xref: /dragonfly/sys/dev/netif/ix/ixgbe_common.c (revision d9f85b33)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2014, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
37 #include "ixgbe_dcb.h"
38 #include "ixgbe_dcb_82599.h"
39 #include "ixgbe_api.h"
40 
41 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
42 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
43 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
44 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
45 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
46 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
47 					u16 count);
48 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
49 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
50 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
51 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
52 
53 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
54 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
55 					 u16 *san_mac_offset);
56 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
57 					     u16 words, u16 *data);
58 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
59 					      u16 words, u16 *data);
60 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
61 						 u16 offset);
62 
63 /**
64  *  ixgbe_init_ops_generic - Inits function ptrs
65  *  @hw: pointer to the hardware structure
66  *
67  *  Initialize the function pointers.
68  **/
69 s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
70 {
71 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
72 	struct ixgbe_mac_info *mac = &hw->mac;
73 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
74 
75 	DEBUGFUNC("ixgbe_init_ops_generic");
76 
77 	/* EEPROM */
78 	eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
79 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
80 	if (eec & IXGBE_EEC_PRES) {
81 		eeprom->ops.read = ixgbe_read_eerd_generic;
82 		eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
83 	} else {
84 		eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
85 		eeprom->ops.read_buffer =
86 				 ixgbe_read_eeprom_buffer_bit_bang_generic;
87 	}
88 	eeprom->ops.write = ixgbe_write_eeprom_generic;
89 	eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
90 	eeprom->ops.validate_checksum =
91 				      ixgbe_validate_eeprom_checksum_generic;
92 	eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
93 	eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
94 
95 	/* MAC */
96 	mac->ops.init_hw = ixgbe_init_hw_generic;
97 	mac->ops.reset_hw = NULL;
98 	mac->ops.start_hw = ixgbe_start_hw_generic;
99 	mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
100 	mac->ops.get_media_type = NULL;
101 	mac->ops.get_supported_physical_layer = NULL;
102 	mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
103 	mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
104 	mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
105 	mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
106 	mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
107 	mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
108 	mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
109 	mac->ops.prot_autoc_read = prot_autoc_read_generic;
110 	mac->ops.prot_autoc_write = prot_autoc_write_generic;
111 
112 	/* LEDs */
113 	mac->ops.led_on = ixgbe_led_on_generic;
114 	mac->ops.led_off = ixgbe_led_off_generic;
115 	mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
116 	mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
117 
118 	/* RAR, Multicast, VLAN */
119 	mac->ops.set_rar = ixgbe_set_rar_generic;
120 	mac->ops.clear_rar = ixgbe_clear_rar_generic;
121 	mac->ops.insert_mac_addr = NULL;
122 	mac->ops.set_vmdq = NULL;
123 	mac->ops.clear_vmdq = NULL;
124 	mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
125 	mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
126 	mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
127 	mac->ops.enable_mc = ixgbe_enable_mc_generic;
128 	mac->ops.disable_mc = ixgbe_disable_mc_generic;
129 	mac->ops.clear_vfta = NULL;
130 	mac->ops.set_vfta = NULL;
131 	mac->ops.set_vlvf = NULL;
132 	mac->ops.init_uta_tables = NULL;
133 	mac->ops.enable_rx = ixgbe_enable_rx_generic;
134 	mac->ops.disable_rx = ixgbe_disable_rx_generic;
135 
136 	/* Flow Control */
137 	mac->ops.fc_enable = ixgbe_fc_enable_generic;
138 	mac->ops.setup_fc = ixgbe_setup_fc_generic;
139 
140 	/* Link */
141 	mac->ops.get_link_capabilities = NULL;
142 	mac->ops.setup_link = NULL;
143 	mac->ops.check_link = NULL;
144 	mac->ops.dmac_config = NULL;
145 	mac->ops.dmac_update_tcs = NULL;
146 	mac->ops.dmac_config_tcs = NULL;
147 
148 	return IXGBE_SUCCESS;
149 }
150 
151 /**
152  * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
153  * of flow control
154  * @hw: pointer to hardware structure
155  *
156  * This function returns TRUE if the device supports flow control
157  * autonegotiation, and FALSE if it does not.
158  *
159  **/
160 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
161 {
162 	bool supported = FALSE;
163 	ixgbe_link_speed speed;
164 	bool link_up;
165 
166 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
167 
168 	switch (hw->phy.media_type) {
169 	case ixgbe_media_type_fiber_fixed:
170 	case ixgbe_media_type_fiber_qsfp:
171 	case ixgbe_media_type_fiber:
172 		hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
173 		/* if link is down, assume supported */
174 		if (link_up)
175 			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
176 				TRUE : FALSE;
177 		else
178 			supported = TRUE;
179 		break;
180 	case ixgbe_media_type_backplane:
181 		supported = TRUE;
182 		break;
183 	case ixgbe_media_type_copper:
184 		/* only some copper devices support flow control autoneg */
185 		switch (hw->device_id) {
186 		case IXGBE_DEV_ID_82599_T3_LOM:
187 		case IXGBE_DEV_ID_X540T:
188 		case IXGBE_DEV_ID_X540T1:
189 		case IXGBE_DEV_ID_X540_BYPASS:
190 		case IXGBE_DEV_ID_X550T:
191 		case IXGBE_DEV_ID_X550EM_X_10G_T:
192 			supported = TRUE;
193 			break;
194 		default:
195 			supported = FALSE;
196 		}
197 	default:
198 		break;
199 	}
200 
201 	ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
202 		      "Device %x does not support flow control autoneg",
203 		      hw->device_id);
204 	return supported;
205 }
206 
207 /**
208  *  ixgbe_setup_fc_generic - Set up flow control
209  *  @hw: pointer to hardware structure
210  *
211  *  Called at init time to set up flow control.
212  **/
213 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
214 {
215 	s32 ret_val = IXGBE_SUCCESS;
216 	u32 reg = 0, reg_bp = 0;
217 	u16 reg_cu = 0;
218 	bool locked = FALSE;
219 
220 	DEBUGFUNC("ixgbe_setup_fc_generic");
221 
222 	/* Validate the requested mode */
223 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
224 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
225 			   "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
226 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
227 		goto out;
228 	}
229 
230 	/*
231 	 * 10gig parts do not have a word in the EEPROM to determine the
232 	 * default flow control setting, so we explicitly set it to full.
233 	 */
234 	if (hw->fc.requested_mode == ixgbe_fc_default)
235 		hw->fc.requested_mode = ixgbe_fc_full;
236 
237 	/*
238 	 * Set up the 1G and 10G flow control advertisement registers so the
239 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
240 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
241 	 */
242 	switch (hw->phy.media_type) {
243 	case ixgbe_media_type_backplane:
244 		/* some MAC's need RMW protection on AUTOC */
245 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
246 		if (ret_val != IXGBE_SUCCESS)
247 			goto out;
248 
249 		/* only backplane uses autoc so fall though */
250 	case ixgbe_media_type_fiber_fixed:
251 	case ixgbe_media_type_fiber_qsfp:
252 	case ixgbe_media_type_fiber:
253 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
254 
255 		break;
256 	case ixgbe_media_type_copper:
257 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
258 				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
259 		break;
260 	default:
261 		break;
262 	}
263 
264 	/*
265 	 * The possible values of fc.requested_mode are:
266 	 * 0: Flow control is completely disabled
267 	 * 1: Rx flow control is enabled (we can receive pause frames,
268 	 *    but not send pause frames).
269 	 * 2: Tx flow control is enabled (we can send pause frames but
270 	 *    we do not support receiving pause frames).
271 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
272 	 * other: Invalid.
273 	 */
274 	switch (hw->fc.requested_mode) {
275 	case ixgbe_fc_none:
276 		/* Flow control completely disabled by software override. */
277 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
278 		if (hw->phy.media_type == ixgbe_media_type_backplane)
279 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
280 				    IXGBE_AUTOC_ASM_PAUSE);
281 		else if (hw->phy.media_type == ixgbe_media_type_copper)
282 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
283 		break;
284 	case ixgbe_fc_tx_pause:
285 		/*
286 		 * Tx Flow control is enabled, and Rx Flow control is
287 		 * disabled by software override.
288 		 */
289 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
290 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
291 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
292 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
293 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
294 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
295 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
296 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
297 		}
298 		break;
299 	case ixgbe_fc_rx_pause:
300 		/*
301 		 * Rx Flow control is enabled and Tx Flow control is
302 		 * disabled by software override. Since there really
303 		 * isn't a way to advertise that we are capable of RX
304 		 * Pause ONLY, we will advertise that we support both
305 		 * symmetric and asymmetric Rx PAUSE, as such we fall
306 		 * through to the fc_full statement.  Later, we will
307 		 * disable the adapter's ability to send PAUSE frames.
308 		 */
309 	case ixgbe_fc_full:
310 		/* Flow control (both Rx and Tx) is enabled by SW override. */
311 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
312 		if (hw->phy.media_type == ixgbe_media_type_backplane)
313 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
314 				  IXGBE_AUTOC_ASM_PAUSE;
315 		else if (hw->phy.media_type == ixgbe_media_type_copper)
316 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
317 		break;
318 	default:
319 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
320 			     "Flow control param set incorrectly\n");
321 		ret_val = IXGBE_ERR_CONFIG;
322 		goto out;
323 		break;
324 	}
325 
326 	if (hw->mac.type < ixgbe_mac_X540) {
327 		/*
328 		 * Enable auto-negotiation between the MAC & PHY;
329 		 * the MAC will advertise clause 37 flow control.
330 		 */
331 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
332 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
333 
334 		/* Disable AN timeout */
335 		if (hw->fc.strict_ieee)
336 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
337 
338 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
339 		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
340 	}
341 
342 	/*
343 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
344 	 * and copper. There is no need to set the PCS1GCTL register.
345 	 *
346 	 */
347 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
348 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
349 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
350 		if (ret_val)
351 			goto out;
352 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
353 		    (ixgbe_device_supports_autoneg_fc(hw))) {
354 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
355 				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
356 	}
357 
358 	DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
359 out:
360 	return ret_val;
361 }
362 
363 /**
364  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
365  *  @hw: pointer to hardware structure
366  *
367  *  Starts the hardware by filling the bus info structure and media type, clears
368  *  all on chip counters, initializes receive address registers, multicast
369  *  table, VLAN filter table, calls routine to set up link and flow control
370  *  settings, and leaves transmit and receive units disabled and uninitialized
371  **/
372 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
373 {
374 	s32 ret_val;
375 	u32 ctrl_ext;
376 
377 	DEBUGFUNC("ixgbe_start_hw_generic");
378 
379 	/* Set the media type */
380 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
381 
382 	/* PHY ops initialization must be done in reset_hw() */
383 
384 	/* Clear the VLAN filter table */
385 	hw->mac.ops.clear_vfta(hw);
386 
387 	/* Clear statistics registers */
388 	hw->mac.ops.clear_hw_cntrs(hw);
389 
390 	/* Set No Snoop Disable */
391 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
392 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
393 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
394 	IXGBE_WRITE_FLUSH(hw);
395 
396 	/* Setup flow control */
397 	ret_val = ixgbe_setup_fc(hw);
398 	if (ret_val != IXGBE_SUCCESS)
399 		goto out;
400 
401 	/* Clear adapter stopped flag */
402 	hw->adapter_stopped = FALSE;
403 
404 out:
405 	return ret_val;
406 }
407 
408 /**
409  *  ixgbe_start_hw_gen2 - Init sequence for common device family
410  *  @hw: pointer to hw structure
411  *
412  * Performs the init sequence common to the second generation
413  * of 10 GbE devices.
414  * Devices in the second generation:
415  *     82599
416  *     X540
417  **/
418 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
419 {
420 	u32 i;
421 	u32 regval;
422 
423 	/* Clear the rate limiters */
424 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
425 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
426 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
427 	}
428 	IXGBE_WRITE_FLUSH(hw);
429 
430 	/* Disable relaxed ordering */
431 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
432 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
433 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
434 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
435 	}
436 
437 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
438 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
439 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
440 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
441 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
442 	}
443 
444 	return IXGBE_SUCCESS;
445 }
446 
447 /**
448  *  ixgbe_init_hw_generic - Generic hardware initialization
449  *  @hw: pointer to hardware structure
450  *
451  *  Initialize the hardware by resetting the hardware, filling the bus info
452  *  structure and media type, clears all on chip counters, initializes receive
453  *  address registers, multicast table, VLAN filter table, calls routine to set
454  *  up link and flow control settings, and leaves transmit and receive units
455  *  disabled and uninitialized
456  **/
457 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
458 {
459 	s32 status;
460 
461 	DEBUGFUNC("ixgbe_init_hw_generic");
462 
463 	/* Reset the hardware */
464 	status = hw->mac.ops.reset_hw(hw);
465 
466 	if (status == IXGBE_SUCCESS) {
467 		/* Start the HW */
468 		status = hw->mac.ops.start_hw(hw);
469 	}
470 
471 	return status;
472 }
473 
474 /**
475  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
476  *  @hw: pointer to hardware structure
477  *
478  *  Clears all hardware statistics counters by reading them from the hardware
479  *  Statistics counters are clear on read.
480  **/
481 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
482 {
483 	u16 i = 0;
484 
485 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
486 
487 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
488 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
489 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
490 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
491 	for (i = 0; i < 8; i++)
492 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
493 
494 	IXGBE_READ_REG(hw, IXGBE_MLFC);
495 	IXGBE_READ_REG(hw, IXGBE_MRFC);
496 	IXGBE_READ_REG(hw, IXGBE_RLEC);
497 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
498 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
499 	if (hw->mac.type >= ixgbe_mac_82599EB) {
500 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
501 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
502 	} else {
503 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
504 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
505 	}
506 
507 	for (i = 0; i < 8; i++) {
508 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
509 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
510 		if (hw->mac.type >= ixgbe_mac_82599EB) {
511 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
512 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
513 		} else {
514 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
515 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
516 		}
517 	}
518 	if (hw->mac.type >= ixgbe_mac_82599EB)
519 		for (i = 0; i < 8; i++)
520 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
521 	IXGBE_READ_REG(hw, IXGBE_PRC64);
522 	IXGBE_READ_REG(hw, IXGBE_PRC127);
523 	IXGBE_READ_REG(hw, IXGBE_PRC255);
524 	IXGBE_READ_REG(hw, IXGBE_PRC511);
525 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
526 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
527 	IXGBE_READ_REG(hw, IXGBE_GPRC);
528 	IXGBE_READ_REG(hw, IXGBE_BPRC);
529 	IXGBE_READ_REG(hw, IXGBE_MPRC);
530 	IXGBE_READ_REG(hw, IXGBE_GPTC);
531 	IXGBE_READ_REG(hw, IXGBE_GORCL);
532 	IXGBE_READ_REG(hw, IXGBE_GORCH);
533 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
534 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
535 	if (hw->mac.type == ixgbe_mac_82598EB)
536 		for (i = 0; i < 8; i++)
537 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
538 	IXGBE_READ_REG(hw, IXGBE_RUC);
539 	IXGBE_READ_REG(hw, IXGBE_RFC);
540 	IXGBE_READ_REG(hw, IXGBE_ROC);
541 	IXGBE_READ_REG(hw, IXGBE_RJC);
542 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
543 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
544 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
545 	IXGBE_READ_REG(hw, IXGBE_TORL);
546 	IXGBE_READ_REG(hw, IXGBE_TORH);
547 	IXGBE_READ_REG(hw, IXGBE_TPR);
548 	IXGBE_READ_REG(hw, IXGBE_TPT);
549 	IXGBE_READ_REG(hw, IXGBE_PTC64);
550 	IXGBE_READ_REG(hw, IXGBE_PTC127);
551 	IXGBE_READ_REG(hw, IXGBE_PTC255);
552 	IXGBE_READ_REG(hw, IXGBE_PTC511);
553 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
554 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
555 	IXGBE_READ_REG(hw, IXGBE_MPTC);
556 	IXGBE_READ_REG(hw, IXGBE_BPTC);
557 	for (i = 0; i < 16; i++) {
558 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
559 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
560 		if (hw->mac.type >= ixgbe_mac_82599EB) {
561 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
562 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
563 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
564 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
565 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
566 		} else {
567 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
568 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
569 		}
570 	}
571 
572 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
573 		if (hw->phy.id == 0)
574 			ixgbe_identify_phy(hw);
575 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
576 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
577 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
578 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
579 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
580 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
581 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
582 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
583 	}
584 
585 	return IXGBE_SUCCESS;
586 }
587 
588 /**
589  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
590  *  @hw: pointer to hardware structure
591  *  @pba_num: stores the part number string from the EEPROM
592  *  @pba_num_size: part number string buffer length
593  *
594  *  Reads the part number string from the EEPROM.
595  **/
596 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
597 				  u32 pba_num_size)
598 {
599 	s32 ret_val;
600 	u16 data;
601 	u16 pba_ptr;
602 	u16 offset;
603 	u16 length;
604 
605 	DEBUGFUNC("ixgbe_read_pba_string_generic");
606 
607 	if (pba_num == NULL) {
608 		DEBUGOUT("PBA string buffer was null\n");
609 		return IXGBE_ERR_INVALID_ARGUMENT;
610 	}
611 
612 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
613 	if (ret_val) {
614 		DEBUGOUT("NVM Read Error\n");
615 		return ret_val;
616 	}
617 
618 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
619 	if (ret_val) {
620 		DEBUGOUT("NVM Read Error\n");
621 		return ret_val;
622 	}
623 
624 	/*
625 	 * if data is not ptr guard the PBA must be in legacy format which
626 	 * means pba_ptr is actually our second data word for the PBA number
627 	 * and we can decode it into an ascii string
628 	 */
629 	if (data != IXGBE_PBANUM_PTR_GUARD) {
630 		DEBUGOUT("NVM PBA number is not stored as string\n");
631 
632 		/* we will need 11 characters to store the PBA */
633 		if (pba_num_size < 11) {
634 			DEBUGOUT("PBA string buffer too small\n");
635 			return IXGBE_ERR_NO_SPACE;
636 		}
637 
638 		/* extract hex string from data and pba_ptr */
639 		pba_num[0] = (data >> 12) & 0xF;
640 		pba_num[1] = (data >> 8) & 0xF;
641 		pba_num[2] = (data >> 4) & 0xF;
642 		pba_num[3] = data & 0xF;
643 		pba_num[4] = (pba_ptr >> 12) & 0xF;
644 		pba_num[5] = (pba_ptr >> 8) & 0xF;
645 		pba_num[6] = '-';
646 		pba_num[7] = 0;
647 		pba_num[8] = (pba_ptr >> 4) & 0xF;
648 		pba_num[9] = pba_ptr & 0xF;
649 
650 		/* put a null character on the end of our string */
651 		pba_num[10] = '\0';
652 
653 		/* switch all the data but the '-' to hex char */
654 		for (offset = 0; offset < 10; offset++) {
655 			if (pba_num[offset] < 0xA)
656 				pba_num[offset] += '0';
657 			else if (pba_num[offset] < 0x10)
658 				pba_num[offset] += 'A' - 0xA;
659 		}
660 
661 		return IXGBE_SUCCESS;
662 	}
663 
664 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
665 	if (ret_val) {
666 		DEBUGOUT("NVM Read Error\n");
667 		return ret_val;
668 	}
669 
670 	if (length == 0xFFFF || length == 0) {
671 		DEBUGOUT("NVM PBA number section invalid length\n");
672 		return IXGBE_ERR_PBA_SECTION;
673 	}
674 
675 	/* check if pba_num buffer is big enough */
676 	if (pba_num_size  < (((u32)length * 2) - 1)) {
677 		DEBUGOUT("PBA string buffer too small\n");
678 		return IXGBE_ERR_NO_SPACE;
679 	}
680 
681 	/* trim pba length from start of string */
682 	pba_ptr++;
683 	length--;
684 
685 	for (offset = 0; offset < length; offset++) {
686 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
687 		if (ret_val) {
688 			DEBUGOUT("NVM Read Error\n");
689 			return ret_val;
690 		}
691 		pba_num[offset * 2] = (u8)(data >> 8);
692 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
693 	}
694 	pba_num[offset * 2] = '\0';
695 
696 	return IXGBE_SUCCESS;
697 }
698 
699 /**
700  *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
701  *  @hw: pointer to hardware structure
702  *  @pba_num: stores the part number from the EEPROM
703  *
704  *  Reads the part number from the EEPROM.
705  **/
706 s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
707 {
708 	s32 ret_val;
709 	u16 data;
710 
711 	DEBUGFUNC("ixgbe_read_pba_num_generic");
712 
713 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
714 	if (ret_val) {
715 		DEBUGOUT("NVM Read Error\n");
716 		return ret_val;
717 	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
718 		DEBUGOUT("NVM Not supported\n");
719 		return IXGBE_NOT_IMPLEMENTED;
720 	}
721 	*pba_num = (u32)(data << 16);
722 
723 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
724 	if (ret_val) {
725 		DEBUGOUT("NVM Read Error\n");
726 		return ret_val;
727 	}
728 	*pba_num |= data;
729 
730 	return IXGBE_SUCCESS;
731 }
732 
733 /**
734  *  ixgbe_read_pba_raw
735  *  @hw: pointer to the HW structure
736  *  @eeprom_buf: optional pointer to EEPROM image
737  *  @eeprom_buf_size: size of EEPROM image in words
738  *  @max_pba_block_size: PBA block size limit
739  *  @pba: pointer to output PBA structure
740  *
741  *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
742  *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
743  *
744  **/
745 s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
746 		       u32 eeprom_buf_size, u16 max_pba_block_size,
747 		       struct ixgbe_pba *pba)
748 {
749 	s32 ret_val;
750 	u16 pba_block_size;
751 
752 	if (pba == NULL)
753 		return IXGBE_ERR_PARAM;
754 
755 	if (eeprom_buf == NULL) {
756 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
757 						     &pba->word[0]);
758 		if (ret_val)
759 			return ret_val;
760 	} else {
761 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
762 			pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
763 			pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
764 		} else {
765 			return IXGBE_ERR_PARAM;
766 		}
767 	}
768 
769 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
770 		if (pba->pba_block == NULL)
771 			return IXGBE_ERR_PARAM;
772 
773 		ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
774 						   eeprom_buf_size,
775 						   &pba_block_size);
776 		if (ret_val)
777 			return ret_val;
778 
779 		if (pba_block_size > max_pba_block_size)
780 			return IXGBE_ERR_PARAM;
781 
782 		if (eeprom_buf == NULL) {
783 			ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
784 							     pba_block_size,
785 							     pba->pba_block);
786 			if (ret_val)
787 				return ret_val;
788 		} else {
789 			if (eeprom_buf_size > (u32)(pba->word[1] +
790 					      pba_block_size)) {
791 				memcpy(pba->pba_block,
792 				       &eeprom_buf[pba->word[1]],
793 				       pba_block_size * sizeof(u16));
794 			} else {
795 				return IXGBE_ERR_PARAM;
796 			}
797 		}
798 	}
799 
800 	return IXGBE_SUCCESS;
801 }
802 
803 /**
804  *  ixgbe_write_pba_raw
805  *  @hw: pointer to the HW structure
806  *  @eeprom_buf: optional pointer to EEPROM image
807  *  @eeprom_buf_size: size of EEPROM image in words
808  *  @pba: pointer to PBA structure
809  *
810  *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
811  *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
812  *
813  **/
814 s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
815 			u32 eeprom_buf_size, struct ixgbe_pba *pba)
816 {
817 	s32 ret_val;
818 
819 	if (pba == NULL)
820 		return IXGBE_ERR_PARAM;
821 
822 	if (eeprom_buf == NULL) {
823 		ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
824 						      &pba->word[0]);
825 		if (ret_val)
826 			return ret_val;
827 	} else {
828 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
829 			eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
830 			eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
831 		} else {
832 			return IXGBE_ERR_PARAM;
833 		}
834 	}
835 
836 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
837 		if (pba->pba_block == NULL)
838 			return IXGBE_ERR_PARAM;
839 
840 		if (eeprom_buf == NULL) {
841 			ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
842 							      pba->pba_block[0],
843 							      pba->pba_block);
844 			if (ret_val)
845 				return ret_val;
846 		} else {
847 			if (eeprom_buf_size > (u32)(pba->word[1] +
848 					      pba->pba_block[0])) {
849 				memcpy(&eeprom_buf[pba->word[1]],
850 				       pba->pba_block,
851 				       pba->pba_block[0] * sizeof(u16));
852 			} else {
853 				return IXGBE_ERR_PARAM;
854 			}
855 		}
856 	}
857 
858 	return IXGBE_SUCCESS;
859 }
860 
861 /**
862  *  ixgbe_get_pba_block_size
863  *  @hw: pointer to the HW structure
864  *  @eeprom_buf: optional pointer to EEPROM image
865  *  @eeprom_buf_size: size of EEPROM image in words
866  *  @pba_data_size: pointer to output variable
867  *
868  *  Returns the size of the PBA block in words. Function operates on EEPROM
869  *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
870  *  EEPROM device.
871  *
872  **/
873 s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
874 			     u32 eeprom_buf_size, u16 *pba_block_size)
875 {
876 	s32 ret_val;
877 	u16 pba_word[2];
878 	u16 length;
879 
880 	DEBUGFUNC("ixgbe_get_pba_block_size");
881 
882 	if (eeprom_buf == NULL) {
883 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
884 						     &pba_word[0]);
885 		if (ret_val)
886 			return ret_val;
887 	} else {
888 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
889 			pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
890 			pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
891 		} else {
892 			return IXGBE_ERR_PARAM;
893 		}
894 	}
895 
896 	if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
897 		if (eeprom_buf == NULL) {
898 			ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
899 						      &length);
900 			if (ret_val)
901 				return ret_val;
902 		} else {
903 			if (eeprom_buf_size > pba_word[1])
904 				length = eeprom_buf[pba_word[1] + 0];
905 			else
906 				return IXGBE_ERR_PARAM;
907 		}
908 
909 		if (length == 0xFFFF || length == 0)
910 			return IXGBE_ERR_PBA_SECTION;
911 	} else {
912 		/* PBA number in legacy format, there is no PBA Block. */
913 		length = 0;
914 	}
915 
916 	if (pba_block_size != NULL)
917 		*pba_block_size = length;
918 
919 	return IXGBE_SUCCESS;
920 }
921 
922 /**
923  *  ixgbe_get_mac_addr_generic - Generic get MAC address
924  *  @hw: pointer to hardware structure
925  *  @mac_addr: Adapter MAC address
926  *
927  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
928  *  A reset of the adapter must be performed prior to calling this function
929  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
930  **/
931 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
932 {
933 	u32 rar_high;
934 	u32 rar_low;
935 	u16 i;
936 
937 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
938 
939 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
940 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
941 
942 	for (i = 0; i < 4; i++)
943 		mac_addr[i] = (u8)(rar_low >> (i*8));
944 
945 	for (i = 0; i < 2; i++)
946 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
947 
948 	return IXGBE_SUCCESS;
949 }
950 
951 /**
952  *  ixgbe_set_pci_config_data_generic - Generic store PCI bus info
953  *  @hw: pointer to hardware structure
954  *  @link_status: the link status returned by the PCI config space
955  *
956  *  Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
957  **/
958 void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
959 {
960 	struct ixgbe_mac_info *mac = &hw->mac;
961 
962 	if (hw->bus.type == ixgbe_bus_type_unknown)
963 		hw->bus.type = ixgbe_bus_type_pci_express;
964 
965 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
966 	case IXGBE_PCI_LINK_WIDTH_1:
967 		hw->bus.width = ixgbe_bus_width_pcie_x1;
968 		break;
969 	case IXGBE_PCI_LINK_WIDTH_2:
970 		hw->bus.width = ixgbe_bus_width_pcie_x2;
971 		break;
972 	case IXGBE_PCI_LINK_WIDTH_4:
973 		hw->bus.width = ixgbe_bus_width_pcie_x4;
974 		break;
975 	case IXGBE_PCI_LINK_WIDTH_8:
976 		hw->bus.width = ixgbe_bus_width_pcie_x8;
977 		break;
978 	default:
979 		hw->bus.width = ixgbe_bus_width_unknown;
980 		break;
981 	}
982 
983 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
984 	case IXGBE_PCI_LINK_SPEED_2500:
985 		hw->bus.speed = ixgbe_bus_speed_2500;
986 		break;
987 	case IXGBE_PCI_LINK_SPEED_5000:
988 		hw->bus.speed = ixgbe_bus_speed_5000;
989 		break;
990 	case IXGBE_PCI_LINK_SPEED_8000:
991 		hw->bus.speed = ixgbe_bus_speed_8000;
992 		break;
993 	default:
994 		hw->bus.speed = ixgbe_bus_speed_unknown;
995 		break;
996 	}
997 
998 	mac->ops.set_lan_id(hw);
999 }
1000 
1001 /**
1002  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
1003  *  @hw: pointer to hardware structure
1004  *
1005  *  Gets the PCI bus info (speed, width, type) then calls helper function to
1006  *  store this data within the ixgbe_hw structure.
1007  **/
1008 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1009 {
1010 	u16 link_status;
1011 
1012 	DEBUGFUNC("ixgbe_get_bus_info_generic");
1013 
1014 	/* Get the negotiated link width and speed from PCI config space */
1015 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1016 
1017 	ixgbe_set_pci_config_data_generic(hw, link_status);
1018 
1019 	return IXGBE_SUCCESS;
1020 }
1021 
1022 /**
1023  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1024  *  @hw: pointer to the HW structure
1025  *
1026  *  Determines the LAN function id by reading memory-mapped registers
1027  *  and swaps the port value if requested.
1028  **/
1029 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1030 {
1031 	struct ixgbe_bus_info *bus = &hw->bus;
1032 	u32 reg;
1033 
1034 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1035 
1036 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1037 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1038 	bus->lan_id = bus->func;
1039 
1040 	/* check for a port swap */
1041 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
1042 	if (reg & IXGBE_FACTPS_LFS)
1043 		bus->func ^= 0x1;
1044 }
1045 
1046 /**
1047  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1048  *  @hw: pointer to hardware structure
1049  *
1050  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1051  *  disables transmit and receive units. The adapter_stopped flag is used by
1052  *  the shared code and drivers to determine if the adapter is in a stopped
1053  *  state and should not touch the hardware.
1054  **/
1055 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1056 {
1057 	u32 reg_val;
1058 	u16 i;
1059 
1060 	DEBUGFUNC("ixgbe_stop_adapter_generic");
1061 
1062 	/*
1063 	 * Set the adapter_stopped flag so other driver functions stop touching
1064 	 * the hardware
1065 	 */
1066 	hw->adapter_stopped = TRUE;
1067 
1068 	/* Disable the receive unit */
1069 	ixgbe_disable_rx(hw);
1070 
1071 	/* Clear interrupt mask to stop interrupts from being generated */
1072 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
1073 
1074 	/* Clear any pending interrupts, flush previous writes */
1075 	IXGBE_READ_REG(hw, IXGBE_EICR);
1076 
1077 	/* Disable the transmit unit.  Each queue must be disabled. */
1078 	for (i = 0; i < hw->mac.max_tx_queues; i++)
1079 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1080 
1081 	/* Disable the receive unit by stopping each queue */
1082 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
1083 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1084 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
1085 		reg_val |= IXGBE_RXDCTL_SWFLSH;
1086 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1087 	}
1088 
1089 	/* flush all queues disables */
1090 	IXGBE_WRITE_FLUSH(hw);
1091 	msec_delay(2);
1092 
1093 	/*
1094 	 * Prevent the PCI-E bus from hanging by disabling PCI-E master
1095 	 * access and verify no pending requests
1096 	 */
1097 	return ixgbe_disable_pcie_master(hw);
1098 }
1099 
1100 /**
1101  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
1102  *  @hw: pointer to hardware structure
1103  *  @index: led number to turn on
1104  **/
1105 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1106 {
1107 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1108 
1109 	DEBUGFUNC("ixgbe_led_on_generic");
1110 
1111 	/* To turn on the LED, set mode to ON. */
1112 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1113 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1114 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1115 	IXGBE_WRITE_FLUSH(hw);
1116 
1117 	return IXGBE_SUCCESS;
1118 }
1119 
1120 /**
1121  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
1122  *  @hw: pointer to hardware structure
1123  *  @index: led number to turn off
1124  **/
1125 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1126 {
1127 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1128 
1129 	DEBUGFUNC("ixgbe_led_off_generic");
1130 
1131 	/* To turn off the LED, set mode to OFF. */
1132 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1133 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1134 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1135 	IXGBE_WRITE_FLUSH(hw);
1136 
1137 	return IXGBE_SUCCESS;
1138 }
1139 
1140 /**
1141  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1142  *  @hw: pointer to hardware structure
1143  *
1144  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
1145  *  ixgbe_hw struct in order to set up EEPROM access.
1146  **/
1147 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1148 {
1149 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1150 	u32 eec;
1151 	u16 eeprom_size;
1152 
1153 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1154 
1155 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
1156 		eeprom->type = ixgbe_eeprom_none;
1157 		/* Set default semaphore delay to 10ms which is a well
1158 		 * tested value */
1159 		eeprom->semaphore_delay = 10;
1160 		/* Clear EEPROM page size, it will be initialized as needed */
1161 		eeprom->word_page_size = 0;
1162 
1163 		/*
1164 		 * Check for EEPROM present first.
1165 		 * If not present leave as none
1166 		 */
1167 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1168 		if (eec & IXGBE_EEC_PRES) {
1169 			eeprom->type = ixgbe_eeprom_spi;
1170 
1171 			/*
1172 			 * SPI EEPROM is assumed here.  This code would need to
1173 			 * change if a future EEPROM is not SPI.
1174 			 */
1175 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1176 					    IXGBE_EEC_SIZE_SHIFT);
1177 			eeprom->word_size = 1 << (eeprom_size +
1178 					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
1179 		}
1180 
1181 		if (eec & IXGBE_EEC_ADDR_SIZE)
1182 			eeprom->address_bits = 16;
1183 		else
1184 			eeprom->address_bits = 8;
1185 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1186 			  "%d\n", eeprom->type, eeprom->word_size,
1187 			  eeprom->address_bits);
1188 	}
1189 
1190 	return IXGBE_SUCCESS;
1191 }
1192 
1193 /**
1194  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1195  *  @hw: pointer to hardware structure
1196  *  @offset: offset within the EEPROM to write
1197  *  @words: number of word(s)
1198  *  @data: 16 bit word(s) to write to EEPROM
1199  *
1200  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1201  **/
1202 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1203 					       u16 words, u16 *data)
1204 {
1205 	s32 status = IXGBE_SUCCESS;
1206 	u16 i, count;
1207 
1208 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1209 
1210 	hw->eeprom.ops.init_params(hw);
1211 
1212 	if (words == 0) {
1213 		status = IXGBE_ERR_INVALID_ARGUMENT;
1214 		goto out;
1215 	}
1216 
1217 	if (offset + words > hw->eeprom.word_size) {
1218 		status = IXGBE_ERR_EEPROM;
1219 		goto out;
1220 	}
1221 
1222 	/*
1223 	 * The EEPROM page size cannot be queried from the chip. We do lazy
1224 	 * initialization. It is worth to do that when we write large buffer.
1225 	 */
1226 	if ((hw->eeprom.word_page_size == 0) &&
1227 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1228 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
1229 
1230 	/*
1231 	 * We cannot hold synchronization semaphores for too long
1232 	 * to avoid other entity starvation. However it is more efficient
1233 	 * to read in bursts than synchronizing access for each word.
1234 	 */
1235 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1236 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1237 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1238 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1239 							    count, &data[i]);
1240 
1241 		if (status != IXGBE_SUCCESS)
1242 			break;
1243 	}
1244 
1245 out:
1246 	return status;
1247 }
1248 
1249 /**
1250  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1251  *  @hw: pointer to hardware structure
1252  *  @offset: offset within the EEPROM to be written to
1253  *  @words: number of word(s)
1254  *  @data: 16 bit word(s) to be written to the EEPROM
1255  *
1256  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1257  *  EEPROM will most likely contain an invalid checksum.
1258  **/
1259 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1260 					      u16 words, u16 *data)
1261 {
1262 	s32 status;
1263 	u16 word;
1264 	u16 page_size;
1265 	u16 i;
1266 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1267 
1268 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1269 
1270 	/* Prepare the EEPROM for writing  */
1271 	status = ixgbe_acquire_eeprom(hw);
1272 
1273 	if (status == IXGBE_SUCCESS) {
1274 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1275 			ixgbe_release_eeprom(hw);
1276 			status = IXGBE_ERR_EEPROM;
1277 		}
1278 	}
1279 
1280 	if (status == IXGBE_SUCCESS) {
1281 		for (i = 0; i < words; i++) {
1282 			ixgbe_standby_eeprom(hw);
1283 
1284 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
1285 			ixgbe_shift_out_eeprom_bits(hw,
1286 						   IXGBE_EEPROM_WREN_OPCODE_SPI,
1287 						   IXGBE_EEPROM_OPCODE_BITS);
1288 
1289 			ixgbe_standby_eeprom(hw);
1290 
1291 			/*
1292 			 * Some SPI eeproms use the 8th address bit embedded
1293 			 * in the opcode
1294 			 */
1295 			if ((hw->eeprom.address_bits == 8) &&
1296 			    ((offset + i) >= 128))
1297 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1298 
1299 			/* Send the Write command (8-bit opcode + addr) */
1300 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1301 						    IXGBE_EEPROM_OPCODE_BITS);
1302 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1303 						    hw->eeprom.address_bits);
1304 
1305 			page_size = hw->eeprom.word_page_size;
1306 
1307 			/* Send the data in burst via SPI*/
1308 			do {
1309 				word = data[i];
1310 				word = (word >> 8) | (word << 8);
1311 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
1312 
1313 				if (page_size == 0)
1314 					break;
1315 
1316 				/* do not wrap around page */
1317 				if (((offset + i) & (page_size - 1)) ==
1318 				    (page_size - 1))
1319 					break;
1320 			} while (++i < words);
1321 
1322 			ixgbe_standby_eeprom(hw);
1323 			msec_delay(10);
1324 		}
1325 		/* Done with writing - release the EEPROM */
1326 		ixgbe_release_eeprom(hw);
1327 	}
1328 
1329 	return status;
1330 }
1331 
1332 /**
1333  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1334  *  @hw: pointer to hardware structure
1335  *  @offset: offset within the EEPROM to be written to
1336  *  @data: 16 bit word to be written to the EEPROM
1337  *
1338  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1339  *  EEPROM will most likely contain an invalid checksum.
1340  **/
1341 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1342 {
1343 	s32 status;
1344 
1345 	DEBUGFUNC("ixgbe_write_eeprom_generic");
1346 
1347 	hw->eeprom.ops.init_params(hw);
1348 
1349 	if (offset >= hw->eeprom.word_size) {
1350 		status = IXGBE_ERR_EEPROM;
1351 		goto out;
1352 	}
1353 
1354 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1355 
1356 out:
1357 	return status;
1358 }
1359 
1360 /**
1361  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1362  *  @hw: pointer to hardware structure
1363  *  @offset: offset within the EEPROM to be read
1364  *  @data: read 16 bit words(s) from EEPROM
1365  *  @words: number of word(s)
1366  *
1367  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1368  **/
1369 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1370 					      u16 words, u16 *data)
1371 {
1372 	s32 status = IXGBE_SUCCESS;
1373 	u16 i, count;
1374 
1375 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1376 
1377 	hw->eeprom.ops.init_params(hw);
1378 
1379 	if (words == 0) {
1380 		status = IXGBE_ERR_INVALID_ARGUMENT;
1381 		goto out;
1382 	}
1383 
1384 	if (offset + words > hw->eeprom.word_size) {
1385 		status = IXGBE_ERR_EEPROM;
1386 		goto out;
1387 	}
1388 
1389 	/*
1390 	 * We cannot hold synchronization semaphores for too long
1391 	 * to avoid other entity starvation. However it is more efficient
1392 	 * to read in bursts than synchronizing access for each word.
1393 	 */
1394 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1395 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1396 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1397 
1398 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1399 							   count, &data[i]);
1400 
1401 		if (status != IXGBE_SUCCESS)
1402 			break;
1403 	}
1404 
1405 out:
1406 	return status;
1407 }
1408 
1409 /**
1410  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1411  *  @hw: pointer to hardware structure
1412  *  @offset: offset within the EEPROM to be read
1413  *  @words: number of word(s)
1414  *  @data: read 16 bit word(s) from EEPROM
1415  *
1416  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1417  **/
1418 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1419 					     u16 words, u16 *data)
1420 {
1421 	s32 status;
1422 	u16 word_in;
1423 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1424 	u16 i;
1425 
1426 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1427 
1428 	/* Prepare the EEPROM for reading  */
1429 	status = ixgbe_acquire_eeprom(hw);
1430 
1431 	if (status == IXGBE_SUCCESS) {
1432 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1433 			ixgbe_release_eeprom(hw);
1434 			status = IXGBE_ERR_EEPROM;
1435 		}
1436 	}
1437 
1438 	if (status == IXGBE_SUCCESS) {
1439 		for (i = 0; i < words; i++) {
1440 			ixgbe_standby_eeprom(hw);
1441 			/*
1442 			 * Some SPI eeproms use the 8th address bit embedded
1443 			 * in the opcode
1444 			 */
1445 			if ((hw->eeprom.address_bits == 8) &&
1446 			    ((offset + i) >= 128))
1447 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1448 
1449 			/* Send the READ command (opcode + addr) */
1450 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1451 						    IXGBE_EEPROM_OPCODE_BITS);
1452 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1453 						    hw->eeprom.address_bits);
1454 
1455 			/* Read the data. */
1456 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1457 			data[i] = (word_in >> 8) | (word_in << 8);
1458 		}
1459 
1460 		/* End this read operation */
1461 		ixgbe_release_eeprom(hw);
1462 	}
1463 
1464 	return status;
1465 }
1466 
1467 /**
1468  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1469  *  @hw: pointer to hardware structure
1470  *  @offset: offset within the EEPROM to be read
1471  *  @data: read 16 bit value from EEPROM
1472  *
1473  *  Reads 16 bit value from EEPROM through bit-bang method
1474  **/
1475 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1476 				       u16 *data)
1477 {
1478 	s32 status;
1479 
1480 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1481 
1482 	hw->eeprom.ops.init_params(hw);
1483 
1484 	if (offset >= hw->eeprom.word_size) {
1485 		status = IXGBE_ERR_EEPROM;
1486 		goto out;
1487 	}
1488 
1489 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1490 
1491 out:
1492 	return status;
1493 }
1494 
1495 /**
1496  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1497  *  @hw: pointer to hardware structure
1498  *  @offset: offset of word in the EEPROM to read
1499  *  @words: number of word(s)
1500  *  @data: 16 bit word(s) from the EEPROM
1501  *
1502  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1503  **/
1504 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1505 				   u16 words, u16 *data)
1506 {
1507 	u32 eerd;
1508 	s32 status = IXGBE_SUCCESS;
1509 	u32 i;
1510 
1511 	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1512 
1513 	hw->eeprom.ops.init_params(hw);
1514 
1515 	if (words == 0) {
1516 		status = IXGBE_ERR_INVALID_ARGUMENT;
1517 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1518 		goto out;
1519 	}
1520 
1521 	if (offset >= hw->eeprom.word_size) {
1522 		status = IXGBE_ERR_EEPROM;
1523 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1524 		goto out;
1525 	}
1526 
1527 	for (i = 0; i < words; i++) {
1528 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1529 		       IXGBE_EEPROM_RW_REG_START;
1530 
1531 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1532 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1533 
1534 		if (status == IXGBE_SUCCESS) {
1535 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1536 				   IXGBE_EEPROM_RW_REG_DATA);
1537 		} else {
1538 			DEBUGOUT("Eeprom read timed out\n");
1539 			goto out;
1540 		}
1541 	}
1542 out:
1543 	return status;
1544 }
1545 
1546 /**
1547  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1548  *  @hw: pointer to hardware structure
1549  *  @offset: offset within the EEPROM to be used as a scratch pad
1550  *
1551  *  Discover EEPROM page size by writing marching data at given offset.
1552  *  This function is called only when we are writing a new large buffer
1553  *  at given offset so the data would be overwritten anyway.
1554  **/
1555 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1556 						 u16 offset)
1557 {
1558 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1559 	s32 status = IXGBE_SUCCESS;
1560 	u16 i;
1561 
1562 	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1563 
1564 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1565 		data[i] = i;
1566 
1567 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1568 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1569 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1570 	hw->eeprom.word_page_size = 0;
1571 	if (status != IXGBE_SUCCESS)
1572 		goto out;
1573 
1574 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1575 	if (status != IXGBE_SUCCESS)
1576 		goto out;
1577 
1578 	/*
1579 	 * When writing in burst more than the actual page size
1580 	 * EEPROM address wraps around current page.
1581 	 */
1582 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1583 
1584 	DEBUGOUT1("Detected EEPROM page size = %d words.",
1585 		  hw->eeprom.word_page_size);
1586 out:
1587 	return status;
1588 }
1589 
1590 /**
1591  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1592  *  @hw: pointer to hardware structure
1593  *  @offset: offset of  word in the EEPROM to read
1594  *  @data: word read from the EEPROM
1595  *
1596  *  Reads a 16 bit word from the EEPROM using the EERD register.
1597  **/
1598 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1599 {
1600 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1601 }
1602 
1603 /**
1604  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1605  *  @hw: pointer to hardware structure
1606  *  @offset: offset of  word in the EEPROM to write
1607  *  @words: number of word(s)
1608  *  @data: word(s) write to the EEPROM
1609  *
1610  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1611  **/
1612 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1613 				    u16 words, u16 *data)
1614 {
1615 	u32 eewr;
1616 	s32 status = IXGBE_SUCCESS;
1617 	u16 i;
1618 
1619 	DEBUGFUNC("ixgbe_write_eewr_generic");
1620 
1621 	hw->eeprom.ops.init_params(hw);
1622 
1623 	if (words == 0) {
1624 		status = IXGBE_ERR_INVALID_ARGUMENT;
1625 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1626 		goto out;
1627 	}
1628 
1629 	if (offset >= hw->eeprom.word_size) {
1630 		status = IXGBE_ERR_EEPROM;
1631 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1632 		goto out;
1633 	}
1634 
1635 	for (i = 0; i < words; i++) {
1636 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1637 			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1638 			IXGBE_EEPROM_RW_REG_START;
1639 
1640 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1641 		if (status != IXGBE_SUCCESS) {
1642 			DEBUGOUT("Eeprom write EEWR timed out\n");
1643 			goto out;
1644 		}
1645 
1646 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1647 
1648 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1649 		if (status != IXGBE_SUCCESS) {
1650 			DEBUGOUT("Eeprom write EEWR timed out\n");
1651 			goto out;
1652 		}
1653 	}
1654 
1655 out:
1656 	return status;
1657 }
1658 
1659 /**
1660  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1661  *  @hw: pointer to hardware structure
1662  *  @offset: offset of  word in the EEPROM to write
1663  *  @data: word write to the EEPROM
1664  *
1665  *  Write a 16 bit word to the EEPROM using the EEWR register.
1666  **/
1667 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1668 {
1669 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1670 }
1671 
1672 /**
1673  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1674  *  @hw: pointer to hardware structure
1675  *  @ee_reg: EEPROM flag for polling
1676  *
1677  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1678  *  read or write is done respectively.
1679  **/
1680 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1681 {
1682 	u32 i;
1683 	u32 reg;
1684 	s32 status = IXGBE_ERR_EEPROM;
1685 
1686 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1687 
1688 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1689 		if (ee_reg == IXGBE_NVM_POLL_READ)
1690 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1691 		else
1692 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1693 
1694 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1695 			status = IXGBE_SUCCESS;
1696 			break;
1697 		}
1698 		usec_delay(5);
1699 	}
1700 
1701 	if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1702 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1703 			     "EEPROM read/write done polling timed out");
1704 
1705 	return status;
1706 }
1707 
1708 /**
1709  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1710  *  @hw: pointer to hardware structure
1711  *
1712  *  Prepares EEPROM for access using bit-bang method. This function should
1713  *  be called before issuing a command to the EEPROM.
1714  **/
1715 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1716 {
1717 	s32 status = IXGBE_SUCCESS;
1718 	u32 eec;
1719 	u32 i;
1720 
1721 	DEBUGFUNC("ixgbe_acquire_eeprom");
1722 
1723 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1724 	    != IXGBE_SUCCESS)
1725 		status = IXGBE_ERR_SWFW_SYNC;
1726 
1727 	if (status == IXGBE_SUCCESS) {
1728 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1729 
1730 		/* Request EEPROM Access */
1731 		eec |= IXGBE_EEC_REQ;
1732 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1733 
1734 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1735 			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1736 			if (eec & IXGBE_EEC_GNT)
1737 				break;
1738 			usec_delay(5);
1739 		}
1740 
1741 		/* Release if grant not acquired */
1742 		if (!(eec & IXGBE_EEC_GNT)) {
1743 			eec &= ~IXGBE_EEC_REQ;
1744 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1745 			DEBUGOUT("Could not acquire EEPROM grant\n");
1746 
1747 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1748 			status = IXGBE_ERR_EEPROM;
1749 		}
1750 
1751 		/* Setup EEPROM for Read/Write */
1752 		if (status == IXGBE_SUCCESS) {
1753 			/* Clear CS and SK */
1754 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1755 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1756 			IXGBE_WRITE_FLUSH(hw);
1757 			usec_delay(1);
1758 		}
1759 	}
1760 	return status;
1761 }
1762 
1763 /**
1764  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1765  *  @hw: pointer to hardware structure
1766  *
1767  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1768  **/
1769 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1770 {
1771 	s32 status = IXGBE_ERR_EEPROM;
1772 	u32 timeout = 2000;
1773 	u32 i;
1774 	u32 swsm;
1775 
1776 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1777 
1778 
1779 	/* Get SMBI software semaphore between device drivers first */
1780 	for (i = 0; i < timeout; i++) {
1781 		/*
1782 		 * If the SMBI bit is 0 when we read it, then the bit will be
1783 		 * set and we have the semaphore
1784 		 */
1785 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1786 		if (!(swsm & IXGBE_SWSM_SMBI)) {
1787 			status = IXGBE_SUCCESS;
1788 			break;
1789 		}
1790 		usec_delay(50);
1791 	}
1792 
1793 	if (i == timeout) {
1794 		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1795 			 "not granted.\n");
1796 		/*
1797 		 * this release is particularly important because our attempts
1798 		 * above to get the semaphore may have succeeded, and if there
1799 		 * was a timeout, we should unconditionally clear the semaphore
1800 		 * bits to free the driver to make progress
1801 		 */
1802 		ixgbe_release_eeprom_semaphore(hw);
1803 
1804 		usec_delay(50);
1805 		/*
1806 		 * one last try
1807 		 * If the SMBI bit is 0 when we read it, then the bit will be
1808 		 * set and we have the semaphore
1809 		 */
1810 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1811 		if (!(swsm & IXGBE_SWSM_SMBI))
1812 			status = IXGBE_SUCCESS;
1813 	}
1814 
1815 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1816 	if (status == IXGBE_SUCCESS) {
1817 		for (i = 0; i < timeout; i++) {
1818 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1819 
1820 			/* Set the SW EEPROM semaphore bit to request access */
1821 			swsm |= IXGBE_SWSM_SWESMBI;
1822 			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1823 
1824 			/*
1825 			 * If we set the bit successfully then we got the
1826 			 * semaphore.
1827 			 */
1828 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1829 			if (swsm & IXGBE_SWSM_SWESMBI)
1830 				break;
1831 
1832 			usec_delay(50);
1833 		}
1834 
1835 		/*
1836 		 * Release semaphores and return error if SW EEPROM semaphore
1837 		 * was not granted because we don't have access to the EEPROM
1838 		 */
1839 		if (i >= timeout) {
1840 			ERROR_REPORT1(IXGBE_ERROR_POLLING,
1841 			    "SWESMBI Software EEPROM semaphore not granted.\n");
1842 			ixgbe_release_eeprom_semaphore(hw);
1843 			status = IXGBE_ERR_EEPROM;
1844 		}
1845 	} else {
1846 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1847 			     "Software semaphore SMBI between device drivers "
1848 			     "not granted.\n");
1849 	}
1850 
1851 	return status;
1852 }
1853 
1854 /**
1855  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1856  *  @hw: pointer to hardware structure
1857  *
1858  *  This function clears hardware semaphore bits.
1859  **/
1860 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1861 {
1862 	u32 swsm;
1863 
1864 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1865 
1866 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1867 
1868 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1869 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1870 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1871 	IXGBE_WRITE_FLUSH(hw);
1872 }
1873 
1874 /**
1875  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1876  *  @hw: pointer to hardware structure
1877  **/
1878 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1879 {
1880 	s32 status = IXGBE_SUCCESS;
1881 	u16 i;
1882 	u8 spi_stat_reg;
1883 
1884 	DEBUGFUNC("ixgbe_ready_eeprom");
1885 
1886 	/*
1887 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1888 	 * EEPROM will signal that the command has been completed by clearing
1889 	 * bit 0 of the internal status register.  If it's not cleared within
1890 	 * 5 milliseconds, then error out.
1891 	 */
1892 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1893 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1894 					    IXGBE_EEPROM_OPCODE_BITS);
1895 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1896 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1897 			break;
1898 
1899 		usec_delay(5);
1900 		ixgbe_standby_eeprom(hw);
1901 	};
1902 
1903 	/*
1904 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1905 	 * devices (and only 0-5mSec on 5V devices)
1906 	 */
1907 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1908 		DEBUGOUT("SPI EEPROM Status error\n");
1909 		status = IXGBE_ERR_EEPROM;
1910 	}
1911 
1912 	return status;
1913 }
1914 
1915 /**
1916  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1917  *  @hw: pointer to hardware structure
1918  **/
1919 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1920 {
1921 	u32 eec;
1922 
1923 	DEBUGFUNC("ixgbe_standby_eeprom");
1924 
1925 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1926 
1927 	/* Toggle CS to flush commands */
1928 	eec |= IXGBE_EEC_CS;
1929 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1930 	IXGBE_WRITE_FLUSH(hw);
1931 	usec_delay(1);
1932 	eec &= ~IXGBE_EEC_CS;
1933 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1934 	IXGBE_WRITE_FLUSH(hw);
1935 	usec_delay(1);
1936 }
1937 
1938 /**
1939  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1940  *  @hw: pointer to hardware structure
1941  *  @data: data to send to the EEPROM
1942  *  @count: number of bits to shift out
1943  **/
1944 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1945 					u16 count)
1946 {
1947 	u32 eec;
1948 	u32 mask;
1949 	u32 i;
1950 
1951 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
1952 
1953 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1954 
1955 	/*
1956 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1957 	 * one bit at a time.  Determine the starting bit based on count
1958 	 */
1959 	mask = 0x01 << (count - 1);
1960 
1961 	for (i = 0; i < count; i++) {
1962 		/*
1963 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1964 		 * "1", and then raising and then lowering the clock (the SK
1965 		 * bit controls the clock input to the EEPROM).  A "0" is
1966 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1967 		 * raising and then lowering the clock.
1968 		 */
1969 		if (data & mask)
1970 			eec |= IXGBE_EEC_DI;
1971 		else
1972 			eec &= ~IXGBE_EEC_DI;
1973 
1974 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1975 		IXGBE_WRITE_FLUSH(hw);
1976 
1977 		usec_delay(1);
1978 
1979 		ixgbe_raise_eeprom_clk(hw, &eec);
1980 		ixgbe_lower_eeprom_clk(hw, &eec);
1981 
1982 		/*
1983 		 * Shift mask to signify next bit of data to shift in to the
1984 		 * EEPROM
1985 		 */
1986 		mask = mask >> 1;
1987 	};
1988 
1989 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1990 	eec &= ~IXGBE_EEC_DI;
1991 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1992 	IXGBE_WRITE_FLUSH(hw);
1993 }
1994 
1995 /**
1996  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1997  *  @hw: pointer to hardware structure
1998  **/
1999 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2000 {
2001 	u32 eec;
2002 	u32 i;
2003 	u16 data = 0;
2004 
2005 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2006 
2007 	/*
2008 	 * In order to read a register from the EEPROM, we need to shift
2009 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2010 	 * the clock input to the EEPROM (setting the SK bit), and then reading
2011 	 * the value of the "DO" bit.  During this "shifting in" process the
2012 	 * "DI" bit should always be clear.
2013 	 */
2014 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
2015 
2016 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2017 
2018 	for (i = 0; i < count; i++) {
2019 		data = data << 1;
2020 		ixgbe_raise_eeprom_clk(hw, &eec);
2021 
2022 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
2023 
2024 		eec &= ~(IXGBE_EEC_DI);
2025 		if (eec & IXGBE_EEC_DO)
2026 			data |= 1;
2027 
2028 		ixgbe_lower_eeprom_clk(hw, &eec);
2029 	}
2030 
2031 	return data;
2032 }
2033 
2034 /**
2035  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2036  *  @hw: pointer to hardware structure
2037  *  @eec: EEC register's current value
2038  **/
2039 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2040 {
2041 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
2042 
2043 	/*
2044 	 * Raise the clock input to the EEPROM
2045 	 * (setting the SK bit), then delay
2046 	 */
2047 	*eec = *eec | IXGBE_EEC_SK;
2048 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
2049 	IXGBE_WRITE_FLUSH(hw);
2050 	usec_delay(1);
2051 }
2052 
2053 /**
2054  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2055  *  @hw: pointer to hardware structure
2056  *  @eecd: EECD's current value
2057  **/
2058 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2059 {
2060 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
2061 
2062 	/*
2063 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
2064 	 * delay
2065 	 */
2066 	*eec = *eec & ~IXGBE_EEC_SK;
2067 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
2068 	IXGBE_WRITE_FLUSH(hw);
2069 	usec_delay(1);
2070 }
2071 
2072 /**
2073  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
2074  *  @hw: pointer to hardware structure
2075  **/
2076 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2077 {
2078 	u32 eec;
2079 
2080 	DEBUGFUNC("ixgbe_release_eeprom");
2081 
2082 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
2083 
2084 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
2085 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2086 
2087 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
2088 	IXGBE_WRITE_FLUSH(hw);
2089 
2090 	usec_delay(1);
2091 
2092 	/* Stop requesting EEPROM access */
2093 	eec &= ~IXGBE_EEC_REQ;
2094 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
2095 
2096 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2097 
2098 	/* Delay before attempt to obtain semaphore again to allow FW access */
2099 	msec_delay(hw->eeprom.semaphore_delay);
2100 }
2101 
2102 /**
2103  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2104  *  @hw: pointer to hardware structure
2105  *
2106  *  Returns a negative error code on error, or the 16-bit checksum
2107  **/
2108 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2109 {
2110 	u16 i;
2111 	u16 j;
2112 	u16 checksum = 0;
2113 	u16 length = 0;
2114 	u16 pointer = 0;
2115 	u16 word = 0;
2116 
2117 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2118 
2119 	/* Include 0x0-0x3F in the checksum */
2120 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2121 		if (hw->eeprom.ops.read(hw, i, &word)) {
2122 			DEBUGOUT("EEPROM read failed\n");
2123 			return IXGBE_ERR_EEPROM;
2124 		}
2125 		checksum += word;
2126 	}
2127 
2128 	/* Include all data from pointers except for the fw pointer */
2129 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2130 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
2131 			DEBUGOUT("EEPROM read failed\n");
2132 			return IXGBE_ERR_EEPROM;
2133 		}
2134 
2135 		/* If the pointer seems invalid */
2136 		if (pointer == 0xFFFF || pointer == 0)
2137 			continue;
2138 
2139 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
2140 			DEBUGOUT("EEPROM read failed\n");
2141 			return IXGBE_ERR_EEPROM;
2142 		}
2143 
2144 		if (length == 0xFFFF || length == 0)
2145 			continue;
2146 
2147 		for (j = pointer + 1; j <= pointer + length; j++) {
2148 			if (hw->eeprom.ops.read(hw, j, &word)) {
2149 				DEBUGOUT("EEPROM read failed\n");
2150 				return IXGBE_ERR_EEPROM;
2151 			}
2152 			checksum += word;
2153 		}
2154 	}
2155 
2156 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2157 
2158 	return (s32)checksum;
2159 }
2160 
2161 /**
2162  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2163  *  @hw: pointer to hardware structure
2164  *  @checksum_val: calculated checksum
2165  *
2166  *  Performs checksum calculation and validates the EEPROM checksum.  If the
2167  *  caller does not need checksum_val, the value can be NULL.
2168  **/
2169 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2170 					   u16 *checksum_val)
2171 {
2172 	s32 status;
2173 	u16 checksum;
2174 	u16 read_checksum = 0;
2175 
2176 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2177 
2178 	/* Read the first word from the EEPROM. If this times out or fails, do
2179 	 * not continue or we could be in for a very long wait while every
2180 	 * EEPROM read fails
2181 	 */
2182 	status = hw->eeprom.ops.read(hw, 0, &checksum);
2183 	if (status) {
2184 		DEBUGOUT("EEPROM read failed\n");
2185 		return status;
2186 	}
2187 
2188 	status = hw->eeprom.ops.calc_checksum(hw);
2189 	if (status < 0)
2190 		return status;
2191 
2192 	checksum = (u16)(status & 0xffff);
2193 
2194 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2195 	if (status) {
2196 		DEBUGOUT("EEPROM read failed\n");
2197 		return status;
2198 	}
2199 
2200 	/* Verify read checksum from EEPROM is the same as
2201 	 * calculated checksum
2202 	 */
2203 	if (read_checksum != checksum)
2204 		status = IXGBE_ERR_EEPROM_CHECKSUM;
2205 
2206 	/* If the user cares, return the calculated checksum */
2207 	if (checksum_val)
2208 		*checksum_val = checksum;
2209 
2210 	return status;
2211 }
2212 
2213 /**
2214  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2215  *  @hw: pointer to hardware structure
2216  **/
2217 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2218 {
2219 	s32 status;
2220 	u16 checksum;
2221 
2222 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2223 
2224 	/* Read the first word from the EEPROM. If this times out or fails, do
2225 	 * not continue or we could be in for a very long wait while every
2226 	 * EEPROM read fails
2227 	 */
2228 	status = hw->eeprom.ops.read(hw, 0, &checksum);
2229 	if (status) {
2230 		DEBUGOUT("EEPROM read failed\n");
2231 		return status;
2232 	}
2233 
2234 	status = hw->eeprom.ops.calc_checksum(hw);
2235 	if (status < 0)
2236 		return status;
2237 
2238 	checksum = (u16)(status & 0xffff);
2239 
2240 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2241 
2242 	return status;
2243 }
2244 
2245 /**
2246  *  ixgbe_validate_mac_addr - Validate MAC address
2247  *  @mac_addr: pointer to MAC address.
2248  *
2249  *  Tests a MAC address to ensure it is a valid Individual Address
2250  **/
2251 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2252 {
2253 	s32 status = IXGBE_SUCCESS;
2254 
2255 	DEBUGFUNC("ixgbe_validate_mac_addr");
2256 
2257 	/* Make sure it is not a multicast address */
2258 	if (IXGBE_IS_MULTICAST(mac_addr)) {
2259 		DEBUGOUT("MAC address is multicast\n");
2260 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2261 	/* Not a broadcast address */
2262 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
2263 		DEBUGOUT("MAC address is broadcast\n");
2264 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2265 	/* Reject the zero address */
2266 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2267 		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2268 		DEBUGOUT("MAC address is all zeros\n");
2269 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2270 	}
2271 	return status;
2272 }
2273 
2274 /**
2275  *  ixgbe_set_rar_generic - Set Rx address register
2276  *  @hw: pointer to hardware structure
2277  *  @index: Receive address register to write
2278  *  @addr: Address to put into receive address register
2279  *  @vmdq: VMDq "set" or "pool" index
2280  *  @enable_addr: set flag that address is active
2281  *
2282  *  Puts an ethernet address into a receive address register.
2283  **/
2284 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2285 			  u32 enable_addr)
2286 {
2287 	u32 rar_low, rar_high;
2288 	u32 rar_entries = hw->mac.num_rar_entries;
2289 
2290 	DEBUGFUNC("ixgbe_set_rar_generic");
2291 
2292 	/* Make sure we are using a valid rar index range */
2293 	if (index >= rar_entries) {
2294 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2295 			     "RAR index %d is out of range.\n", index);
2296 		return IXGBE_ERR_INVALID_ARGUMENT;
2297 	}
2298 
2299 	/* setup VMDq pool selection before this RAR gets enabled */
2300 	hw->mac.ops.set_vmdq(hw, index, vmdq);
2301 
2302 	/*
2303 	 * HW expects these in little endian so we reverse the byte
2304 	 * order from network order (big endian) to little endian
2305 	 */
2306 	rar_low = ((u32)addr[0] |
2307 		   ((u32)addr[1] << 8) |
2308 		   ((u32)addr[2] << 16) |
2309 		   ((u32)addr[3] << 24));
2310 	/*
2311 	 * Some parts put the VMDq setting in the extra RAH bits,
2312 	 * so save everything except the lower 16 bits that hold part
2313 	 * of the address and the address valid bit.
2314 	 */
2315 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2316 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2317 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2318 
2319 	if (enable_addr != 0)
2320 		rar_high |= IXGBE_RAH_AV;
2321 
2322 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2323 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2324 
2325 	return IXGBE_SUCCESS;
2326 }
2327 
2328 /**
2329  *  ixgbe_clear_rar_generic - Remove Rx address register
2330  *  @hw: pointer to hardware structure
2331  *  @index: Receive address register to write
2332  *
2333  *  Clears an ethernet address from a receive address register.
2334  **/
2335 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2336 {
2337 	u32 rar_high;
2338 	u32 rar_entries = hw->mac.num_rar_entries;
2339 
2340 	DEBUGFUNC("ixgbe_clear_rar_generic");
2341 
2342 	/* Make sure we are using a valid rar index range */
2343 	if (index >= rar_entries) {
2344 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2345 			     "RAR index %d is out of range.\n", index);
2346 		return IXGBE_ERR_INVALID_ARGUMENT;
2347 	}
2348 
2349 	/*
2350 	 * Some parts put the VMDq setting in the extra RAH bits,
2351 	 * so save everything except the lower 16 bits that hold part
2352 	 * of the address and the address valid bit.
2353 	 */
2354 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2355 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2356 
2357 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2358 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2359 
2360 	/* clear VMDq pool/queue selection for this RAR */
2361 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2362 
2363 	return IXGBE_SUCCESS;
2364 }
2365 
2366 /**
2367  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2368  *  @hw: pointer to hardware structure
2369  *
2370  *  Places the MAC address in receive address register 0 and clears the rest
2371  *  of the receive address registers. Clears the multicast table. Assumes
2372  *  the receiver is in reset when the routine is called.
2373  **/
2374 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2375 {
2376 	u32 i;
2377 	u32 rar_entries = hw->mac.num_rar_entries;
2378 
2379 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2380 
2381 	/*
2382 	 * If the current mac address is valid, assume it is a software override
2383 	 * to the permanent address.
2384 	 * Otherwise, use the permanent address from the eeprom.
2385 	 */
2386 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2387 	    IXGBE_ERR_INVALID_MAC_ADDR) {
2388 		/* Get the MAC address from the RAR0 for later reference */
2389 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2390 
2391 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2392 			  hw->mac.addr[0], hw->mac.addr[1],
2393 			  hw->mac.addr[2]);
2394 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2395 			  hw->mac.addr[4], hw->mac.addr[5]);
2396 	} else {
2397 		/* Setup the receive address. */
2398 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2399 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2400 			  hw->mac.addr[0], hw->mac.addr[1],
2401 			  hw->mac.addr[2]);
2402 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2403 			  hw->mac.addr[4], hw->mac.addr[5]);
2404 
2405 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2406 
2407 		/* clear VMDq pool/queue selection for RAR 0 */
2408 		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2409 	}
2410 	hw->addr_ctrl.overflow_promisc = 0;
2411 
2412 	hw->addr_ctrl.rar_used_count = 1;
2413 
2414 	/* Zero out the other receive addresses. */
2415 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2416 	for (i = 1; i < rar_entries; i++) {
2417 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2418 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2419 	}
2420 
2421 	/* Clear the MTA */
2422 	hw->addr_ctrl.mta_in_use = 0;
2423 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2424 
2425 	DEBUGOUT(" Clearing MTA\n");
2426 	for (i = 0; i < hw->mac.mcft_size; i++)
2427 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2428 
2429 	ixgbe_init_uta_tables(hw);
2430 
2431 	return IXGBE_SUCCESS;
2432 }
2433 
2434 /**
2435  *  ixgbe_add_uc_addr - Adds a secondary unicast address.
2436  *  @hw: pointer to hardware structure
2437  *  @addr: new address
2438  *
2439  *  Adds it to unused receive address register or goes into promiscuous mode.
2440  **/
2441 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2442 {
2443 	u32 rar_entries = hw->mac.num_rar_entries;
2444 	u32 rar;
2445 
2446 	DEBUGFUNC("ixgbe_add_uc_addr");
2447 
2448 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2449 		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2450 
2451 	/*
2452 	 * Place this address in the RAR if there is room,
2453 	 * else put the controller into promiscuous mode
2454 	 */
2455 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
2456 		rar = hw->addr_ctrl.rar_used_count;
2457 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2458 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2459 		hw->addr_ctrl.rar_used_count++;
2460 	} else {
2461 		hw->addr_ctrl.overflow_promisc++;
2462 	}
2463 
2464 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2465 }
2466 
2467 /**
2468  *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2469  *  @hw: pointer to hardware structure
2470  *  @addr_list: the list of new addresses
2471  *  @addr_count: number of addresses
2472  *  @next: iterator function to walk the address list
2473  *
2474  *  The given list replaces any existing list.  Clears the secondary addrs from
2475  *  receive address registers.  Uses unused receive address registers for the
2476  *  first secondary addresses, and falls back to promiscuous mode as needed.
2477  *
2478  *  Drivers using secondary unicast addresses must set user_set_promisc when
2479  *  manually putting the device into promiscuous mode.
2480  **/
2481 s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2482 				      u32 addr_count, ixgbe_mc_addr_itr next)
2483 {
2484 	u8 *addr;
2485 	u32 i;
2486 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2487 	u32 uc_addr_in_use;
2488 	u32 fctrl;
2489 	u32 vmdq;
2490 
2491 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2492 
2493 	/*
2494 	 * Clear accounting of old secondary address list,
2495 	 * don't count RAR[0]
2496 	 */
2497 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2498 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2499 	hw->addr_ctrl.overflow_promisc = 0;
2500 
2501 	/* Zero out the other receive addresses */
2502 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2503 	for (i = 0; i < uc_addr_in_use; i++) {
2504 		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2505 		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2506 	}
2507 
2508 	/* Add the new addresses */
2509 	for (i = 0; i < addr_count; i++) {
2510 		DEBUGOUT(" Adding the secondary addresses:\n");
2511 		addr = next(hw, &addr_list, &vmdq);
2512 		ixgbe_add_uc_addr(hw, addr, vmdq);
2513 	}
2514 
2515 	if (hw->addr_ctrl.overflow_promisc) {
2516 		/* enable promisc if not already in overflow or set by user */
2517 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2518 			DEBUGOUT(" Entering address overflow promisc mode\n");
2519 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2520 			fctrl |= IXGBE_FCTRL_UPE;
2521 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2522 		}
2523 	} else {
2524 		/* only disable if set by overflow, not by user */
2525 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2526 			DEBUGOUT(" Leaving address overflow promisc mode\n");
2527 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2528 			fctrl &= ~IXGBE_FCTRL_UPE;
2529 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2530 		}
2531 	}
2532 
2533 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2534 	return IXGBE_SUCCESS;
2535 }
2536 
2537 /**
2538  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
2539  *  @hw: pointer to hardware structure
2540  *  @mc_addr: the multicast address
2541  *
2542  *  Extracts the 12 bits, from a multicast address, to determine which
2543  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
2544  *  incoming rx multicast addresses, to determine the bit-vector to check in
2545  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2546  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
2547  *  to mc_filter_type.
2548  **/
2549 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2550 {
2551 	u32 vector = 0;
2552 
2553 	DEBUGFUNC("ixgbe_mta_vector");
2554 
2555 	switch (hw->mac.mc_filter_type) {
2556 	case 0:   /* use bits [47:36] of the address */
2557 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2558 		break;
2559 	case 1:   /* use bits [46:35] of the address */
2560 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2561 		break;
2562 	case 2:   /* use bits [45:34] of the address */
2563 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2564 		break;
2565 	case 3:   /* use bits [43:32] of the address */
2566 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2567 		break;
2568 	default:  /* Invalid mc_filter_type */
2569 		DEBUGOUT("MC filter type param set incorrectly\n");
2570 		ASSERT(0);
2571 		break;
2572 	}
2573 
2574 	/* vector can only be 12-bits or boundary will be exceeded */
2575 	vector &= 0xFFF;
2576 	return vector;
2577 }
2578 
2579 /**
2580  *  ixgbe_set_mta - Set bit-vector in multicast table
2581  *  @hw: pointer to hardware structure
2582  *  @hash_value: Multicast address hash value
2583  *
2584  *  Sets the bit-vector in the multicast table.
2585  **/
2586 void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2587 {
2588 	u32 vector;
2589 	u32 vector_bit;
2590 	u32 vector_reg;
2591 
2592 	DEBUGFUNC("ixgbe_set_mta");
2593 
2594 	hw->addr_ctrl.mta_in_use++;
2595 
2596 	vector = ixgbe_mta_vector(hw, mc_addr);
2597 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2598 
2599 	/*
2600 	 * The MTA is a register array of 128 32-bit registers. It is treated
2601 	 * like an array of 4096 bits.  We want to set bit
2602 	 * BitArray[vector_value]. So we figure out what register the bit is
2603 	 * in, read it, OR in the new bit, then write back the new value.  The
2604 	 * register is determined by the upper 7 bits of the vector value and
2605 	 * the bit within that register are determined by the lower 5 bits of
2606 	 * the value.
2607 	 */
2608 	vector_reg = (vector >> 5) & 0x7F;
2609 	vector_bit = vector & 0x1F;
2610 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2611 }
2612 
2613 /**
2614  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2615  *  @hw: pointer to hardware structure
2616  *  @mc_addr_list: the list of new multicast addresses
2617  *  @mc_addr_count: number of addresses
2618  *  @next: iterator function to walk the multicast address list
2619  *  @clear: flag, when set clears the table beforehand
2620  *
2621  *  When the clear flag is set, the given list replaces any existing list.
2622  *  Hashes the given addresses into the multicast table.
2623  **/
2624 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2625 				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
2626 				      bool clear)
2627 {
2628 	u32 i;
2629 	u32 vmdq;
2630 
2631 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2632 
2633 	/*
2634 	 * Set the new number of MC addresses that we are being requested to
2635 	 * use.
2636 	 */
2637 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2638 	hw->addr_ctrl.mta_in_use = 0;
2639 
2640 	/* Clear mta_shadow */
2641 	if (clear) {
2642 		DEBUGOUT(" Clearing MTA\n");
2643 		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2644 	}
2645 
2646 	/* Update mta_shadow */
2647 	for (i = 0; i < mc_addr_count; i++) {
2648 		DEBUGOUT(" Adding the multicast addresses:\n");
2649 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2650 	}
2651 
2652 	/* Enable mta */
2653 	for (i = 0; i < hw->mac.mcft_size; i++)
2654 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2655 				      hw->mac.mta_shadow[i]);
2656 
2657 	if (hw->addr_ctrl.mta_in_use > 0)
2658 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2659 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2660 
2661 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2662 	return IXGBE_SUCCESS;
2663 }
2664 
2665 /**
2666  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2667  *  @hw: pointer to hardware structure
2668  *
2669  *  Enables multicast address in RAR and the use of the multicast hash table.
2670  **/
2671 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2672 {
2673 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2674 
2675 	DEBUGFUNC("ixgbe_enable_mc_generic");
2676 
2677 	if (a->mta_in_use > 0)
2678 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2679 				hw->mac.mc_filter_type);
2680 
2681 	return IXGBE_SUCCESS;
2682 }
2683 
2684 /**
2685  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2686  *  @hw: pointer to hardware structure
2687  *
2688  *  Disables multicast address in RAR and the use of the multicast hash table.
2689  **/
2690 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2691 {
2692 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2693 
2694 	DEBUGFUNC("ixgbe_disable_mc_generic");
2695 
2696 	if (a->mta_in_use > 0)
2697 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2698 
2699 	return IXGBE_SUCCESS;
2700 }
2701 
2702 /**
2703  *  ixgbe_fc_enable_generic - Enable flow control
2704  *  @hw: pointer to hardware structure
2705  *
2706  *  Enable flow control according to the current settings.
2707  **/
2708 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2709 {
2710 	s32 ret_val = IXGBE_SUCCESS;
2711 	u32 mflcn_reg, fccfg_reg;
2712 	u32 reg;
2713 	u32 fcrtl, fcrth;
2714 	int i;
2715 
2716 	DEBUGFUNC("ixgbe_fc_enable_generic");
2717 
2718 	/* Validate the water mark configuration */
2719 	if (!hw->fc.pause_time) {
2720 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2721 		goto out;
2722 	}
2723 
2724 	/* Low water mark of zero causes XOFF floods */
2725 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2726 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2727 		    hw->fc.high_water[i]) {
2728 			if (!hw->fc.low_water[i] ||
2729 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2730 				DEBUGOUT("Invalid water mark configuration\n");
2731 				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2732 				goto out;
2733 			}
2734 		}
2735 	}
2736 
2737 	/* Negotiate the fc mode to use */
2738 	ixgbe_fc_autoneg(hw);
2739 
2740 	/* Disable any previous flow control settings */
2741 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2742 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2743 
2744 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2745 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2746 
2747 	/*
2748 	 * The possible values of fc.current_mode are:
2749 	 * 0: Flow control is completely disabled
2750 	 * 1: Rx flow control is enabled (we can receive pause frames,
2751 	 *    but not send pause frames).
2752 	 * 2: Tx flow control is enabled (we can send pause frames but
2753 	 *    we do not support receiving pause frames).
2754 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2755 	 * other: Invalid.
2756 	 */
2757 	switch (hw->fc.current_mode) {
2758 	case ixgbe_fc_none:
2759 		/*
2760 		 * Flow control is disabled by software override or autoneg.
2761 		 * The code below will actually disable it in the HW.
2762 		 */
2763 		break;
2764 	case ixgbe_fc_rx_pause:
2765 		/*
2766 		 * Rx Flow control is enabled and Tx Flow control is
2767 		 * disabled by software override. Since there really
2768 		 * isn't a way to advertise that we are capable of RX
2769 		 * Pause ONLY, we will advertise that we support both
2770 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2771 		 * disable the adapter's ability to send PAUSE frames.
2772 		 */
2773 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2774 		break;
2775 	case ixgbe_fc_tx_pause:
2776 		/*
2777 		 * Tx Flow control is enabled, and Rx Flow control is
2778 		 * disabled by software override.
2779 		 */
2780 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2781 		break;
2782 	case ixgbe_fc_full:
2783 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2784 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2785 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2786 		break;
2787 	default:
2788 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2789 			     "Flow control param set incorrectly\n");
2790 		ret_val = IXGBE_ERR_CONFIG;
2791 		goto out;
2792 		break;
2793 	}
2794 
2795 	/* Set 802.3x based flow control settings. */
2796 	mflcn_reg |= IXGBE_MFLCN_DPF;
2797 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2798 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2799 
2800 
2801 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2802 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2803 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2804 		    hw->fc.high_water[i]) {
2805 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2806 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2807 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2808 		} else {
2809 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2810 			/*
2811 			 * In order to prevent Tx hangs when the internal Tx
2812 			 * switch is enabled we must set the high water mark
2813 			 * to the Rx packet buffer size - 24KB.  This allows
2814 			 * the Tx switch to function even under heavy Rx
2815 			 * workloads.
2816 			 */
2817 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2818 		}
2819 
2820 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2821 	}
2822 
2823 	/* Configure pause time (2 TCs per register) */
2824 	reg = hw->fc.pause_time * 0x00010001;
2825 	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2826 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2827 
2828 	/* Configure flow control refresh threshold value */
2829 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2830 
2831 out:
2832 	return ret_val;
2833 }
2834 
2835 /**
2836  *  ixgbe_negotiate_fc - Negotiate flow control
2837  *  @hw: pointer to hardware structure
2838  *  @adv_reg: flow control advertised settings
2839  *  @lp_reg: link partner's flow control settings
2840  *  @adv_sym: symmetric pause bit in advertisement
2841  *  @adv_asm: asymmetric pause bit in advertisement
2842  *  @lp_sym: symmetric pause bit in link partner advertisement
2843  *  @lp_asm: asymmetric pause bit in link partner advertisement
2844  *
2845  *  Find the intersection between advertised settings and link partner's
2846  *  advertised settings
2847  **/
2848 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2849 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2850 {
2851 	if ((!(adv_reg)) ||  (!(lp_reg))) {
2852 		ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2853 			     "Local or link partner's advertised flow control "
2854 			     "settings are NULL. Local: %x, link partner: %x\n",
2855 			     adv_reg, lp_reg);
2856 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2857 	}
2858 
2859 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2860 		/*
2861 		 * Now we need to check if the user selected Rx ONLY
2862 		 * of pause frames.  In this case, we had to advertise
2863 		 * FULL flow control because we could not advertise RX
2864 		 * ONLY. Hence, we must now check to see if we need to
2865 		 * turn OFF the TRANSMISSION of PAUSE frames.
2866 		 */
2867 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2868 			hw->fc.current_mode = ixgbe_fc_full;
2869 			DEBUGOUT("Flow Control = FULL.\n");
2870 		} else {
2871 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2872 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2873 		}
2874 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2875 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2876 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2877 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2878 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2879 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2880 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2881 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2882 	} else {
2883 		hw->fc.current_mode = ixgbe_fc_none;
2884 		DEBUGOUT("Flow Control = NONE.\n");
2885 	}
2886 	return IXGBE_SUCCESS;
2887 }
2888 
2889 /**
2890  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2891  *  @hw: pointer to hardware structure
2892  *
2893  *  Enable flow control according on 1 gig fiber.
2894  **/
2895 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2896 {
2897 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2898 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2899 
2900 	/*
2901 	 * On multispeed fiber at 1g, bail out if
2902 	 * - link is up but AN did not complete, or if
2903 	 * - link is up and AN completed but timed out
2904 	 */
2905 
2906 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2907 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2908 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
2909 		DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
2910 		goto out;
2911 	}
2912 
2913 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2914 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2915 
2916 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2917 				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2918 				      IXGBE_PCS1GANA_ASM_PAUSE,
2919 				      IXGBE_PCS1GANA_SYM_PAUSE,
2920 				      IXGBE_PCS1GANA_ASM_PAUSE);
2921 
2922 out:
2923 	return ret_val;
2924 }
2925 
2926 /**
2927  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2928  *  @hw: pointer to hardware structure
2929  *
2930  *  Enable flow control according to IEEE clause 37.
2931  **/
2932 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2933 {
2934 	u32 links2, anlp1_reg, autoc_reg, links;
2935 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2936 
2937 	/*
2938 	 * On backplane, bail out if
2939 	 * - backplane autoneg was not completed, or if
2940 	 * - we are 82599 and link partner is not AN enabled
2941 	 */
2942 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2943 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
2944 		DEBUGOUT("Auto-Negotiation did not complete\n");
2945 		goto out;
2946 	}
2947 
2948 	if (hw->mac.type == ixgbe_mac_82599EB) {
2949 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2950 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
2951 			DEBUGOUT("Link partner is not AN enabled\n");
2952 			goto out;
2953 		}
2954 	}
2955 	/*
2956 	 * Read the 10g AN autoc and LP ability registers and resolve
2957 	 * local flow control settings accordingly
2958 	 */
2959 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2960 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2961 
2962 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2963 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2964 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2965 
2966 out:
2967 	return ret_val;
2968 }
2969 
2970 /**
2971  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2972  *  @hw: pointer to hardware structure
2973  *
2974  *  Enable flow control according to IEEE clause 37.
2975  **/
2976 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2977 {
2978 	u16 technology_ability_reg = 0;
2979 	u16 lp_technology_ability_reg = 0;
2980 
2981 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
2982 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2983 			     &technology_ability_reg);
2984 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
2985 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2986 			     &lp_technology_ability_reg);
2987 
2988 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2989 				  (u32)lp_technology_ability_reg,
2990 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2991 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2992 }
2993 
2994 /**
2995  *  ixgbe_fc_autoneg - Configure flow control
2996  *  @hw: pointer to hardware structure
2997  *
2998  *  Compares our advertised flow control capabilities to those advertised by
2999  *  our link partner, and determines the proper flow control mode to use.
3000  **/
3001 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3002 {
3003 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3004 	ixgbe_link_speed speed;
3005 	bool link_up;
3006 
3007 	DEBUGFUNC("ixgbe_fc_autoneg");
3008 
3009 	/*
3010 	 * AN should have completed when the cable was plugged in.
3011 	 * Look for reasons to bail out.  Bail out if:
3012 	 * - FC autoneg is disabled, or if
3013 	 * - link is not up.
3014 	 */
3015 	if (hw->fc.disable_fc_autoneg) {
3016 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
3017 			     "Flow control autoneg is disabled");
3018 		goto out;
3019 	}
3020 
3021 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3022 	if (!link_up) {
3023 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3024 		goto out;
3025 	}
3026 
3027 	switch (hw->phy.media_type) {
3028 	/* Autoneg flow control on fiber adapters */
3029 	case ixgbe_media_type_fiber_fixed:
3030 	case ixgbe_media_type_fiber_qsfp:
3031 	case ixgbe_media_type_fiber:
3032 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3033 			ret_val = ixgbe_fc_autoneg_fiber(hw);
3034 		break;
3035 
3036 	/* Autoneg flow control on backplane adapters */
3037 	case ixgbe_media_type_backplane:
3038 		ret_val = ixgbe_fc_autoneg_backplane(hw);
3039 		break;
3040 
3041 	/* Autoneg flow control on copper adapters */
3042 	case ixgbe_media_type_copper:
3043 		if (ixgbe_device_supports_autoneg_fc(hw))
3044 			ret_val = ixgbe_fc_autoneg_copper(hw);
3045 		break;
3046 
3047 	default:
3048 		break;
3049 	}
3050 
3051 out:
3052 	if (ret_val == IXGBE_SUCCESS) {
3053 		hw->fc.fc_was_autonegged = TRUE;
3054 	} else {
3055 		hw->fc.fc_was_autonegged = FALSE;
3056 		hw->fc.current_mode = hw->fc.requested_mode;
3057 	}
3058 }
3059 
3060 /*
3061  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3062  * @hw: pointer to hardware structure
3063  *
3064  * System-wide timeout range is encoded in PCIe Device Control2 register.
3065  *
3066  * Add 10% to specified maximum and return the number of times to poll for
3067  * completion timeout, in units of 100 microsec.  Never return less than
3068  * 800 = 80 millisec.
3069  */
3070 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3071 {
3072 	s16 devctl2;
3073 	u32 pollcnt;
3074 
3075 	devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3076 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3077 
3078 	switch (devctl2) {
3079 	case IXGBE_PCIDEVCTRL2_65_130ms:
3080 		pollcnt = 1300;		/* 130 millisec */
3081 		break;
3082 	case IXGBE_PCIDEVCTRL2_260_520ms:
3083 		pollcnt = 5200;		/* 520 millisec */
3084 		break;
3085 	case IXGBE_PCIDEVCTRL2_1_2s:
3086 		pollcnt = 20000;	/* 2 sec */
3087 		break;
3088 	case IXGBE_PCIDEVCTRL2_4_8s:
3089 		pollcnt = 80000;	/* 8 sec */
3090 		break;
3091 	case IXGBE_PCIDEVCTRL2_17_34s:
3092 		pollcnt = 34000;	/* 34 sec */
3093 		break;
3094 	case IXGBE_PCIDEVCTRL2_50_100us:	/* 100 microsecs */
3095 	case IXGBE_PCIDEVCTRL2_1_2ms:		/* 2 millisecs */
3096 	case IXGBE_PCIDEVCTRL2_16_32ms:		/* 32 millisec */
3097 	case IXGBE_PCIDEVCTRL2_16_32ms_def:	/* 32 millisec default */
3098 	default:
3099 		pollcnt = 800;		/* 80 millisec minimum */
3100 		break;
3101 	}
3102 
3103 	/* add 10% to spec maximum */
3104 	return (pollcnt * 11) / 10;
3105 }
3106 
3107 /**
3108  *  ixgbe_disable_pcie_master - Disable PCI-express master access
3109  *  @hw: pointer to hardware structure
3110  *
3111  *  Disables PCI-Express master access and verifies there are no pending
3112  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3113  *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3114  *  is returned signifying master requests disabled.
3115  **/
3116 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3117 {
3118 	s32 status = IXGBE_SUCCESS;
3119 	u32 i, poll;
3120 	u16 value;
3121 
3122 	DEBUGFUNC("ixgbe_disable_pcie_master");
3123 
3124 	/* Always set this bit to ensure any future transactions are blocked */
3125 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3126 
3127 	/* Exit if master requests are blocked */
3128 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3129 	    IXGBE_REMOVED(hw->hw_addr))
3130 		goto out;
3131 
3132 	/* Poll for master request bit to clear */
3133 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3134 		usec_delay(100);
3135 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3136 			goto out;
3137 	}
3138 
3139 	/*
3140 	 * Two consecutive resets are required via CTRL.RST per datasheet
3141 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
3142 	 * of this need.  The first reset prevents new master requests from
3143 	 * being issued by our device.  We then must wait 1usec or more for any
3144 	 * remaining completions from the PCIe bus to trickle in, and then reset
3145 	 * again to clear out any effects they may have had on our device.
3146 	 */
3147 	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3148 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3149 
3150 	/*
3151 	 * Before proceeding, make sure that the PCIe block does not have
3152 	 * transactions pending.
3153 	 */
3154 	poll = ixgbe_pcie_timeout_poll(hw);
3155 	for (i = 0; i < poll; i++) {
3156 		usec_delay(100);
3157 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3158 		if (IXGBE_REMOVED(hw->hw_addr))
3159 			goto out;
3160 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3161 			goto out;
3162 	}
3163 
3164 	ERROR_REPORT1(IXGBE_ERROR_POLLING,
3165 		     "PCIe transaction pending bit also did not clear.\n");
3166 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3167 
3168 out:
3169 	return status;
3170 }
3171 
3172 /**
3173  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3174  *  @hw: pointer to hardware structure
3175  *  @mask: Mask to specify which semaphore to acquire
3176  *
3177  *  Acquires the SWFW semaphore through the GSSR register for the specified
3178  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
3179  **/
3180 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3181 {
3182 	u32 gssr = 0;
3183 	u32 swmask = mask;
3184 	u32 fwmask = mask << 5;
3185 	u32 timeout = 200;
3186 	u32 i;
3187 
3188 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
3189 
3190 	for (i = 0; i < timeout; i++) {
3191 		/*
3192 		 * SW NVM semaphore bit is used for access to all
3193 		 * SW_FW_SYNC bits (not just NVM)
3194 		 */
3195 		if (ixgbe_get_eeprom_semaphore(hw))
3196 			return IXGBE_ERR_SWFW_SYNC;
3197 
3198 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3199 		if (!(gssr & (fwmask | swmask))) {
3200 			gssr |= swmask;
3201 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3202 			ixgbe_release_eeprom_semaphore(hw);
3203 			return IXGBE_SUCCESS;
3204 		} else {
3205 			/* Resource is currently in use by FW or SW */
3206 			ixgbe_release_eeprom_semaphore(hw);
3207 			msec_delay(5);
3208 		}
3209 	}
3210 
3211 	/* If time expired clear the bits holding the lock and retry */
3212 	if (gssr & (fwmask | swmask))
3213 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3214 
3215 	msec_delay(5);
3216 	return IXGBE_ERR_SWFW_SYNC;
3217 }
3218 
3219 /**
3220  *  ixgbe_release_swfw_sync - Release SWFW semaphore
3221  *  @hw: pointer to hardware structure
3222  *  @mask: Mask to specify which semaphore to release
3223  *
3224  *  Releases the SWFW semaphore through the GSSR register for the specified
3225  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
3226  **/
3227 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3228 {
3229 	u32 gssr;
3230 	u32 swmask = mask;
3231 
3232 	DEBUGFUNC("ixgbe_release_swfw_sync");
3233 
3234 	ixgbe_get_eeprom_semaphore(hw);
3235 
3236 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3237 	gssr &= ~swmask;
3238 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3239 
3240 	ixgbe_release_eeprom_semaphore(hw);
3241 }
3242 
3243 /**
3244  *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3245  *  @hw: pointer to hardware structure
3246  *
3247  *  Stops the receive data path and waits for the HW to internally empty
3248  *  the Rx security block
3249  **/
3250 s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3251 {
3252 #define IXGBE_MAX_SECRX_POLL 40
3253 
3254 	int i;
3255 	int secrxreg;
3256 
3257 	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3258 
3259 
3260 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3261 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3262 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3263 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3264 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3265 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3266 			break;
3267 		else
3268 			/* Use interrupt-safe sleep just in case */
3269 			usec_delay(1000);
3270 	}
3271 
3272 	/* For informational purposes only */
3273 	if (i >= IXGBE_MAX_SECRX_POLL)
3274 		DEBUGOUT("Rx unit being enabled before security "
3275 			 "path fully disabled.  Continuing with init.\n");
3276 
3277 	return IXGBE_SUCCESS;
3278 }
3279 
3280 /**
3281  *  prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3282  *  @hw: pointer to hardware structure
3283  *  @reg_val: Value we read from AUTOC
3284  *
3285  *  The default case requires no protection so just to the register read.
3286  */
3287 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3288 {
3289 	*locked = FALSE;
3290 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3291 	return IXGBE_SUCCESS;
3292 }
3293 
3294 /**
3295  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3296  * @hw: pointer to hardware structure
3297  * @reg_val: value to write to AUTOC
3298  * @locked: bool to indicate whether the SW/FW lock was already taken by
3299  *           previous read.
3300  *
3301  * The default case requires no protection so just to the register write.
3302  */
3303 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3304 {
3305 	UNREFERENCED_1PARAMETER(locked);
3306 
3307 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3308 	return IXGBE_SUCCESS;
3309 }
3310 
3311 /**
3312  *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3313  *  @hw: pointer to hardware structure
3314  *
3315  *  Enables the receive data path.
3316  **/
3317 s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3318 {
3319 	int secrxreg;
3320 
3321 	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3322 
3323 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3324 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3325 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3326 	IXGBE_WRITE_FLUSH(hw);
3327 
3328 	return IXGBE_SUCCESS;
3329 }
3330 
3331 /**
3332  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3333  *  @hw: pointer to hardware structure
3334  *  @regval: register value to write to RXCTRL
3335  *
3336  *  Enables the Rx DMA unit
3337  **/
3338 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3339 {
3340 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3341 
3342 	if (regval & IXGBE_RXCTRL_RXEN)
3343 		ixgbe_enable_rx(hw);
3344 	else
3345 		ixgbe_disable_rx(hw);
3346 
3347 	return IXGBE_SUCCESS;
3348 }
3349 
3350 /**
3351  *  ixgbe_blink_led_start_generic - Blink LED based on index.
3352  *  @hw: pointer to hardware structure
3353  *  @index: led number to blink
3354  **/
3355 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3356 {
3357 	ixgbe_link_speed speed = 0;
3358 	bool link_up = 0;
3359 	u32 autoc_reg = 0;
3360 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3361 	s32 ret_val = IXGBE_SUCCESS;
3362 	bool locked = FALSE;
3363 
3364 	DEBUGFUNC("ixgbe_blink_led_start_generic");
3365 
3366 	/*
3367 	 * Link must be up to auto-blink the LEDs;
3368 	 * Force it if link is down.
3369 	 */
3370 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3371 
3372 	if (!link_up) {
3373 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3374 		if (ret_val != IXGBE_SUCCESS)
3375 			goto out;
3376 
3377 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3378 		autoc_reg |= IXGBE_AUTOC_FLU;
3379 
3380 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3381 		if (ret_val != IXGBE_SUCCESS)
3382 			goto out;
3383 
3384 		IXGBE_WRITE_FLUSH(hw);
3385 		msec_delay(10);
3386 	}
3387 
3388 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3389 	led_reg |= IXGBE_LED_BLINK(index);
3390 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3391 	IXGBE_WRITE_FLUSH(hw);
3392 
3393 out:
3394 	return ret_val;
3395 }
3396 
3397 /**
3398  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3399  *  @hw: pointer to hardware structure
3400  *  @index: led number to stop blinking
3401  **/
3402 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3403 {
3404 	u32 autoc_reg = 0;
3405 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3406 	s32 ret_val = IXGBE_SUCCESS;
3407 	bool locked = FALSE;
3408 
3409 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
3410 
3411 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3412 	if (ret_val != IXGBE_SUCCESS)
3413 		goto out;
3414 
3415 	autoc_reg &= ~IXGBE_AUTOC_FLU;
3416 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3417 
3418 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3419 	if (ret_val != IXGBE_SUCCESS)
3420 		goto out;
3421 
3422 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3423 	led_reg &= ~IXGBE_LED_BLINK(index);
3424 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3425 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3426 	IXGBE_WRITE_FLUSH(hw);
3427 
3428 out:
3429 	return ret_val;
3430 }
3431 
3432 /**
3433  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3434  *  @hw: pointer to hardware structure
3435  *  @san_mac_offset: SAN MAC address offset
3436  *
3437  *  This function will read the EEPROM location for the SAN MAC address
3438  *  pointer, and returns the value at that location.  This is used in both
3439  *  get and set mac_addr routines.
3440  **/
3441 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3442 					 u16 *san_mac_offset)
3443 {
3444 	s32 ret_val;
3445 
3446 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3447 
3448 	/*
3449 	 * First read the EEPROM pointer to see if the MAC addresses are
3450 	 * available.
3451 	 */
3452 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3453 				      san_mac_offset);
3454 	if (ret_val) {
3455 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3456 			      "eeprom at offset %d failed",
3457 			      IXGBE_SAN_MAC_ADDR_PTR);
3458 	}
3459 
3460 	return ret_val;
3461 }
3462 
3463 /**
3464  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3465  *  @hw: pointer to hardware structure
3466  *  @san_mac_addr: SAN MAC address
3467  *
3468  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
3469  *  per-port, so set_lan_id() must be called before reading the addresses.
3470  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
3471  *  upon for non-SFP connections, so we must call it here.
3472  **/
3473 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3474 {
3475 	u16 san_mac_data, san_mac_offset;
3476 	u8 i;
3477 	s32 ret_val;
3478 
3479 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3480 
3481 	/*
3482 	 * First read the EEPROM pointer to see if the MAC addresses are
3483 	 * available.  If they're not, no point in calling set_lan_id() here.
3484 	 */
3485 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3486 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3487 		goto san_mac_addr_out;
3488 
3489 	/* make sure we know which port we need to program */
3490 	hw->mac.ops.set_lan_id(hw);
3491 	/* apply the port offset to the address offset */
3492 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3493 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3494 	for (i = 0; i < 3; i++) {
3495 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3496 					      &san_mac_data);
3497 		if (ret_val) {
3498 			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3499 				      "eeprom read at offset %d failed",
3500 				      san_mac_offset);
3501 			goto san_mac_addr_out;
3502 		}
3503 		san_mac_addr[i * 2] = (u8)(san_mac_data);
3504 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3505 		san_mac_offset++;
3506 	}
3507 	return IXGBE_SUCCESS;
3508 
3509 san_mac_addr_out:
3510 	/*
3511 	 * No addresses available in this EEPROM.  It's not an
3512 	 * error though, so just wipe the local address and return.
3513 	 */
3514 	for (i = 0; i < 6; i++)
3515 		san_mac_addr[i] = 0xFF;
3516 	return IXGBE_SUCCESS;
3517 }
3518 
3519 /**
3520  *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3521  *  @hw: pointer to hardware structure
3522  *  @san_mac_addr: SAN MAC address
3523  *
3524  *  Write a SAN MAC address to the EEPROM.
3525  **/
3526 s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3527 {
3528 	s32 ret_val;
3529 	u16 san_mac_data, san_mac_offset;
3530 	u8 i;
3531 
3532 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3533 
3534 	/* Look for SAN mac address pointer.  If not defined, return */
3535 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3536 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3537 		return IXGBE_ERR_NO_SAN_ADDR_PTR;
3538 
3539 	/* Make sure we know which port we need to write */
3540 	hw->mac.ops.set_lan_id(hw);
3541 	/* Apply the port offset to the address offset */
3542 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3543 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3544 
3545 	for (i = 0; i < 3; i++) {
3546 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3547 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
3548 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3549 		san_mac_offset++;
3550 	}
3551 
3552 	return IXGBE_SUCCESS;
3553 }
3554 
3555 /**
3556  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3557  *  @hw: pointer to hardware structure
3558  *
3559  *  Read PCIe configuration space, and get the MSI-X vector count from
3560  *  the capabilities table.
3561  **/
3562 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3563 {
3564 	u16 msix_count = 1;
3565 	u16 max_msix_count;
3566 	u16 pcie_offset;
3567 
3568 	switch (hw->mac.type) {
3569 	case ixgbe_mac_82598EB:
3570 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3571 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3572 		break;
3573 	case ixgbe_mac_82599EB:
3574 	case ixgbe_mac_X540:
3575 	case ixgbe_mac_X550:
3576 	case ixgbe_mac_X550EM_x:
3577 	case ixgbe_mac_X550EM_a:
3578 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3579 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3580 		break;
3581 	default:
3582 		return msix_count;
3583 	}
3584 
3585 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3586 	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3587 	if (IXGBE_REMOVED(hw->hw_addr))
3588 		msix_count = 0;
3589 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3590 
3591 	/* MSI-X count is zero-based in HW */
3592 	msix_count++;
3593 
3594 	if (msix_count > max_msix_count)
3595 		msix_count = max_msix_count;
3596 
3597 	return msix_count;
3598 }
3599 
3600 /**
3601  *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3602  *  @hw: pointer to hardware structure
3603  *  @addr: Address to put into receive address register
3604  *  @vmdq: VMDq pool to assign
3605  *
3606  *  Puts an ethernet address into a receive address register, or
3607  *  finds the rar that it is aleady in; adds to the pool list
3608  **/
3609 s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3610 {
3611 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3612 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3613 	u32 rar;
3614 	u32 rar_low, rar_high;
3615 	u32 addr_low, addr_high;
3616 
3617 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3618 
3619 	/* swap bytes for HW little endian */
3620 	addr_low  = addr[0] | (addr[1] << 8)
3621 			    | (addr[2] << 16)
3622 			    | (addr[3] << 24);
3623 	addr_high = addr[4] | (addr[5] << 8);
3624 
3625 	/*
3626 	 * Either find the mac_id in rar or find the first empty space.
3627 	 * rar_highwater points to just after the highest currently used
3628 	 * rar in order to shorten the search.  It grows when we add a new
3629 	 * rar to the top.
3630 	 */
3631 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3632 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3633 
3634 		if (((IXGBE_RAH_AV & rar_high) == 0)
3635 		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3636 			first_empty_rar = rar;
3637 		} else if ((rar_high & 0xFFFF) == addr_high) {
3638 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3639 			if (rar_low == addr_low)
3640 				break;    /* found it already in the rars */
3641 		}
3642 	}
3643 
3644 	if (rar < hw->mac.rar_highwater) {
3645 		/* already there so just add to the pool bits */
3646 		ixgbe_set_vmdq(hw, rar, vmdq);
3647 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3648 		/* stick it into first empty RAR slot we found */
3649 		rar = first_empty_rar;
3650 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3651 	} else if (rar == hw->mac.rar_highwater) {
3652 		/* add it to the top of the list and inc the highwater mark */
3653 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3654 		hw->mac.rar_highwater++;
3655 	} else if (rar >= hw->mac.num_rar_entries) {
3656 		return IXGBE_ERR_INVALID_MAC_ADDR;
3657 	}
3658 
3659 	/*
3660 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
3661 	 * remains cleared to be sure default pool packets will get delivered
3662 	 */
3663 	if (rar == 0)
3664 		ixgbe_clear_vmdq(hw, rar, 0);
3665 
3666 	return rar;
3667 }
3668 
3669 /**
3670  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3671  *  @hw: pointer to hardware struct
3672  *  @rar: receive address register index to disassociate
3673  *  @vmdq: VMDq pool index to remove from the rar
3674  **/
3675 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3676 {
3677 	u32 mpsar_lo, mpsar_hi;
3678 	u32 rar_entries = hw->mac.num_rar_entries;
3679 
3680 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
3681 
3682 	/* Make sure we are using a valid rar index range */
3683 	if (rar >= rar_entries) {
3684 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3685 			     "RAR index %d is out of range.\n", rar);
3686 		return IXGBE_ERR_INVALID_ARGUMENT;
3687 	}
3688 
3689 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3690 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3691 
3692 	if (IXGBE_REMOVED(hw->hw_addr))
3693 		goto done;
3694 
3695 	if (!mpsar_lo && !mpsar_hi)
3696 		goto done;
3697 
3698 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3699 		if (mpsar_lo) {
3700 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3701 			mpsar_lo = 0;
3702 		}
3703 		if (mpsar_hi) {
3704 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3705 			mpsar_hi = 0;
3706 		}
3707 	} else if (vmdq < 32) {
3708 		mpsar_lo &= ~(1 << vmdq);
3709 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3710 	} else {
3711 		mpsar_hi &= ~(1 << (vmdq - 32));
3712 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3713 	}
3714 
3715 	/* was that the last pool using this rar? */
3716 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
3717 		hw->mac.ops.clear_rar(hw, rar);
3718 done:
3719 	return IXGBE_SUCCESS;
3720 }
3721 
3722 /**
3723  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3724  *  @hw: pointer to hardware struct
3725  *  @rar: receive address register index to associate with a VMDq index
3726  *  @vmdq: VMDq pool index
3727  **/
3728 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3729 {
3730 	u32 mpsar;
3731 	u32 rar_entries = hw->mac.num_rar_entries;
3732 
3733 	DEBUGFUNC("ixgbe_set_vmdq_generic");
3734 
3735 	/* Make sure we are using a valid rar index range */
3736 	if (rar >= rar_entries) {
3737 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3738 			     "RAR index %d is out of range.\n", rar);
3739 		return IXGBE_ERR_INVALID_ARGUMENT;
3740 	}
3741 
3742 	if (vmdq < 32) {
3743 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3744 		mpsar |= 1 << vmdq;
3745 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3746 	} else {
3747 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3748 		mpsar |= 1 << (vmdq - 32);
3749 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3750 	}
3751 	return IXGBE_SUCCESS;
3752 }
3753 
3754 /**
3755  *  This function should only be involved in the IOV mode.
3756  *  In IOV mode, Default pool is next pool after the number of
3757  *  VFs advertized and not 0.
3758  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3759  *
3760  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3761  *  @hw: pointer to hardware struct
3762  *  @vmdq: VMDq pool index
3763  **/
3764 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3765 {
3766 	u32 rar = hw->mac.san_mac_rar_index;
3767 
3768 	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3769 
3770 	if (vmdq < 32) {
3771 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3772 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3773 	} else {
3774 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3775 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3776 	}
3777 
3778 	return IXGBE_SUCCESS;
3779 }
3780 
3781 /**
3782  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3783  *  @hw: pointer to hardware structure
3784  **/
3785 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3786 {
3787 	int i;
3788 
3789 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
3790 	DEBUGOUT(" Clearing UTA\n");
3791 
3792 	for (i = 0; i < 128; i++)
3793 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3794 
3795 	return IXGBE_SUCCESS;
3796 }
3797 
3798 /**
3799  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3800  *  @hw: pointer to hardware structure
3801  *  @vlan: VLAN id to write to VLAN filter
3802  *
3803  *  return the VLVF index where this VLAN id should be placed
3804  *
3805  **/
3806 s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
3807 {
3808 	u32 bits = 0;
3809 	u32 first_empty_slot = 0;
3810 	s32 regindex;
3811 
3812 	/* short cut the special case */
3813 	if (vlan == 0)
3814 		return 0;
3815 
3816 	/*
3817 	  * Search for the vlan id in the VLVF entries. Save off the first empty
3818 	  * slot found along the way
3819 	  */
3820 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3821 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3822 		if (!bits && !(first_empty_slot))
3823 			first_empty_slot = regindex;
3824 		else if ((bits & 0x0FFF) == vlan)
3825 			break;
3826 	}
3827 
3828 	/*
3829 	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3830 	  * in the VLVF. Else use the first empty VLVF register for this
3831 	  * vlan id.
3832 	  */
3833 	if (regindex >= IXGBE_VLVF_ENTRIES) {
3834 		if (first_empty_slot)
3835 			regindex = first_empty_slot;
3836 		else {
3837 			ERROR_REPORT1(IXGBE_ERROR_SOFTWARE,
3838 				     "No space in VLVF.\n");
3839 			regindex = IXGBE_ERR_NO_SPACE;
3840 		}
3841 	}
3842 
3843 	return regindex;
3844 }
3845 
3846 /**
3847  *  ixgbe_set_vfta_generic - Set VLAN filter table
3848  *  @hw: pointer to hardware structure
3849  *  @vlan: VLAN id to write to VLAN filter
3850  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3851  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3852  *
3853  *  Turn on/off specified VLAN in the VLAN filter table.
3854  **/
3855 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3856 			   bool vlan_on)
3857 {
3858 	s32 regindex;
3859 	u32 bitindex;
3860 	u32 vfta;
3861 	u32 targetbit;
3862 	s32 ret_val = IXGBE_SUCCESS;
3863 	bool vfta_changed = FALSE;
3864 
3865 	DEBUGFUNC("ixgbe_set_vfta_generic");
3866 
3867 	if (vlan > 4095)
3868 		return IXGBE_ERR_PARAM;
3869 
3870 	/*
3871 	 * this is a 2 part operation - first the VFTA, then the
3872 	 * VLVF and VLVFB if VT Mode is set
3873 	 * We don't write the VFTA until we know the VLVF part succeeded.
3874 	 */
3875 
3876 	/* Part 1
3877 	 * The VFTA is a bitstring made up of 128 32-bit registers
3878 	 * that enable the particular VLAN id, much like the MTA:
3879 	 *    bits[11-5]: which register
3880 	 *    bits[4-0]:  which bit in the register
3881 	 */
3882 	regindex = (vlan >> 5) & 0x7F;
3883 	bitindex = vlan & 0x1F;
3884 	targetbit = (1 << bitindex);
3885 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3886 
3887 	if (vlan_on) {
3888 		if (!(vfta & targetbit)) {
3889 			vfta |= targetbit;
3890 			vfta_changed = TRUE;
3891 		}
3892 	} else {
3893 		if ((vfta & targetbit)) {
3894 			vfta &= ~targetbit;
3895 			vfta_changed = TRUE;
3896 		}
3897 	}
3898 
3899 	/* Part 2
3900 	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
3901 	 */
3902 	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
3903 					 &vfta_changed);
3904 	if (ret_val != IXGBE_SUCCESS)
3905 		return ret_val;
3906 
3907 	if (vfta_changed)
3908 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3909 
3910 	return IXGBE_SUCCESS;
3911 }
3912 
3913 /**
3914  *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
3915  *  @hw: pointer to hardware structure
3916  *  @vlan: VLAN id to write to VLAN filter
3917  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3918  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3919  *  @vfta_changed: pointer to boolean flag which indicates whether VFTA
3920  *                 should be changed
3921  *
3922  *  Turn on/off specified bit in VLVF table.
3923  **/
3924 s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3925 			    bool vlan_on, bool *vfta_changed)
3926 {
3927 	u32 vt;
3928 
3929 	DEBUGFUNC("ixgbe_set_vlvf_generic");
3930 
3931 	if (vlan > 4095)
3932 		return IXGBE_ERR_PARAM;
3933 
3934 	/* If VT Mode is set
3935 	 *   Either vlan_on
3936 	 *     make sure the vlan is in VLVF
3937 	 *     set the vind bit in the matching VLVFB
3938 	 *   Or !vlan_on
3939 	 *     clear the pool bit and possibly the vind
3940 	 */
3941 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3942 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3943 		s32 vlvf_index;
3944 		u32 bits;
3945 
3946 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3947 		if (vlvf_index < 0)
3948 			return vlvf_index;
3949 
3950 		if (vlan_on) {
3951 			/* set the pool bit */
3952 			if (vind < 32) {
3953 				bits = IXGBE_READ_REG(hw,
3954 						IXGBE_VLVFB(vlvf_index * 2));
3955 				bits |= (1 << vind);
3956 				IXGBE_WRITE_REG(hw,
3957 						IXGBE_VLVFB(vlvf_index * 2),
3958 						bits);
3959 			} else {
3960 				bits = IXGBE_READ_REG(hw,
3961 					IXGBE_VLVFB((vlvf_index * 2) + 1));
3962 				bits |= (1 << (vind - 32));
3963 				IXGBE_WRITE_REG(hw,
3964 					IXGBE_VLVFB((vlvf_index * 2) + 1),
3965 					bits);
3966 			}
3967 		} else {
3968 			/* clear the pool bit */
3969 			if (vind < 32) {
3970 				bits = IXGBE_READ_REG(hw,
3971 						IXGBE_VLVFB(vlvf_index * 2));
3972 				bits &= ~(1 << vind);
3973 				IXGBE_WRITE_REG(hw,
3974 						IXGBE_VLVFB(vlvf_index * 2),
3975 						bits);
3976 				bits |= IXGBE_READ_REG(hw,
3977 					IXGBE_VLVFB((vlvf_index * 2) + 1));
3978 			} else {
3979 				bits = IXGBE_READ_REG(hw,
3980 					IXGBE_VLVFB((vlvf_index * 2) + 1));
3981 				bits &= ~(1 << (vind - 32));
3982 				IXGBE_WRITE_REG(hw,
3983 					IXGBE_VLVFB((vlvf_index * 2) + 1),
3984 					bits);
3985 				bits |= IXGBE_READ_REG(hw,
3986 						IXGBE_VLVFB(vlvf_index * 2));
3987 			}
3988 		}
3989 
3990 		/*
3991 		 * If there are still bits set in the VLVFB registers
3992 		 * for the VLAN ID indicated we need to see if the
3993 		 * caller is requesting that we clear the VFTA entry bit.
3994 		 * If the caller has requested that we clear the VFTA
3995 		 * entry bit but there are still pools/VFs using this VLAN
3996 		 * ID entry then ignore the request.  We're not worried
3997 		 * about the case where we're turning the VFTA VLAN ID
3998 		 * entry bit on, only when requested to turn it off as
3999 		 * there may be multiple pools and/or VFs using the
4000 		 * VLAN ID entry.  In that case we cannot clear the
4001 		 * VFTA bit until all pools/VFs using that VLAN ID have also
4002 		 * been cleared.  This will be indicated by "bits" being
4003 		 * zero.
4004 		 */
4005 		if (bits) {
4006 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
4007 					(IXGBE_VLVF_VIEN | vlan));
4008 			if ((!vlan_on) && (vfta_changed != NULL)) {
4009 				/* someone wants to clear the vfta entry
4010 				 * but some pools/VFs are still using it.
4011 				 * Ignore it. */
4012 				*vfta_changed = FALSE;
4013 			}
4014 		} else
4015 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4016 	}
4017 
4018 	return IXGBE_SUCCESS;
4019 }
4020 
4021 /**
4022  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
4023  *  @hw: pointer to hardware structure
4024  *
4025  *  Clears the VLAN filer table, and the VMDq index associated with the filter
4026  **/
4027 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4028 {
4029 	u32 offset;
4030 
4031 	DEBUGFUNC("ixgbe_clear_vfta_generic");
4032 
4033 	for (offset = 0; offset < hw->mac.vft_size; offset++)
4034 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4035 
4036 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4037 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4038 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4039 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
4040 	}
4041 
4042 	return IXGBE_SUCCESS;
4043 }
4044 
4045 /**
4046  *  ixgbe_check_mac_link_generic - Determine link and speed status
4047  *  @hw: pointer to hardware structure
4048  *  @speed: pointer to link speed
4049  *  @link_up: TRUE when link is up
4050  *  @link_up_wait_to_complete: bool used to wait for link up or not
4051  *
4052  *  Reads the links register to determine if link is up and the current speed
4053  **/
4054 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4055 				 bool *link_up, bool link_up_wait_to_complete)
4056 {
4057 	u32 links_reg, links_orig;
4058 	u32 i;
4059 
4060 	DEBUGFUNC("ixgbe_check_mac_link_generic");
4061 
4062 	/* clear the old state */
4063 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4064 
4065 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4066 
4067 	if (links_orig != links_reg) {
4068 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
4069 			  links_orig, links_reg);
4070 	}
4071 
4072 	if (link_up_wait_to_complete) {
4073 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
4074 			if (links_reg & IXGBE_LINKS_UP) {
4075 				*link_up = TRUE;
4076 				break;
4077 			} else {
4078 				*link_up = FALSE;
4079 			}
4080 			msec_delay(100);
4081 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4082 		}
4083 	} else {
4084 		if (links_reg & IXGBE_LINKS_UP)
4085 			*link_up = TRUE;
4086 		else
4087 			*link_up = FALSE;
4088 	}
4089 
4090 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4091 	case IXGBE_LINKS_SPEED_10G_82599:
4092 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
4093 		if (hw->mac.type >= ixgbe_mac_X550) {
4094 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4095 				*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4096 		}
4097 		break;
4098 	case IXGBE_LINKS_SPEED_1G_82599:
4099 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
4100 		break;
4101 	case IXGBE_LINKS_SPEED_100_82599:
4102 		*speed = IXGBE_LINK_SPEED_100_FULL;
4103 		if (hw->mac.type >= ixgbe_mac_X550) {
4104 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4105 				*speed = IXGBE_LINK_SPEED_5GB_FULL;
4106 		}
4107 		break;
4108 	default:
4109 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
4110 	}
4111 
4112 	return IXGBE_SUCCESS;
4113 }
4114 
4115 /**
4116  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4117  *  the EEPROM
4118  *  @hw: pointer to hardware structure
4119  *  @wwnn_prefix: the alternative WWNN prefix
4120  *  @wwpn_prefix: the alternative WWPN prefix
4121  *
4122  *  This function will read the EEPROM from the alternative SAN MAC address
4123  *  block to check the support for the alternative WWNN/WWPN prefix support.
4124  **/
4125 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4126 				 u16 *wwpn_prefix)
4127 {
4128 	u16 offset, caps;
4129 	u16 alt_san_mac_blk_offset;
4130 
4131 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4132 
4133 	/* clear output first */
4134 	*wwnn_prefix = 0xFFFF;
4135 	*wwpn_prefix = 0xFFFF;
4136 
4137 	/* check if alternative SAN MAC is supported */
4138 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4139 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4140 		goto wwn_prefix_err;
4141 
4142 	if ((alt_san_mac_blk_offset == 0) ||
4143 	    (alt_san_mac_blk_offset == 0xFFFF))
4144 		goto wwn_prefix_out;
4145 
4146 	/* check capability in alternative san mac address block */
4147 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4148 	if (hw->eeprom.ops.read(hw, offset, &caps))
4149 		goto wwn_prefix_err;
4150 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4151 		goto wwn_prefix_out;
4152 
4153 	/* get the corresponding prefix for WWNN/WWPN */
4154 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4155 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4156 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4157 			      "eeprom read at offset %d failed", offset);
4158 	}
4159 
4160 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4161 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4162 		goto wwn_prefix_err;
4163 
4164 wwn_prefix_out:
4165 	return IXGBE_SUCCESS;
4166 
4167 wwn_prefix_err:
4168 	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4169 		      "eeprom read at offset %d failed", offset);
4170 	return IXGBE_SUCCESS;
4171 }
4172 
4173 /**
4174  *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4175  *  @hw: pointer to hardware structure
4176  *  @bs: the fcoe boot status
4177  *
4178  *  This function will read the FCOE boot status from the iSCSI FCOE block
4179  **/
4180 s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4181 {
4182 	u16 offset, caps, flags;
4183 	s32 status;
4184 
4185 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4186 
4187 	/* clear output first */
4188 	*bs = ixgbe_fcoe_bootstatus_unavailable;
4189 
4190 	/* check if FCOE IBA block is present */
4191 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4192 	status = hw->eeprom.ops.read(hw, offset, &caps);
4193 	if (status != IXGBE_SUCCESS)
4194 		goto out;
4195 
4196 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4197 		goto out;
4198 
4199 	/* check if iSCSI FCOE block is populated */
4200 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4201 	if (status != IXGBE_SUCCESS)
4202 		goto out;
4203 
4204 	if ((offset == 0) || (offset == 0xFFFF))
4205 		goto out;
4206 
4207 	/* read fcoe flags in iSCSI FCOE block */
4208 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4209 	status = hw->eeprom.ops.read(hw, offset, &flags);
4210 	if (status != IXGBE_SUCCESS)
4211 		goto out;
4212 
4213 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4214 		*bs = ixgbe_fcoe_bootstatus_enabled;
4215 	else
4216 		*bs = ixgbe_fcoe_bootstatus_disabled;
4217 
4218 out:
4219 	return status;
4220 }
4221 
4222 /**
4223  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4224  *  @hw: pointer to hardware structure
4225  *  @enable: enable or disable switch for anti-spoofing
4226  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
4227  *
4228  **/
4229 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
4230 {
4231 	int j;
4232 	int pf_target_reg = pf >> 3;
4233 	int pf_target_shift = pf % 8;
4234 	u32 pfvfspoof = 0;
4235 
4236 	if (hw->mac.type == ixgbe_mac_82598EB)
4237 		return;
4238 
4239 	if (enable)
4240 		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
4241 
4242 	/*
4243 	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
4244 	 * MAC anti-spoof enables in each register array element.
4245 	 */
4246 	for (j = 0; j < pf_target_reg; j++)
4247 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
4248 
4249 	/*
4250 	 * The PF should be allowed to spoof so that it can support
4251 	 * emulation mode NICs.  Do not set the bits assigned to the PF
4252 	 */
4253 	pfvfspoof &= (1 << pf_target_shift) - 1;
4254 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
4255 
4256 	/*
4257 	 * Remaining pools belong to the PF so they do not need to have
4258 	 * anti-spoofing enabled.
4259 	 */
4260 	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
4261 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
4262 }
4263 
4264 /**
4265  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4266  *  @hw: pointer to hardware structure
4267  *  @enable: enable or disable switch for VLAN anti-spoofing
4268  *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4269  *
4270  **/
4271 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4272 {
4273 	int vf_target_reg = vf >> 3;
4274 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4275 	u32 pfvfspoof;
4276 
4277 	if (hw->mac.type == ixgbe_mac_82598EB)
4278 		return;
4279 
4280 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4281 	if (enable)
4282 		pfvfspoof |= (1 << vf_target_shift);
4283 	else
4284 		pfvfspoof &= ~(1 << vf_target_shift);
4285 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4286 }
4287 
4288 /**
4289  *  ixgbe_get_device_caps_generic - Get additional device capabilities
4290  *  @hw: pointer to hardware structure
4291  *  @device_caps: the EEPROM word with the extra device capabilities
4292  *
4293  *  This function will read the EEPROM location for the device capabilities,
4294  *  and return the word through device_caps.
4295  **/
4296 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4297 {
4298 	DEBUGFUNC("ixgbe_get_device_caps_generic");
4299 
4300 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4301 
4302 	return IXGBE_SUCCESS;
4303 }
4304 
4305 /**
4306  *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4307  *  @hw: pointer to hardware structure
4308  *
4309  **/
4310 void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4311 {
4312 	u32 regval;
4313 	u32 i;
4314 
4315 	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4316 
4317 	/* Enable relaxed ordering */
4318 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
4319 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4320 		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4321 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4322 	}
4323 
4324 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
4325 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4326 		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4327 			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4328 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4329 	}
4330 
4331 }
4332 
4333 /**
4334  *  ixgbe_calculate_checksum - Calculate checksum for buffer
4335  *  @buffer: pointer to EEPROM
4336  *  @length: size of EEPROM to calculate a checksum for
4337  *  Calculates the checksum for some buffer on a specified length.  The
4338  *  checksum calculated is returned.
4339  **/
4340 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4341 {
4342 	u32 i;
4343 	u8 sum = 0;
4344 
4345 	DEBUGFUNC("ixgbe_calculate_checksum");
4346 
4347 	if (!buffer)
4348 		return 0;
4349 
4350 	for (i = 0; i < length; i++)
4351 		sum += buffer[i];
4352 
4353 	return (u8) (0 - sum);
4354 }
4355 
4356 /**
4357  *  ixgbe_host_interface_command - Issue command to manageability block
4358  *  @hw: pointer to the HW structure
4359  *  @buffer: contains the command to write and where the return status will
4360  *   be placed
4361  *  @length: length of buffer, must be multiple of 4 bytes
4362  *  @timeout: time in ms to wait for command completion
4363  *  @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4364  *   Needed because FW structures are big endian and decoding of
4365  *   these fields can be 8 bit or 16 bit based on command. Decoding
4366  *   is not easily understood without making a table of commands.
4367  *   So we will leave this up to the caller to read back the data
4368  *   in these cases.
4369  *
4370  *  Communicates with the manageability block.  On success return IXGBE_SUCCESS
4371  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
4372  **/
4373 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4374 				 u32 length, u32 timeout, bool return_data)
4375 {
4376 	u32 hicr, i, bi, fwsts;
4377 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4378 	u16 buf_len;
4379 	u16 dword_len;
4380 
4381 	DEBUGFUNC("ixgbe_host_interface_command");
4382 
4383 	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4384 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4385 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4386 	}
4387 	/* Set bit 9 of FWSTS clearing FW reset indication */
4388 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4389 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4390 
4391 	/* Check that the host interface is enabled. */
4392 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4393 	if ((hicr & IXGBE_HICR_EN) == 0) {
4394 		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4395 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4396 	}
4397 
4398 	/* Calculate length in DWORDs. We must be DWORD aligned */
4399 	if ((length % (sizeof(u32))) != 0) {
4400 		DEBUGOUT("Buffer length failure, not aligned to dword");
4401 		return IXGBE_ERR_INVALID_ARGUMENT;
4402 	}
4403 
4404 	dword_len = length >> 2;
4405 
4406 	/* The device driver writes the relevant command block
4407 	 * into the ram area.
4408 	 */
4409 	for (i = 0; i < dword_len; i++)
4410 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4411 				      i, IXGBE_CPU_TO_LE32(buffer[i]));
4412 
4413 	/* Setting this bit tells the ARC that a new command is pending. */
4414 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4415 
4416 	for (i = 0; i < timeout; i++) {
4417 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4418 		if (!(hicr & IXGBE_HICR_C))
4419 			break;
4420 		msec_delay(1);
4421 	}
4422 
4423 	/* Check command completion */
4424 	if ((timeout != 0 && i == timeout) ||
4425 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4426 		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4427 			     "Command has failed with no status valid.\n");
4428 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4429 	}
4430 
4431 	if (!return_data)
4432 		return 0;
4433 
4434 	/* Calculate length in DWORDs */
4435 	dword_len = hdr_size >> 2;
4436 
4437 	/* first pull in the header so we know the buffer length */
4438 	for (bi = 0; bi < dword_len; bi++) {
4439 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4440 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4441 	}
4442 
4443 	/* If there is any thing in data position pull it in */
4444 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
4445 	if (buf_len == 0)
4446 		return 0;
4447 
4448 	if (length < buf_len + hdr_size) {
4449 		DEBUGOUT("Buffer not large enough for reply message.\n");
4450 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4451 	}
4452 
4453 	/* Calculate length in DWORDs, add 3 for odd lengths */
4454 	dword_len = (buf_len + 3) >> 2;
4455 
4456 	/* Pull in the rest of the buffer (bi is where we left off) */
4457 	for (; bi <= dword_len; bi++) {
4458 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4459 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4460 	}
4461 
4462 	return 0;
4463 }
4464 
4465 /**
4466  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4467  *  @hw: pointer to the HW structure
4468  *  @maj: driver version major number
4469  *  @min: driver version minor number
4470  *  @build: driver version build number
4471  *  @sub: driver version sub build number
4472  *
4473  *  Sends driver version number to firmware through the manageability
4474  *  block.  On success return IXGBE_SUCCESS
4475  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4476  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4477  **/
4478 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
4479 				 u8 build, u8 sub)
4480 {
4481 	struct ixgbe_hic_drv_info fw_cmd;
4482 	int i;
4483 	s32 ret_val = IXGBE_SUCCESS;
4484 
4485 	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4486 
4487 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
4488 	    != IXGBE_SUCCESS) {
4489 		ret_val = IXGBE_ERR_SWFW_SYNC;
4490 		goto out;
4491 	}
4492 
4493 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4494 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4495 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4496 	fw_cmd.port_num = (u8)hw->bus.func;
4497 	fw_cmd.ver_maj = maj;
4498 	fw_cmd.ver_min = min;
4499 	fw_cmd.ver_build = build;
4500 	fw_cmd.ver_sub = sub;
4501 	fw_cmd.hdr.checksum = 0;
4502 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4503 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4504 	fw_cmd.pad = 0;
4505 	fw_cmd.pad2 = 0;
4506 
4507 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4508 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4509 						       sizeof(fw_cmd),
4510 						       IXGBE_HI_COMMAND_TIMEOUT,
4511 						       TRUE);
4512 		if (ret_val != IXGBE_SUCCESS)
4513 			continue;
4514 
4515 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4516 		    FW_CEM_RESP_STATUS_SUCCESS)
4517 			ret_val = IXGBE_SUCCESS;
4518 		else
4519 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4520 
4521 		break;
4522 	}
4523 
4524 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4525 out:
4526 	return ret_val;
4527 }
4528 
4529 /**
4530  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4531  * @hw: pointer to hardware structure
4532  * @num_pb: number of packet buffers to allocate
4533  * @headroom: reserve n KB of headroom
4534  * @strategy: packet buffer allocation strategy
4535  **/
4536 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4537 			     int strategy)
4538 {
4539 	u32 pbsize = hw->mac.rx_pb_size;
4540 	int i = 0;
4541 	u32 rxpktsize, txpktsize, txpbthresh;
4542 
4543 	/* Reserve headroom */
4544 	pbsize -= headroom;
4545 
4546 	if (!num_pb)
4547 		num_pb = 1;
4548 
4549 	/* Divide remaining packet buffer space amongst the number of packet
4550 	 * buffers requested using supplied strategy.
4551 	 */
4552 	switch (strategy) {
4553 	case PBA_STRATEGY_WEIGHTED:
4554 		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4555 		 * buffer with 5/8 of the packet buffer space.
4556 		 */
4557 		rxpktsize = (pbsize * 5) / (num_pb * 4);
4558 		pbsize -= rxpktsize * (num_pb / 2);
4559 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4560 		for (; i < (num_pb / 2); i++)
4561 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4562 		/* Fall through to configure remaining packet buffers */
4563 	case PBA_STRATEGY_EQUAL:
4564 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4565 		for (; i < num_pb; i++)
4566 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4567 		break;
4568 	default:
4569 		break;
4570 	}
4571 
4572 	/* Only support an equally distributed Tx packet buffer strategy. */
4573 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4574 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4575 	for (i = 0; i < num_pb; i++) {
4576 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4577 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4578 	}
4579 
4580 	/* Clear unused TCs, if any, to zero buffer size*/
4581 	for (; i < IXGBE_MAX_PB; i++) {
4582 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4583 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4584 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4585 	}
4586 }
4587 
4588 /**
4589  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4590  * @hw: pointer to the hardware structure
4591  *
4592  * The 82599 and x540 MACs can experience issues if TX work is still pending
4593  * when a reset occurs.  This function prevents this by flushing the PCIe
4594  * buffers on the system.
4595  **/
4596 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4597 {
4598 	u32 gcr_ext, hlreg0, i, poll;
4599 	u16 value;
4600 
4601 	/*
4602 	 * If double reset is not requested then all transactions should
4603 	 * already be clear and as such there is no work to do
4604 	 */
4605 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4606 		return;
4607 
4608 	/*
4609 	 * Set loopback enable to prevent any transmits from being sent
4610 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
4611 	 * has already been cleared.
4612 	 */
4613 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4614 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4615 
4616 	/* Wait for a last completion before clearing buffers */
4617 	IXGBE_WRITE_FLUSH(hw);
4618 	msec_delay(3);
4619 
4620 	/*
4621 	 * Before proceeding, make sure that the PCIe block does not have
4622 	 * transactions pending.
4623 	 */
4624 	poll = ixgbe_pcie_timeout_poll(hw);
4625 	for (i = 0; i < poll; i++) {
4626 		usec_delay(100);
4627 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4628 		if (IXGBE_REMOVED(hw->hw_addr))
4629 			goto out;
4630 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4631 			goto out;
4632 	}
4633 
4634 out:
4635 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
4636 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4637 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4638 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4639 
4640 	/* Flush all writes and allow 20usec for all transactions to clear */
4641 	IXGBE_WRITE_FLUSH(hw);
4642 	usec_delay(20);
4643 
4644 	/* restore previous register values */
4645 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4646 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4647 }
4648 
4649 
4650 /**
4651  * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
4652  * @hw: pointer to hardware structure
4653  * @map: pointer to u8 arr for returning map
4654  *
4655  * Read the rtrup2tc HW register and resolve its content into map
4656  **/
4657 void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
4658 {
4659 	u32 reg, i;
4660 
4661 	reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
4662 	for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
4663 		map[i] = IXGBE_RTRUP2TC_UP_MASK &
4664 			(reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
4665 	return;
4666 }
4667 
4668 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4669 {
4670 	u32 pfdtxgswc;
4671 	u32 rxctrl;
4672 
4673 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4674 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
4675 		if (hw->mac.type != ixgbe_mac_82598EB) {
4676 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4677 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4678 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4679 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4680 				hw->mac.set_lben = TRUE;
4681 			} else {
4682 				hw->mac.set_lben = FALSE;
4683 			}
4684 		}
4685 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
4686 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4687 	}
4688 }
4689 
4690 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4691 {
4692 	u32 pfdtxgswc;
4693 	u32 rxctrl;
4694 
4695 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4696 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4697 
4698 	if (hw->mac.type != ixgbe_mac_82598EB) {
4699 		if (hw->mac.set_lben) {
4700 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4701 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4702 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4703 			hw->mac.set_lben = FALSE;
4704 		}
4705 	}
4706 }
4707 
4708 /**
4709  * ixgbe_mng_present - returns TRUE when management capability is present
4710  * @hw: pointer to hardware structure
4711  */
4712 bool ixgbe_mng_present(struct ixgbe_hw *hw)
4713 {
4714 	u32 fwsm;
4715 
4716 	if (hw->mac.type < ixgbe_mac_82599EB)
4717 		return FALSE;
4718 
4719 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM);
4720 	fwsm &= IXGBE_FWSM_MODE_MASK;
4721 	return fwsm == IXGBE_FWSM_FW_MODE_PT;
4722 }
4723 
4724 /**
4725  * ixgbe_mng_enabled - Is the manageability engine enabled?
4726  * @hw: pointer to hardware structure
4727  *
4728  * Returns TRUE if the manageability engine is enabled.
4729  **/
4730 bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
4731 {
4732 	u32 fwsm, manc, factps;
4733 
4734 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM);
4735 	if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
4736 		return FALSE;
4737 
4738 	manc = IXGBE_READ_REG(hw, IXGBE_MANC);
4739 	if (!(manc & IXGBE_MANC_RCV_TCO_EN))
4740 		return FALSE;
4741 
4742 	if (hw->mac.type <= ixgbe_mac_X540) {
4743 		factps = IXGBE_READ_REG(hw, IXGBE_FACTPS);
4744 		if (factps & IXGBE_FACTPS_MNGCG)
4745 			return FALSE;
4746 	}
4747 
4748 	return TRUE;
4749 }
4750 
4751 /**
4752  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4753  *  @hw: pointer to hardware structure
4754  *  @speed: new link speed
4755  *  @autoneg_wait_to_complete: TRUE when waiting for completion is needed
4756  *
4757  *  Set the link speed in the MAC and/or PHY register and restarts link.
4758  **/
4759 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4760 					  ixgbe_link_speed speed,
4761 					  bool autoneg_wait_to_complete)
4762 {
4763 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4764 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4765 	s32 status = IXGBE_SUCCESS;
4766 	u32 speedcnt = 0;
4767 	u32 i = 0;
4768 	bool autoneg, link_up = FALSE;
4769 
4770 	DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
4771 
4772 	/* Mask off requested but non-supported speeds */
4773 	status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
4774 	if (status != IXGBE_SUCCESS)
4775 		return status;
4776 
4777 	speed &= link_speed;
4778 
4779 	/* Try each speed one by one, highest priority first.  We do this in
4780 	 * software because 10Gb fiber doesn't support speed autonegotiation.
4781 	 */
4782 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4783 		speedcnt++;
4784 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4785 
4786 		/* If we already have link at this speed, just jump out */
4787 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4788 		if (status != IXGBE_SUCCESS)
4789 			return status;
4790 
4791 		if ((link_speed == IXGBE_LINK_SPEED_10GB_FULL) && link_up)
4792 			goto out;
4793 
4794 		/* Set the module link speed */
4795 		switch (hw->phy.media_type) {
4796 		case ixgbe_media_type_fiber_fixed:
4797 		case ixgbe_media_type_fiber:
4798 			ixgbe_set_rate_select_speed(hw,
4799 						    IXGBE_LINK_SPEED_10GB_FULL);
4800 			break;
4801 		case ixgbe_media_type_fiber_qsfp:
4802 			/* QSFP module automatically detects MAC link speed */
4803 			break;
4804 		default:
4805 			DEBUGOUT("Unexpected media type.\n");
4806 			break;
4807 		}
4808 
4809 		/* Allow module to change analog characteristics (1G->10G) */
4810 		msec_delay(40);
4811 
4812 		status = ixgbe_setup_mac_link(hw,
4813 					      IXGBE_LINK_SPEED_10GB_FULL,
4814 					      autoneg_wait_to_complete);
4815 		if (status != IXGBE_SUCCESS)
4816 			return status;
4817 
4818 		/* Flap the Tx laser if it has not already been done */
4819 		ixgbe_flap_tx_laser(hw);
4820 
4821 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4822 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
4823 		 * attempted.  82599 uses the same timing for 10g SFI.
4824 		 */
4825 		for (i = 0; i < 5; i++) {
4826 			/* Wait for the link partner to also set speed */
4827 			msec_delay(100);
4828 
4829 			/* If we have link, just jump out */
4830 			status = ixgbe_check_link(hw, &link_speed,
4831 						  &link_up, FALSE);
4832 			if (status != IXGBE_SUCCESS)
4833 				return status;
4834 
4835 			if (link_up)
4836 				goto out;
4837 		}
4838 	}
4839 
4840 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4841 		speedcnt++;
4842 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4843 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4844 
4845 		/* If we already have link at this speed, just jump out */
4846 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4847 		if (status != IXGBE_SUCCESS)
4848 			return status;
4849 
4850 		if ((link_speed == IXGBE_LINK_SPEED_1GB_FULL) && link_up)
4851 			goto out;
4852 
4853 		/* Set the module link speed */
4854 		switch (hw->phy.media_type) {
4855 		case ixgbe_media_type_fiber_fixed:
4856 		case ixgbe_media_type_fiber:
4857 			ixgbe_set_rate_select_speed(hw,
4858 						    IXGBE_LINK_SPEED_1GB_FULL);
4859 			break;
4860 		case ixgbe_media_type_fiber_qsfp:
4861 			/* QSFP module automatically detects link speed */
4862 			break;
4863 		default:
4864 			DEBUGOUT("Unexpected media type.\n");
4865 			break;
4866 		}
4867 
4868 		/* Allow module to change analog characteristics (10G->1G) */
4869 		msec_delay(40);
4870 
4871 		status = ixgbe_setup_mac_link(hw,
4872 					      IXGBE_LINK_SPEED_1GB_FULL,
4873 					      autoneg_wait_to_complete);
4874 		if (status != IXGBE_SUCCESS)
4875 			return status;
4876 
4877 		/* Flap the Tx laser if it has not already been done */
4878 		ixgbe_flap_tx_laser(hw);
4879 
4880 		/* Wait for the link partner to also set speed */
4881 		msec_delay(100);
4882 
4883 		/* If we have link, just jump out */
4884 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4885 		if (status != IXGBE_SUCCESS)
4886 			return status;
4887 
4888 		if (link_up)
4889 			goto out;
4890 	}
4891 
4892 	/* We didn't get link.  Configure back to the highest speed we tried,
4893 	 * (if there was more than one).  We call ourselves back with just the
4894 	 * single highest speed that the user requested.
4895 	 */
4896 	if (speedcnt > 1)
4897 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4898 						      highest_link_speed,
4899 						      autoneg_wait_to_complete);
4900 
4901 out:
4902 	/* Set autoneg_advertised value based on input link speed */
4903 	hw->phy.autoneg_advertised = 0;
4904 
4905 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4906 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4907 
4908 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4909 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4910 
4911 	return status;
4912 }
4913 
4914 /**
4915  *  ixgbe_set_soft_rate_select_speed - Set module link speed
4916  *  @hw: pointer to hardware structure
4917  *  @speed: link speed to set
4918  *
4919  *  Set module link speed via the soft rate select.
4920  */
4921 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4922 					ixgbe_link_speed speed)
4923 {
4924 	s32 status;
4925 	u8 rs, eeprom_data;
4926 
4927 	switch (speed) {
4928 	case IXGBE_LINK_SPEED_10GB_FULL:
4929 		/* one bit mask same as setting on */
4930 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4931 		break;
4932 	case IXGBE_LINK_SPEED_1GB_FULL:
4933 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4934 		break;
4935 	default:
4936 		DEBUGOUT("Invalid fixed module speed\n");
4937 		return;
4938 	}
4939 
4940 	/* Set RS0 */
4941 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4942 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4943 					   &eeprom_data);
4944 	if (status) {
4945 		DEBUGOUT("Failed to read Rx Rate Select RS0\n");
4946 		goto out;
4947 	}
4948 
4949 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4950 
4951 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4952 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4953 					    eeprom_data);
4954 	if (status) {
4955 		DEBUGOUT("Failed to write Rx Rate Select RS0\n");
4956 		goto out;
4957 	}
4958 
4959 	/* Set RS1 */
4960 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4961 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4962 					   &eeprom_data);
4963 	if (status) {
4964 		DEBUGOUT("Failed to read Rx Rate Select RS1\n");
4965 		goto out;
4966 	}
4967 
4968 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4969 
4970 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4971 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4972 					    eeprom_data);
4973 	if (status) {
4974 		DEBUGOUT("Failed to write Rx Rate Select RS1\n");
4975 		goto out;
4976 	}
4977 out:
4978 	return;
4979 }
4980