HT)
3070 			m->m_flags |= M_AMPDU;
3071 		(void)ieee80211_input(ni, m, rssi - nf, nf);
3072 		/* Node is no longer needed. */
3073 		ieee80211_free_node(ni);
3074 	} else {
3075 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
3076 	}
3077 
3078 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3079 
3080 }
3081 
3082 /* Process an incoming Compressed BlockAck. */
3083 static void
3084 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3085     struct iwn_rx_data *data)
3086 {
3087 	struct iwn_ops *ops = &sc->ops;
3088 	struct ifnet *ifp = sc->sc_ifp;
3089 	struct iwn_node *wn;
3090 	struct ieee80211_node *ni;
3091 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
3092 	struct iwn_tx_ring *txq;
3093 	struct iwn_tx_data *txdata;
3094 	struct ieee80211_tx_ampdu *tap;
3095 	struct mbuf *m;
3096 	uint64_t bitmap;
3097 	uint16_t ssn;
3098 	uint8_t tid;
3099 	int ackfailcnt = 0, i, lastidx, qid, *res, shift;
3100 
3101 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3102 
3103 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3104 
3105 	qid = le16toh(ba->qid);
3106 	txq = &sc->txq[ba->qid];
3107 	tap = sc->qid2tap[ba->qid];
3108 	tid = tap->txa_ac;
3109 	wn = (void *)tap->txa_ni;
3110 
3111 	res = NULL;
3112 	ssn = 0;
3113 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3114 		res = tap->txa_private;
3115 		ssn = tap->txa_start & 0xfff;
3116 	}
3117 
3118 	for (lastidx = le16toh(ba->ssn) & 0xff; txq->read != lastidx;) {
3119 		txdata = &txq->data[txq->read];
3120 
3121 		/* Unmap and free mbuf. */
3122 		bus_dmamap_sync(txq->data_dmat, txdata->map,
3123 		    BUS_DMASYNC_POSTWRITE);
3124 		bus_dmamap_unload(txq->data_dmat, txdata->map);
3125 		m = txdata->m, txdata->m = NULL;
3126 		ni = txdata->ni, txdata->ni = NULL;
3127 
3128 		KASSERT(ni != NULL, ("no node"));
3129 		KASSERT(m != NULL, ("no mbuf"));
3130 
3131 		ieee80211_tx_complete(ni, m, 1);
3132 
3133 		txq->queued--;
3134 		txq->read = (txq->read + 1) % IWN_TX_RING_COUNT;
3135 	}
3136 
3137 	if (txq->queued == 0 && res != NULL) {
3138 		iwn_nic_lock(sc);
3139 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3140 		iwn_nic_unlock(sc);
3141 		sc->qid2tap[qid] = NULL;
3142 		kfree(res, M_DEVBUF);
3143 		return;
3144 	}
3145 
3146 	if (wn->agg[tid].bitmap == 0)
3147 		return;
3148 
3149 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
3150 	if (shift < 0)
3151 		shift += 0x100;
3152 
3153 	if (wn->agg[tid].nframes > (64 - shift))
3154 		return;
3155 
3156 	ni = tap->txa_ni;
3157 	bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap;
3158 	for (i = 0; bitmap; i++) {
3159 		if ((bitmap & 1) == 0) {
3160 			IFNET_STAT_INC(ifp, oerrors, 1);
3161 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3162 			    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
3163 		} else {
3164 			IFNET_STAT_INC(ifp, opackets, 1);
3165 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3166 			    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
3167 		}
3168 		bitmap >>= 1;
3169 	}
3170 
3171 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3172 
3173 }
3174 
3175 /*
3176  * Process a CALIBRATION_RESULT notification sent by the initialization
3177  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
3178  */
3179 static void
3180 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3181     struct iwn_rx_data *data)
3182 {
3183 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
3184 	int len, idx = -1;
3185 
3186 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3187 
3188 	/* Runtime firmware should not send such a notification. */
3189 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE){
3190 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received after clib done\n",
3191 	    __func__);
3192 		return;
3193 	}
3194 	len = (le32toh(desc->len) & 0x3fff) - 4;
3195 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3196 
3197 	switch (calib->code) {
3198 	case IWN5000_PHY_CALIB_DC:
3199 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC)
3200 			idx = 0;
3201 		break;
3202 	case IWN5000_PHY_CALIB_LO:
3203 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO)
3204 			idx = 1;
3205 		break;
3206 	case IWN5000_PHY_CALIB_TX_IQ:
3207 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ)
3208 			idx = 2;
3209 		break;
3210 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
3211 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC)
3212 			idx = 3;
3213 		break;
3214 	case IWN5000_PHY_CALIB_BASE_BAND:
3215 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND)
3216 			idx = 4;
3217 		break;
3218 	}
3219 	if (idx == -1)	/* Ignore other results. */
3220 		return;
3221 
3222 	/* Save calibration result. */
3223 	if (sc->calibcmd[idx].buf != NULL)
3224 		kfree(sc->calibcmd[idx].buf, M_DEVBUF);
3225 	sc->calibcmd[idx].buf = kmalloc(len, M_DEVBUF, M_INTWAIT);
3226 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3227 	    "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len);
3228 	sc->calibcmd[idx].len = len;
3229 	memcpy(sc->calibcmd[idx].buf, calib, len);
3230 }
3231 
3232 static void
3233 iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib,
3234     struct iwn_stats *stats, int len)
3235 {
3236 	struct iwn_stats_bt *stats_bt;
3237 	struct iwn_stats *lstats;
3238 
3239 	/*
3240 	 * First - check whether the length is the bluetooth or normal.
3241 	 *
3242 	 * If it's normal - just copy it and bump out.
3243 	 * Otherwise we have to convert things.
3244 	 */
3245 
3246 	if (len == sizeof(struct iwn_stats) + 4) {
3247 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3248 		sc->last_stat_valid = 1;
3249 		return;
3250 	}
3251 
3252 	/*
3253 	 * If it's not the bluetooth size - log, then just copy.
3254 	 */
3255 	if (len != sizeof(struct iwn_stats_bt) + 4) {
3256 		DPRINTF(sc, IWN_DEBUG_STATS,
3257 		    "%s: size of rx statistics (%d) not an expected size!\n",
3258 		    __func__,
3259 		    len);
3260 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3261 		sc->last_stat_valid = 1;
3262 		return;
3263 	}
3264 
3265 	/*
3266 	 * Ok. Time to copy.
3267 	 */
3268 	stats_bt = (struct iwn_stats_bt *) stats;
3269 	lstats = &sc->last_stat;
3270 
3271 	/* flags */
3272 	lstats->flags = stats_bt->flags;
3273 	/* rx_bt */
3274 	memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm,
3275 	    sizeof(struct iwn_rx_phy_stats));
3276 	memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck,
3277 	    sizeof(struct iwn_rx_phy_stats));
3278 	memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common,
3279 	    sizeof(struct iwn_rx_general_stats));
3280 	memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht,
3281 	    sizeof(struct iwn_rx_ht_phy_stats));
3282 	/* tx */
3283 	memcpy(&lstats->tx, &stats_bt->tx,
3284 	    sizeof(struct iwn_tx_stats));
3285 	/* general */
3286 	memcpy(&lstats->general, &stats_bt->general,
3287 	    sizeof(struct iwn_general_stats));
3288 
3289 	/* XXX TODO: Squirrel away the extra bluetooth stats somewhere */
3290 	sc->last_stat_valid = 1;
3291 }
3292 
3293 /*
3294  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
3295  * The latter is sent by the firmware after each received beacon.
3296  */
3297 static void
3298 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3299     struct iwn_rx_data *data)
3300 {
3301 	struct iwn_ops *ops = &sc->ops;
3302 	struct ifnet *ifp = sc->sc_ifp;
3303 	struct ieee80211com *ic = ifp->if_l2com;
3304 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3305 	struct iwn_calib_state *calib = &sc->calib;
3306 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
3307 	struct iwn_stats *lstats;
3308 	int temp;
3309 
3310 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3311 
3312 	/* Ignore statistics received during a scan. */
3313 	if (vap->iv_state != IEEE80211_S_RUN ||
3314 	    (ic->ic_flags & IEEE80211_F_SCAN)){
3315 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n",
3316 	    __func__);
3317 		return;
3318 	}
3319 
3320 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3321 
3322 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS,
3323 	    "%s: received statistics, cmd %d, len %d\n",
3324 	    __func__, desc->type, le16toh(desc->len));
3325 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
3326 
3327 	/*
3328 	 * Collect/track general statistics for reporting.
3329 	 *
3330 	 * This takes care of ensuring that the bluetooth sized message
3331 	 * will be correctly converted to the legacy sized message.
3332 	 */
3333 	iwn_stats_update(sc, calib, stats, le16toh(desc->len));
3334 
3335 	/*
3336 	 * And now, let's take a reference of it to use!
3337 	 */
3338 	lstats = &sc->last_stat;
3339 
3340 	/* Test if temperature has changed. */
3341 	if (lstats->general.temp != sc->rawtemp) {
3342 		/* Convert "raw" temperature to degC. */
3343 		sc->rawtemp = stats->general.temp;
3344 		temp = ops->get_temperature(sc);
3345 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
3346 		    __func__, temp);
3347 
3348 		/* Update TX power if need be (4965AGN only). */
3349 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3350 			iwn4965_power_calibration(sc, temp);
3351 	}
3352 
3353 	if (desc->type != IWN_BEACON_STATISTICS)
3354 		return;	/* Reply to a statistics request. */
3355 
3356 	sc->noise = iwn_get_noise(&lstats->rx.general);
3357 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
3358 
3359 	/* Test that RSSI and noise are present in stats report. */
3360 	if (le32toh(lstats->rx.general.flags) != 1) {
3361 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
3362 		    "received statistics without RSSI");
3363 		return;
3364 	}
3365 
3366 	if (calib->state == IWN_CALIB_STATE_ASSOC)
3367 		iwn_collect_noise(sc, &lstats->rx.general);
3368 	else if (calib->state == IWN_CALIB_STATE_RUN) {
3369 		iwn_tune_sensitivity(sc, &lstats->rx);
3370 		/*
3371 		 * XXX TODO: Only run the RX recovery if we're associated!
3372 		 */
3373 		iwn_check_rx_recovery(sc, lstats);
3374 		iwn_save_stats_counters(sc, lstats);
3375 	}
3376 
3377 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3378 }
3379 
3380 /*
3381  * Save the relevant statistic counters for the next calibration
3382  * pass.
3383  */
3384 static void
3385 iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs)
3386 {
3387 	struct iwn_calib_state *calib = &sc->calib;
3388 
3389 	/* Save counters values for next call. */
3390 	calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp);
3391 	calib->fa_cck = le32toh(rs->rx.cck.fa);
3392 	calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp);
3393 	calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp);
3394 	calib->fa_ofdm = le32toh(rs->rx.ofdm.fa);
3395 
3396 	/* Last time we received these tick values */
3397 	sc->last_calib_ticks = ticks;
3398 }
3399 
3400 /*
3401  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
3402  * and 5000 adapters have different incompatible TX status formats.
3403  */
3404 static void
3405 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3406     struct iwn_rx_data *data)
3407 {
3408 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
3409 	struct iwn_tx_ring *ring;
3410 	int qid;
3411 
3412 	qid = desc->qid & 0xf;
3413 	ring = &sc->txq[qid];
3414 
3415 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3416 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
3417 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
3418 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
3419 	    le32toh(stat->status));
3420 
3421 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3422 	if (qid >= sc->firstaggqueue) {
3423 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3424 		    &stat->status);
3425 	} else {
3426 		iwn_tx_done(sc, desc, stat->ackfailcnt,
3427 		    le32toh(stat->status) & 0xff);
3428 	}
3429 }
3430 
3431 static void
3432 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3433     struct iwn_rx_data *data)
3434 {
3435 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
3436 	struct iwn_tx_ring *ring;
3437 	int qid;
3438 
3439 	qid = desc->qid & 0xf;
3440 	ring = &sc->txq[qid];
3441 
3442 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3443 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
3444 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
3445 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
3446 	    le32toh(stat->status));
3447 
3448 #ifdef notyet
3449 	/* Reset TX scheduler slot. */
3450 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
3451 #endif
3452 
3453 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3454 	if (qid >= sc->firstaggqueue) {
3455 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3456 		    &stat->status);
3457 	} else {
3458 		iwn_tx_done(sc, desc, stat->ackfailcnt,
3459 		    le16toh(stat->status) & 0xff);
3460 	}
3461 }
3462 
3463 /*
3464  * Adapter-independent backend for TX_DONE firmware notifications.
3465  */
3466 static void
3467 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
3468     uint8_t status)
3469 {
3470 	struct ifnet *ifp = sc->sc_ifp;
3471 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
3472 	struct iwn_tx_data *data = &ring->data[desc->idx];
3473 	struct mbuf *m;
3474 	struct ieee80211_node *ni;
3475 	struct ieee80211vap *vap;
3476 
3477 	KASSERT(data->ni != NULL, ("no node"));
3478 
3479 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3480 
3481 	/* Unmap and free mbuf. */
3482 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
3483 	bus_dmamap_unload(ring->data_dmat, data->map);
3484 	m = data->m, data->m = NULL;
3485 	ni = data->ni, data->ni = NULL;
3486 	vap = ni->ni_vap;
3487 
3488 	/*
3489 	 * Update rate control statistics for the node.
3490 	 */
3491 	if (status & IWN_TX_FAIL) {
3492 		IFNET_STAT_INC(ifp, oerrors, 1);
3493 		ieee80211_ratectl_tx_complete(vap, ni,
3494 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
3495 	} else {
3496 		IFNET_STAT_INC(ifp, opackets, 1);
3497 		ieee80211_ratectl_tx_complete(vap, ni,
3498 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
3499 	}
3500 
3501 	/*
3502 	 * Channels marked for "radar" require traffic to be received
3503 	 * to unlock before we can transmit.  Until traffic is seen
3504 	 * any attempt to transmit is returned immediately with status
3505 	 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
3506 	 * happen on first authenticate after scanning.  To workaround
3507 	 * this we ignore a failure of this sort in AUTH state so the
3508 	 * 802.11 layer will fall back to using a timeout to wait for
3509 	 * the AUTH reply.  This allows the firmware time to see
3510 	 * traffic so a subsequent retry of AUTH succeeds.  It's
3511 	 * unclear why the firmware does not maintain state for
3512 	 * channels recently visited as this would allow immediate
3513 	 * use of the channel after a scan (where we see traffic).
3514 	 */
3515 	if (status == IWN_TX_FAIL_TX_LOCKED &&
3516 	    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
3517 		ieee80211_tx_complete(ni, m, 0);
3518 	else
3519 		ieee80211_tx_complete(ni, m,
3520 		    (status & IWN_TX_FAIL) != 0);
3521 
3522 	sc->sc_tx_timer = 0;
3523 	if (--ring->queued < IWN_TX_RING_LOMARK) {
3524 		sc->qfullmsk &= ~(1 << ring->qid);
3525 		if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) {
3526 			ifq_clr_oactive(&ifp->if_snd);
3527 			iwn_start_locked(ifp);
3528 		}
3529 	}
3530 
3531 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3532 
3533 }
3534 
3535 /*
3536  * Process a "command done" firmware notification.  This is where we wakeup
3537  * processes waiting for a synchronous command completion.
3538  */
3539 static void
3540 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3541 {
3542 	struct iwn_tx_ring *ring;
3543 	struct iwn_tx_data *data;
3544 	int cmd_queue_num;
3545 
3546 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
3547 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
3548 	else
3549 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
3550 
3551 	if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num)
3552 		return;	/* Not a command ack. */
3553 
3554 	ring = &sc->txq[cmd_queue_num];
3555 	data = &ring->data[desc->idx];
3556 
3557 	/* If the command was mapped in an mbuf, free it. */
3558 	if (data->m != NULL) {
3559 		bus_dmamap_sync(ring->data_dmat, data->map,
3560 		    BUS_DMASYNC_POSTWRITE);
3561 		bus_dmamap_unload(ring->data_dmat, data->map);
3562 		m_freem(data->m);
3563 		data->m = NULL;
3564 	}
3565 	wakeup(&ring->desc[desc->idx]);
3566 }
3567 
3568 static void
3569 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes,
3570     void *stat)
3571 {
3572 	struct iwn_ops *ops = &sc->ops;
3573 	struct ifnet *ifp = sc->sc_ifp;
3574 	struct iwn_tx_ring *ring = &sc->txq[qid];
3575 	struct iwn_tx_data *data;
3576 	struct mbuf *m;
3577 	struct iwn_node *wn;
3578 	struct ieee80211_node *ni;
3579 	struct ieee80211_tx_ampdu *tap;
3580 	uint64_t bitmap;
3581 	uint32_t *status = stat;
3582 	uint16_t *aggstatus = stat;
3583 	uint16_t ssn;
3584 	uint8_t tid;
3585 	int bit, i, lastidx, *res, seqno, shift, start;
3586 
3587 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3588 
3589 	if (nframes == 1) {
3590 		if ((*status & 0xff) != 1 && (*status & 0xff) != 2) {
3591 #ifdef	NOT_YET
3592 			kprintf("ieee80211_send_bar()\n");
3593 #endif
3594 			/*
3595 			 * If we completely fail a transmit, make sure a
3596 			 * notification is pushed up to the rate control
3597 			 * layer.
3598 			 */
3599 			tap = sc->qid2tap[qid];
3600 			tid = tap->txa_ac;
3601 			wn = (void *)tap->txa_ni;
3602 			ni = tap->txa_ni;
3603 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3604 			    IEEE80211_RATECTL_TX_FAILURE, &nframes, NULL);
3605 		}
3606 	}
3607 
3608 	bitmap = 0;
3609 	start = idx;
3610 	for (i = 0; i < nframes; i++) {
3611 		if (le16toh(aggstatus[i * 2]) & 0xc)
3612 			continue;
3613 
3614 		idx = le16toh(aggstatus[2*i + 1]) & 0xff;
3615 		bit = idx - start;
3616 		shift = 0;
3617 		if (bit >= 64) {
3618 			shift = 0x100 - idx + start;
3619 			bit = 0;
3620 			start = idx;
3621 		} else if (bit <= -64)
3622 			bit = 0x100 - start + idx;
3623 		else if (bit < 0) {
3624 			shift = start - idx;
3625 			start = idx;
3626 			bit = 0;
3627 		}
3628 		bitmap = bitmap << shift;
3629 		bitmap |= 1ULL << bit;
3630 	}
3631 	tap = sc->qid2tap[qid];
3632 	tid = tap->txa_ac;
3633 	wn = (void *)tap->txa_ni;
3634 	wn->agg[tid].bitmap = bitmap;
3635 	wn->agg[tid].startidx = start;
3636 	wn->agg[tid].nframes = nframes;
3637 
3638 	res = NULL;
3639 	ssn = 0;
3640 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3641 		res = tap->txa_private;
3642 		ssn = tap->txa_start & 0xfff;
3643 	}
3644 
3645 	seqno = le32toh(*(status + nframes)) & 0xfff;
3646 	for (lastidx = (seqno & 0xff); ring->read != lastidx;) {
3647 		data = &ring->data[ring->read];
3648 
3649 		/* Unmap and free mbuf. */
3650 		bus_dmamap_sync(ring->data_dmat, data->map,
3651 		    BUS_DMASYNC_POSTWRITE);
3652 		bus_dmamap_unload(ring->data_dmat, data->map);
3653 		m = data->m, data->m = NULL;
3654 		ni = data->ni, data->ni = NULL;
3655 
3656 		KASSERT(ni != NULL, ("no node"));
3657 		KASSERT(m != NULL, ("no mbuf"));
3658 
3659 		ieee80211_tx_complete(ni, m, 1);
3660 
3661 		ring->queued--;
3662 		ring->read = (ring->read + 1) % IWN_TX_RING_COUNT;
3663 	}
3664 
3665 	if (ring->queued == 0 && res != NULL) {
3666 		iwn_nic_lock(sc);
3667 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3668 		iwn_nic_unlock(sc);
3669 		sc->qid2tap[qid] = NULL;
3670 		kfree(res, M_DEVBUF);
3671 		return;
3672 	}
3673 
3674 	sc->sc_tx_timer = 0;
3675 	if (ring->queued < IWN_TX_RING_LOMARK) {
3676 		sc->qfullmsk &= ~(1 << ring->qid);
3677 		if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) {
3678 			ifq_clr_oactive(&ifp->if_snd);
3679 			iwn_start_locked(ifp);
3680 		}
3681 	}
3682 
3683 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3684 
3685 }
3686 
3687 /*
3688  * Process an INT_FH_RX or INT_SW_RX interrupt.
3689  */
3690 static void
3691 iwn_notif_intr(struct iwn_softc *sc)
3692 {
3693 	struct iwn_ops *ops = &sc->ops;
3694 	struct ifnet *ifp = sc->sc_ifp;
3695 	struct ieee80211com *ic = ifp->if_l2com;
3696 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3697 	uint16_t hw;
3698 
3699 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
3700 	    BUS_DMASYNC_POSTREAD);
3701 
3702 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
3703 	while (sc->rxq.cur != hw) {
3704 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
3705 		struct iwn_rx_desc *desc;
3706 
3707 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3708 		    BUS_DMASYNC_POSTREAD);
3709 		desc = mtod(data->m, struct iwn_rx_desc *);
3710 
3711 		DPRINTF(sc, IWN_DEBUG_RECV,
3712 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
3713 		    __func__, sc->rxq.cur, desc->qid & 0xf, desc->idx, desc->flags,
3714 		    desc->type, iwn_intr_str(desc->type),
3715 		    le16toh(desc->len));
3716 
3717 		if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF))	/* Reply to a command. */
3718 			iwn_cmd_done(sc, desc);
3719 
3720 		switch (desc->type) {
3721 		case IWN_RX_PHY:
3722 			iwn_rx_phy(sc, desc, data);
3723 			break;
3724 
3725 		case IWN_RX_DONE:		/* 4965AGN only. */
3726 		case IWN_MPDU_RX_DONE:
3727 			/* An 802.11 frame has been received. */
3728 			iwn_rx_done(sc, desc, data);
3729 			break;
3730 
3731 		case IWN_RX_COMPRESSED_BA:
3732 			/* A Compressed BlockAck has been received. */
3733 			iwn_rx_compressed_ba(sc, desc, data);
3734 			break;
3735 
3736 		case IWN_TX_DONE:
3737 			/* An 802.11 frame has been transmitted. */
3738 			ops->tx_done(sc, desc, data);
3739 			break;
3740 
3741 		case IWN_RX_STATISTICS:
3742 		case IWN_BEACON_STATISTICS:
3743 			iwn_rx_statistics(sc, desc, data);
3744 			break;
3745 
3746 		case IWN_BEACON_MISSED:
3747 		{
3748 			struct iwn_beacon_missed *miss =
3749 			    (struct iwn_beacon_missed *)(desc + 1);
3750 			int misses;
3751 
3752 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3753 			    BUS_DMASYNC_POSTREAD);
3754 			misses = le32toh(miss->consecutive);
3755 
3756 			DPRINTF(sc, IWN_DEBUG_STATE,
3757 			    "%s: beacons missed %d/%d\n", __func__,
3758 			    misses, le32toh(miss->total));
3759 			/*
3760 			 * If more than 5 consecutive beacons are missed,
3761 			 * reinitialize the sensitivity state machine.
3762 			 */
3763 			if (vap->iv_state == IEEE80211_S_RUN &&
3764 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3765 				if (misses > 5)
3766 					(void)iwn_init_sensitivity(sc);
3767 				if (misses >= vap->iv_bmissthreshold) {
3768 					ieee80211_beacon_miss(ic);
3769 				}
3770 			}
3771 			break;
3772 		}
3773 		case IWN_UC_READY:
3774 		{
3775 			struct iwn_ucode_info *uc =
3776 			    (struct iwn_ucode_info *)(desc + 1);
3777 
3778 			/* The microcontroller is ready. */
3779 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3780 			    BUS_DMASYNC_POSTREAD);
3781 			DPRINTF(sc, IWN_DEBUG_RESET,
3782 			    "microcode alive notification version=%d.%d "
3783 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
3784 			    uc->subtype, le32toh(uc->valid));
3785 
3786 			if (le32toh(uc->valid) != 1) {
3787 				device_printf(sc->sc_dev,
3788 				    "microcontroller initialization failed");
3789 				break;
3790 			}
3791 			if (uc->subtype == IWN_UCODE_INIT) {
3792 				/* Save microcontroller report. */
3793 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
3794 			}
3795 			/* Save the address of the error log in SRAM. */
3796 			sc->errptr = le32toh(uc->errptr);
3797 			break;
3798 		}
3799 		case IWN_STATE_CHANGED:
3800 		{
3801 			/*
3802 			 * State change allows hardware switch change to be
3803 			 * noted. However, we handle this in iwn_intr as we
3804 			 * get both the enable/disble intr.
3805 			 */
3806 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3807 			    BUS_DMASYNC_POSTREAD);
3808 #ifdef	IWN_DEBUG
3809 			uint32_t *status = (uint32_t *)(desc + 1);
3810 			DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE,
3811 			    "state changed to %x\n",
3812 			    le32toh(*status));
3813 #endif
3814 			break;
3815 		}
3816 		case IWN_START_SCAN:
3817 		{
3818 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3819 			    BUS_DMASYNC_POSTREAD);
3820 #ifdef	IWN_DEBUG
3821 			struct iwn_start_scan *scan =
3822 			    (struct iwn_start_scan *)(desc + 1);
3823 			DPRINTF(sc, IWN_DEBUG_ANY,
3824 			    "%s: scanning channel %d status %x\n",
3825 			    __func__, scan->chan, le32toh(scan->status));
3826 #endif
3827 			break;
3828 		}
3829 		case IWN_STOP_SCAN:
3830 		{
3831 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3832 			    BUS_DMASYNC_POSTREAD);
3833 #ifdef	IWN_DEBUG
3834 			struct iwn_stop_scan *scan =
3835 			    (struct iwn_stop_scan *)(desc + 1);
3836 			DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN,
3837 			    "scan finished nchan=%d status=%d chan=%d\n",
3838 			    scan->nchan, scan->status, scan->chan);
3839 #endif
3840 			sc->sc_is_scanning = 0;
3841 			ieee80211_scan_next(vap);
3842 			break;
3843 		}
3844 		case IWN5000_CALIBRATION_RESULT:
3845 			iwn5000_rx_calib_results(sc, desc, data);
3846 			break;
3847 
3848 		case IWN5000_CALIBRATION_DONE:
3849 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
3850 			wakeup(sc);
3851 			break;
3852 		}
3853 
3854 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
3855 	}
3856 
3857 	/* Tell the firmware what we have processed. */
3858 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
3859 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
3860 }
3861 
3862 /*
3863  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
3864  * from power-down sleep mode.
3865  */
3866 static void
3867 iwn_wakeup_intr(struct iwn_softc *sc)
3868 {
3869 	int qid;
3870 
3871 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
3872 	    __func__);
3873 
3874 	/* Wakeup RX and TX rings. */
3875 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
3876 	for (qid = 0; qid < sc->ntxqs; qid++) {
3877 		struct iwn_tx_ring *ring = &sc->txq[qid];
3878 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
3879 	}
3880 }
3881 
3882 static void
3883 iwn_rftoggle_intr(struct iwn_softc *sc)
3884 {
3885 	struct ifnet *ifp = sc->sc_ifp;
3886 	struct ieee80211com *ic = ifp->if_l2com;
3887 	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
3888 
3889 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
3890 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
3891 	if (tmp & IWN_GP_CNTRL_RFKILL)
3892 		ieee80211_runtask(ic, &sc->sc_radioon_task);
3893 	else
3894 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
3895 }
3896 
3897 /*
3898  * Dump the error log of the firmware when a firmware panic occurs.  Although
3899  * we can't debug the firmware because it is neither open source nor free, it
3900  * can help us to identify certain classes of problems.
3901  */
3902 static void
3903 iwn_fatal_intr(struct iwn_softc *sc)
3904 {
3905 	struct iwn_fw_dump dump;
3906 	int i;
3907 
3908 	/* Force a complete recalibration on next init. */
3909 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
3910 
3911 	/* Check that the error log address is valid. */
3912 	if (sc->errptr < IWN_FW_DATA_BASE ||
3913 	    sc->errptr + sizeof (dump) >
3914 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
3915 		kprintf("%s: bad firmware error log address 0x%08x\n", __func__,
3916 		    sc->errptr);
3917 		return;
3918 	}
3919 	if (iwn_nic_lock(sc) != 0) {
3920 		kprintf("%s: could not read firmware error log\n", __func__);
3921 		return;
3922 	}
3923 	/* Read firmware error log from SRAM. */
3924 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
3925 	    sizeof (dump) / sizeof (uint32_t));
3926 	iwn_nic_unlock(sc);
3927 
3928 	if (dump.valid == 0) {
3929 		kprintf("%s: firmware error log is empty\n", __func__);
3930 		return;
3931 	}
3932 	kprintf("firmware error log:\n");
3933 	kprintf("  error type      = \"%s\" (0x%08X)\n",
3934 	    (dump.id < nitems(iwn_fw_errmsg)) ?
3935 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
3936 	    dump.id);
3937 	kprintf("  program counter = 0x%08X\n", dump.pc);
3938 	kprintf("  source line     = 0x%08X\n", dump.src_line);
3939 	kprintf("  error data      = 0x%08X%08X\n",
3940 	    dump.error_data[0], dump.error_data[1]);
3941 	kprintf("  branch link     = 0x%08X%08X\n",
3942 	    dump.branch_link[0], dump.branch_link[1]);
3943 	kprintf("  interrupt link  = 0x%08X%08X\n",
3944 	    dump.interrupt_link[0], dump.interrupt_link[1]);
3945 	kprintf("  time            = %u\n", dump.time[0]);
3946 
3947 	/* Dump driver status (TX and RX rings) while we're here. */
3948 	kprintf("driver status:\n");
3949 	for (i = 0; i < sc->ntxqs; i++) {
3950 		struct iwn_tx_ring *ring = &sc->txq[i];
3951 		kprintf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
3952 		    i, ring->qid, ring->cur, ring->queued);
3953 	}
3954 	kprintf("  rx ring: cur=%d\n", sc->rxq.cur);
3955 }
3956 
3957 static void
3958 iwn_intr(void *arg)
3959 {
3960 	struct iwn_softc *sc = arg;
3961 	struct ifnet *ifp = sc->sc_ifp;
3962 	uint32_t r1, r2, tmp;
3963 
3964 	/* Disable interrupts. */
3965 	IWN_WRITE(sc, IWN_INT_MASK, 0);
3966 
3967 	/* Read interrupts from ICT (fast) or from registers (slow). */
3968 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3969 		tmp = 0;
3970 		while (sc->ict[sc->ict_cur] != 0) {
3971 			tmp |= sc->ict[sc->ict_cur];
3972 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
3973 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
3974 		}
3975 		tmp = le32toh(tmp);
3976 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
3977 			tmp = 0;
3978 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
3979 			tmp |= 0x8000;
3980 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
3981 		r2 = 0;	/* Unused. */
3982 	} else {
3983 		r1 = IWN_READ(sc, IWN_INT);
3984 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
3985 			return;	/* Hardware gone! */
3986 		r2 = IWN_READ(sc, IWN_FH_INT);
3987 	}
3988 
3989 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n"
3990     , r1, r2);
3991 
3992 	if (r1 == 0 && r2 == 0)
3993 		goto done;	/* Interrupt not for us. */
3994 
3995 	/* Acknowledge interrupts. */
3996 	IWN_WRITE(sc, IWN_INT, r1);
3997 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
3998 		IWN_WRITE(sc, IWN_FH_INT, r2);
3999 
4000 	if (r1 & IWN_INT_RF_TOGGLED) {
4001 		iwn_rftoggle_intr(sc);
4002 		goto done;
4003 	}
4004 	if (r1 & IWN_INT_CT_REACHED) {
4005 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
4006 		    __func__);
4007 	}
4008 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
4009 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
4010 		    __func__);
4011 #ifdef	IWN_DEBUG
4012 		iwn_debug_register(sc);
4013 #endif
4014 		/* Dump firmware error log and stop. */
4015 		iwn_fatal_intr(sc);
4016 
4017 		taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task);
4018 		goto done;
4019 	}
4020 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
4021 	    (r2 & IWN_FH_INT_RX)) {
4022 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4023 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
4024 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
4025 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4026 			    IWN_INT_PERIODIC_DIS);
4027 			iwn_notif_intr(sc);
4028 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
4029 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4030 				    IWN_INT_PERIODIC_ENA);
4031 			}
4032 		} else
4033 			iwn_notif_intr(sc);
4034 	}
4035 
4036 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
4037 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
4038 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
4039 		wakeup(sc);	/* FH DMA transfer completed. */
4040 	}
4041 
4042 	if (r1 & IWN_INT_ALIVE)
4043 		wakeup(sc);	/* Firmware is alive. */
4044 
4045 	if (r1 & IWN_INT_WAKEUP)
4046 		iwn_wakeup_intr(sc);
4047 
4048 done:
4049 	/* Re-enable interrupts. */
4050 	if (ifp->if_flags & IFF_UP)
4051 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4052 }
4053 
4054 /*
4055  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
4056  * 5000 adapters use a slightly different format).
4057  */
4058 static void
4059 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4060     uint16_t len)
4061 {
4062 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
4063 
4064 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4065 
4066 	*w = htole16(len + 8);
4067 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4068 	    BUS_DMASYNC_PREWRITE);
4069 	if (idx < IWN_SCHED_WINSZ) {
4070 		*(w + IWN_TX_RING_COUNT) = *w;
4071 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4072 		    BUS_DMASYNC_PREWRITE);
4073 	}
4074 }
4075 
4076 static void
4077 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4078     uint16_t len)
4079 {
4080 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4081 
4082 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4083 
4084 	*w = htole16(id << 12 | (len + 8));
4085 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4086 	    BUS_DMASYNC_PREWRITE);
4087 	if (idx < IWN_SCHED_WINSZ) {
4088 		*(w + IWN_TX_RING_COUNT) = *w;
4089 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4090 		    BUS_DMASYNC_PREWRITE);
4091 	}
4092 }
4093 
4094 #ifdef notyet
4095 static void
4096 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
4097 {
4098 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4099 
4100 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4101 
4102 	*w = (*w & htole16(0xf000)) | htole16(1);
4103 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4104 	    BUS_DMASYNC_PREWRITE);
4105 	if (idx < IWN_SCHED_WINSZ) {
4106 		*(w + IWN_TX_RING_COUNT) = *w;
4107 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4108 		    BUS_DMASYNC_PREWRITE);
4109 	}
4110 }
4111 #endif
4112 
4113 /*
4114  * Check whether OFDM 11g protection will be enabled for the given rate.
4115  *
4116  * The original driver code only enabled protection for OFDM rates.
4117  * It didn't check to see whether it was operating in 11a or 11bg mode.
4118  */
4119 static int
4120 iwn_check_rate_needs_protection(struct iwn_softc *sc,
4121     struct ieee80211vap *vap, uint8_t rate)
4122 {
4123 	struct ieee80211com *ic = vap->iv_ic;
4124 
4125 	/*
4126 	 * Not in 2GHz mode? Then there's no need to enable OFDM
4127 	 * 11bg protection.
4128 	 */
4129 	if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
4130 		return (0);
4131 	}
4132 
4133 	/*
4134 	 * 11bg protection not enabled? Then don't use it.
4135 	 */
4136 	if ((ic->ic_flags & IEEE80211_F_USEPROT) == 0)
4137 		return (0);
4138 
4139 	/*
4140 	 * If it's an 11n rate, then for now we enable
4141 	 * protection.
4142 	 */
4143 	if (rate & IEEE80211_RATE_MCS) {
4144 		return (1);
4145 	}
4146 
4147 	/*
4148 	 * Do a rate table lookup.  If the PHY is CCK,
4149 	 * don't do protection.
4150 	 */
4151 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK)
4152 		return (0);
4153 
4154 	/*
4155 	 * Yup, enable protection.
4156 	 */
4157 	return (1);
4158 }
4159 
4160 /*
4161  * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into
4162  * the link quality table that reflects this particular entry.
4163  */
4164 static int
4165 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni,
4166     uint8_t rate)
4167 {
4168 	struct ieee80211_rateset *rs;
4169 	int is_11n;
4170 	int nr;
4171 	int i;
4172 	uint8_t cmp_rate;
4173 
4174 	/*
4175 	 * Figure out if we're using 11n or not here.
4176 	 */
4177 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0)
4178 		is_11n = 1;
4179 	else
4180 		is_11n = 0;
4181 
4182 	/*
4183 	 * Use the correct rate table.
4184 	 */
4185 	if (is_11n) {
4186 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4187 		nr = ni->ni_htrates.rs_nrates;
4188 	} else {
4189 		rs = &ni->ni_rates;
4190 		nr = rs->rs_nrates;
4191 	}
4192 
4193 	/*
4194 	 * Find the relevant link quality entry in the table.
4195 	 */
4196 	for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) {
4197 		/*
4198 		 * The link quality table index starts at 0 == highest
4199 		 * rate, so we walk the rate table backwards.
4200 		 */
4201 		cmp_rate = rs->rs_rates[(nr - 1) - i];
4202 		if (rate & IEEE80211_RATE_MCS)
4203 			cmp_rate |= IEEE80211_RATE_MCS;
4204 
4205 #if 0
4206 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n",
4207 		    __func__,
4208 		    i,
4209 		    nr,
4210 		    rate,
4211 		    cmp_rate);
4212 #endif
4213 
4214 		if (cmp_rate == rate)
4215 			return (i);
4216 	}
4217 
4218 	/* Failed? Start at the end */
4219 	return (IWN_MAX_TX_RETRIES - 1);
4220 }
4221 
4222 static int
4223 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
4224 {
4225 	struct iwn_ops *ops = &sc->ops;
4226 	const struct ieee80211_txparam *tp;
4227 	struct ieee80211vap *vap = ni->ni_vap;
4228 	struct ieee80211com *ic = ni->ni_ic;
4229 	struct iwn_node *wn = (void *)ni;
4230 	struct iwn_tx_ring *ring;
4231 	struct iwn_tx_desc *desc;
4232 	struct iwn_tx_data *data;
4233 	struct iwn_tx_cmd *cmd;
4234 	struct iwn_cmd_data *tx;
4235 	struct ieee80211_frame *wh;
4236 	struct ieee80211_key *k = NULL;
4237 	struct mbuf *m1;
4238 	uint32_t flags;
4239 	uint16_t qos;
4240 	u_int hdrlen;
4241 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4242 	uint8_t tid, type;
4243 	int ac, i, totlen, error, pad, nsegs = 0, rate;
4244 
4245 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4246 
4247 	wh = mtod(m, struct ieee80211_frame *);
4248 	hdrlen = ieee80211_anyhdrsize(wh);
4249 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4250 
4251 	/* Select EDCA Access Category and TX ring for this frame. */
4252 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
4253 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
4254 		tid = qos & IEEE80211_QOS_TID;
4255 	} else {
4256 		qos = 0;
4257 		tid = 0;
4258 	}
4259 	ac = M_WME_GETAC(m);
4260 	if (m->m_flags & M_AMPDU_MPDU) {
4261 		uint16_t seqno;
4262 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
4263 
4264 		if (!IEEE80211_AMPDU_RUNNING(tap)) {
4265 			m_freem(m);
4266 			return EINVAL;
4267 		}
4268 
4269 		/*
4270 		 * Queue this frame to the hardware ring that we've
4271 		 * negotiated AMPDU TX on.
4272 		 *
4273 		 * Note that the sequence number must match the TX slot
4274 		 * being used!
4275 		 */
4276 		ac = *(int *)tap->txa_private;
4277 		seqno = ni->ni_txseqs[tid];
4278 		*(uint16_t *)wh->i_seq =
4279 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4280 		ring = &sc->txq[ac];
4281 		if ((seqno % 256) != ring->cur) {
4282 			device_printf(sc->sc_dev,
4283 			    "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n",
4284 			    __func__,
4285 			    m,
4286 			    seqno,
4287 			    seqno % 256,
4288 			    ring->cur);
4289 		}
4290 		ni->ni_txseqs[tid]++;
4291 	}
4292 	ring = &sc->txq[ac];
4293 	desc = &ring->desc[ring->cur];
4294 	data = &ring->data[ring->cur];
4295 
4296 	/* Choose a TX rate index. */
4297 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
4298 	if (type == IEEE80211_FC0_TYPE_MGT)
4299 		rate = tp->mgmtrate;
4300 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
4301 		rate = tp->mcastrate;
4302 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
4303 		rate = tp->ucastrate;
4304 	else if (m->m_flags & M_EAPOL)
4305 		rate = tp->mgmtrate;
4306 	else {
4307 		/* XXX pass pktlen */
4308 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
4309 		rate = ni->ni_txrate;
4310 	}
4311 
4312 	/* Encrypt the frame if need be. */
4313 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
4314 		/* Retrieve key for TX. */
4315 		k = ieee80211_crypto_encap(ni, m);
4316 		if (k == NULL) {
4317 			m_freem(m);
4318 			return ENOBUFS;
4319 		}
4320 		/* 802.11 header may have moved. */
4321 		wh = mtod(m, struct ieee80211_frame *);
4322 	}
4323 	totlen = m->m_pkthdr.len;
4324 
4325 	if (ieee80211_radiotap_active_vap(vap)) {
4326 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4327 
4328 		tap->wt_flags = 0;
4329 		tap->wt_rate = rate;
4330 		if (k != NULL)
4331 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4332 
4333 		ieee80211_radiotap_tx(vap, m);
4334 	}
4335 
4336 	/* Prepare TX firmware command. */
4337 	cmd = &ring->cmd[ring->cur];
4338 	cmd->code = IWN_CMD_TX_DATA;
4339 	cmd->flags = 0;
4340 	cmd->qid = ring->qid;
4341 	cmd->idx = ring->cur;
4342 
4343 	tx = (struct iwn_cmd_data *)cmd->data;
4344 	/* NB: No need to clear tx, all fields are reinitialized here. */
4345 	tx->scratch = 0;	/* clear "scratch" area */
4346 
4347 	flags = 0;
4348 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4349 		/* Unicast frame, check if an ACK is expected. */
4350 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
4351 		    IEEE80211_QOS_ACKPOLICY_NOACK)
4352 			flags |= IWN_TX_NEED_ACK;
4353 	}
4354 	if ((wh->i_fc[0] &
4355 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
4356 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
4357 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
4358 
4359 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
4360 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
4361 
4362 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
4363 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4364 		/* NB: Group frames are sent using CCK in 802.11b/g. */
4365 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
4366 			flags |= IWN_TX_NEED_RTS;
4367 		} else if (iwn_check_rate_needs_protection(sc, vap, rate)) {
4368 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4369 				flags |= IWN_TX_NEED_CTS;
4370 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4371 				flags |= IWN_TX_NEED_RTS;
4372 		}
4373 
4374 		/* XXX HT protection? */
4375 
4376 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
4377 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4378 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
4379 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
4380 				flags |= IWN_TX_NEED_PROTECTION;
4381 			} else
4382 				flags |= IWN_TX_FULL_TXOP;
4383 		}
4384 	}
4385 
4386 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
4387 	    type != IEEE80211_FC0_TYPE_DATA)
4388 		tx->id = sc->broadcast_id;
4389 	else
4390 		tx->id = wn->id;
4391 
4392 	if (type == IEEE80211_FC0_TYPE_MGT) {
4393 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4394 
4395 		/* Tell HW to set timestamp in probe responses. */
4396 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4397 			flags |= IWN_TX_INSERT_TSTAMP;
4398 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4399 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4400 			tx->timeout = htole16(3);
4401 		else
4402 			tx->timeout = htole16(2);
4403 	} else
4404 		tx->timeout = htole16(0);
4405 
4406 	if (hdrlen & 3) {
4407 		/* First segment length must be a multiple of 4. */
4408 		flags |= IWN_TX_NEED_PADDING;
4409 		pad = 4 - (hdrlen & 3);
4410 	} else
4411 		pad = 0;
4412 
4413 	tx->len = htole16(totlen);
4414 	tx->tid = tid;
4415 	tx->rts_ntries = 60;
4416 	tx->data_ntries = 15;
4417 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4418 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4419 	if (tx->id == sc->broadcast_id) {
4420 		/* Group or management frame. */
4421 		tx->linkq = 0;
4422 	} else {
4423 		tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate);
4424 		flags |= IWN_TX_LINKQ;	/* enable MRR */
4425 	}
4426 
4427 	/* Set physical address of "scratch area". */
4428 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4429 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4430 
4431 	/* Copy 802.11 header in TX command. */
4432 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4433 
4434 	/* Trim 802.11 header. */
4435 	m_adj(m, hdrlen);
4436 	tx->security = 0;
4437 	tx->flags = htole32(flags);
4438 
4439 	error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
4440 					     m, segs, IWN_MAX_SCATTER - 1,
4441 					     &nsegs, BUS_DMA_NOWAIT);
4442 	if (error != 0) {
4443 		if (error != EFBIG) {
4444 			device_printf(sc->sc_dev,
4445 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4446 			m_freem(m);
4447 			return error;
4448 		}
4449 		/* Too many DMA segments, linearize mbuf. */
4450 		m1 = m_defrag(m, MB_DONTWAIT);
4451 		if (m1 == NULL) {
4452 			device_printf(sc->sc_dev,
4453 			    "%s: could not defrag mbuf\n", __func__);
4454 			m_freem(m);
4455 			return ENOBUFS;
4456 		}
4457 		m = m1;
4458 
4459 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
4460 						      data->map, m, segs,
4461 						      IWN_MAX_SCATTER - 1,
4462 						      &nsegs, BUS_DMA_NOWAIT);
4463 		if (error != 0) {
4464 			device_printf(sc->sc_dev,
4465 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4466 			m_freem(m);
4467 			return error;
4468 		}
4469 	}
4470 
4471 	data->m = m;
4472 	data->ni = ni;
4473 
4474 	DPRINTF(sc, IWN_DEBUG_XMIT,
4475 	    "%s: qid %d idx %d len %d nsegs %d rate %04x plcp 0x%08x\n",
4476 	    __func__,
4477 	    ring->qid,
4478 	    ring->cur,
4479 	    m->m_pkthdr.len,
4480 	    nsegs,
4481 	    rate,
4482 	    tx->rate);
4483 
4484 	/* Fill TX descriptor. */
4485 	desc->nsegs = 1;
4486 	if (m->m_len != 0)
4487 		desc->nsegs += nsegs;
4488 	/* First DMA segment is used by the TX command. */
4489 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4490 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4491 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4492 	/* Other DMA segments are for data payload. */
4493 	seg = &segs[0];
4494 	for (i = 1; i <= nsegs; i++) {
4495 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4496 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4497 		    seg->ds_len << 4);
4498 		seg++;
4499 	}
4500 
4501 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4502 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4503 	    BUS_DMASYNC_PREWRITE);
4504 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4505 	    BUS_DMASYNC_PREWRITE);
4506 
4507 	/* Update TX scheduler. */
4508 	if (ring->qid >= sc->firstaggqueue)
4509 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4510 
4511 	/* Kick TX ring. */
4512 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4513 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4514 
4515 	/* Mark TX ring as full if we reach a certain threshold. */
4516 	if (++ring->queued > IWN_TX_RING_HIMARK)
4517 		sc->qfullmsk |= 1 << ring->qid;
4518 
4519 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4520 
4521 	return 0;
4522 }
4523 
4524 static int
4525 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
4526     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
4527 {
4528 	struct iwn_ops *ops = &sc->ops;
4529 //	struct ifnet *ifp = sc->sc_ifp;
4530 	struct ieee80211vap *vap = ni->ni_vap;
4531 //	struct ieee80211com *ic = ifp->if_l2com;
4532 	struct iwn_tx_cmd *cmd;
4533 	struct iwn_cmd_data *tx;
4534 	struct ieee80211_frame *wh;
4535 	struct iwn_tx_ring *ring;
4536 	struct iwn_tx_desc *desc;
4537 	struct iwn_tx_data *data;
4538 	struct mbuf *m1;
4539 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4540 	uint32_t flags;
4541 	u_int hdrlen;
4542 	int ac, totlen, error, pad, nsegs = 0, i, rate;
4543 	uint8_t type;
4544 
4545 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4546 
4547 	wh = mtod(m, struct ieee80211_frame *);
4548 	hdrlen = ieee80211_anyhdrsize(wh);
4549 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4550 
4551 	ac = params->ibp_pri & 3;
4552 
4553 	ring = &sc->txq[ac];
4554 	desc = &ring->desc[ring->cur];
4555 	data = &ring->data[ring->cur];
4556 
4557 	/* Choose a TX rate. */
4558 	rate = params->ibp_rate0;
4559 	totlen = m->m_pkthdr.len;
4560 
4561 	/* Prepare TX firmware command. */
4562 	cmd = &ring->cmd[ring->cur];
4563 	cmd->code = IWN_CMD_TX_DATA;
4564 	cmd->flags = 0;
4565 	cmd->qid = ring->qid;
4566 	cmd->idx = ring->cur;
4567 
4568 	tx = (struct iwn_cmd_data *)cmd->data;
4569 	/* NB: No need to clear tx, all fields are reinitialized here. */
4570 	tx->scratch = 0;	/* clear "scratch" area */
4571 
4572 	flags = 0;
4573 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
4574 		flags |= IWN_TX_NEED_ACK;
4575 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
4576 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4577 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4578 			flags &= ~IWN_TX_NEED_RTS;
4579 			flags |= IWN_TX_NEED_PROTECTION;
4580 		} else
4581 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
4582 	}
4583 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
4584 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4585 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4586 			flags &= ~IWN_TX_NEED_CTS;
4587 			flags |= IWN_TX_NEED_PROTECTION;
4588 		} else
4589 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
4590 	}
4591 	if (type == IEEE80211_FC0_TYPE_MGT) {
4592 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4593 
4594 		/* Tell HW to set timestamp in probe responses. */
4595 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4596 			flags |= IWN_TX_INSERT_TSTAMP;
4597 
4598 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4599 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4600 			tx->timeout = htole16(3);
4601 		else
4602 			tx->timeout = htole16(2);
4603 	} else
4604 		tx->timeout = htole16(0);
4605 
4606 	if (hdrlen & 3) {
4607 		/* First segment length must be a multiple of 4. */
4608 		flags |= IWN_TX_NEED_PADDING;
4609 		pad = 4 - (hdrlen & 3);
4610 	} else
4611 		pad = 0;
4612 
4613 	if (ieee80211_radiotap_active_vap(vap)) {
4614 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4615 
4616 		tap->wt_flags = 0;
4617 		tap->wt_rate = rate;
4618 
4619 		ieee80211_radiotap_tx(vap, m);
4620 	}
4621 
4622 	tx->len = htole16(totlen);
4623 	tx->tid = 0;
4624 	tx->id = sc->broadcast_id;
4625 	tx->rts_ntries = params->ibp_try1;
4626 	tx->data_ntries = params->ibp_try0;
4627 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4628 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4629 
4630 	/* Group or management frame. */
4631 	tx->linkq = 0;
4632 
4633 	/* Set physical address of "scratch area". */
4634 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4635 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4636 
4637 	/* Copy 802.11 header in TX command. */
4638 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4639 
4640 	/* Trim 802.11 header. */
4641 	m_adj(m, hdrlen);
4642 	tx->security = 0;
4643 	tx->flags = htole32(flags);
4644 
4645 	error = bus_dmamap_load_mbuf_segment(ring->data_dmat, data->map,
4646 					     m, segs,
4647 					     IWN_MAX_SCATTER - 1,
4648 					     &nsegs, BUS_DMA_NOWAIT);
4649 	if (error != 0) {
4650 		if (error != EFBIG) {
4651 			device_printf(sc->sc_dev,
4652 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4653 			m_freem(m);
4654 			return error;
4655 		}
4656 		/* Too many DMA segments, linearize mbuf. */
4657 		m1 = m_defrag(m, M_NOWAIT);
4658 		if (m1 == NULL) {
4659 			device_printf(sc->sc_dev,
4660 			    "%s: could not defrag mbuf\n", __func__);
4661 			m_freem(m);
4662 			return ENOBUFS;
4663 		}
4664 		m = m1;
4665 
4666 		error = bus_dmamap_load_mbuf_segment(ring->data_dmat,
4667 						     data->map, m, segs,
4668 						     IWN_MAX_SCATTER - 1,
4669 						     &nsegs, BUS_DMA_NOWAIT);
4670 		if (error != 0) {
4671 			device_printf(sc->sc_dev,
4672 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4673 			m_freem(m);
4674 			return error;
4675 		}
4676 	}
4677 
4678 	data->m = m;
4679 	data->ni = ni;
4680 
4681 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
4682 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
4683 
4684 	/* Fill TX descriptor. */
4685 	desc->nsegs = 1;
4686 	if (m->m_len != 0)
4687 		desc->nsegs += nsegs;
4688 	/* First DMA segment is used by the TX command. */
4689 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4690 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4691 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4692 	/* Other DMA segments are for data payload. */
4693 	seg = &segs[0];
4694 	for (i = 1; i <= nsegs; i++) {
4695 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4696 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4697 		    seg->ds_len << 4);
4698 		seg++;
4699 	}
4700 
4701 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4702 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4703 	    BUS_DMASYNC_PREWRITE);
4704 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4705 	    BUS_DMASYNC_PREWRITE);
4706 
4707 	/* Update TX scheduler. */
4708 	if (ring->qid >= sc->firstaggqueue)
4709 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4710 
4711 	/* Kick TX ring. */
4712 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4713 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4714 
4715 	/* Mark TX ring as full if we reach a certain threshold. */
4716 	if (++ring->queued > IWN_TX_RING_HIMARK)
4717 		sc->qfullmsk |= 1 << ring->qid;
4718 
4719 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4720 
4721 	return 0;
4722 }
4723 
4724 static int
4725 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
4726     const struct ieee80211_bpf_params *params)
4727 {
4728 	struct ieee80211com *ic = ni->ni_ic;
4729 	struct ifnet *ifp = ic->ic_ifp;
4730 	struct iwn_softc *sc = ifp->if_softc;
4731 	int error = 0;
4732 
4733 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4734 
4735 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
4736 		ieee80211_free_node(ni);
4737 		m_freem(m);
4738 		return ENETDOWN;
4739 	}
4740 
4741 	if (params == NULL) {
4742 		/*
4743 		 * Legacy path; interpret frame contents to decide
4744 		 * precisely how to send the frame.
4745 		 */
4746 		error = iwn_tx_data(sc, m, ni);
4747 	} else {
4748 		/*
4749 		 * Caller supplied explicit parameters to use in
4750 		 * sending the frame.
4751 		 */
4752 		error = iwn_tx_data_raw(sc, m, ni, params);
4753 	}
4754 	if (error != 0) {
4755 		/* NB: m is reclaimed on tx failure */
4756 		ieee80211_free_node(ni);
4757 		IFNET_STAT_INC(ifp, oerrors, 1);
4758 	}
4759 	sc->sc_tx_timer = 5;
4760 
4761 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4762 
4763 	return error;
4764 }
4765 
4766 static void
4767 iwn_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
4768 {
4769 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
4770 	iwn_start_locked(ifp);
4771 }
4772 
4773 static void
4774 iwn_start_locked(struct ifnet *ifp)
4775 {
4776 	struct iwn_softc *sc = ifp->if_softc;
4777 	struct ieee80211_node *ni;
4778 	struct mbuf *m;
4779 
4780 	wlan_assert_serialized();
4781 
4782 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
4783 	    ifq_is_oactive(&ifp->if_snd))
4784 		return;
4785 
4786 	for (;;) {
4787 		if (sc->qfullmsk != 0) {
4788 			ifq_set_oactive(&ifp->if_snd);
4789 			break;
4790 		}
4791 		m = ifq_dequeue(&ifp->if_snd);
4792 		if (m == NULL)
4793 			break;
4794 		KKASSERT(M_TRAILINGSPACE(m) >= 0);
4795 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4796 		if (iwn_tx_data(sc, m, ni) != 0) {
4797 			ieee80211_free_node(ni);
4798 			IFNET_STAT_INC(ifp, oerrors, 1);
4799 			continue;
4800 		}
4801 		sc->sc_tx_timer = 5;
4802 	}
4803 }
4804 
4805 static void
4806 iwn_watchdog_timeout(void *arg)
4807 {
4808 	struct iwn_softc *sc = arg;
4809 	struct ifnet *ifp = sc->sc_ifp;
4810 	struct ieee80211com *ic = ifp->if_l2com;
4811 
4812 	wlan_serialize_enter();
4813 
4814 	KASSERT(ifp->if_flags & IFF_RUNNING, ("not running"));
4815 
4816 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4817 
4818 	if (sc->sc_tx_timer > 0) {
4819 		if (--sc->sc_tx_timer == 0) {
4820 			if_printf(ifp, "device timeout\n");
4821 			ieee80211_runtask(ic, &sc->sc_reinit_task);
4822 			wlan_serialize_exit();
4823 			return;
4824 		}
4825 	}
4826 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog_timeout, sc);
4827 	wlan_serialize_exit();
4828 }
4829 
4830 static int
4831 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *ucred)
4832 {
4833 	struct iwn_softc *sc = ifp->if_softc;
4834 	struct ieee80211com *ic = ifp->if_l2com;
4835 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4836 	struct ifreq *ifr = (struct ifreq *) data;
4837 	int error = 0, startall = 0, stop = 0;
4838 
4839 	wlan_assert_serialized();
4840 
4841 	switch (cmd) {
4842 	case SIOCGIFADDR:
4843 		error = ether_ioctl(ifp, cmd, data);
4844 		break;
4845 	case SIOCSIFFLAGS:
4846 		if (ifp->if_flags & IFF_UP) {
4847 			if (!(ifp->if_flags & IFF_RUNNING)) {
4848 				iwn_init_locked(sc);
4849 				if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
4850 					startall = 1;
4851 				else
4852 					stop = 1;
4853 			}
4854 		} else {
4855 			if (ifp->if_flags & IFF_RUNNING)
4856 				iwn_stop_locked(sc);
4857 		}
4858 		if (startall)
4859 			ieee80211_start_all(ic);
4860 		else if (vap != NULL && stop)
4861 			ieee80211_stop(vap);
4862 		break;
4863 	case SIOCGIFMEDIA:
4864 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
4865 		break;
4866 	case SIOCGIWNSTATS:
4867 		IWN_LOCK(sc);
4868 		/* XXX validate permissions/memory/etc? */
4869 		error = copyout(&sc->last_stat, ifr->ifr_data,
4870 		    sizeof(struct iwn_stats));
4871 		IWN_UNLOCK(sc);
4872 		break;
4873 	case SIOCZIWNSTATS:
4874 		IWN_LOCK(sc);
4875 		memset(&sc->last_stat, 0, sizeof(struct iwn_stats));
4876 		IWN_UNLOCK(sc);
4877 		error = 0;
4878 		break;
4879 	default:
4880 		error = EINVAL;
4881 		break;
4882 	}
4883 	return error;
4884 }
4885 
4886 /*
4887  * Send a command to the firmware.
4888  */
4889 static int
4890 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
4891 {
4892 	struct iwn_tx_ring *ring;
4893 	struct iwn_tx_desc *desc;
4894 	struct iwn_tx_data *data;
4895 	struct iwn_tx_cmd *cmd;
4896 	struct mbuf *m;
4897 	bus_addr_t paddr;
4898 	int totlen, error;
4899 	int cmd_queue_num;
4900 
4901 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4902 
4903 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
4904 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
4905 	else
4906 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
4907 
4908 	ring = &sc->txq[cmd_queue_num];
4909 	desc = &ring->desc[ring->cur];
4910 	data = &ring->data[ring->cur];
4911 	totlen = 4 + size;
4912 
4913 	if (size > sizeof cmd->data) {
4914 		/* Command is too large to fit in a descriptor. */
4915 		if (totlen > MJUMPAGESIZE)
4916 			return EINVAL;
4917 		m = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
4918 		if (m == NULL)
4919 			return ENOMEM;
4920 		cmd = mtod(m, struct iwn_tx_cmd *);
4921 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
4922 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
4923 		if (error != 0) {
4924 			m_freem(m);
4925 			return error;
4926 		}
4927 		data->m = m;
4928 	} else {
4929 		cmd = &ring->cmd[ring->cur];
4930 		paddr = data->cmd_paddr;
4931 	}
4932 
4933 	cmd->code = code;
4934 	cmd->flags = 0;
4935 	cmd->qid = ring->qid;
4936 	cmd->idx = ring->cur;
4937 	memcpy(cmd->data, buf, size);
4938 
4939 	desc->nsegs = 1;
4940 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
4941 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
4942 
4943 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
4944 	    __func__, iwn_intr_str(cmd->code), cmd->code,
4945 	    cmd->flags, cmd->qid, cmd->idx);
4946 
4947 	if (size > sizeof cmd->data) {
4948 		bus_dmamap_sync(ring->data_dmat, data->map,
4949 		    BUS_DMASYNC_PREWRITE);
4950 	} else {
4951 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4952 		    BUS_DMASYNC_PREWRITE);
4953 	}
4954 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4955 	    BUS_DMASYNC_PREWRITE);
4956 
4957 	/* Kick command ring. */
4958 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4959 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4960 
4961 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4962 
4963 	return async ? 0 : zsleep(desc, &wlan_global_serializer, 0, "iwncmd", hz);
4964 }
4965 
4966 static int
4967 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
4968 {
4969 	struct iwn4965_node_info hnode;
4970 	caddr_t src, dst;
4971 
4972 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4973 
4974 	/*
4975 	 * We use the node structure for 5000 Series internally (it is
4976 	 * a superset of the one for 4965AGN). We thus copy the common
4977 	 * fields before sending the command.
4978 	 */
4979 	src = (caddr_t)node;
4980 	dst = (caddr_t)&hnode;
4981 	memcpy(dst, src, 48);
4982 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
4983 	memcpy(dst + 48, src + 72, 20);
4984 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
4985 }
4986 
4987 static int
4988 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
4989 {
4990 
4991 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4992 
4993 	/* Direct mapping. */
4994 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
4995 }
4996 
4997 static int
4998 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
4999 {
5000 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
5001 	struct iwn_node *wn = (void *)ni;
5002 	struct ieee80211_rateset *rs;
5003 	struct iwn_cmd_link_quality linkq;
5004 	uint8_t txant;
5005 	int i, rate, txrate;
5006 	int is_11n;
5007 
5008 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5009 
5010 	/* Use the first valid TX antenna. */
5011 	txant = IWN_LSB(sc->txchainmask);
5012 
5013 	memset(&linkq, 0, sizeof linkq);
5014 	linkq.id = wn->id;
5015 	linkq.antmsk_1stream = txant;
5016 
5017 	/*
5018 	 * The '2 stream' setup is a bit .. odd.
5019 	 *
5020 	 * For NICs that support only 1 antenna, default to IWN_ANT_AB or
5021 	 * the firmware panics (eg Intel 5100.)
5022 	 *
5023 	 * For NICs that support two antennas, we use ANT_AB.
5024 	 *
5025 	 * For NICs that support three antennas, we use the two that
5026 	 * wasn't the default one.
5027 	 *
5028 	 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict
5029 	 * this to only one antenna.
5030 	 */
5031 
5032 	/* So - if there's no secondary antenna, assume IWN_ANT_AB */
5033 
5034 	/* Default - transmit on the other antennas */
5035 	linkq.antmsk_2stream = (sc->txchainmask & ~IWN_LSB(sc->txchainmask));
5036 
5037 	/* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */
5038 	if (linkq.antmsk_2stream == 0)
5039 		linkq.antmsk_2stream = IWN_ANT_AB;
5040 
5041 	/*
5042 	 * If the NIC is a two-stream TX NIC, configure the TX mask to
5043 	 * the default chainmask
5044 	 */
5045 	else if (sc->ntxchains == 2)
5046 		linkq.antmsk_2stream = sc->txchainmask;
5047 
5048 	linkq.ampdu_max = 32;		/* XXX negotiated? */
5049 	linkq.ampdu_threshold = 3;
5050 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5051 
5052 	DPRINTF(sc, IWN_DEBUG_XMIT,
5053 	    "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n",
5054 	    __func__,
5055 	    linkq.antmsk_1stream,
5056 	    linkq.antmsk_2stream,
5057 	    sc->ntxchains);
5058 
5059 	/*
5060 	 * Are we using 11n rates? Ensure the channel is
5061 	 * 11n _and_ we have some 11n rates, or don't
5062 	 * try.
5063 	 */
5064 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) {
5065 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
5066 		is_11n = 1;
5067 	} else {
5068 		rs = &ni->ni_rates;
5069 		is_11n = 0;
5070 	}
5071 
5072 	/* Start at highest available bit-rate. */
5073 	/*
5074 	 * XXX this is all very dirty!
5075 	 */
5076 	if (is_11n)
5077 		txrate = ni->ni_htrates.rs_nrates - 1;
5078 	else
5079 		txrate = rs->rs_nrates - 1;
5080 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
5081 		uint32_t plcp;
5082 
5083 		if (is_11n)
5084 			rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate];
5085 		else
5086 			rate = RV(rs->rs_rates[txrate]);
5087 
5088 		DPRINTF(sc, IWN_DEBUG_XMIT,
5089 		    "%s: i=%d, txrate=%d, rate=0x%02x\n",
5090 		    __func__,
5091 		    i,
5092 		    txrate,
5093 		    rate);
5094 
5095 		/* Do rate -> PLCP config mapping */
5096 		plcp = iwn_rate_to_plcp(sc, ni, rate);
5097 		linkq.retry[i] = plcp;
5098 
5099 		/*
5100 		 * The mimo field is an index into the table which
5101 		 * indicates the first index where it and subsequent entries
5102 		 * will not be using MIMO.
5103 		 *
5104 		 * Since we're filling linkq from 0..15 and we're filling
5105 		 * from the higest MCS rates to the lowest rates, if we
5106 		 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie,
5107 		 * the next entry.)  That way if the next entry is a non-MIMO
5108 		 * entry, we're already pointing at it.
5109 		 */
5110 		if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
5111 		    RV(le32toh(plcp)) > 7)
5112 			linkq.mimo = i + 1;
5113 
5114 		/* Next retry at immediate lower bit-rate. */
5115 		if (txrate > 0)
5116 			txrate--;
5117 	}
5118 
5119 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5120 
5121 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
5122 #undef	RV
5123 }
5124 
5125 /*
5126  * Broadcast node is used to send group-addressed and management frames.
5127  */
5128 static int
5129 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
5130 {
5131 	struct iwn_ops *ops = &sc->ops;
5132 	struct ifnet *ifp = sc->sc_ifp;
5133 	struct ieee80211com *ic = ifp->if_l2com;
5134 	struct iwn_node_info node;
5135 	struct iwn_cmd_link_quality linkq;
5136 	uint8_t txant;
5137 	int i, error;
5138 
5139 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5140 
5141 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5142 
5143 	memset(&node, 0, sizeof node);
5144 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
5145 	node.id = sc->broadcast_id;
5146 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
5147 	if ((error = ops->add_node(sc, &node, async)) != 0)
5148 		return error;
5149 
5150 	/* Use the first valid TX antenna. */
5151 	txant = IWN_LSB(sc->txchainmask);
5152 
5153 	memset(&linkq, 0, sizeof linkq);
5154 	linkq.id = sc->broadcast_id;
5155 	linkq.antmsk_1stream = txant;
5156 	linkq.antmsk_2stream = IWN_ANT_AB;
5157 	linkq.ampdu_max = 64;
5158 	linkq.ampdu_threshold = 3;
5159 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5160 
5161 	/* Use lowest mandatory bit-rate. */
5162 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
5163 		linkq.retry[0] = htole32(0xd);
5164 	else
5165 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
5166 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
5167 	/* Use same bit-rate for all TX retries. */
5168 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
5169 		linkq.retry[i] = linkq.retry[0];
5170 	}
5171 
5172 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5173 
5174 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
5175 }
5176 
5177 static int
5178 iwn_updateedca(struct ieee80211com *ic)
5179 {
5180 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
5181 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
5182 	struct iwn_edca_params cmd;
5183 	int aci;
5184 
5185 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5186 
5187 	memset(&cmd, 0, sizeof cmd);
5188 	cmd.flags = htole32(IWN_EDCA_UPDATE);
5189 	for (aci = 0; aci < WME_NUM_AC; aci++) {
5190 		const struct wmeParams *ac =
5191 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
5192 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
5193 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
5194 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
5195 		cmd.ac[aci].txoplimit =
5196 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
5197 	}
5198 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5199 
5200 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5201 
5202 	return 0;
5203 #undef IWN_EXP2
5204 }
5205 
5206 static void
5207 iwn_update_mcast(struct ifnet *ifp)
5208 {
5209 	/* Ignore */
5210 }
5211 
5212 static void
5213 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
5214 {
5215 	struct iwn_cmd_led led;
5216 
5217 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5218 
5219 #if 0
5220 	/* XXX don't set LEDs during scan? */
5221 	if (sc->sc_is_scanning)
5222 		return;
5223 #endif
5224 
5225 	/* Clear microcode LED ownership. */
5226 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
5227 
5228 	led.which = which;
5229 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
5230 	led.off = off;
5231 	led.on = on;
5232 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
5233 }
5234 
5235 /*
5236  * Set the critical temperature at which the firmware will stop the radio
5237  * and notify us.
5238  */
5239 static int
5240 iwn_set_critical_temp(struct iwn_softc *sc)
5241 {
5242 	struct iwn_critical_temp crit;
5243 	int32_t temp;
5244 
5245 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5246 
5247 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
5248 
5249 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
5250 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
5251 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
5252 		temp = IWN_CTOK(110);
5253 	else
5254 		temp = 110;
5255 	memset(&crit, 0, sizeof crit);
5256 	crit.tempR = htole32(temp);
5257 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
5258 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
5259 }
5260 
5261 static int
5262 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
5263 {
5264 	struct iwn_cmd_timing cmd;
5265 	uint64_t val, mod;
5266 
5267 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5268 
5269 	memset(&cmd, 0, sizeof cmd);
5270 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
5271 	cmd.bintval = htole16(ni->ni_intval);
5272 	cmd.lintval = htole16(10);
5273 
5274 	/* Compute remaining time until next beacon. */
5275 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
5276 	mod = le64toh(cmd.tstamp) % val;
5277 	cmd.binitval = htole32((uint32_t)(val - mod));
5278 
5279 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
5280 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
5281 
5282 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
5283 }
5284 
5285 static void
5286 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
5287 {
5288 	struct ifnet *ifp = sc->sc_ifp;
5289 	struct ieee80211com *ic = ifp->if_l2com;
5290 
5291 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5292 
5293 	/* Adjust TX power if need be (delta >= 3 degC). */
5294 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
5295 	    __func__, sc->temp, temp);
5296 	if (abs(temp - sc->temp) >= 3) {
5297 		/* Record temperature of last calibration. */
5298 		sc->temp = temp;
5299 		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
5300 	}
5301 }
5302 
5303 /*
5304  * Set TX power for current channel (each rate has its own power settings).
5305  * This function takes into account the regulatory information from EEPROM,
5306  * the current temperature and the current voltage.
5307  */
5308 static int
5309 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5310     int async)
5311 {
5312 /* Fixed-point arithmetic division using a n-bit fractional part. */
5313 #define fdivround(a, b, n)	\
5314 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
5315 /* Linear interpolation. */
5316 #define interpolate(x, x1, y1, x2, y2, n)	\
5317 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
5318 
5319 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
5320 	struct iwn_ucode_info *uc = &sc->ucode_info;
5321 	struct iwn4965_cmd_txpower cmd;
5322 	struct iwn4965_eeprom_chan_samples *chans;
5323 	const uint8_t *rf_gain, *dsp_gain;
5324 	int32_t vdiff, tdiff;
5325 	int i, c, grp, maxpwr;
5326 	uint8_t chan;
5327 
5328 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5329 	/* Retrieve current channel from last RXON. */
5330 	chan = sc->rxon->chan;
5331 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
5332 	    chan);
5333 
5334 	memset(&cmd, 0, sizeof cmd);
5335 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
5336 	cmd.chan = chan;
5337 
5338 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
5339 		maxpwr   = sc->maxpwr5GHz;
5340 		rf_gain  = iwn4965_rf_gain_5ghz;
5341 		dsp_gain = iwn4965_dsp_gain_5ghz;
5342 	} else {
5343 		maxpwr   = sc->maxpwr2GHz;
5344 		rf_gain  = iwn4965_rf_gain_2ghz;
5345 		dsp_gain = iwn4965_dsp_gain_2ghz;
5346 	}
5347 
5348 	/* Compute voltage compensation. */
5349 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
5350 	if (vdiff > 0)
5351 		vdiff *= 2;
5352 	if (abs(vdiff) > 2)
5353 		vdiff = 0;
5354 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5355 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
5356 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
5357 
5358 	/* Get channel attenuation group. */
5359 	if (chan <= 20)		/* 1-20 */
5360 		grp = 4;
5361 	else if (chan <= 43)	/* 34-43 */
5362 		grp = 0;
5363 	else if (chan <= 70)	/* 44-70 */
5364 		grp = 1;
5365 	else if (chan <= 124)	/* 71-124 */
5366 		grp = 2;
5367 	else			/* 125-200 */
5368 		grp = 3;
5369 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5370 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
5371 
5372 	/* Get channel sub-band. */
5373 	for (i = 0; i < IWN_NBANDS; i++)
5374 		if (sc->bands[i].lo != 0 &&
5375 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
5376 			break;
5377 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
5378 		return EINVAL;
5379 	chans = sc->bands[i].chans;
5380 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5381 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
5382 
5383 	for (c = 0; c < 2; c++) {
5384 		uint8_t power, gain, temp;
5385 		int maxchpwr, pwr, ridx, idx;
5386 
5387 		power = interpolate(chan,
5388 		    chans[0].num, chans[0].samples[c][1].power,
5389 		    chans[1].num, chans[1].samples[c][1].power, 1);
5390 		gain  = interpolate(chan,
5391 		    chans[0].num, chans[0].samples[c][1].gain,
5392 		    chans[1].num, chans[1].samples[c][1].gain, 1);
5393 		temp  = interpolate(chan,
5394 		    chans[0].num, chans[0].samples[c][1].temp,
5395 		    chans[1].num, chans[1].samples[c][1].temp, 1);
5396 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5397 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
5398 		    __func__, c, power, gain, temp);
5399 
5400 		/* Compute temperature compensation. */
5401 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
5402 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5403 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
5404 		    __func__, tdiff, sc->temp, temp);
5405 
5406 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
5407 			/* Convert dBm to half-dBm. */
5408 			maxchpwr = sc->maxpwr[chan] * 2;
5409 			if ((ridx / 8) & 1)
5410 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
5411 
5412 			pwr = maxpwr;
5413 
5414 			/* Adjust TX power based on rate. */
5415 			if ((ridx % 8) == 5)
5416 				pwr -= 15;	/* OFDM48: -7.5dB */
5417 			else if ((ridx % 8) == 6)
5418 				pwr -= 17;	/* OFDM54: -8.5dB */
5419 			else if ((ridx % 8) == 7)
5420 				pwr -= 20;	/* OFDM60: -10dB */
5421 			else
5422 				pwr -= 10;	/* Others: -5dB */
5423 
5424 			/* Do not exceed channel max TX power. */
5425 			if (pwr > maxchpwr)
5426 				pwr = maxchpwr;
5427 
5428 			idx = gain - (pwr - power) - tdiff - vdiff;
5429 			if ((ridx / 8) & 1)	/* MIMO */
5430 				idx += (int32_t)le32toh(uc->atten[grp][c]);
5431 
5432 			if (cmd.band == 0)
5433 				idx += 9;	/* 5GHz */
5434 			if (ridx == IWN_RIDX_MAX)
5435 				idx += 5;	/* CCK */
5436 
5437 			/* Make sure idx stays in a valid range. */
5438 			if (idx < 0)
5439 				idx = 0;
5440 			else if (idx > IWN4965_MAX_PWR_INDEX)
5441 				idx = IWN4965_MAX_PWR_INDEX;
5442 
5443 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5444 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
5445 			    __func__, c, ridx, idx);
5446 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
5447 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
5448 		}
5449 	}
5450 
5451 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5452 	    "%s: set tx power for chan %d\n", __func__, chan);
5453 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
5454 
5455 #undef interpolate
5456 #undef fdivround
5457 }
5458 
5459 static int
5460 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5461     int async)
5462 {
5463 	struct iwn5000_cmd_txpower cmd;
5464 
5465 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5466 
5467 	/*
5468 	 * TX power calibration is handled automatically by the firmware
5469 	 * for 5000 Series.
5470 	 */
5471 	memset(&cmd, 0, sizeof cmd);
5472 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
5473 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
5474 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
5475 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting TX power\n", __func__);
5476 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
5477 }
5478 
5479 /*
5480  * Retrieve the maximum RSSI (in dBm) among receivers.
5481  */
5482 static int
5483 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5484 {
5485 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
5486 	uint8_t mask, agc;
5487 	int rssi;
5488 
5489 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5490 
5491 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
5492 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
5493 
5494 	rssi = 0;
5495 	if (mask & IWN_ANT_A)
5496 		rssi = MAX(rssi, phy->rssi[0]);
5497 	if (mask & IWN_ANT_B)
5498 		rssi = MAX(rssi, phy->rssi[2]);
5499 	if (mask & IWN_ANT_C)
5500 		rssi = MAX(rssi, phy->rssi[4]);
5501 
5502 	DPRINTF(sc, IWN_DEBUG_RECV,
5503 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
5504 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
5505 	    rssi - agc - IWN_RSSI_TO_DBM);
5506 	return rssi - agc - IWN_RSSI_TO_DBM;
5507 }
5508 
5509 static int
5510 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5511 {
5512 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
5513 	uint8_t agc;
5514 	int rssi;
5515 
5516 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5517 
5518 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
5519 
5520 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
5521 		   le16toh(phy->rssi[1]) & 0xff);
5522 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
5523 
5524 	DPRINTF(sc, IWN_DEBUG_RECV,
5525 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
5526 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
5527 	    rssi - agc - IWN_RSSI_TO_DBM);
5528 	return rssi - agc - IWN_RSSI_TO_DBM;
5529 }
5530 
5531 /*
5532  * Retrieve the average noise (in dBm) among receivers.
5533  */
5534 static int
5535 iwn_get_noise(const struct iwn_rx_general_stats *stats)
5536 {
5537 	int i, total, nbant, noise;
5538 
5539 	total = nbant = 0;
5540 	for (i = 0; i < 3; i++) {
5541 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
5542 			continue;
5543 		total += noise;
5544 		nbant++;
5545 	}
5546 	/* There should be at least one antenna but check anyway. */
5547 	return (nbant == 0) ? -127 : (total / nbant) - 107;
5548 }
5549 
5550 /*
5551  * Compute temperature (in degC) from last received statistics.
5552  */
5553 static int
5554 iwn4965_get_temperature(struct iwn_softc *sc)
5555 {
5556 	struct iwn_ucode_info *uc = &sc->ucode_info;
5557 	int32_t r1, r2, r3, r4, temp;
5558 
5559 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5560 
5561 	r1 = le32toh(uc->temp[0].chan20MHz);
5562 	r2 = le32toh(uc->temp[1].chan20MHz);
5563 	r3 = le32toh(uc->temp[2].chan20MHz);
5564 	r4 = le32toh(sc->rawtemp);
5565 
5566 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
5567 		return 0;
5568 
5569 	/* Sign-extend 23-bit R4 value to 32-bit. */
5570 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
5571 	/* Compute temperature in Kelvin. */
5572 	temp = (259 * (r4 - r2)) / (r3 - r1);
5573 	temp = (temp * 97) / 100 + 8;
5574 
5575 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
5576 	    IWN_KTOC(temp));
5577 	return IWN_KTOC(temp);
5578 }
5579 
5580 static int
5581 iwn5000_get_temperature(struct iwn_softc *sc)
5582 {
5583 	int32_t temp;
5584 
5585 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5586 
5587 	/*
5588 	 * Temperature is not used by the driver for 5000 Series because
5589 	 * TX power calibration is handled by firmware.
5590 	 */
5591 	temp = le32toh(sc->rawtemp);
5592 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
5593 		temp = (temp / -5) + sc->temp_off;
5594 		temp = IWN_KTOC(temp);
5595 	}
5596 	return temp;
5597 }
5598 
5599 /*
5600  * Initialize sensitivity calibration state machine.
5601  */
5602 static int
5603 iwn_init_sensitivity(struct iwn_softc *sc)
5604 {
5605 	struct iwn_ops *ops = &sc->ops;
5606 	struct iwn_calib_state *calib = &sc->calib;
5607 	uint32_t flags;
5608 	int error;
5609 
5610 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5611 
5612 	/* Reset calibration state machine. */
5613 	memset(calib, 0, sizeof (*calib));
5614 	calib->state = IWN_CALIB_STATE_INIT;
5615 	calib->cck_state = IWN_CCK_STATE_HIFA;
5616 	/* Set initial correlation values. */
5617 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
5618 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
5619 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
5620 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
5621 	calib->cck_x4      = 125;
5622 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
5623 	calib->energy_cck  = sc->limits->energy_cck;
5624 
5625 	/* Write initial sensitivity. */
5626 	if ((error = iwn_send_sensitivity(sc)) != 0)
5627 		return error;
5628 
5629 	/* Write initial gains. */
5630 	if ((error = ops->init_gains(sc)) != 0)
5631 		return error;
5632 
5633 	/* Request statistics at each beacon interval. */
5634 	flags = 0;
5635 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
5636 	    __func__);
5637 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
5638 }
5639 
5640 /*
5641  * Collect noise and RSSI statistics for the first 20 beacons received
5642  * after association and use them to determine connected antennas and
5643  * to set differential gains.
5644  */
5645 static void
5646 iwn_collect_noise(struct iwn_softc *sc,
5647     const struct iwn_rx_general_stats *stats)
5648 {
5649 	struct iwn_ops *ops = &sc->ops;
5650 	struct iwn_calib_state *calib = &sc->calib;
5651 	struct ifnet *ifp = sc->sc_ifp;
5652 	struct ieee80211com *ic = ifp->if_l2com;
5653 	uint32_t val;
5654 	int i;
5655 
5656 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5657 
5658 	/* Accumulate RSSI and noise for all 3 antennas. */
5659 	for (i = 0; i < 3; i++) {
5660 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
5661 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
5662 	}
5663 	/* NB: We update differential gains only once after 20 beacons. */
5664 	if (++calib->nbeacons < 20)
5665 		return;
5666 
5667 	/* Determine highest average RSSI. */
5668 	val = MAX(calib->rssi[0], calib->rssi[1]);
5669 	val = MAX(calib->rssi[2], val);
5670 
5671 	/* Determine which antennas are connected. */
5672 	sc->chainmask = sc->rxchainmask;
5673 	for (i = 0; i < 3; i++)
5674 		if (val - calib->rssi[i] > 15 * 20)
5675 			sc->chainmask &= ~(1 << i);
5676 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5677 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
5678 	    __func__, sc->rxchainmask, sc->chainmask);
5679 
5680 	/* If none of the TX antennas are connected, keep at least one. */
5681 	if ((sc->chainmask & sc->txchainmask) == 0)
5682 		sc->chainmask |= IWN_LSB(sc->txchainmask);
5683 
5684 	(void)ops->set_gains(sc);
5685 	calib->state = IWN_CALIB_STATE_RUN;
5686 
5687 #ifdef notyet
5688 	/* XXX Disable RX chains with no antennas connected. */
5689 	sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
5690 	if (sc->sc_is_scanning)
5691 		device_printf(sc->sc_dev,
5692 		    "%s: is_scanning set, before RXON\n",
5693 		    __func__);
5694 	(void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
5695 #endif
5696 
5697 	/* Enable power-saving mode if requested by user. */
5698 	if (ic->ic_flags & IEEE80211_F_PMGTON)
5699 		(void)iwn_set_pslevel(sc, 0, 3, 1);
5700 
5701 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5702 
5703 }
5704 
5705 static int
5706 iwn4965_init_gains(struct iwn_softc *sc)
5707 {
5708 	struct iwn_phy_calib_gain cmd;
5709 
5710 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5711 
5712 	memset(&cmd, 0, sizeof cmd);
5713 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5714 	/* Differential gains initially set to 0 for all 3 antennas. */
5715 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5716 	    "%s: setting initial differential gains\n", __func__);
5717 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5718 }
5719 
5720 static int
5721 iwn5000_init_gains(struct iwn_softc *sc)
5722 {
5723 	struct iwn_phy_calib cmd;
5724 
5725 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5726 
5727 	memset(&cmd, 0, sizeof cmd);
5728 	cmd.code = sc->reset_noise_gain;
5729 	cmd.ngroups = 1;
5730 	cmd.isvalid = 1;
5731 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5732 	    "%s: setting initial differential gains\n", __func__);
5733 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5734 }
5735 
5736 static int
5737 iwn4965_set_gains(struct iwn_softc *sc)
5738 {
5739 	struct iwn_calib_state *calib = &sc->calib;
5740 	struct iwn_phy_calib_gain cmd;
5741 	int i, delta, noise;
5742 
5743 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5744 
5745 	/* Get minimal noise among connected antennas. */
5746 	noise = INT_MAX;	/* NB: There's at least one antenna. */
5747 	for (i = 0; i < 3; i++)
5748 		if (sc->chainmask & (1 << i))
5749 			noise = MIN(calib->noise[i], noise);
5750 
5751 	memset(&cmd, 0, sizeof cmd);
5752 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5753 	/* Set differential gains for connected antennas. */
5754 	for (i = 0; i < 3; i++) {
5755 		if (sc->chainmask & (1 << i)) {
5756 			/* Compute attenuation (in unit of 1.5dB). */
5757 			delta = (noise - (int32_t)calib->noise[i]) / 30;
5758 			/* NB: delta <= 0 */
5759 			/* Limit to [-4.5dB,0]. */
5760 			cmd.gain[i] = MIN(abs(delta), 3);
5761 			if (delta < 0)
5762 				cmd.gain[i] |= 1 << 2;	/* sign bit */
5763 		}
5764 	}
5765 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5766 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
5767 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
5768 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5769 }
5770 
5771 static int
5772 iwn5000_set_gains(struct iwn_softc *sc)
5773 {
5774 	struct iwn_calib_state *calib = &sc->calib;
5775 	struct iwn_phy_calib_gain cmd;
5776 	int i, ant, div, delta;
5777 
5778 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5779 
5780 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
5781 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
5782 
5783 	memset(&cmd, 0, sizeof cmd);
5784 	cmd.code = sc->noise_gain;
5785 	cmd.ngroups = 1;
5786 	cmd.isvalid = 1;
5787 	/* Get first available RX antenna as referential. */
5788 	ant = IWN_LSB(sc->rxchainmask);
5789 	/* Set differential gains for other antennas. */
5790 	for (i = ant + 1; i < 3; i++) {
5791 		if (sc->chainmask & (1 << i)) {
5792 			/* The delta is relative to antenna "ant". */
5793 			delta = ((int32_t)calib->noise[ant] -
5794 			    (int32_t)calib->noise[i]) / div;
5795 			/* Limit to [-4.5dB,+4.5dB]. */
5796 			cmd.gain[i - 1] = MIN(abs(delta), 3);
5797 			if (delta < 0)
5798 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
5799 		}
5800 	}
5801 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5802 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
5803 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
5804 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5805 }
5806 
5807 /*
5808  * Tune RF RX sensitivity based on the number of false alarms detected
5809  * during the last beacon period.
5810  */
5811 static void
5812 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
5813 {
5814 #define inc(val, inc, max)			\
5815 	if ((val) < (max)) {			\
5816 		if ((val) < (max) - (inc))	\
5817 			(val) += (inc);		\
5818 		else				\
5819 			(val) = (max);		\
5820 		needs_update = 1;		\
5821 	}
5822 #define dec(val, dec, min)			\
5823 	if ((val) > (min)) {			\
5824 		if ((val) > (min) + (dec))	\
5825 			(val) -= (dec);		\
5826 		else				\
5827 			(val) = (min);		\
5828 		needs_update = 1;		\
5829 	}
5830 
5831 	const struct iwn_sensitivity_limits *limits = sc->limits;
5832 	struct iwn_calib_state *calib = &sc->calib;
5833 	uint32_t val, rxena, fa;
5834 	uint32_t energy[3], energy_min;
5835 	uint8_t noise[3], noise_ref;
5836 	int i, needs_update = 0;
5837 
5838 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5839 
5840 	/* Check that we've been enabled long enough. */
5841 	if ((rxena = le32toh(stats->general.load)) == 0){
5842 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__);
5843 		return;
5844 	}
5845 
5846 	/* Compute number of false alarms since last call for OFDM. */
5847 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
5848 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
5849 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
5850 
5851 	if (fa > 50 * rxena) {
5852 		/* High false alarm count, decrease sensitivity. */
5853 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5854 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
5855 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
5856 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
5857 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
5858 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
5859 
5860 	} else if (fa < 5 * rxena) {
5861 		/* Low false alarm count, increase sensitivity. */
5862 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5863 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
5864 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
5865 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
5866 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
5867 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
5868 	}
5869 
5870 	/* Compute maximum noise among 3 receivers. */
5871 	for (i = 0; i < 3; i++)
5872 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
5873 	val = MAX(noise[0], noise[1]);
5874 	val = MAX(noise[2], val);
5875 	/* Insert it into our samples table. */
5876 	calib->noise_samples[calib->cur_noise_sample] = val;
5877 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
5878 
5879 	/* Compute maximum noise among last 20 samples. */
5880 	noise_ref = calib->noise_samples[0];
5881 	for (i = 1; i < 20; i++)
5882 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
5883 
5884 	/* Compute maximum energy among 3 receivers. */
5885 	for (i = 0; i < 3; i++)
5886 		energy[i] = le32toh(stats->general.energy[i]);
5887 	val = MIN(energy[0], energy[1]);
5888 	val = MIN(energy[2], val);
5889 	/* Insert it into our samples table. */
5890 	calib->energy_samples[calib->cur_energy_sample] = val;
5891 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
5892 
5893 	/* Compute minimum energy among last 10 samples. */
5894 	energy_min = calib->energy_samples[0];
5895 	for (i = 1; i < 10; i++)
5896 		energy_min = MAX(energy_min, calib->energy_samples[i]);
5897 	energy_min += 6;
5898 
5899 	/* Compute number of false alarms since last call for CCK. */
5900 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
5901 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
5902 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
5903 
5904 	if (fa > 50 * rxena) {
5905 		/* High false alarm count, decrease sensitivity. */
5906 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5907 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
5908 		calib->cck_state = IWN_CCK_STATE_HIFA;
5909 		calib->low_fa = 0;
5910 
5911 		if (calib->cck_x4 > 160) {
5912 			calib->noise_ref = noise_ref;
5913 			if (calib->energy_cck > 2)
5914 				dec(calib->energy_cck, 2, energy_min);
5915 		}
5916 		if (calib->cck_x4 < 160) {
5917 			calib->cck_x4 = 161;
5918 			needs_update = 1;
5919 		} else
5920 			inc(calib->cck_x4, 3, limits->max_cck_x4);
5921 
5922 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
5923 
5924 	} else if (fa < 5 * rxena) {
5925 		/* Low false alarm count, increase sensitivity. */
5926 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5927 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
5928 		calib->cck_state = IWN_CCK_STATE_LOFA;
5929 		calib->low_fa++;
5930 
5931 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
5932 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
5933 		     calib->low_fa > 100)) {
5934 			inc(calib->energy_cck, 2, limits->min_energy_cck);
5935 			dec(calib->cck_x4,     3, limits->min_cck_x4);
5936 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
5937 		}
5938 	} else {
5939 		/* Not worth to increase or decrease sensitivity. */
5940 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5941 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
5942 		calib->low_fa = 0;
5943 		calib->noise_ref = noise_ref;
5944 
5945 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
5946 			/* Previous interval had many false alarms. */
5947 			dec(calib->energy_cck, 8, energy_min);
5948 		}
5949 		calib->cck_state = IWN_CCK_STATE_INIT;
5950 	}
5951 
5952 	if (needs_update)
5953 		(void)iwn_send_sensitivity(sc);
5954 
5955 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5956 
5957 #undef dec
5958 #undef inc
5959 }
5960 
5961 static int
5962 iwn_send_sensitivity(struct iwn_softc *sc)
5963 {
5964 	struct iwn_calib_state *calib = &sc->calib;
5965 	struct iwn_enhanced_sensitivity_cmd cmd;
5966 	int len;
5967 
5968 	memset(&cmd, 0, sizeof cmd);
5969 	len = sizeof (struct iwn_sensitivity_cmd);
5970 	cmd.which = IWN_SENSITIVITY_WORKTBL;
5971 	/* OFDM modulation. */
5972 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
5973 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
5974 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
5975 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
5976 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
5977 	cmd.energy_ofdm_th     = htole16(62);
5978 	/* CCK modulation. */
5979 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
5980 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
5981 	cmd.energy_cck         = htole16(calib->energy_cck);
5982 	/* Barker modulation: use default values. */
5983 	cmd.corr_barker        = htole16(190);
5984 	cmd.corr_barker_mrc    = htole16(sc->limits->barker_mrc);
5985 
5986 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5987 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
5988 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
5989 	    calib->ofdm_mrc_x4, calib->cck_x4,
5990 	    calib->cck_mrc_x4, calib->energy_cck);
5991 
5992 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
5993 		goto send;
5994 	/* Enhanced sensitivity settings. */
5995 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
5996 	cmd.ofdm_det_slope_mrc = htole16(668);
5997 	cmd.ofdm_det_icept_mrc = htole16(4);
5998 	cmd.ofdm_det_slope     = htole16(486);
5999 	cmd.ofdm_det_icept     = htole16(37);
6000 	cmd.cck_det_slope_mrc  = htole16(853);
6001 	cmd.cck_det_icept_mrc  = htole16(4);
6002 	cmd.cck_det_slope      = htole16(476);
6003 	cmd.cck_det_icept      = htole16(99);
6004 send:
6005 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
6006 }
6007 
6008 /*
6009  * Look at the increase of PLCP errors over time; if it exceeds
6010  * a programmed threshold then trigger an RF retune.
6011  */
6012 static void
6013 iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs)
6014 {
6015 	int32_t delta_ofdm, delta_ht, delta_cck;
6016 	struct iwn_calib_state *calib = &sc->calib;
6017 	int delta_ticks, cur_ticks;
6018 	int delta_msec;
6019 	int thresh;
6020 
6021 	/*
6022 	 * Calculate the difference between the current and
6023 	 * previous statistics.
6024 	 */
6025 	delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck;
6026 	delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6027 	delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht;
6028 
6029 	/*
6030 	 * Calculate the delta in time between successive statistics
6031 	 * messages.  Yes, it can roll over; so we make sure that
6032 	 * this doesn't happen.
6033 	 *
6034 	 * XXX go figure out what to do about rollover
6035 	 * XXX go figure out what to do if ticks rolls over to -ve instead!
6036 	 * XXX go stab signed integer overflow undefined-ness in the face.
6037 	 */
6038 	cur_ticks = ticks;
6039 	delta_ticks = cur_ticks - sc->last_calib_ticks;
6040 
6041 	/*
6042 	 * If any are negative, then the firmware likely reset; so just
6043 	 * bail.  We'll pick this up next time.
6044 	 */
6045 	if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0)
6046 		return;
6047 
6048 	/*
6049 	 * delta_ticks is in ticks; we need to convert it up to milliseconds
6050 	 * so we can do some useful math with it.
6051 	 */
6052 	delta_msec = ticks_to_msecs(delta_ticks);
6053 
6054 	/*
6055 	 * Calculate what our threshold is given the current delta_msec.
6056 	 */
6057 	thresh = sc->base_params->plcp_err_threshold * delta_msec;
6058 
6059 	DPRINTF(sc, IWN_DEBUG_STATE,
6060 	    "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n",
6061 	    __func__,
6062 	    delta_msec,
6063 	    delta_cck,
6064 	    delta_ofdm,
6065 	    delta_ht,
6066 	    (delta_msec + delta_cck + delta_ofdm + delta_ht),
6067 	    thresh);
6068 
6069 	/*
6070 	 * If we need a retune, then schedule a single channel scan
6071 	 * to a channel that isn't the currently active one!
6072 	 *
6073 	 * The math from linux iwlwifi:
6074 	 *
6075 	 * if ((delta * 100 / msecs) > threshold)
6076 	 */
6077 	if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) {
6078 		DPRINTF(sc, IWN_DEBUG_ANY,
6079 		    "%s: PLCP error threshold raw (%d) comparison (%d) "
6080 		    "over limit (%d); retune!\n",
6081 		    __func__,
6082 		    (delta_cck + delta_ofdm + delta_ht),
6083 		    (delta_cck + delta_ofdm + delta_ht) * 100,
6084 		    thresh);
6085 	}
6086 }
6087 
6088 /*
6089  * Set STA mode power saving level (between 0 and 5).
6090  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
6091  */
6092 static int
6093 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
6094 {
6095 	struct iwn_pmgt_cmd cmd;
6096 	const struct iwn_pmgt *pmgt;
6097 	uint32_t max, skip_dtim;
6098 	uint32_t reg;
6099 	int i;
6100 
6101 	DPRINTF(sc, IWN_DEBUG_PWRSAVE,
6102 	    "%s: dtim=%d, level=%d, async=%d\n",
6103 	    __func__,
6104 	    dtim,
6105 	    level,
6106 	    async);
6107 
6108 	/* Select which PS parameters to use. */
6109 	if (dtim <= 2)
6110 		pmgt = &iwn_pmgt[0][level];
6111 	else if (dtim <= 10)
6112 		pmgt = &iwn_pmgt[1][level];
6113 	else
6114 		pmgt = &iwn_pmgt[2][level];
6115 
6116 	memset(&cmd, 0, sizeof cmd);
6117 	if (level != 0)	/* not CAM */
6118 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
6119 	if (level == 5)
6120 		cmd.flags |= htole16(IWN_PS_FAST_PD);
6121 	/* Retrieve PCIe Active State Power Management (ASPM). */
6122 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
6123 	if (!(reg & 0x1))	/* L0s Entry disabled. */
6124 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
6125 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
6126 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
6127 
6128 	if (dtim == 0) {
6129 		dtim = 1;
6130 		skip_dtim = 0;
6131 	} else
6132 		skip_dtim = pmgt->skip_dtim;
6133 	if (skip_dtim != 0) {
6134 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
6135 		max = pmgt->intval[4];
6136 		if (max == (uint32_t)-1)
6137 			max = dtim * (skip_dtim + 1);
6138 		else if (max > dtim)
6139 			max = (max / dtim) * dtim;
6140 	} else
6141 		max = dtim;
6142 	for (i = 0; i < 5; i++)
6143 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
6144 
6145 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
6146 	    level);
6147 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
6148 }
6149 
6150 static int
6151 iwn_send_btcoex(struct iwn_softc *sc)
6152 {
6153 	struct iwn_bluetooth cmd;
6154 
6155 	memset(&cmd, 0, sizeof cmd);
6156 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
6157 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
6158 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
6159 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
6160 	    __func__);
6161 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
6162 }
6163 
6164 static int
6165 iwn_send_advanced_btcoex(struct iwn_softc *sc)
6166 {
6167 	static const uint32_t btcoex_3wire[12] = {
6168 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
6169 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
6170 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
6171 	};
6172 	struct iwn6000_btcoex_config btconfig;
6173 	struct iwn2000_btcoex_config btconfig2k;
6174 	struct iwn_btcoex_priotable btprio;
6175 	struct iwn_btcoex_prot btprot;
6176 	int error, i;
6177 	uint8_t flags;
6178 
6179 	memset(&btconfig, 0, sizeof btconfig);
6180 	memset(&btconfig2k, 0, sizeof btconfig2k);
6181 
6182 	flags = IWN_BT_FLAG_COEX6000_MODE_3W <<
6183 	    IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2
6184 
6185 	if (sc->base_params->bt_sco_disable)
6186 		flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6187 	else
6188 		flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6189 
6190 	flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION;
6191 
6192 	/* Default flags result is 145 as old value */
6193 
6194 	/*
6195 	 * Flags value has to be review. Values must change if we
6196 	 * which to disable it
6197 	 */
6198 	if (sc->base_params->bt_session_2) {
6199 		btconfig2k.flags = flags;
6200 		btconfig2k.max_kill = 5;
6201 		btconfig2k.bt3_t7_timer = 1;
6202 		btconfig2k.kill_ack = htole32(0xffff0000);
6203 		btconfig2k.kill_cts = htole32(0xffff0000);
6204 		btconfig2k.sample_time = 2;
6205 		btconfig2k.bt3_t2_timer = 0xc;
6206 
6207 		for (i = 0; i < 12; i++)
6208 			btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]);
6209 		btconfig2k.valid = htole16(0xff);
6210 		btconfig2k.prio_boost = htole32(0xf0);
6211 		DPRINTF(sc, IWN_DEBUG_RESET,
6212 		    "%s: configuring advanced bluetooth coexistence"
6213 		    " session 2, flags : 0x%x\n",
6214 		    __func__,
6215 		    flags);
6216 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k,
6217 		    sizeof(btconfig2k), 1);
6218 	} else {
6219 		btconfig.flags = flags;
6220 		btconfig.max_kill = 5;
6221 		btconfig.bt3_t7_timer = 1;
6222 		btconfig.kill_ack = htole32(0xffff0000);
6223 		btconfig.kill_cts = htole32(0xffff0000);
6224 		btconfig.sample_time = 2;
6225 		btconfig.bt3_t2_timer = 0xc;
6226 
6227 		for (i = 0; i < 12; i++)
6228 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
6229 		btconfig.valid = htole16(0xff);
6230 		btconfig.prio_boost = 0xf0;
6231 		DPRINTF(sc, IWN_DEBUG_RESET,
6232 		    "%s: configuring advanced bluetooth coexistence,"
6233 		    " flags : 0x%x\n",
6234 		    __func__,
6235 		    flags);
6236 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
6237 		    sizeof(btconfig), 1);
6238 	}
6239 
6240 	if (error != 0)
6241 		return error;
6242 
6243 	memset(&btprio, 0, sizeof btprio);
6244 	btprio.calib_init1 = 0x6;
6245 	btprio.calib_init2 = 0x7;
6246 	btprio.calib_periodic_low1 = 0x2;
6247 	btprio.calib_periodic_low2 = 0x3;
6248 	btprio.calib_periodic_high1 = 0x4;
6249 	btprio.calib_periodic_high2 = 0x5;
6250 	btprio.dtim = 0x6;
6251 	btprio.scan52 = 0x8;
6252 	btprio.scan24 = 0xa;
6253 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
6254 	    1);
6255 	if (error != 0)
6256 		return error;
6257 
6258 	/* Force BT state machine change. */
6259 	memset(&btprot, 0, sizeof btprot);
6260 	btprot.open = 1;
6261 	btprot.type = 1;
6262 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6263 	if (error != 0)
6264 		return error;
6265 	btprot.open = 0;
6266 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6267 }
6268 
6269 static int
6270 iwn5000_runtime_calib(struct iwn_softc *sc)
6271 {
6272 	struct iwn5000_calib_config cmd;
6273 
6274 	memset(&cmd, 0, sizeof cmd);
6275 	cmd.ucode.once.enable = 0xffffffff;
6276 	cmd.ucode.once.start = IWN5000_CALIB_DC;
6277 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6278 	    "%s: configuring runtime calibration\n", __func__);
6279 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
6280 }
6281 
6282 static int
6283 iwn_config(struct iwn_softc *sc)
6284 {
6285 	struct iwn_ops *ops = &sc->ops;
6286 	struct ifnet *ifp = sc->sc_ifp;
6287 	struct ieee80211com *ic = ifp->if_l2com;
6288 	uint32_t txmask;
6289 	uint16_t rxchain;
6290 	int error;
6291 
6292 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6293 
6294 	if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET)
6295 	    && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) {
6296 		device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are"
6297 		    " exclusive each together. Review NIC config file. Conf"
6298 		    " :  0x%08x Flags :  0x%08x  \n", __func__,
6299 		    sc->base_params->calib_need,
6300 		    (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET |
6301 		    IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2));
6302 		return (EINVAL);
6303 	}
6304 
6305 	/* Compute temperature calib if needed. Will be send by send calib */
6306 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) {
6307 		error = iwn5000_temp_offset_calib(sc);
6308 		if (error != 0) {
6309 			device_printf(sc->sc_dev,
6310 			    "%s: could not set temperature offset\n", __func__);
6311 			return (error);
6312 		}
6313 	} else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
6314 		error = iwn5000_temp_offset_calibv2(sc);
6315 		if (error != 0) {
6316 			device_printf(sc->sc_dev,
6317 			    "%s: could not compute temperature offset v2\n",
6318 			    __func__);
6319 			return (error);
6320 		}
6321 	}
6322 
6323 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6324 		/* Configure runtime DC calibration. */
6325 		error = iwn5000_runtime_calib(sc);
6326 		if (error != 0) {
6327 			device_printf(sc->sc_dev,
6328 			    "%s: could not configure runtime calibration\n",
6329 			    __func__);
6330 			return error;
6331 		}
6332 	}
6333 
6334 	/* Configure valid TX chains for >=5000 Series. */
6335 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
6336 		txmask = htole32(sc->txchainmask);
6337 		DPRINTF(sc, IWN_DEBUG_RESET,
6338 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
6339 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
6340 		    sizeof txmask, 0);
6341 		if (error != 0) {
6342 			device_printf(sc->sc_dev,
6343 			    "%s: could not configure valid TX chains, "
6344 			    "error %d\n", __func__, error);
6345 			return error;
6346 		}
6347 	}
6348 
6349 	/* Configure bluetooth coexistence. */
6350 	error = 0;
6351 
6352 	/* Configure bluetooth coexistence if needed. */
6353 	if (sc->base_params->bt_mode == IWN_BT_ADVANCED)
6354 		error = iwn_send_advanced_btcoex(sc);
6355 	if (sc->base_params->bt_mode == IWN_BT_SIMPLE)
6356 		error = iwn_send_btcoex(sc);
6357 
6358 	if (error != 0) {
6359 		device_printf(sc->sc_dev,
6360 		    "%s: could not configure bluetooth coexistence, error %d\n",
6361 		    __func__, error);
6362 		return error;
6363 	}
6364 
6365 	/* Set mode, channel, RX filter and enable RX. */
6366 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6367 	memset(sc->rxon, 0, sizeof (struct iwn_rxon));
6368 	IEEE80211_ADDR_COPY(sc->rxon->myaddr, IF_LLADDR(ifp));
6369 	IEEE80211_ADDR_COPY(sc->rxon->wlap, IF_LLADDR(ifp));
6370 	sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
6371 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6372 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
6373 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6374 	switch (ic->ic_opmode) {
6375 	case IEEE80211_M_STA:
6376 		sc->rxon->mode = IWN_MODE_STA;
6377 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST);
6378 		break;
6379 	case IEEE80211_M_MONITOR:
6380 		sc->rxon->mode = IWN_MODE_MONITOR;
6381 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST |
6382 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
6383 		break;
6384 	default:
6385 		/* Should not get there. */
6386 		break;
6387 	}
6388 	sc->rxon->cck_mask  = 0x0f;	/* not yet negotiated */
6389 	sc->rxon->ofdm_mask = 0xff;	/* not yet negotiated */
6390 	sc->rxon->ht_single_mask = 0xff;
6391 	sc->rxon->ht_dual_mask = 0xff;
6392 	sc->rxon->ht_triple_mask = 0xff;
6393 	rxchain =
6394 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6395 	    IWN_RXCHAIN_MIMO_COUNT(2) |
6396 	    IWN_RXCHAIN_IDLE_COUNT(2);
6397 	sc->rxon->rxchain = htole16(rxchain);
6398 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__);
6399 	if (sc->sc_is_scanning)
6400 		device_printf(sc->sc_dev,
6401 		    "%s: is_scanning set, before RXON\n",
6402 		    __func__);
6403 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 0);
6404 	if (error != 0) {
6405 		device_printf(sc->sc_dev, "%s: RXON command failed\n",
6406 		    __func__);
6407 		return error;
6408 	}
6409 
6410 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
6411 		device_printf(sc->sc_dev, "%s: could not add broadcast node\n",
6412 		    __func__);
6413 		return error;
6414 	}
6415 
6416 	/* Configuration has changed, set TX power accordingly. */
6417 	if ((error = ops->set_txpower(sc, ic->ic_curchan, 0)) != 0) {
6418 		device_printf(sc->sc_dev, "%s: could not set TX power\n",
6419 		    __func__);
6420 		return error;
6421 	}
6422 
6423 	if ((error = iwn_set_critical_temp(sc)) != 0) {
6424 		device_printf(sc->sc_dev,
6425 		    "%s: could not set critical temperature\n", __func__);
6426 		return error;
6427 	}
6428 
6429 	/* Set power saving level to CAM during initialization. */
6430 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
6431 		device_printf(sc->sc_dev,
6432 		    "%s: could not set power saving level\n", __func__);
6433 		return error;
6434 	}
6435 
6436 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6437 
6438 	return 0;
6439 }
6440 
6441 /*
6442  * Add an ssid element to a frame.
6443  */
6444 static uint8_t *
6445 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
6446 {
6447 	*frm++ = IEEE80211_ELEMID_SSID;
6448 	*frm++ = len;
6449 	memcpy(frm, ssid, len);
6450 	return frm + len;
6451 }
6452 
6453 static uint16_t
6454 iwn_get_active_dwell_time(struct iwn_softc *sc,
6455     struct ieee80211_channel *c, uint8_t n_probes)
6456 {
6457 	/* No channel? Default to 2GHz settings */
6458 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6459 		return (IWN_ACTIVE_DWELL_TIME_2GHZ +
6460 		IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
6461 	}
6462 
6463 	/* 5GHz dwell time */
6464 	return (IWN_ACTIVE_DWELL_TIME_5GHZ +
6465 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
6466 }
6467 
6468 /*
6469  * Limit the total dwell time to 85% of the beacon interval.
6470  *
6471  * Returns the dwell time in milliseconds.
6472  */
6473 static uint16_t
6474 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
6475 {
6476 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
6477 	struct ieee80211vap *vap = NULL;
6478 	int bintval = 0;
6479 
6480 	/* bintval is in TU (1.024mS) */
6481 	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
6482 		vap = TAILQ_FIRST(&ic->ic_vaps);
6483 		bintval = vap->iv_bss->ni_intval;
6484 	}
6485 
6486 	/*
6487 	 * If it's non-zero, we should calculate the minimum of
6488 	 * it and the DWELL_BASE.
6489 	 *
6490 	 * XXX Yes, the math should take into account that bintval
6491 	 * is 1.024mS, not 1mS..
6492 	 */
6493 	if (bintval > 0) {
6494 		DPRINTF(sc, IWN_DEBUG_SCAN,
6495 		    "%s: bintval=%d\n",
6496 		    __func__,
6497 		    bintval);
6498 		return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
6499 	}
6500 
6501 	/* No association context? Default */
6502 	return (IWN_PASSIVE_DWELL_BASE);
6503 }
6504 
6505 static uint16_t
6506 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c)
6507 {
6508 	uint16_t passive;
6509 
6510 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6511 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
6512 	} else {
6513 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
6514 	}
6515 
6516 	/* Clamp to the beacon interval if we're associated */
6517 	return (iwn_limit_dwell(sc, passive));
6518 }
6519 
6520 static int
6521 iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap,
6522     struct ieee80211_scan_state *ss, struct ieee80211_channel *c)
6523 {
6524 	struct ifnet *ifp = sc->sc_ifp;
6525 	struct ieee80211com *ic = ifp->if_l2com;
6526 	struct ieee80211_node *ni = vap->iv_bss;
6527 	struct iwn_scan_hdr *hdr;
6528 	struct iwn_cmd_data *tx;
6529 	struct iwn_scan_essid *essid;
6530 	struct iwn_scan_chan *chan;
6531 	struct ieee80211_frame *wh;
6532 	struct ieee80211_rateset *rs;
6533 	uint8_t *buf, *frm;
6534 	uint16_t rxchain;
6535 	uint8_t txant;
6536 	int buflen, error;
6537 	int is_active;
6538 	uint16_t dwell_active, dwell_passive;
6539 	uint32_t extra, scan_service_time;
6540 
6541 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6542 
6543 	/*
6544 	 * We are absolutely not allowed to send a scan command when another
6545 	 * scan command is pending.
6546 	 */
6547 	if (sc->sc_is_scanning) {
6548 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
6549 		    __func__);
6550 		return (EAGAIN);
6551 	}
6552 
6553 	/* Assign the scan channel */
6554 	c = ic->ic_curchan;
6555 
6556 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6557 	buf = kmalloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_INTWAIT | M_ZERO);
6558 	hdr = (struct iwn_scan_hdr *)buf;
6559 	/*
6560 	 * Move to the next channel if no frames are received within 10ms
6561 	 * after sending the probe request.
6562 	 */
6563 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
6564 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
6565 	/*
6566 	 * Max needs to be greater than active and passive and quiet!
6567 	 * It's also in microseconds!
6568 	 */
6569 	hdr->max_svc = htole32(250 * 1024);
6570 
6571 	/*
6572 	 * Reset scan: interval=100
6573 	 * Normal scan: interval=becaon interval
6574 	 * suspend_time: 100 (TU)
6575 	 *
6576 	 */
6577 	extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22;
6578 	//scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024);
6579 	scan_service_time = (4 << 22) | (100 * 1024);	/* Hardcode for now! */
6580 	hdr->pause_svc = htole32(scan_service_time);
6581 
6582 	/* Select antennas for scanning. */
6583 	rxchain =
6584 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6585 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
6586 	    IWN_RXCHAIN_DRIVER_FORCE;
6587 	if (IEEE80211_IS_CHAN_A(c) &&
6588 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
6589 		/* Ant A must be avoided in 5GHz because of an HW bug. */
6590 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
6591 	} else	/* Use all available RX antennas. */
6592 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
6593 	hdr->rxchain = htole16(rxchain);
6594 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
6595 
6596 	tx = (struct iwn_cmd_data *)(hdr + 1);
6597 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
6598 	tx->id = sc->broadcast_id;
6599 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
6600 
6601 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
6602 		/* Send probe requests at 6Mbps. */
6603 		tx->rate = htole32(0xd);
6604 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
6605 	} else {
6606 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
6607 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
6608 		    sc->rxon->associd && sc->rxon->chan > 14)
6609 			tx->rate = htole32(0xd);
6610 		else {
6611 			/* Send probe requests at 1Mbps. */
6612 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
6613 		}
6614 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
6615 	}
6616 	/* Use the first valid TX antenna. */
6617 	txant = IWN_LSB(sc->txchainmask);
6618 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
6619 
6620 	/*
6621 	 * Only do active scanning if we're announcing a probe request
6622 	 * for a given SSID (or more, if we ever add it to the driver.)
6623 	 */
6624 	is_active = 0;
6625 
6626 	/*
6627 	 * If we're scanning for a specific SSID, add it to the command.
6628 	 *
6629 	 * XXX maybe look at adding support for scanning multiple SSIDs?
6630 	 */
6631 	essid = (struct iwn_scan_essid *)(tx + 1);
6632 	if (ss != NULL) {
6633 		if (ss->ss_ssid[0].len != 0) {
6634 			essid[0].id = IEEE80211_ELEMID_SSID;
6635 			essid[0].len = ss->ss_ssid[0].len;
6636 			memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
6637 		}
6638 
6639 		DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n",
6640 		    __func__,
6641 		    ss->ss_ssid[0].len,
6642 		    ss->ss_ssid[0].len,
6643 		    ss->ss_ssid[0].ssid);
6644 
6645 		if (ss->ss_nssid > 0)
6646 			is_active = 1;
6647 	}
6648 
6649 	/*
6650 	 * Build a probe request frame.  Most of the following code is a
6651 	 * copy & paste of what is done in net80211.
6652 	 */
6653 	wh = (struct ieee80211_frame *)(essid + 20);
6654 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
6655 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
6656 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
6657 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
6658 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
6659 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
6660 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
6661 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
6662 
6663 	frm = (uint8_t *)(wh + 1);
6664 	frm = ieee80211_add_ssid(frm, NULL, 0);
6665 	frm = ieee80211_add_rates(frm, rs);
6666 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
6667 		frm = ieee80211_add_xrates(frm, rs);
6668 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
6669 		frm = ieee80211_add_htcap(frm, ni);
6670 
6671 	/* Set length of probe request. */
6672 	tx->len = htole16(frm - (uint8_t *)wh);
6673 
6674 	/*
6675 	 * If active scanning is requested but a certain channel is
6676 	 * marked passive, we can do active scanning if we detect
6677 	 * transmissions.
6678 	 *
6679 	 * There is an issue with some firmware versions that triggers
6680 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
6681 	 * on a radar channel even though this means that we should NOT
6682 	 * send probes.
6683 	 *
6684 	 * The "good CRC threshold" is the number of frames that we
6685 	 * need to receive during our dwell time on a channel before
6686 	 * sending out probes -- setting this to a huge value will
6687 	 * mean we never reach it, but at the same time work around
6688 	 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER
6689 	 * here instead of IWL_GOOD_CRC_TH_DISABLED.
6690 	 *
6691 	 * This was fixed in later versions along with some other
6692 	 * scan changes, and the threshold behaves as a flag in those
6693 	 * versions.
6694 	 */
6695 
6696 	/*
6697 	 * If we're doing active scanning, set the crc_threshold
6698 	 * to a suitable value.  This is different to active veruss
6699 	 * passive scanning depending upon the channel flags; the
6700 	 * firmware will obey that particular check for us.
6701 	 */
6702 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
6703 		hdr->crc_threshold = is_active ?
6704 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
6705 	else
6706 		hdr->crc_threshold = is_active ?
6707 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
6708 
6709 	chan = (struct iwn_scan_chan *)frm;
6710 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
6711 	chan->flags = 0;
6712 	if (ss->ss_nssid > 0)
6713 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
6714 	chan->dsp_gain = 0x6e;
6715 
6716 	/*
6717 	 * Set the passive/active flag depending upon the channel mode.
6718 	 * XXX TODO: take the is_active flag into account as well?
6719 	 */
6720 	if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
6721 		chan->flags |= htole32(IWN_CHAN_PASSIVE);
6722 	else
6723 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
6724 
6725 	/*
6726 	 * Calculate the active/passive dwell times.
6727 	 */
6728 
6729 	dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid);
6730 	dwell_passive = iwn_get_passive_dwell_time(sc, c);
6731 
6732 	/* Make sure they're valid */
6733 	if (dwell_passive <= dwell_active)
6734 		dwell_passive = dwell_active + 1;
6735 
6736 	chan->active = htole16(dwell_active);
6737 	chan->passive = htole16(dwell_passive);
6738 
6739 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
6740 	    !(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
6741 		chan->rf_gain = 0x3b;
6742 	} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
6743 		chan->rf_gain = 0x3b;
6744 	} else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
6745 		chan->rf_gain = 0x28;
6746 	} else {
6747 		chan->rf_gain = 0x28;
6748 	}
6749 
6750 	DPRINTF(sc, IWN_DEBUG_STATE,
6751 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
6752 	    "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x "
6753 	    "isactive=%d numssid=%d\n", __func__,
6754 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
6755 	    dwell_active, dwell_passive, scan_service_time,
6756 	    hdr->crc_threshold, is_active, ss->ss_nssid);
6757 
6758 	hdr->nchan++;
6759 	chan++;
6760 	buflen = (uint8_t *)chan - buf;
6761 	hdr->len = htole16(buflen);
6762 
6763 	if (sc->sc_is_scanning) {
6764 		device_printf(sc->sc_dev,
6765 		    "%s: called with is_scanning set!\n",
6766 		    __func__);
6767 	}
6768 	sc->sc_is_scanning = 1;
6769 
6770 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
6771 	    hdr->nchan);
6772 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
6773 	kfree(buf, M_DEVBUF);
6774 
6775 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6776 
6777 	return error;
6778 }
6779 
6780 static int
6781 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
6782 {
6783 	struct iwn_ops *ops = &sc->ops;
6784 	struct ifnet *ifp = sc->sc_ifp;
6785 	struct ieee80211com *ic = ifp->if_l2com;
6786 	struct ieee80211_node *ni = vap->iv_bss;
6787 	int error;
6788 
6789 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6790 
6791 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6792 	/* Update adapter configuration. */
6793 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
6794 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
6795 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6796 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
6797 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6798 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
6799 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
6800 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
6801 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
6802 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
6803 		sc->rxon->cck_mask  = 0;
6804 		sc->rxon->ofdm_mask = 0x15;
6805 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
6806 		sc->rxon->cck_mask  = 0x03;
6807 		sc->rxon->ofdm_mask = 0;
6808 	} else {
6809 		/* Assume 802.11b/g. */
6810 		sc->rxon->cck_mask  = 0x03;
6811 		sc->rxon->ofdm_mask = 0x15;
6812 	}
6813 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
6814 	    sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask,
6815 	    sc->rxon->ofdm_mask);
6816 	if (sc->sc_is_scanning)
6817 		device_printf(sc->sc_dev,
6818 		    "%s: is_scanning set, before RXON\n",
6819 		    __func__);
6820 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
6821 	if (error != 0) {
6822 		device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n",
6823 		    __func__, error);
6824 		return error;
6825 	}
6826 
6827 	/* Configuration has changed, set TX power accordingly. */
6828 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
6829 		device_printf(sc->sc_dev,
6830 		    "%s: could not set TX power, error %d\n", __func__, error);
6831 		return error;
6832 	}
6833 	/*
6834 	 * Reconfiguring RXON clears the firmware nodes table so we must
6835 	 * add the broadcast node again.
6836 	 */
6837 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
6838 		device_printf(sc->sc_dev,
6839 		    "%s: could not add broadcast node, error %d\n", __func__,
6840 		    error);
6841 		return error;
6842 	}
6843 
6844 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6845 
6846 	return 0;
6847 }
6848 
6849 static int
6850 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
6851 {
6852 	struct iwn_ops *ops = &sc->ops;
6853 	struct ifnet *ifp = sc->sc_ifp;
6854 	struct ieee80211com *ic = ifp->if_l2com;
6855 	struct ieee80211_node *ni = vap->iv_bss;
6856 	struct iwn_node_info node;
6857 	uint32_t htflags = 0;
6858 	int error;
6859 
6860 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6861 
6862 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6863 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
6864 		/* Link LED blinks while monitoring. */
6865 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
6866 		return 0;
6867 	}
6868 	if ((error = iwn_set_timing(sc, ni)) != 0) {
6869 		device_printf(sc->sc_dev,
6870 		    "%s: could not set timing, error %d\n", __func__, error);
6871 		return error;
6872 	}
6873 
6874 	/* Update adapter configuration. */
6875 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
6876 	sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd));
6877 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
6878 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6879 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
6880 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6881 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
6882 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
6883 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
6884 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
6885 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
6886 		sc->rxon->cck_mask  = 0;
6887 		sc->rxon->ofdm_mask = 0x15;
6888 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
6889 		sc->rxon->cck_mask  = 0x03;
6890 		sc->rxon->ofdm_mask = 0;
6891 	} else {
6892 		/* Assume 802.11b/g. */
6893 		sc->rxon->cck_mask  = 0x0f;
6894 		sc->rxon->ofdm_mask = 0x15;
6895 	}
6896 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
6897 		htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
6898 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
6899 			switch (ic->ic_curhtprotmode) {
6900 			case IEEE80211_HTINFO_OPMODE_HT20PR:
6901 				htflags |= IWN_RXON_HT_MODEPURE40;
6902 				break;
6903 			default:
6904 				htflags |= IWN_RXON_HT_MODEMIXED;
6905 				break;
6906 			}
6907 		}
6908 		if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
6909 			htflags |= IWN_RXON_HT_HT40MINUS;
6910 	}
6911 	sc->rxon->flags |= htole32(htflags);
6912 	sc->rxon->filter |= htole32(IWN_FILTER_BSS);
6913 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x\n",
6914 	    sc->rxon->chan, sc->rxon->flags);
6915 	if (sc->sc_is_scanning)
6916 		device_printf(sc->sc_dev,
6917 		    "%s: is_scanning set, before RXON\n",
6918 		    __func__);
6919 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
6920 	if (error != 0) {
6921 		device_printf(sc->sc_dev,
6922 		    "%s: could not update configuration, error %d\n", __func__,
6923 		    error);
6924 		return error;
6925 	}
6926 
6927 	/* Configuration has changed, set TX power accordingly. */
6928 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
6929 		device_printf(sc->sc_dev,
6930 		    "%s: could not set TX power, error %d\n", __func__, error);
6931 		return error;
6932 	}
6933 
6934 	/* Fake a join to initialize the TX rate. */
6935 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
6936 	iwn_newassoc(ni, 1);
6937 
6938 	/* Add BSS node. */
6939 	memset(&node, 0, sizeof node);
6940 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
6941 	node.id = IWN_ID_BSS;
6942 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
6943 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
6944 		case IEEE80211_HTCAP_SMPS_ENA:
6945 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
6946 			break;
6947 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
6948 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
6949 			break;
6950 		}
6951 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
6952 		    IWN_AMDPU_DENSITY(5));	/* 4us */
6953 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
6954 			node.htflags |= htole32(IWN_NODE_HT40);
6955 	}
6956 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
6957 	error = ops->add_node(sc, &node, 1);
6958 	if (error != 0) {
6959 		device_printf(sc->sc_dev,
6960 		    "%s: could not add BSS node, error %d\n", __func__, error);
6961 		return error;
6962 	}
6963 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
6964 	    __func__, node.id);
6965 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
6966 		device_printf(sc->sc_dev,
6967 		    "%s: could not setup link quality for node %d, error %d\n",
6968 		    __func__, node.id, error);
6969 		return error;
6970 	}
6971 
6972 	if ((error = iwn_init_sensitivity(sc)) != 0) {
6973 		device_printf(sc->sc_dev,
6974 		    "%s: could not set sensitivity, error %d\n", __func__,
6975 		    error);
6976 		return error;
6977 	}
6978 	/* Start periodic calibration timer. */
6979 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
6980 	sc->calib_cnt = 0;
6981 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
6982 	    sc);
6983 
6984 	/* Link LED always on while associated. */
6985 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
6986 
6987 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6988 
6989 	return 0;
6990 }
6991 
6992 /*
6993  * This function is called by upper layer when an ADDBA request is received
6994  * from another STA and before the ADDBA response is sent.
6995  */
6996 static int
6997 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
6998     int baparamset, int batimeout, int baseqctl)
6999 {
7000 #define MS(_v, _f)	(((_v) & _f) >> _f##_S)
7001 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7002 	struct iwn_ops *ops = &sc->ops;
7003 	struct iwn_node *wn = (void *)ni;
7004 	struct iwn_node_info node;
7005 	uint16_t ssn;
7006 	uint8_t tid;
7007 	int error;
7008 
7009 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7010 
7011 	tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID);
7012 	ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START);
7013 
7014 	memset(&node, 0, sizeof node);
7015 	node.id = wn->id;
7016 	node.control = IWN_NODE_UPDATE;
7017 	node.flags = IWN_FLAG_SET_ADDBA;
7018 	node.addba_tid = tid;
7019 	node.addba_ssn = htole16(ssn);
7020 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
7021 	    wn->id, tid, ssn);
7022 	error = ops->add_node(sc, &node, 1);
7023 	if (error != 0)
7024 		return error;
7025 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
7026 #undef MS
7027 }
7028 
7029 /*
7030  * This function is called by upper layer on teardown of an HT-immediate
7031  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
7032  */
7033 static void
7034 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
7035 {
7036 	struct ieee80211com *ic = ni->ni_ic;
7037 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
7038 	struct iwn_ops *ops = &sc->ops;
7039 	struct iwn_node *wn = (void *)ni;
7040 	struct iwn_node_info node;
7041 	uint8_t tid;
7042 
7043 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7044 
7045 	/* XXX: tid as an argument */
7046 	for (tid = 0; tid < WME_NUM_TID; tid++) {
7047 		if (&ni->ni_rx_ampdu[tid] == rap)
7048 			break;
7049 	}
7050 
7051 	memset(&node, 0, sizeof node);
7052 	node.id = wn->id;
7053 	node.control = IWN_NODE_UPDATE;
7054 	node.flags = IWN_FLAG_SET_DELBA;
7055 	node.delba_tid = tid;
7056 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
7057 	(void)ops->add_node(sc, &node, 1);
7058 	sc->sc_ampdu_rx_stop(ni, rap);
7059 }
7060 
7061 static int
7062 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7063     int dialogtoken, int baparamset, int batimeout)
7064 {
7065 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7066 	int qid;
7067 
7068 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7069 
7070 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
7071 		if (sc->qid2tap[qid] == NULL)
7072 			break;
7073 	}
7074 	if (qid == sc->ntxqs) {
7075 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
7076 		    __func__);
7077 		return 0;
7078 	}
7079 	tap->txa_private = kmalloc(sizeof(int), M_DEVBUF, M_INTWAIT);
7080 	sc->qid2tap[qid] = tap;
7081 	*(int *)tap->txa_private = qid;
7082 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
7083 	    batimeout);
7084 }
7085 
7086 static int
7087 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7088     int code, int baparamset, int batimeout)
7089 {
7090 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7091 	int qid = *(int *)tap->txa_private;
7092 	uint8_t tid = tap->txa_ac;
7093 	int ret;
7094 
7095 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7096 
7097 	if (code == IEEE80211_STATUS_SUCCESS) {
7098 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
7099 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
7100 		if (ret != 1)
7101 			return ret;
7102 	} else {
7103 		sc->qid2tap[qid] = NULL;
7104 		kfree(tap->txa_private, M_DEVBUF);
7105 		tap->txa_private = NULL;
7106 	}
7107 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
7108 }
7109 
7110 /*
7111  * This function is called by upper layer when an ADDBA response is received
7112  * from another STA.
7113  */
7114 static int
7115 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
7116     uint8_t tid)
7117 {
7118 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
7119 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7120 	struct iwn_ops *ops = &sc->ops;
7121 	struct iwn_node *wn = (void *)ni;
7122 	struct iwn_node_info node;
7123 	int error, qid;
7124 
7125 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7126 
7127 	/* Enable TX for the specified RA/TID. */
7128 	wn->disable_tid &= ~(1 << tid);
7129 	memset(&node, 0, sizeof node);
7130 	node.id = wn->id;
7131 	node.control = IWN_NODE_UPDATE;
7132 	node.flags = IWN_FLAG_SET_DISABLE_TID;
7133 	node.disable_tid = htole16(wn->disable_tid);
7134 	error = ops->add_node(sc, &node, 1);
7135 	if (error != 0)
7136 		return 0;
7137 
7138 	if ((error = iwn_nic_lock(sc)) != 0)
7139 		return 0;
7140 	qid = *(int *)tap->txa_private;
7141 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
7142 	    __func__, wn->id, tid, tap->txa_start, qid);
7143 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
7144 	iwn_nic_unlock(sc);
7145 
7146 	iwn_set_link_quality(sc, ni);
7147 	return 1;
7148 }
7149 
7150 static void
7151 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
7152 {
7153 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7154 	struct iwn_ops *ops = &sc->ops;
7155 	uint8_t tid = tap->txa_ac;
7156 	int qid;
7157 
7158 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7159 
7160 	sc->sc_addba_stop(ni, tap);
7161 
7162 	if (tap->txa_private == NULL)
7163 		return;
7164 
7165 	qid = *(int *)tap->txa_private;
7166 	if (sc->txq[qid].queued != 0)
7167 		return;
7168 	if (iwn_nic_lock(sc) != 0)
7169 		return;
7170 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
7171 	iwn_nic_unlock(sc);
7172 	sc->qid2tap[qid] = NULL;
7173 	kfree(tap->txa_private, M_DEVBUF);
7174 	tap->txa_private = NULL;
7175 }
7176 
7177 static void
7178 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7179     int qid, uint8_t tid, uint16_t ssn)
7180 {
7181 	struct iwn_node *wn = (void *)ni;
7182 
7183 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7184 
7185 	/* Stop TX scheduler while we're changing its configuration. */
7186 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7187 	    IWN4965_TXQ_STATUS_CHGACT);
7188 
7189 	/* Assign RA/TID translation to the queue. */
7190 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
7191 	    wn->id << 4 | tid);
7192 
7193 	/* Enable chain-building mode for the queue. */
7194 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
7195 
7196 	/* Set starting sequence number from the ADDBA request. */
7197 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7198 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7199 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7200 
7201 	/* Set scheduler window size. */
7202 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
7203 	    IWN_SCHED_WINSZ);
7204 	/* Set scheduler frame limit. */
7205 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7206 	    IWN_SCHED_LIMIT << 16);
7207 
7208 	/* Enable interrupts for the queue. */
7209 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7210 
7211 	/* Mark the queue as active. */
7212 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7213 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
7214 	    iwn_tid2fifo[tid] << 1);
7215 }
7216 
7217 static void
7218 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7219 {
7220 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7221 
7222 	/* Stop TX scheduler while we're changing its configuration. */
7223 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7224 	    IWN4965_TXQ_STATUS_CHGACT);
7225 
7226 	/* Set starting sequence number from the ADDBA request. */
7227 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7228 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7229 
7230 	/* Disable interrupts for the queue. */
7231 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7232 
7233 	/* Mark the queue as inactive. */
7234 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7235 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
7236 }
7237 
7238 static void
7239 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7240     int qid, uint8_t tid, uint16_t ssn)
7241 {
7242 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7243 
7244 	struct iwn_node *wn = (void *)ni;
7245 
7246 	/* Stop TX scheduler while we're changing its configuration. */
7247 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7248 	    IWN5000_TXQ_STATUS_CHGACT);
7249 
7250 	/* Assign RA/TID translation to the queue. */
7251 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
7252 	    wn->id << 4 | tid);
7253 
7254 	/* Enable chain-building mode for the queue. */
7255 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
7256 
7257 	/* Enable aggregation for the queue. */
7258 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7259 
7260 	/* Set starting sequence number from the ADDBA request. */
7261 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7262 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7263 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7264 
7265 	/* Set scheduler window size and frame limit. */
7266 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7267 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7268 
7269 	/* Enable interrupts for the queue. */
7270 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7271 
7272 	/* Mark the queue as active. */
7273 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7274 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
7275 }
7276 
7277 static void
7278 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7279 {
7280 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7281 
7282 	/* Stop TX scheduler while we're changing its configuration. */
7283 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7284 	    IWN5000_TXQ_STATUS_CHGACT);
7285 
7286 	/* Disable aggregation for the queue. */
7287 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7288 
7289 	/* Set starting sequence number from the ADDBA request. */
7290 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7291 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7292 
7293 	/* Disable interrupts for the queue. */
7294 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7295 
7296 	/* Mark the queue as inactive. */
7297 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7298 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
7299 }
7300 
7301 /*
7302  * Query calibration tables from the initialization firmware.  We do this
7303  * only once at first boot.  Called from a process context.
7304  */
7305 static int
7306 iwn5000_query_calibration(struct iwn_softc *sc)
7307 {
7308 	struct iwn5000_calib_config cmd;
7309 	int error;
7310 
7311 	memset(&cmd, 0, sizeof cmd);
7312 	cmd.ucode.once.enable = htole32(0xffffffff);
7313 	cmd.ucode.once.start  = htole32(0xffffffff);
7314 	cmd.ucode.once.send   = htole32(0xffffffff);
7315 	cmd.ucode.flags       = htole32(0xffffffff);
7316 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
7317 	    __func__);
7318 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
7319 	if (error != 0)
7320 		return error;
7321 
7322 	/* Wait at most two seconds for calibration to complete. */
7323 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
7324 		error = zsleep(sc, &wlan_global_serializer, 0, "iwncal", 2 * hz);
7325 	return error;
7326 }
7327 
7328 /*
7329  * Send calibration results to the runtime firmware.  These results were
7330  * obtained on first boot from the initialization firmware.
7331  */
7332 static int
7333 iwn5000_send_calibration(struct iwn_softc *sc)
7334 {
7335 	int idx, error;
7336 
7337 	for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) {
7338 		if (!(sc->base_params->calib_need & (1<<idx))) {
7339 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7340 			    "No need of calib %d\n",
7341 			    idx);
7342 			continue; /* no need for this calib */
7343 		}
7344 		if (sc->calibcmd[idx].buf == NULL) {
7345 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7346 			    "Need calib idx : %d but no available data\n",
7347 			    idx);
7348 			continue;
7349 		}
7350 
7351 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7352 		    "send calibration result idx=%d len=%d\n", idx,
7353 		    sc->calibcmd[idx].len);
7354 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
7355 		    sc->calibcmd[idx].len, 0);
7356 		if (error != 0) {
7357 			device_printf(sc->sc_dev,
7358 			    "%s: could not send calibration result, error %d\n",
7359 			    __func__, error);
7360 			return error;
7361 		}
7362 	}
7363 	return 0;
7364 }
7365 
7366 static int
7367 iwn5000_send_wimax_coex(struct iwn_softc *sc)
7368 {
7369 	struct iwn5000_wimax_coex wimax;
7370 
7371 #if 0
7372 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
7373 		/* Enable WiMAX coexistence for combo adapters. */
7374 		wimax.flags =
7375 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
7376 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
7377 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
7378 		    IWN_WIMAX_COEX_ENABLE;
7379 		memcpy(wimax.events, iwn6050_wimax_events,
7380 		    sizeof iwn6050_wimax_events);
7381 	} else
7382 #endif
7383 	{
7384 		/* Disable WiMAX coexistence. */
7385 		wimax.flags = 0;
7386 		memset(wimax.events, 0, sizeof wimax.events);
7387 	}
7388 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
7389 	    __func__);
7390 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
7391 }
7392 
7393 static int
7394 iwn5000_crystal_calib(struct iwn_softc *sc)
7395 {
7396 	struct iwn5000_phy_calib_crystal cmd;
7397 
7398 	memset(&cmd, 0, sizeof cmd);
7399 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
7400 	cmd.ngroups = 1;
7401 	cmd.isvalid = 1;
7402 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
7403 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
7404 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
7405 	    cmd.cap_pin[0], cmd.cap_pin[1]);
7406 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7407 }
7408 
7409 static int
7410 iwn5000_temp_offset_calib(struct iwn_softc *sc)
7411 {
7412 	struct iwn5000_phy_calib_temp_offset cmd;
7413 
7414 	memset(&cmd, 0, sizeof cmd);
7415 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7416 	cmd.ngroups = 1;
7417 	cmd.isvalid = 1;
7418 	if (sc->eeprom_temp != 0)
7419 		cmd.offset = htole16(sc->eeprom_temp);
7420 	else
7421 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
7422 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
7423 	    le16toh(cmd.offset));
7424 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7425 }
7426 
7427 static int
7428 iwn5000_temp_offset_calibv2(struct iwn_softc *sc)
7429 {
7430 	struct iwn5000_phy_calib_temp_offsetv2 cmd;
7431 
7432 	memset(&cmd, 0, sizeof cmd);
7433 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7434 	cmd.ngroups = 1;
7435 	cmd.isvalid = 1;
7436 	if (sc->eeprom_temp != 0) {
7437 		cmd.offset_low = htole16(sc->eeprom_temp);
7438 		cmd.offset_high = htole16(sc->eeprom_temp_high);
7439 	} else {
7440 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
7441 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
7442 	}
7443 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
7444 
7445 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7446 	    "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n",
7447 	    le16toh(cmd.offset_low),
7448 	    le16toh(cmd.offset_high),
7449 	    le16toh(cmd.burnt_voltage_ref));
7450 
7451 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7452 }
7453 
7454 /*
7455  * This function is called after the runtime firmware notifies us of its
7456  * readiness (called in a process context).
7457  */
7458 static int
7459 iwn4965_post_alive(struct iwn_softc *sc)
7460 {
7461 	int error, qid;
7462 
7463 	if ((error = iwn_nic_lock(sc)) != 0)
7464 		return error;
7465 
7466 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7467 
7468 	/* Clear TX scheduler state in SRAM. */
7469 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7470 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
7471 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
7472 
7473 	/* Set physical address of TX scheduler rings (1KB aligned). */
7474 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7475 
7476 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7477 
7478 	/* Disable chain mode for all our 16 queues. */
7479 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
7480 
7481 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
7482 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
7483 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7484 
7485 		/* Set scheduler window size. */
7486 		iwn_mem_write(sc, sc->sched_base +
7487 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
7488 		/* Set scheduler frame limit. */
7489 		iwn_mem_write(sc, sc->sched_base +
7490 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7491 		    IWN_SCHED_LIMIT << 16);
7492 	}
7493 
7494 	/* Enable interrupts for all our 16 queues. */
7495 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
7496 	/* Identify TX FIFO rings (0-7). */
7497 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
7498 
7499 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7500 	for (qid = 0; qid < 7; qid++) {
7501 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
7502 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7503 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
7504 	}
7505 	iwn_nic_unlock(sc);
7506 	return 0;
7507 }
7508 
7509 /*
7510  * This function is called after the initialization or runtime firmware
7511  * notifies us of its readiness (called in a process context).
7512  */
7513 static int
7514 iwn5000_post_alive(struct iwn_softc *sc)
7515 {
7516 	int error, qid;
7517 
7518 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7519 
7520 	/* Switch to using ICT interrupt mode. */
7521 	iwn5000_ict_reset(sc);
7522 
7523 	if ((error = iwn_nic_lock(sc)) != 0){
7524 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
7525 		return error;
7526 	}
7527 
7528 	/* Clear TX scheduler state in SRAM. */
7529 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7530 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
7531 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
7532 
7533 	/* Set physical address of TX scheduler rings (1KB aligned). */
7534 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7535 
7536 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7537 
7538 	/* Enable chain mode for all queues, except command queue. */
7539 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
7540 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf);
7541 	else
7542 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
7543 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
7544 
7545 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
7546 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
7547 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7548 
7549 		iwn_mem_write(sc, sc->sched_base +
7550 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
7551 		/* Set scheduler window size and frame limit. */
7552 		iwn_mem_write(sc, sc->sched_base +
7553 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7554 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7555 	}
7556 
7557 	/* Enable interrupts for all our 20 queues. */
7558 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
7559 	/* Identify TX FIFO rings (0-7). */
7560 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
7561 
7562 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7563 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) {
7564 		/* Mark TX rings as active. */
7565 		for (qid = 0; qid < 11; qid++) {
7566 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 };
7567 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7568 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7569 		}
7570 	} else {
7571 		/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7572 		for (qid = 0; qid < 7; qid++) {
7573 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
7574 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7575 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7576 		}
7577 	}
7578 	iwn_nic_unlock(sc);
7579 
7580 	/* Configure WiMAX coexistence for combo adapters. */
7581 	error = iwn5000_send_wimax_coex(sc);
7582 	if (error != 0) {
7583 		device_printf(sc->sc_dev,
7584 		    "%s: could not configure WiMAX coexistence, error %d\n",
7585 		    __func__, error);
7586 		return error;
7587 	}
7588 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
7589 		/* Perform crystal calibration. */
7590 		error = iwn5000_crystal_calib(sc);
7591 		if (error != 0) {
7592 			device_printf(sc->sc_dev,
7593 			    "%s: crystal calibration failed, error %d\n",
7594 			    __func__, error);
7595 			return error;
7596 		}
7597 	}
7598 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
7599 		/* Query calibration from the initialization firmware. */
7600 		if ((error = iwn5000_query_calibration(sc)) != 0) {
7601 			device_printf(sc->sc_dev,
7602 			    "%s: could not query calibration, error %d\n",
7603 			    __func__, error);
7604 			return error;
7605 		}
7606 		/*
7607 		 * We have the calibration results now, reboot with the
7608 		 * runtime firmware (call ourselves recursively!)
7609 		 */
7610 		iwn_hw_stop(sc);
7611 		error = iwn_hw_init(sc);
7612 	} else {
7613 		/* Send calibration results to runtime firmware. */
7614 		error = iwn5000_send_calibration(sc);
7615 	}
7616 
7617 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7618 
7619 	return error;
7620 }
7621 
7622 /*
7623  * The firmware boot code is small and is intended to be copied directly into
7624  * the NIC internal memory (no DMA transfer).
7625  */
7626 static int
7627 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
7628 {
7629 	int error, ntries;
7630 
7631 	size /= sizeof (uint32_t);
7632 
7633 	if ((error = iwn_nic_lock(sc)) != 0)
7634 		return error;
7635 
7636 	/* Copy microcode image into NIC memory. */
7637 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
7638 	    (const uint32_t *)ucode, size);
7639 
7640 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
7641 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
7642 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
7643 
7644 	/* Start boot load now. */
7645 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
7646 
7647 	/* Wait for transfer to complete. */
7648 	for (ntries = 0; ntries < 1000; ntries++) {
7649 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
7650 		    IWN_BSM_WR_CTRL_START))
7651 			break;
7652 		DELAY(10);
7653 	}
7654 	if (ntries == 1000) {
7655 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7656 		    __func__);
7657 		iwn_nic_unlock(sc);
7658 		return ETIMEDOUT;
7659 	}
7660 
7661 	/* Enable boot after power up. */
7662 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
7663 
7664 	iwn_nic_unlock(sc);
7665 	return 0;
7666 }
7667 
7668 static int
7669 iwn4965_load_firmware(struct iwn_softc *sc)
7670 {
7671 	struct iwn_fw_info *fw = &sc->fw;
7672 	struct iwn_dma_info *dma = &sc->fw_dma;
7673 	int error;
7674 
7675 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
7676 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
7677 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7678 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7679 	    fw->init.text, fw->init.textsz);
7680 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7681 
7682 	/* Tell adapter where to find initialization sections. */
7683 	if ((error = iwn_nic_lock(sc)) != 0)
7684 		return error;
7685 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7686 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
7687 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7688 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7689 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
7690 	iwn_nic_unlock(sc);
7691 
7692 	/* Load firmware boot code. */
7693 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
7694 	if (error != 0) {
7695 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7696 		    __func__);
7697 		return error;
7698 	}
7699 	/* Now press "execute". */
7700 	IWN_WRITE(sc, IWN_RESET, 0);
7701 
7702 	/* Wait at most one second for first alive notification. */
7703 	if ((error = zsleep(sc, &wlan_global_serializer, 0, "iwninit", hz)) != 0) {
7704 		device_printf(sc->sc_dev,
7705 		    "%s: timeout waiting for adapter to initialize, error %d\n",
7706 		    __func__, error);
7707 		return error;
7708 	}
7709 
7710 	/* Retrieve current temperature for initial TX power calibration. */
7711 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
7712 	sc->temp = iwn4965_get_temperature(sc);
7713 
7714 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
7715 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
7716 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7717 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7718 	    fw->main.text, fw->main.textsz);
7719 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7720 
7721 	/* Tell adapter where to find runtime sections. */
7722 	if ((error = iwn_nic_lock(sc)) != 0)
7723 		return error;
7724 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7725 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
7726 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7727 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7728 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
7729 	    IWN_FW_UPDATED | fw->main.textsz);
7730 	iwn_nic_unlock(sc);
7731 
7732 	return 0;
7733 }
7734 
7735 static int
7736 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
7737     const uint8_t *section, int size)
7738 {
7739 	struct iwn_dma_info *dma = &sc->fw_dma;
7740 	int error;
7741 
7742 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7743 
7744 	/* Copy firmware section into pre-allocated DMA-safe memory. */
7745 	memcpy(dma->vaddr, section, size);
7746 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7747 
7748 	if ((error = iwn_nic_lock(sc)) != 0)
7749 		return error;
7750 
7751 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
7752 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
7753 
7754 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
7755 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
7756 	    IWN_LOADDR(dma->paddr));
7757 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
7758 	    IWN_HIADDR(dma->paddr) << 28 | size);
7759 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
7760 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
7761 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
7762 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
7763 
7764 	/* Kick Flow Handler to start DMA transfer. */
7765 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
7766 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
7767 
7768 	iwn_nic_unlock(sc);
7769 
7770 	/* Wait at most five seconds for FH DMA transfer to complete. */
7771 	return zsleep(sc, &wlan_global_serializer, 0, "iwninit", 5 * hz);
7772 }
7773 
7774 static int
7775 iwn5000_load_firmware(struct iwn_softc *sc)
7776 {
7777 	struct iwn_fw_part *fw;
7778 	int error;
7779 
7780 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7781 
7782 	/* Load the initialization firmware on first boot only. */
7783 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
7784 	    &sc->fw.main : &sc->fw.init;
7785 
7786 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
7787 	    fw->text, fw->textsz);
7788 	if (error != 0) {
7789 		device_printf(sc->sc_dev,
7790 		    "%s: could not load firmware %s section, error %d\n",
7791 		    __func__, ".text", error);
7792 		return error;
7793 	}
7794 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
7795 	    fw->data, fw->datasz);
7796 	if (error != 0) {
7797 		device_printf(sc->sc_dev,
7798 		    "%s: could not load firmware %s section, error %d\n",
7799 		    __func__, ".data", error);
7800 		return error;
7801 	}
7802 
7803 	/* Now press "execute". */
7804 	IWN_WRITE(sc, IWN_RESET, 0);
7805 	return 0;
7806 }
7807 
7808 /*
7809  * Extract text and data sections from a legacy firmware image.
7810  */
7811 static int
7812 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
7813 {
7814 	const uint32_t *ptr;
7815 	size_t hdrlen = 24;
7816 	uint32_t rev;
7817 
7818 	ptr = (const uint32_t *)fw->data;
7819 	rev = le32toh(*ptr++);
7820 
7821 	/* Check firmware API version. */
7822 	if (IWN_FW_API(rev) <= 1) {
7823 		device_printf(sc->sc_dev,
7824 		    "%s: bad firmware, need API version >=2\n", __func__);
7825 		return EINVAL;
7826 	}
7827 	if (IWN_FW_API(rev) >= 3) {
7828 		/* Skip build number (version 2 header). */
7829 		hdrlen += 4;
7830 		ptr++;
7831 	}
7832 	if (fw->size < hdrlen) {
7833 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
7834 		    __func__, fw->size);
7835 		return EINVAL;
7836 	}
7837 	fw->main.textsz = le32toh(*ptr++);
7838 	fw->main.datasz = le32toh(*ptr++);
7839 	fw->init.textsz = le32toh(*ptr++);
7840 	fw->init.datasz = le32toh(*ptr++);
7841 	fw->boot.textsz = le32toh(*ptr++);
7842 
7843 	/* Check that all firmware sections fit. */
7844 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
7845 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
7846 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
7847 		    __func__, fw->size);
7848 		return EINVAL;
7849 	}
7850 
7851 	/* Get pointers to firmware sections. */
7852 	fw->main.text = (const uint8_t *)ptr;
7853 	fw->main.data = fw->main.text + fw->main.textsz;
7854 	fw->init.text = fw->main.data + fw->main.datasz;
7855 	fw->init.data = fw->init.text + fw->init.textsz;
7856 	fw->boot.text = fw->init.data + fw->init.datasz;
7857 	return 0;
7858 }
7859 
7860 /*
7861  * Extract text and data sections from a TLV firmware image.
7862  */
7863 static int
7864 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
7865     uint16_t alt)
7866 {
7867 	const struct iwn_fw_tlv_hdr *hdr;
7868 	const struct iwn_fw_tlv *tlv;
7869 	const uint8_t *ptr, *end;
7870 	uint64_t altmask;
7871 	uint32_t len, tmp;
7872 
7873 	if (fw->size < sizeof (*hdr)) {
7874 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
7875 		    __func__, fw->size);
7876 		return EINVAL;
7877 	}
7878 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
7879 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
7880 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
7881 		    __func__, le32toh(hdr->signature));
7882 		return EINVAL;
7883 	}
7884 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
7885 	    le32toh(hdr->build));
7886 
7887 	/*
7888 	 * Select the closest supported alternative that is less than
7889 	 * or equal to the specified one.
7890 	 */
7891 	altmask = le64toh(hdr->altmask);
7892 	while (alt > 0 && !(altmask & (1ULL << alt)))
7893 		alt--;	/* Downgrade. */
7894 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
7895 
7896 	ptr = (const uint8_t *)(hdr + 1);
7897 	end = (const uint8_t *)(fw->data + fw->size);
7898 
7899 	/* Parse type-length-value fields. */
7900 	while (ptr + sizeof (*tlv) <= end) {
7901 		tlv = (const struct iwn_fw_tlv *)ptr;
7902 		len = le32toh(tlv->len);
7903 
7904 		ptr += sizeof (*tlv);
7905 		if (ptr + len > end) {
7906 			device_printf(sc->sc_dev,
7907 			    "%s: firmware too short: %zu bytes\n", __func__,
7908 			    fw->size);
7909 			return EINVAL;
7910 		}
7911 		/* Skip other alternatives. */
7912 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
7913 			goto next;
7914 
7915 		switch (le16toh(tlv->type)) {
7916 		case IWN_FW_TLV_MAIN_TEXT:
7917 			fw->main.text = ptr;
7918 			fw->main.textsz = len;
7919 			break;
7920 		case IWN_FW_TLV_MAIN_DATA:
7921 			fw->main.data = ptr;
7922 			fw->main.datasz = len;
7923 			break;
7924 		case IWN_FW_TLV_INIT_TEXT:
7925 			fw->init.text = ptr;
7926 			fw->init.textsz = len;
7927 			break;
7928 		case IWN_FW_TLV_INIT_DATA:
7929 			fw->init.data = ptr;
7930 			fw->init.datasz = len;
7931 			break;
7932 		case IWN_FW_TLV_BOOT_TEXT:
7933 			fw->boot.text = ptr;
7934 			fw->boot.textsz = len;
7935 			break;
7936 		case IWN_FW_TLV_ENH_SENS:
7937 			if (!len)
7938 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
7939 			break;
7940 		case IWN_FW_TLV_PHY_CALIB:
7941 			tmp = le32toh(*ptr);
7942 			if (tmp < 253) {
7943 				sc->reset_noise_gain = tmp;
7944 				sc->noise_gain = tmp + 1;
7945 			}
7946 			break;
7947 		case IWN_FW_TLV_PAN:
7948 			sc->sc_flags |= IWN_FLAG_PAN_SUPPORT;
7949 			DPRINTF(sc, IWN_DEBUG_RESET,
7950 			    "PAN Support found: %d\n", 1);
7951 			break;
7952 		case IWN_FW_TLV_FLAGS:
7953 			if (len < sizeof(uint32_t))
7954 				break;
7955 			if (len % sizeof(uint32_t))
7956 				break;
7957 			sc->tlv_feature_flags = le32toh(*ptr);
7958 			DPRINTF(sc, IWN_DEBUG_RESET,
7959 			    "%s: feature: 0x%08x\n",
7960 			    __func__,
7961 			    sc->tlv_feature_flags);
7962 			break;
7963 		case IWN_FW_TLV_PBREQ_MAXLEN:
7964 		case IWN_FW_TLV_RUNT_EVTLOG_PTR:
7965 		case IWN_FW_TLV_RUNT_EVTLOG_SIZE:
7966 		case IWN_FW_TLV_RUNT_ERRLOG_PTR:
7967 		case IWN_FW_TLV_INIT_EVTLOG_PTR:
7968 		case IWN_FW_TLV_INIT_EVTLOG_SIZE:
7969 		case IWN_FW_TLV_INIT_ERRLOG_PTR:
7970 		case IWN_FW_TLV_WOWLAN_INST:
7971 		case IWN_FW_TLV_WOWLAN_DATA:
7972 			DPRINTF(sc, IWN_DEBUG_RESET,
7973 			    "TLV type %d recognized but not handled\n",
7974 			    le16toh(tlv->type));
7975 			break;
7976 		default:
7977 			DPRINTF(sc, IWN_DEBUG_RESET,
7978 			    "TLV type %d not handled\n", le16toh(tlv->type));
7979 			break;
7980 		}
7981  next:		/* TLV fields are 32-bit aligned. */
7982 		ptr += (len + 3) & ~3;
7983 	}
7984 	return 0;
7985 }
7986 
7987 static int
7988 iwn_read_firmware(struct iwn_softc *sc)
7989 {
7990 	struct iwn_fw_info *fw = &sc->fw;
7991 	int error;
7992 
7993 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7994 
7995 	wlan_assert_serialized();
7996 	memset(fw, 0, sizeof (*fw));
7997 
7998 	/*
7999 	 * Read firmware image from filesystem.  The firmware can block
8000 	 * in a taskq and deadlock against our serializer so unlock
8001 	 * while we do tihs.
8002 	 */
8003 	wlan_serialize_exit();
8004 	sc->fw_fp = firmware_get(sc->fwname);
8005 	wlan_serialize_enter();
8006 	if (sc->fw_fp == NULL) {
8007 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
8008 		    __func__, sc->fwname);
8009 		return EINVAL;
8010 	}
8011 
8012 	fw->size = sc->fw_fp->datasize;
8013 	fw->data = (const uint8_t *)sc->fw_fp->data;
8014 	if (fw->size < sizeof (uint32_t)) {
8015 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8016 		    __func__, fw->size);
8017 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8018 		sc->fw_fp = NULL;
8019 		return EINVAL;
8020 	}
8021 
8022 	/* Retrieve text and data sections. */
8023 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
8024 		error = iwn_read_firmware_leg(sc, fw);
8025 	else
8026 		error = iwn_read_firmware_tlv(sc, fw, 1);
8027 	if (error != 0) {
8028 		device_printf(sc->sc_dev,
8029 		    "%s: could not read firmware sections, error %d\n",
8030 		    __func__, error);
8031 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8032 		sc->fw_fp = NULL;
8033 		return error;
8034 	}
8035 
8036 	/* Make sure text and data sections fit in hardware memory. */
8037 	if (fw->main.textsz > sc->fw_text_maxsz ||
8038 	    fw->main.datasz > sc->fw_data_maxsz ||
8039 	    fw->init.textsz > sc->fw_text_maxsz ||
8040 	    fw->init.datasz > sc->fw_data_maxsz ||
8041 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
8042 	    (fw->boot.textsz & 3) != 0) {
8043 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
8044 		    __func__);
8045 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8046 		sc->fw_fp = NULL;
8047 		return EINVAL;
8048 	}
8049 
8050 	/* We can proceed with loading the firmware. */
8051 	return 0;
8052 }
8053 
8054 static int
8055 iwn_clock_wait(struct iwn_softc *sc)
8056 {
8057 	int ntries;
8058 
8059 	/* Set "initialization complete" bit. */
8060 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8061 
8062 	/* Wait for clock stabilization. */
8063 	for (ntries = 0; ntries < 2500; ntries++) {
8064 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
8065 			return 0;
8066 		DELAY(10);
8067 	}
8068 	device_printf(sc->sc_dev,
8069 	    "%s: timeout waiting for clock stabilization\n", __func__);
8070 	return ETIMEDOUT;
8071 }
8072 
8073 static int
8074 iwn_apm_init(struct iwn_softc *sc)
8075 {
8076 	uint32_t reg;
8077 	int error;
8078 
8079 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8080 
8081 	/* Disable L0s exit timer (NMI bug workaround). */
8082 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
8083 	/* Don't wait for ICH L0s (ICH bug workaround). */
8084 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
8085 
8086 	/* Set FH wait threshold to max (HW bug under stress workaround). */
8087 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
8088 
8089 	/* Enable HAP INTA to move adapter from L1a to L0s. */
8090 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
8091 
8092 	/* Retrieve PCIe Active State Power Management (ASPM). */
8093 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
8094 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
8095 	if (reg & 0x02)	/* L1 Entry enabled. */
8096 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8097 	else
8098 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8099 
8100 	if (sc->base_params->pll_cfg_val)
8101 		IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val);
8102 
8103 	/* Wait for clock stabilization before accessing prph. */
8104 	if ((error = iwn_clock_wait(sc)) != 0)
8105 		return error;
8106 
8107 	if ((error = iwn_nic_lock(sc)) != 0)
8108 		return error;
8109 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
8110 		/* Enable DMA and BSM (Bootstrap State Machine). */
8111 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8112 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
8113 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
8114 	} else {
8115 		/* Enable DMA. */
8116 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8117 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8118 	}
8119 	DELAY(20);
8120 	/* Disable L1-Active. */
8121 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
8122 	iwn_nic_unlock(sc);
8123 
8124 	return 0;
8125 }
8126 
8127 static void
8128 iwn_apm_stop_master(struct iwn_softc *sc)
8129 {
8130 	int ntries;
8131 
8132 	/* Stop busmaster DMA activity. */
8133 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
8134 	for (ntries = 0; ntries < 100; ntries++) {
8135 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
8136 			return;
8137 		DELAY(10);
8138 	}
8139 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
8140 }
8141 
8142 static void
8143 iwn_apm_stop(struct iwn_softc *sc)
8144 {
8145 	iwn_apm_stop_master(sc);
8146 
8147 	/* Reset the entire device. */
8148 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
8149 	DELAY(10);
8150 	/* Clear "initialization complete" bit. */
8151 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8152 }
8153 
8154 static int
8155 iwn4965_nic_config(struct iwn_softc *sc)
8156 {
8157 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8158 
8159 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
8160 		/*
8161 		 * I don't believe this to be correct but this is what the
8162 		 * vendor driver is doing. Probably the bits should not be
8163 		 * shifted in IWN_RFCFG_*.
8164 		 */
8165 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8166 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8167 		    IWN_RFCFG_STEP(sc->rfcfg) |
8168 		    IWN_RFCFG_DASH(sc->rfcfg));
8169 	}
8170 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8171 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8172 	return 0;
8173 }
8174 
8175 static int
8176 iwn5000_nic_config(struct iwn_softc *sc)
8177 {
8178 	uint32_t tmp;
8179 	int error;
8180 
8181 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8182 
8183 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
8184 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8185 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8186 		    IWN_RFCFG_STEP(sc->rfcfg) |
8187 		    IWN_RFCFG_DASH(sc->rfcfg));
8188 	}
8189 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8190 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8191 
8192 	if ((error = iwn_nic_lock(sc)) != 0)
8193 		return error;
8194 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
8195 
8196 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
8197 		/*
8198 		 * Select first Switching Voltage Regulator (1.32V) to
8199 		 * solve a stability issue related to noisy DC2DC line
8200 		 * in the silicon of 1000 Series.
8201 		 */
8202 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
8203 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
8204 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
8205 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
8206 	}
8207 	iwn_nic_unlock(sc);
8208 
8209 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
8210 		/* Use internal power amplifier only. */
8211 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
8212 	}
8213 	if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) {
8214 		/* Indicate that ROM calibration version is >=6. */
8215 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
8216 	}
8217 	if (sc->base_params->additional_gp_drv_bit)
8218 		IWN_SETBITS(sc, IWN_GP_DRIVER,
8219 		    sc->base_params->additional_gp_drv_bit);
8220 	return 0;
8221 }
8222 
8223 /*
8224  * Take NIC ownership over Intel Active Management Technology (AMT).
8225  */
8226 static int
8227 iwn_hw_prepare(struct iwn_softc *sc)
8228 {
8229 	int ntries;
8230 
8231 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8232 
8233 	/* Check if hardware is ready. */
8234 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8235 	for (ntries = 0; ntries < 5; ntries++) {
8236 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8237 		    IWN_HW_IF_CONFIG_NIC_READY)
8238 			return 0;
8239 		DELAY(10);
8240 	}
8241 
8242 	/* Hardware not ready, force into ready state. */
8243 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
8244 	for (ntries = 0; ntries < 15000; ntries++) {
8245 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
8246 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
8247 			break;
8248 		DELAY(10);
8249 	}
8250 	if (ntries == 15000)
8251 		return ETIMEDOUT;
8252 
8253 	/* Hardware should be ready now. */
8254 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8255 	for (ntries = 0; ntries < 5; ntries++) {
8256 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8257 		    IWN_HW_IF_CONFIG_NIC_READY)
8258 			return 0;
8259 		DELAY(10);
8260 	}
8261 	return ETIMEDOUT;
8262 }
8263 
8264 static int
8265 iwn_hw_init(struct iwn_softc *sc)
8266 {
8267 	struct iwn_ops *ops = &sc->ops;
8268 	int error, chnl, qid;
8269 
8270 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8271 
8272 	/* Clear pending interrupts. */
8273 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8274 
8275 	if ((error = iwn_apm_init(sc)) != 0) {
8276 		device_printf(sc->sc_dev,
8277 		    "%s: could not power ON adapter, error %d\n", __func__,
8278 		    error);
8279 		return error;
8280 	}
8281 
8282 	/* Select VMAIN power source. */
8283 	if ((error = iwn_nic_lock(sc)) != 0)
8284 		return error;
8285 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
8286 	iwn_nic_unlock(sc);
8287 
8288 	/* Perform adapter-specific initialization. */
8289 	if ((error = ops->nic_config(sc)) != 0)
8290 		return error;
8291 
8292 	/* Initialize RX ring. */
8293 	if ((error = iwn_nic_lock(sc)) != 0)
8294 		return error;
8295 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
8296 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
8297 	/* Set physical address of RX ring (256-byte aligned). */
8298 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
8299 	/* Set physical address of RX status (16-byte aligned). */
8300 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
8301 	/* Enable RX. */
8302 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
8303 	    IWN_FH_RX_CONFIG_ENA           |
8304 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
8305 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
8306 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
8307 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
8308 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
8309 	iwn_nic_unlock(sc);
8310 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
8311 
8312 	if ((error = iwn_nic_lock(sc)) != 0)
8313 		return error;
8314 
8315 	/* Initialize TX scheduler. */
8316 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8317 
8318 	/* Set physical address of "keep warm" page (16-byte aligned). */
8319 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
8320 
8321 	/* Initialize TX rings. */
8322 	for (qid = 0; qid < sc->ntxqs; qid++) {
8323 		struct iwn_tx_ring *txq = &sc->txq[qid];
8324 
8325 		/* Set physical address of TX ring (256-byte aligned). */
8326 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
8327 		    txq->desc_dma.paddr >> 8);
8328 	}
8329 	iwn_nic_unlock(sc);
8330 
8331 	/* Enable DMA channels. */
8332 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8333 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
8334 		    IWN_FH_TX_CONFIG_DMA_ENA |
8335 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
8336 	}
8337 
8338 	/* Clear "radio off" and "commands blocked" bits. */
8339 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8340 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
8341 
8342 	/* Clear pending interrupts. */
8343 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8344 	/* Enable interrupt coalescing. */
8345 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
8346 	/* Enable interrupts. */
8347 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8348 
8349 	/* _Really_ make sure "radio off" bit is cleared! */
8350 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8351 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8352 
8353 	/* Enable shadow registers. */
8354 	if (sc->base_params->shadow_reg_enable)
8355 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
8356 
8357 	if ((error = ops->load_firmware(sc)) != 0) {
8358 		device_printf(sc->sc_dev,
8359 		    "%s: could not load firmware, error %d\n", __func__,
8360 		    error);
8361 		return error;
8362 	}
8363 	/* Wait at most one second for firmware alive notification. */
8364 	if ((error = zsleep(sc, &wlan_global_serializer, 0, "iwninit", hz)) != 0) {
8365 		device_printf(sc->sc_dev,
8366 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8367 		    __func__, error);
8368 		return error;
8369 	}
8370 	/* Do post-firmware initialization. */
8371 
8372 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8373 
8374 	return ops->post_alive(sc);
8375 }
8376 
8377 static void
8378 iwn_hw_stop(struct iwn_softc *sc)
8379 {
8380 	int chnl, qid, ntries;
8381 
8382 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8383 
8384 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
8385 
8386 	/* Disable interrupts. */
8387 	IWN_WRITE(sc, IWN_INT_MASK, 0);
8388 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8389 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
8390 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8391 
8392 	/* Make sure we no longer hold the NIC lock. */
8393 	iwn_nic_unlock(sc);
8394 
8395 	/* Stop TX scheduler. */
8396 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8397 
8398 	/* Stop all DMA channels. */
8399 	if (iwn_nic_lock(sc) == 0) {
8400 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8401 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
8402 			for (ntries = 0; ntries < 200; ntries++) {
8403 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
8404 				    IWN_FH_TX_STATUS_IDLE(chnl))
8405 					break;
8406 				DELAY(10);
8407 			}
8408 		}
8409 		iwn_nic_unlock(sc);
8410 	}
8411 
8412 	/* Stop RX ring. */
8413 	iwn_reset_rx_ring(sc, &sc->rxq);
8414 
8415 	/* Reset all TX rings. */
8416 	for (qid = 0; qid < sc->ntxqs; qid++)
8417 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
8418 
8419 	if (iwn_nic_lock(sc) == 0) {
8420 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
8421 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8422 		iwn_nic_unlock(sc);
8423 	}
8424 	DELAY(5);
8425 	/* Power OFF adapter. */
8426 	iwn_apm_stop(sc);
8427 }
8428 
8429 static void
8430 iwn_radio_on_task(void *arg0, int pending)
8431 {
8432 	struct iwn_softc *sc = arg0;
8433 	struct ifnet *ifp;
8434 	struct ieee80211com *ic;
8435 	struct ieee80211vap *vap;
8436 
8437 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8438 
8439 	wlan_serialize_enter();
8440 	ifp = sc->sc_ifp;
8441 	ic = ifp->if_l2com;
8442 	vap = TAILQ_FIRST(&ic->ic_vaps);
8443 	if (vap != NULL) {
8444 		iwn_init_locked(sc);
8445 		ieee80211_init(vap);
8446 	}
8447 	wlan_serialize_exit();
8448 }
8449 
8450 static void
8451 iwn_radio_off_task(void *arg0, int pending)
8452 {
8453 	struct iwn_softc *sc = arg0;
8454 	struct ifnet *ifp;
8455 	struct ieee80211com *ic;
8456 	struct ieee80211vap *vap;
8457 
8458 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8459 
8460 	wlan_serialize_enter();
8461 	ifp = sc->sc_ifp;
8462 	ic = ifp->if_l2com;
8463 	vap = TAILQ_FIRST(&ic->ic_vaps);
8464 	iwn_stop_locked(sc);
8465 	if (vap != NULL)
8466 		ieee80211_stop(vap);
8467 
8468 	/* Enable interrupts to get RF toggle notification. */
8469 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8470 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8471 	wlan_serialize_exit();
8472 }
8473 
8474 static void
8475 iwn_panicked_task(void *arg0, int pending)
8476 {
8477 	struct iwn_softc *sc = arg0;
8478 	struct ifnet *ifp = sc->sc_ifp;
8479 	struct ieee80211com *ic = ifp->if_l2com;
8480 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8481 	int error;
8482 
8483 	if (vap == NULL) {
8484 		kprintf("%s: null vap\n", __func__);
8485 		return;
8486 	}
8487 
8488 	device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
8489 	    "resetting...\n", __func__, vap->iv_state);
8490 
8491 	wlan_serialize_enter();
8492 
8493 	iwn_stop_locked(sc);
8494 	iwn_init_locked(sc);
8495 	if (vap->iv_state >= IEEE80211_S_AUTH &&
8496 	    (error = iwn_auth(sc, vap)) != 0) {
8497 		device_printf(sc->sc_dev,
8498 		    "%s: could not move to auth state\n", __func__);
8499 	}
8500 	if (vap->iv_state >= IEEE80211_S_RUN &&
8501 	    (error = iwn_run(sc, vap)) != 0) {
8502 		device_printf(sc->sc_dev,
8503 		    "%s: could not move to run state\n", __func__);
8504 	}
8505 
8506 	/* Only run start once the NIC is in a useful state, like associated */
8507 	iwn_start_locked(sc->sc_ifp);
8508 
8509 	wlan_serialize_exit();
8510 }
8511 
8512 static void
8513 iwn_init_locked(struct iwn_softc *sc)
8514 {
8515 	struct ifnet *ifp = sc->sc_ifp;
8516 	int error;
8517 
8518 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8519 
8520 	/*
8521 	 * Make sure we hold the serializer or we will have timing issues
8522 	 * with the wlan subsystem.
8523 	 */
8524 	wlan_assert_serialized();
8525 	if ((error = iwn_hw_prepare(sc)) != 0) {
8526 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
8527 		    __func__, error);
8528 		goto fail;
8529 	}
8530 
8531 	/* Initialize interrupt mask to default value. */
8532 	sc->int_mask = IWN_INT_MASK_DEF;
8533 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8534 
8535 	/* Check that the radio is not disabled by hardware switch. */
8536 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
8537 		device_printf(sc->sc_dev,
8538 		    "radio is disabled by hardware switch\n");
8539 		/* Enable interrupts to get RF toggle notifications. */
8540 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
8541 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8542 		return;
8543 	}
8544 
8545 	/* Read firmware images from the filesystem. */
8546 	if ((error = iwn_read_firmware(sc)) != 0) {
8547 		device_printf(sc->sc_dev,
8548 		    "%s: could not read firmware, error %d\n", __func__,
8549 		    error);
8550 		goto fail;
8551 	}
8552 
8553 	/* Initialize hardware and upload firmware. */
8554 	error = iwn_hw_init(sc);
8555 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8556 	sc->fw_fp = NULL;
8557 	if (error != 0) {
8558 		device_printf(sc->sc_dev,
8559 		    "%s: could not initialize hardware, error %d\n", __func__,
8560 		    error);
8561 		goto fail;
8562 	}
8563 
8564 	/* Configure adapter now that it is ready. */
8565 	if ((error = iwn_config(sc)) != 0) {
8566 		device_printf(sc->sc_dev,
8567 		    "%s: could not configure device, error %d\n", __func__,
8568 		    error);
8569 		goto fail;
8570 	}
8571 
8572 	ifq_clr_oactive(&ifp->if_snd);
8573 	ifp->if_flags |= IFF_RUNNING;
8574 
8575 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog_timeout, sc);
8576 
8577 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8578 
8579 	return;
8580 
8581 fail:	iwn_stop_locked(sc);
8582 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
8583 }
8584 
8585 static void
8586 iwn_init(void *arg)
8587 {
8588 	struct iwn_softc *sc = arg;
8589 	struct ifnet *ifp = sc->sc_ifp;
8590 	struct ieee80211com *ic = ifp->if_l2com;
8591 
8592 	wlan_assert_serialized();
8593 	iwn_init_locked(sc);
8594 
8595 	if (ifp->if_flags & IFF_RUNNING)
8596 		ieee80211_start_all(ic);
8597 }
8598 
8599 static void
8600 iwn_stop_locked(struct iwn_softc *sc)
8601 {
8602 	struct ifnet *ifp = sc->sc_ifp;
8603 
8604 	sc->sc_is_scanning = 0;
8605 	sc->sc_tx_timer = 0;
8606 	callout_stop(&sc->watchdog_to);
8607 	callout_stop(&sc->calib_to);
8608 	ifp->if_flags &= ~IFF_RUNNING;
8609 	ifq_clr_oactive(&ifp->if_snd);
8610 
8611 	/* Power OFF hardware. */
8612 	iwn_hw_stop(sc);
8613 }
8614 
8615 /*
8616  * Callback from net80211 to start a scan.
8617  */
8618 static void
8619 iwn_scan_start(struct ieee80211com *ic)
8620 {
8621 	struct ifnet *ifp = ic->ic_ifp;
8622 	struct iwn_softc *sc = ifp->if_softc;
8623 
8624 	/* make the link LED blink while we're scanning */
8625 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
8626 }
8627 
8628 /*
8629  * Callback from net80211 to terminate a scan.
8630  */
8631 static void
8632 iwn_scan_end(struct ieee80211com *ic)
8633 {
8634 	struct ifnet *ifp = ic->ic_ifp;
8635 	struct iwn_softc *sc = ifp->if_softc;
8636 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8637 
8638 	if (vap->iv_state == IEEE80211_S_RUN) {
8639 		/* Set link LED to ON status if we are associated */
8640 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
8641 	}
8642 }
8643 
8644 /*
8645  * Callback from net80211 to force a channel change.
8646  */
8647 static void
8648 iwn_set_channel(struct ieee80211com *ic)
8649 {
8650 	const struct ieee80211_channel *c = ic->ic_curchan;
8651 	struct ifnet *ifp = ic->ic_ifp;
8652 	struct iwn_softc *sc = ifp->if_softc;
8653 	int error;
8654 
8655 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8656 
8657 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
8658 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
8659 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
8660 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
8661 
8662 	/*
8663 	 * Only need to set the channel in Monitor mode. AP scanning and auth
8664 	 * are already taken care of by their respective firmware commands.
8665 	 */
8666 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
8667 		error = iwn_config(sc);
8668 		if (error != 0)
8669 		device_printf(sc->sc_dev,
8670 		    "%s: error %d settting channel\n", __func__, error);
8671 	}
8672 }
8673 
8674 /*
8675  * Callback from net80211 to start scanning of the current channel.
8676  */
8677 static void
8678 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
8679 {
8680 	struct ieee80211vap *vap = ss->ss_vap;
8681 	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
8682 	struct ieee80211com *ic = vap->iv_ic;
8683 	int error;
8684 
8685 	error = iwn_scan(sc, vap, ss, ic->ic_curchan);
8686 	if (error != 0)
8687 		ieee80211_cancel_scan(vap);
8688 }
8689 
8690 /*
8691  * Callback from net80211 to handle the minimum dwell time being met.
8692  * The intent is to terminate the scan but we just let the firmware
8693  * notify us when it's finished as we have no safe way to abort it.
8694  */
8695 static void
8696 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
8697 {
8698 	/* NB: don't try to abort scan; wait for firmware to finish */
8699 }
8700 
8701 static void
8702 iwn_hw_reset_task(void *arg0, int pending)
8703 {
8704 	struct iwn_softc *sc = arg0;
8705 	struct ifnet *ifp;
8706 	struct ieee80211com *ic;
8707 
8708 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8709 
8710 	wlan_serialize_enter();
8711 	ifp = sc->sc_ifp;
8712 	ic = ifp->if_l2com;
8713 	iwn_stop_locked(sc);
8714 	iwn_init_locked(sc);
8715 	ieee80211_notify_radio(ic, 1);
8716 	wlan_serialize_exit();
8717 }
8718 #ifdef	IWN_DEBUG
8719 #define	IWN_DESC(x) case x:	return #x
8720 #define	COUNTOF(array) (sizeof(array) / sizeof(array[0]))
8721 
8722 /*
8723  * Translate CSR code to string
8724  */
8725 static char *iwn_get_csr_string(int csr)
8726 {
8727 	switch (csr) {
8728 		IWN_DESC(IWN_HW_IF_CONFIG);
8729 		IWN_DESC(IWN_INT_COALESCING);
8730 		IWN_DESC(IWN_INT);
8731 		IWN_DESC(IWN_INT_MASK);
8732 		IWN_DESC(IWN_FH_INT);
8733 		IWN_DESC(IWN_GPIO_IN);
8734 		IWN_DESC(IWN_RESET);
8735 		IWN_DESC(IWN_GP_CNTRL);
8736 		IWN_DESC(IWN_HW_REV);
8737 		IWN_DESC(IWN_EEPROM);
8738 		IWN_DESC(IWN_EEPROM_GP);
8739 		IWN_DESC(IWN_OTP_GP);
8740 		IWN_DESC(IWN_GIO);
8741 		IWN_DESC(IWN_GP_UCODE);
8742 		IWN_DESC(IWN_GP_DRIVER);
8743 		IWN_DESC(IWN_UCODE_GP1);
8744 		IWN_DESC(IWN_UCODE_GP2);
8745 		IWN_DESC(IWN_LED);
8746 		IWN_DESC(IWN_DRAM_INT_TBL);
8747 		IWN_DESC(IWN_GIO_CHICKEN);
8748 		IWN_DESC(IWN_ANA_PLL);
8749 		IWN_DESC(IWN_HW_REV_WA);
8750 		IWN_DESC(IWN_DBG_HPET_MEM);
8751 	default:
8752 		return "UNKNOWN CSR";
8753 	}
8754 }
8755 
8756 /*
8757  * This function print firmware register
8758  */
8759 static void
8760 iwn_debug_register(struct iwn_softc *sc)
8761 {
8762 	int i;
8763 	static const uint32_t csr_tbl[] = {
8764 		IWN_HW_IF_CONFIG,
8765 		IWN_INT_COALESCING,
8766 		IWN_INT,
8767 		IWN_INT_MASK,
8768 		IWN_FH_INT,
8769 		IWN_GPIO_IN,
8770 		IWN_RESET,
8771 		IWN_GP_CNTRL,
8772 		IWN_HW_REV,
8773 		IWN_EEPROM,
8774 		IWN_EEPROM_GP,
8775 		IWN_OTP_GP,
8776 		IWN_GIO,
8777 		IWN_GP_UCODE,
8778 		IWN_GP_DRIVER,
8779 		IWN_UCODE_GP1,
8780 		IWN_UCODE_GP2,
8781 		IWN_LED,
8782 		IWN_DRAM_INT_TBL,
8783 		IWN_GIO_CHICKEN,
8784 		IWN_ANA_PLL,
8785 		IWN_HW_REV_WA,
8786 		IWN_DBG_HPET_MEM,
8787 	};
8788 	DPRINTF(sc, IWN_DEBUG_REGISTER,
8789 	    "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s",
8790 	    "\n");
8791 	for (i = 0; i <  COUNTOF(csr_tbl); i++){
8792 		DPRINTF(sc, IWN_DEBUG_REGISTER,"  %10s: 0x%08x ",
8793 			iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i]));
8794 		if ((i+1) % 3 == 0)
8795 			DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
8796 	}
8797 	DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
8798 }
8799 #endif
8800