xref: /dragonfly/sys/dev/netif/ix/ixgbe_common.c (revision 1310e0bb)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2017, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
37 #include "ixgbe_dcb.h"
38 #include "ixgbe_dcb_82599.h"
39 #include "ixgbe_api.h"
40 
41 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
42 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
43 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
44 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
45 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
46 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
47 					u16 count);
48 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
49 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
50 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
51 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
52 
53 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
54 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
55 					 u16 *san_mac_offset);
56 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
57 					     u16 words, u16 *data);
58 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
59 					      u16 words, u16 *data);
60 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
61 						 u16 offset);
62 
63 /**
64  *  ixgbe_init_ops_generic - Inits function ptrs
65  *  @hw: pointer to the hardware structure
66  *
67  *  Initialize the function pointers.
68  **/
69 s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
70 {
71 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
72 	struct ixgbe_mac_info *mac = &hw->mac;
73 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
74 
75 	DEBUGFUNC("ixgbe_init_ops_generic");
76 
77 	/* EEPROM */
78 	eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
79 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
80 	if (eec & IXGBE_EEC_PRES) {
81 		eeprom->ops.read = ixgbe_read_eerd_generic;
82 		eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
83 	} else {
84 		eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
85 		eeprom->ops.read_buffer =
86 				 ixgbe_read_eeprom_buffer_bit_bang_generic;
87 	}
88 	eeprom->ops.write = ixgbe_write_eeprom_generic;
89 	eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
90 	eeprom->ops.validate_checksum =
91 				      ixgbe_validate_eeprom_checksum_generic;
92 	eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
93 	eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
94 
95 	/* MAC */
96 	mac->ops.init_hw = ixgbe_init_hw_generic;
97 	mac->ops.reset_hw = NULL;
98 	mac->ops.start_hw = ixgbe_start_hw_generic;
99 	mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
100 	mac->ops.get_media_type = NULL;
101 	mac->ops.get_supported_physical_layer = NULL;
102 	mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
103 	mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
104 	mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
105 	mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
106 	mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
107 	mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
108 	mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
109 	mac->ops.prot_autoc_read = prot_autoc_read_generic;
110 	mac->ops.prot_autoc_write = prot_autoc_write_generic;
111 
112 	/* LEDs */
113 	mac->ops.led_on = ixgbe_led_on_generic;
114 	mac->ops.led_off = ixgbe_led_off_generic;
115 	mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
116 	mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
117 	mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic;
118 
119 	/* RAR, Multicast, VLAN */
120 	mac->ops.set_rar = ixgbe_set_rar_generic;
121 	mac->ops.clear_rar = ixgbe_clear_rar_generic;
122 	mac->ops.insert_mac_addr = NULL;
123 	mac->ops.set_vmdq = NULL;
124 	mac->ops.clear_vmdq = NULL;
125 	mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
126 	mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
127 	mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
128 	mac->ops.enable_mc = ixgbe_enable_mc_generic;
129 	mac->ops.disable_mc = ixgbe_disable_mc_generic;
130 	mac->ops.clear_vfta = NULL;
131 	mac->ops.set_vfta = NULL;
132 	mac->ops.set_vlvf = NULL;
133 	mac->ops.init_uta_tables = NULL;
134 	mac->ops.enable_rx = ixgbe_enable_rx_generic;
135 	mac->ops.disable_rx = ixgbe_disable_rx_generic;
136 
137 	/* Flow Control */
138 	mac->ops.fc_enable = ixgbe_fc_enable_generic;
139 	mac->ops.setup_fc = ixgbe_setup_fc_generic;
140 	mac->ops.fc_autoneg = ixgbe_fc_autoneg;
141 
142 	/* Link */
143 	mac->ops.get_link_capabilities = NULL;
144 	mac->ops.setup_link = NULL;
145 	mac->ops.check_link = NULL;
146 	mac->ops.dmac_config = NULL;
147 	mac->ops.dmac_update_tcs = NULL;
148 	mac->ops.dmac_config_tcs = NULL;
149 
150 	return IXGBE_SUCCESS;
151 }
152 
153 /**
154  * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
155  * of flow control
156  * @hw: pointer to hardware structure
157  *
158  * This function returns TRUE if the device supports flow control
159  * autonegotiation, and FALSE if it does not.
160  *
161  **/
162 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
163 {
164 	bool supported = FALSE;
165 	ixgbe_link_speed speed;
166 	bool link_up;
167 
168 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
169 
170 	switch (hw->phy.media_type) {
171 	case ixgbe_media_type_fiber_fixed:
172 	case ixgbe_media_type_fiber_qsfp:
173 	case ixgbe_media_type_fiber:
174 		/* flow control autoneg black list */
175 		switch (hw->device_id) {
176 		case IXGBE_DEV_ID_X550EM_A_SFP:
177 		case IXGBE_DEV_ID_X550EM_A_SFP_N:
178 		case IXGBE_DEV_ID_X550EM_A_QSFP:
179 		case IXGBE_DEV_ID_X550EM_A_QSFP_N:
180 			supported = FALSE;
181 			break;
182 		default:
183 			hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
184 			/* if link is down, assume supported */
185 			if (link_up)
186 				supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
187 				TRUE : FALSE;
188 			else
189 				supported = TRUE;
190 		}
191 
192 		break;
193 	case ixgbe_media_type_backplane:
194 		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
195 			supported = FALSE;
196 		else
197 			supported = TRUE;
198 		break;
199 	case ixgbe_media_type_copper:
200 		/* only some copper devices support flow control autoneg */
201 		switch (hw->device_id) {
202 		case IXGBE_DEV_ID_82599_T3_LOM:
203 		case IXGBE_DEV_ID_X540T:
204 		case IXGBE_DEV_ID_X540T1:
205 		case IXGBE_DEV_ID_X540_BYPASS:
206 		case IXGBE_DEV_ID_X550T:
207 		case IXGBE_DEV_ID_X550T1:
208 		case IXGBE_DEV_ID_X550EM_X_10G_T:
209 		case IXGBE_DEV_ID_X550EM_A_10G_T:
210 		case IXGBE_DEV_ID_X550EM_A_1G_T:
211 		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
212 			supported = TRUE;
213 			break;
214 		default:
215 			supported = FALSE;
216 		}
217 	default:
218 		break;
219 	}
220 
221 	if (!supported)
222 		ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
223 			      "Device %x does not support flow control autoneg",
224 			      hw->device_id);
225 	return supported;
226 }
227 
228 /**
229  *  ixgbe_setup_fc_generic - Set up flow control
230  *  @hw: pointer to hardware structure
231  *
232  *  Called at init time to set up flow control.
233  **/
234 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
235 {
236 	s32 ret_val = IXGBE_SUCCESS;
237 	u32 reg = 0, reg_bp = 0;
238 	u16 reg_cu = 0;
239 	bool locked = FALSE;
240 
241 	DEBUGFUNC("ixgbe_setup_fc_generic");
242 
243 	/* Validate the requested mode */
244 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
245 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
246 			   "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
247 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
248 		goto out;
249 	}
250 
251 	/*
252 	 * 10gig parts do not have a word in the EEPROM to determine the
253 	 * default flow control setting, so we explicitly set it to full.
254 	 */
255 	if (hw->fc.requested_mode == ixgbe_fc_default)
256 		hw->fc.requested_mode = ixgbe_fc_full;
257 
258 	/*
259 	 * Set up the 1G and 10G flow control advertisement registers so the
260 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
261 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
262 	 */
263 	switch (hw->phy.media_type) {
264 	case ixgbe_media_type_backplane:
265 		/* some MAC's need RMW protection on AUTOC */
266 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
267 		if (ret_val != IXGBE_SUCCESS)
268 			goto out;
269 
270 		/* fall through - only backplane uses autoc */
271 	case ixgbe_media_type_fiber_fixed:
272 	case ixgbe_media_type_fiber_qsfp:
273 	case ixgbe_media_type_fiber:
274 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
275 
276 		break;
277 	case ixgbe_media_type_copper:
278 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
279 				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
280 		break;
281 	default:
282 		break;
283 	}
284 
285 	/*
286 	 * The possible values of fc.requested_mode are:
287 	 * 0: Flow control is completely disabled
288 	 * 1: Rx flow control is enabled (we can receive pause frames,
289 	 *    but not send pause frames).
290 	 * 2: Tx flow control is enabled (we can send pause frames but
291 	 *    we do not support receiving pause frames).
292 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
293 	 * other: Invalid.
294 	 */
295 	switch (hw->fc.requested_mode) {
296 	case ixgbe_fc_none:
297 		/* Flow control completely disabled by software override. */
298 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
299 		if (hw->phy.media_type == ixgbe_media_type_backplane)
300 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
301 				    IXGBE_AUTOC_ASM_PAUSE);
302 		else if (hw->phy.media_type == ixgbe_media_type_copper)
303 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
304 		break;
305 	case ixgbe_fc_tx_pause:
306 		/*
307 		 * Tx Flow control is enabled, and Rx Flow control is
308 		 * disabled by software override.
309 		 */
310 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
311 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
312 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
313 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
314 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
315 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
316 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
317 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
318 		}
319 		break;
320 	case ixgbe_fc_rx_pause:
321 		/*
322 		 * Rx Flow control is enabled and Tx Flow control is
323 		 * disabled by software override. Since there really
324 		 * isn't a way to advertise that we are capable of RX
325 		 * Pause ONLY, we will advertise that we support both
326 		 * symmetric and asymmetric Rx PAUSE, as such we fall
327 		 * through to the fc_full statement.  Later, we will
328 		 * disable the adapter's ability to send PAUSE frames.
329 		 */
330 	case ixgbe_fc_full:
331 		/* Flow control (both Rx and Tx) is enabled by SW override. */
332 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
333 		if (hw->phy.media_type == ixgbe_media_type_backplane)
334 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
335 				  IXGBE_AUTOC_ASM_PAUSE;
336 		else if (hw->phy.media_type == ixgbe_media_type_copper)
337 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
338 		break;
339 	default:
340 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
341 			     "Flow control param set incorrectly\n");
342 		ret_val = IXGBE_ERR_CONFIG;
343 		goto out;
344 		break;
345 	}
346 
347 	if (hw->mac.type < ixgbe_mac_X540) {
348 		/*
349 		 * Enable auto-negotiation between the MAC & PHY;
350 		 * the MAC will advertise clause 37 flow control.
351 		 */
352 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
353 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
354 
355 		/* Disable AN timeout */
356 		if (hw->fc.strict_ieee)
357 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
358 
359 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
360 		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
361 	}
362 
363 	/*
364 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
365 	 * and copper. There is no need to set the PCS1GCTL register.
366 	 *
367 	 */
368 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
369 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
370 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
371 		if (ret_val)
372 			goto out;
373 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
374 		    (ixgbe_device_supports_autoneg_fc(hw))) {
375 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
376 				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
377 	}
378 
379 	DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
380 out:
381 	return ret_val;
382 }
383 
384 /**
385  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
386  *  @hw: pointer to hardware structure
387  *
388  *  Starts the hardware by filling the bus info structure and media type, clears
389  *  all on chip counters, initializes receive address registers, multicast
390  *  table, VLAN filter table, calls routine to set up link and flow control
391  *  settings, and leaves transmit and receive units disabled and uninitialized
392  **/
393 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
394 {
395 	s32 ret_val;
396 	u32 ctrl_ext;
397 	u16 device_caps;
398 
399 	DEBUGFUNC("ixgbe_start_hw_generic");
400 
401 	/* Set the media type */
402 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
403 
404 	/* PHY ops initialization must be done in reset_hw() */
405 
406 	/* Clear the VLAN filter table */
407 	hw->mac.ops.clear_vfta(hw);
408 
409 	/* Clear statistics registers */
410 	hw->mac.ops.clear_hw_cntrs(hw);
411 
412 	/* Set No Snoop Disable */
413 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
414 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
415 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
416 	IXGBE_WRITE_FLUSH(hw);
417 
418 	/* Setup flow control */
419 	ret_val = ixgbe_setup_fc(hw);
420 	if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) {
421 		DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val);
422 		return ret_val;
423 	}
424 
425 	/* Cache bit indicating need for crosstalk fix */
426 	switch (hw->mac.type) {
427 	case ixgbe_mac_82599EB:
428 	case ixgbe_mac_X550EM_x:
429 	case ixgbe_mac_X550EM_a:
430 		hw->mac.ops.get_device_caps(hw, &device_caps);
431 		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
432 			hw->need_crosstalk_fix = FALSE;
433 		else
434 			hw->need_crosstalk_fix = TRUE;
435 		break;
436 	default:
437 		hw->need_crosstalk_fix = FALSE;
438 		break;
439 	}
440 
441 	/* Clear adapter stopped flag */
442 	hw->adapter_stopped = FALSE;
443 
444 	return IXGBE_SUCCESS;
445 }
446 
447 /**
448  *  ixgbe_start_hw_gen2 - Init sequence for common device family
449  *  @hw: pointer to hw structure
450  *
451  * Performs the init sequence common to the second generation
452  * of 10 GbE devices.
453  * Devices in the second generation:
454  *     82599
455  *     X540
456  **/
457 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
458 {
459 	u32 i;
460 	u32 regval;
461 
462 	/* Clear the rate limiters */
463 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
464 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
465 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
466 	}
467 	IXGBE_WRITE_FLUSH(hw);
468 
469 	/* Disable relaxed ordering */
470 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
471 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
472 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
473 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
474 	}
475 
476 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
477 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
478 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
479 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
480 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
481 	}
482 
483 	return IXGBE_SUCCESS;
484 }
485 
486 /**
487  *  ixgbe_init_hw_generic - Generic hardware initialization
488  *  @hw: pointer to hardware structure
489  *
490  *  Initialize the hardware by resetting the hardware, filling the bus info
491  *  structure and media type, clears all on chip counters, initializes receive
492  *  address registers, multicast table, VLAN filter table, calls routine to set
493  *  up link and flow control settings, and leaves transmit and receive units
494  *  disabled and uninitialized
495  **/
496 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
497 {
498 	s32 status;
499 
500 	DEBUGFUNC("ixgbe_init_hw_generic");
501 
502 	/* Reset the hardware */
503 	status = hw->mac.ops.reset_hw(hw);
504 
505 	if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) {
506 		/* Start the HW */
507 		status = hw->mac.ops.start_hw(hw);
508 	}
509 
510 	/* Initialize the LED link active for LED blink support */
511 	if (hw->mac.ops.init_led_link_act)
512 		hw->mac.ops.init_led_link_act(hw);
513 
514 	if (status != IXGBE_SUCCESS)
515 		DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status);
516 
517 	return status;
518 }
519 
520 /**
521  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
522  *  @hw: pointer to hardware structure
523  *
524  *  Clears all hardware statistics counters by reading them from the hardware
525  *  Statistics counters are clear on read.
526  **/
527 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
528 {
529 	u16 i = 0;
530 
531 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
532 
533 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
534 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
535 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
536 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
537 	for (i = 0; i < 8; i++)
538 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
539 
540 	IXGBE_READ_REG(hw, IXGBE_MLFC);
541 	IXGBE_READ_REG(hw, IXGBE_MRFC);
542 	IXGBE_READ_REG(hw, IXGBE_RLEC);
543 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
544 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
545 	if (hw->mac.type >= ixgbe_mac_82599EB) {
546 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
547 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
548 	} else {
549 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
550 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
551 	}
552 
553 	for (i = 0; i < 8; i++) {
554 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
555 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
556 		if (hw->mac.type >= ixgbe_mac_82599EB) {
557 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
558 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
559 		} else {
560 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
561 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
562 		}
563 	}
564 	if (hw->mac.type >= ixgbe_mac_82599EB)
565 		for (i = 0; i < 8; i++)
566 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
567 	IXGBE_READ_REG(hw, IXGBE_PRC64);
568 	IXGBE_READ_REG(hw, IXGBE_PRC127);
569 	IXGBE_READ_REG(hw, IXGBE_PRC255);
570 	IXGBE_READ_REG(hw, IXGBE_PRC511);
571 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
572 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
573 	IXGBE_READ_REG(hw, IXGBE_GPRC);
574 	IXGBE_READ_REG(hw, IXGBE_BPRC);
575 	IXGBE_READ_REG(hw, IXGBE_MPRC);
576 	IXGBE_READ_REG(hw, IXGBE_GPTC);
577 	IXGBE_READ_REG(hw, IXGBE_GORCL);
578 	IXGBE_READ_REG(hw, IXGBE_GORCH);
579 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
580 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
581 	if (hw->mac.type == ixgbe_mac_82598EB)
582 		for (i = 0; i < 8; i++)
583 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
584 	IXGBE_READ_REG(hw, IXGBE_RUC);
585 	IXGBE_READ_REG(hw, IXGBE_RFC);
586 	IXGBE_READ_REG(hw, IXGBE_ROC);
587 	IXGBE_READ_REG(hw, IXGBE_RJC);
588 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
589 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
590 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
591 	IXGBE_READ_REG(hw, IXGBE_TORL);
592 	IXGBE_READ_REG(hw, IXGBE_TORH);
593 	IXGBE_READ_REG(hw, IXGBE_TPR);
594 	IXGBE_READ_REG(hw, IXGBE_TPT);
595 	IXGBE_READ_REG(hw, IXGBE_PTC64);
596 	IXGBE_READ_REG(hw, IXGBE_PTC127);
597 	IXGBE_READ_REG(hw, IXGBE_PTC255);
598 	IXGBE_READ_REG(hw, IXGBE_PTC511);
599 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
600 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
601 	IXGBE_READ_REG(hw, IXGBE_MPTC);
602 	IXGBE_READ_REG(hw, IXGBE_BPTC);
603 	for (i = 0; i < 16; i++) {
604 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
605 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
606 		if (hw->mac.type >= ixgbe_mac_82599EB) {
607 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
608 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
609 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
610 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
611 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
612 		} else {
613 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
614 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
615 		}
616 	}
617 
618 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
619 		if (hw->phy.id == 0)
620 			ixgbe_identify_phy(hw);
621 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
622 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
623 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
624 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
625 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
626 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
627 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
628 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
629 	}
630 
631 	return IXGBE_SUCCESS;
632 }
633 
634 /**
635  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
636  *  @hw: pointer to hardware structure
637  *  @pba_num: stores the part number string from the EEPROM
638  *  @pba_num_size: part number string buffer length
639  *
640  *  Reads the part number string from the EEPROM.
641  **/
642 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
643 				  u32 pba_num_size)
644 {
645 	s32 ret_val;
646 	u16 data;
647 	u16 pba_ptr;
648 	u16 offset;
649 	u16 length;
650 
651 	DEBUGFUNC("ixgbe_read_pba_string_generic");
652 
653 	if (pba_num == NULL) {
654 		DEBUGOUT("PBA string buffer was null\n");
655 		return IXGBE_ERR_INVALID_ARGUMENT;
656 	}
657 
658 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
659 	if (ret_val) {
660 		DEBUGOUT("NVM Read Error\n");
661 		return ret_val;
662 	}
663 
664 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
665 	if (ret_val) {
666 		DEBUGOUT("NVM Read Error\n");
667 		return ret_val;
668 	}
669 
670 	/*
671 	 * if data is not ptr guard the PBA must be in legacy format which
672 	 * means pba_ptr is actually our second data word for the PBA number
673 	 * and we can decode it into an ascii string
674 	 */
675 	if (data != IXGBE_PBANUM_PTR_GUARD) {
676 		DEBUGOUT("NVM PBA number is not stored as string\n");
677 
678 		/* we will need 11 characters to store the PBA */
679 		if (pba_num_size < 11) {
680 			DEBUGOUT("PBA string buffer too small\n");
681 			return IXGBE_ERR_NO_SPACE;
682 		}
683 
684 		/* extract hex string from data and pba_ptr */
685 		pba_num[0] = (data >> 12) & 0xF;
686 		pba_num[1] = (data >> 8) & 0xF;
687 		pba_num[2] = (data >> 4) & 0xF;
688 		pba_num[3] = data & 0xF;
689 		pba_num[4] = (pba_ptr >> 12) & 0xF;
690 		pba_num[5] = (pba_ptr >> 8) & 0xF;
691 		pba_num[6] = '-';
692 		pba_num[7] = 0;
693 		pba_num[8] = (pba_ptr >> 4) & 0xF;
694 		pba_num[9] = pba_ptr & 0xF;
695 
696 		/* put a null character on the end of our string */
697 		pba_num[10] = '\0';
698 
699 		/* switch all the data but the '-' to hex char */
700 		for (offset = 0; offset < 10; offset++) {
701 			if (pba_num[offset] < 0xA)
702 				pba_num[offset] += '0';
703 			else if (pba_num[offset] < 0x10)
704 				pba_num[offset] += 'A' - 0xA;
705 		}
706 
707 		return IXGBE_SUCCESS;
708 	}
709 
710 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
711 	if (ret_val) {
712 		DEBUGOUT("NVM Read Error\n");
713 		return ret_val;
714 	}
715 
716 	if (length == 0xFFFF || length == 0) {
717 		DEBUGOUT("NVM PBA number section invalid length\n");
718 		return IXGBE_ERR_PBA_SECTION;
719 	}
720 
721 	/* check if pba_num buffer is big enough */
722 	if (pba_num_size  < (((u32)length * 2) - 1)) {
723 		DEBUGOUT("PBA string buffer too small\n");
724 		return IXGBE_ERR_NO_SPACE;
725 	}
726 
727 	/* trim pba length from start of string */
728 	pba_ptr++;
729 	length--;
730 
731 	for (offset = 0; offset < length; offset++) {
732 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
733 		if (ret_val) {
734 			DEBUGOUT("NVM Read Error\n");
735 			return ret_val;
736 		}
737 		pba_num[offset * 2] = (u8)(data >> 8);
738 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
739 	}
740 	pba_num[offset * 2] = '\0';
741 
742 	return IXGBE_SUCCESS;
743 }
744 
745 /**
746  *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
747  *  @hw: pointer to hardware structure
748  *  @pba_num: stores the part number from the EEPROM
749  *
750  *  Reads the part number from the EEPROM.
751  **/
752 s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
753 {
754 	s32 ret_val;
755 	u16 data;
756 
757 	DEBUGFUNC("ixgbe_read_pba_num_generic");
758 
759 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
760 	if (ret_val) {
761 		DEBUGOUT("NVM Read Error\n");
762 		return ret_val;
763 	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
764 		DEBUGOUT("NVM Not supported\n");
765 		return IXGBE_NOT_IMPLEMENTED;
766 	}
767 	*pba_num = (u32)(data << 16);
768 
769 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
770 	if (ret_val) {
771 		DEBUGOUT("NVM Read Error\n");
772 		return ret_val;
773 	}
774 	*pba_num |= data;
775 
776 	return IXGBE_SUCCESS;
777 }
778 
779 /**
780  *  ixgbe_read_pba_raw
781  *  @hw: pointer to the HW structure
782  *  @eeprom_buf: optional pointer to EEPROM image
783  *  @eeprom_buf_size: size of EEPROM image in words
784  *  @max_pba_block_size: PBA block size limit
785  *  @pba: pointer to output PBA structure
786  *
787  *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
788  *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
789  *
790  **/
791 s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
792 		       u32 eeprom_buf_size, u16 max_pba_block_size,
793 		       struct ixgbe_pba *pba)
794 {
795 	s32 ret_val;
796 	u16 pba_block_size;
797 
798 	if (pba == NULL)
799 		return IXGBE_ERR_PARAM;
800 
801 	if (eeprom_buf == NULL) {
802 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
803 						     &pba->word[0]);
804 		if (ret_val)
805 			return ret_val;
806 	} else {
807 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
808 			pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
809 			pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
810 		} else {
811 			return IXGBE_ERR_PARAM;
812 		}
813 	}
814 
815 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
816 		if (pba->pba_block == NULL)
817 			return IXGBE_ERR_PARAM;
818 
819 		ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
820 						   eeprom_buf_size,
821 						   &pba_block_size);
822 		if (ret_val)
823 			return ret_val;
824 
825 		if (pba_block_size > max_pba_block_size)
826 			return IXGBE_ERR_PARAM;
827 
828 		if (eeprom_buf == NULL) {
829 			ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
830 							     pba_block_size,
831 							     pba->pba_block);
832 			if (ret_val)
833 				return ret_val;
834 		} else {
835 			if (eeprom_buf_size > (u32)(pba->word[1] +
836 					      pba_block_size)) {
837 				memcpy(pba->pba_block,
838 				       &eeprom_buf[pba->word[1]],
839 				       pba_block_size * sizeof(u16));
840 			} else {
841 				return IXGBE_ERR_PARAM;
842 			}
843 		}
844 	}
845 
846 	return IXGBE_SUCCESS;
847 }
848 
849 /**
850  *  ixgbe_write_pba_raw
851  *  @hw: pointer to the HW structure
852  *  @eeprom_buf: optional pointer to EEPROM image
853  *  @eeprom_buf_size: size of EEPROM image in words
854  *  @pba: pointer to PBA structure
855  *
856  *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
857  *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
858  *
859  **/
860 s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
861 			u32 eeprom_buf_size, struct ixgbe_pba *pba)
862 {
863 	s32 ret_val;
864 
865 	if (pba == NULL)
866 		return IXGBE_ERR_PARAM;
867 
868 	if (eeprom_buf == NULL) {
869 		ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
870 						      &pba->word[0]);
871 		if (ret_val)
872 			return ret_val;
873 	} else {
874 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
875 			eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
876 			eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
877 		} else {
878 			return IXGBE_ERR_PARAM;
879 		}
880 	}
881 
882 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
883 		if (pba->pba_block == NULL)
884 			return IXGBE_ERR_PARAM;
885 
886 		if (eeprom_buf == NULL) {
887 			ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
888 							      pba->pba_block[0],
889 							      pba->pba_block);
890 			if (ret_val)
891 				return ret_val;
892 		} else {
893 			if (eeprom_buf_size > (u32)(pba->word[1] +
894 					      pba->pba_block[0])) {
895 				memcpy(&eeprom_buf[pba->word[1]],
896 				       pba->pba_block,
897 				       pba->pba_block[0] * sizeof(u16));
898 			} else {
899 				return IXGBE_ERR_PARAM;
900 			}
901 		}
902 	}
903 
904 	return IXGBE_SUCCESS;
905 }
906 
907 /**
908  *  ixgbe_get_pba_block_size
909  *  @hw: pointer to the HW structure
910  *  @eeprom_buf: optional pointer to EEPROM image
911  *  @eeprom_buf_size: size of EEPROM image in words
912  *  @pba_data_size: pointer to output variable
913  *
914  *  Returns the size of the PBA block in words. Function operates on EEPROM
915  *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
916  *  EEPROM device.
917  *
918  **/
919 s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
920 			     u32 eeprom_buf_size, u16 *pba_block_size)
921 {
922 	s32 ret_val;
923 	u16 pba_word[2];
924 	u16 length;
925 
926 	DEBUGFUNC("ixgbe_get_pba_block_size");
927 
928 	if (eeprom_buf == NULL) {
929 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
930 						     &pba_word[0]);
931 		if (ret_val)
932 			return ret_val;
933 	} else {
934 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
935 			pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
936 			pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
937 		} else {
938 			return IXGBE_ERR_PARAM;
939 		}
940 	}
941 
942 	if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
943 		if (eeprom_buf == NULL) {
944 			ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
945 						      &length);
946 			if (ret_val)
947 				return ret_val;
948 		} else {
949 			if (eeprom_buf_size > pba_word[1])
950 				length = eeprom_buf[pba_word[1] + 0];
951 			else
952 				return IXGBE_ERR_PARAM;
953 		}
954 
955 		if (length == 0xFFFF || length == 0)
956 			return IXGBE_ERR_PBA_SECTION;
957 	} else {
958 		/* PBA number in legacy format, there is no PBA Block. */
959 		length = 0;
960 	}
961 
962 	if (pba_block_size != NULL)
963 		*pba_block_size = length;
964 
965 	return IXGBE_SUCCESS;
966 }
967 
968 /**
969  *  ixgbe_get_mac_addr_generic - Generic get MAC address
970  *  @hw: pointer to hardware structure
971  *  @mac_addr: Adapter MAC address
972  *
973  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
974  *  A reset of the adapter must be performed prior to calling this function
975  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
976  **/
977 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
978 {
979 	u32 rar_high;
980 	u32 rar_low;
981 	u16 i;
982 
983 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
984 
985 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
986 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
987 
988 	for (i = 0; i < 4; i++)
989 		mac_addr[i] = (u8)(rar_low >> (i*8));
990 
991 	for (i = 0; i < 2; i++)
992 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
993 
994 	return IXGBE_SUCCESS;
995 }
996 
997 /**
998  *  ixgbe_set_pci_config_data_generic - Generic store PCI bus info
999  *  @hw: pointer to hardware structure
1000  *  @link_status: the link status returned by the PCI config space
1001  *
1002  *  Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
1003  **/
1004 void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
1005 {
1006 	struct ixgbe_mac_info *mac = &hw->mac;
1007 
1008 	if (hw->bus.type == ixgbe_bus_type_unknown)
1009 		hw->bus.type = ixgbe_bus_type_pci_express;
1010 
1011 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
1012 	case IXGBE_PCI_LINK_WIDTH_1:
1013 		hw->bus.width = ixgbe_bus_width_pcie_x1;
1014 		break;
1015 	case IXGBE_PCI_LINK_WIDTH_2:
1016 		hw->bus.width = ixgbe_bus_width_pcie_x2;
1017 		break;
1018 	case IXGBE_PCI_LINK_WIDTH_4:
1019 		hw->bus.width = ixgbe_bus_width_pcie_x4;
1020 		break;
1021 	case IXGBE_PCI_LINK_WIDTH_8:
1022 		hw->bus.width = ixgbe_bus_width_pcie_x8;
1023 		break;
1024 	default:
1025 		hw->bus.width = ixgbe_bus_width_unknown;
1026 		break;
1027 	}
1028 
1029 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
1030 	case IXGBE_PCI_LINK_SPEED_2500:
1031 		hw->bus.speed = ixgbe_bus_speed_2500;
1032 		break;
1033 	case IXGBE_PCI_LINK_SPEED_5000:
1034 		hw->bus.speed = ixgbe_bus_speed_5000;
1035 		break;
1036 	case IXGBE_PCI_LINK_SPEED_8000:
1037 		hw->bus.speed = ixgbe_bus_speed_8000;
1038 		break;
1039 	default:
1040 		hw->bus.speed = ixgbe_bus_speed_unknown;
1041 		break;
1042 	}
1043 
1044 	mac->ops.set_lan_id(hw);
1045 }
1046 
1047 /**
1048  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
1049  *  @hw: pointer to hardware structure
1050  *
1051  *  Gets the PCI bus info (speed, width, type) then calls helper function to
1052  *  store this data within the ixgbe_hw structure.
1053  **/
1054 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1055 {
1056 	u16 link_status;
1057 
1058 	DEBUGFUNC("ixgbe_get_bus_info_generic");
1059 
1060 	/* Get the negotiated link width and speed from PCI config space */
1061 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1062 
1063 	ixgbe_set_pci_config_data_generic(hw, link_status);
1064 
1065 	return IXGBE_SUCCESS;
1066 }
1067 
1068 /**
1069  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1070  *  @hw: pointer to the HW structure
1071  *
1072  *  Determines the LAN function id by reading memory-mapped registers and swaps
1073  *  the port value if requested, and set MAC instance for devices that share
1074  *  CS4227.
1075  **/
1076 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1077 {
1078 	struct ixgbe_bus_info *bus = &hw->bus;
1079 	u32 reg;
1080 	u16 ee_ctrl_4;
1081 
1082 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1083 
1084 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1085 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1086 	bus->lan_id = (u8)bus->func;
1087 
1088 	/* check for a port swap */
1089 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1090 	if (reg & IXGBE_FACTPS_LFS)
1091 		bus->func ^= 0x1;
1092 
1093 	/* Get MAC instance from EEPROM for configuring CS4227 */
1094 	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
1095 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
1096 		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
1097 				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
1098 	}
1099 }
1100 
1101 /**
1102  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1103  *  @hw: pointer to hardware structure
1104  *
1105  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1106  *  disables transmit and receive units. The adapter_stopped flag is used by
1107  *  the shared code and drivers to determine if the adapter is in a stopped
1108  *  state and should not touch the hardware.
1109  **/
1110 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1111 {
1112 	u32 reg_val;
1113 	u16 i;
1114 
1115 	DEBUGFUNC("ixgbe_stop_adapter_generic");
1116 
1117 	/*
1118 	 * Set the adapter_stopped flag so other driver functions stop touching
1119 	 * the hardware
1120 	 */
1121 	hw->adapter_stopped = TRUE;
1122 
1123 	/* Disable the receive unit */
1124 	ixgbe_disable_rx(hw);
1125 
1126 	/* Clear interrupt mask to stop interrupts from being generated */
1127 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
1128 
1129 	/* Clear any pending interrupts, flush previous writes */
1130 	IXGBE_READ_REG(hw, IXGBE_EICR);
1131 
1132 	/* Disable the transmit unit.  Each queue must be disabled. */
1133 	for (i = 0; i < hw->mac.max_tx_queues; i++)
1134 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1135 
1136 	/* Disable the receive unit by stopping each queue */
1137 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
1138 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1139 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
1140 		reg_val |= IXGBE_RXDCTL_SWFLSH;
1141 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1142 	}
1143 
1144 	/* flush all queues disables */
1145 	IXGBE_WRITE_FLUSH(hw);
1146 	msec_delay(2);
1147 
1148 	/*
1149 	 * Prevent the PCI-E bus from hanging by disabling PCI-E master
1150 	 * access and verify no pending requests
1151 	 */
1152 	return ixgbe_disable_pcie_master(hw);
1153 }
1154 
1155 /**
1156  *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
1157  *  @hw: pointer to hardware structure
1158  *
1159  *  Store the index for the link active LED. This will be used to support
1160  *  blinking the LED.
1161  **/
1162 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
1163 {
1164 	struct ixgbe_mac_info *mac = &hw->mac;
1165 	u32 led_reg, led_mode;
1166 	u8 i;
1167 
1168 	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1169 
1170 	/* Get LED link active from the LEDCTL register */
1171 	for (i = 0; i < 4; i++) {
1172 		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
1173 
1174 		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
1175 		     IXGBE_LED_LINK_ACTIVE) {
1176 			mac->led_link_act = i;
1177 			return IXGBE_SUCCESS;
1178 		}
1179 	}
1180 
1181 	/*
1182 	 * If LEDCTL register does not have the LED link active set, then use
1183 	 * known MAC defaults.
1184 	 */
1185 	switch (hw->mac.type) {
1186 	case ixgbe_mac_X550EM_a:
1187 	case ixgbe_mac_X550EM_x:
1188 		mac->led_link_act = 1;
1189 		break;
1190 	default:
1191 		mac->led_link_act = 2;
1192 	}
1193 	return IXGBE_SUCCESS;
1194 }
1195 
1196 /**
1197  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
1198  *  @hw: pointer to hardware structure
1199  *  @index: led number to turn on
1200  **/
1201 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1202 {
1203 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1204 
1205 	DEBUGFUNC("ixgbe_led_on_generic");
1206 
1207 	if (index > 3)
1208 		return IXGBE_ERR_PARAM;
1209 
1210 	/* To turn on the LED, set mode to ON. */
1211 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1212 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1213 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1214 	IXGBE_WRITE_FLUSH(hw);
1215 
1216 	return IXGBE_SUCCESS;
1217 }
1218 
1219 /**
1220  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
1221  *  @hw: pointer to hardware structure
1222  *  @index: led number to turn off
1223  **/
1224 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1225 {
1226 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1227 
1228 	DEBUGFUNC("ixgbe_led_off_generic");
1229 
1230 	if (index > 3)
1231 		return IXGBE_ERR_PARAM;
1232 
1233 	/* To turn off the LED, set mode to OFF. */
1234 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1235 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1236 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1237 	IXGBE_WRITE_FLUSH(hw);
1238 
1239 	return IXGBE_SUCCESS;
1240 }
1241 
1242 /**
1243  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1244  *  @hw: pointer to hardware structure
1245  *
1246  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
1247  *  ixgbe_hw struct in order to set up EEPROM access.
1248  **/
1249 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1250 {
1251 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1252 	u32 eec;
1253 	u16 eeprom_size;
1254 
1255 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1256 
1257 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
1258 		eeprom->type = ixgbe_eeprom_none;
1259 		/* Set default semaphore delay to 10ms which is a well
1260 		 * tested value */
1261 		eeprom->semaphore_delay = 10;
1262 		/* Clear EEPROM page size, it will be initialized as needed */
1263 		eeprom->word_page_size = 0;
1264 
1265 		/*
1266 		 * Check for EEPROM present first.
1267 		 * If not present leave as none
1268 		 */
1269 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1270 		if (eec & IXGBE_EEC_PRES) {
1271 			eeprom->type = ixgbe_eeprom_spi;
1272 
1273 			/*
1274 			 * SPI EEPROM is assumed here.  This code would need to
1275 			 * change if a future EEPROM is not SPI.
1276 			 */
1277 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1278 					    IXGBE_EEC_SIZE_SHIFT);
1279 			eeprom->word_size = 1 << (eeprom_size +
1280 					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
1281 		}
1282 
1283 		if (eec & IXGBE_EEC_ADDR_SIZE)
1284 			eeprom->address_bits = 16;
1285 		else
1286 			eeprom->address_bits = 8;
1287 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1288 			  "%d\n", eeprom->type, eeprom->word_size,
1289 			  eeprom->address_bits);
1290 	}
1291 
1292 	return IXGBE_SUCCESS;
1293 }
1294 
1295 /**
1296  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1297  *  @hw: pointer to hardware structure
1298  *  @offset: offset within the EEPROM to write
1299  *  @words: number of word(s)
1300  *  @data: 16 bit word(s) to write to EEPROM
1301  *
1302  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1303  **/
1304 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1305 					       u16 words, u16 *data)
1306 {
1307 	s32 status = IXGBE_SUCCESS;
1308 	u16 i, count;
1309 
1310 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1311 
1312 	hw->eeprom.ops.init_params(hw);
1313 
1314 	if (words == 0) {
1315 		status = IXGBE_ERR_INVALID_ARGUMENT;
1316 		goto out;
1317 	}
1318 
1319 	if (offset + words > hw->eeprom.word_size) {
1320 		status = IXGBE_ERR_EEPROM;
1321 		goto out;
1322 	}
1323 
1324 	/*
1325 	 * The EEPROM page size cannot be queried from the chip. We do lazy
1326 	 * initialization. It is worth to do that when we write large buffer.
1327 	 */
1328 	if ((hw->eeprom.word_page_size == 0) &&
1329 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1330 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
1331 
1332 	/*
1333 	 * We cannot hold synchronization semaphores for too long
1334 	 * to avoid other entity starvation. However it is more efficient
1335 	 * to read in bursts than synchronizing access for each word.
1336 	 */
1337 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1338 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1339 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1340 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1341 							    count, &data[i]);
1342 
1343 		if (status != IXGBE_SUCCESS)
1344 			break;
1345 	}
1346 
1347 out:
1348 	return status;
1349 }
1350 
1351 /**
1352  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1353  *  @hw: pointer to hardware structure
1354  *  @offset: offset within the EEPROM to be written to
1355  *  @words: number of word(s)
1356  *  @data: 16 bit word(s) to be written to the EEPROM
1357  *
1358  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1359  *  EEPROM will most likely contain an invalid checksum.
1360  **/
1361 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1362 					      u16 words, u16 *data)
1363 {
1364 	s32 status;
1365 	u16 word;
1366 	u16 page_size;
1367 	u16 i;
1368 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1369 
1370 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1371 
1372 	/* Prepare the EEPROM for writing  */
1373 	status = ixgbe_acquire_eeprom(hw);
1374 
1375 	if (status == IXGBE_SUCCESS) {
1376 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1377 			ixgbe_release_eeprom(hw);
1378 			status = IXGBE_ERR_EEPROM;
1379 		}
1380 	}
1381 
1382 	if (status == IXGBE_SUCCESS) {
1383 		for (i = 0; i < words; i++) {
1384 			ixgbe_standby_eeprom(hw);
1385 
1386 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
1387 			ixgbe_shift_out_eeprom_bits(hw,
1388 						   IXGBE_EEPROM_WREN_OPCODE_SPI,
1389 						   IXGBE_EEPROM_OPCODE_BITS);
1390 
1391 			ixgbe_standby_eeprom(hw);
1392 
1393 			/*
1394 			 * Some SPI eeproms use the 8th address bit embedded
1395 			 * in the opcode
1396 			 */
1397 			if ((hw->eeprom.address_bits == 8) &&
1398 			    ((offset + i) >= 128))
1399 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1400 
1401 			/* Send the Write command (8-bit opcode + addr) */
1402 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1403 						    IXGBE_EEPROM_OPCODE_BITS);
1404 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1405 						    hw->eeprom.address_bits);
1406 
1407 			page_size = hw->eeprom.word_page_size;
1408 
1409 			/* Send the data in burst via SPI*/
1410 			do {
1411 				word = data[i];
1412 				word = (word >> 8) | (word << 8);
1413 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
1414 
1415 				if (page_size == 0)
1416 					break;
1417 
1418 				/* do not wrap around page */
1419 				if (((offset + i) & (page_size - 1)) ==
1420 				    (page_size - 1))
1421 					break;
1422 			} while (++i < words);
1423 
1424 			ixgbe_standby_eeprom(hw);
1425 			msec_delay(10);
1426 		}
1427 		/* Done with writing - release the EEPROM */
1428 		ixgbe_release_eeprom(hw);
1429 	}
1430 
1431 	return status;
1432 }
1433 
1434 /**
1435  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1436  *  @hw: pointer to hardware structure
1437  *  @offset: offset within the EEPROM to be written to
1438  *  @data: 16 bit word to be written to the EEPROM
1439  *
1440  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1441  *  EEPROM will most likely contain an invalid checksum.
1442  **/
1443 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1444 {
1445 	s32 status;
1446 
1447 	DEBUGFUNC("ixgbe_write_eeprom_generic");
1448 
1449 	hw->eeprom.ops.init_params(hw);
1450 
1451 	if (offset >= hw->eeprom.word_size) {
1452 		status = IXGBE_ERR_EEPROM;
1453 		goto out;
1454 	}
1455 
1456 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1457 
1458 out:
1459 	return status;
1460 }
1461 
1462 /**
1463  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1464  *  @hw: pointer to hardware structure
1465  *  @offset: offset within the EEPROM to be read
1466  *  @data: read 16 bit words(s) from EEPROM
1467  *  @words: number of word(s)
1468  *
1469  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1470  **/
1471 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1472 					      u16 words, u16 *data)
1473 {
1474 	s32 status = IXGBE_SUCCESS;
1475 	u16 i, count;
1476 
1477 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1478 
1479 	hw->eeprom.ops.init_params(hw);
1480 
1481 	if (words == 0) {
1482 		status = IXGBE_ERR_INVALID_ARGUMENT;
1483 		goto out;
1484 	}
1485 
1486 	if (offset + words > hw->eeprom.word_size) {
1487 		status = IXGBE_ERR_EEPROM;
1488 		goto out;
1489 	}
1490 
1491 	/*
1492 	 * We cannot hold synchronization semaphores for too long
1493 	 * to avoid other entity starvation. However it is more efficient
1494 	 * to read in bursts than synchronizing access for each word.
1495 	 */
1496 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1497 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1498 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1499 
1500 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1501 							   count, &data[i]);
1502 
1503 		if (status != IXGBE_SUCCESS)
1504 			break;
1505 	}
1506 
1507 out:
1508 	return status;
1509 }
1510 
1511 /**
1512  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1513  *  @hw: pointer to hardware structure
1514  *  @offset: offset within the EEPROM to be read
1515  *  @words: number of word(s)
1516  *  @data: read 16 bit word(s) from EEPROM
1517  *
1518  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1519  **/
1520 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1521 					     u16 words, u16 *data)
1522 {
1523 	s32 status;
1524 	u16 word_in;
1525 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1526 	u16 i;
1527 
1528 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1529 
1530 	/* Prepare the EEPROM for reading  */
1531 	status = ixgbe_acquire_eeprom(hw);
1532 
1533 	if (status == IXGBE_SUCCESS) {
1534 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1535 			ixgbe_release_eeprom(hw);
1536 			status = IXGBE_ERR_EEPROM;
1537 		}
1538 	}
1539 
1540 	if (status == IXGBE_SUCCESS) {
1541 		for (i = 0; i < words; i++) {
1542 			ixgbe_standby_eeprom(hw);
1543 			/*
1544 			 * Some SPI eeproms use the 8th address bit embedded
1545 			 * in the opcode
1546 			 */
1547 			if ((hw->eeprom.address_bits == 8) &&
1548 			    ((offset + i) >= 128))
1549 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1550 
1551 			/* Send the READ command (opcode + addr) */
1552 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1553 						    IXGBE_EEPROM_OPCODE_BITS);
1554 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1555 						    hw->eeprom.address_bits);
1556 
1557 			/* Read the data. */
1558 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1559 			data[i] = (word_in >> 8) | (word_in << 8);
1560 		}
1561 
1562 		/* End this read operation */
1563 		ixgbe_release_eeprom(hw);
1564 	}
1565 
1566 	return status;
1567 }
1568 
1569 /**
1570  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1571  *  @hw: pointer to hardware structure
1572  *  @offset: offset within the EEPROM to be read
1573  *  @data: read 16 bit value from EEPROM
1574  *
1575  *  Reads 16 bit value from EEPROM through bit-bang method
1576  **/
1577 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1578 				       u16 *data)
1579 {
1580 	s32 status;
1581 
1582 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1583 
1584 	hw->eeprom.ops.init_params(hw);
1585 
1586 	if (offset >= hw->eeprom.word_size) {
1587 		status = IXGBE_ERR_EEPROM;
1588 		goto out;
1589 	}
1590 
1591 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1592 
1593 out:
1594 	return status;
1595 }
1596 
1597 /**
1598  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1599  *  @hw: pointer to hardware structure
1600  *  @offset: offset of word in the EEPROM to read
1601  *  @words: number of word(s)
1602  *  @data: 16 bit word(s) from the EEPROM
1603  *
1604  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1605  **/
1606 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1607 				   u16 words, u16 *data)
1608 {
1609 	u32 eerd;
1610 	s32 status = IXGBE_SUCCESS;
1611 	u32 i;
1612 
1613 	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1614 
1615 	hw->eeprom.ops.init_params(hw);
1616 
1617 	if (words == 0) {
1618 		status = IXGBE_ERR_INVALID_ARGUMENT;
1619 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1620 		goto out;
1621 	}
1622 
1623 	if (offset >= hw->eeprom.word_size) {
1624 		status = IXGBE_ERR_EEPROM;
1625 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1626 		goto out;
1627 	}
1628 
1629 	for (i = 0; i < words; i++) {
1630 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1631 		       IXGBE_EEPROM_RW_REG_START;
1632 
1633 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1634 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1635 
1636 		if (status == IXGBE_SUCCESS) {
1637 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1638 				   IXGBE_EEPROM_RW_REG_DATA);
1639 		} else {
1640 			DEBUGOUT("Eeprom read timed out\n");
1641 			goto out;
1642 		}
1643 	}
1644 out:
1645 	return status;
1646 }
1647 
1648 /**
1649  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1650  *  @hw: pointer to hardware structure
1651  *  @offset: offset within the EEPROM to be used as a scratch pad
1652  *
1653  *  Discover EEPROM page size by writing marching data at given offset.
1654  *  This function is called only when we are writing a new large buffer
1655  *  at given offset so the data would be overwritten anyway.
1656  **/
1657 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1658 						 u16 offset)
1659 {
1660 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1661 	s32 status = IXGBE_SUCCESS;
1662 	u16 i;
1663 
1664 	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1665 
1666 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1667 		data[i] = i;
1668 
1669 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1670 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1671 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1672 	hw->eeprom.word_page_size = 0;
1673 	if (status != IXGBE_SUCCESS)
1674 		goto out;
1675 
1676 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1677 	if (status != IXGBE_SUCCESS)
1678 		goto out;
1679 
1680 	/*
1681 	 * When writing in burst more than the actual page size
1682 	 * EEPROM address wraps around current page.
1683 	 */
1684 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1685 
1686 	DEBUGOUT1("Detected EEPROM page size = %d words.",
1687 		  hw->eeprom.word_page_size);
1688 out:
1689 	return status;
1690 }
1691 
1692 /**
1693  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1694  *  @hw: pointer to hardware structure
1695  *  @offset: offset of  word in the EEPROM to read
1696  *  @data: word read from the EEPROM
1697  *
1698  *  Reads a 16 bit word from the EEPROM using the EERD register.
1699  **/
1700 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1701 {
1702 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1703 }
1704 
1705 /**
1706  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1707  *  @hw: pointer to hardware structure
1708  *  @offset: offset of  word in the EEPROM to write
1709  *  @words: number of word(s)
1710  *  @data: word(s) write to the EEPROM
1711  *
1712  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1713  **/
1714 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1715 				    u16 words, u16 *data)
1716 {
1717 	u32 eewr;
1718 	s32 status = IXGBE_SUCCESS;
1719 	u16 i;
1720 
1721 	DEBUGFUNC("ixgbe_write_eewr_generic");
1722 
1723 	hw->eeprom.ops.init_params(hw);
1724 
1725 	if (words == 0) {
1726 		status = IXGBE_ERR_INVALID_ARGUMENT;
1727 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1728 		goto out;
1729 	}
1730 
1731 	if (offset >= hw->eeprom.word_size) {
1732 		status = IXGBE_ERR_EEPROM;
1733 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1734 		goto out;
1735 	}
1736 
1737 	for (i = 0; i < words; i++) {
1738 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1739 			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1740 			IXGBE_EEPROM_RW_REG_START;
1741 
1742 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1743 		if (status != IXGBE_SUCCESS) {
1744 			DEBUGOUT("Eeprom write EEWR timed out\n");
1745 			goto out;
1746 		}
1747 
1748 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1749 
1750 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1751 		if (status != IXGBE_SUCCESS) {
1752 			DEBUGOUT("Eeprom write EEWR timed out\n");
1753 			goto out;
1754 		}
1755 	}
1756 
1757 out:
1758 	return status;
1759 }
1760 
1761 /**
1762  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1763  *  @hw: pointer to hardware structure
1764  *  @offset: offset of  word in the EEPROM to write
1765  *  @data: word write to the EEPROM
1766  *
1767  *  Write a 16 bit word to the EEPROM using the EEWR register.
1768  **/
1769 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1770 {
1771 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1772 }
1773 
1774 /**
1775  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1776  *  @hw: pointer to hardware structure
1777  *  @ee_reg: EEPROM flag for polling
1778  *
1779  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1780  *  read or write is done respectively.
1781  **/
1782 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1783 {
1784 	u32 i;
1785 	u32 reg;
1786 	s32 status = IXGBE_ERR_EEPROM;
1787 
1788 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1789 
1790 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1791 		if (ee_reg == IXGBE_NVM_POLL_READ)
1792 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1793 		else
1794 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1795 
1796 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1797 			status = IXGBE_SUCCESS;
1798 			break;
1799 		}
1800 		usec_delay(5);
1801 	}
1802 
1803 	if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1804 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1805 			     "EEPROM read/write done polling timed out");
1806 
1807 	return status;
1808 }
1809 
1810 /**
1811  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1812  *  @hw: pointer to hardware structure
1813  *
1814  *  Prepares EEPROM for access using bit-bang method. This function should
1815  *  be called before issuing a command to the EEPROM.
1816  **/
1817 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1818 {
1819 	s32 status = IXGBE_SUCCESS;
1820 	u32 eec;
1821 	u32 i;
1822 
1823 	DEBUGFUNC("ixgbe_acquire_eeprom");
1824 
1825 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1826 	    != IXGBE_SUCCESS)
1827 		status = IXGBE_ERR_SWFW_SYNC;
1828 
1829 	if (status == IXGBE_SUCCESS) {
1830 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1831 
1832 		/* Request EEPROM Access */
1833 		eec |= IXGBE_EEC_REQ;
1834 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1835 
1836 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1837 			eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1838 			if (eec & IXGBE_EEC_GNT)
1839 				break;
1840 			usec_delay(5);
1841 		}
1842 
1843 		/* Release if grant not acquired */
1844 		if (!(eec & IXGBE_EEC_GNT)) {
1845 			eec &= ~IXGBE_EEC_REQ;
1846 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1847 			DEBUGOUT("Could not acquire EEPROM grant\n");
1848 
1849 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1850 			status = IXGBE_ERR_EEPROM;
1851 		}
1852 
1853 		/* Setup EEPROM for Read/Write */
1854 		if (status == IXGBE_SUCCESS) {
1855 			/* Clear CS and SK */
1856 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1857 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1858 			IXGBE_WRITE_FLUSH(hw);
1859 			usec_delay(1);
1860 		}
1861 	}
1862 	return status;
1863 }
1864 
1865 /**
1866  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1867  *  @hw: pointer to hardware structure
1868  *
1869  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1870  **/
1871 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1872 {
1873 	s32 status = IXGBE_ERR_EEPROM;
1874 	u32 timeout = 2000;
1875 	u32 i;
1876 	u32 swsm;
1877 
1878 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1879 
1880 
1881 	/* Get SMBI software semaphore between device drivers first */
1882 	for (i = 0; i < timeout; i++) {
1883 		/*
1884 		 * If the SMBI bit is 0 when we read it, then the bit will be
1885 		 * set and we have the semaphore
1886 		 */
1887 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1888 		if (!(swsm & IXGBE_SWSM_SMBI)) {
1889 			status = IXGBE_SUCCESS;
1890 			break;
1891 		}
1892 		usec_delay(50);
1893 	}
1894 
1895 	if (i == timeout) {
1896 		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1897 			 "not granted.\n");
1898 		/*
1899 		 * this release is particularly important because our attempts
1900 		 * above to get the semaphore may have succeeded, and if there
1901 		 * was a timeout, we should unconditionally clear the semaphore
1902 		 * bits to free the driver to make progress
1903 		 */
1904 		ixgbe_release_eeprom_semaphore(hw);
1905 
1906 		usec_delay(50);
1907 		/*
1908 		 * one last try
1909 		 * If the SMBI bit is 0 when we read it, then the bit will be
1910 		 * set and we have the semaphore
1911 		 */
1912 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1913 		if (!(swsm & IXGBE_SWSM_SMBI))
1914 			status = IXGBE_SUCCESS;
1915 	}
1916 
1917 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1918 	if (status == IXGBE_SUCCESS) {
1919 		for (i = 0; i < timeout; i++) {
1920 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1921 
1922 			/* Set the SW EEPROM semaphore bit to request access */
1923 			swsm |= IXGBE_SWSM_SWESMBI;
1924 			IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1925 
1926 			/*
1927 			 * If we set the bit successfully then we got the
1928 			 * semaphore.
1929 			 */
1930 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1931 			if (swsm & IXGBE_SWSM_SWESMBI)
1932 				break;
1933 
1934 			usec_delay(50);
1935 		}
1936 
1937 		/*
1938 		 * Release semaphores and return error if SW EEPROM semaphore
1939 		 * was not granted because we don't have access to the EEPROM
1940 		 */
1941 		if (i >= timeout) {
1942 			ERROR_REPORT1(IXGBE_ERROR_POLLING,
1943 			    "SWESMBI Software EEPROM semaphore not granted.\n");
1944 			ixgbe_release_eeprom_semaphore(hw);
1945 			status = IXGBE_ERR_EEPROM;
1946 		}
1947 	} else {
1948 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1949 			     "Software semaphore SMBI between device drivers "
1950 			     "not granted.\n");
1951 	}
1952 
1953 	return status;
1954 }
1955 
1956 /**
1957  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1958  *  @hw: pointer to hardware structure
1959  *
1960  *  This function clears hardware semaphore bits.
1961  **/
1962 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1963 {
1964 	u32 swsm;
1965 
1966 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1967 
1968 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1969 
1970 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1971 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1972 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1973 	IXGBE_WRITE_FLUSH(hw);
1974 }
1975 
1976 /**
1977  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1978  *  @hw: pointer to hardware structure
1979  **/
1980 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1981 {
1982 	s32 status = IXGBE_SUCCESS;
1983 	u16 i;
1984 	u8 spi_stat_reg;
1985 
1986 	DEBUGFUNC("ixgbe_ready_eeprom");
1987 
1988 	/*
1989 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1990 	 * EEPROM will signal that the command has been completed by clearing
1991 	 * bit 0 of the internal status register.  If it's not cleared within
1992 	 * 5 milliseconds, then error out.
1993 	 */
1994 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1995 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1996 					    IXGBE_EEPROM_OPCODE_BITS);
1997 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1998 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1999 			break;
2000 
2001 		usec_delay(5);
2002 		ixgbe_standby_eeprom(hw);
2003 	};
2004 
2005 	/*
2006 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
2007 	 * devices (and only 0-5mSec on 5V devices)
2008 	 */
2009 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
2010 		DEBUGOUT("SPI EEPROM Status error\n");
2011 		status = IXGBE_ERR_EEPROM;
2012 	}
2013 
2014 	return status;
2015 }
2016 
2017 /**
2018  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
2019  *  @hw: pointer to hardware structure
2020  **/
2021 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
2022 {
2023 	u32 eec;
2024 
2025 	DEBUGFUNC("ixgbe_standby_eeprom");
2026 
2027 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2028 
2029 	/* Toggle CS to flush commands */
2030 	eec |= IXGBE_EEC_CS;
2031 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2032 	IXGBE_WRITE_FLUSH(hw);
2033 	usec_delay(1);
2034 	eec &= ~IXGBE_EEC_CS;
2035 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2036 	IXGBE_WRITE_FLUSH(hw);
2037 	usec_delay(1);
2038 }
2039 
2040 /**
2041  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
2042  *  @hw: pointer to hardware structure
2043  *  @data: data to send to the EEPROM
2044  *  @count: number of bits to shift out
2045  **/
2046 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
2047 					u16 count)
2048 {
2049 	u32 eec;
2050 	u32 mask;
2051 	u32 i;
2052 
2053 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
2054 
2055 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2056 
2057 	/*
2058 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
2059 	 * one bit at a time.  Determine the starting bit based on count
2060 	 */
2061 	mask = 0x01 << (count - 1);
2062 
2063 	for (i = 0; i < count; i++) {
2064 		/*
2065 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
2066 		 * "1", and then raising and then lowering the clock (the SK
2067 		 * bit controls the clock input to the EEPROM).  A "0" is
2068 		 * shifted out to the EEPROM by setting "DI" to "0" and then
2069 		 * raising and then lowering the clock.
2070 		 */
2071 		if (data & mask)
2072 			eec |= IXGBE_EEC_DI;
2073 		else
2074 			eec &= ~IXGBE_EEC_DI;
2075 
2076 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2077 		IXGBE_WRITE_FLUSH(hw);
2078 
2079 		usec_delay(1);
2080 
2081 		ixgbe_raise_eeprom_clk(hw, &eec);
2082 		ixgbe_lower_eeprom_clk(hw, &eec);
2083 
2084 		/*
2085 		 * Shift mask to signify next bit of data to shift in to the
2086 		 * EEPROM
2087 		 */
2088 		mask = mask >> 1;
2089 	};
2090 
2091 	/* We leave the "DI" bit set to "0" when we leave this routine. */
2092 	eec &= ~IXGBE_EEC_DI;
2093 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2094 	IXGBE_WRITE_FLUSH(hw);
2095 }
2096 
2097 /**
2098  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
2099  *  @hw: pointer to hardware structure
2100  **/
2101 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2102 {
2103 	u32 eec;
2104 	u32 i;
2105 	u16 data = 0;
2106 
2107 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2108 
2109 	/*
2110 	 * In order to read a register from the EEPROM, we need to shift
2111 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2112 	 * the clock input to the EEPROM (setting the SK bit), and then reading
2113 	 * the value of the "DO" bit.  During this "shifting in" process the
2114 	 * "DI" bit should always be clear.
2115 	 */
2116 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2117 
2118 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2119 
2120 	for (i = 0; i < count; i++) {
2121 		data = data << 1;
2122 		ixgbe_raise_eeprom_clk(hw, &eec);
2123 
2124 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2125 
2126 		eec &= ~(IXGBE_EEC_DI);
2127 		if (eec & IXGBE_EEC_DO)
2128 			data |= 1;
2129 
2130 		ixgbe_lower_eeprom_clk(hw, &eec);
2131 	}
2132 
2133 	return data;
2134 }
2135 
2136 /**
2137  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2138  *  @hw: pointer to hardware structure
2139  *  @eec: EEC register's current value
2140  **/
2141 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2142 {
2143 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
2144 
2145 	/*
2146 	 * Raise the clock input to the EEPROM
2147 	 * (setting the SK bit), then delay
2148 	 */
2149 	*eec = *eec | IXGBE_EEC_SK;
2150 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2151 	IXGBE_WRITE_FLUSH(hw);
2152 	usec_delay(1);
2153 }
2154 
2155 /**
2156  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2157  *  @hw: pointer to hardware structure
2158  *  @eecd: EECD's current value
2159  **/
2160 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2161 {
2162 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
2163 
2164 	/*
2165 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
2166 	 * delay
2167 	 */
2168 	*eec = *eec & ~IXGBE_EEC_SK;
2169 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2170 	IXGBE_WRITE_FLUSH(hw);
2171 	usec_delay(1);
2172 }
2173 
2174 /**
2175  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
2176  *  @hw: pointer to hardware structure
2177  **/
2178 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2179 {
2180 	u32 eec;
2181 
2182 	DEBUGFUNC("ixgbe_release_eeprom");
2183 
2184 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2185 
2186 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
2187 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2188 
2189 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2190 	IXGBE_WRITE_FLUSH(hw);
2191 
2192 	usec_delay(1);
2193 
2194 	/* Stop requesting EEPROM access */
2195 	eec &= ~IXGBE_EEC_REQ;
2196 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2197 
2198 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2199 
2200 	/* Delay before attempt to obtain semaphore again to allow FW access */
2201 	msec_delay(hw->eeprom.semaphore_delay);
2202 }
2203 
2204 /**
2205  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2206  *  @hw: pointer to hardware structure
2207  *
2208  *  Returns a negative error code on error, or the 16-bit checksum
2209  **/
2210 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2211 {
2212 	u16 i;
2213 	u16 j;
2214 	u16 checksum = 0;
2215 	u16 length = 0;
2216 	u16 pointer = 0;
2217 	u16 word = 0;
2218 
2219 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2220 
2221 	/* Include 0x0-0x3F in the checksum */
2222 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2223 		if (hw->eeprom.ops.read(hw, i, &word)) {
2224 			DEBUGOUT("EEPROM read failed\n");
2225 			return IXGBE_ERR_EEPROM;
2226 		}
2227 		checksum += word;
2228 	}
2229 
2230 	/* Include all data from pointers except for the fw pointer */
2231 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2232 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
2233 			DEBUGOUT("EEPROM read failed\n");
2234 			return IXGBE_ERR_EEPROM;
2235 		}
2236 
2237 		/* If the pointer seems invalid */
2238 		if (pointer == 0xFFFF || pointer == 0)
2239 			continue;
2240 
2241 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
2242 			DEBUGOUT("EEPROM read failed\n");
2243 			return IXGBE_ERR_EEPROM;
2244 		}
2245 
2246 		if (length == 0xFFFF || length == 0)
2247 			continue;
2248 
2249 		for (j = pointer + 1; j <= pointer + length; j++) {
2250 			if (hw->eeprom.ops.read(hw, j, &word)) {
2251 				DEBUGOUT("EEPROM read failed\n");
2252 				return IXGBE_ERR_EEPROM;
2253 			}
2254 			checksum += word;
2255 		}
2256 	}
2257 
2258 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2259 
2260 	return (s32)checksum;
2261 }
2262 
2263 /**
2264  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2265  *  @hw: pointer to hardware structure
2266  *  @checksum_val: calculated checksum
2267  *
2268  *  Performs checksum calculation and validates the EEPROM checksum.  If the
2269  *  caller does not need checksum_val, the value can be NULL.
2270  **/
2271 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2272 					   u16 *checksum_val)
2273 {
2274 	s32 status;
2275 	u16 checksum;
2276 	u16 read_checksum = 0;
2277 
2278 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2279 
2280 	/* Read the first word from the EEPROM. If this times out or fails, do
2281 	 * not continue or we could be in for a very long wait while every
2282 	 * EEPROM read fails
2283 	 */
2284 	status = hw->eeprom.ops.read(hw, 0, &checksum);
2285 	if (status) {
2286 		DEBUGOUT("EEPROM read failed\n");
2287 		return status;
2288 	}
2289 
2290 	status = hw->eeprom.ops.calc_checksum(hw);
2291 	if (status < 0)
2292 		return status;
2293 
2294 	checksum = (u16)(status & 0xffff);
2295 
2296 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2297 	if (status) {
2298 		DEBUGOUT("EEPROM read failed\n");
2299 		return status;
2300 	}
2301 
2302 	/* Verify read checksum from EEPROM is the same as
2303 	 * calculated checksum
2304 	 */
2305 	if (read_checksum != checksum)
2306 		status = IXGBE_ERR_EEPROM_CHECKSUM;
2307 
2308 	/* If the user cares, return the calculated checksum */
2309 	if (checksum_val)
2310 		*checksum_val = checksum;
2311 
2312 	return status;
2313 }
2314 
2315 /**
2316  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2317  *  @hw: pointer to hardware structure
2318  **/
2319 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2320 {
2321 	s32 status;
2322 	u16 checksum;
2323 
2324 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2325 
2326 	/* Read the first word from the EEPROM. If this times out or fails, do
2327 	 * not continue or we could be in for a very long wait while every
2328 	 * EEPROM read fails
2329 	 */
2330 	status = hw->eeprom.ops.read(hw, 0, &checksum);
2331 	if (status) {
2332 		DEBUGOUT("EEPROM read failed\n");
2333 		return status;
2334 	}
2335 
2336 	status = hw->eeprom.ops.calc_checksum(hw);
2337 	if (status < 0)
2338 		return status;
2339 
2340 	checksum = (u16)(status & 0xffff);
2341 
2342 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2343 
2344 	return status;
2345 }
2346 
2347 /**
2348  *  ixgbe_validate_mac_addr - Validate MAC address
2349  *  @mac_addr: pointer to MAC address.
2350  *
2351  *  Tests a MAC address to ensure it is a valid Individual Address.
2352  **/
2353 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2354 {
2355 	s32 status = IXGBE_SUCCESS;
2356 
2357 	DEBUGFUNC("ixgbe_validate_mac_addr");
2358 
2359 	/* Make sure it is not a multicast address */
2360 	if (IXGBE_IS_MULTICAST(mac_addr)) {
2361 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2362 	/* Not a broadcast address */
2363 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
2364 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2365 	/* Reject the zero address */
2366 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2367 		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2368 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2369 	}
2370 	return status;
2371 }
2372 
2373 /**
2374  *  ixgbe_set_rar_generic - Set Rx address register
2375  *  @hw: pointer to hardware structure
2376  *  @index: Receive address register to write
2377  *  @addr: Address to put into receive address register
2378  *  @vmdq: VMDq "set" or "pool" index
2379  *  @enable_addr: set flag that address is active
2380  *
2381  *  Puts an ethernet address into a receive address register.
2382  **/
2383 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2384 			  u32 enable_addr)
2385 {
2386 	u32 rar_low, rar_high;
2387 	u32 rar_entries = hw->mac.num_rar_entries;
2388 
2389 	DEBUGFUNC("ixgbe_set_rar_generic");
2390 
2391 	/* Make sure we are using a valid rar index range */
2392 	if (index >= rar_entries) {
2393 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2394 			     "RAR index %d is out of range.\n", index);
2395 		return IXGBE_ERR_INVALID_ARGUMENT;
2396 	}
2397 
2398 	/* setup VMDq pool selection before this RAR gets enabled */
2399 	hw->mac.ops.set_vmdq(hw, index, vmdq);
2400 
2401 	/*
2402 	 * HW expects these in little endian so we reverse the byte
2403 	 * order from network order (big endian) to little endian
2404 	 */
2405 	rar_low = ((u32)addr[0] |
2406 		   ((u32)addr[1] << 8) |
2407 		   ((u32)addr[2] << 16) |
2408 		   ((u32)addr[3] << 24));
2409 	/*
2410 	 * Some parts put the VMDq setting in the extra RAH bits,
2411 	 * so save everything except the lower 16 bits that hold part
2412 	 * of the address and the address valid bit.
2413 	 */
2414 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2415 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2416 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2417 
2418 	if (enable_addr != 0)
2419 		rar_high |= IXGBE_RAH_AV;
2420 
2421 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2422 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2423 
2424 	return IXGBE_SUCCESS;
2425 }
2426 
2427 /**
2428  *  ixgbe_clear_rar_generic - Remove Rx address register
2429  *  @hw: pointer to hardware structure
2430  *  @index: Receive address register to write
2431  *
2432  *  Clears an ethernet address from a receive address register.
2433  **/
2434 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2435 {
2436 	u32 rar_high;
2437 	u32 rar_entries = hw->mac.num_rar_entries;
2438 
2439 	DEBUGFUNC("ixgbe_clear_rar_generic");
2440 
2441 	/* Make sure we are using a valid rar index range */
2442 	if (index >= rar_entries) {
2443 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2444 			     "RAR index %d is out of range.\n", index);
2445 		return IXGBE_ERR_INVALID_ARGUMENT;
2446 	}
2447 
2448 	/*
2449 	 * Some parts put the VMDq setting in the extra RAH bits,
2450 	 * so save everything except the lower 16 bits that hold part
2451 	 * of the address and the address valid bit.
2452 	 */
2453 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2454 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2455 
2456 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2457 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2458 
2459 	/* clear VMDq pool/queue selection for this RAR */
2460 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2461 
2462 	return IXGBE_SUCCESS;
2463 }
2464 
2465 /**
2466  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2467  *  @hw: pointer to hardware structure
2468  *
2469  *  Places the MAC address in receive address register 0 and clears the rest
2470  *  of the receive address registers. Clears the multicast table. Assumes
2471  *  the receiver is in reset when the routine is called.
2472  **/
2473 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2474 {
2475 	u32 i;
2476 	u32 rar_entries = hw->mac.num_rar_entries;
2477 
2478 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2479 
2480 	/*
2481 	 * If the current mac address is valid, assume it is a software override
2482 	 * to the permanent address.
2483 	 * Otherwise, use the permanent address from the eeprom.
2484 	 */
2485 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2486 	    IXGBE_ERR_INVALID_MAC_ADDR) {
2487 		/* Get the MAC address from the RAR0 for later reference */
2488 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2489 
2490 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2491 			  hw->mac.addr[0], hw->mac.addr[1],
2492 			  hw->mac.addr[2]);
2493 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2494 			  hw->mac.addr[4], hw->mac.addr[5]);
2495 	} else {
2496 		/* Setup the receive address. */
2497 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2498 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2499 			  hw->mac.addr[0], hw->mac.addr[1],
2500 			  hw->mac.addr[2]);
2501 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2502 			  hw->mac.addr[4], hw->mac.addr[5]);
2503 
2504 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2505 	}
2506 
2507 	/* clear VMDq pool/queue selection for RAR 0 */
2508 	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2509 
2510 	hw->addr_ctrl.overflow_promisc = 0;
2511 
2512 	hw->addr_ctrl.rar_used_count = 1;
2513 
2514 	/* Zero out the other receive addresses. */
2515 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2516 	for (i = 1; i < rar_entries; i++) {
2517 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2518 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2519 	}
2520 
2521 	/* Clear the MTA */
2522 	hw->addr_ctrl.mta_in_use = 0;
2523 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2524 
2525 	DEBUGOUT(" Clearing MTA\n");
2526 	for (i = 0; i < hw->mac.mcft_size; i++)
2527 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2528 
2529 	ixgbe_init_uta_tables(hw);
2530 
2531 	return IXGBE_SUCCESS;
2532 }
2533 
2534 /**
2535  *  ixgbe_add_uc_addr - Adds a secondary unicast address.
2536  *  @hw: pointer to hardware structure
2537  *  @addr: new address
2538  *
2539  *  Adds it to unused receive address register or goes into promiscuous mode.
2540  **/
2541 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2542 {
2543 	u32 rar_entries = hw->mac.num_rar_entries;
2544 	u32 rar;
2545 
2546 	DEBUGFUNC("ixgbe_add_uc_addr");
2547 
2548 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2549 		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2550 
2551 	/*
2552 	 * Place this address in the RAR if there is room,
2553 	 * else put the controller into promiscuous mode
2554 	 */
2555 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
2556 		rar = hw->addr_ctrl.rar_used_count;
2557 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2558 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2559 		hw->addr_ctrl.rar_used_count++;
2560 	} else {
2561 		hw->addr_ctrl.overflow_promisc++;
2562 	}
2563 
2564 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2565 }
2566 
2567 /**
2568  *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2569  *  @hw: pointer to hardware structure
2570  *  @addr_list: the list of new addresses
2571  *  @addr_count: number of addresses
2572  *  @next: iterator function to walk the address list
2573  *
2574  *  The given list replaces any existing list.  Clears the secondary addrs from
2575  *  receive address registers.  Uses unused receive address registers for the
2576  *  first secondary addresses, and falls back to promiscuous mode as needed.
2577  *
2578  *  Drivers using secondary unicast addresses must set user_set_promisc when
2579  *  manually putting the device into promiscuous mode.
2580  **/
2581 s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2582 				      u32 addr_count, ixgbe_mc_addr_itr next)
2583 {
2584 	u8 *addr;
2585 	u32 i;
2586 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2587 	u32 uc_addr_in_use;
2588 	u32 fctrl;
2589 	u32 vmdq;
2590 
2591 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2592 
2593 	/*
2594 	 * Clear accounting of old secondary address list,
2595 	 * don't count RAR[0]
2596 	 */
2597 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2598 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2599 	hw->addr_ctrl.overflow_promisc = 0;
2600 
2601 	/* Zero out the other receive addresses */
2602 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2603 	for (i = 0; i < uc_addr_in_use; i++) {
2604 		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2605 		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2606 	}
2607 
2608 	/* Add the new addresses */
2609 	for (i = 0; i < addr_count; i++) {
2610 		DEBUGOUT(" Adding the secondary addresses:\n");
2611 		addr = next(hw, &addr_list, &vmdq);
2612 		ixgbe_add_uc_addr(hw, addr, vmdq);
2613 	}
2614 
2615 	if (hw->addr_ctrl.overflow_promisc) {
2616 		/* enable promisc if not already in overflow or set by user */
2617 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2618 			DEBUGOUT(" Entering address overflow promisc mode\n");
2619 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2620 			fctrl |= IXGBE_FCTRL_UPE;
2621 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2622 		}
2623 	} else {
2624 		/* only disable if set by overflow, not by user */
2625 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2626 			DEBUGOUT(" Leaving address overflow promisc mode\n");
2627 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2628 			fctrl &= ~IXGBE_FCTRL_UPE;
2629 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2630 		}
2631 	}
2632 
2633 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2634 	return IXGBE_SUCCESS;
2635 }
2636 
2637 /**
2638  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
2639  *  @hw: pointer to hardware structure
2640  *  @mc_addr: the multicast address
2641  *
2642  *  Extracts the 12 bits, from a multicast address, to determine which
2643  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
2644  *  incoming rx multicast addresses, to determine the bit-vector to check in
2645  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2646  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
2647  *  to mc_filter_type.
2648  **/
2649 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2650 {
2651 	u32 vector = 0;
2652 
2653 	DEBUGFUNC("ixgbe_mta_vector");
2654 
2655 	switch (hw->mac.mc_filter_type) {
2656 	case 0:   /* use bits [47:36] of the address */
2657 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2658 		break;
2659 	case 1:   /* use bits [46:35] of the address */
2660 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2661 		break;
2662 	case 2:   /* use bits [45:34] of the address */
2663 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2664 		break;
2665 	case 3:   /* use bits [43:32] of the address */
2666 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2667 		break;
2668 	default:  /* Invalid mc_filter_type */
2669 		DEBUGOUT("MC filter type param set incorrectly\n");
2670 		ASSERT(0);
2671 		break;
2672 	}
2673 
2674 	/* vector can only be 12-bits or boundary will be exceeded */
2675 	vector &= 0xFFF;
2676 	return vector;
2677 }
2678 
2679 /**
2680  *  ixgbe_set_mta - Set bit-vector in multicast table
2681  *  @hw: pointer to hardware structure
2682  *  @hash_value: Multicast address hash value
2683  *
2684  *  Sets the bit-vector in the multicast table.
2685  **/
2686 void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2687 {
2688 	u32 vector;
2689 	u32 vector_bit;
2690 	u32 vector_reg;
2691 
2692 	DEBUGFUNC("ixgbe_set_mta");
2693 
2694 	hw->addr_ctrl.mta_in_use++;
2695 
2696 	vector = ixgbe_mta_vector(hw, mc_addr);
2697 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2698 
2699 	/*
2700 	 * The MTA is a register array of 128 32-bit registers. It is treated
2701 	 * like an array of 4096 bits.  We want to set bit
2702 	 * BitArray[vector_value]. So we figure out what register the bit is
2703 	 * in, read it, OR in the new bit, then write back the new value.  The
2704 	 * register is determined by the upper 7 bits of the vector value and
2705 	 * the bit within that register are determined by the lower 5 bits of
2706 	 * the value.
2707 	 */
2708 	vector_reg = (vector >> 5) & 0x7F;
2709 	vector_bit = vector & 0x1F;
2710 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2711 }
2712 
2713 /**
2714  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2715  *  @hw: pointer to hardware structure
2716  *  @mc_addr_list: the list of new multicast addresses
2717  *  @mc_addr_count: number of addresses
2718  *  @next: iterator function to walk the multicast address list
2719  *  @clear: flag, when set clears the table beforehand
2720  *
2721  *  When the clear flag is set, the given list replaces any existing list.
2722  *  Hashes the given addresses into the multicast table.
2723  **/
2724 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2725 				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
2726 				      bool clear)
2727 {
2728 	u32 i;
2729 	u32 vmdq;
2730 
2731 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2732 
2733 	/*
2734 	 * Set the new number of MC addresses that we are being requested to
2735 	 * use.
2736 	 */
2737 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2738 	hw->addr_ctrl.mta_in_use = 0;
2739 
2740 	/* Clear mta_shadow */
2741 	if (clear) {
2742 		DEBUGOUT(" Clearing MTA\n");
2743 		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2744 	}
2745 
2746 	/* Update mta_shadow */
2747 	for (i = 0; i < mc_addr_count; i++) {
2748 		DEBUGOUT(" Adding the multicast addresses:\n");
2749 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2750 	}
2751 
2752 	/* Enable mta */
2753 	for (i = 0; i < hw->mac.mcft_size; i++)
2754 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2755 				      hw->mac.mta_shadow[i]);
2756 
2757 	if (hw->addr_ctrl.mta_in_use > 0)
2758 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2759 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2760 
2761 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2762 	return IXGBE_SUCCESS;
2763 }
2764 
2765 /**
2766  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2767  *  @hw: pointer to hardware structure
2768  *
2769  *  Enables multicast address in RAR and the use of the multicast hash table.
2770  **/
2771 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2772 {
2773 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2774 
2775 	DEBUGFUNC("ixgbe_enable_mc_generic");
2776 
2777 	if (a->mta_in_use > 0)
2778 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2779 				hw->mac.mc_filter_type);
2780 
2781 	return IXGBE_SUCCESS;
2782 }
2783 
2784 /**
2785  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2786  *  @hw: pointer to hardware structure
2787  *
2788  *  Disables multicast address in RAR and the use of the multicast hash table.
2789  **/
2790 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2791 {
2792 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2793 
2794 	DEBUGFUNC("ixgbe_disable_mc_generic");
2795 
2796 	if (a->mta_in_use > 0)
2797 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2798 
2799 	return IXGBE_SUCCESS;
2800 }
2801 
2802 /**
2803  *  ixgbe_fc_enable_generic - Enable flow control
2804  *  @hw: pointer to hardware structure
2805  *
2806  *  Enable flow control according to the current settings.
2807  **/
2808 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2809 {
2810 	s32 ret_val = IXGBE_SUCCESS;
2811 	u32 mflcn_reg, fccfg_reg;
2812 	u32 reg;
2813 	u32 fcrtl, fcrth;
2814 	int i;
2815 
2816 	DEBUGFUNC("ixgbe_fc_enable_generic");
2817 
2818 	/* Validate the water mark configuration */
2819 	if (!hw->fc.pause_time) {
2820 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2821 		goto out;
2822 	}
2823 
2824 	/* Low water mark of zero causes XOFF floods */
2825 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2826 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2827 		    hw->fc.high_water[i]) {
2828 			if (!hw->fc.low_water[i] ||
2829 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2830 				DEBUGOUT("Invalid water mark configuration\n");
2831 				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2832 				goto out;
2833 			}
2834 		}
2835 	}
2836 
2837 	/* Negotiate the fc mode to use */
2838 	hw->mac.ops.fc_autoneg(hw);
2839 
2840 	/* Disable any previous flow control settings */
2841 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2842 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2843 
2844 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2845 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2846 
2847 	/*
2848 	 * The possible values of fc.current_mode are:
2849 	 * 0: Flow control is completely disabled
2850 	 * 1: Rx flow control is enabled (we can receive pause frames,
2851 	 *    but not send pause frames).
2852 	 * 2: Tx flow control is enabled (we can send pause frames but
2853 	 *    we do not support receiving pause frames).
2854 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2855 	 * other: Invalid.
2856 	 */
2857 	switch (hw->fc.current_mode) {
2858 	case ixgbe_fc_none:
2859 		/*
2860 		 * Flow control is disabled by software override or autoneg.
2861 		 * The code below will actually disable it in the HW.
2862 		 */
2863 		break;
2864 	case ixgbe_fc_rx_pause:
2865 		/*
2866 		 * Rx Flow control is enabled and Tx Flow control is
2867 		 * disabled by software override. Since there really
2868 		 * isn't a way to advertise that we are capable of RX
2869 		 * Pause ONLY, we will advertise that we support both
2870 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2871 		 * disable the adapter's ability to send PAUSE frames.
2872 		 */
2873 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2874 		break;
2875 	case ixgbe_fc_tx_pause:
2876 		/*
2877 		 * Tx Flow control is enabled, and Rx Flow control is
2878 		 * disabled by software override.
2879 		 */
2880 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2881 		break;
2882 	case ixgbe_fc_full:
2883 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2884 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2885 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2886 		break;
2887 	default:
2888 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2889 			     "Flow control param set incorrectly\n");
2890 		ret_val = IXGBE_ERR_CONFIG;
2891 		goto out;
2892 		break;
2893 	}
2894 
2895 	/* Set 802.3x based flow control settings. */
2896 	mflcn_reg |= IXGBE_MFLCN_DPF;
2897 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2898 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2899 
2900 
2901 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2902 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2903 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2904 		    hw->fc.high_water[i]) {
2905 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2906 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2907 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2908 		} else {
2909 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2910 			/*
2911 			 * In order to prevent Tx hangs when the internal Tx
2912 			 * switch is enabled we must set the high water mark
2913 			 * to the Rx packet buffer size - 24KB.  This allows
2914 			 * the Tx switch to function even under heavy Rx
2915 			 * workloads.
2916 			 */
2917 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2918 		}
2919 
2920 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2921 	}
2922 
2923 	/* Configure pause time (2 TCs per register) */
2924 	reg = hw->fc.pause_time * 0x00010001;
2925 	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2926 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2927 
2928 	/* Configure flow control refresh threshold value */
2929 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2930 
2931 out:
2932 	return ret_val;
2933 }
2934 
2935 /**
2936  *  ixgbe_negotiate_fc - Negotiate flow control
2937  *  @hw: pointer to hardware structure
2938  *  @adv_reg: flow control advertised settings
2939  *  @lp_reg: link partner's flow control settings
2940  *  @adv_sym: symmetric pause bit in advertisement
2941  *  @adv_asm: asymmetric pause bit in advertisement
2942  *  @lp_sym: symmetric pause bit in link partner advertisement
2943  *  @lp_asm: asymmetric pause bit in link partner advertisement
2944  *
2945  *  Find the intersection between advertised settings and link partner's
2946  *  advertised settings
2947  **/
2948 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2949 		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2950 {
2951 	if ((!(adv_reg)) ||  (!(lp_reg))) {
2952 		ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2953 			     "Local or link partner's advertised flow control "
2954 			     "settings are NULL. Local: %x, link partner: %x\n",
2955 			     adv_reg, lp_reg);
2956 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2957 	}
2958 
2959 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2960 		/*
2961 		 * Now we need to check if the user selected Rx ONLY
2962 		 * of pause frames.  In this case, we had to advertise
2963 		 * FULL flow control because we could not advertise RX
2964 		 * ONLY. Hence, we must now check to see if we need to
2965 		 * turn OFF the TRANSMISSION of PAUSE frames.
2966 		 */
2967 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2968 			hw->fc.current_mode = ixgbe_fc_full;
2969 			DEBUGOUT("Flow Control = FULL.\n");
2970 		} else {
2971 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2972 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2973 		}
2974 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2975 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2976 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2977 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2978 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2979 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2980 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2981 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2982 	} else {
2983 		hw->fc.current_mode = ixgbe_fc_none;
2984 		DEBUGOUT("Flow Control = NONE.\n");
2985 	}
2986 	return IXGBE_SUCCESS;
2987 }
2988 
2989 /**
2990  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2991  *  @hw: pointer to hardware structure
2992  *
2993  *  Enable flow control according on 1 gig fiber.
2994  **/
2995 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2996 {
2997 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2998 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2999 
3000 	/*
3001 	 * On multispeed fiber at 1g, bail out if
3002 	 * - link is up but AN did not complete, or if
3003 	 * - link is up and AN completed but timed out
3004 	 */
3005 
3006 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
3007 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
3008 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
3009 		DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
3010 		goto out;
3011 	}
3012 
3013 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
3014 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
3015 
3016 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
3017 				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
3018 				      IXGBE_PCS1GANA_ASM_PAUSE,
3019 				      IXGBE_PCS1GANA_SYM_PAUSE,
3020 				      IXGBE_PCS1GANA_ASM_PAUSE);
3021 
3022 out:
3023 	return ret_val;
3024 }
3025 
3026 /**
3027  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
3028  *  @hw: pointer to hardware structure
3029  *
3030  *  Enable flow control according to IEEE clause 37.
3031  **/
3032 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
3033 {
3034 	u32 links2, anlp1_reg, autoc_reg, links;
3035 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3036 
3037 	/*
3038 	 * On backplane, bail out if
3039 	 * - backplane autoneg was not completed, or if
3040 	 * - we are 82599 and link partner is not AN enabled
3041 	 */
3042 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
3043 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
3044 		DEBUGOUT("Auto-Negotiation did not complete\n");
3045 		goto out;
3046 	}
3047 
3048 	if (hw->mac.type == ixgbe_mac_82599EB) {
3049 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
3050 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
3051 			DEBUGOUT("Link partner is not AN enabled\n");
3052 			goto out;
3053 		}
3054 	}
3055 	/*
3056 	 * Read the 10g AN autoc and LP ability registers and resolve
3057 	 * local flow control settings accordingly
3058 	 */
3059 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3060 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
3061 
3062 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
3063 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
3064 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
3065 
3066 out:
3067 	return ret_val;
3068 }
3069 
3070 /**
3071  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
3072  *  @hw: pointer to hardware structure
3073  *
3074  *  Enable flow control according to IEEE clause 37.
3075  **/
3076 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
3077 {
3078 	u16 technology_ability_reg = 0;
3079 	u16 lp_technology_ability_reg = 0;
3080 
3081 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
3082 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3083 			     &technology_ability_reg);
3084 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
3085 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3086 			     &lp_technology_ability_reg);
3087 
3088 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
3089 				  (u32)lp_technology_ability_reg,
3090 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
3091 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
3092 }
3093 
3094 /**
3095  *  ixgbe_fc_autoneg - Configure flow control
3096  *  @hw: pointer to hardware structure
3097  *
3098  *  Compares our advertised flow control capabilities to those advertised by
3099  *  our link partner, and determines the proper flow control mode to use.
3100  **/
3101 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3102 {
3103 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3104 	ixgbe_link_speed speed;
3105 	bool link_up;
3106 
3107 	DEBUGFUNC("ixgbe_fc_autoneg");
3108 
3109 	/*
3110 	 * AN should have completed when the cable was plugged in.
3111 	 * Look for reasons to bail out.  Bail out if:
3112 	 * - FC autoneg is disabled, or if
3113 	 * - link is not up.
3114 	 */
3115 	if (hw->fc.disable_fc_autoneg) {
3116 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
3117 			     "Flow control autoneg is disabled");
3118 		goto out;
3119 	}
3120 
3121 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3122 	if (!link_up) {
3123 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3124 		goto out;
3125 	}
3126 
3127 	switch (hw->phy.media_type) {
3128 	/* Autoneg flow control on fiber adapters */
3129 	case ixgbe_media_type_fiber_fixed:
3130 	case ixgbe_media_type_fiber_qsfp:
3131 	case ixgbe_media_type_fiber:
3132 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3133 			ret_val = ixgbe_fc_autoneg_fiber(hw);
3134 		break;
3135 
3136 	/* Autoneg flow control on backplane adapters */
3137 	case ixgbe_media_type_backplane:
3138 		ret_val = ixgbe_fc_autoneg_backplane(hw);
3139 		break;
3140 
3141 	/* Autoneg flow control on copper adapters */
3142 	case ixgbe_media_type_copper:
3143 		if (ixgbe_device_supports_autoneg_fc(hw))
3144 			ret_val = ixgbe_fc_autoneg_copper(hw);
3145 		break;
3146 
3147 	default:
3148 		break;
3149 	}
3150 
3151 out:
3152 	if (ret_val == IXGBE_SUCCESS) {
3153 		hw->fc.fc_was_autonegged = TRUE;
3154 	} else {
3155 		hw->fc.fc_was_autonegged = FALSE;
3156 		hw->fc.current_mode = hw->fc.requested_mode;
3157 	}
3158 }
3159 
3160 /*
3161  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3162  * @hw: pointer to hardware structure
3163  *
3164  * System-wide timeout range is encoded in PCIe Device Control2 register.
3165  *
3166  * Add 10% to specified maximum and return the number of times to poll for
3167  * completion timeout, in units of 100 microsec.  Never return less than
3168  * 800 = 80 millisec.
3169  */
3170 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3171 {
3172 	s16 devctl2;
3173 	u32 pollcnt;
3174 
3175 	devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3176 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3177 
3178 	switch (devctl2) {
3179 	case IXGBE_PCIDEVCTRL2_65_130ms:
3180 		pollcnt = 1300;		/* 130 millisec */
3181 		break;
3182 	case IXGBE_PCIDEVCTRL2_260_520ms:
3183 		pollcnt = 5200;		/* 520 millisec */
3184 		break;
3185 	case IXGBE_PCIDEVCTRL2_1_2s:
3186 		pollcnt = 20000;	/* 2 sec */
3187 		break;
3188 	case IXGBE_PCIDEVCTRL2_4_8s:
3189 		pollcnt = 80000;	/* 8 sec */
3190 		break;
3191 	case IXGBE_PCIDEVCTRL2_17_34s:
3192 		pollcnt = 34000;	/* 34 sec */
3193 		break;
3194 	case IXGBE_PCIDEVCTRL2_50_100us:	/* 100 microsecs */
3195 	case IXGBE_PCIDEVCTRL2_1_2ms:		/* 2 millisecs */
3196 	case IXGBE_PCIDEVCTRL2_16_32ms:		/* 32 millisec */
3197 	case IXGBE_PCIDEVCTRL2_16_32ms_def:	/* 32 millisec default */
3198 	default:
3199 		pollcnt = 800;		/* 80 millisec minimum */
3200 		break;
3201 	}
3202 
3203 	/* add 10% to spec maximum */
3204 	return (pollcnt * 11) / 10;
3205 }
3206 
3207 /**
3208  *  ixgbe_disable_pcie_master - Disable PCI-express master access
3209  *  @hw: pointer to hardware structure
3210  *
3211  *  Disables PCI-Express master access and verifies there are no pending
3212  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3213  *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3214  *  is returned signifying master requests disabled.
3215  **/
3216 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3217 {
3218 	s32 status = IXGBE_SUCCESS;
3219 	u32 i, poll;
3220 	u16 value;
3221 
3222 	DEBUGFUNC("ixgbe_disable_pcie_master");
3223 
3224 	/* Always set this bit to ensure any future transactions are blocked */
3225 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3226 
3227 	/* Exit if master requests are blocked */
3228 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3229 	    IXGBE_REMOVED(hw->hw_addr))
3230 		goto out;
3231 
3232 	/* Poll for master request bit to clear */
3233 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3234 		usec_delay(100);
3235 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3236 			goto out;
3237 	}
3238 
3239 	/*
3240 	 * Two consecutive resets are required via CTRL.RST per datasheet
3241 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
3242 	 * of this need.  The first reset prevents new master requests from
3243 	 * being issued by our device.  We then must wait 1usec or more for any
3244 	 * remaining completions from the PCIe bus to trickle in, and then reset
3245 	 * again to clear out any effects they may have had on our device.
3246 	 */
3247 	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3248 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3249 
3250 	if (hw->mac.type >= ixgbe_mac_X550)
3251 		goto out;
3252 
3253 	/*
3254 	 * Before proceeding, make sure that the PCIe block does not have
3255 	 * transactions pending.
3256 	 */
3257 	poll = ixgbe_pcie_timeout_poll(hw);
3258 	for (i = 0; i < poll; i++) {
3259 		usec_delay(100);
3260 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3261 		if (IXGBE_REMOVED(hw->hw_addr))
3262 			goto out;
3263 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3264 			goto out;
3265 	}
3266 
3267 	ERROR_REPORT1(IXGBE_ERROR_POLLING,
3268 		     "PCIe transaction pending bit also did not clear.\n");
3269 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3270 
3271 out:
3272 	return status;
3273 }
3274 
3275 /**
3276  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3277  *  @hw: pointer to hardware structure
3278  *  @mask: Mask to specify which semaphore to acquire
3279  *
3280  *  Acquires the SWFW semaphore through the GSSR register for the specified
3281  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
3282  **/
3283 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3284 {
3285 	u32 gssr = 0;
3286 	u32 swmask = mask;
3287 	u32 fwmask = mask << 5;
3288 	u32 timeout = 200;
3289 	u32 i;
3290 
3291 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
3292 
3293 	for (i = 0; i < timeout; i++) {
3294 		/*
3295 		 * SW NVM semaphore bit is used for access to all
3296 		 * SW_FW_SYNC bits (not just NVM)
3297 		 */
3298 		if (ixgbe_get_eeprom_semaphore(hw))
3299 			return IXGBE_ERR_SWFW_SYNC;
3300 
3301 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3302 		if (!(gssr & (fwmask | swmask))) {
3303 			gssr |= swmask;
3304 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3305 			ixgbe_release_eeprom_semaphore(hw);
3306 			return IXGBE_SUCCESS;
3307 		} else {
3308 			/* Resource is currently in use by FW or SW */
3309 			ixgbe_release_eeprom_semaphore(hw);
3310 			msec_delay(5);
3311 		}
3312 	}
3313 
3314 	/* If time expired clear the bits holding the lock and retry */
3315 	if (gssr & (fwmask | swmask))
3316 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3317 
3318 	msec_delay(5);
3319 	return IXGBE_ERR_SWFW_SYNC;
3320 }
3321 
3322 /**
3323  *  ixgbe_release_swfw_sync - Release SWFW semaphore
3324  *  @hw: pointer to hardware structure
3325  *  @mask: Mask to specify which semaphore to release
3326  *
3327  *  Releases the SWFW semaphore through the GSSR register for the specified
3328  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
3329  **/
3330 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3331 {
3332 	u32 gssr;
3333 	u32 swmask = mask;
3334 
3335 	DEBUGFUNC("ixgbe_release_swfw_sync");
3336 
3337 	ixgbe_get_eeprom_semaphore(hw);
3338 
3339 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3340 	gssr &= ~swmask;
3341 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3342 
3343 	ixgbe_release_eeprom_semaphore(hw);
3344 }
3345 
3346 /**
3347  *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3348  *  @hw: pointer to hardware structure
3349  *
3350  *  Stops the receive data path and waits for the HW to internally empty
3351  *  the Rx security block
3352  **/
3353 s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3354 {
3355 #define IXGBE_MAX_SECRX_POLL 4000
3356 
3357 	int i;
3358 	int secrxreg;
3359 
3360 	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3361 
3362 
3363 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3364 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3365 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3366 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3367 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3368 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3369 			break;
3370 		else
3371 			/* Use interrupt-safe sleep just in case */
3372 			usec_delay(10);
3373 	}
3374 
3375 	/* For informational purposes only */
3376 	if (i >= IXGBE_MAX_SECRX_POLL)
3377 		DEBUGOUT("Rx unit being enabled before security "
3378 			 "path fully disabled.  Continuing with init.\n");
3379 
3380 	return IXGBE_SUCCESS;
3381 }
3382 
3383 /**
3384  *  prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3385  *  @hw: pointer to hardware structure
3386  *  @reg_val: Value we read from AUTOC
3387  *
3388  *  The default case requires no protection so just to the register read.
3389  */
3390 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3391 {
3392 	*locked = FALSE;
3393 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3394 	return IXGBE_SUCCESS;
3395 }
3396 
3397 /**
3398  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3399  * @hw: pointer to hardware structure
3400  * @reg_val: value to write to AUTOC
3401  * @locked: bool to indicate whether the SW/FW lock was already taken by
3402  *           previous read.
3403  *
3404  * The default case requires no protection so just to the register write.
3405  */
3406 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3407 {
3408 	UNREFERENCED_1PARAMETER(locked);
3409 
3410 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3411 	return IXGBE_SUCCESS;
3412 }
3413 
3414 /**
3415  *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3416  *  @hw: pointer to hardware structure
3417  *
3418  *  Enables the receive data path.
3419  **/
3420 s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3421 {
3422 	u32 secrxreg;
3423 
3424 	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3425 
3426 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3427 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3428 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3429 	IXGBE_WRITE_FLUSH(hw);
3430 
3431 	return IXGBE_SUCCESS;
3432 }
3433 
3434 /**
3435  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3436  *  @hw: pointer to hardware structure
3437  *  @regval: register value to write to RXCTRL
3438  *
3439  *  Enables the Rx DMA unit
3440  **/
3441 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3442 {
3443 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3444 
3445 	if (regval & IXGBE_RXCTRL_RXEN)
3446 		ixgbe_enable_rx(hw);
3447 	else
3448 		ixgbe_disable_rx(hw);
3449 
3450 	return IXGBE_SUCCESS;
3451 }
3452 
3453 /**
3454  *  ixgbe_blink_led_start_generic - Blink LED based on index.
3455  *  @hw: pointer to hardware structure
3456  *  @index: led number to blink
3457  **/
3458 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3459 {
3460 	ixgbe_link_speed speed = 0;
3461 	bool link_up = 0;
3462 	u32 autoc_reg = 0;
3463 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3464 	s32 ret_val = IXGBE_SUCCESS;
3465 	bool locked = FALSE;
3466 
3467 	DEBUGFUNC("ixgbe_blink_led_start_generic");
3468 
3469 	if (index > 3)
3470 		return IXGBE_ERR_PARAM;
3471 
3472 	/*
3473 	 * Link must be up to auto-blink the LEDs;
3474 	 * Force it if link is down.
3475 	 */
3476 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3477 
3478 	if (!link_up) {
3479 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3480 		if (ret_val != IXGBE_SUCCESS)
3481 			goto out;
3482 
3483 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3484 		autoc_reg |= IXGBE_AUTOC_FLU;
3485 
3486 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3487 		if (ret_val != IXGBE_SUCCESS)
3488 			goto out;
3489 
3490 		IXGBE_WRITE_FLUSH(hw);
3491 		msec_delay(10);
3492 	}
3493 
3494 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3495 	led_reg |= IXGBE_LED_BLINK(index);
3496 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3497 	IXGBE_WRITE_FLUSH(hw);
3498 
3499 out:
3500 	return ret_val;
3501 }
3502 
3503 /**
3504  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3505  *  @hw: pointer to hardware structure
3506  *  @index: led number to stop blinking
3507  **/
3508 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3509 {
3510 	u32 autoc_reg = 0;
3511 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3512 	s32 ret_val = IXGBE_SUCCESS;
3513 	bool locked = FALSE;
3514 
3515 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
3516 
3517 	if (index > 3)
3518 		return IXGBE_ERR_PARAM;
3519 
3520 
3521 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3522 	if (ret_val != IXGBE_SUCCESS)
3523 		goto out;
3524 
3525 	autoc_reg &= ~IXGBE_AUTOC_FLU;
3526 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3527 
3528 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3529 	if (ret_val != IXGBE_SUCCESS)
3530 		goto out;
3531 
3532 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3533 	led_reg &= ~IXGBE_LED_BLINK(index);
3534 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3535 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3536 	IXGBE_WRITE_FLUSH(hw);
3537 
3538 out:
3539 	return ret_val;
3540 }
3541 
3542 /**
3543  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3544  *  @hw: pointer to hardware structure
3545  *  @san_mac_offset: SAN MAC address offset
3546  *
3547  *  This function will read the EEPROM location for the SAN MAC address
3548  *  pointer, and returns the value at that location.  This is used in both
3549  *  get and set mac_addr routines.
3550  **/
3551 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3552 					 u16 *san_mac_offset)
3553 {
3554 	s32 ret_val;
3555 
3556 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3557 
3558 	/*
3559 	 * First read the EEPROM pointer to see if the MAC addresses are
3560 	 * available.
3561 	 */
3562 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3563 				      san_mac_offset);
3564 	if (ret_val) {
3565 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3566 			      "eeprom at offset %d failed",
3567 			      IXGBE_SAN_MAC_ADDR_PTR);
3568 	}
3569 
3570 	return ret_val;
3571 }
3572 
3573 /**
3574  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3575  *  @hw: pointer to hardware structure
3576  *  @san_mac_addr: SAN MAC address
3577  *
3578  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
3579  *  per-port, so set_lan_id() must be called before reading the addresses.
3580  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
3581  *  upon for non-SFP connections, so we must call it here.
3582  **/
3583 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3584 {
3585 	u16 san_mac_data, san_mac_offset;
3586 	u8 i;
3587 	s32 ret_val;
3588 
3589 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3590 
3591 	/*
3592 	 * First read the EEPROM pointer to see if the MAC addresses are
3593 	 * available.  If they're not, no point in calling set_lan_id() here.
3594 	 */
3595 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3596 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3597 		goto san_mac_addr_out;
3598 
3599 	/* make sure we know which port we need to program */
3600 	hw->mac.ops.set_lan_id(hw);
3601 	/* apply the port offset to the address offset */
3602 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3603 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3604 	for (i = 0; i < 3; i++) {
3605 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3606 					      &san_mac_data);
3607 		if (ret_val) {
3608 			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3609 				      "eeprom read at offset %d failed",
3610 				      san_mac_offset);
3611 			goto san_mac_addr_out;
3612 		}
3613 		san_mac_addr[i * 2] = (u8)(san_mac_data);
3614 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3615 		san_mac_offset++;
3616 	}
3617 	return IXGBE_SUCCESS;
3618 
3619 san_mac_addr_out:
3620 	/*
3621 	 * No addresses available in this EEPROM.  It's not an
3622 	 * error though, so just wipe the local address and return.
3623 	 */
3624 	for (i = 0; i < 6; i++)
3625 		san_mac_addr[i] = 0xFF;
3626 	return IXGBE_SUCCESS;
3627 }
3628 
3629 /**
3630  *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3631  *  @hw: pointer to hardware structure
3632  *  @san_mac_addr: SAN MAC address
3633  *
3634  *  Write a SAN MAC address to the EEPROM.
3635  **/
3636 s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3637 {
3638 	s32 ret_val;
3639 	u16 san_mac_data, san_mac_offset;
3640 	u8 i;
3641 
3642 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3643 
3644 	/* Look for SAN mac address pointer.  If not defined, return */
3645 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3646 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3647 		return IXGBE_ERR_NO_SAN_ADDR_PTR;
3648 
3649 	/* Make sure we know which port we need to write */
3650 	hw->mac.ops.set_lan_id(hw);
3651 	/* Apply the port offset to the address offset */
3652 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3653 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3654 
3655 	for (i = 0; i < 3; i++) {
3656 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3657 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
3658 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3659 		san_mac_offset++;
3660 	}
3661 
3662 	return IXGBE_SUCCESS;
3663 }
3664 
3665 /**
3666  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3667  *  @hw: pointer to hardware structure
3668  *
3669  *  Read PCIe configuration space, and get the MSI-X vector count from
3670  *  the capabilities table.
3671  **/
3672 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3673 {
3674 	u16 msix_count = 1;
3675 	u16 max_msix_count;
3676 	u16 pcie_offset;
3677 
3678 	switch (hw->mac.type) {
3679 	case ixgbe_mac_82598EB:
3680 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3681 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3682 		break;
3683 	case ixgbe_mac_82599EB:
3684 	case ixgbe_mac_X540:
3685 	case ixgbe_mac_X550:
3686 	case ixgbe_mac_X550EM_x:
3687 	case ixgbe_mac_X550EM_a:
3688 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3689 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3690 		break;
3691 	default:
3692 		return msix_count;
3693 	}
3694 
3695 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3696 	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3697 	if (IXGBE_REMOVED(hw->hw_addr))
3698 		msix_count = 0;
3699 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3700 
3701 	/* MSI-X count is zero-based in HW */
3702 	msix_count++;
3703 
3704 	if (msix_count > max_msix_count)
3705 		msix_count = max_msix_count;
3706 
3707 	return msix_count;
3708 }
3709 
3710 /**
3711  *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3712  *  @hw: pointer to hardware structure
3713  *  @addr: Address to put into receive address register
3714  *  @vmdq: VMDq pool to assign
3715  *
3716  *  Puts an ethernet address into a receive address register, or
3717  *  finds the rar that it is aleady in; adds to the pool list
3718  **/
3719 s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3720 {
3721 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3722 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3723 	u32 rar;
3724 	u32 rar_low, rar_high;
3725 	u32 addr_low, addr_high;
3726 
3727 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3728 
3729 	/* swap bytes for HW little endian */
3730 	addr_low  = addr[0] | (addr[1] << 8)
3731 			    | (addr[2] << 16)
3732 			    | (addr[3] << 24);
3733 	addr_high = addr[4] | (addr[5] << 8);
3734 
3735 	/*
3736 	 * Either find the mac_id in rar or find the first empty space.
3737 	 * rar_highwater points to just after the highest currently used
3738 	 * rar in order to shorten the search.  It grows when we add a new
3739 	 * rar to the top.
3740 	 */
3741 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3742 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3743 
3744 		if (((IXGBE_RAH_AV & rar_high) == 0)
3745 		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3746 			first_empty_rar = rar;
3747 		} else if ((rar_high & 0xFFFF) == addr_high) {
3748 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3749 			if (rar_low == addr_low)
3750 				break;    /* found it already in the rars */
3751 		}
3752 	}
3753 
3754 	if (rar < hw->mac.rar_highwater) {
3755 		/* already there so just add to the pool bits */
3756 		ixgbe_set_vmdq(hw, rar, vmdq);
3757 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3758 		/* stick it into first empty RAR slot we found */
3759 		rar = first_empty_rar;
3760 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3761 	} else if (rar == hw->mac.rar_highwater) {
3762 		/* add it to the top of the list and inc the highwater mark */
3763 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3764 		hw->mac.rar_highwater++;
3765 	} else if (rar >= hw->mac.num_rar_entries) {
3766 		return IXGBE_ERR_INVALID_MAC_ADDR;
3767 	}
3768 
3769 	/*
3770 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
3771 	 * remains cleared to be sure default pool packets will get delivered
3772 	 */
3773 	if (rar == 0)
3774 		ixgbe_clear_vmdq(hw, rar, 0);
3775 
3776 	return rar;
3777 }
3778 
3779 /**
3780  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3781  *  @hw: pointer to hardware struct
3782  *  @rar: receive address register index to disassociate
3783  *  @vmdq: VMDq pool index to remove from the rar
3784  **/
3785 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3786 {
3787 	u32 mpsar_lo, mpsar_hi;
3788 	u32 rar_entries = hw->mac.num_rar_entries;
3789 
3790 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
3791 
3792 	/* Make sure we are using a valid rar index range */
3793 	if (rar >= rar_entries) {
3794 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3795 			     "RAR index %d is out of range.\n", rar);
3796 		return IXGBE_ERR_INVALID_ARGUMENT;
3797 	}
3798 
3799 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3800 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3801 
3802 	if (IXGBE_REMOVED(hw->hw_addr))
3803 		goto done;
3804 
3805 	if (!mpsar_lo && !mpsar_hi)
3806 		goto done;
3807 
3808 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3809 		if (mpsar_lo) {
3810 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3811 			mpsar_lo = 0;
3812 		}
3813 		if (mpsar_hi) {
3814 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3815 			mpsar_hi = 0;
3816 		}
3817 	} else if (vmdq < 32) {
3818 		mpsar_lo &= ~(1 << vmdq);
3819 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3820 	} else {
3821 		mpsar_hi &= ~(1 << (vmdq - 32));
3822 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3823 	}
3824 
3825 	/* was that the last pool using this rar? */
3826 	if (mpsar_lo == 0 && mpsar_hi == 0 &&
3827 	    rar != 0 && rar != hw->mac.san_mac_rar_index)
3828 		hw->mac.ops.clear_rar(hw, rar);
3829 done:
3830 	return IXGBE_SUCCESS;
3831 }
3832 
3833 /**
3834  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3835  *  @hw: pointer to hardware struct
3836  *  @rar: receive address register index to associate with a VMDq index
3837  *  @vmdq: VMDq pool index
3838  **/
3839 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3840 {
3841 	u32 mpsar;
3842 	u32 rar_entries = hw->mac.num_rar_entries;
3843 
3844 	DEBUGFUNC("ixgbe_set_vmdq_generic");
3845 
3846 	/* Make sure we are using a valid rar index range */
3847 	if (rar >= rar_entries) {
3848 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3849 			     "RAR index %d is out of range.\n", rar);
3850 		return IXGBE_ERR_INVALID_ARGUMENT;
3851 	}
3852 
3853 	if (vmdq < 32) {
3854 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3855 		mpsar |= 1 << vmdq;
3856 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3857 	} else {
3858 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3859 		mpsar |= 1 << (vmdq - 32);
3860 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3861 	}
3862 	return IXGBE_SUCCESS;
3863 }
3864 
3865 /**
3866  *  This function should only be involved in the IOV mode.
3867  *  In IOV mode, Default pool is next pool after the number of
3868  *  VFs advertized and not 0.
3869  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3870  *
3871  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3872  *  @hw: pointer to hardware struct
3873  *  @vmdq: VMDq pool index
3874  **/
3875 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3876 {
3877 	u32 rar = hw->mac.san_mac_rar_index;
3878 
3879 	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3880 
3881 	if (vmdq < 32) {
3882 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3883 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3884 	} else {
3885 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3886 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3887 	}
3888 
3889 	return IXGBE_SUCCESS;
3890 }
3891 
3892 /**
3893  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3894  *  @hw: pointer to hardware structure
3895  **/
3896 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3897 {
3898 	int i;
3899 
3900 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
3901 	DEBUGOUT(" Clearing UTA\n");
3902 
3903 	for (i = 0; i < 128; i++)
3904 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3905 
3906 	return IXGBE_SUCCESS;
3907 }
3908 
3909 /**
3910  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3911  *  @hw: pointer to hardware structure
3912  *  @vlan: VLAN id to write to VLAN filter
3913  *
3914  *  return the VLVF index where this VLAN id should be placed
3915  *
3916  **/
3917 s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3918 {
3919 	s32 regindex, first_empty_slot;
3920 	u32 bits;
3921 
3922 	/* short cut the special case */
3923 	if (vlan == 0)
3924 		return 0;
3925 
3926 	/* if vlvf_bypass is set we don't want to use an empty slot, we
3927 	 * will simply bypass the VLVF if there are no entries present in the
3928 	 * VLVF that contain our VLAN
3929 	 */
3930 	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3931 
3932 	/* add VLAN enable bit for comparison */
3933 	vlan |= IXGBE_VLVF_VIEN;
3934 
3935 	/* Search for the vlan id in the VLVF entries. Save off the first empty
3936 	 * slot found along the way.
3937 	 *
3938 	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3939 	 */
3940 	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3941 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3942 		if (bits == vlan)
3943 			return regindex;
3944 		if (!first_empty_slot && !bits)
3945 			first_empty_slot = regindex;
3946 	}
3947 
3948 	/* If we are here then we didn't find the VLAN.  Return first empty
3949 	 * slot we found during our search, else error.
3950 	 */
3951 	if (!first_empty_slot)
3952 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n");
3953 
3954 	return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE;
3955 }
3956 
3957 /**
3958  *  ixgbe_set_vfta_generic - Set VLAN filter table
3959  *  @hw: pointer to hardware structure
3960  *  @vlan: VLAN id to write to VLAN filter
3961  *  @vind: VMDq output index that maps queue to VLAN id in VLVFB
3962  *  @vlan_on: boolean flag to turn on/off VLAN
3963  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3964  *
3965  *  Turn on/off specified VLAN in the VLAN filter table.
3966  **/
3967 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3968 			   bool vlan_on, bool vlvf_bypass)
3969 {
3970 	u32 regidx, vfta_delta, vfta;
3971 	s32 ret_val;
3972 
3973 	DEBUGFUNC("ixgbe_set_vfta_generic");
3974 
3975 	if (vlan > 4095 || vind > 63)
3976 		return IXGBE_ERR_PARAM;
3977 
3978 	/*
3979 	 * this is a 2 part operation - first the VFTA, then the
3980 	 * VLVF and VLVFB if VT Mode is set
3981 	 * We don't write the VFTA until we know the VLVF part succeeded.
3982 	 */
3983 
3984 	/* Part 1
3985 	 * The VFTA is a bitstring made up of 128 32-bit registers
3986 	 * that enable the particular VLAN id, much like the MTA:
3987 	 *    bits[11-5]: which register
3988 	 *    bits[4-0]:  which bit in the register
3989 	 */
3990 	regidx = vlan / 32;
3991 	vfta_delta = 1 << (vlan % 32);
3992 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3993 
3994 	/*
3995 	 * vfta_delta represents the difference between the current value
3996 	 * of vfta and the value we want in the register.  Since the diff
3997 	 * is an XOR mask we can just update the vfta using an XOR
3998 	 */
3999 	vfta_delta &= vlan_on ? ~vfta : vfta;
4000 	vfta ^= vfta_delta;
4001 
4002 	/* Part 2
4003 	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
4004 	 */
4005 	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta,
4006 					 vfta, vlvf_bypass);
4007 	if (ret_val != IXGBE_SUCCESS) {
4008 		if (vlvf_bypass)
4009 			goto vfta_update;
4010 		return ret_val;
4011 	}
4012 
4013 vfta_update:
4014 	/* Update VFTA now that we are ready for traffic */
4015 	if (vfta_delta)
4016 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
4017 
4018 	return IXGBE_SUCCESS;
4019 }
4020 
4021 /**
4022  *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
4023  *  @hw: pointer to hardware structure
4024  *  @vlan: VLAN id to write to VLAN filter
4025  *  @vind: VMDq output index that maps queue to VLAN id in VLVFB
4026  *  @vlan_on: boolean flag to turn on/off VLAN in VLVF
4027  *  @vfta_delta: pointer to the difference between the current value of VFTA
4028  *		 and the desired value
4029  *  @vfta: the desired value of the VFTA
4030  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
4031  *
4032  *  Turn on/off specified bit in VLVF table.
4033  **/
4034 s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
4035 			   bool vlan_on, u32 *vfta_delta, u32 vfta,
4036 			   bool vlvf_bypass)
4037 {
4038 	u32 bits;
4039 	s32 vlvf_index;
4040 
4041 	DEBUGFUNC("ixgbe_set_vlvf_generic");
4042 
4043 	if (vlan > 4095 || vind > 63)
4044 		return IXGBE_ERR_PARAM;
4045 
4046 	/* If VT Mode is set
4047 	 *   Either vlan_on
4048 	 *     make sure the vlan is in VLVF
4049 	 *     set the vind bit in the matching VLVFB
4050 	 *   Or !vlan_on
4051 	 *     clear the pool bit and possibly the vind
4052 	 */
4053 	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
4054 		return IXGBE_SUCCESS;
4055 
4056 	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
4057 	if (vlvf_index < 0)
4058 		return vlvf_index;
4059 
4060 	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
4061 
4062 	/* set the pool bit */
4063 	bits |= 1 << (vind % 32);
4064 	if (vlan_on)
4065 		goto vlvf_update;
4066 
4067 	/* clear the pool bit */
4068 	bits ^= 1 << (vind % 32);
4069 
4070 	if (!bits &&
4071 	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
4072 		/* Clear VFTA first, then disable VLVF.  Otherwise
4073 		 * we run the risk of stray packets leaking into
4074 		 * the PF via the default pool
4075 		 */
4076 		if (*vfta_delta)
4077 			IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta);
4078 
4079 		/* disable VLVF and clear remaining bit from pool */
4080 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4081 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
4082 
4083 		return IXGBE_SUCCESS;
4084 	}
4085 
4086 	/* If there are still bits set in the VLVFB registers
4087 	 * for the VLAN ID indicated we need to see if the
4088 	 * caller is requesting that we clear the VFTA entry bit.
4089 	 * If the caller has requested that we clear the VFTA
4090 	 * entry bit but there are still pools/VFs using this VLAN
4091 	 * ID entry then ignore the request.  We're not worried
4092 	 * about the case where we're turning the VFTA VLAN ID
4093 	 * entry bit on, only when requested to turn it off as
4094 	 * there may be multiple pools and/or VFs using the
4095 	 * VLAN ID entry.  In that case we cannot clear the
4096 	 * VFTA bit until all pools/VFs using that VLAN ID have also
4097 	 * been cleared.  This will be indicated by "bits" being
4098 	 * zero.
4099 	 */
4100 	*vfta_delta = 0;
4101 
4102 vlvf_update:
4103 	/* record pool change and enable VLAN ID if not already enabled */
4104 	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
4105 	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
4106 
4107 	return IXGBE_SUCCESS;
4108 }
4109 
4110 /**
4111  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
4112  *  @hw: pointer to hardware structure
4113  *
4114  *  Clears the VLAN filer table, and the VMDq index associated with the filter
4115  **/
4116 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4117 {
4118 	u32 offset;
4119 
4120 	DEBUGFUNC("ixgbe_clear_vfta_generic");
4121 
4122 	for (offset = 0; offset < hw->mac.vft_size; offset++)
4123 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4124 
4125 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4126 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4127 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4128 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
4129 	}
4130 
4131 	return IXGBE_SUCCESS;
4132 }
4133 
4134 /**
4135  *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
4136  *  @hw: pointer to hardware structure
4137  *
4138  *  Contains the logic to identify if we need to verify link for the
4139  *  crosstalk fix
4140  **/
4141 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
4142 {
4143 
4144 	/* Does FW say we need the fix */
4145 	if (!hw->need_crosstalk_fix)
4146 		return FALSE;
4147 
4148 	/* Only consider SFP+ PHYs i.e. media type fiber */
4149 	switch (hw->mac.ops.get_media_type(hw)) {
4150 	case ixgbe_media_type_fiber:
4151 	case ixgbe_media_type_fiber_qsfp:
4152 		break;
4153 	default:
4154 		return FALSE;
4155 	}
4156 
4157 	return TRUE;
4158 }
4159 
4160 /**
4161  *  ixgbe_check_mac_link_generic - Determine link and speed status
4162  *  @hw: pointer to hardware structure
4163  *  @speed: pointer to link speed
4164  *  @link_up: TRUE when link is up
4165  *  @link_up_wait_to_complete: bool used to wait for link up or not
4166  *
4167  *  Reads the links register to determine if link is up and the current speed
4168  **/
4169 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4170 				 bool *link_up, bool link_up_wait_to_complete)
4171 {
4172 	u32 links_reg, links_orig;
4173 	u32 i;
4174 
4175 	DEBUGFUNC("ixgbe_check_mac_link_generic");
4176 
4177 	/* If Crosstalk fix enabled do the sanity check of making sure
4178 	 * the SFP+ cage is full.
4179 	 */
4180 	if (ixgbe_need_crosstalk_fix(hw)) {
4181 		u32 sfp_cage_full;
4182 
4183 		switch (hw->mac.type) {
4184 		case ixgbe_mac_82599EB:
4185 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
4186 					IXGBE_ESDP_SDP2;
4187 			break;
4188 		case ixgbe_mac_X550EM_x:
4189 		case ixgbe_mac_X550EM_a:
4190 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
4191 					IXGBE_ESDP_SDP0;
4192 			break;
4193 		default:
4194 			/* sanity check - No SFP+ devices here */
4195 			sfp_cage_full = FALSE;
4196 			break;
4197 		}
4198 
4199 		if (!sfp_cage_full) {
4200 			*link_up = FALSE;
4201 			*speed = IXGBE_LINK_SPEED_UNKNOWN;
4202 			return IXGBE_SUCCESS;
4203 		}
4204 	}
4205 
4206 	/* clear the old state */
4207 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4208 
4209 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4210 
4211 	if (links_orig != links_reg) {
4212 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
4213 			  links_orig, links_reg);
4214 	}
4215 
4216 	if (link_up_wait_to_complete) {
4217 		for (i = 0; i < hw->mac.max_link_up_time; i++) {
4218 			if (links_reg & IXGBE_LINKS_UP) {
4219 				*link_up = TRUE;
4220 				break;
4221 			} else {
4222 				*link_up = FALSE;
4223 			}
4224 			msec_delay(100);
4225 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4226 		}
4227 	} else {
4228 		if (links_reg & IXGBE_LINKS_UP)
4229 			*link_up = TRUE;
4230 		else
4231 			*link_up = FALSE;
4232 	}
4233 
4234 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4235 	case IXGBE_LINKS_SPEED_10G_82599:
4236 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
4237 		if (hw->mac.type >= ixgbe_mac_X550) {
4238 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4239 				*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4240 		}
4241 		break;
4242 	case IXGBE_LINKS_SPEED_1G_82599:
4243 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
4244 		break;
4245 	case IXGBE_LINKS_SPEED_100_82599:
4246 		*speed = IXGBE_LINK_SPEED_100_FULL;
4247 		if (hw->mac.type == ixgbe_mac_X550) {
4248 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4249 				*speed = IXGBE_LINK_SPEED_5GB_FULL;
4250 		}
4251 		break;
4252 	case IXGBE_LINKS_SPEED_10_X550EM_A:
4253 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
4254 		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
4255 		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L)
4256 			*speed = IXGBE_LINK_SPEED_10_FULL;
4257 		break;
4258 	default:
4259 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
4260 	}
4261 
4262 	return IXGBE_SUCCESS;
4263 }
4264 
4265 /**
4266  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4267  *  the EEPROM
4268  *  @hw: pointer to hardware structure
4269  *  @wwnn_prefix: the alternative WWNN prefix
4270  *  @wwpn_prefix: the alternative WWPN prefix
4271  *
4272  *  This function will read the EEPROM from the alternative SAN MAC address
4273  *  block to check the support for the alternative WWNN/WWPN prefix support.
4274  **/
4275 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4276 				 u16 *wwpn_prefix)
4277 {
4278 	u16 offset, caps;
4279 	u16 alt_san_mac_blk_offset;
4280 
4281 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4282 
4283 	/* clear output first */
4284 	*wwnn_prefix = 0xFFFF;
4285 	*wwpn_prefix = 0xFFFF;
4286 
4287 	/* check if alternative SAN MAC is supported */
4288 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4289 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4290 		goto wwn_prefix_err;
4291 
4292 	if ((alt_san_mac_blk_offset == 0) ||
4293 	    (alt_san_mac_blk_offset == 0xFFFF))
4294 		goto wwn_prefix_out;
4295 
4296 	/* check capability in alternative san mac address block */
4297 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4298 	if (hw->eeprom.ops.read(hw, offset, &caps))
4299 		goto wwn_prefix_err;
4300 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4301 		goto wwn_prefix_out;
4302 
4303 	/* get the corresponding prefix for WWNN/WWPN */
4304 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4305 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4306 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4307 			      "eeprom read at offset %d failed", offset);
4308 	}
4309 
4310 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4311 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4312 		goto wwn_prefix_err;
4313 
4314 wwn_prefix_out:
4315 	return IXGBE_SUCCESS;
4316 
4317 wwn_prefix_err:
4318 	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4319 		      "eeprom read at offset %d failed", offset);
4320 	return IXGBE_SUCCESS;
4321 }
4322 
4323 /**
4324  *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4325  *  @hw: pointer to hardware structure
4326  *  @bs: the fcoe boot status
4327  *
4328  *  This function will read the FCOE boot status from the iSCSI FCOE block
4329  **/
4330 s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4331 {
4332 	u16 offset, caps, flags;
4333 	s32 status;
4334 
4335 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4336 
4337 	/* clear output first */
4338 	*bs = ixgbe_fcoe_bootstatus_unavailable;
4339 
4340 	/* check if FCOE IBA block is present */
4341 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4342 	status = hw->eeprom.ops.read(hw, offset, &caps);
4343 	if (status != IXGBE_SUCCESS)
4344 		goto out;
4345 
4346 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4347 		goto out;
4348 
4349 	/* check if iSCSI FCOE block is populated */
4350 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4351 	if (status != IXGBE_SUCCESS)
4352 		goto out;
4353 
4354 	if ((offset == 0) || (offset == 0xFFFF))
4355 		goto out;
4356 
4357 	/* read fcoe flags in iSCSI FCOE block */
4358 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4359 	status = hw->eeprom.ops.read(hw, offset, &flags);
4360 	if (status != IXGBE_SUCCESS)
4361 		goto out;
4362 
4363 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4364 		*bs = ixgbe_fcoe_bootstatus_enabled;
4365 	else
4366 		*bs = ixgbe_fcoe_bootstatus_disabled;
4367 
4368 out:
4369 	return status;
4370 }
4371 
4372 /**
4373  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4374  *  @hw: pointer to hardware structure
4375  *  @enable: enable or disable switch for MAC anti-spoofing
4376  *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
4377  *
4378  **/
4379 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4380 {
4381 	int vf_target_reg = vf >> 3;
4382 	int vf_target_shift = vf % 8;
4383 	u32 pfvfspoof;
4384 
4385 	if (hw->mac.type == ixgbe_mac_82598EB)
4386 		return;
4387 
4388 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4389 	if (enable)
4390 		pfvfspoof |= (1 << vf_target_shift);
4391 	else
4392 		pfvfspoof &= ~(1 << vf_target_shift);
4393 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4394 }
4395 
4396 /**
4397  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4398  *  @hw: pointer to hardware structure
4399  *  @enable: enable or disable switch for VLAN anti-spoofing
4400  *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4401  *
4402  **/
4403 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4404 {
4405 	int vf_target_reg = vf >> 3;
4406 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4407 	u32 pfvfspoof;
4408 
4409 	if (hw->mac.type == ixgbe_mac_82598EB)
4410 		return;
4411 
4412 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4413 	if (enable)
4414 		pfvfspoof |= (1 << vf_target_shift);
4415 	else
4416 		pfvfspoof &= ~(1 << vf_target_shift);
4417 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4418 }
4419 
4420 /**
4421  *  ixgbe_get_device_caps_generic - Get additional device capabilities
4422  *  @hw: pointer to hardware structure
4423  *  @device_caps: the EEPROM word with the extra device capabilities
4424  *
4425  *  This function will read the EEPROM location for the device capabilities,
4426  *  and return the word through device_caps.
4427  **/
4428 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4429 {
4430 	DEBUGFUNC("ixgbe_get_device_caps_generic");
4431 
4432 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4433 
4434 	return IXGBE_SUCCESS;
4435 }
4436 
4437 /**
4438  *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4439  *  @hw: pointer to hardware structure
4440  *
4441  **/
4442 void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4443 {
4444 	u32 regval;
4445 	u32 i;
4446 
4447 	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4448 
4449 	/* Enable relaxed ordering */
4450 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
4451 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4452 		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4453 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4454 	}
4455 
4456 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
4457 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4458 		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4459 			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4460 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4461 	}
4462 
4463 }
4464 
4465 /**
4466  *  ixgbe_calculate_checksum - Calculate checksum for buffer
4467  *  @buffer: pointer to EEPROM
4468  *  @length: size of EEPROM to calculate a checksum for
4469  *  Calculates the checksum for some buffer on a specified length.  The
4470  *  checksum calculated is returned.
4471  **/
4472 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4473 {
4474 	u32 i;
4475 	u8 sum = 0;
4476 
4477 	DEBUGFUNC("ixgbe_calculate_checksum");
4478 
4479 	if (!buffer)
4480 		return 0;
4481 
4482 	for (i = 0; i < length; i++)
4483 		sum += buffer[i];
4484 
4485 	return (u8) (0 - sum);
4486 }
4487 
4488 /**
4489  *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
4490  *  @hw: pointer to the HW structure
4491  *  @buffer: command to write and where the return status will be placed
4492  *  @length: length of buffer, must be multiple of 4 bytes
4493  *  @timeout: time in ms to wait for command completion
4494  *
4495  *  Communicates with the manageability block. On success return IXGBE_SUCCESS
4496  *  else returns semaphore error when encountering an error acquiring
4497  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4498  *
4499  *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
4500  *  by the caller.
4501  **/
4502 s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
4503 		       u32 timeout)
4504 {
4505 	u32 hicr, i, fwsts;
4506 	u16 dword_len;
4507 
4508 	DEBUGFUNC("ixgbe_hic_unlocked");
4509 
4510 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4511 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4512 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4513 	}
4514 
4515 	/* Set bit 9 of FWSTS clearing FW reset indication */
4516 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4517 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4518 
4519 	/* Check that the host interface is enabled. */
4520 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4521 	if (!(hicr & IXGBE_HICR_EN)) {
4522 		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4523 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4524 	}
4525 
4526 	/* Calculate length in DWORDs. We must be DWORD aligned */
4527 	if (length % sizeof(u32)) {
4528 		DEBUGOUT("Buffer length failure, not aligned to dword");
4529 		return IXGBE_ERR_INVALID_ARGUMENT;
4530 	}
4531 
4532 	dword_len = length >> 2;
4533 
4534 	/* The device driver writes the relevant command block
4535 	 * into the ram area.
4536 	 */
4537 	for (i = 0; i < dword_len; i++)
4538 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4539 				      i, IXGBE_CPU_TO_LE32(buffer[i]));
4540 
4541 	/* Setting this bit tells the ARC that a new command is pending. */
4542 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4543 
4544 	for (i = 0; i < timeout; i++) {
4545 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4546 		if (!(hicr & IXGBE_HICR_C))
4547 			break;
4548 		msec_delay(1);
4549 	}
4550 
4551 	/* Check command completion */
4552 	if ((timeout && i == timeout) ||
4553 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4554 		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4555 			     "Command has failed with no status valid.\n");
4556 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4557 	}
4558 
4559 	return IXGBE_SUCCESS;
4560 }
4561 
4562 /**
4563  *  ixgbe_host_interface_command - Issue command to manageability block
4564  *  @hw: pointer to the HW structure
4565  *  @buffer: contains the command to write and where the return status will
4566  *   be placed
4567  *  @length: length of buffer, must be multiple of 4 bytes
4568  *  @timeout: time in ms to wait for command completion
4569  *  @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4570  *   Needed because FW structures are big endian and decoding of
4571  *   these fields can be 8 bit or 16 bit based on command. Decoding
4572  *   is not easily understood without making a table of commands.
4573  *   So we will leave this up to the caller to read back the data
4574  *   in these cases.
4575  *
4576  *  Communicates with the manageability block. On success return IXGBE_SUCCESS
4577  *  else returns semaphore error when encountering an error acquiring
4578  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4579  **/
4580 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4581 				 u32 length, u32 timeout, bool return_data)
4582 {
4583 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4584 	u16 dword_len;
4585 	u16 buf_len;
4586 	s32 status;
4587 	u32 bi;
4588 
4589 	DEBUGFUNC("ixgbe_host_interface_command");
4590 
4591 	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4592 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4593 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4594 	}
4595 
4596 	/* Take management host interface semaphore */
4597 	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4598 	if (status)
4599 		return status;
4600 
4601 	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
4602 	if (status)
4603 		goto rel_out;
4604 
4605 	if (!return_data)
4606 		goto rel_out;
4607 
4608 	/* Calculate length in DWORDs */
4609 	dword_len = hdr_size >> 2;
4610 
4611 	/* first pull in the header so we know the buffer length */
4612 	for (bi = 0; bi < dword_len; bi++) {
4613 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4614 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4615 	}
4616 
4617 	/* If there is any thing in data position pull it in */
4618 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
4619 	if (!buf_len)
4620 		goto rel_out;
4621 
4622 	if (length < buf_len + hdr_size) {
4623 		DEBUGOUT("Buffer not large enough for reply message.\n");
4624 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4625 		goto rel_out;
4626 	}
4627 
4628 	/* Calculate length in DWORDs, add 3 for odd lengths */
4629 	dword_len = (buf_len + 3) >> 2;
4630 
4631 	/* Pull in the rest of the buffer (bi is where we left off) */
4632 	for (; bi <= dword_len; bi++) {
4633 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4634 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4635 	}
4636 
4637 rel_out:
4638 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4639 
4640 	return status;
4641 }
4642 
4643 /**
4644  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4645  *  @hw: pointer to the HW structure
4646  *  @maj: driver version major number
4647  *  @min: driver version minor number
4648  *  @build: driver version build number
4649  *  @sub: driver version sub build number
4650  *
4651  *  Sends driver version number to firmware through the manageability
4652  *  block.  On success return IXGBE_SUCCESS
4653  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4654  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4655  **/
4656 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
4657 				 u8 build, u8 sub, u16 len,
4658 				 const char *driver_ver)
4659 {
4660 	struct ixgbe_hic_drv_info fw_cmd;
4661 	int i;
4662 	s32 ret_val = IXGBE_SUCCESS;
4663 
4664 	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4665 	UNREFERENCED_2PARAMETER(len, driver_ver);
4666 
4667 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4668 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4669 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4670 	fw_cmd.port_num = (u8)hw->bus.func;
4671 	fw_cmd.ver_maj = maj;
4672 	fw_cmd.ver_min = min;
4673 	fw_cmd.ver_build = build;
4674 	fw_cmd.ver_sub = sub;
4675 	fw_cmd.hdr.checksum = 0;
4676 	fw_cmd.pad = 0;
4677 	fw_cmd.pad2 = 0;
4678 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4679 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4680 
4681 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4682 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4683 						       sizeof(fw_cmd),
4684 						       IXGBE_HI_COMMAND_TIMEOUT,
4685 						       TRUE);
4686 		if (ret_val != IXGBE_SUCCESS)
4687 			continue;
4688 
4689 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4690 		    FW_CEM_RESP_STATUS_SUCCESS)
4691 			ret_val = IXGBE_SUCCESS;
4692 		else
4693 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4694 
4695 		break;
4696 	}
4697 
4698 	return ret_val;
4699 }
4700 
4701 /**
4702  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4703  * @hw: pointer to hardware structure
4704  * @num_pb: number of packet buffers to allocate
4705  * @headroom: reserve n KB of headroom
4706  * @strategy: packet buffer allocation strategy
4707  **/
4708 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4709 			     int strategy)
4710 {
4711 	u32 pbsize = hw->mac.rx_pb_size;
4712 	int i = 0;
4713 	u32 rxpktsize, txpktsize, txpbthresh;
4714 
4715 	/* Reserve headroom */
4716 	pbsize -= headroom;
4717 
4718 	if (!num_pb)
4719 		num_pb = 1;
4720 
4721 	/* Divide remaining packet buffer space amongst the number of packet
4722 	 * buffers requested using supplied strategy.
4723 	 */
4724 	switch (strategy) {
4725 	case PBA_STRATEGY_WEIGHTED:
4726 		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4727 		 * buffer with 5/8 of the packet buffer space.
4728 		 */
4729 		rxpktsize = (pbsize * 5) / (num_pb * 4);
4730 		pbsize -= rxpktsize * (num_pb / 2);
4731 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4732 		for (; i < (num_pb / 2); i++)
4733 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4734 		/* fall through - configure remaining packet buffers */
4735 	case PBA_STRATEGY_EQUAL:
4736 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4737 		for (; i < num_pb; i++)
4738 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4739 		break;
4740 	default:
4741 		break;
4742 	}
4743 
4744 	/* Only support an equally distributed Tx packet buffer strategy. */
4745 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4746 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4747 	for (i = 0; i < num_pb; i++) {
4748 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4749 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4750 	}
4751 
4752 	/* Clear unused TCs, if any, to zero buffer size*/
4753 	for (; i < IXGBE_MAX_PB; i++) {
4754 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4755 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4756 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4757 	}
4758 }
4759 
4760 /**
4761  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4762  * @hw: pointer to the hardware structure
4763  *
4764  * The 82599 and x540 MACs can experience issues if TX work is still pending
4765  * when a reset occurs.  This function prevents this by flushing the PCIe
4766  * buffers on the system.
4767  **/
4768 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4769 {
4770 	u32 gcr_ext, hlreg0, i, poll;
4771 	u16 value;
4772 
4773 	/*
4774 	 * If double reset is not requested then all transactions should
4775 	 * already be clear and as such there is no work to do
4776 	 */
4777 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4778 		return;
4779 
4780 	/*
4781 	 * Set loopback enable to prevent any transmits from being sent
4782 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
4783 	 * has already been cleared.
4784 	 */
4785 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4786 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4787 
4788 	/* Wait for a last completion before clearing buffers */
4789 	IXGBE_WRITE_FLUSH(hw);
4790 	msec_delay(3);
4791 
4792 	/*
4793 	 * Before proceeding, make sure that the PCIe block does not have
4794 	 * transactions pending.
4795 	 */
4796 	poll = ixgbe_pcie_timeout_poll(hw);
4797 	for (i = 0; i < poll; i++) {
4798 		usec_delay(100);
4799 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4800 		if (IXGBE_REMOVED(hw->hw_addr))
4801 			goto out;
4802 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4803 			goto out;
4804 	}
4805 
4806 out:
4807 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
4808 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4809 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4810 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4811 
4812 	/* Flush all writes and allow 20usec for all transactions to clear */
4813 	IXGBE_WRITE_FLUSH(hw);
4814 	usec_delay(20);
4815 
4816 	/* restore previous register values */
4817 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4818 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4819 }
4820 
4821 /**
4822  *  ixgbe_bypass_rw_generic - Bit bang data into by_pass FW
4823  *
4824  *  @hw: pointer to hardware structure
4825  *  @cmd: Command we send to the FW
4826  *  @status: The reply from the FW
4827  *
4828  *  Bit-bangs the cmd to the by_pass FW status points to what is returned.
4829  **/
4830 #define IXGBE_BYPASS_BB_WAIT 1
4831 s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status)
4832 {
4833 	int i;
4834 	u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo;
4835 	u32 esdp;
4836 
4837 	if (!status)
4838 		return IXGBE_ERR_PARAM;
4839 
4840 	*status = 0;
4841 
4842 	/* SDP vary by MAC type */
4843 	switch (hw->mac.type) {
4844 	case ixgbe_mac_82599EB:
4845 		sck = IXGBE_ESDP_SDP7;
4846 		sdi = IXGBE_ESDP_SDP0;
4847 		sdo = IXGBE_ESDP_SDP6;
4848 		dir_sck = IXGBE_ESDP_SDP7_DIR;
4849 		dir_sdi = IXGBE_ESDP_SDP0_DIR;
4850 		dir_sdo = IXGBE_ESDP_SDP6_DIR;
4851 		break;
4852 	case ixgbe_mac_X540:
4853 		sck = IXGBE_ESDP_SDP2;
4854 		sdi = IXGBE_ESDP_SDP0;
4855 		sdo = IXGBE_ESDP_SDP1;
4856 		dir_sck = IXGBE_ESDP_SDP2_DIR;
4857 		dir_sdi = IXGBE_ESDP_SDP0_DIR;
4858 		dir_sdo = IXGBE_ESDP_SDP1_DIR;
4859 		break;
4860 	default:
4861 		return IXGBE_ERR_DEVICE_NOT_SUPPORTED;
4862 	}
4863 
4864 	/* Set SDP pins direction */
4865 	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
4866 	esdp |= dir_sck;	/* SCK as output */
4867 	esdp |= dir_sdi;	/* SDI as output */
4868 	esdp &= ~dir_sdo;	/* SDO as input */
4869 	esdp |= sck;
4870 	esdp |= sdi;
4871 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4872 	IXGBE_WRITE_FLUSH(hw);
4873 	msec_delay(IXGBE_BYPASS_BB_WAIT);
4874 
4875 	/* Generate start condition */
4876 	esdp &= ~sdi;
4877 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4878 	IXGBE_WRITE_FLUSH(hw);
4879 	msec_delay(IXGBE_BYPASS_BB_WAIT);
4880 
4881 	esdp &= ~sck;
4882 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4883 	IXGBE_WRITE_FLUSH(hw);
4884 	msec_delay(IXGBE_BYPASS_BB_WAIT);
4885 
4886 	/* Clock out the new control word and clock in the status */
4887 	for (i = 0; i < 32; i++) {
4888 		if ((cmd >> (31 - i)) & 0x01) {
4889 			esdp |= sdi;
4890 			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4891 		} else {
4892 			esdp &= ~sdi;
4893 			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4894 		}
4895 		IXGBE_WRITE_FLUSH(hw);
4896 		msec_delay(IXGBE_BYPASS_BB_WAIT);
4897 
4898 		esdp |= sck;
4899 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4900 		IXGBE_WRITE_FLUSH(hw);
4901 		msec_delay(IXGBE_BYPASS_BB_WAIT);
4902 
4903 		esdp &= ~sck;
4904 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4905 		IXGBE_WRITE_FLUSH(hw);
4906 		msec_delay(IXGBE_BYPASS_BB_WAIT);
4907 
4908 		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
4909 		if (esdp & sdo)
4910 			*status = (*status << 1) | 0x01;
4911 		else
4912 			*status = (*status << 1) | 0x00;
4913 		msec_delay(IXGBE_BYPASS_BB_WAIT);
4914 	}
4915 
4916 	/* stop condition */
4917 	esdp |= sck;
4918 	esdp &= ~sdi;
4919 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4920 	IXGBE_WRITE_FLUSH(hw);
4921 	msec_delay(IXGBE_BYPASS_BB_WAIT);
4922 
4923 	esdp |= sdi;
4924 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4925 	IXGBE_WRITE_FLUSH(hw);
4926 
4927 	/* set the page bits to match the cmd that the status it belongs to */
4928 	*status = (*status & 0x3fffffff) | (cmd & 0xc0000000);
4929 
4930 	return IXGBE_SUCCESS;
4931 }
4932 
4933 /**
4934  * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang.
4935  *
4936  * If we send a write we can't be sure it took until we can read back
4937  * that same register.  It can be a problem as some of the feilds may
4938  * for valid reasons change inbetween the time wrote the register and
4939  * we read it again to verify.  So this function check everything we
4940  * can check and then assumes it worked.
4941  *
4942  * @u32 in_reg - The register cmd for the bit-bang read.
4943  * @u32 out_reg - The register returned from a bit-bang read.
4944  **/
4945 bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg)
4946 {
4947 	u32 mask;
4948 
4949 	/* Page must match for all control pages */
4950 	if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M))
4951 		return FALSE;
4952 
4953 	switch (in_reg & BYPASS_PAGE_M) {
4954 	case BYPASS_PAGE_CTL0:
4955 		/* All the following can't change since the last write
4956 		 *  - All the event actions
4957 		 *  - The timeout value
4958 		 */
4959 		mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M |
4960 		       BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M |
4961 		       BYPASS_WDTIMEOUT_M |
4962 		       BYPASS_WDT_VALUE_M;
4963 		if ((out_reg & mask) != (in_reg & mask))
4964 			return FALSE;
4965 
4966 		/* 0x0 is never a valid value for bypass status */
4967 		if (!(out_reg & BYPASS_STATUS_OFF_M))
4968 			return FALSE;
4969 		break;
4970 	case BYPASS_PAGE_CTL1:
4971 		/* All the following can't change since the last write
4972 		 *  - time valid bit
4973 		 *  - time we last sent
4974 		 */
4975 		mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M;
4976 		if ((out_reg & mask) != (in_reg & mask))
4977 			return FALSE;
4978 		break;
4979 	case BYPASS_PAGE_CTL2:
4980 		/* All we can check in this page is control number
4981 		 * which is already done above.
4982 		 */
4983 		break;
4984 	}
4985 
4986 	/* We are as sure as we can be return TRUE */
4987 	return TRUE;
4988 }
4989 
4990 /**
4991  *  ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Regiter.
4992  *
4993  *  @hw: pointer to hardware structure
4994  *  @cmd: The control word we are setting.
4995  *  @event: The event we are setting in the FW.  This also happens to
4996  *	    be the mask for the event we are setting (handy)
4997  *  @action: The action we set the event to in the FW. This is in a
4998  *	     bit field that happens to be what we want to put in
4999  *	     the event spot (also handy)
5000  **/
5001 s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event,
5002 			     u32 action)
5003 {
5004 	u32 by_ctl = 0;
5005 	u32 cmd, verify;
5006 	u32 count = 0;
5007 
5008 	/* Get current values */
5009 	cmd = ctrl;	/* just reading only need control number */
5010 	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5011 		return IXGBE_ERR_INVALID_ARGUMENT;
5012 
5013 	/* Set to new action */
5014 	cmd = (by_ctl & ~event) | BYPASS_WE | action;
5015 	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5016 		return IXGBE_ERR_INVALID_ARGUMENT;
5017 
5018 	/* Page 0 force a FW eeprom write which is slow so verify */
5019 	if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) {
5020 		verify = BYPASS_PAGE_CTL0;
5021 		do {
5022 			if (count++ > 5)
5023 				return IXGBE_BYPASS_FW_WRITE_FAILURE;
5024 
5025 			if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl))
5026 				return IXGBE_ERR_INVALID_ARGUMENT;
5027 		} while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl));
5028 	} else {
5029 		/* We have give the FW time for the write to stick */
5030 		msec_delay(100);
5031 	}
5032 
5033 	return IXGBE_SUCCESS;
5034 }
5035 
5036 /**
5037  *  ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom addres.
5038  *
5039  *  @hw: pointer to hardware structure
5040  *  @addr: The bypass eeprom address to read.
5041  *  @value: The 8b of data at the address above.
5042  **/
5043 s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value)
5044 {
5045 	u32 cmd;
5046 	u32 status;
5047 
5048 
5049 	/* send the request */
5050 	cmd = BYPASS_PAGE_CTL2 | BYPASS_WE;
5051 	cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M;
5052 	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5053 		return IXGBE_ERR_INVALID_ARGUMENT;
5054 
5055 	/* We have give the FW time for the write to stick */
5056 	msec_delay(100);
5057 
5058 	/* now read the results */
5059 	cmd &= ~BYPASS_WE;
5060 	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5061 		return IXGBE_ERR_INVALID_ARGUMENT;
5062 
5063 	*value = status & BYPASS_CTL2_DATA_M;
5064 
5065 	return IXGBE_SUCCESS;
5066 }
5067 
5068 /**
5069  *  ixgbe_get_orom_version - Return option ROM from EEPROM
5070  *
5071  *  @hw: pointer to hardware structure
5072  *  @nvm_ver: pointer to output structure
5073  *
5074  *  if valid option ROM version, nvm_ver->or_valid set to TRUE
5075  *  else nvm_ver->or_valid is FALSE.
5076  **/
5077 void ixgbe_get_orom_version(struct ixgbe_hw *hw,
5078 			    struct ixgbe_nvm_version *nvm_ver)
5079 {
5080 	u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
5081 
5082 	nvm_ver->or_valid = FALSE;
5083 	/* Option Rom may or may not be present.  Start with pointer */
5084 	hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
5085 
5086 	/* make sure offset is valid */
5087 	if ((offset == 0x0) || (offset == NVM_INVALID_PTR))
5088 		return;
5089 
5090 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
5091 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
5092 
5093 	/* option rom exists and is valid */
5094 	if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
5095 	    eeprom_cfg_blkl == NVM_VER_INVALID ||
5096 	    eeprom_cfg_blkh == NVM_VER_INVALID)
5097 		return;
5098 
5099 	nvm_ver->or_valid = TRUE;
5100 	nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
5101 	nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
5102 			    (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
5103 	nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
5104 }
5105 
5106 /**
5107  *  ixgbe_get_oem_prod_version - Return OEM Product version
5108  *
5109  *  @hw: pointer to hardware structure
5110  *  @nvm_ver: pointer to output structure
5111  *
5112  *  if valid OEM product version, nvm_ver->oem_valid set to TRUE
5113  *  else nvm_ver->oem_valid is FALSE.
5114  **/
5115 void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
5116 				struct ixgbe_nvm_version *nvm_ver)
5117 {
5118 	u16 rel_num, prod_ver, mod_len, cap, offset;
5119 
5120 	nvm_ver->oem_valid = FALSE;
5121 	hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
5122 
5123 	/* Return is offset to OEM Product Version block is invalid */
5124 	if (offset == 0x0 && offset == NVM_INVALID_PTR)
5125 		return;
5126 
5127 	/* Read product version block */
5128 	hw->eeprom.ops.read(hw, offset, &mod_len);
5129 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
5130 
5131 	/* Return if OEM product version block is invalid */
5132 	if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
5133 	    (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
5134 		return;
5135 
5136 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
5137 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
5138 
5139 	/* Return if version is invalid */
5140 	if ((rel_num | prod_ver) == 0x0 ||
5141 	    rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
5142 		return;
5143 
5144 	nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
5145 	nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
5146 	nvm_ver->oem_release = rel_num;
5147 	nvm_ver->oem_valid = TRUE;
5148 }
5149 
5150 /**
5151  *  ixgbe_get_etk_id - Return Etrack ID from EEPROM
5152  *
5153  *  @hw: pointer to hardware structure
5154  *  @nvm_ver: pointer to output structure
5155  *
5156  *  word read errors will return 0xFFFF
5157  **/
5158 void ixgbe_get_etk_id(struct ixgbe_hw *hw, struct ixgbe_nvm_version *nvm_ver)
5159 {
5160 	u16 etk_id_l, etk_id_h;
5161 
5162 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
5163 		etk_id_l = NVM_VER_INVALID;
5164 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
5165 		etk_id_h = NVM_VER_INVALID;
5166 
5167 	/* The word order for the version format is determined by high order
5168 	 * word bit 15.
5169 	 */
5170 	if ((etk_id_h & NVM_ETK_VALID) == 0) {
5171 		nvm_ver->etk_id = etk_id_h;
5172 		nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
5173 	} else {
5174 		nvm_ver->etk_id = etk_id_l;
5175 		nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
5176 	}
5177 }
5178 
5179 
5180 /**
5181  * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
5182  * @hw: pointer to hardware structure
5183  * @map: pointer to u8 arr for returning map
5184  *
5185  * Read the rtrup2tc HW register and resolve its content into map
5186  **/
5187 void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
5188 {
5189 	u32 reg, i;
5190 
5191 	reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
5192 	for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
5193 		map[i] = IXGBE_RTRUP2TC_UP_MASK &
5194 			(reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
5195 	return;
5196 }
5197 
5198 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
5199 {
5200 	u32 pfdtxgswc;
5201 	u32 rxctrl;
5202 
5203 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5204 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
5205 		if (hw->mac.type != ixgbe_mac_82598EB) {
5206 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5207 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
5208 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
5209 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5210 				hw->mac.set_lben = TRUE;
5211 			} else {
5212 				hw->mac.set_lben = FALSE;
5213 			}
5214 		}
5215 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
5216 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
5217 	}
5218 }
5219 
5220 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
5221 {
5222 	u32 pfdtxgswc;
5223 	u32 rxctrl;
5224 
5225 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5226 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
5227 
5228 	if (hw->mac.type != ixgbe_mac_82598EB) {
5229 		if (hw->mac.set_lben) {
5230 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5231 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
5232 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5233 			hw->mac.set_lben = FALSE;
5234 		}
5235 	}
5236 }
5237 
5238 /**
5239  * ixgbe_mng_present - returns TRUE when management capability is present
5240  * @hw: pointer to hardware structure
5241  */
5242 bool ixgbe_mng_present(struct ixgbe_hw *hw)
5243 {
5244 	u32 fwsm;
5245 
5246 	if (hw->mac.type < ixgbe_mac_82599EB)
5247 		return FALSE;
5248 
5249 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5250 
5251 	return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
5252 }
5253 
5254 /**
5255  * ixgbe_mng_enabled - Is the manageability engine enabled?
5256  * @hw: pointer to hardware structure
5257  *
5258  * Returns TRUE if the manageability engine is enabled.
5259  **/
5260 bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
5261 {
5262 	u32 fwsm, manc, factps;
5263 
5264 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5265 	if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
5266 		return FALSE;
5267 
5268 	manc = IXGBE_READ_REG(hw, IXGBE_MANC);
5269 	if (!(manc & IXGBE_MANC_RCV_TCO_EN))
5270 		return FALSE;
5271 
5272 	if (hw->mac.type <= ixgbe_mac_X540) {
5273 		factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
5274 		if (factps & IXGBE_FACTPS_MNGCG)
5275 			return FALSE;
5276 	}
5277 
5278 	return TRUE;
5279 }
5280 
5281 /**
5282  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
5283  *  @hw: pointer to hardware structure
5284  *  @speed: new link speed
5285  *  @autoneg_wait_to_complete: TRUE when waiting for completion is needed
5286  *
5287  *  Set the link speed in the MAC and/or PHY register and restarts link.
5288  **/
5289 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
5290 					  ixgbe_link_speed speed,
5291 					  bool autoneg_wait_to_complete)
5292 {
5293 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5294 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5295 	s32 status = IXGBE_SUCCESS;
5296 	u32 speedcnt = 0;
5297 	u32 i = 0;
5298 	bool autoneg, link_up = FALSE;
5299 
5300 	DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
5301 
5302 	/* Mask off requested but non-supported speeds */
5303 	status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
5304 	if (status != IXGBE_SUCCESS)
5305 		return status;
5306 
5307 	speed &= link_speed;
5308 
5309 	/* Try each speed one by one, highest priority first.  We do this in
5310 	 * software because 10Gb fiber doesn't support speed autonegotiation.
5311 	 */
5312 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
5313 		speedcnt++;
5314 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
5315 
5316 		/* Set the module link speed */
5317 		switch (hw->phy.media_type) {
5318 		case ixgbe_media_type_fiber_fixed:
5319 		case ixgbe_media_type_fiber:
5320 			ixgbe_set_rate_select_speed(hw,
5321 						    IXGBE_LINK_SPEED_10GB_FULL);
5322 			break;
5323 		case ixgbe_media_type_fiber_qsfp:
5324 			/* QSFP module automatically detects MAC link speed */
5325 			break;
5326 		default:
5327 			DEBUGOUT("Unexpected media type.\n");
5328 			break;
5329 		}
5330 
5331 		/* Allow module to change analog characteristics (1G->10G) */
5332 		msec_delay(40);
5333 
5334 		status = ixgbe_setup_mac_link(hw,
5335 					      IXGBE_LINK_SPEED_10GB_FULL,
5336 					      autoneg_wait_to_complete);
5337 		if (status != IXGBE_SUCCESS)
5338 			return status;
5339 
5340 		/* Flap the Tx laser if it has not already been done */
5341 		ixgbe_flap_tx_laser(hw);
5342 
5343 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
5344 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
5345 		 * attempted.  82599 uses the same timing for 10g SFI.
5346 		 */
5347 		for (i = 0; i < 5; i++) {
5348 			/* Wait for the link partner to also set speed */
5349 			msec_delay(100);
5350 
5351 			/* If we have link, just jump out */
5352 			status = ixgbe_check_link(hw, &link_speed,
5353 						  &link_up, FALSE);
5354 			if (status != IXGBE_SUCCESS)
5355 				return status;
5356 
5357 			if (link_up)
5358 				goto out;
5359 		}
5360 	}
5361 
5362 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
5363 		speedcnt++;
5364 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
5365 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
5366 
5367 		/* Set the module link speed */
5368 		switch (hw->phy.media_type) {
5369 		case ixgbe_media_type_fiber_fixed:
5370 		case ixgbe_media_type_fiber:
5371 			ixgbe_set_rate_select_speed(hw,
5372 						    IXGBE_LINK_SPEED_1GB_FULL);
5373 			break;
5374 		case ixgbe_media_type_fiber_qsfp:
5375 			/* QSFP module automatically detects link speed */
5376 			break;
5377 		default:
5378 			DEBUGOUT("Unexpected media type.\n");
5379 			break;
5380 		}
5381 
5382 		/* Allow module to change analog characteristics (10G->1G) */
5383 		msec_delay(40);
5384 
5385 		status = ixgbe_setup_mac_link(hw,
5386 					      IXGBE_LINK_SPEED_1GB_FULL,
5387 					      autoneg_wait_to_complete);
5388 		if (status != IXGBE_SUCCESS)
5389 			return status;
5390 
5391 		/* Flap the Tx laser if it has not already been done */
5392 		ixgbe_flap_tx_laser(hw);
5393 
5394 		/* Wait for the link partner to also set speed */
5395 		msec_delay(100);
5396 
5397 		/* If we have link, just jump out */
5398 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
5399 		if (status != IXGBE_SUCCESS)
5400 			return status;
5401 
5402 		if (link_up)
5403 			goto out;
5404 	}
5405 
5406 	/* We didn't get link.  Configure back to the highest speed we tried,
5407 	 * (if there was more than one).  We call ourselves back with just the
5408 	 * single highest speed that the user requested.
5409 	 */
5410 	if (speedcnt > 1)
5411 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
5412 						      highest_link_speed,
5413 						      autoneg_wait_to_complete);
5414 
5415 out:
5416 	/* Set autoneg_advertised value based on input link speed */
5417 	hw->phy.autoneg_advertised = 0;
5418 
5419 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
5420 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
5421 
5422 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
5423 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
5424 
5425 	return status;
5426 }
5427 
5428 /**
5429  *  ixgbe_set_soft_rate_select_speed - Set module link speed
5430  *  @hw: pointer to hardware structure
5431  *  @speed: link speed to set
5432  *
5433  *  Set module link speed via the soft rate select.
5434  */
5435 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
5436 					ixgbe_link_speed speed)
5437 {
5438 	s32 status;
5439 	u8 rs, eeprom_data;
5440 
5441 	switch (speed) {
5442 	case IXGBE_LINK_SPEED_10GB_FULL:
5443 		/* one bit mask same as setting on */
5444 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
5445 		break;
5446 	case IXGBE_LINK_SPEED_1GB_FULL:
5447 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
5448 		break;
5449 	default:
5450 		DEBUGOUT("Invalid fixed module speed\n");
5451 		return;
5452 	}
5453 
5454 	/* Set RS0 */
5455 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5456 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
5457 					   &eeprom_data);
5458 	if (status) {
5459 		DEBUGOUT("Failed to read Rx Rate Select RS0\n");
5460 		goto out;
5461 	}
5462 
5463 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5464 
5465 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5466 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
5467 					    eeprom_data);
5468 	if (status) {
5469 		DEBUGOUT("Failed to write Rx Rate Select RS0\n");
5470 		goto out;
5471 	}
5472 
5473 	/* Set RS1 */
5474 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5475 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
5476 					   &eeprom_data);
5477 	if (status) {
5478 		DEBUGOUT("Failed to read Rx Rate Select RS1\n");
5479 		goto out;
5480 	}
5481 
5482 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5483 
5484 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5485 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
5486 					    eeprom_data);
5487 	if (status) {
5488 		DEBUGOUT("Failed to write Rx Rate Select RS1\n");
5489 		goto out;
5490 	}
5491 out:
5492 	return;
5493 }
5494