xref: /dragonfly/sys/dev/netif/jme/if_jme.c (revision 0ca59c34)
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: src/sys/dev/jme/if_jme.c,v 1.2 2008/07/18 04:20:48 yongari Exp $
28  */
29 
30 #include "opt_ifpoll.h"
31 #include "opt_jme.h"
32 
33 #include <sys/param.h>
34 #include <sys/endian.h>
35 #include <sys/kernel.h>
36 #include <sys/bus.h>
37 #include <sys/interrupt.h>
38 #include <sys/malloc.h>
39 #include <sys/proc.h>
40 #include <sys/rman.h>
41 #include <sys/serialize.h>
42 #include <sys/serialize2.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 
47 #include <net/ethernet.h>
48 #include <net/if.h>
49 #include <net/bpf.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_media.h>
53 #include <net/if_poll.h>
54 #include <net/ifq_var.h>
55 #include <net/toeplitz.h>
56 #include <net/toeplitz2.h>
57 #include <net/vlan/if_vlan_var.h>
58 #include <net/vlan/if_vlan_ether.h>
59 
60 #include <netinet/ip.h>
61 #include <netinet/tcp.h>
62 
63 #include <dev/netif/mii_layer/mii.h>
64 #include <dev/netif/mii_layer/miivar.h>
65 #include <dev/netif/mii_layer/jmphyreg.h>
66 
67 #include <bus/pci/pcireg.h>
68 #include <bus/pci/pcivar.h>
69 #include "pcidevs.h"
70 
71 #include <dev/netif/jme/if_jmereg.h>
72 #include <dev/netif/jme/if_jmevar.h>
73 
74 #include "miibus_if.h"
75 
76 #define JME_TICK_CPUID		0	/* DO NOT CHANGE THIS */
77 
78 #define	JME_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
79 
80 #ifdef JME_RSS_DEBUG
81 #define JME_RSS_DPRINTF(sc, lvl, fmt, ...) \
82 do { \
83 	if ((sc)->jme_rss_debug >= (lvl)) \
84 		if_printf(&(sc)->arpcom.ac_if, fmt, __VA_ARGS__); \
85 } while (0)
86 #else	/* !JME_RSS_DEBUG */
87 #define JME_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
88 #endif	/* JME_RSS_DEBUG */
89 
90 static int	jme_probe(device_t);
91 static int	jme_attach(device_t);
92 static int	jme_detach(device_t);
93 static int	jme_shutdown(device_t);
94 static int	jme_suspend(device_t);
95 static int	jme_resume(device_t);
96 
97 static int	jme_miibus_readreg(device_t, int, int);
98 static int	jme_miibus_writereg(device_t, int, int, int);
99 static void	jme_miibus_statchg(device_t);
100 
101 static void	jme_init(void *);
102 static int	jme_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
103 static void	jme_start(struct ifnet *, struct ifaltq_subque *);
104 static void	jme_watchdog(struct ifnet *);
105 static void	jme_mediastatus(struct ifnet *, struct ifmediareq *);
106 static int	jme_mediachange(struct ifnet *);
107 #ifdef IFPOLL_ENABLE
108 static void	jme_npoll(struct ifnet *, struct ifpoll_info *);
109 static void	jme_npoll_status(struct ifnet *);
110 static void	jme_npoll_rx(struct ifnet *, void *, int);
111 static void	jme_npoll_tx(struct ifnet *, void *, int);
112 #endif
113 static void	jme_serialize(struct ifnet *, enum ifnet_serialize);
114 static void	jme_deserialize(struct ifnet *, enum ifnet_serialize);
115 static int	jme_tryserialize(struct ifnet *, enum ifnet_serialize);
116 #ifdef INVARIANTS
117 static void	jme_serialize_assert(struct ifnet *, enum ifnet_serialize,
118 		    boolean_t);
119 #endif
120 
121 static void	jme_intr(void *);
122 static void	jme_msix_tx(void *);
123 static void	jme_msix_rx(void *);
124 static void	jme_msix_status(void *);
125 static void	jme_txeof(struct jme_txdata *);
126 static void	jme_rxeof(struct jme_rxdata *, int, int);
127 static void	jme_rx_intr(struct jme_softc *, uint32_t);
128 static void	jme_enable_intr(struct jme_softc *);
129 static void	jme_disable_intr(struct jme_softc *);
130 static void	jme_rx_restart(struct jme_softc *, uint32_t);
131 
132 static int	jme_msix_setup(device_t);
133 static void	jme_msix_teardown(device_t, int);
134 static int	jme_intr_setup(device_t);
135 static void	jme_intr_teardown(device_t);
136 static void	jme_msix_try_alloc(device_t);
137 static void	jme_msix_free(device_t);
138 static int	jme_intr_alloc(device_t);
139 static void	jme_intr_free(device_t);
140 static int	jme_dma_alloc(struct jme_softc *);
141 static void	jme_dma_free(struct jme_softc *);
142 static int	jme_init_rx_ring(struct jme_rxdata *);
143 static void	jme_init_tx_ring(struct jme_txdata *);
144 static void	jme_init_ssb(struct jme_softc *);
145 static int	jme_newbuf(struct jme_rxdata *, struct jme_rxdesc *, int);
146 static int	jme_encap(struct jme_txdata *, struct mbuf **, int *);
147 static void	jme_rxpkt(struct jme_rxdata *, int);
148 static int	jme_rxring_dma_alloc(struct jme_rxdata *);
149 static int	jme_rxbuf_dma_alloc(struct jme_rxdata *);
150 static int	jme_rxbuf_dma_filter(void *, bus_addr_t);
151 
152 static void	jme_tick(void *);
153 static void	jme_stop(struct jme_softc *);
154 static void	jme_reset(struct jme_softc *);
155 static void	jme_set_msinum(struct jme_softc *);
156 static void	jme_set_vlan(struct jme_softc *);
157 static void	jme_set_filter(struct jme_softc *);
158 static void	jme_stop_tx(struct jme_softc *);
159 static void	jme_stop_rx(struct jme_softc *);
160 static void	jme_mac_config(struct jme_softc *);
161 static void	jme_reg_macaddr(struct jme_softc *, uint8_t[]);
162 static int	jme_eeprom_macaddr(struct jme_softc *, uint8_t[]);
163 static int	jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
164 #ifdef notyet
165 static void	jme_setwol(struct jme_softc *);
166 static void	jme_setlinkspeed(struct jme_softc *);
167 #endif
168 static void	jme_set_tx_coal(struct jme_softc *);
169 static void	jme_set_rx_coal(struct jme_softc *);
170 static void	jme_enable_rss(struct jme_softc *);
171 static void	jme_disable_rss(struct jme_softc *);
172 static void	jme_serialize_skipmain(struct jme_softc *);
173 static void	jme_deserialize_skipmain(struct jme_softc *);
174 static void	jme_phy_poweron(struct jme_softc *);
175 static void	jme_phy_poweroff(struct jme_softc *);
176 static int	jme_miiext_read(struct jme_softc *, int);
177 static void	jme_miiext_write(struct jme_softc *, int, int);
178 static void	jme_phy_init(struct jme_softc *);
179 
180 static void	jme_sysctl_node(struct jme_softc *);
181 static int	jme_sysctl_tx_coal_to(SYSCTL_HANDLER_ARGS);
182 static int	jme_sysctl_tx_coal_pkt(SYSCTL_HANDLER_ARGS);
183 static int	jme_sysctl_rx_coal_to(SYSCTL_HANDLER_ARGS);
184 static int	jme_sysctl_rx_coal_pkt(SYSCTL_HANDLER_ARGS);
185 #ifdef IFPOLL_ENABLE
186 static int	jme_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
187 static int	jme_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
188 #endif
189 
190 /*
191  * Devices supported by this driver.
192  */
193 static const struct jme_dev {
194 	uint16_t	jme_vendorid;
195 	uint16_t	jme_deviceid;
196 	uint32_t	jme_caps;
197 	const char	*jme_name;
198 } jme_devs[] = {
199 	{ PCI_VENDOR_JMICRON, PCI_PRODUCT_JMICRON_JMC250,
200 	    JME_CAP_JUMBO,
201 	    "JMicron Inc, JMC250 Gigabit Ethernet" },
202 	{ PCI_VENDOR_JMICRON, PCI_PRODUCT_JMICRON_JMC260,
203 	    JME_CAP_FASTETH,
204 	    "JMicron Inc, JMC260 Fast Ethernet" },
205 	{ 0, 0, 0, NULL }
206 };
207 
208 static device_method_t jme_methods[] = {
209 	/* Device interface. */
210 	DEVMETHOD(device_probe,		jme_probe),
211 	DEVMETHOD(device_attach,	jme_attach),
212 	DEVMETHOD(device_detach,	jme_detach),
213 	DEVMETHOD(device_shutdown,	jme_shutdown),
214 	DEVMETHOD(device_suspend,	jme_suspend),
215 	DEVMETHOD(device_resume,	jme_resume),
216 
217 	/* Bus interface. */
218 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
219 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
220 
221 	/* MII interface. */
222 	DEVMETHOD(miibus_readreg,	jme_miibus_readreg),
223 	DEVMETHOD(miibus_writereg,	jme_miibus_writereg),
224 	DEVMETHOD(miibus_statchg,	jme_miibus_statchg),
225 
226 	{ NULL, NULL }
227 };
228 
229 static driver_t jme_driver = {
230 	"jme",
231 	jme_methods,
232 	sizeof(struct jme_softc)
233 };
234 
235 static devclass_t jme_devclass;
236 
237 DECLARE_DUMMY_MODULE(if_jme);
238 MODULE_DEPEND(if_jme, miibus, 1, 1, 1);
239 DRIVER_MODULE(if_jme, pci, jme_driver, jme_devclass, NULL, NULL);
240 DRIVER_MODULE(miibus, jme, miibus_driver, miibus_devclass, NULL, NULL);
241 
242 static const struct {
243 	uint32_t	jme_coal;
244 	uint32_t	jme_comp;
245 	uint32_t	jme_empty;
246 } jme_rx_status[JME_NRXRING_MAX] = {
247 	{ INTR_RXQ0_COAL | INTR_RXQ0_COAL_TO, INTR_RXQ0_COMP,
248 	  INTR_RXQ0_DESC_EMPTY },
249 	{ INTR_RXQ1_COAL | INTR_RXQ1_COAL_TO, INTR_RXQ1_COMP,
250 	  INTR_RXQ1_DESC_EMPTY },
251 	{ INTR_RXQ2_COAL | INTR_RXQ2_COAL_TO, INTR_RXQ2_COMP,
252 	  INTR_RXQ2_DESC_EMPTY },
253 	{ INTR_RXQ3_COAL | INTR_RXQ3_COAL_TO, INTR_RXQ3_COMP,
254 	  INTR_RXQ3_DESC_EMPTY }
255 };
256 
257 static int	jme_rx_desc_count = JME_RX_DESC_CNT_DEF;
258 static int	jme_tx_desc_count = JME_TX_DESC_CNT_DEF;
259 static int	jme_rx_ring_count = 0;
260 static int	jme_msi_enable = 1;
261 static int	jme_msix_enable = 1;
262 
263 TUNABLE_INT("hw.jme.rx_desc_count", &jme_rx_desc_count);
264 TUNABLE_INT("hw.jme.tx_desc_count", &jme_tx_desc_count);
265 TUNABLE_INT("hw.jme.rx_ring_count", &jme_rx_ring_count);
266 TUNABLE_INT("hw.jme.msi.enable", &jme_msi_enable);
267 TUNABLE_INT("hw.jme.msix.enable", &jme_msix_enable);
268 
269 static __inline void
270 jme_setup_rxdesc(struct jme_rxdesc *rxd)
271 {
272 	struct jme_desc *desc;
273 
274 	desc = rxd->rx_desc;
275 	desc->buflen = htole32(MCLBYTES);
276 	desc->addr_lo = htole32(JME_ADDR_LO(rxd->rx_paddr));
277 	desc->addr_hi = htole32(JME_ADDR_HI(rxd->rx_paddr));
278 	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
279 }
280 
281 /*
282  *	Read a PHY register on the MII of the JMC250.
283  */
284 static int
285 jme_miibus_readreg(device_t dev, int phy, int reg)
286 {
287 	struct jme_softc *sc = device_get_softc(dev);
288 	uint32_t val;
289 	int i;
290 
291 	/* For FPGA version, PHY address 0 should be ignored. */
292 	if (sc->jme_caps & JME_CAP_FPGA) {
293 		if (phy == 0)
294 			return (0);
295 	} else {
296 		if (sc->jme_phyaddr != phy)
297 			return (0);
298 	}
299 
300 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
301 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
302 
303 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
304 		DELAY(1);
305 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
306 			break;
307 	}
308 	if (i == 0) {
309 		device_printf(sc->jme_dev, "phy read timeout: "
310 			      "phy %d, reg %d\n", phy, reg);
311 		return (0);
312 	}
313 
314 	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
315 }
316 
317 /*
318  *	Write a PHY register on the MII of the JMC250.
319  */
320 static int
321 jme_miibus_writereg(device_t dev, int phy, int reg, int val)
322 {
323 	struct jme_softc *sc = device_get_softc(dev);
324 	int i;
325 
326 	/* For FPGA version, PHY address 0 should be ignored. */
327 	if (sc->jme_caps & JME_CAP_FPGA) {
328 		if (phy == 0)
329 			return (0);
330 	} else {
331 		if (sc->jme_phyaddr != phy)
332 			return (0);
333 	}
334 
335 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
336 	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
337 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
338 
339 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
340 		DELAY(1);
341 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
342 			break;
343 	}
344 	if (i == 0) {
345 		device_printf(sc->jme_dev, "phy write timeout: "
346 			      "phy %d, reg %d\n", phy, reg);
347 	}
348 
349 	return (0);
350 }
351 
352 /*
353  *	Callback from MII layer when media changes.
354  */
355 static void
356 jme_miibus_statchg(device_t dev)
357 {
358 	struct jme_softc *sc = device_get_softc(dev);
359 	struct ifnet *ifp = &sc->arpcom.ac_if;
360 	struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
361 	struct mii_data *mii;
362 	struct jme_txdesc *txd;
363 	bus_addr_t paddr;
364 	int i, r;
365 
366 	if (sc->jme_in_tick)
367 		jme_serialize_skipmain(sc);
368 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
369 
370 	if ((ifp->if_flags & IFF_RUNNING) == 0)
371 		goto done;
372 
373 	mii = device_get_softc(sc->jme_miibus);
374 
375 	sc->jme_has_link = FALSE;
376 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
377 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
378 		case IFM_10_T:
379 		case IFM_100_TX:
380 			sc->jme_has_link = TRUE;
381 			break;
382 		case IFM_1000_T:
383 			if (sc->jme_caps & JME_CAP_FASTETH)
384 				break;
385 			sc->jme_has_link = TRUE;
386 			break;
387 		default:
388 			break;
389 		}
390 	}
391 
392 	/*
393 	 * Disabling Rx/Tx MACs have a side-effect of resetting
394 	 * JME_TXNDA/JME_RXNDA register to the first address of
395 	 * Tx/Rx descriptor address. So driver should reset its
396 	 * internal procucer/consumer pointer and reclaim any
397 	 * allocated resources.  Note, just saving the value of
398 	 * JME_TXNDA and JME_RXNDA registers before stopping MAC
399 	 * and restoring JME_TXNDA/JME_RXNDA register is not
400 	 * sufficient to make sure correct MAC state because
401 	 * stopping MAC operation can take a while and hardware
402 	 * might have updated JME_TXNDA/JME_RXNDA registers
403 	 * during the stop operation.
404 	 */
405 
406 	/* Disable interrupts */
407 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
408 
409 	/* Stop driver */
410 	ifp->if_flags &= ~IFF_RUNNING;
411 	ifq_clr_oactive(&ifp->if_snd);
412 	ifp->if_timer = 0;
413 	callout_stop(&sc->jme_tick_ch);
414 
415 	/* Stop receiver/transmitter. */
416 	jme_stop_rx(sc);
417 	jme_stop_tx(sc);
418 
419 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
420 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[r];
421 
422 		jme_rxeof(rdata, -1, -1);
423 		if (rdata->jme_rxhead != NULL)
424 			m_freem(rdata->jme_rxhead);
425 		JME_RXCHAIN_RESET(rdata);
426 
427 		/*
428 		 * Reuse configured Rx descriptors and reset
429 		 * procuder/consumer index.
430 		 */
431 		rdata->jme_rx_cons = 0;
432 	}
433 	if (JME_ENABLE_HWRSS(sc))
434 		jme_enable_rss(sc);
435 	else
436 		jme_disable_rss(sc);
437 
438 	jme_txeof(tdata);
439 	if (tdata->jme_tx_cnt != 0) {
440 		/* Remove queued packets for transmit. */
441 		for (i = 0; i < tdata->jme_tx_desc_cnt; i++) {
442 			txd = &tdata->jme_txdesc[i];
443 			if (txd->tx_m != NULL) {
444 				bus_dmamap_unload( tdata->jme_tx_tag,
445 				    txd->tx_dmamap);
446 				m_freem(txd->tx_m);
447 				txd->tx_m = NULL;
448 				txd->tx_ndesc = 0;
449 				IFNET_STAT_INC(ifp, oerrors, 1);
450 			}
451 		}
452 	}
453 	jme_init_tx_ring(tdata);
454 
455 	/* Initialize shadow status block. */
456 	jme_init_ssb(sc);
457 
458 	/* Program MAC with resolved speed/duplex/flow-control. */
459 	if (sc->jme_has_link) {
460 		jme_mac_config(sc);
461 
462 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
463 
464 		/* Set Tx ring address to the hardware. */
465 		paddr = tdata->jme_tx_ring_paddr;
466 		CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
467 		CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
468 
469 		for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
470 			CSR_WRITE_4(sc, JME_RXCSR,
471 			    sc->jme_rxcsr | RXCSR_RXQ_N_SEL(r));
472 
473 			/* Set Rx ring address to the hardware. */
474 			paddr = sc->jme_cdata.jme_rx_data[r].jme_rx_ring_paddr;
475 			CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
476 			CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
477 		}
478 
479 		/* Restart receiver/transmitter. */
480 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
481 		    RXCSR_RXQ_START);
482 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
483 	}
484 
485 	ifp->if_flags |= IFF_RUNNING;
486 	ifq_clr_oactive(&ifp->if_snd);
487 	callout_reset_bycpu(&sc->jme_tick_ch, hz, jme_tick, sc,
488 	    JME_TICK_CPUID);
489 
490 #ifdef IFPOLL_ENABLE
491 	if (!(ifp->if_flags & IFF_NPOLLING))
492 #endif
493 	/* Reenable interrupts. */
494 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
495 
496 done:
497 	if (sc->jme_in_tick)
498 		jme_deserialize_skipmain(sc);
499 }
500 
501 /*
502  *	Get the current interface media status.
503  */
504 static void
505 jme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
506 {
507 	struct jme_softc *sc = ifp->if_softc;
508 	struct mii_data *mii = device_get_softc(sc->jme_miibus);
509 
510 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
511 
512 	mii_pollstat(mii);
513 	ifmr->ifm_status = mii->mii_media_status;
514 	ifmr->ifm_active = mii->mii_media_active;
515 }
516 
517 /*
518  *	Set hardware to newly-selected media.
519  */
520 static int
521 jme_mediachange(struct ifnet *ifp)
522 {
523 	struct jme_softc *sc = ifp->if_softc;
524 	struct mii_data *mii = device_get_softc(sc->jme_miibus);
525 	int error;
526 
527 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
528 
529 	if (mii->mii_instance != 0) {
530 		struct mii_softc *miisc;
531 
532 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
533 			mii_phy_reset(miisc);
534 	}
535 	error = mii_mediachg(mii);
536 
537 	return (error);
538 }
539 
540 static int
541 jme_probe(device_t dev)
542 {
543 	const struct jme_dev *sp;
544 	uint16_t vid, did;
545 
546 	vid = pci_get_vendor(dev);
547 	did = pci_get_device(dev);
548 	for (sp = jme_devs; sp->jme_name != NULL; ++sp) {
549 		if (vid == sp->jme_vendorid && did == sp->jme_deviceid) {
550 			struct jme_softc *sc = device_get_softc(dev);
551 
552 			sc->jme_caps = sp->jme_caps;
553 			device_set_desc(dev, sp->jme_name);
554 			return (0);
555 		}
556 	}
557 	return (ENXIO);
558 }
559 
560 static int
561 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
562 {
563 	uint32_t reg;
564 	int i;
565 
566 	*val = 0;
567 	for (i = JME_TIMEOUT; i > 0; i--) {
568 		reg = CSR_READ_4(sc, JME_SMBCSR);
569 		if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
570 			break;
571 		DELAY(1);
572 	}
573 
574 	if (i == 0) {
575 		device_printf(sc->jme_dev, "EEPROM idle timeout!\n");
576 		return (ETIMEDOUT);
577 	}
578 
579 	reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
580 	CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
581 	for (i = JME_TIMEOUT; i > 0; i--) {
582 		DELAY(1);
583 		reg = CSR_READ_4(sc, JME_SMBINTF);
584 		if ((reg & SMBINTF_CMD_TRIGGER) == 0)
585 			break;
586 	}
587 
588 	if (i == 0) {
589 		device_printf(sc->jme_dev, "EEPROM read timeout!\n");
590 		return (ETIMEDOUT);
591 	}
592 
593 	reg = CSR_READ_4(sc, JME_SMBINTF);
594 	*val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
595 
596 	return (0);
597 }
598 
599 static int
600 jme_eeprom_macaddr(struct jme_softc *sc, uint8_t eaddr[])
601 {
602 	uint8_t fup, reg, val;
603 	uint32_t offset;
604 	int match;
605 
606 	offset = 0;
607 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
608 	    fup != JME_EEPROM_SIG0)
609 		return (ENOENT);
610 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
611 	    fup != JME_EEPROM_SIG1)
612 		return (ENOENT);
613 	match = 0;
614 	do {
615 		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
616 			break;
617 		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) ==
618 		    (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
619 			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
620 				break;
621 			if (reg >= JME_PAR0 &&
622 			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
623 				if (jme_eeprom_read_byte(sc, offset + 2,
624 				    &val) != 0)
625 					break;
626 				eaddr[reg - JME_PAR0] = val;
627 				match++;
628 			}
629 		}
630 		/* Check for the end of EEPROM descriptor. */
631 		if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
632 			break;
633 		/* Try next eeprom descriptor. */
634 		offset += JME_EEPROM_DESC_BYTES;
635 	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
636 
637 	if (match == ETHER_ADDR_LEN)
638 		return (0);
639 
640 	return (ENOENT);
641 }
642 
643 static void
644 jme_reg_macaddr(struct jme_softc *sc, uint8_t eaddr[])
645 {
646 	uint32_t par0, par1;
647 
648 	/* Read station address. */
649 	par0 = CSR_READ_4(sc, JME_PAR0);
650 	par1 = CSR_READ_4(sc, JME_PAR1);
651 	par1 &= 0xFFFF;
652 	if ((par0 == 0 && par1 == 0) || (par0 & 0x1)) {
653 		device_printf(sc->jme_dev,
654 		    "generating fake ethernet address.\n");
655 		par0 = karc4random();
656 		/* Set OUI to JMicron. */
657 		eaddr[0] = 0x00;
658 		eaddr[1] = 0x1B;
659 		eaddr[2] = 0x8C;
660 		eaddr[3] = (par0 >> 16) & 0xff;
661 		eaddr[4] = (par0 >> 8) & 0xff;
662 		eaddr[5] = par0 & 0xff;
663 	} else {
664 		eaddr[0] = (par0 >> 0) & 0xFF;
665 		eaddr[1] = (par0 >> 8) & 0xFF;
666 		eaddr[2] = (par0 >> 16) & 0xFF;
667 		eaddr[3] = (par0 >> 24) & 0xFF;
668 		eaddr[4] = (par1 >> 0) & 0xFF;
669 		eaddr[5] = (par1 >> 8) & 0xFF;
670 	}
671 }
672 
673 static int
674 jme_attach(device_t dev)
675 {
676 	struct jme_softc *sc = device_get_softc(dev);
677 	struct ifnet *ifp = &sc->arpcom.ac_if;
678 	uint32_t reg;
679 	uint16_t did;
680 	uint8_t pcie_ptr, rev;
681 	int error = 0, i, j, rx_desc_cnt, coal_max;
682 	uint8_t eaddr[ETHER_ADDR_LEN];
683 #ifdef IFPOLL_ENABLE
684 	int offset, offset_def;
685 #endif
686 
687 	/*
688 	 * Initialize serializers
689 	 */
690 	lwkt_serialize_init(&sc->jme_serialize);
691 	lwkt_serialize_init(&sc->jme_cdata.jme_tx_data.jme_tx_serialize);
692 	for (i = 0; i < JME_NRXRING_MAX; ++i) {
693 		lwkt_serialize_init(
694 		    &sc->jme_cdata.jme_rx_data[i].jme_rx_serialize);
695 	}
696 
697 	/*
698 	 * Get # of RX ring descriptors
699 	 */
700 	rx_desc_cnt = device_getenv_int(dev, "rx_desc_count",
701 	    jme_rx_desc_count);
702 	rx_desc_cnt = roundup(rx_desc_cnt, JME_NDESC_ALIGN);
703 	if (rx_desc_cnt > JME_NDESC_MAX)
704 		rx_desc_cnt = JME_NDESC_MAX;
705 
706 	/*
707 	 * Get # of TX ring descriptors
708 	 */
709 	sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt =
710 	    device_getenv_int(dev, "tx_desc_count", jme_tx_desc_count);
711 	sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt =
712 	    roundup(sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt, JME_NDESC_ALIGN);
713 	if (sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt > JME_NDESC_MAX)
714 		sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt = JME_NDESC_MAX;
715 
716 	/*
717 	 * Get # of RX rings
718 	 */
719 	sc->jme_cdata.jme_rx_ring_cnt = device_getenv_int(dev, "rx_ring_count",
720 	    jme_rx_ring_count);
721 	sc->jme_cdata.jme_rx_ring_cnt =
722 	    if_ring_count2(sc->jme_cdata.jme_rx_ring_cnt, JME_NRXRING_MAX);
723 
724 	/*
725 	 * Initialize serializer array
726 	 */
727 	i = 0;
728 
729 	KKASSERT(i < JME_NSERIALIZE);
730 	sc->jme_serialize_arr[i++] = &sc->jme_serialize;
731 
732 	KKASSERT(i < JME_NSERIALIZE);
733 	sc->jme_serialize_arr[i++] =
734 	    &sc->jme_cdata.jme_tx_data.jme_tx_serialize;
735 
736 	for (j = 0; j < sc->jme_cdata.jme_rx_ring_cnt; ++j) {
737 		KKASSERT(i < JME_NSERIALIZE);
738 		sc->jme_serialize_arr[i++] =
739 		    &sc->jme_cdata.jme_rx_data[j].jme_rx_serialize;
740 	}
741 
742 	KKASSERT(i <= JME_NSERIALIZE);
743 	sc->jme_serialize_cnt = i;
744 
745 	/*
746 	 * Setup TX ring specific data
747 	 */
748 	sc->jme_cdata.jme_tx_data.jme_sc = sc;
749 
750 	/*
751 	 * Setup RX rings specific data
752 	 */
753 	for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
754 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[i];
755 
756 		rdata->jme_sc = sc;
757 		rdata->jme_rx_coal = jme_rx_status[i].jme_coal;
758 		rdata->jme_rx_comp = jme_rx_status[i].jme_comp;
759 		rdata->jme_rx_empty = jme_rx_status[i].jme_empty;
760 		rdata->jme_rx_idx = i;
761 		rdata->jme_rx_desc_cnt = rx_desc_cnt;
762 	}
763 
764 	sc->jme_dev = dev;
765 	sc->jme_lowaddr = BUS_SPACE_MAXADDR;
766 
767 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
768 
769 	callout_init(&sc->jme_tick_ch);
770 
771 #ifndef BURN_BRIDGES
772 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
773 		uint32_t irq, mem;
774 
775 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
776 		mem = pci_read_config(dev, JME_PCIR_BAR, 4);
777 
778 		device_printf(dev, "chip is in D%d power mode "
779 		    "-- setting to D0\n", pci_get_powerstate(dev));
780 
781 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
782 
783 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
784 		pci_write_config(dev, JME_PCIR_BAR, mem, 4);
785 	}
786 #endif	/* !BURN_BRIDGE */
787 
788 	/* Enable bus mastering */
789 	pci_enable_busmaster(dev);
790 
791 	/*
792 	 * Allocate IO memory
793 	 *
794 	 * JMC250 supports both memory mapped and I/O register space
795 	 * access.  Because I/O register access should use different
796 	 * BARs to access registers it's waste of time to use I/O
797 	 * register spce access.  JMC250 uses 16K to map entire memory
798 	 * space.
799 	 */
800 	sc->jme_mem_rid = JME_PCIR_BAR;
801 	sc->jme_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
802 						 &sc->jme_mem_rid, RF_ACTIVE);
803 	if (sc->jme_mem_res == NULL) {
804 		device_printf(dev, "can't allocate IO memory\n");
805 		return ENXIO;
806 	}
807 	sc->jme_mem_bt = rman_get_bustag(sc->jme_mem_res);
808 	sc->jme_mem_bh = rman_get_bushandle(sc->jme_mem_res);
809 
810 	/*
811 	 * Allocate IRQ
812 	 */
813 	error = jme_intr_alloc(dev);
814 	if (error)
815 		goto fail;
816 
817 	/*
818 	 * Extract revisions
819 	 */
820 	reg = CSR_READ_4(sc, JME_CHIPMODE);
821 	if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
822 	    CHIPMODE_NOT_FPGA) {
823 		sc->jme_caps |= JME_CAP_FPGA;
824 		if (bootverbose) {
825 			device_printf(dev, "FPGA revision: 0x%04x\n",
826 				      (reg & CHIPMODE_FPGA_REV_MASK) >>
827 				      CHIPMODE_FPGA_REV_SHIFT);
828 		}
829 	}
830 
831 	/* NOTE: FM revision is put in the upper 4 bits */
832 	rev = ((reg & CHIPMODE_REVFM_MASK) >> CHIPMODE_REVFM_SHIFT) << 4;
833 	rev |= (reg & CHIPMODE_REVECO_MASK) >> CHIPMODE_REVECO_SHIFT;
834 	if (bootverbose)
835 		device_printf(dev, "Revision (FM/ECO): 0x%02x\n", rev);
836 
837 	did = pci_get_device(dev);
838 	switch (did) {
839 	case PCI_PRODUCT_JMICRON_JMC250:
840 		if (rev == JME_REV1_A2)
841 			sc->jme_workaround |= JME_WA_EXTFIFO | JME_WA_HDX;
842 		break;
843 
844 	case PCI_PRODUCT_JMICRON_JMC260:
845 		if (rev == JME_REV2) {
846 			sc->jme_lowaddr = BUS_SPACE_MAXADDR_32BIT;
847 			sc->jme_phycom0 = 0x608a;
848 		} else if (rev == JME_REV2_2) {
849 			sc->jme_phycom0 = 0x408a;
850 		}
851 		break;
852 
853 	default:
854 		panic("unknown device id 0x%04x", did);
855 	}
856 	if (rev >= JME_REV2) {
857 		sc->jme_clksrc = GHC_TXOFL_CLKSRC | GHC_TXMAC_CLKSRC;
858 		sc->jme_clksrc_1000 = GHC_TXOFL_CLKSRC_1000 |
859 				      GHC_TXMAC_CLKSRC_1000;
860 	}
861 	if (rev >= JME_REV5)
862 		sc->jme_caps |= JME_CAP_PHYPWR;
863 	if (rev >= JME_REV6 || rev == JME_REV5 || rev == JME_REV5_1 ||
864 	    rev == JME_REV5_3) {
865 		sc->jme_phycom0 = 0x008a;
866 		sc->jme_phycom1 = 0x4109;
867 	} else if (rev == JME_REV3_1 || rev == JME_REV3_2) {
868 		sc->jme_phycom0 = 0xe088;
869 	}
870 
871 	if (rev >= JME_REV2) {
872 		reg = pci_read_config(dev, JME_PCI_SSCTRL, 4);
873 		if ((reg & SSCTRL_PHYMASK) == SSCTRL_PHYEA) {
874 			sc->jme_phycom0 = 0;
875 			sc->jme_phycom1 = 0;
876 		}
877 	}
878 
879 	/* Reset the ethernet controller. */
880 	jme_reset(sc);
881 
882 	/* Map MSI/MSI-X vectors */
883 	jme_set_msinum(sc);
884 
885 	/* Get station address. */
886 	reg = CSR_READ_4(sc, JME_SMBCSR);
887 	if (reg & SMBCSR_EEPROM_PRESENT)
888 		error = jme_eeprom_macaddr(sc, eaddr);
889 	if (error != 0 || (reg & SMBCSR_EEPROM_PRESENT) == 0) {
890 		if (error != 0 && (bootverbose)) {
891 			device_printf(dev, "ethernet hardware address "
892 				      "not found in EEPROM.\n");
893 		}
894 		jme_reg_macaddr(sc, eaddr);
895 	}
896 
897 	/*
898 	 * Save PHY address.
899 	 * Integrated JR0211 has fixed PHY address whereas FPGA version
900 	 * requires PHY probing to get correct PHY address.
901 	 */
902 	if ((sc->jme_caps & JME_CAP_FPGA) == 0) {
903 		sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
904 		    GPREG0_PHY_ADDR_MASK;
905 		if (bootverbose) {
906 			device_printf(dev, "PHY is at address %d.\n",
907 			    sc->jme_phyaddr);
908 		}
909 	} else {
910 		sc->jme_phyaddr = 0;
911 	}
912 
913 	/* Set max allowable DMA size. */
914 	pcie_ptr = pci_get_pciecap_ptr(dev);
915 	if (pcie_ptr != 0) {
916 		uint16_t ctrl;
917 
918 		sc->jme_caps |= JME_CAP_PCIE;
919 		ctrl = pci_read_config(dev, pcie_ptr + PCIER_DEVCTRL, 2);
920 		if (bootverbose) {
921 			device_printf(dev, "Read request size : %d bytes.\n",
922 			    128 << ((ctrl >> 12) & 0x07));
923 			device_printf(dev, "TLP payload size : %d bytes.\n",
924 			    128 << ((ctrl >> 5) & 0x07));
925 		}
926 		switch (ctrl & PCIEM_DEVCTL_MAX_READRQ_MASK) {
927 		case PCIEM_DEVCTL_MAX_READRQ_128:
928 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128;
929 			break;
930 		case PCIEM_DEVCTL_MAX_READRQ_256:
931 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256;
932 			break;
933 		default:
934 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
935 			break;
936 		}
937 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
938 	} else {
939 		sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
940 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
941 	}
942 
943 #ifdef notyet
944 	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0)
945 		sc->jme_caps |= JME_CAP_PMCAP;
946 #endif
947 
948 #ifdef IFPOLL_ENABLE
949 	/*
950 	 * NPOLLING RX CPU offset
951 	 */
952 	if (sc->jme_cdata.jme_rx_ring_cnt == ncpus2) {
953 		offset = 0;
954 	} else {
955 		offset_def = (sc->jme_cdata.jme_rx_ring_cnt *
956 		    device_get_unit(dev)) % ncpus2;
957 		offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
958 		if (offset >= ncpus2 ||
959 		    offset % sc->jme_cdata.jme_rx_ring_cnt != 0) {
960 			device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
961 			    offset, offset_def);
962 			offset = offset_def;
963 		}
964 	}
965 	sc->jme_npoll_rxoff = offset;
966 
967 	/*
968 	 * NPOLLING TX CPU offset
969 	 */
970 	offset_def = sc->jme_npoll_rxoff;
971 	offset = device_getenv_int(dev, "npoll.txoff", offset_def);
972 	if (offset >= ncpus2) {
973 		device_printf(dev, "invalid npoll.txoff %d, use %d\n",
974 		    offset, offset_def);
975 		offset = offset_def;
976 	}
977 	sc->jme_npoll_txoff = offset;
978 #endif
979 
980 	/*
981 	 * Set default coalesce valves
982 	 */
983 	sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
984 	sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
985 	sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
986 	sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
987 
988 	/*
989 	 * Adjust coalesce valves, in case that the number of TX/RX
990 	 * descs are set to small values by users.
991 	 *
992 	 * NOTE: coal_max will not be zero, since number of descs
993 	 * must aligned by JME_NDESC_ALIGN (16 currently)
994 	 */
995 	coal_max = sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt / 2;
996 	if (coal_max < sc->jme_tx_coal_pkt)
997 		sc->jme_tx_coal_pkt = coal_max;
998 
999 	coal_max = sc->jme_cdata.jme_rx_data[0].jme_rx_desc_cnt / 2;
1000 	if (coal_max < sc->jme_rx_coal_pkt)
1001 		sc->jme_rx_coal_pkt = coal_max;
1002 
1003 	sc->jme_cdata.jme_tx_data.jme_tx_wreg = JME_TXWREG_NSEGS;
1004 
1005 	/*
1006 	 * Create sysctl tree
1007 	 */
1008 	jme_sysctl_node(sc);
1009 
1010 	/* Allocate DMA stuffs */
1011 	error = jme_dma_alloc(sc);
1012 	if (error)
1013 		goto fail;
1014 
1015 	ifp->if_softc = sc;
1016 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1017 	ifp->if_init = jme_init;
1018 	ifp->if_ioctl = jme_ioctl;
1019 	ifp->if_start = jme_start;
1020 #ifdef IFPOLL_ENABLE
1021 	ifp->if_npoll = jme_npoll;
1022 #endif
1023 	ifp->if_watchdog = jme_watchdog;
1024 	ifp->if_serialize = jme_serialize;
1025 	ifp->if_deserialize = jme_deserialize;
1026 	ifp->if_tryserialize = jme_tryserialize;
1027 #ifdef INVARIANTS
1028 	ifp->if_serialize_assert = jme_serialize_assert;
1029 #endif
1030 	ifp->if_nmbclusters = sc->jme_cdata.jme_rx_ring_cnt *
1031 	    sc->jme_cdata.jme_rx_data[0].jme_rx_desc_cnt;
1032 	ifq_set_maxlen(&ifp->if_snd,
1033 	    sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt - JME_TXD_RSVD);
1034 	ifq_set_ready(&ifp->if_snd);
1035 
1036 	/* JMC250 supports Tx/Rx checksum offload and hardware vlan tagging. */
1037 	ifp->if_capabilities = IFCAP_HWCSUM |
1038 			       IFCAP_TSO |
1039 			       IFCAP_VLAN_MTU |
1040 			       IFCAP_VLAN_HWTAGGING;
1041 	if (sc->jme_cdata.jme_rx_ring_cnt > JME_NRXRING_MIN)
1042 		ifp->if_capabilities |= IFCAP_RSS;
1043 	ifp->if_capenable = ifp->if_capabilities;
1044 
1045 	/*
1046 	 * Disable TXCSUM by default to improve bulk data
1047 	 * transmit performance (+20Mbps improvement).
1048 	 */
1049 	ifp->if_capenable &= ~IFCAP_TXCSUM;
1050 
1051 	if (ifp->if_capenable & IFCAP_TXCSUM)
1052 		ifp->if_hwassist |= JME_CSUM_FEATURES;
1053 	ifp->if_hwassist |= CSUM_TSO;
1054 
1055 	/* Set up MII bus. */
1056 	error = mii_phy_probe(dev, &sc->jme_miibus,
1057 			      jme_mediachange, jme_mediastatus);
1058 	if (error) {
1059 		device_printf(dev, "no PHY found!\n");
1060 		goto fail;
1061 	}
1062 
1063 	/*
1064 	 * Save PHYADDR for FPGA mode PHY.
1065 	 */
1066 	if (sc->jme_caps & JME_CAP_FPGA) {
1067 		struct mii_data *mii = device_get_softc(sc->jme_miibus);
1068 
1069 		if (mii->mii_instance != 0) {
1070 			struct mii_softc *miisc;
1071 
1072 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
1073 				if (miisc->mii_phy != 0) {
1074 					sc->jme_phyaddr = miisc->mii_phy;
1075 					break;
1076 				}
1077 			}
1078 			if (sc->jme_phyaddr != 0) {
1079 				device_printf(sc->jme_dev,
1080 				    "FPGA PHY is at %d\n", sc->jme_phyaddr);
1081 				/* vendor magic. */
1082 				jme_miibus_writereg(dev, sc->jme_phyaddr,
1083 				    JMPHY_CONF, JMPHY_CONF_DEFFIFO);
1084 
1085 				/* XXX should we clear JME_WA_EXTFIFO */
1086 			}
1087 		}
1088 	}
1089 
1090 	ether_ifattach(ifp, eaddr, NULL);
1091 
1092 	/* Tell the upper layer(s) we support long frames. */
1093 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1094 
1095 	/* Setup the TX ring's CPUID */
1096 	ifq_set_cpuid(&ifp->if_snd, sc->jme_tx_cpuid);
1097 	ifq_set_hw_serialize(&ifp->if_snd,
1098 	    &sc->jme_cdata.jme_tx_data.jme_tx_serialize);
1099 
1100 	error = jme_intr_setup(dev);
1101 	if (error) {
1102 		ether_ifdetach(ifp);
1103 		goto fail;
1104 	}
1105 
1106 	return 0;
1107 fail:
1108 	jme_detach(dev);
1109 	return (error);
1110 }
1111 
1112 static int
1113 jme_detach(device_t dev)
1114 {
1115 	struct jme_softc *sc = device_get_softc(dev);
1116 
1117 	if (device_is_attached(dev)) {
1118 		struct ifnet *ifp = &sc->arpcom.ac_if;
1119 
1120 		ifnet_serialize_all(ifp);
1121 		jme_stop(sc);
1122 		jme_intr_teardown(dev);
1123 		ifnet_deserialize_all(ifp);
1124 
1125 		ether_ifdetach(ifp);
1126 	}
1127 
1128 	if (sc->jme_miibus != NULL)
1129 		device_delete_child(dev, sc->jme_miibus);
1130 	bus_generic_detach(dev);
1131 
1132 	jme_intr_free(dev);
1133 
1134 	if (sc->jme_mem_res != NULL) {
1135 		bus_release_resource(dev, SYS_RES_MEMORY, sc->jme_mem_rid,
1136 				     sc->jme_mem_res);
1137 	}
1138 
1139 	jme_dma_free(sc);
1140 
1141 	return (0);
1142 }
1143 
1144 static void
1145 jme_sysctl_node(struct jme_softc *sc)
1146 {
1147 	struct sysctl_ctx_list *ctx;
1148 	struct sysctl_oid *tree;
1149 #ifdef JME_RSS_DEBUG
1150 	int r;
1151 #endif
1152 
1153 	ctx = device_get_sysctl_ctx(sc->jme_dev);
1154 	tree = device_get_sysctl_tree(sc->jme_dev);
1155 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1156 	    "tx_coal_to", CTLTYPE_INT | CTLFLAG_RW,
1157 	    sc, 0, jme_sysctl_tx_coal_to, "I", "jme tx coalescing timeout");
1158 
1159 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1160 	    "tx_coal_pkt", CTLTYPE_INT | CTLFLAG_RW,
1161 	    sc, 0, jme_sysctl_tx_coal_pkt, "I", "jme tx coalescing packet");
1162 
1163 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1164 	    "rx_coal_to", CTLTYPE_INT | CTLFLAG_RW,
1165 	    sc, 0, jme_sysctl_rx_coal_to, "I", "jme rx coalescing timeout");
1166 
1167 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1168 	    "rx_coal_pkt", CTLTYPE_INT | CTLFLAG_RW,
1169 	    sc, 0, jme_sysctl_rx_coal_pkt, "I", "jme rx coalescing packet");
1170 
1171 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1172 		       "rx_desc_count", CTLFLAG_RD,
1173 		       &sc->jme_cdata.jme_rx_data[0].jme_rx_desc_cnt,
1174 		       0, "RX desc count");
1175 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1176 		       "tx_desc_count", CTLFLAG_RD,
1177 		       &sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt,
1178 		       0, "TX desc count");
1179 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1180 		       "rx_ring_count", CTLFLAG_RD,
1181 		       &sc->jme_cdata.jme_rx_ring_cnt,
1182 		       0, "RX ring count");
1183 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1184 		       "tx_wreg", CTLFLAG_RW,
1185 		       &sc->jme_cdata.jme_tx_data.jme_tx_wreg, 0,
1186 		       "# of segments before writing to hardware register");
1187 
1188 #ifdef JME_RSS_DEBUG
1189 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1190 		       "rss_debug", CTLFLAG_RW, &sc->jme_rss_debug,
1191 		       0, "RSS debug level");
1192 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
1193 		char rx_ring_desc[32];
1194 
1195 		ksnprintf(rx_ring_desc, sizeof(rx_ring_desc),
1196 		    "rx_ring%d_pkt", r);
1197 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1198 		    rx_ring_desc, CTLFLAG_RW,
1199 		    &sc->jme_cdata.jme_rx_data[r].jme_rx_pkt, "RXed packets");
1200 
1201 		ksnprintf(rx_ring_desc, sizeof(rx_ring_desc),
1202 		    "rx_ring%d_emp", r);
1203 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1204 		    rx_ring_desc, CTLFLAG_RW,
1205 		    &sc->jme_cdata.jme_rx_data[r].jme_rx_emp,
1206 		    "# of time RX ring empty");
1207 	}
1208 #endif
1209 
1210 #ifdef IFPOLL_ENABLE
1211 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1212 	    "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
1213 	    jme_sysctl_npoll_rxoff, "I", "NPOLLING RX cpu offset");
1214 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1215 	    "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
1216 	    jme_sysctl_npoll_txoff, "I", "NPOLLING TX cpu offset");
1217 #endif
1218 }
1219 
1220 static int
1221 jme_dma_alloc(struct jme_softc *sc)
1222 {
1223 	struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
1224 	struct jme_txdesc *txd;
1225 	bus_dmamem_t dmem;
1226 	int error, i, asize;
1227 
1228 	asize = __VM_CACHELINE_ALIGN(
1229 	    tdata->jme_tx_desc_cnt * sizeof(struct jme_txdesc));
1230 	tdata->jme_txdesc = kmalloc_cachealign(asize, M_DEVBUF,
1231 	    M_WAITOK | M_ZERO);
1232 
1233 	for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
1234 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[i];
1235 
1236 		asize = __VM_CACHELINE_ALIGN(
1237 		    rdata->jme_rx_desc_cnt * sizeof(struct jme_rxdesc));
1238 		rdata->jme_rxdesc = kmalloc_cachealign(asize, M_DEVBUF,
1239 		    M_WAITOK | M_ZERO);
1240 	}
1241 
1242 	/* Create parent ring tag. */
1243 	error = bus_dma_tag_create(NULL,/* parent */
1244 	    1, JME_RING_BOUNDARY,	/* algnmnt, boundary */
1245 	    sc->jme_lowaddr,		/* lowaddr */
1246 	    BUS_SPACE_MAXADDR,		/* highaddr */
1247 	    NULL, NULL,			/* filter, filterarg */
1248 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1249 	    0,				/* nsegments */
1250 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1251 	    0,				/* flags */
1252 	    &sc->jme_cdata.jme_ring_tag);
1253 	if (error) {
1254 		device_printf(sc->jme_dev,
1255 		    "could not create parent ring DMA tag.\n");
1256 		return error;
1257 	}
1258 
1259 	/*
1260 	 * Create DMA stuffs for TX ring
1261 	 */
1262 	asize = roundup2(JME_TX_RING_SIZE(tdata), JME_TX_RING_ALIGN);
1263 	error = bus_dmamem_coherent(sc->jme_cdata.jme_ring_tag,
1264 			JME_TX_RING_ALIGN, 0,
1265 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1266 			asize, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
1267 	if (error) {
1268 		device_printf(sc->jme_dev, "could not allocate Tx ring.\n");
1269 		return error;
1270 	}
1271 	tdata->jme_tx_ring_tag = dmem.dmem_tag;
1272 	tdata->jme_tx_ring_map = dmem.dmem_map;
1273 	tdata->jme_tx_ring = dmem.dmem_addr;
1274 	tdata->jme_tx_ring_paddr = dmem.dmem_busaddr;
1275 
1276 	/*
1277 	 * Create DMA stuffs for RX rings
1278 	 */
1279 	for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
1280 		error = jme_rxring_dma_alloc(&sc->jme_cdata.jme_rx_data[i]);
1281 		if (error)
1282 			return error;
1283 	}
1284 
1285 	/* Create parent buffer tag. */
1286 	error = bus_dma_tag_create(NULL,/* parent */
1287 	    1, 0,			/* algnmnt, boundary */
1288 	    sc->jme_lowaddr,		/* lowaddr */
1289 	    BUS_SPACE_MAXADDR,		/* highaddr */
1290 	    NULL, NULL,			/* filter, filterarg */
1291 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1292 	    0,				/* nsegments */
1293 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1294 	    0,				/* flags */
1295 	    &sc->jme_cdata.jme_buffer_tag);
1296 	if (error) {
1297 		device_printf(sc->jme_dev,
1298 		    "could not create parent buffer DMA tag.\n");
1299 		return error;
1300 	}
1301 
1302 	/*
1303 	 * Create DMA stuffs for shadow status block
1304 	 */
1305 	asize = roundup2(JME_SSB_SIZE, JME_SSB_ALIGN);
1306 	error = bus_dmamem_coherent(sc->jme_cdata.jme_buffer_tag,
1307 			JME_SSB_ALIGN, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1308 			asize, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
1309 	if (error) {
1310 		device_printf(sc->jme_dev,
1311 		    "could not create shadow status block.\n");
1312 		return error;
1313 	}
1314 	sc->jme_cdata.jme_ssb_tag = dmem.dmem_tag;
1315 	sc->jme_cdata.jme_ssb_map = dmem.dmem_map;
1316 	sc->jme_cdata.jme_ssb_block = dmem.dmem_addr;
1317 	sc->jme_cdata.jme_ssb_block_paddr = dmem.dmem_busaddr;
1318 
1319 	/*
1320 	 * Create DMA stuffs for TX buffers
1321 	 */
1322 
1323 	/* Create tag for Tx buffers. */
1324 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1325 	    1, 0,			/* algnmnt, boundary */
1326 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1327 	    BUS_SPACE_MAXADDR,		/* highaddr */
1328 	    NULL, NULL,			/* filter, filterarg */
1329 	    JME_TSO_MAXSIZE,		/* maxsize */
1330 	    JME_MAXTXSEGS,		/* nsegments */
1331 	    JME_MAXSEGSIZE,		/* maxsegsize */
1332 	    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,/* flags */
1333 	    &tdata->jme_tx_tag);
1334 	if (error != 0) {
1335 		device_printf(sc->jme_dev, "could not create Tx DMA tag.\n");
1336 		return error;
1337 	}
1338 
1339 	/* Create DMA maps for Tx buffers. */
1340 	for (i = 0; i < tdata->jme_tx_desc_cnt; i++) {
1341 		txd = &tdata->jme_txdesc[i];
1342 		error = bus_dmamap_create(tdata->jme_tx_tag,
1343 				BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1344 				&txd->tx_dmamap);
1345 		if (error) {
1346 			int j;
1347 
1348 			device_printf(sc->jme_dev,
1349 			    "could not create %dth Tx dmamap.\n", i);
1350 
1351 			for (j = 0; j < i; ++j) {
1352 				txd = &tdata->jme_txdesc[j];
1353 				bus_dmamap_destroy(tdata->jme_tx_tag,
1354 						   txd->tx_dmamap);
1355 			}
1356 			bus_dma_tag_destroy(tdata->jme_tx_tag);
1357 			tdata->jme_tx_tag = NULL;
1358 			return error;
1359 		}
1360 	}
1361 
1362 	/*
1363 	 * Create DMA stuffs for RX buffers
1364 	 */
1365 	for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
1366 		error = jme_rxbuf_dma_alloc(&sc->jme_cdata.jme_rx_data[i]);
1367 		if (error)
1368 			return error;
1369 	}
1370 	return 0;
1371 }
1372 
1373 static void
1374 jme_dma_free(struct jme_softc *sc)
1375 {
1376 	struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
1377 	struct jme_txdesc *txd;
1378 	struct jme_rxdesc *rxd;
1379 	struct jme_rxdata *rdata;
1380 	int i, r;
1381 
1382 	/* Tx ring */
1383 	if (tdata->jme_tx_ring_tag != NULL) {
1384 		bus_dmamap_unload(tdata->jme_tx_ring_tag,
1385 		    tdata->jme_tx_ring_map);
1386 		bus_dmamem_free(tdata->jme_tx_ring_tag,
1387 		    tdata->jme_tx_ring, tdata->jme_tx_ring_map);
1388 		bus_dma_tag_destroy(tdata->jme_tx_ring_tag);
1389 		tdata->jme_tx_ring_tag = NULL;
1390 	}
1391 
1392 	/* Rx ring */
1393 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
1394 		rdata = &sc->jme_cdata.jme_rx_data[r];
1395 		if (rdata->jme_rx_ring_tag != NULL) {
1396 			bus_dmamap_unload(rdata->jme_rx_ring_tag,
1397 					  rdata->jme_rx_ring_map);
1398 			bus_dmamem_free(rdata->jme_rx_ring_tag,
1399 					rdata->jme_rx_ring,
1400 					rdata->jme_rx_ring_map);
1401 			bus_dma_tag_destroy(rdata->jme_rx_ring_tag);
1402 			rdata->jme_rx_ring_tag = NULL;
1403 		}
1404 	}
1405 
1406 	/* Tx buffers */
1407 	if (tdata->jme_tx_tag != NULL) {
1408 		for (i = 0; i < tdata->jme_tx_desc_cnt; i++) {
1409 			txd = &tdata->jme_txdesc[i];
1410 			bus_dmamap_destroy(tdata->jme_tx_tag, txd->tx_dmamap);
1411 		}
1412 		bus_dma_tag_destroy(tdata->jme_tx_tag);
1413 		tdata->jme_tx_tag = NULL;
1414 	}
1415 
1416 	/* Rx buffers */
1417 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
1418 		rdata = &sc->jme_cdata.jme_rx_data[r];
1419 		if (rdata->jme_rx_tag != NULL) {
1420 			for (i = 0; i < rdata->jme_rx_desc_cnt; i++) {
1421 				rxd = &rdata->jme_rxdesc[i];
1422 				bus_dmamap_destroy(rdata->jme_rx_tag,
1423 						   rxd->rx_dmamap);
1424 			}
1425 			bus_dmamap_destroy(rdata->jme_rx_tag,
1426 					   rdata->jme_rx_sparemap);
1427 			bus_dma_tag_destroy(rdata->jme_rx_tag);
1428 			rdata->jme_rx_tag = NULL;
1429 		}
1430 	}
1431 
1432 	/* Shadow status block. */
1433 	if (sc->jme_cdata.jme_ssb_tag != NULL) {
1434 		bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag,
1435 		    sc->jme_cdata.jme_ssb_map);
1436 		bus_dmamem_free(sc->jme_cdata.jme_ssb_tag,
1437 		    sc->jme_cdata.jme_ssb_block,
1438 		    sc->jme_cdata.jme_ssb_map);
1439 		bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag);
1440 		sc->jme_cdata.jme_ssb_tag = NULL;
1441 	}
1442 
1443 	if (sc->jme_cdata.jme_buffer_tag != NULL) {
1444 		bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag);
1445 		sc->jme_cdata.jme_buffer_tag = NULL;
1446 	}
1447 	if (sc->jme_cdata.jme_ring_tag != NULL) {
1448 		bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag);
1449 		sc->jme_cdata.jme_ring_tag = NULL;
1450 	}
1451 
1452 	if (tdata->jme_txdesc != NULL) {
1453 		kfree(tdata->jme_txdesc, M_DEVBUF);
1454 		tdata->jme_txdesc = NULL;
1455 	}
1456 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
1457 		rdata = &sc->jme_cdata.jme_rx_data[r];
1458 		if (rdata->jme_rxdesc != NULL) {
1459 			kfree(rdata->jme_rxdesc, M_DEVBUF);
1460 			rdata->jme_rxdesc = NULL;
1461 		}
1462 	}
1463 }
1464 
1465 /*
1466  *	Make sure the interface is stopped at reboot time.
1467  */
1468 static int
1469 jme_shutdown(device_t dev)
1470 {
1471 	return jme_suspend(dev);
1472 }
1473 
1474 #ifdef notyet
1475 /*
1476  * Unlike other ethernet controllers, JMC250 requires
1477  * explicit resetting link speed to 10/100Mbps as gigabit
1478  * link will cunsume more power than 375mA.
1479  * Note, we reset the link speed to 10/100Mbps with
1480  * auto-negotiation but we don't know whether that operation
1481  * would succeed or not as we have no control after powering
1482  * off. If the renegotiation fail WOL may not work. Running
1483  * at 1Gbps draws more power than 375mA at 3.3V which is
1484  * specified in PCI specification and that would result in
1485  * complete shutdowning power to ethernet controller.
1486  *
1487  * TODO
1488  *  Save current negotiated media speed/duplex/flow-control
1489  *  to softc and restore the same link again after resuming.
1490  *  PHY handling such as power down/resetting to 100Mbps
1491  *  may be better handled in suspend method in phy driver.
1492  */
1493 static void
1494 jme_setlinkspeed(struct jme_softc *sc)
1495 {
1496 	struct mii_data *mii;
1497 	int aneg, i;
1498 
1499 	JME_LOCK_ASSERT(sc);
1500 
1501 	mii = device_get_softc(sc->jme_miibus);
1502 	mii_pollstat(mii);
1503 	aneg = 0;
1504 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1505 		switch IFM_SUBTYPE(mii->mii_media_active) {
1506 		case IFM_10_T:
1507 		case IFM_100_TX:
1508 			return;
1509 		case IFM_1000_T:
1510 			aneg++;
1511 		default:
1512 			break;
1513 		}
1514 	}
1515 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0);
1516 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR,
1517 	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1518 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR,
1519 	    BMCR_AUTOEN | BMCR_STARTNEG);
1520 	DELAY(1000);
1521 	if (aneg != 0) {
1522 		/* Poll link state until jme(4) get a 10/100 link. */
1523 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1524 			mii_pollstat(mii);
1525 			if ((mii->mii_media_status & IFM_AVALID) != 0) {
1526 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
1527 				case IFM_10_T:
1528 				case IFM_100_TX:
1529 					jme_mac_config(sc);
1530 					return;
1531 				default:
1532 					break;
1533 				}
1534 			}
1535 			JME_UNLOCK(sc);
1536 			pause("jmelnk", hz);
1537 			JME_LOCK(sc);
1538 		}
1539 		if (i == MII_ANEGTICKS_GIGE)
1540 			device_printf(sc->jme_dev, "establishing link failed, "
1541 			    "WOL may not work!");
1542 	}
1543 	/*
1544 	 * No link, force MAC to have 100Mbps, full-duplex link.
1545 	 * This is the last resort and may/may not work.
1546 	 */
1547 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1548 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1549 	jme_mac_config(sc);
1550 }
1551 
1552 static void
1553 jme_setwol(struct jme_softc *sc)
1554 {
1555 	struct ifnet *ifp = &sc->arpcom.ac_if;
1556 	uint32_t gpr, pmcs;
1557 	uint16_t pmstat;
1558 	int pmc;
1559 
1560 	if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1561 		/* No PME capability, PHY power down. */
1562 		jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
1563 		    MII_BMCR, BMCR_PDOWN);
1564 		return;
1565 	}
1566 
1567 	gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
1568 	pmcs = CSR_READ_4(sc, JME_PMCS);
1569 	pmcs &= ~PMCS_WOL_ENB_MASK;
1570 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1571 		pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
1572 		/* Enable PME message. */
1573 		gpr |= GPREG0_PME_ENB;
1574 		/* For gigabit controllers, reset link speed to 10/100. */
1575 		if ((sc->jme_caps & JME_CAP_FASTETH) == 0)
1576 			jme_setlinkspeed(sc);
1577 	}
1578 
1579 	CSR_WRITE_4(sc, JME_PMCS, pmcs);
1580 	CSR_WRITE_4(sc, JME_GPREG0, gpr);
1581 
1582 	/* Request PME. */
1583 	pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2);
1584 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1585 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1586 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1587 	pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1588 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1589 		/* No WOL, PHY power down. */
1590 		jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
1591 		    MII_BMCR, BMCR_PDOWN);
1592 	}
1593 }
1594 #endif
1595 
1596 static int
1597 jme_suspend(device_t dev)
1598 {
1599 	struct jme_softc *sc = device_get_softc(dev);
1600 	struct ifnet *ifp = &sc->arpcom.ac_if;
1601 
1602 	ifnet_serialize_all(ifp);
1603 	jme_stop(sc);
1604 #ifdef notyet
1605 	jme_setwol(sc);
1606 #endif
1607 	ifnet_deserialize_all(ifp);
1608 
1609 	return (0);
1610 }
1611 
1612 static int
1613 jme_resume(device_t dev)
1614 {
1615 	struct jme_softc *sc = device_get_softc(dev);
1616 	struct ifnet *ifp = &sc->arpcom.ac_if;
1617 #ifdef notyet
1618 	int pmc;
1619 #endif
1620 
1621 	ifnet_serialize_all(ifp);
1622 
1623 #ifdef notyet
1624 	if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1625 		uint16_t pmstat;
1626 
1627 		pmstat = pci_read_config(sc->jme_dev,
1628 		    pmc + PCIR_POWER_STATUS, 2);
1629 		/* Disable PME clear PME status. */
1630 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1631 		pci_write_config(sc->jme_dev,
1632 		    pmc + PCIR_POWER_STATUS, pmstat, 2);
1633 	}
1634 #endif
1635 
1636 	if (ifp->if_flags & IFF_UP)
1637 		jme_init(sc);
1638 
1639 	ifnet_deserialize_all(ifp);
1640 
1641 	return (0);
1642 }
1643 
1644 static __inline int
1645 jme_tso_pullup(struct mbuf **mp)
1646 {
1647 	int hoff, iphlen, thoff;
1648 	struct mbuf *m;
1649 
1650 	m = *mp;
1651 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
1652 
1653 	iphlen = m->m_pkthdr.csum_iphlen;
1654 	thoff = m->m_pkthdr.csum_thlen;
1655 	hoff = m->m_pkthdr.csum_lhlen;
1656 
1657 	KASSERT(iphlen > 0, ("invalid ip hlen"));
1658 	KASSERT(thoff > 0, ("invalid tcp hlen"));
1659 	KASSERT(hoff > 0, ("invalid ether hlen"));
1660 
1661 	if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
1662 		m = m_pullup(m, hoff + iphlen + thoff);
1663 		if (m == NULL) {
1664 			*mp = NULL;
1665 			return ENOBUFS;
1666 		}
1667 		*mp = m;
1668 	}
1669 	return 0;
1670 }
1671 
1672 static int
1673 jme_encap(struct jme_txdata *tdata, struct mbuf **m_head, int *segs_used)
1674 {
1675 	struct jme_txdesc *txd;
1676 	struct jme_desc *desc;
1677 	struct mbuf *m;
1678 	bus_dma_segment_t txsegs[JME_MAXTXSEGS];
1679 	int maxsegs, nsegs;
1680 	int error, i, prod, symbol_desc;
1681 	uint32_t cflags, flag64, mss;
1682 
1683 	M_ASSERTPKTHDR((*m_head));
1684 
1685 	if ((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) {
1686 		/* XXX Is this necessary? */
1687 		error = jme_tso_pullup(m_head);
1688 		if (error)
1689 			return error;
1690 	}
1691 
1692 	prod = tdata->jme_tx_prod;
1693 	txd = &tdata->jme_txdesc[prod];
1694 
1695 	if (tdata->jme_sc->jme_lowaddr != BUS_SPACE_MAXADDR_32BIT)
1696 		symbol_desc = 1;
1697 	else
1698 		symbol_desc = 0;
1699 
1700 	maxsegs = (tdata->jme_tx_desc_cnt - tdata->jme_tx_cnt) -
1701 		  (JME_TXD_RSVD + symbol_desc);
1702 	if (maxsegs > JME_MAXTXSEGS)
1703 		maxsegs = JME_MAXTXSEGS;
1704 	KASSERT(maxsegs >= (JME_TXD_SPARE - symbol_desc),
1705 		("not enough segments %d", maxsegs));
1706 
1707 	error = bus_dmamap_load_mbuf_defrag(tdata->jme_tx_tag,
1708 			txd->tx_dmamap, m_head,
1709 			txsegs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1710 	if (error)
1711 		goto fail;
1712 	*segs_used += nsegs;
1713 
1714 	bus_dmamap_sync(tdata->jme_tx_tag, txd->tx_dmamap,
1715 			BUS_DMASYNC_PREWRITE);
1716 
1717 	m = *m_head;
1718 	cflags = 0;
1719 	mss = 0;
1720 
1721 	/* Configure checksum offload. */
1722 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1723 		mss = (uint32_t)m->m_pkthdr.tso_segsz << JME_TD_MSS_SHIFT;
1724 		cflags |= JME_TD_TSO;
1725 	} else if (m->m_pkthdr.csum_flags & JME_CSUM_FEATURES) {
1726 		if (m->m_pkthdr.csum_flags & CSUM_IP)
1727 			cflags |= JME_TD_IPCSUM;
1728 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1729 			cflags |= JME_TD_TCPCSUM;
1730 		if (m->m_pkthdr.csum_flags & CSUM_UDP)
1731 			cflags |= JME_TD_UDPCSUM;
1732 	}
1733 
1734 	/* Configure VLAN. */
1735 	if (m->m_flags & M_VLANTAG) {
1736 		cflags |= (m->m_pkthdr.ether_vlantag & JME_TD_VLAN_MASK);
1737 		cflags |= JME_TD_VLAN_TAG;
1738 	}
1739 
1740 	desc = &tdata->jme_tx_ring[prod];
1741 	desc->flags = htole32(cflags);
1742 	desc->addr_hi = htole32(m->m_pkthdr.len);
1743 	if (tdata->jme_sc->jme_lowaddr != BUS_SPACE_MAXADDR_32BIT) {
1744 		/*
1745 		 * Use 64bits TX desc chain format.
1746 		 *
1747 		 * The first TX desc of the chain, which is setup here,
1748 		 * is just a symbol TX desc carrying no payload.
1749 		 */
1750 		flag64 = JME_TD_64BIT;
1751 		desc->buflen = htole32(mss);
1752 		desc->addr_lo = 0;
1753 
1754 		*segs_used += 1;
1755 
1756 		/* No effective TX desc is consumed */
1757 		i = 0;
1758 	} else {
1759 		/*
1760 		 * Use 32bits TX desc chain format.
1761 		 *
1762 		 * The first TX desc of the chain, which is setup here,
1763 		 * is an effective TX desc carrying the first segment of
1764 		 * the mbuf chain.
1765 		 */
1766 		flag64 = 0;
1767 		desc->buflen = htole32(mss | txsegs[0].ds_len);
1768 		desc->addr_lo = htole32(JME_ADDR_LO(txsegs[0].ds_addr));
1769 
1770 		/* One effective TX desc is consumed */
1771 		i = 1;
1772 	}
1773 	tdata->jme_tx_cnt++;
1774 	KKASSERT(tdata->jme_tx_cnt - i < tdata->jme_tx_desc_cnt - JME_TXD_RSVD);
1775 	JME_DESC_INC(prod, tdata->jme_tx_desc_cnt);
1776 
1777 	txd->tx_ndesc = 1 - i;
1778 	for (; i < nsegs; i++) {
1779 		desc = &tdata->jme_tx_ring[prod];
1780 		desc->buflen = htole32(txsegs[i].ds_len);
1781 		desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr));
1782 		desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr));
1783 		desc->flags = htole32(JME_TD_OWN | flag64);
1784 
1785 		tdata->jme_tx_cnt++;
1786 		KKASSERT(tdata->jme_tx_cnt <=
1787 			 tdata->jme_tx_desc_cnt - JME_TXD_RSVD);
1788 		JME_DESC_INC(prod, tdata->jme_tx_desc_cnt);
1789 	}
1790 
1791 	/* Update producer index. */
1792 	tdata->jme_tx_prod = prod;
1793 	/*
1794 	 * Finally request interrupt and give the first descriptor
1795 	 * owenership to hardware.
1796 	 */
1797 	desc = txd->tx_desc;
1798 	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1799 
1800 	txd->tx_m = m;
1801 	txd->tx_ndesc += nsegs;
1802 
1803 	return 0;
1804 fail:
1805 	m_freem(*m_head);
1806 	*m_head = NULL;
1807 	return error;
1808 }
1809 
1810 static void
1811 jme_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1812 {
1813 	struct jme_softc *sc = ifp->if_softc;
1814 	struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
1815 	struct mbuf *m_head;
1816 	int enq = 0;
1817 
1818 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1819 	ASSERT_SERIALIZED(&tdata->jme_tx_serialize);
1820 
1821 	if (!sc->jme_has_link) {
1822 		ifq_purge(&ifp->if_snd);
1823 		return;
1824 	}
1825 
1826 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1827 		return;
1828 
1829 	if (tdata->jme_tx_cnt >= JME_TX_DESC_HIWAT(tdata))
1830 		jme_txeof(tdata);
1831 
1832 	while (!ifq_is_empty(&ifp->if_snd)) {
1833 		/*
1834 		 * Check number of available TX descs, always
1835 		 * leave JME_TXD_RSVD free TX descs.
1836 		 */
1837 		if (tdata->jme_tx_cnt + JME_TXD_SPARE >
1838 		    tdata->jme_tx_desc_cnt - JME_TXD_RSVD) {
1839 			ifq_set_oactive(&ifp->if_snd);
1840 			break;
1841 		}
1842 
1843 		m_head = ifq_dequeue(&ifp->if_snd);
1844 		if (m_head == NULL)
1845 			break;
1846 
1847 		/*
1848 		 * Pack the data into the transmit ring. If we
1849 		 * don't have room, set the OACTIVE flag and wait
1850 		 * for the NIC to drain the ring.
1851 		 */
1852 		if (jme_encap(tdata, &m_head, &enq)) {
1853 			KKASSERT(m_head == NULL);
1854 			IFNET_STAT_INC(ifp, oerrors, 1);
1855 			ifq_set_oactive(&ifp->if_snd);
1856 			break;
1857 		}
1858 
1859 		if (enq >= tdata->jme_tx_wreg) {
1860 			CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr |
1861 			    TXCSR_TX_ENB | TXCSR_TXQ_N_START(TXCSR_TXQ0));
1862 			enq = 0;
1863 		}
1864 
1865 		/*
1866 		 * If there's a BPF listener, bounce a copy of this frame
1867 		 * to him.
1868 		 */
1869 		ETHER_BPF_MTAP(ifp, m_head);
1870 
1871 		/* Set a timeout in case the chip goes out to lunch. */
1872 		ifp->if_timer = JME_TX_TIMEOUT;
1873 	}
1874 
1875 	if (enq > 0) {
1876 		/*
1877 		 * Reading TXCSR takes very long time under heavy load
1878 		 * so cache TXCSR value and writes the ORed value with
1879 		 * the kick command to the TXCSR. This saves one register
1880 		 * access cycle.
1881 		 */
1882 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
1883 		    TXCSR_TXQ_N_START(TXCSR_TXQ0));
1884 	}
1885 }
1886 
1887 static void
1888 jme_watchdog(struct ifnet *ifp)
1889 {
1890 	struct jme_softc *sc = ifp->if_softc;
1891 	struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
1892 
1893 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1894 
1895 	if (!sc->jme_has_link) {
1896 		if_printf(ifp, "watchdog timeout (missed link)\n");
1897 		IFNET_STAT_INC(ifp, oerrors, 1);
1898 		jme_init(sc);
1899 		return;
1900 	}
1901 
1902 	jme_txeof(tdata);
1903 	if (tdata->jme_tx_cnt == 0) {
1904 		if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
1905 			  "-- recovering\n");
1906 		if (!ifq_is_empty(&ifp->if_snd))
1907 			if_devstart(ifp);
1908 		return;
1909 	}
1910 
1911 	if_printf(ifp, "watchdog timeout\n");
1912 	IFNET_STAT_INC(ifp, oerrors, 1);
1913 	jme_init(sc);
1914 	if (!ifq_is_empty(&ifp->if_snd))
1915 		if_devstart(ifp);
1916 }
1917 
1918 static int
1919 jme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1920 {
1921 	struct jme_softc *sc = ifp->if_softc;
1922 	struct mii_data *mii = device_get_softc(sc->jme_miibus);
1923 	struct ifreq *ifr = (struct ifreq *)data;
1924 	int error = 0, mask;
1925 
1926 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1927 
1928 	switch (cmd) {
1929 	case SIOCSIFMTU:
1930 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU ||
1931 		    (!(sc->jme_caps & JME_CAP_JUMBO) &&
1932 		     ifr->ifr_mtu > JME_MAX_MTU)) {
1933 			error = EINVAL;
1934 			break;
1935 		}
1936 
1937 		if (ifp->if_mtu != ifr->ifr_mtu) {
1938 			/*
1939 			 * No special configuration is required when interface
1940 			 * MTU is changed but availability of Tx checksum
1941 			 * offload should be chcked against new MTU size as
1942 			 * FIFO size is just 2K.
1943 			 */
1944 			if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) {
1945 				ifp->if_capenable &=
1946 				    ~(IFCAP_TXCSUM | IFCAP_TSO);
1947 				ifp->if_hwassist &=
1948 				    ~(JME_CSUM_FEATURES | CSUM_TSO);
1949 			}
1950 			ifp->if_mtu = ifr->ifr_mtu;
1951 			if (ifp->if_flags & IFF_RUNNING)
1952 				jme_init(sc);
1953 		}
1954 		break;
1955 
1956 	case SIOCSIFFLAGS:
1957 		if (ifp->if_flags & IFF_UP) {
1958 			if (ifp->if_flags & IFF_RUNNING) {
1959 				if ((ifp->if_flags ^ sc->jme_if_flags) &
1960 				    (IFF_PROMISC | IFF_ALLMULTI))
1961 					jme_set_filter(sc);
1962 			} else {
1963 				jme_init(sc);
1964 			}
1965 		} else {
1966 			if (ifp->if_flags & IFF_RUNNING)
1967 				jme_stop(sc);
1968 		}
1969 		sc->jme_if_flags = ifp->if_flags;
1970 		break;
1971 
1972 	case SIOCADDMULTI:
1973 	case SIOCDELMULTI:
1974 		if (ifp->if_flags & IFF_RUNNING)
1975 			jme_set_filter(sc);
1976 		break;
1977 
1978 	case SIOCSIFMEDIA:
1979 	case SIOCGIFMEDIA:
1980 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1981 		break;
1982 
1983 	case SIOCSIFCAP:
1984 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1985 
1986 		if ((mask & IFCAP_TXCSUM) && ifp->if_mtu < JME_TX_FIFO_SIZE) {
1987 			ifp->if_capenable ^= IFCAP_TXCSUM;
1988 			if (ifp->if_capenable & IFCAP_TXCSUM)
1989 				ifp->if_hwassist |= JME_CSUM_FEATURES;
1990 			else
1991 				ifp->if_hwassist &= ~JME_CSUM_FEATURES;
1992 		}
1993 		if (mask & IFCAP_RXCSUM) {
1994 			uint32_t reg;
1995 
1996 			ifp->if_capenable ^= IFCAP_RXCSUM;
1997 			reg = CSR_READ_4(sc, JME_RXMAC);
1998 			reg &= ~RXMAC_CSUM_ENB;
1999 			if (ifp->if_capenable & IFCAP_RXCSUM)
2000 				reg |= RXMAC_CSUM_ENB;
2001 			CSR_WRITE_4(sc, JME_RXMAC, reg);
2002 		}
2003 
2004 		if (mask & IFCAP_VLAN_HWTAGGING) {
2005 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2006 			jme_set_vlan(sc);
2007 		}
2008 
2009 		if ((mask & IFCAP_TSO) && ifp->if_mtu < JME_TX_FIFO_SIZE) {
2010 			ifp->if_capenable ^= IFCAP_TSO;
2011 			if (ifp->if_capenable & IFCAP_TSO)
2012 				ifp->if_hwassist |= CSUM_TSO;
2013 			else
2014 				ifp->if_hwassist &= ~CSUM_TSO;
2015 		}
2016 
2017 		if (mask & IFCAP_RSS)
2018 			ifp->if_capenable ^= IFCAP_RSS;
2019 		break;
2020 
2021 	default:
2022 		error = ether_ioctl(ifp, cmd, data);
2023 		break;
2024 	}
2025 	return (error);
2026 }
2027 
2028 static void
2029 jme_mac_config(struct jme_softc *sc)
2030 {
2031 	struct mii_data *mii;
2032 	uint32_t ghc, rxmac, txmac, txpause, gp1;
2033 	int phyconf = JMPHY_CONF_DEFFIFO, hdx = 0;
2034 
2035 	mii = device_get_softc(sc->jme_miibus);
2036 
2037 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2038 	DELAY(10);
2039 	CSR_WRITE_4(sc, JME_GHC, 0);
2040 	ghc = 0;
2041 	rxmac = CSR_READ_4(sc, JME_RXMAC);
2042 	rxmac &= ~RXMAC_FC_ENB;
2043 	txmac = CSR_READ_4(sc, JME_TXMAC);
2044 	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
2045 	txpause = CSR_READ_4(sc, JME_TXPFC);
2046 	txpause &= ~TXPFC_PAUSE_ENB;
2047 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2048 		ghc |= GHC_FULL_DUPLEX;
2049 		rxmac &= ~RXMAC_COLL_DET_ENB;
2050 		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
2051 		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
2052 		    TXMAC_FRAME_BURST);
2053 #ifdef notyet
2054 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2055 			txpause |= TXPFC_PAUSE_ENB;
2056 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2057 			rxmac |= RXMAC_FC_ENB;
2058 #endif
2059 		/* Disable retry transmit timer/retry limit. */
2060 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
2061 		    ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
2062 	} else {
2063 		rxmac |= RXMAC_COLL_DET_ENB;
2064 		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
2065 		/* Enable retry transmit timer/retry limit. */
2066 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
2067 		    TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
2068 	}
2069 
2070 	/*
2071 	 * Reprogram Tx/Rx MACs with resolved speed/duplex.
2072 	 */
2073 	gp1 = CSR_READ_4(sc, JME_GPREG1);
2074 	gp1 &= ~GPREG1_WA_HDX;
2075 
2076 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
2077 		hdx = 1;
2078 
2079 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2080 	case IFM_10_T:
2081 		ghc |= GHC_SPEED_10 | sc->jme_clksrc;
2082 		if (hdx)
2083 			gp1 |= GPREG1_WA_HDX;
2084 		break;
2085 
2086 	case IFM_100_TX:
2087 		ghc |= GHC_SPEED_100 | sc->jme_clksrc;
2088 		if (hdx)
2089 			gp1 |= GPREG1_WA_HDX;
2090 
2091 		/*
2092 		 * Use extended FIFO depth to workaround CRC errors
2093 		 * emitted by chips before JMC250B
2094 		 */
2095 		phyconf = JMPHY_CONF_EXTFIFO;
2096 		break;
2097 
2098 	case IFM_1000_T:
2099 		if (sc->jme_caps & JME_CAP_FASTETH)
2100 			break;
2101 
2102 		ghc |= GHC_SPEED_1000 | sc->jme_clksrc_1000;
2103 		if (hdx)
2104 			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
2105 		break;
2106 
2107 	default:
2108 		break;
2109 	}
2110 	CSR_WRITE_4(sc, JME_GHC, ghc);
2111 	CSR_WRITE_4(sc, JME_RXMAC, rxmac);
2112 	CSR_WRITE_4(sc, JME_TXMAC, txmac);
2113 	CSR_WRITE_4(sc, JME_TXPFC, txpause);
2114 
2115 	if (sc->jme_workaround & JME_WA_EXTFIFO) {
2116 		jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2117 				    JMPHY_CONF, phyconf);
2118 	}
2119 	if (sc->jme_workaround & JME_WA_HDX)
2120 		CSR_WRITE_4(sc, JME_GPREG1, gp1);
2121 }
2122 
2123 static void
2124 jme_intr(void *xsc)
2125 {
2126 	struct jme_softc *sc = xsc;
2127 	struct ifnet *ifp = &sc->arpcom.ac_if;
2128 	uint32_t status;
2129 	int r;
2130 
2131 	ASSERT_SERIALIZED(&sc->jme_serialize);
2132 
2133 	status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
2134 	if (status == 0 || status == 0xFFFFFFFF)
2135 		return;
2136 
2137 	/* Disable interrupts. */
2138 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2139 
2140 	status = CSR_READ_4(sc, JME_INTR_STATUS);
2141 	if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
2142 		goto back;
2143 
2144 	/* Reset PCC counter/timer and Ack interrupts. */
2145 	status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
2146 
2147 	if (status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO))
2148 		status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
2149 
2150 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2151 		if (status & jme_rx_status[r].jme_coal) {
2152 			status |= jme_rx_status[r].jme_coal |
2153 				  jme_rx_status[r].jme_comp;
2154 		}
2155 	}
2156 
2157 	CSR_WRITE_4(sc, JME_INTR_STATUS, status);
2158 
2159 	if (ifp->if_flags & IFF_RUNNING) {
2160 		struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
2161 
2162 		if (status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO))
2163 			jme_rx_intr(sc, status);
2164 
2165 		if (status & INTR_RXQ_DESC_EMPTY) {
2166 			/*
2167 			 * Notify hardware availability of new Rx buffers.
2168 			 * Reading RXCSR takes very long time under heavy
2169 			 * load so cache RXCSR value and writes the ORed
2170 			 * value with the kick command to the RXCSR. This
2171 			 * saves one register access cycle.
2172 			 */
2173 			CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
2174 			    RXCSR_RX_ENB | RXCSR_RXQ_START);
2175 		}
2176 
2177 		if (status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) {
2178 			lwkt_serialize_enter(&tdata->jme_tx_serialize);
2179 			jme_txeof(tdata);
2180 			if (!ifq_is_empty(&ifp->if_snd))
2181 				if_devstart(ifp);
2182 			lwkt_serialize_exit(&tdata->jme_tx_serialize);
2183 		}
2184 	}
2185 back:
2186 	/* Reenable interrupts. */
2187 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2188 }
2189 
2190 static void
2191 jme_txeof(struct jme_txdata *tdata)
2192 {
2193 	struct ifnet *ifp = &tdata->jme_sc->arpcom.ac_if;
2194 	int cons;
2195 
2196 	cons = tdata->jme_tx_cons;
2197 	if (cons == tdata->jme_tx_prod)
2198 		return;
2199 
2200 	/*
2201 	 * Go through our Tx list and free mbufs for those
2202 	 * frames which have been transmitted.
2203 	 */
2204 	while (cons != tdata->jme_tx_prod) {
2205 		struct jme_txdesc *txd, *next_txd;
2206 		uint32_t status, next_status;
2207 		int next_cons, nsegs;
2208 
2209 		txd = &tdata->jme_txdesc[cons];
2210 		KASSERT(txd->tx_m != NULL,
2211 			("%s: freeing NULL mbuf!", __func__));
2212 
2213 		status = le32toh(txd->tx_desc->flags);
2214 		if ((status & JME_TD_OWN) == JME_TD_OWN)
2215 			break;
2216 
2217 		/*
2218 		 * NOTE:
2219 		 * This chip will always update the TX descriptor's
2220 		 * buflen field and this updating always happens
2221 		 * after clearing the OWN bit, so even if the OWN
2222 		 * bit is cleared by the chip, we still don't sure
2223 		 * about whether the buflen field has been updated
2224 		 * by the chip or not.  To avoid this race, we wait
2225 		 * for the next TX descriptor's OWN bit to be cleared
2226 		 * by the chip before reusing this TX descriptor.
2227 		 */
2228 		next_cons = cons;
2229 		JME_DESC_ADD(next_cons, txd->tx_ndesc, tdata->jme_tx_desc_cnt);
2230 		next_txd = &tdata->jme_txdesc[next_cons];
2231 		if (next_txd->tx_m == NULL)
2232 			break;
2233 		next_status = le32toh(next_txd->tx_desc->flags);
2234 		if ((next_status & JME_TD_OWN) == JME_TD_OWN)
2235 			break;
2236 
2237 		if (status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) {
2238 			IFNET_STAT_INC(ifp, oerrors, 1);
2239 		} else {
2240 			IFNET_STAT_INC(ifp, opackets, 1);
2241 			if (status & JME_TD_COLLISION) {
2242 				IFNET_STAT_INC(ifp, collisions,
2243 				    le32toh(txd->tx_desc->buflen) &
2244 				    JME_TD_BUF_LEN_MASK);
2245 			}
2246 		}
2247 
2248 		/*
2249 		 * Only the first descriptor of multi-descriptor
2250 		 * transmission is updated so driver have to skip entire
2251 		 * chained buffers for the transmiited frame. In other
2252 		 * words, JME_TD_OWN bit is valid only at the first
2253 		 * descriptor of a multi-descriptor transmission.
2254 		 */
2255 		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
2256 			tdata->jme_tx_ring[cons].flags = 0;
2257 			JME_DESC_INC(cons, tdata->jme_tx_desc_cnt);
2258 		}
2259 
2260 		/* Reclaim transferred mbufs. */
2261 		bus_dmamap_unload(tdata->jme_tx_tag, txd->tx_dmamap);
2262 		m_freem(txd->tx_m);
2263 		txd->tx_m = NULL;
2264 		tdata->jme_tx_cnt -= txd->tx_ndesc;
2265 		KASSERT(tdata->jme_tx_cnt >= 0,
2266 			("%s: Active Tx desc counter was garbled", __func__));
2267 		txd->tx_ndesc = 0;
2268 	}
2269 	tdata->jme_tx_cons = cons;
2270 
2271 	/* 1 for symbol TX descriptor */
2272 	if (tdata->jme_tx_cnt <= JME_MAXTXSEGS + 1)
2273 		ifp->if_timer = 0;
2274 
2275 	if (tdata->jme_tx_cnt + JME_TXD_SPARE <=
2276 	    tdata->jme_tx_desc_cnt - JME_TXD_RSVD)
2277 		ifq_clr_oactive(&ifp->if_snd);
2278 }
2279 
2280 static __inline void
2281 jme_discard_rxbufs(struct jme_rxdata *rdata, int cons, int count)
2282 {
2283 	int i;
2284 
2285 	for (i = 0; i < count; ++i) {
2286 		jme_setup_rxdesc(&rdata->jme_rxdesc[cons]);
2287 		JME_DESC_INC(cons, rdata->jme_rx_desc_cnt);
2288 	}
2289 }
2290 
2291 static __inline struct pktinfo *
2292 jme_pktinfo(struct pktinfo *pi, uint32_t flags)
2293 {
2294 	if (flags & JME_RD_IPV4)
2295 		pi->pi_netisr = NETISR_IP;
2296 	else if (flags & JME_RD_IPV6)
2297 		pi->pi_netisr = NETISR_IPV6;
2298 	else
2299 		return NULL;
2300 
2301 	pi->pi_flags = 0;
2302 	pi->pi_l3proto = IPPROTO_UNKNOWN;
2303 
2304 	if (flags & JME_RD_MORE_FRAG)
2305 		pi->pi_flags |= PKTINFO_FLAG_FRAG;
2306 	else if (flags & JME_RD_TCP)
2307 		pi->pi_l3proto = IPPROTO_TCP;
2308 	else if (flags & JME_RD_UDP)
2309 		pi->pi_l3proto = IPPROTO_UDP;
2310 	else
2311 		pi = NULL;
2312 	return pi;
2313 }
2314 
2315 /* Receive a frame. */
2316 static void
2317 jme_rxpkt(struct jme_rxdata *rdata, int cpuid)
2318 {
2319 	struct ifnet *ifp = &rdata->jme_sc->arpcom.ac_if;
2320 	struct jme_desc *desc;
2321 	struct jme_rxdesc *rxd;
2322 	struct mbuf *mp, *m;
2323 	uint32_t flags, status, hash, hashinfo;
2324 	int cons, count, nsegs;
2325 
2326 	cons = rdata->jme_rx_cons;
2327 	desc = &rdata->jme_rx_ring[cons];
2328 
2329 	flags = le32toh(desc->flags);
2330 	status = le32toh(desc->buflen);
2331 	hash = le32toh(desc->addr_hi);
2332 	hashinfo = le32toh(desc->addr_lo);
2333 	nsegs = JME_RX_NSEGS(status);
2334 
2335 	if (nsegs > 1) {
2336 		/* Skip the first descriptor. */
2337 		JME_DESC_INC(cons, rdata->jme_rx_desc_cnt);
2338 
2339 		/*
2340 		 * Clear the OWN bit of the following RX descriptors;
2341 		 * hardware will not clear the OWN bit except the first
2342 		 * RX descriptor.
2343 		 *
2344 		 * Since the first RX descriptor is setup, i.e. OWN bit
2345 		 * on, before its followins RX descriptors, leaving the
2346 		 * OWN bit on the following RX descriptors will trick
2347 		 * the hardware into thinking that the following RX
2348 		 * descriptors are ready to be used too.
2349 		 */
2350 		for (count = 1; count < nsegs; count++,
2351 		     JME_DESC_INC(cons, rdata->jme_rx_desc_cnt))
2352 			rdata->jme_rx_ring[cons].flags = 0;
2353 
2354 		cons = rdata->jme_rx_cons;
2355 	}
2356 
2357 	JME_RSS_DPRINTF(rdata->jme_sc, 15, "ring%d, flags 0x%08x, "
2358 			"hash 0x%08x, hash info 0x%08x\n",
2359 			rdata->jme_rx_idx, flags, hash, hashinfo);
2360 
2361 	if (status & JME_RX_ERR_STAT) {
2362 		IFNET_STAT_INC(ifp, ierrors, 1);
2363 		jme_discard_rxbufs(rdata, cons, nsegs);
2364 #ifdef JME_SHOW_ERRORS
2365 		if_printf(ifp, "%s : receive error = 0x%b\n",
2366 		    __func__, JME_RX_ERR(status), JME_RX_ERR_BITS);
2367 #endif
2368 		rdata->jme_rx_cons += nsegs;
2369 		rdata->jme_rx_cons %= rdata->jme_rx_desc_cnt;
2370 		return;
2371 	}
2372 
2373 	rdata->jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
2374 	for (count = 0; count < nsegs; count++,
2375 	     JME_DESC_INC(cons, rdata->jme_rx_desc_cnt)) {
2376 		rxd = &rdata->jme_rxdesc[cons];
2377 		mp = rxd->rx_m;
2378 
2379 		/* Add a new receive buffer to the ring. */
2380 		if (jme_newbuf(rdata, rxd, 0) != 0) {
2381 			IFNET_STAT_INC(ifp, iqdrops, 1);
2382 			/* Reuse buffer. */
2383 			jme_discard_rxbufs(rdata, cons, nsegs - count);
2384 			if (rdata->jme_rxhead != NULL) {
2385 				m_freem(rdata->jme_rxhead);
2386 				JME_RXCHAIN_RESET(rdata);
2387 			}
2388 			break;
2389 		}
2390 
2391 		/*
2392 		 * Assume we've received a full sized frame.
2393 		 * Actual size is fixed when we encounter the end of
2394 		 * multi-segmented frame.
2395 		 */
2396 		mp->m_len = MCLBYTES;
2397 
2398 		/* Chain received mbufs. */
2399 		if (rdata->jme_rxhead == NULL) {
2400 			rdata->jme_rxhead = mp;
2401 			rdata->jme_rxtail = mp;
2402 		} else {
2403 			/*
2404 			 * Receive processor can receive a maximum frame
2405 			 * size of 65535 bytes.
2406 			 */
2407 			rdata->jme_rxtail->m_next = mp;
2408 			rdata->jme_rxtail = mp;
2409 		}
2410 
2411 		if (count == nsegs - 1) {
2412 			struct pktinfo pi0, *pi;
2413 
2414 			/* Last desc. for this frame. */
2415 			m = rdata->jme_rxhead;
2416 			m->m_pkthdr.len = rdata->jme_rxlen;
2417 			if (nsegs > 1) {
2418 				/* Set first mbuf size. */
2419 				m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
2420 				/* Set last mbuf size. */
2421 				mp->m_len = rdata->jme_rxlen -
2422 				    ((MCLBYTES - JME_RX_PAD_BYTES) +
2423 				    (MCLBYTES * (nsegs - 2)));
2424 			} else {
2425 				m->m_len = rdata->jme_rxlen;
2426 			}
2427 			m->m_pkthdr.rcvif = ifp;
2428 
2429 			/*
2430 			 * Account for 10bytes auto padding which is used
2431 			 * to align IP header on 32bit boundary. Also note,
2432 			 * CRC bytes is automatically removed by the
2433 			 * hardware.
2434 			 */
2435 			m->m_data += JME_RX_PAD_BYTES;
2436 
2437 			/* Set checksum information. */
2438 			if ((ifp->if_capenable & IFCAP_RXCSUM) &&
2439 			    (flags & JME_RD_IPV4)) {
2440 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2441 				if (flags & JME_RD_IPCSUM)
2442 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2443 				if ((flags & JME_RD_MORE_FRAG) == 0 &&
2444 				    ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
2445 				     (JME_RD_TCP | JME_RD_TCPCSUM) ||
2446 				     (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
2447 				     (JME_RD_UDP | JME_RD_UDPCSUM))) {
2448 					m->m_pkthdr.csum_flags |=
2449 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2450 					m->m_pkthdr.csum_data = 0xffff;
2451 				}
2452 			}
2453 
2454 			/* Check for VLAN tagged packets. */
2455 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) &&
2456 			    (flags & JME_RD_VLAN_TAG)) {
2457 				m->m_pkthdr.ether_vlantag =
2458 				    flags & JME_RD_VLAN_MASK;
2459 				m->m_flags |= M_VLANTAG;
2460 			}
2461 
2462 			IFNET_STAT_INC(ifp, ipackets, 1);
2463 
2464 			if (ifp->if_capenable & IFCAP_RSS)
2465 				pi = jme_pktinfo(&pi0, flags);
2466 			else
2467 				pi = NULL;
2468 
2469 			if (pi != NULL &&
2470 			    (hashinfo & JME_RD_HASH_FN_MASK) ==
2471 			    JME_RD_HASH_FN_TOEPLITZ) {
2472 				m->m_flags |= (M_HASH | M_CKHASH);
2473 				m->m_pkthdr.hash = toeplitz_hash(hash);
2474 			}
2475 
2476 #ifdef JME_RSS_DEBUG
2477 			if (pi != NULL) {
2478 				JME_RSS_DPRINTF(rdata->jme_sc, 10,
2479 				    "isr %d flags %08x, l3 %d %s\n",
2480 				    pi->pi_netisr, pi->pi_flags,
2481 				    pi->pi_l3proto,
2482 				    (m->m_flags & M_HASH) ? "hash" : "");
2483 			}
2484 #endif
2485 
2486 			/* Pass it on. */
2487 			ifp->if_input(ifp, m, pi, cpuid);
2488 
2489 			/* Reset mbuf chains. */
2490 			JME_RXCHAIN_RESET(rdata);
2491 #ifdef JME_RSS_DEBUG
2492 			rdata->jme_rx_pkt++;
2493 #endif
2494 		}
2495 	}
2496 
2497 	rdata->jme_rx_cons += nsegs;
2498 	rdata->jme_rx_cons %= rdata->jme_rx_desc_cnt;
2499 }
2500 
2501 static void
2502 jme_rxeof(struct jme_rxdata *rdata, int count, int cpuid)
2503 {
2504 	struct jme_desc *desc;
2505 	int nsegs, pktlen;
2506 
2507 	for (;;) {
2508 #ifdef IFPOLL_ENABLE
2509 		if (count >= 0 && count-- == 0)
2510 			break;
2511 #endif
2512 		desc = &rdata->jme_rx_ring[rdata->jme_rx_cons];
2513 		if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
2514 			break;
2515 		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
2516 			break;
2517 
2518 		/*
2519 		 * Check number of segments against received bytes.
2520 		 * Non-matching value would indicate that hardware
2521 		 * is still trying to update Rx descriptors. I'm not
2522 		 * sure whether this check is needed.
2523 		 */
2524 		nsegs = JME_RX_NSEGS(le32toh(desc->buflen));
2525 		pktlen = JME_RX_BYTES(le32toh(desc->buflen));
2526 		if (nsegs != howmany(pktlen, MCLBYTES)) {
2527 			if_printf(&rdata->jme_sc->arpcom.ac_if,
2528 			    "RX fragment count(%d) and "
2529 			    "packet size(%d) mismach\n", nsegs, pktlen);
2530 			break;
2531 		}
2532 
2533 		/*
2534 		 * NOTE:
2535 		 * RSS hash and hash information may _not_ be set by the
2536 		 * hardware even if the OWN bit is cleared and VALID bit
2537 		 * is set.
2538 		 *
2539 		 * If the RSS information is not delivered by the hardware
2540 		 * yet, we MUST NOT accept this packet, let alone reusing
2541 		 * its RX descriptor.  If this packet was accepted and its
2542 		 * RX descriptor was reused before hardware delivering the
2543 		 * RSS information, the RX buffer's address would be trashed
2544 		 * by the RSS information delivered by the hardware.
2545 		 */
2546 		if (JME_ENABLE_HWRSS(rdata->jme_sc)) {
2547 			struct jme_rxdesc *rxd;
2548 			uint32_t hashinfo;
2549 
2550 			hashinfo = le32toh(desc->addr_lo);
2551 			rxd = &rdata->jme_rxdesc[rdata->jme_rx_cons];
2552 
2553 			/*
2554 			 * This test should be enough to detect the pending
2555 			 * RSS information delivery, given:
2556 			 * - If RSS hash is not calculated, the hashinfo
2557 			 *   will be 0.  Howvever, the lower 32bits of RX
2558 			 *   buffers' physical address will never be 0.
2559 			 *   (see jme_rxbuf_dma_filter)
2560 			 * - If RSS hash is calculated, the lowest 4 bits
2561 			 *   of hashinfo will be set, while the RX buffers
2562 			 *   are at least 2K aligned.
2563 			 */
2564 			if (hashinfo == JME_ADDR_LO(rxd->rx_paddr)) {
2565 #ifdef JME_SHOW_RSSWB
2566 				if_printf(&rdata->jme_sc->arpcom.ac_if,
2567 				    "RSS is not written back yet\n");
2568 #endif
2569 				break;
2570 			}
2571 		}
2572 
2573 		/* Received a frame. */
2574 		jme_rxpkt(rdata, cpuid);
2575 	}
2576 }
2577 
2578 static void
2579 jme_tick(void *xsc)
2580 {
2581 	struct jme_softc *sc = xsc;
2582 	struct mii_data *mii = device_get_softc(sc->jme_miibus);
2583 
2584 	lwkt_serialize_enter(&sc->jme_serialize);
2585 
2586 	KKASSERT(mycpuid == JME_TICK_CPUID);
2587 
2588 	sc->jme_in_tick = TRUE;
2589 	mii_tick(mii);
2590 	sc->jme_in_tick = FALSE;
2591 
2592 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2593 
2594 	lwkt_serialize_exit(&sc->jme_serialize);
2595 }
2596 
2597 static void
2598 jme_reset(struct jme_softc *sc)
2599 {
2600 	uint32_t val;
2601 
2602 	/* Make sure that TX and RX are stopped */
2603 	jme_stop_tx(sc);
2604 	jme_stop_rx(sc);
2605 
2606 	/* Start reset */
2607 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2608 	DELAY(20);
2609 
2610 	/*
2611 	 * Hold reset bit before stop reset
2612 	 */
2613 
2614 	/* Disable TXMAC and TXOFL clock sources */
2615 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2616 	/* Disable RXMAC clock source */
2617 	val = CSR_READ_4(sc, JME_GPREG1);
2618 	CSR_WRITE_4(sc, JME_GPREG1, val | GPREG1_DIS_RXMAC_CLKSRC);
2619 	/* Flush */
2620 	CSR_READ_4(sc, JME_GHC);
2621 
2622 	/* Stop reset */
2623 	CSR_WRITE_4(sc, JME_GHC, 0);
2624 	/* Flush */
2625 	CSR_READ_4(sc, JME_GHC);
2626 
2627 	/*
2628 	 * Clear reset bit after stop reset
2629 	 */
2630 
2631 	/* Enable TXMAC and TXOFL clock sources */
2632 	CSR_WRITE_4(sc, JME_GHC, GHC_TXOFL_CLKSRC | GHC_TXMAC_CLKSRC);
2633 	/* Enable RXMAC clock source */
2634 	val = CSR_READ_4(sc, JME_GPREG1);
2635 	CSR_WRITE_4(sc, JME_GPREG1, val & ~GPREG1_DIS_RXMAC_CLKSRC);
2636 	/* Flush */
2637 	CSR_READ_4(sc, JME_GHC);
2638 
2639 	/* Disable TXMAC and TXOFL clock sources */
2640 	CSR_WRITE_4(sc, JME_GHC, 0);
2641 	/* Disable RXMAC clock source */
2642 	val = CSR_READ_4(sc, JME_GPREG1);
2643 	CSR_WRITE_4(sc, JME_GPREG1, val | GPREG1_DIS_RXMAC_CLKSRC);
2644 	/* Flush */
2645 	CSR_READ_4(sc, JME_GHC);
2646 
2647 	/* Enable TX and RX */
2648 	val = CSR_READ_4(sc, JME_TXCSR);
2649 	CSR_WRITE_4(sc, JME_TXCSR, val | TXCSR_TX_ENB);
2650 	val = CSR_READ_4(sc, JME_RXCSR);
2651 	CSR_WRITE_4(sc, JME_RXCSR, val | RXCSR_RX_ENB);
2652 	/* Flush */
2653 	CSR_READ_4(sc, JME_TXCSR);
2654 	CSR_READ_4(sc, JME_RXCSR);
2655 
2656 	/* Enable TXMAC and TXOFL clock sources */
2657 	CSR_WRITE_4(sc, JME_GHC, GHC_TXOFL_CLKSRC | GHC_TXMAC_CLKSRC);
2658 	/* Disable RXMAC clock source */
2659 	val = CSR_READ_4(sc, JME_GPREG1);
2660 	CSR_WRITE_4(sc, JME_GPREG1, val & ~GPREG1_DIS_RXMAC_CLKSRC);
2661 	/* Flush */
2662 	CSR_READ_4(sc, JME_GHC);
2663 
2664 	/* Stop TX and RX */
2665 	jme_stop_tx(sc);
2666 	jme_stop_rx(sc);
2667 }
2668 
2669 static void
2670 jme_init(void *xsc)
2671 {
2672 	struct jme_softc *sc = xsc;
2673 	struct ifnet *ifp = &sc->arpcom.ac_if;
2674 	struct mii_data *mii;
2675 	uint8_t eaddr[ETHER_ADDR_LEN];
2676 	bus_addr_t paddr;
2677 	uint32_t reg;
2678 	int error, r;
2679 
2680 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2681 
2682 	/*
2683 	 * Cancel any pending I/O.
2684 	 */
2685 	jme_stop(sc);
2686 
2687 	/*
2688 	 * Reset the chip to a known state.
2689 	 */
2690 	jme_reset(sc);
2691 
2692 	/*
2693 	 * Setup MSI/MSI-X vectors to interrupts mapping
2694 	 */
2695 	jme_set_msinum(sc);
2696 
2697 	if (JME_ENABLE_HWRSS(sc))
2698 		jme_enable_rss(sc);
2699 	else
2700 		jme_disable_rss(sc);
2701 
2702 	/* Init RX descriptors */
2703 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2704 		error = jme_init_rx_ring(&sc->jme_cdata.jme_rx_data[r]);
2705 		if (error) {
2706 			if_printf(ifp, "initialization failed: "
2707 				  "no memory for %dth RX ring.\n", r);
2708 			jme_stop(sc);
2709 			return;
2710 		}
2711 	}
2712 
2713 	/* Init TX descriptors */
2714 	jme_init_tx_ring(&sc->jme_cdata.jme_tx_data);
2715 
2716 	/* Initialize shadow status block. */
2717 	jme_init_ssb(sc);
2718 
2719 	/* Reprogram the station address. */
2720 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2721 	CSR_WRITE_4(sc, JME_PAR0,
2722 	    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
2723 	CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
2724 
2725 	/*
2726 	 * Configure Tx queue.
2727 	 *  Tx priority queue weight value : 0
2728 	 *  Tx FIFO threshold for processing next packet : 16QW
2729 	 *  Maximum Tx DMA length : 512
2730 	 *  Allow Tx DMA burst.
2731 	 */
2732 	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
2733 	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
2734 	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
2735 	sc->jme_txcsr |= sc->jme_tx_dma_size;
2736 	sc->jme_txcsr |= TXCSR_DMA_BURST;
2737 	CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2738 
2739 	/* Set Tx descriptor counter. */
2740 	CSR_WRITE_4(sc, JME_TXQDC, sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt);
2741 
2742 	/* Set Tx ring address to the hardware. */
2743 	paddr = sc->jme_cdata.jme_tx_data.jme_tx_ring_paddr;
2744 	CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2745 	CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2746 
2747 	/* Configure TxMAC parameters. */
2748 	reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
2749 	reg |= TXMAC_THRESH_1_PKT;
2750 	reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
2751 	CSR_WRITE_4(sc, JME_TXMAC, reg);
2752 
2753 	/*
2754 	 * Configure Rx queue.
2755 	 *  FIFO full threshold for transmitting Tx pause packet : 128T
2756 	 *  FIFO threshold for processing next packet : 128QW
2757 	 *  Rx queue 0 select
2758 	 *  Max Rx DMA length : 128
2759 	 *  Rx descriptor retry : 32
2760 	 *  Rx descriptor retry time gap : 256ns
2761 	 *  Don't receive runt/bad frame.
2762 	 */
2763 	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
2764 #if 0
2765 	/*
2766 	 * Since Rx FIFO size is 4K bytes, receiving frames larger
2767 	 * than 4K bytes will suffer from Rx FIFO overruns. So
2768 	 * decrease FIFO threshold to reduce the FIFO overruns for
2769 	 * frames larger than 4000 bytes.
2770 	 * For best performance of standard MTU sized frames use
2771 	 * maximum allowable FIFO threshold, 128QW.
2772 	 */
2773 	if ((ifp->if_mtu + ETHER_HDR_LEN + EVL_ENCAPLEN + ETHER_CRC_LEN) >
2774 	    JME_RX_FIFO_SIZE)
2775 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2776 	else
2777 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
2778 #else
2779 	/* Improve PCI Express compatibility */
2780 	sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2781 #endif
2782 	sc->jme_rxcsr |= sc->jme_rx_dma_size;
2783 	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
2784 	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
2785 	/* XXX TODO DROP_BAD */
2786 
2787 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2788 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[r];
2789 
2790 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RXQ_N_SEL(r));
2791 
2792 		/* Set Rx descriptor counter. */
2793 		CSR_WRITE_4(sc, JME_RXQDC, rdata->jme_rx_desc_cnt);
2794 
2795 		/* Set Rx ring address to the hardware. */
2796 		paddr = rdata->jme_rx_ring_paddr;
2797 		CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2798 		CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2799 	}
2800 
2801 	/* Clear receive filter. */
2802 	CSR_WRITE_4(sc, JME_RXMAC, 0);
2803 
2804 	/* Set up the receive filter. */
2805 	jme_set_filter(sc);
2806 	jme_set_vlan(sc);
2807 
2808 	/*
2809 	 * Disable all WOL bits as WOL can interfere normal Rx
2810 	 * operation. Also clear WOL detection status bits.
2811 	 */
2812 	reg = CSR_READ_4(sc, JME_PMCS);
2813 	reg &= ~PMCS_WOL_ENB_MASK;
2814 	CSR_WRITE_4(sc, JME_PMCS, reg);
2815 
2816 	/*
2817 	 * Pad 10bytes right before received frame. This will greatly
2818 	 * help Rx performance on strict-alignment architectures as
2819 	 * it does not need to copy the frame to align the payload.
2820 	 */
2821 	reg = CSR_READ_4(sc, JME_RXMAC);
2822 	reg |= RXMAC_PAD_10BYTES;
2823 
2824 	if (ifp->if_capenable & IFCAP_RXCSUM)
2825 		reg |= RXMAC_CSUM_ENB;
2826 	CSR_WRITE_4(sc, JME_RXMAC, reg);
2827 
2828 	/* Configure general purpose reg0 */
2829 	reg = CSR_READ_4(sc, JME_GPREG0);
2830 	reg &= ~GPREG0_PCC_UNIT_MASK;
2831 	/* Set PCC timer resolution to micro-seconds unit. */
2832 	reg |= GPREG0_PCC_UNIT_US;
2833 	/*
2834 	 * Disable all shadow register posting as we have to read
2835 	 * JME_INTR_STATUS register in jme_intr. Also it seems
2836 	 * that it's hard to synchronize interrupt status between
2837 	 * hardware and software with shadow posting due to
2838 	 * requirements of bus_dmamap_sync(9).
2839 	 */
2840 	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
2841 	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
2842 	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
2843 	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
2844 	/* Disable posting of DW0. */
2845 	reg &= ~GPREG0_POST_DW0_ENB;
2846 	/* Clear PME message. */
2847 	reg &= ~GPREG0_PME_ENB;
2848 	/* Set PHY address. */
2849 	reg &= ~GPREG0_PHY_ADDR_MASK;
2850 	reg |= sc->jme_phyaddr;
2851 	CSR_WRITE_4(sc, JME_GPREG0, reg);
2852 
2853 	/* Configure Tx queue 0 packet completion coalescing. */
2854 	jme_set_tx_coal(sc);
2855 
2856 	/* Configure Rx queues packet completion coalescing. */
2857 	jme_set_rx_coal(sc);
2858 
2859 	/* Configure shadow status block but don't enable posting. */
2860 	paddr = sc->jme_cdata.jme_ssb_block_paddr;
2861 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
2862 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
2863 
2864 	/* Disable Timer 1 and Timer 2. */
2865 	CSR_WRITE_4(sc, JME_TIMER1, 0);
2866 	CSR_WRITE_4(sc, JME_TIMER2, 0);
2867 
2868 	/* Configure retry transmit period, retry limit value. */
2869 	CSR_WRITE_4(sc, JME_TXTRHD,
2870 	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
2871 	    TXTRHD_RT_PERIOD_MASK) |
2872 	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
2873 	    TXTRHD_RT_LIMIT_SHIFT));
2874 
2875 #ifdef IFPOLL_ENABLE
2876 	if (!(ifp->if_flags & IFF_NPOLLING))
2877 #endif
2878 	/* Initialize the interrupt mask. */
2879 	jme_enable_intr(sc);
2880 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2881 
2882 	/*
2883 	 * Enabling Tx/Rx DMA engines and Rx queue processing is
2884 	 * done after detection of valid link in jme_miibus_statchg.
2885 	 */
2886 	sc->jme_has_link = FALSE;
2887 
2888 	jme_phy_init(sc);
2889 
2890 	/* Set the current media. */
2891 	mii = device_get_softc(sc->jme_miibus);
2892 	mii_mediachg(mii);
2893 
2894 	callout_reset_bycpu(&sc->jme_tick_ch, hz, jme_tick, sc,
2895 	    JME_TICK_CPUID);
2896 
2897 	ifp->if_flags |= IFF_RUNNING;
2898 	ifq_clr_oactive(&ifp->if_snd);
2899 }
2900 
2901 static void
2902 jme_stop(struct jme_softc *sc)
2903 {
2904 	struct ifnet *ifp = &sc->arpcom.ac_if;
2905 	struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
2906 	struct jme_txdesc *txd;
2907 	struct jme_rxdesc *rxd;
2908 	struct jme_rxdata *rdata;
2909 	int i, r;
2910 
2911 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2912 
2913 	/*
2914 	 * Mark the interface down and cancel the watchdog timer.
2915 	 */
2916 	ifp->if_flags &= ~IFF_RUNNING;
2917 	ifq_clr_oactive(&ifp->if_snd);
2918 	ifp->if_timer = 0;
2919 
2920 	callout_stop(&sc->jme_tick_ch);
2921 	sc->jme_has_link = FALSE;
2922 
2923 	/*
2924 	 * Disable interrupts.
2925 	 */
2926 	jme_disable_intr(sc);
2927 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2928 
2929 	/* Disable updating shadow status block. */
2930 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
2931 	    CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
2932 
2933 	/* Stop receiver, transmitter. */
2934 	jme_stop_rx(sc);
2935 	jme_stop_tx(sc);
2936 
2937 	/*
2938 	 * Free partial finished RX segments
2939 	 */
2940 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2941 		rdata = &sc->jme_cdata.jme_rx_data[r];
2942 		if (rdata->jme_rxhead != NULL)
2943 			m_freem(rdata->jme_rxhead);
2944 		JME_RXCHAIN_RESET(rdata);
2945 	}
2946 
2947 	/*
2948 	 * Free RX and TX mbufs still in the queues.
2949 	 */
2950 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2951 		rdata = &sc->jme_cdata.jme_rx_data[r];
2952 		for (i = 0; i < rdata->jme_rx_desc_cnt; i++) {
2953 			rxd = &rdata->jme_rxdesc[i];
2954 			if (rxd->rx_m != NULL) {
2955 				bus_dmamap_unload(rdata->jme_rx_tag,
2956 						  rxd->rx_dmamap);
2957 				m_freem(rxd->rx_m);
2958 				rxd->rx_m = NULL;
2959 			}
2960 		}
2961 	}
2962 	for (i = 0; i < tdata->jme_tx_desc_cnt; i++) {
2963 		txd = &tdata->jme_txdesc[i];
2964 		if (txd->tx_m != NULL) {
2965 			bus_dmamap_unload(tdata->jme_tx_tag, txd->tx_dmamap);
2966 			m_freem(txd->tx_m);
2967 			txd->tx_m = NULL;
2968 			txd->tx_ndesc = 0;
2969 		}
2970         }
2971 }
2972 
2973 static void
2974 jme_stop_tx(struct jme_softc *sc)
2975 {
2976 	uint32_t reg;
2977 	int i;
2978 
2979 	reg = CSR_READ_4(sc, JME_TXCSR);
2980 	if ((reg & TXCSR_TX_ENB) == 0)
2981 		return;
2982 	reg &= ~TXCSR_TX_ENB;
2983 	CSR_WRITE_4(sc, JME_TXCSR, reg);
2984 	for (i = JME_TIMEOUT; i > 0; i--) {
2985 		DELAY(1);
2986 		if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
2987 			break;
2988 	}
2989 	if (i == 0)
2990 		device_printf(sc->jme_dev, "stopping transmitter timeout!\n");
2991 }
2992 
2993 static void
2994 jme_stop_rx(struct jme_softc *sc)
2995 {
2996 	uint32_t reg;
2997 	int i;
2998 
2999 	reg = CSR_READ_4(sc, JME_RXCSR);
3000 	if ((reg & RXCSR_RX_ENB) == 0)
3001 		return;
3002 	reg &= ~RXCSR_RX_ENB;
3003 	CSR_WRITE_4(sc, JME_RXCSR, reg);
3004 	for (i = JME_TIMEOUT; i > 0; i--) {
3005 		DELAY(1);
3006 		if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
3007 			break;
3008 	}
3009 	if (i == 0)
3010 		device_printf(sc->jme_dev, "stopping receiver timeout!\n");
3011 }
3012 
3013 static void
3014 jme_init_tx_ring(struct jme_txdata *tdata)
3015 {
3016 	struct jme_txdesc *txd;
3017 	int i;
3018 
3019 	tdata->jme_tx_prod = 0;
3020 	tdata->jme_tx_cons = 0;
3021 	tdata->jme_tx_cnt = 0;
3022 
3023 	bzero(tdata->jme_tx_ring, JME_TX_RING_SIZE(tdata));
3024 	for (i = 0; i < tdata->jme_tx_desc_cnt; i++) {
3025 		txd = &tdata->jme_txdesc[i];
3026 		txd->tx_m = NULL;
3027 		txd->tx_desc = &tdata->jme_tx_ring[i];
3028 		txd->tx_ndesc = 0;
3029 	}
3030 }
3031 
3032 static void
3033 jme_init_ssb(struct jme_softc *sc)
3034 {
3035 	struct jme_chain_data *cd;
3036 
3037 	cd = &sc->jme_cdata;
3038 	bzero(cd->jme_ssb_block, JME_SSB_SIZE);
3039 }
3040 
3041 static int
3042 jme_init_rx_ring(struct jme_rxdata *rdata)
3043 {
3044 	struct jme_rxdesc *rxd;
3045 	int i;
3046 
3047 	KKASSERT(rdata->jme_rxhead == NULL &&
3048 		 rdata->jme_rxtail == NULL &&
3049 		 rdata->jme_rxlen == 0);
3050 	rdata->jme_rx_cons = 0;
3051 
3052 	bzero(rdata->jme_rx_ring, JME_RX_RING_SIZE(rdata));
3053 	for (i = 0; i < rdata->jme_rx_desc_cnt; i++) {
3054 		int error;
3055 
3056 		rxd = &rdata->jme_rxdesc[i];
3057 		rxd->rx_m = NULL;
3058 		rxd->rx_desc = &rdata->jme_rx_ring[i];
3059 		error = jme_newbuf(rdata, rxd, 1);
3060 		if (error)
3061 			return error;
3062 	}
3063 	return 0;
3064 }
3065 
3066 static int
3067 jme_newbuf(struct jme_rxdata *rdata, struct jme_rxdesc *rxd, int init)
3068 {
3069 	struct mbuf *m;
3070 	bus_dma_segment_t segs;
3071 	bus_dmamap_t map;
3072 	int error, nsegs;
3073 
3074 	m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
3075 	if (m == NULL)
3076 		return ENOBUFS;
3077 	/*
3078 	 * JMC250 has 64bit boundary alignment limitation so jme(4)
3079 	 * takes advantage of 10 bytes padding feature of hardware
3080 	 * in order not to copy entire frame to align IP header on
3081 	 * 32bit boundary.
3082 	 */
3083 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3084 
3085 	error = bus_dmamap_load_mbuf_segment(rdata->jme_rx_tag,
3086 			rdata->jme_rx_sparemap, m, &segs, 1, &nsegs,
3087 			BUS_DMA_NOWAIT);
3088 	if (error) {
3089 		m_freem(m);
3090 		if (init) {
3091 			if_printf(&rdata->jme_sc->arpcom.ac_if,
3092 			    "can't load RX mbuf\n");
3093 		}
3094 		return error;
3095 	}
3096 
3097 	if (rxd->rx_m != NULL) {
3098 		bus_dmamap_sync(rdata->jme_rx_tag, rxd->rx_dmamap,
3099 				BUS_DMASYNC_POSTREAD);
3100 		bus_dmamap_unload(rdata->jme_rx_tag, rxd->rx_dmamap);
3101 	}
3102 	map = rxd->rx_dmamap;
3103 	rxd->rx_dmamap = rdata->jme_rx_sparemap;
3104 	rdata->jme_rx_sparemap = map;
3105 	rxd->rx_m = m;
3106 	rxd->rx_paddr = segs.ds_addr;
3107 
3108 	jme_setup_rxdesc(rxd);
3109 	return 0;
3110 }
3111 
3112 static void
3113 jme_set_vlan(struct jme_softc *sc)
3114 {
3115 	struct ifnet *ifp = &sc->arpcom.ac_if;
3116 	uint32_t reg;
3117 
3118 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3119 
3120 	reg = CSR_READ_4(sc, JME_RXMAC);
3121 	reg &= ~RXMAC_VLAN_ENB;
3122 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
3123 		reg |= RXMAC_VLAN_ENB;
3124 	CSR_WRITE_4(sc, JME_RXMAC, reg);
3125 }
3126 
3127 static void
3128 jme_set_filter(struct jme_softc *sc)
3129 {
3130 	struct ifnet *ifp = &sc->arpcom.ac_if;
3131 	struct ifmultiaddr *ifma;
3132 	uint32_t crc;
3133 	uint32_t mchash[2];
3134 	uint32_t rxcfg;
3135 
3136 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3137 
3138 	rxcfg = CSR_READ_4(sc, JME_RXMAC);
3139 	rxcfg &= ~(RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
3140 	    RXMAC_ALLMULTI);
3141 
3142 	/*
3143 	 * Always accept frames destined to our station address.
3144 	 * Always accept broadcast frames.
3145 	 */
3146 	rxcfg |= RXMAC_UNICAST | RXMAC_BROADCAST;
3147 
3148 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
3149 		if (ifp->if_flags & IFF_PROMISC)
3150 			rxcfg |= RXMAC_PROMISC;
3151 		if (ifp->if_flags & IFF_ALLMULTI)
3152 			rxcfg |= RXMAC_ALLMULTI;
3153 		CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF);
3154 		CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF);
3155 		CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3156 		return;
3157 	}
3158 
3159 	/*
3160 	 * Set up the multicast address filter by passing all multicast
3161 	 * addresses through a CRC generator, and then using the low-order
3162 	 * 6 bits as an index into the 64 bit multicast hash table.  The
3163 	 * high order bits select the register, while the rest of the bits
3164 	 * select the bit within the register.
3165 	 */
3166 	rxcfg |= RXMAC_MULTICAST;
3167 	bzero(mchash, sizeof(mchash));
3168 
3169 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3170 		if (ifma->ifma_addr->sa_family != AF_LINK)
3171 			continue;
3172 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3173 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3174 
3175 		/* Just want the 6 least significant bits. */
3176 		crc &= 0x3f;
3177 
3178 		/* Set the corresponding bit in the hash table. */
3179 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
3180 	}
3181 
3182 	CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
3183 	CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
3184 	CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3185 }
3186 
3187 static int
3188 jme_sysctl_tx_coal_to(SYSCTL_HANDLER_ARGS)
3189 {
3190 	struct jme_softc *sc = arg1;
3191 	struct ifnet *ifp = &sc->arpcom.ac_if;
3192 	int error, v;
3193 
3194 	ifnet_serialize_all(ifp);
3195 
3196 	v = sc->jme_tx_coal_to;
3197 	error = sysctl_handle_int(oidp, &v, 0, req);
3198 	if (error || req->newptr == NULL)
3199 		goto back;
3200 
3201 	if (v < PCCTX_COAL_TO_MIN || v > PCCTX_COAL_TO_MAX) {
3202 		error = EINVAL;
3203 		goto back;
3204 	}
3205 
3206 	if (v != sc->jme_tx_coal_to) {
3207 		sc->jme_tx_coal_to = v;
3208 		if (ifp->if_flags & IFF_RUNNING)
3209 			jme_set_tx_coal(sc);
3210 	}
3211 back:
3212 	ifnet_deserialize_all(ifp);
3213 	return error;
3214 }
3215 
3216 static int
3217 jme_sysctl_tx_coal_pkt(SYSCTL_HANDLER_ARGS)
3218 {
3219 	struct jme_softc *sc = arg1;
3220 	struct ifnet *ifp = &sc->arpcom.ac_if;
3221 	int error, v;
3222 
3223 	ifnet_serialize_all(ifp);
3224 
3225 	v = sc->jme_tx_coal_pkt;
3226 	error = sysctl_handle_int(oidp, &v, 0, req);
3227 	if (error || req->newptr == NULL)
3228 		goto back;
3229 
3230 	if (v < PCCTX_COAL_PKT_MIN || v > PCCTX_COAL_PKT_MAX) {
3231 		error = EINVAL;
3232 		goto back;
3233 	}
3234 
3235 	if (v != sc->jme_tx_coal_pkt) {
3236 		sc->jme_tx_coal_pkt = v;
3237 		if (ifp->if_flags & IFF_RUNNING)
3238 			jme_set_tx_coal(sc);
3239 	}
3240 back:
3241 	ifnet_deserialize_all(ifp);
3242 	return error;
3243 }
3244 
3245 static int
3246 jme_sysctl_rx_coal_to(SYSCTL_HANDLER_ARGS)
3247 {
3248 	struct jme_softc *sc = arg1;
3249 	struct ifnet *ifp = &sc->arpcom.ac_if;
3250 	int error, v;
3251 
3252 	ifnet_serialize_all(ifp);
3253 
3254 	v = sc->jme_rx_coal_to;
3255 	error = sysctl_handle_int(oidp, &v, 0, req);
3256 	if (error || req->newptr == NULL)
3257 		goto back;
3258 
3259 	if (v < PCCRX_COAL_TO_MIN || v > PCCRX_COAL_TO_MAX) {
3260 		error = EINVAL;
3261 		goto back;
3262 	}
3263 
3264 	if (v != sc->jme_rx_coal_to) {
3265 		sc->jme_rx_coal_to = v;
3266 		if (ifp->if_flags & IFF_RUNNING)
3267 			jme_set_rx_coal(sc);
3268 	}
3269 back:
3270 	ifnet_deserialize_all(ifp);
3271 	return error;
3272 }
3273 
3274 static int
3275 jme_sysctl_rx_coal_pkt(SYSCTL_HANDLER_ARGS)
3276 {
3277 	struct jme_softc *sc = arg1;
3278 	struct ifnet *ifp = &sc->arpcom.ac_if;
3279 	int error, v;
3280 
3281 	ifnet_serialize_all(ifp);
3282 
3283 	v = sc->jme_rx_coal_pkt;
3284 	error = sysctl_handle_int(oidp, &v, 0, req);
3285 	if (error || req->newptr == NULL)
3286 		goto back;
3287 
3288 	if (v < PCCRX_COAL_PKT_MIN || v > PCCRX_COAL_PKT_MAX) {
3289 		error = EINVAL;
3290 		goto back;
3291 	}
3292 
3293 	if (v != sc->jme_rx_coal_pkt) {
3294 		sc->jme_rx_coal_pkt = v;
3295 		if (ifp->if_flags & IFF_RUNNING)
3296 			jme_set_rx_coal(sc);
3297 	}
3298 back:
3299 	ifnet_deserialize_all(ifp);
3300 	return error;
3301 }
3302 
3303 static void
3304 jme_set_tx_coal(struct jme_softc *sc)
3305 {
3306 	uint32_t reg;
3307 
3308 	reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
3309 	    PCCTX_COAL_TO_MASK;
3310 	reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
3311 	    PCCTX_COAL_PKT_MASK;
3312 	reg |= PCCTX_COAL_TXQ0;
3313 	CSR_WRITE_4(sc, JME_PCCTX, reg);
3314 }
3315 
3316 static void
3317 jme_set_rx_coal(struct jme_softc *sc)
3318 {
3319 	uint32_t reg;
3320 	int r;
3321 
3322 	reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
3323 	    PCCRX_COAL_TO_MASK;
3324 	reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
3325 	    PCCRX_COAL_PKT_MASK;
3326 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r)
3327 		CSR_WRITE_4(sc, JME_PCCRX(r), reg);
3328 }
3329 
3330 #ifdef IFPOLL_ENABLE
3331 
3332 static void
3333 jme_npoll_status(struct ifnet *ifp)
3334 {
3335 	struct jme_softc *sc = ifp->if_softc;
3336 	uint32_t status;
3337 
3338 	ASSERT_SERIALIZED(&sc->jme_serialize);
3339 
3340 	status = CSR_READ_4(sc, JME_INTR_STATUS);
3341 	if (status & INTR_RXQ_DESC_EMPTY) {
3342 		CSR_WRITE_4(sc, JME_INTR_STATUS, status & INTR_RXQ_DESC_EMPTY);
3343 		jme_rx_restart(sc, status);
3344 	}
3345 }
3346 
3347 static void
3348 jme_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
3349 {
3350 	struct jme_rxdata *rdata = arg;
3351 
3352 	ASSERT_SERIALIZED(&rdata->jme_rx_serialize);
3353 
3354 	jme_rxeof(rdata, cycle, mycpuid);
3355 }
3356 
3357 static void
3358 jme_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
3359 {
3360 	struct jme_txdata *tdata = arg;
3361 
3362 	ASSERT_SERIALIZED(&tdata->jme_tx_serialize);
3363 
3364 	jme_txeof(tdata);
3365 	if (!ifq_is_empty(&ifp->if_snd))
3366 		if_devstart(ifp);
3367 }
3368 
3369 static void
3370 jme_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3371 {
3372 	struct jme_softc *sc = ifp->if_softc;
3373 
3374 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3375 
3376 	if (info) {
3377 		int i, off;
3378 
3379 		info->ifpi_status.status_func = jme_npoll_status;
3380 		info->ifpi_status.serializer = &sc->jme_serialize;
3381 
3382 		off = sc->jme_npoll_txoff;
3383 		KKASSERT(off <= ncpus2);
3384 		info->ifpi_tx[off].poll_func = jme_npoll_tx;
3385 		info->ifpi_tx[off].arg = &sc->jme_cdata.jme_tx_data;
3386 		info->ifpi_tx[off].serializer =
3387 		    &sc->jme_cdata.jme_tx_data.jme_tx_serialize;
3388 		ifq_set_cpuid(&ifp->if_snd, sc->jme_npoll_txoff);
3389 
3390 		off = sc->jme_npoll_rxoff;
3391 		for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
3392 			struct jme_rxdata *rdata =
3393 			    &sc->jme_cdata.jme_rx_data[i];
3394 			int idx = i + off;
3395 
3396 			info->ifpi_rx[idx].poll_func = jme_npoll_rx;
3397 			info->ifpi_rx[idx].arg = rdata;
3398 			info->ifpi_rx[idx].serializer =
3399 			    &rdata->jme_rx_serialize;
3400 		}
3401 
3402 		if (ifp->if_flags & IFF_RUNNING)
3403 			jme_disable_intr(sc);
3404 	} else {
3405 		ifq_set_cpuid(&ifp->if_snd, sc->jme_tx_cpuid);
3406 		if (ifp->if_flags & IFF_RUNNING)
3407 			jme_enable_intr(sc);
3408 	}
3409 }
3410 
3411 static int
3412 jme_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3413 {
3414 	struct jme_softc *sc = (void *)arg1;
3415 	struct ifnet *ifp = &sc->arpcom.ac_if;
3416 	int error, off;
3417 
3418 	off = sc->jme_npoll_rxoff;
3419 	error = sysctl_handle_int(oidp, &off, 0, req);
3420 	if (error || req->newptr == NULL)
3421 		return error;
3422 	if (off < 0)
3423 		return EINVAL;
3424 
3425 	ifnet_serialize_all(ifp);
3426 	if (off >= ncpus2 || off % sc->jme_cdata.jme_rx_ring_cnt != 0) {
3427 		error = EINVAL;
3428 	} else {
3429 		error = 0;
3430 		sc->jme_npoll_rxoff = off;
3431 	}
3432 	ifnet_deserialize_all(ifp);
3433 
3434 	return error;
3435 }
3436 
3437 static int
3438 jme_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3439 {
3440 	struct jme_softc *sc = (void *)arg1;
3441 	struct ifnet *ifp = &sc->arpcom.ac_if;
3442 	int error, off;
3443 
3444 	off = sc->jme_npoll_txoff;
3445 	error = sysctl_handle_int(oidp, &off, 0, req);
3446 	if (error || req->newptr == NULL)
3447 		return error;
3448 	if (off < 0)
3449 		return EINVAL;
3450 
3451 	ifnet_serialize_all(ifp);
3452 	if (off >= ncpus2) {
3453 		error = EINVAL;
3454 	} else {
3455 		error = 0;
3456 		sc->jme_npoll_txoff = off;
3457 	}
3458 	ifnet_deserialize_all(ifp);
3459 
3460 	return error;
3461 }
3462 
3463 #endif	/* IFPOLL_ENABLE */
3464 
3465 static int
3466 jme_rxring_dma_alloc(struct jme_rxdata *rdata)
3467 {
3468 	bus_dmamem_t dmem;
3469 	int error, asize;
3470 
3471 	asize = roundup2(JME_RX_RING_SIZE(rdata), JME_RX_RING_ALIGN);
3472 	error = bus_dmamem_coherent(rdata->jme_sc->jme_cdata.jme_ring_tag,
3473 			JME_RX_RING_ALIGN, 0,
3474 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3475 			asize, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
3476 	if (error) {
3477 		device_printf(rdata->jme_sc->jme_dev,
3478 		    "could not allocate %dth Rx ring.\n", rdata->jme_rx_idx);
3479 		return error;
3480 	}
3481 	rdata->jme_rx_ring_tag = dmem.dmem_tag;
3482 	rdata->jme_rx_ring_map = dmem.dmem_map;
3483 	rdata->jme_rx_ring = dmem.dmem_addr;
3484 	rdata->jme_rx_ring_paddr = dmem.dmem_busaddr;
3485 
3486 	return 0;
3487 }
3488 
3489 static int
3490 jme_rxbuf_dma_filter(void *arg __unused, bus_addr_t paddr)
3491 {
3492 	if ((paddr & 0xffffffff) == 0) {
3493 		/*
3494 		 * Don't allow lower 32bits of the RX buffer's
3495 		 * physical address to be 0, else it will break
3496 		 * hardware pending RSS information delivery
3497 		 * detection on RX path.
3498 		 */
3499 		return 1;
3500 	}
3501 	return 0;
3502 }
3503 
3504 static int
3505 jme_rxbuf_dma_alloc(struct jme_rxdata *rdata)
3506 {
3507 	bus_addr_t lowaddr;
3508 	int i, error;
3509 
3510 	lowaddr = BUS_SPACE_MAXADDR;
3511 	if (JME_ENABLE_HWRSS(rdata->jme_sc)) {
3512 		/* jme_rxbuf_dma_filter will be called */
3513 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
3514 	}
3515 
3516 	/* Create tag for Rx buffers. */
3517 	error = bus_dma_tag_create(
3518 	    rdata->jme_sc->jme_cdata.jme_buffer_tag,/* parent */
3519 	    JME_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
3520 	    lowaddr,			/* lowaddr */
3521 	    BUS_SPACE_MAXADDR,		/* highaddr */
3522 	    jme_rxbuf_dma_filter, NULL,	/* filter, filterarg */
3523 	    MCLBYTES,			/* maxsize */
3524 	    1,				/* nsegments */
3525 	    MCLBYTES,			/* maxsegsize */
3526 	    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ALIGNED,/* flags */
3527 	    &rdata->jme_rx_tag);
3528 	if (error) {
3529 		device_printf(rdata->jme_sc->jme_dev,
3530 		    "could not create %dth Rx DMA tag.\n", rdata->jme_rx_idx);
3531 		return error;
3532 	}
3533 
3534 	/* Create DMA maps for Rx buffers. */
3535 	error = bus_dmamap_create(rdata->jme_rx_tag, BUS_DMA_WAITOK,
3536 				  &rdata->jme_rx_sparemap);
3537 	if (error) {
3538 		device_printf(rdata->jme_sc->jme_dev,
3539 		    "could not create %dth spare Rx dmamap.\n",
3540 		    rdata->jme_rx_idx);
3541 		bus_dma_tag_destroy(rdata->jme_rx_tag);
3542 		rdata->jme_rx_tag = NULL;
3543 		return error;
3544 	}
3545 	for (i = 0; i < rdata->jme_rx_desc_cnt; i++) {
3546 		struct jme_rxdesc *rxd = &rdata->jme_rxdesc[i];
3547 
3548 		error = bus_dmamap_create(rdata->jme_rx_tag, BUS_DMA_WAITOK,
3549 					  &rxd->rx_dmamap);
3550 		if (error) {
3551 			int j;
3552 
3553 			device_printf(rdata->jme_sc->jme_dev,
3554 			    "could not create %dth Rx dmamap "
3555 			    "for %dth RX ring.\n", i, rdata->jme_rx_idx);
3556 
3557 			for (j = 0; j < i; ++j) {
3558 				rxd = &rdata->jme_rxdesc[j];
3559 				bus_dmamap_destroy(rdata->jme_rx_tag,
3560 						   rxd->rx_dmamap);
3561 			}
3562 			bus_dmamap_destroy(rdata->jme_rx_tag,
3563 					   rdata->jme_rx_sparemap);
3564 			bus_dma_tag_destroy(rdata->jme_rx_tag);
3565 			rdata->jme_rx_tag = NULL;
3566 			return error;
3567 		}
3568 	}
3569 	return 0;
3570 }
3571 
3572 static void
3573 jme_rx_intr(struct jme_softc *sc, uint32_t status)
3574 {
3575 	int r, cpuid = mycpuid;
3576 
3577 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
3578 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[r];
3579 
3580 		if (status & rdata->jme_rx_coal) {
3581 			lwkt_serialize_enter(&rdata->jme_rx_serialize);
3582 			jme_rxeof(rdata, -1, cpuid);
3583 			lwkt_serialize_exit(&rdata->jme_rx_serialize);
3584 		}
3585 	}
3586 }
3587 
3588 static void
3589 jme_enable_rss(struct jme_softc *sc)
3590 {
3591 	uint32_t rssc, ind;
3592 	uint8_t key[RSSKEY_NREGS * RSSKEY_REGSIZE];
3593 	int i;
3594 
3595 	KASSERT(sc->jme_cdata.jme_rx_ring_cnt == JME_NRXRING_2 ||
3596 		sc->jme_cdata.jme_rx_ring_cnt == JME_NRXRING_4,
3597 		("%s: invalid # of RX rings (%d)",
3598 		 sc->arpcom.ac_if.if_xname, sc->jme_cdata.jme_rx_ring_cnt));
3599 
3600 	rssc = RSSC_HASH_64_ENTRY;
3601 	rssc |= RSSC_HASH_IPV4 | RSSC_HASH_IPV4_TCP;
3602 	rssc |= sc->jme_cdata.jme_rx_ring_cnt >> 1;
3603 	JME_RSS_DPRINTF(sc, 1, "rssc 0x%08x\n", rssc);
3604 	CSR_WRITE_4(sc, JME_RSSC, rssc);
3605 
3606 	toeplitz_get_key(key, sizeof(key));
3607 	for (i = 0; i < RSSKEY_NREGS; ++i) {
3608 		uint32_t keyreg;
3609 
3610 		keyreg = RSSKEY_REGVAL(key, i);
3611 		JME_RSS_DPRINTF(sc, 5, "keyreg%d 0x%08x, reg 0x%08x\n",
3612 		    i, keyreg, RSSKEY_REG(RSSKEY_NREGS - 1 - i));
3613 
3614 		CSR_WRITE_4(sc, RSSKEY_REG(RSSKEY_NREGS - 1 - i), keyreg);
3615 	}
3616 
3617 	/*
3618 	 * Create redirect table in following fashion:
3619 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
3620 	 */
3621 	ind = 0;
3622 	for (i = 0; i < RSSTBL_REGSIZE; ++i) {
3623 		int q;
3624 
3625 		q = i % sc->jme_cdata.jme_rx_ring_cnt;
3626 		ind |= q << (i * 8);
3627 	}
3628 	JME_RSS_DPRINTF(sc, 1, "ind 0x%08x\n", ind);
3629 
3630 	for (i = 0; i < RSSTBL_NREGS; ++i)
3631 		CSR_WRITE_4(sc, RSSTBL_REG(i), ind);
3632 }
3633 
3634 static void
3635 jme_disable_rss(struct jme_softc *sc)
3636 {
3637 	CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
3638 }
3639 
3640 static void
3641 jme_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3642 {
3643 	struct jme_softc *sc = ifp->if_softc;
3644 
3645 	ifnet_serialize_array_enter(sc->jme_serialize_arr,
3646 	    sc->jme_serialize_cnt, slz);
3647 }
3648 
3649 static void
3650 jme_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3651 {
3652 	struct jme_softc *sc = ifp->if_softc;
3653 
3654 	ifnet_serialize_array_exit(sc->jme_serialize_arr,
3655 	    sc->jme_serialize_cnt, slz);
3656 }
3657 
3658 static int
3659 jme_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3660 {
3661 	struct jme_softc *sc = ifp->if_softc;
3662 
3663 	return ifnet_serialize_array_try(sc->jme_serialize_arr,
3664 	    sc->jme_serialize_cnt, slz);
3665 }
3666 
3667 #ifdef INVARIANTS
3668 
3669 static void
3670 jme_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3671     boolean_t serialized)
3672 {
3673 	struct jme_softc *sc = ifp->if_softc;
3674 
3675 	ifnet_serialize_array_assert(sc->jme_serialize_arr,
3676 	    sc->jme_serialize_cnt, slz, serialized);
3677 }
3678 
3679 #endif	/* INVARIANTS */
3680 
3681 static void
3682 jme_msix_try_alloc(device_t dev)
3683 {
3684 	struct jme_softc *sc = device_get_softc(dev);
3685 	struct jme_msix_data *msix;
3686 	int error, i, r, msix_enable, msix_count;
3687 	int offset, offset_def;
3688 
3689 	msix_count = JME_MSIXCNT(sc->jme_cdata.jme_rx_ring_cnt);
3690 	KKASSERT(msix_count <= JME_NMSIX);
3691 
3692 	msix_enable = device_getenv_int(dev, "msix.enable", jme_msix_enable);
3693 
3694 	/*
3695 	 * We leave the 1st MSI-X vector unused, so we
3696 	 * actually need msix_count + 1 MSI-X vectors.
3697 	 */
3698 	if (!msix_enable || pci_msix_count(dev) < (msix_count + 1))
3699 		return;
3700 
3701 	for (i = 0; i < msix_count; ++i)
3702 		sc->jme_msix[i].jme_msix_rid = -1;
3703 
3704 	i = 0;
3705 
3706 	/*
3707 	 * Setup status MSI-X
3708 	 */
3709 
3710 	msix = &sc->jme_msix[i++];
3711 	msix->jme_msix_cpuid = 0;
3712 	msix->jme_msix_arg = sc;
3713 	msix->jme_msix_func = jme_msix_status;
3714 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
3715 		msix->jme_msix_intrs |=
3716 		    sc->jme_cdata.jme_rx_data[r].jme_rx_empty;
3717 	}
3718 	msix->jme_msix_serialize = &sc->jme_serialize;
3719 	ksnprintf(msix->jme_msix_desc, sizeof(msix->jme_msix_desc), "%s sts",
3720 	    device_get_nameunit(dev));
3721 
3722 	/*
3723 	 * Setup TX MSI-X
3724 	 */
3725 
3726 	offset_def = device_get_unit(dev) % ncpus2;
3727 	offset = device_getenv_int(dev, "msix.txoff", offset_def);
3728 	if (offset >= ncpus2) {
3729 		device_printf(dev, "invalid msix.txoff %d, use %d\n",
3730 		    offset, offset_def);
3731 		offset = offset_def;
3732 	}
3733 
3734 	msix = &sc->jme_msix[i++];
3735 	msix->jme_msix_cpuid = offset;
3736 	sc->jme_tx_cpuid = msix->jme_msix_cpuid;
3737 	msix->jme_msix_arg = &sc->jme_cdata.jme_tx_data;
3738 	msix->jme_msix_func = jme_msix_tx;
3739 	msix->jme_msix_intrs = INTR_TXQ_COAL | INTR_TXQ_COAL_TO;
3740 	msix->jme_msix_serialize = &sc->jme_cdata.jme_tx_data.jme_tx_serialize;
3741 	ksnprintf(msix->jme_msix_desc, sizeof(msix->jme_msix_desc), "%s tx",
3742 	    device_get_nameunit(dev));
3743 
3744 	/*
3745 	 * Setup RX MSI-X
3746 	 */
3747 
3748 	if (sc->jme_cdata.jme_rx_ring_cnt == ncpus2) {
3749 		offset = 0;
3750 	} else {
3751 		offset_def = (sc->jme_cdata.jme_rx_ring_cnt *
3752 		    device_get_unit(dev)) % ncpus2;
3753 
3754 		offset = device_getenv_int(dev, "msix.rxoff", offset_def);
3755 		if (offset >= ncpus2 ||
3756 		    offset % sc->jme_cdata.jme_rx_ring_cnt != 0) {
3757 			device_printf(dev, "invalid msix.rxoff %d, use %d\n",
3758 			    offset, offset_def);
3759 			offset = offset_def;
3760 		}
3761 	}
3762 
3763 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
3764 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[r];
3765 
3766 		msix = &sc->jme_msix[i++];
3767 		msix->jme_msix_cpuid = r + offset;
3768 		KKASSERT(msix->jme_msix_cpuid < ncpus2);
3769 		msix->jme_msix_arg = rdata;
3770 		msix->jme_msix_func = jme_msix_rx;
3771 		msix->jme_msix_intrs = rdata->jme_rx_coal;
3772 		msix->jme_msix_serialize = &rdata->jme_rx_serialize;
3773 		ksnprintf(msix->jme_msix_desc, sizeof(msix->jme_msix_desc),
3774 		    "%s rx%d", device_get_nameunit(dev), r);
3775 	}
3776 
3777 	KKASSERT(i == msix_count);
3778 
3779 	error = pci_setup_msix(dev);
3780 	if (error)
3781 		return;
3782 
3783 	/* Setup jme_msix_cnt early, so we could cleanup */
3784 	sc->jme_msix_cnt = msix_count;
3785 
3786 	for (i = 0; i < msix_count; ++i) {
3787 		msix = &sc->jme_msix[i];
3788 
3789 		msix->jme_msix_vector = i + 1;
3790 		error = pci_alloc_msix_vector(dev, msix->jme_msix_vector,
3791 		    &msix->jme_msix_rid, msix->jme_msix_cpuid);
3792 		if (error)
3793 			goto back;
3794 
3795 		msix->jme_msix_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
3796 		    &msix->jme_msix_rid, RF_ACTIVE);
3797 		if (msix->jme_msix_res == NULL) {
3798 			error = ENOMEM;
3799 			goto back;
3800 		}
3801 	}
3802 
3803 	for (i = 0; i < JME_INTR_CNT; ++i) {
3804 		uint32_t intr_mask = (1 << i);
3805 		int x;
3806 
3807 		if ((JME_INTRS & intr_mask) == 0)
3808 			continue;
3809 
3810 		for (x = 0; x < msix_count; ++x) {
3811 			msix = &sc->jme_msix[x];
3812 			if (msix->jme_msix_intrs & intr_mask) {
3813 				int reg, shift;
3814 
3815 				reg = i / JME_MSINUM_FACTOR;
3816 				KKASSERT(reg < JME_MSINUM_CNT);
3817 
3818 				shift = (i % JME_MSINUM_FACTOR) * 4;
3819 
3820 				sc->jme_msinum[reg] |=
3821 				    (msix->jme_msix_vector << shift);
3822 
3823 				break;
3824 			}
3825 		}
3826 	}
3827 
3828 	if (bootverbose) {
3829 		for (i = 0; i < JME_MSINUM_CNT; ++i) {
3830 			device_printf(dev, "MSINUM%d: %#x\n", i,
3831 			    sc->jme_msinum[i]);
3832 		}
3833 	}
3834 
3835 	pci_enable_msix(dev);
3836 	sc->jme_irq_type = PCI_INTR_TYPE_MSIX;
3837 
3838 back:
3839 	if (error)
3840 		jme_msix_free(dev);
3841 }
3842 
3843 static int
3844 jme_intr_alloc(device_t dev)
3845 {
3846 	struct jme_softc *sc = device_get_softc(dev);
3847 	u_int irq_flags;
3848 
3849 	jme_msix_try_alloc(dev);
3850 
3851 	if (sc->jme_irq_type != PCI_INTR_TYPE_MSIX) {
3852 		sc->jme_irq_type = pci_alloc_1intr(dev, jme_msi_enable,
3853 		    &sc->jme_irq_rid, &irq_flags);
3854 
3855 		sc->jme_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
3856 		    &sc->jme_irq_rid, irq_flags);
3857 		if (sc->jme_irq_res == NULL) {
3858 			device_printf(dev, "can't allocate irq\n");
3859 			return ENXIO;
3860 		}
3861 		sc->jme_tx_cpuid = rman_get_cpuid(sc->jme_irq_res);
3862 	}
3863 	return 0;
3864 }
3865 
3866 static void
3867 jme_msix_free(device_t dev)
3868 {
3869 	struct jme_softc *sc = device_get_softc(dev);
3870 	int i;
3871 
3872 	KKASSERT(sc->jme_msix_cnt > 1);
3873 
3874 	for (i = 0; i < sc->jme_msix_cnt; ++i) {
3875 		struct jme_msix_data *msix = &sc->jme_msix[i];
3876 
3877 		if (msix->jme_msix_res != NULL) {
3878 			bus_release_resource(dev, SYS_RES_IRQ,
3879 			    msix->jme_msix_rid, msix->jme_msix_res);
3880 			msix->jme_msix_res = NULL;
3881 		}
3882 		if (msix->jme_msix_rid >= 0) {
3883 			pci_release_msix_vector(dev, msix->jme_msix_rid);
3884 			msix->jme_msix_rid = -1;
3885 		}
3886 	}
3887 	pci_teardown_msix(dev);
3888 }
3889 
3890 static void
3891 jme_intr_free(device_t dev)
3892 {
3893 	struct jme_softc *sc = device_get_softc(dev);
3894 
3895 	if (sc->jme_irq_type != PCI_INTR_TYPE_MSIX) {
3896 		if (sc->jme_irq_res != NULL) {
3897 			bus_release_resource(dev, SYS_RES_IRQ, sc->jme_irq_rid,
3898 					     sc->jme_irq_res);
3899 		}
3900 		if (sc->jme_irq_type == PCI_INTR_TYPE_MSI)
3901 			pci_release_msi(dev);
3902 	} else {
3903 		jme_msix_free(dev);
3904 	}
3905 }
3906 
3907 static void
3908 jme_msix_tx(void *xtdata)
3909 {
3910 	struct jme_txdata *tdata = xtdata;
3911 	struct jme_softc *sc = tdata->jme_sc;
3912 	struct ifnet *ifp = &sc->arpcom.ac_if;
3913 
3914 	ASSERT_SERIALIZED(&tdata->jme_tx_serialize);
3915 
3916 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, INTR_TXQ_COAL | INTR_TXQ_COAL_TO);
3917 
3918 	CSR_WRITE_4(sc, JME_INTR_STATUS,
3919 	    INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP);
3920 
3921 	if (ifp->if_flags & IFF_RUNNING) {
3922 		jme_txeof(tdata);
3923 		if (!ifq_is_empty(&ifp->if_snd))
3924 			if_devstart(ifp);
3925 	}
3926 
3927 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, INTR_TXQ_COAL | INTR_TXQ_COAL_TO);
3928 }
3929 
3930 static void
3931 jme_msix_rx(void *xrdata)
3932 {
3933 	struct jme_rxdata *rdata = xrdata;
3934 	struct jme_softc *sc = rdata->jme_sc;
3935 	struct ifnet *ifp = &sc->arpcom.ac_if;
3936 
3937 	ASSERT_SERIALIZED(&rdata->jme_rx_serialize);
3938 
3939 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, rdata->jme_rx_coal);
3940 
3941 	CSR_WRITE_4(sc, JME_INTR_STATUS,
3942 	    rdata->jme_rx_coal | rdata->jme_rx_comp);
3943 
3944 	if (ifp->if_flags & IFF_RUNNING)
3945 		jme_rxeof(rdata, -1, mycpuid);
3946 
3947 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, rdata->jme_rx_coal);
3948 }
3949 
3950 static void
3951 jme_msix_status(void *xsc)
3952 {
3953 	struct jme_softc *sc = xsc;
3954 	struct ifnet *ifp = &sc->arpcom.ac_if;
3955 	uint32_t status;
3956 
3957 	ASSERT_SERIALIZED(&sc->jme_serialize);
3958 
3959 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, INTR_RXQ_DESC_EMPTY);
3960 
3961 	status = CSR_READ_4(sc, JME_INTR_STATUS);
3962 
3963 	if (status & INTR_RXQ_DESC_EMPTY) {
3964 		CSR_WRITE_4(sc, JME_INTR_STATUS, status & INTR_RXQ_DESC_EMPTY);
3965 		if (ifp->if_flags & IFF_RUNNING)
3966 			jme_rx_restart(sc, status);
3967 	}
3968 
3969 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, INTR_RXQ_DESC_EMPTY);
3970 }
3971 
3972 static void
3973 jme_rx_restart(struct jme_softc *sc, uint32_t status)
3974 {
3975 	int i, cpuid = mycpuid;
3976 
3977 	for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
3978 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[i];
3979 
3980 		if (status & rdata->jme_rx_empty) {
3981 			lwkt_serialize_enter(&rdata->jme_rx_serialize);
3982 			jme_rxeof(rdata, -1, cpuid);
3983 #ifdef JME_RSS_DEBUG
3984 			rdata->jme_rx_emp++;
3985 #endif
3986 			lwkt_serialize_exit(&rdata->jme_rx_serialize);
3987 		}
3988 	}
3989 	CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
3990 	    RXCSR_RXQ_START);
3991 }
3992 
3993 static void
3994 jme_set_msinum(struct jme_softc *sc)
3995 {
3996 	int i;
3997 
3998 	for (i = 0; i < JME_MSINUM_CNT; ++i)
3999 		CSR_WRITE_4(sc, JME_MSINUM(i), sc->jme_msinum[i]);
4000 }
4001 
4002 static int
4003 jme_intr_setup(device_t dev)
4004 {
4005 	struct jme_softc *sc = device_get_softc(dev);
4006 	int error;
4007 
4008 	if (sc->jme_irq_type == PCI_INTR_TYPE_MSIX)
4009 		return jme_msix_setup(dev);
4010 
4011 	error = bus_setup_intr(dev, sc->jme_irq_res, INTR_MPSAFE,
4012 	    jme_intr, sc, &sc->jme_irq_handle, &sc->jme_serialize);
4013 	if (error) {
4014 		device_printf(dev, "could not set up interrupt handler.\n");
4015 		return error;
4016 	}
4017 
4018 	return 0;
4019 }
4020 
4021 static void
4022 jme_intr_teardown(device_t dev)
4023 {
4024 	struct jme_softc *sc = device_get_softc(dev);
4025 
4026 	if (sc->jme_irq_type == PCI_INTR_TYPE_MSIX)
4027 		jme_msix_teardown(dev, sc->jme_msix_cnt);
4028 	else
4029 		bus_teardown_intr(dev, sc->jme_irq_res, sc->jme_irq_handle);
4030 }
4031 
4032 static int
4033 jme_msix_setup(device_t dev)
4034 {
4035 	struct jme_softc *sc = device_get_softc(dev);
4036 	int x;
4037 
4038 	for (x = 0; x < sc->jme_msix_cnt; ++x) {
4039 		struct jme_msix_data *msix = &sc->jme_msix[x];
4040 		int error;
4041 
4042 		error = bus_setup_intr_descr(dev, msix->jme_msix_res,
4043 		    INTR_MPSAFE, msix->jme_msix_func, msix->jme_msix_arg,
4044 		    &msix->jme_msix_handle, msix->jme_msix_serialize,
4045 		    msix->jme_msix_desc);
4046 		if (error) {
4047 			device_printf(dev, "could not set up %s "
4048 			    "interrupt handler.\n", msix->jme_msix_desc);
4049 			jme_msix_teardown(dev, x);
4050 			return error;
4051 		}
4052 	}
4053 	return 0;
4054 }
4055 
4056 static void
4057 jme_msix_teardown(device_t dev, int msix_count)
4058 {
4059 	struct jme_softc *sc = device_get_softc(dev);
4060 	int x;
4061 
4062 	for (x = 0; x < msix_count; ++x) {
4063 		struct jme_msix_data *msix = &sc->jme_msix[x];
4064 
4065 		bus_teardown_intr(dev, msix->jme_msix_res,
4066 		    msix->jme_msix_handle);
4067 	}
4068 }
4069 
4070 static void
4071 jme_serialize_skipmain(struct jme_softc *sc)
4072 {
4073 	lwkt_serialize_array_enter(sc->jme_serialize_arr,
4074 	    sc->jme_serialize_cnt, 1);
4075 }
4076 
4077 static void
4078 jme_deserialize_skipmain(struct jme_softc *sc)
4079 {
4080 	lwkt_serialize_array_exit(sc->jme_serialize_arr,
4081 	    sc->jme_serialize_cnt, 1);
4082 }
4083 
4084 static void
4085 jme_enable_intr(struct jme_softc *sc)
4086 {
4087 	int i;
4088 
4089 	for (i = 0; i < sc->jme_serialize_cnt; ++i)
4090 		lwkt_serialize_handler_enable(sc->jme_serialize_arr[i]);
4091 
4092 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
4093 }
4094 
4095 static void
4096 jme_disable_intr(struct jme_softc *sc)
4097 {
4098 	int i;
4099 
4100 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
4101 
4102 	for (i = 0; i < sc->jme_serialize_cnt; ++i)
4103 		lwkt_serialize_handler_disable(sc->jme_serialize_arr[i]);
4104 }
4105 
4106 static void
4107 jme_phy_poweron(struct jme_softc *sc)
4108 {
4109 	uint16_t bmcr;
4110 
4111 	bmcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR);
4112 	bmcr &= ~BMCR_PDOWN;
4113 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, bmcr);
4114 
4115 	if (sc->jme_caps & JME_CAP_PHYPWR) {
4116 		uint32_t val;
4117 
4118 		val = CSR_READ_4(sc, JME_PHYPWR);
4119 		val &= ~(PHYPWR_DOWN1SEL | PHYPWR_DOWN1SW |
4120 		    PHYPWR_DOWN2 | PHYPWR_CLKSEL);
4121 		CSR_WRITE_4(sc, JME_PHYPWR, val);
4122 
4123 		val = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
4124 		val &= ~PE1_GPREG0_PHYBG;
4125 		val |= PE1_GPREG0_ENBG;
4126 		pci_write_config(sc->jme_dev, JME_PCI_PE1, val, 4);
4127 	}
4128 }
4129 
4130 static void
4131 jme_phy_poweroff(struct jme_softc *sc)
4132 {
4133 	uint16_t bmcr;
4134 
4135 	bmcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR);
4136 	bmcr |= BMCR_PDOWN;
4137 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, bmcr);
4138 
4139 	if (sc->jme_caps & JME_CAP_PHYPWR) {
4140 		uint32_t val;
4141 
4142 		val = CSR_READ_4(sc, JME_PHYPWR);
4143 		val |= PHYPWR_DOWN1SEL | PHYPWR_DOWN1SW |
4144 		    PHYPWR_DOWN2 | PHYPWR_CLKSEL;
4145 		CSR_WRITE_4(sc, JME_PHYPWR, val);
4146 
4147 		val = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
4148 		val &= ~PE1_GPREG0_PHYBG;
4149 		val |= PE1_GPREG0_PDD3COLD;
4150 		pci_write_config(sc->jme_dev, JME_PCI_PE1, val, 4);
4151 	}
4152 }
4153 
4154 static int
4155 jme_miiext_read(struct jme_softc *sc, int reg)
4156 {
4157 	int addr;
4158 
4159 	addr = JME_MII_EXT_ADDR_RD | reg;
4160 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
4161 	    JME_MII_EXT_ADDR, addr);
4162 	return jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr,
4163 	    JME_MII_EXT_DATA);
4164 }
4165 
4166 static void
4167 jme_miiext_write(struct jme_softc *sc, int reg, int val)
4168 {
4169 	int addr;
4170 
4171 	addr = JME_MII_EXT_ADDR_WR | reg;
4172 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
4173 	    JME_MII_EXT_DATA, val);
4174 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
4175 	    JME_MII_EXT_ADDR, addr);
4176 }
4177 
4178 static void
4179 jme_phy_init(struct jme_softc *sc)
4180 {
4181 	uint16_t gtcr;
4182 	int val;
4183 
4184 	jme_phy_poweroff(sc);
4185 	jme_phy_poweron(sc);
4186 
4187 	/* Enable PHY test 1 */
4188 	gtcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR);
4189 	gtcr &= ~GTCR_TEST_MASK;
4190 	gtcr |= GTCR_TEST_1;
4191 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, gtcr);
4192 
4193 	val = jme_miiext_read(sc, JME_MII_EXT_COM2);
4194 	val &= ~JME_MII_EXT_COM2_CALIB_MODE0;
4195 	val |= JME_MII_EXT_COM2_CALIB_LATCH | JME_MII_EXT_COM2_CALIB_EN;
4196 	jme_miiext_write(sc, JME_MII_EXT_COM2, val);
4197 
4198 	DELAY(20000);
4199 
4200 	val = jme_miiext_read(sc, JME_MII_EXT_COM2);
4201 	val &= ~(JME_MII_EXT_COM2_CALIB_MODE0 |
4202 	    JME_MII_EXT_COM2_CALIB_LATCH | JME_MII_EXT_COM2_CALIB_EN);
4203 	jme_miiext_write(sc, JME_MII_EXT_COM2, val);
4204 
4205 	/* Disable PHY test */
4206 	gtcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR);
4207 	gtcr &= ~GTCR_TEST_MASK;
4208 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, gtcr);
4209 
4210 	if (sc->jme_phycom0 != 0)
4211 		jme_miiext_write(sc, JME_MII_EXT_COM0, sc->jme_phycom0);
4212 	if (sc->jme_phycom1 != 0)
4213 		jme_miiext_write(sc, JME_MII_EXT_COM1, sc->jme_phycom1);
4214 }
4215