xref: /dragonfly/sys/dev/netif/jme/if_jme.c (revision 16fb0422)
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: src/sys/dev/jme/if_jme.c,v 1.2 2008/07/18 04:20:48 yongari Exp $
28  */
29 
30 #include "opt_polling.h"
31 #include "opt_rss.h"
32 #include "opt_jme.h"
33 
34 #include <sys/param.h>
35 #include <sys/endian.h>
36 #include <sys/kernel.h>
37 #include <sys/bus.h>
38 #include <sys/interrupt.h>
39 #include <sys/malloc.h>
40 #include <sys/proc.h>
41 #include <sys/rman.h>
42 #include <sys/serialize.h>
43 #include <sys/serialize2.h>
44 #include <sys/socket.h>
45 #include <sys/sockio.h>
46 #include <sys/sysctl.h>
47 
48 #include <net/ethernet.h>
49 #include <net/if.h>
50 #include <net/bpf.h>
51 #include <net/if_arp.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/ifq_var.h>
55 #include <net/toeplitz.h>
56 #include <net/toeplitz2.h>
57 #include <net/vlan/if_vlan_var.h>
58 #include <net/vlan/if_vlan_ether.h>
59 
60 #include <netinet/in.h>
61 
62 #include <dev/netif/mii_layer/miivar.h>
63 #include <dev/netif/mii_layer/jmphyreg.h>
64 
65 #include <bus/pci/pcireg.h>
66 #include <bus/pci/pcivar.h>
67 #include <bus/pci/pcidevs.h>
68 
69 #include <dev/netif/jme/if_jmereg.h>
70 #include <dev/netif/jme/if_jmevar.h>
71 
72 #include "miibus_if.h"
73 
74 /* Define the following to disable printing Rx errors. */
75 #undef	JME_SHOW_ERRORS
76 
77 #define	JME_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
78 
79 #ifdef JME_RSS_DEBUG
80 #define JME_RSS_DPRINTF(sc, lvl, fmt, ...) \
81 do { \
82 	if ((sc)->jme_rss_debug >= (lvl)) \
83 		if_printf(&(sc)->arpcom.ac_if, fmt, __VA_ARGS__); \
84 } while (0)
85 #else	/* !JME_RSS_DEBUG */
86 #define JME_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
87 #endif	/* JME_RSS_DEBUG */
88 
89 static int	jme_probe(device_t);
90 static int	jme_attach(device_t);
91 static int	jme_detach(device_t);
92 static int	jme_shutdown(device_t);
93 static int	jme_suspend(device_t);
94 static int	jme_resume(device_t);
95 
96 static int	jme_miibus_readreg(device_t, int, int);
97 static int	jme_miibus_writereg(device_t, int, int, int);
98 static void	jme_miibus_statchg(device_t);
99 
100 static void	jme_init(void *);
101 static int	jme_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
102 static void	jme_start(struct ifnet *);
103 static void	jme_watchdog(struct ifnet *);
104 static void	jme_mediastatus(struct ifnet *, struct ifmediareq *);
105 static int	jme_mediachange(struct ifnet *);
106 #ifdef DEVICE_POLLING
107 static void	jme_poll(struct ifnet *, enum poll_cmd, int);
108 #endif
109 static void	jme_serialize(struct ifnet *, enum ifnet_serialize);
110 static void	jme_deserialize(struct ifnet *, enum ifnet_serialize);
111 static int	jme_tryserialize(struct ifnet *, enum ifnet_serialize);
112 #ifdef INVARIANTS
113 static void	jme_serialize_assert(struct ifnet *, enum ifnet_serialize,
114 		    boolean_t);
115 #endif
116 
117 static void	jme_intr(void *);
118 static void	jme_txeof(struct jme_softc *);
119 static void	jme_rxeof(struct jme_softc *, int);
120 static int	jme_rxeof_chain(struct jme_softc *, int,
121 				struct mbuf_chain *, int);
122 static void	jme_rx_intr(struct jme_softc *, uint32_t);
123 
124 static int	jme_dma_alloc(struct jme_softc *);
125 static void	jme_dma_free(struct jme_softc *);
126 static int	jme_init_rx_ring(struct jme_softc *, int);
127 static void	jme_init_tx_ring(struct jme_softc *);
128 static void	jme_init_ssb(struct jme_softc *);
129 static int	jme_newbuf(struct jme_softc *, int, struct jme_rxdesc *, int);
130 static int	jme_encap(struct jme_softc *, struct mbuf **);
131 static void	jme_rxpkt(struct jme_softc *, int, struct mbuf_chain *);
132 static int	jme_rxring_dma_alloc(struct jme_softc *, int);
133 static int	jme_rxbuf_dma_alloc(struct jme_softc *, int);
134 
135 static void	jme_tick(void *);
136 static void	jme_stop(struct jme_softc *);
137 static void	jme_reset(struct jme_softc *);
138 static void	jme_set_vlan(struct jme_softc *);
139 static void	jme_set_filter(struct jme_softc *);
140 static void	jme_stop_tx(struct jme_softc *);
141 static void	jme_stop_rx(struct jme_softc *);
142 static void	jme_mac_config(struct jme_softc *);
143 static void	jme_reg_macaddr(struct jme_softc *, uint8_t[]);
144 static int	jme_eeprom_macaddr(struct jme_softc *, uint8_t[]);
145 static int	jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
146 #ifdef notyet
147 static void	jme_setwol(struct jme_softc *);
148 static void	jme_setlinkspeed(struct jme_softc *);
149 #endif
150 static void	jme_set_tx_coal(struct jme_softc *);
151 static void	jme_set_rx_coal(struct jme_softc *);
152 static void	jme_enable_rss(struct jme_softc *);
153 static void	jme_disable_rss(struct jme_softc *);
154 
155 static void	jme_sysctl_node(struct jme_softc *);
156 static int	jme_sysctl_tx_coal_to(SYSCTL_HANDLER_ARGS);
157 static int	jme_sysctl_tx_coal_pkt(SYSCTL_HANDLER_ARGS);
158 static int	jme_sysctl_rx_coal_to(SYSCTL_HANDLER_ARGS);
159 static int	jme_sysctl_rx_coal_pkt(SYSCTL_HANDLER_ARGS);
160 
161 /*
162  * Devices supported by this driver.
163  */
164 static const struct jme_dev {
165 	uint16_t	jme_vendorid;
166 	uint16_t	jme_deviceid;
167 	uint32_t	jme_caps;
168 	const char	*jme_name;
169 } jme_devs[] = {
170 	{ PCI_VENDOR_JMICRON, PCI_PRODUCT_JMICRON_JMC250,
171 	    JME_CAP_JUMBO,
172 	    "JMicron Inc, JMC250 Gigabit Ethernet" },
173 	{ PCI_VENDOR_JMICRON, PCI_PRODUCT_JMICRON_JMC260,
174 	    JME_CAP_FASTETH,
175 	    "JMicron Inc, JMC260 Fast Ethernet" },
176 	{ 0, 0, 0, NULL }
177 };
178 
179 static device_method_t jme_methods[] = {
180 	/* Device interface. */
181 	DEVMETHOD(device_probe,		jme_probe),
182 	DEVMETHOD(device_attach,	jme_attach),
183 	DEVMETHOD(device_detach,	jme_detach),
184 	DEVMETHOD(device_shutdown,	jme_shutdown),
185 	DEVMETHOD(device_suspend,	jme_suspend),
186 	DEVMETHOD(device_resume,	jme_resume),
187 
188 	/* Bus interface. */
189 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
190 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
191 
192 	/* MII interface. */
193 	DEVMETHOD(miibus_readreg,	jme_miibus_readreg),
194 	DEVMETHOD(miibus_writereg,	jme_miibus_writereg),
195 	DEVMETHOD(miibus_statchg,	jme_miibus_statchg),
196 
197 	{ NULL, NULL }
198 };
199 
200 static driver_t jme_driver = {
201 	"jme",
202 	jme_methods,
203 	sizeof(struct jme_softc)
204 };
205 
206 static devclass_t jme_devclass;
207 
208 DECLARE_DUMMY_MODULE(if_jme);
209 MODULE_DEPEND(if_jme, miibus, 1, 1, 1);
210 DRIVER_MODULE(if_jme, pci, jme_driver, jme_devclass, NULL, NULL);
211 DRIVER_MODULE(miibus, jme, miibus_driver, miibus_devclass, NULL, NULL);
212 
213 static const struct {
214 	uint32_t	jme_coal;
215 	uint32_t	jme_comp;
216 } jme_rx_status[JME_NRXRING_MAX] = {
217 	{ INTR_RXQ0_COAL | INTR_RXQ0_COAL_TO, INTR_RXQ0_COMP },
218 	{ INTR_RXQ1_COAL | INTR_RXQ1_COAL_TO, INTR_RXQ1_COMP },
219 	{ INTR_RXQ2_COAL | INTR_RXQ2_COAL_TO, INTR_RXQ2_COMP },
220 	{ INTR_RXQ3_COAL | INTR_RXQ3_COAL_TO, INTR_RXQ3_COMP }
221 };
222 
223 static int	jme_rx_desc_count = JME_RX_DESC_CNT_DEF;
224 static int	jme_tx_desc_count = JME_TX_DESC_CNT_DEF;
225 static int	jme_rx_ring_count = JME_NRXRING_DEF;
226 static int	jme_msi_enable = 1;
227 
228 TUNABLE_INT("hw.jme.rx_desc_count", &jme_rx_desc_count);
229 TUNABLE_INT("hw.jme.tx_desc_count", &jme_tx_desc_count);
230 TUNABLE_INT("hw.jme.rx_ring_count", &jme_rx_ring_count);
231 TUNABLE_INT("hw.jme.msi.enable", &jme_msi_enable);
232 
233 /*
234  *	Read a PHY register on the MII of the JMC250.
235  */
236 static int
237 jme_miibus_readreg(device_t dev, int phy, int reg)
238 {
239 	struct jme_softc *sc = device_get_softc(dev);
240 	uint32_t val;
241 	int i;
242 
243 	/* For FPGA version, PHY address 0 should be ignored. */
244 	if (sc->jme_caps & JME_CAP_FPGA) {
245 		if (phy == 0)
246 			return (0);
247 	} else {
248 		if (sc->jme_phyaddr != phy)
249 			return (0);
250 	}
251 
252 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
253 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
254 
255 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
256 		DELAY(1);
257 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
258 			break;
259 	}
260 	if (i == 0) {
261 		device_printf(sc->jme_dev, "phy read timeout: "
262 			      "phy %d, reg %d\n", phy, reg);
263 		return (0);
264 	}
265 
266 	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
267 }
268 
269 /*
270  *	Write a PHY register on the MII of the JMC250.
271  */
272 static int
273 jme_miibus_writereg(device_t dev, int phy, int reg, int val)
274 {
275 	struct jme_softc *sc = device_get_softc(dev);
276 	int i;
277 
278 	/* For FPGA version, PHY address 0 should be ignored. */
279 	if (sc->jme_caps & JME_CAP_FPGA) {
280 		if (phy == 0)
281 			return (0);
282 	} else {
283 		if (sc->jme_phyaddr != phy)
284 			return (0);
285 	}
286 
287 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
288 	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
289 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
290 
291 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
292 		DELAY(1);
293 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
294 			break;
295 	}
296 	if (i == 0) {
297 		device_printf(sc->jme_dev, "phy write timeout: "
298 			      "phy %d, reg %d\n", phy, reg);
299 	}
300 
301 	return (0);
302 }
303 
304 /*
305  *	Callback from MII layer when media changes.
306  */
307 static void
308 jme_miibus_statchg(device_t dev)
309 {
310 	struct jme_softc *sc = device_get_softc(dev);
311 	struct ifnet *ifp = &sc->arpcom.ac_if;
312 	struct mii_data *mii;
313 	struct jme_txdesc *txd;
314 	bus_addr_t paddr;
315 	int i, r;
316 
317 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
318 
319 	if ((ifp->if_flags & IFF_RUNNING) == 0)
320 		return;
321 
322 	mii = device_get_softc(sc->jme_miibus);
323 
324 	sc->jme_flags &= ~JME_FLAG_LINK;
325 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
326 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
327 		case IFM_10_T:
328 		case IFM_100_TX:
329 			sc->jme_flags |= JME_FLAG_LINK;
330 			break;
331 		case IFM_1000_T:
332 			if (sc->jme_caps & JME_CAP_FASTETH)
333 				break;
334 			sc->jme_flags |= JME_FLAG_LINK;
335 			break;
336 		default:
337 			break;
338 		}
339 	}
340 
341 	/*
342 	 * Disabling Rx/Tx MACs have a side-effect of resetting
343 	 * JME_TXNDA/JME_RXNDA register to the first address of
344 	 * Tx/Rx descriptor address. So driver should reset its
345 	 * internal procucer/consumer pointer and reclaim any
346 	 * allocated resources.  Note, just saving the value of
347 	 * JME_TXNDA and JME_RXNDA registers before stopping MAC
348 	 * and restoring JME_TXNDA/JME_RXNDA register is not
349 	 * sufficient to make sure correct MAC state because
350 	 * stopping MAC operation can take a while and hardware
351 	 * might have updated JME_TXNDA/JME_RXNDA registers
352 	 * during the stop operation.
353 	 */
354 
355 	/* Disable interrupts */
356 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
357 
358 	/* Stop driver */
359 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
360 	ifp->if_timer = 0;
361 	callout_stop(&sc->jme_tick_ch);
362 
363 	/* Stop receiver/transmitter. */
364 	jme_stop_rx(sc);
365 	jme_stop_tx(sc);
366 
367 	for (r = 0; r < sc->jme_rx_ring_inuse; ++r) {
368 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[r];
369 
370 		jme_rxeof(sc, r);
371 		if (rdata->jme_rxhead != NULL)
372 			m_freem(rdata->jme_rxhead);
373 		JME_RXCHAIN_RESET(sc, r);
374 
375 		/*
376 		 * Reuse configured Rx descriptors and reset
377 		 * procuder/consumer index.
378 		 */
379 		rdata->jme_rx_cons = 0;
380 	}
381 
382 	jme_txeof(sc);
383 	if (sc->jme_cdata.jme_tx_cnt != 0) {
384 		/* Remove queued packets for transmit. */
385 		for (i = 0; i < sc->jme_tx_desc_cnt; i++) {
386 			txd = &sc->jme_cdata.jme_txdesc[i];
387 			if (txd->tx_m != NULL) {
388 				bus_dmamap_unload(
389 				    sc->jme_cdata.jme_tx_tag,
390 				    txd->tx_dmamap);
391 				m_freem(txd->tx_m);
392 				txd->tx_m = NULL;
393 				txd->tx_ndesc = 0;
394 				ifp->if_oerrors++;
395 			}
396 		}
397 	}
398 	jme_init_tx_ring(sc);
399 
400 	/* Initialize shadow status block. */
401 	jme_init_ssb(sc);
402 
403 	/* Program MAC with resolved speed/duplex/flow-control. */
404 	if (sc->jme_flags & JME_FLAG_LINK) {
405 		jme_mac_config(sc);
406 
407 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
408 
409 		/* Set Tx ring address to the hardware. */
410 		paddr = sc->jme_cdata.jme_tx_ring_paddr;
411 		CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
412 		CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
413 
414 		for (r = 0; r < sc->jme_rx_ring_inuse; ++r) {
415 			CSR_WRITE_4(sc, JME_RXCSR,
416 			    sc->jme_rxcsr | RXCSR_RXQ_N_SEL(r));
417 
418 			/* Set Rx ring address to the hardware. */
419 			paddr = sc->jme_cdata.jme_rx_data[r].jme_rx_ring_paddr;
420 			CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
421 			CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
422 		}
423 
424 		/* Restart receiver/transmitter. */
425 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
426 		    RXCSR_RXQ_START);
427 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
428 	}
429 
430 	ifp->if_flags |= IFF_RUNNING;
431 	ifp->if_flags &= ~IFF_OACTIVE;
432 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
433 
434 #ifdef DEVICE_POLLING
435 	if (!(ifp->if_flags & IFF_POLLING))
436 #endif
437 	/* Reenable interrupts. */
438 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
439 }
440 
441 /*
442  *	Get the current interface media status.
443  */
444 static void
445 jme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
446 {
447 	struct jme_softc *sc = ifp->if_softc;
448 	struct mii_data *mii = device_get_softc(sc->jme_miibus);
449 
450 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
451 
452 	mii_pollstat(mii);
453 	ifmr->ifm_status = mii->mii_media_status;
454 	ifmr->ifm_active = mii->mii_media_active;
455 }
456 
457 /*
458  *	Set hardware to newly-selected media.
459  */
460 static int
461 jme_mediachange(struct ifnet *ifp)
462 {
463 	struct jme_softc *sc = ifp->if_softc;
464 	struct mii_data *mii = device_get_softc(sc->jme_miibus);
465 	int error;
466 
467 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
468 
469 	if (mii->mii_instance != 0) {
470 		struct mii_softc *miisc;
471 
472 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
473 			mii_phy_reset(miisc);
474 	}
475 	error = mii_mediachg(mii);
476 
477 	return (error);
478 }
479 
480 static int
481 jme_probe(device_t dev)
482 {
483 	const struct jme_dev *sp;
484 	uint16_t vid, did;
485 
486 	vid = pci_get_vendor(dev);
487 	did = pci_get_device(dev);
488 	for (sp = jme_devs; sp->jme_name != NULL; ++sp) {
489 		if (vid == sp->jme_vendorid && did == sp->jme_deviceid) {
490 			struct jme_softc *sc = device_get_softc(dev);
491 
492 			sc->jme_caps = sp->jme_caps;
493 			device_set_desc(dev, sp->jme_name);
494 			return (0);
495 		}
496 	}
497 	return (ENXIO);
498 }
499 
500 static int
501 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
502 {
503 	uint32_t reg;
504 	int i;
505 
506 	*val = 0;
507 	for (i = JME_TIMEOUT; i > 0; i--) {
508 		reg = CSR_READ_4(sc, JME_SMBCSR);
509 		if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
510 			break;
511 		DELAY(1);
512 	}
513 
514 	if (i == 0) {
515 		device_printf(sc->jme_dev, "EEPROM idle timeout!\n");
516 		return (ETIMEDOUT);
517 	}
518 
519 	reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
520 	CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
521 	for (i = JME_TIMEOUT; i > 0; i--) {
522 		DELAY(1);
523 		reg = CSR_READ_4(sc, JME_SMBINTF);
524 		if ((reg & SMBINTF_CMD_TRIGGER) == 0)
525 			break;
526 	}
527 
528 	if (i == 0) {
529 		device_printf(sc->jme_dev, "EEPROM read timeout!\n");
530 		return (ETIMEDOUT);
531 	}
532 
533 	reg = CSR_READ_4(sc, JME_SMBINTF);
534 	*val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
535 
536 	return (0);
537 }
538 
539 static int
540 jme_eeprom_macaddr(struct jme_softc *sc, uint8_t eaddr[])
541 {
542 	uint8_t fup, reg, val;
543 	uint32_t offset;
544 	int match;
545 
546 	offset = 0;
547 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
548 	    fup != JME_EEPROM_SIG0)
549 		return (ENOENT);
550 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
551 	    fup != JME_EEPROM_SIG1)
552 		return (ENOENT);
553 	match = 0;
554 	do {
555 		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
556 			break;
557 		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) ==
558 		    (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
559 			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
560 				break;
561 			if (reg >= JME_PAR0 &&
562 			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
563 				if (jme_eeprom_read_byte(sc, offset + 2,
564 				    &val) != 0)
565 					break;
566 				eaddr[reg - JME_PAR0] = val;
567 				match++;
568 			}
569 		}
570 		/* Check for the end of EEPROM descriptor. */
571 		if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
572 			break;
573 		/* Try next eeprom descriptor. */
574 		offset += JME_EEPROM_DESC_BYTES;
575 	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
576 
577 	if (match == ETHER_ADDR_LEN)
578 		return (0);
579 
580 	return (ENOENT);
581 }
582 
583 static void
584 jme_reg_macaddr(struct jme_softc *sc, uint8_t eaddr[])
585 {
586 	uint32_t par0, par1;
587 
588 	/* Read station address. */
589 	par0 = CSR_READ_4(sc, JME_PAR0);
590 	par1 = CSR_READ_4(sc, JME_PAR1);
591 	par1 &= 0xFFFF;
592 	if ((par0 == 0 && par1 == 0) || (par0 & 0x1)) {
593 		device_printf(sc->jme_dev,
594 		    "generating fake ethernet address.\n");
595 		par0 = karc4random();
596 		/* Set OUI to JMicron. */
597 		eaddr[0] = 0x00;
598 		eaddr[1] = 0x1B;
599 		eaddr[2] = 0x8C;
600 		eaddr[3] = (par0 >> 16) & 0xff;
601 		eaddr[4] = (par0 >> 8) & 0xff;
602 		eaddr[5] = par0 & 0xff;
603 	} else {
604 		eaddr[0] = (par0 >> 0) & 0xFF;
605 		eaddr[1] = (par0 >> 8) & 0xFF;
606 		eaddr[2] = (par0 >> 16) & 0xFF;
607 		eaddr[3] = (par0 >> 24) & 0xFF;
608 		eaddr[4] = (par1 >> 0) & 0xFF;
609 		eaddr[5] = (par1 >> 8) & 0xFF;
610 	}
611 }
612 
613 static int
614 jme_attach(device_t dev)
615 {
616 	struct jme_softc *sc = device_get_softc(dev);
617 	struct ifnet *ifp = &sc->arpcom.ac_if;
618 	uint32_t reg;
619 	uint16_t did;
620 	uint8_t pcie_ptr, rev;
621 	int error = 0, i, j;
622 	uint8_t eaddr[ETHER_ADDR_LEN];
623 	u_int irq_flags;
624 
625 	lwkt_serialize_init(&sc->jme_serialize);
626 	lwkt_serialize_init(&sc->jme_cdata.jme_tx_serialize);
627 	for (i = 0; i < JME_NRXRING_MAX; ++i) {
628 		lwkt_serialize_init(
629 		    &sc->jme_cdata.jme_rx_data[i].jme_rx_serialize);
630 	}
631 
632 	sc->jme_rx_desc_cnt = roundup(jme_rx_desc_count, JME_NDESC_ALIGN);
633 	if (sc->jme_rx_desc_cnt > JME_NDESC_MAX)
634 		sc->jme_rx_desc_cnt = JME_NDESC_MAX;
635 
636 	sc->jme_tx_desc_cnt = roundup(jme_tx_desc_count, JME_NDESC_ALIGN);
637 	if (sc->jme_tx_desc_cnt > JME_NDESC_MAX)
638 		sc->jme_tx_desc_cnt = JME_NDESC_MAX;
639 
640 	/*
641 	 * Calculate rx rings based on ncpus2
642 	 */
643 	sc->jme_rx_ring_cnt = jme_rx_ring_count;
644 	if (sc->jme_rx_ring_cnt <= 0)
645 		sc->jme_rx_ring_cnt = JME_NRXRING_1;
646 	if (sc->jme_rx_ring_cnt > ncpus2)
647 		sc->jme_rx_ring_cnt = ncpus2;
648 
649 	if (sc->jme_rx_ring_cnt >= JME_NRXRING_4)
650 		sc->jme_rx_ring_cnt = JME_NRXRING_4;
651 	else if (sc->jme_rx_ring_cnt >= JME_NRXRING_2)
652 		sc->jme_rx_ring_cnt = JME_NRXRING_2;
653 	sc->jme_rx_ring_inuse = sc->jme_rx_ring_cnt;
654 
655 	i = 0;
656 	sc->jme_serialize_arr[i++] = &sc->jme_serialize;
657 	sc->jme_serialize_arr[i++] = &sc->jme_cdata.jme_tx_serialize;
658 	for (j = 0; j < sc->jme_rx_ring_cnt; ++j) {
659 		sc->jme_serialize_arr[i++] =
660 		    &sc->jme_cdata.jme_rx_data[j].jme_rx_serialize;
661 	}
662 	KKASSERT(i <= JME_NSERIALIZE);
663 	sc->jme_serialize_cnt = i;
664 
665 	sc->jme_dev = dev;
666 	sc->jme_lowaddr = BUS_SPACE_MAXADDR;
667 
668 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
669 
670 	callout_init(&sc->jme_tick_ch);
671 
672 #ifndef BURN_BRIDGES
673 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
674 		uint32_t irq, mem;
675 
676 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
677 		mem = pci_read_config(dev, JME_PCIR_BAR, 4);
678 
679 		device_printf(dev, "chip is in D%d power mode "
680 		    "-- setting to D0\n", pci_get_powerstate(dev));
681 
682 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
683 
684 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
685 		pci_write_config(dev, JME_PCIR_BAR, mem, 4);
686 	}
687 #endif	/* !BURN_BRIDGE */
688 
689 	/* Enable bus mastering */
690 	pci_enable_busmaster(dev);
691 
692 	/*
693 	 * Allocate IO memory
694 	 *
695 	 * JMC250 supports both memory mapped and I/O register space
696 	 * access.  Because I/O register access should use different
697 	 * BARs to access registers it's waste of time to use I/O
698 	 * register spce access.  JMC250 uses 16K to map entire memory
699 	 * space.
700 	 */
701 	sc->jme_mem_rid = JME_PCIR_BAR;
702 	sc->jme_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
703 						 &sc->jme_mem_rid, RF_ACTIVE);
704 	if (sc->jme_mem_res == NULL) {
705 		device_printf(dev, "can't allocate IO memory\n");
706 		return ENXIO;
707 	}
708 	sc->jme_mem_bt = rman_get_bustag(sc->jme_mem_res);
709 	sc->jme_mem_bh = rman_get_bushandle(sc->jme_mem_res);
710 
711 	/*
712 	 * Allocate IRQ
713 	 */
714 	sc->jme_irq_type = pci_alloc_1intr(dev, jme_msi_enable,
715 	    &sc->jme_irq_rid, &irq_flags);
716 
717 	sc->jme_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
718 	    &sc->jme_irq_rid, irq_flags);
719 	if (sc->jme_irq_res == NULL) {
720 		device_printf(dev, "can't allocate irq\n");
721 		error = ENXIO;
722 		goto fail;
723 	}
724 
725 	/*
726 	 * Extract revisions
727 	 */
728 	reg = CSR_READ_4(sc, JME_CHIPMODE);
729 	if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
730 	    CHIPMODE_NOT_FPGA) {
731 		sc->jme_caps |= JME_CAP_FPGA;
732 		if (bootverbose) {
733 			device_printf(dev, "FPGA revision: 0x%04x\n",
734 				      (reg & CHIPMODE_FPGA_REV_MASK) >>
735 				      CHIPMODE_FPGA_REV_SHIFT);
736 		}
737 	}
738 
739 	/* NOTE: FM revision is put in the upper 4 bits */
740 	rev = ((reg & CHIPMODE_REVFM_MASK) >> CHIPMODE_REVFM_SHIFT) << 4;
741 	rev |= (reg & CHIPMODE_REVECO_MASK) >> CHIPMODE_REVECO_SHIFT;
742 	if (bootverbose)
743 		device_printf(dev, "Revision (FM/ECO): 0x%02x\n", rev);
744 
745 	did = pci_get_device(dev);
746 	switch (did) {
747 	case PCI_PRODUCT_JMICRON_JMC250:
748 		if (rev == JME_REV1_A2)
749 			sc->jme_workaround |= JME_WA_EXTFIFO | JME_WA_HDX;
750 		break;
751 
752 	case PCI_PRODUCT_JMICRON_JMC260:
753 		if (rev == JME_REV2)
754 			sc->jme_lowaddr = BUS_SPACE_MAXADDR_32BIT;
755 		break;
756 
757 	default:
758 		panic("unknown device id 0x%04x\n", did);
759 	}
760 	if (rev >= JME_REV2) {
761 		sc->jme_clksrc = GHC_TXOFL_CLKSRC | GHC_TXMAC_CLKSRC;
762 		sc->jme_clksrc_1000 = GHC_TXOFL_CLKSRC_1000 |
763 				      GHC_TXMAC_CLKSRC_1000;
764 	}
765 
766 	/* Reset the ethernet controller. */
767 	jme_reset(sc);
768 
769 	/* Get station address. */
770 	reg = CSR_READ_4(sc, JME_SMBCSR);
771 	if (reg & SMBCSR_EEPROM_PRESENT)
772 		error = jme_eeprom_macaddr(sc, eaddr);
773 	if (error != 0 || (reg & SMBCSR_EEPROM_PRESENT) == 0) {
774 		if (error != 0 && (bootverbose)) {
775 			device_printf(dev, "ethernet hardware address "
776 				      "not found in EEPROM.\n");
777 		}
778 		jme_reg_macaddr(sc, eaddr);
779 	}
780 
781 	/*
782 	 * Save PHY address.
783 	 * Integrated JR0211 has fixed PHY address whereas FPGA version
784 	 * requires PHY probing to get correct PHY address.
785 	 */
786 	if ((sc->jme_caps & JME_CAP_FPGA) == 0) {
787 		sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
788 		    GPREG0_PHY_ADDR_MASK;
789 		if (bootverbose) {
790 			device_printf(dev, "PHY is at address %d.\n",
791 			    sc->jme_phyaddr);
792 		}
793 	} else {
794 		sc->jme_phyaddr = 0;
795 	}
796 
797 	/* Set max allowable DMA size. */
798 	pcie_ptr = pci_get_pciecap_ptr(dev);
799 	if (pcie_ptr != 0) {
800 		uint16_t ctrl;
801 
802 		sc->jme_caps |= JME_CAP_PCIE;
803 		ctrl = pci_read_config(dev, pcie_ptr + PCIER_DEVCTRL, 2);
804 		if (bootverbose) {
805 			device_printf(dev, "Read request size : %d bytes.\n",
806 			    128 << ((ctrl >> 12) & 0x07));
807 			device_printf(dev, "TLP payload size : %d bytes.\n",
808 			    128 << ((ctrl >> 5) & 0x07));
809 		}
810 		switch (ctrl & PCIEM_DEVCTL_MAX_READRQ_MASK) {
811 		case PCIEM_DEVCTL_MAX_READRQ_128:
812 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128;
813 			break;
814 		case PCIEM_DEVCTL_MAX_READRQ_256:
815 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256;
816 			break;
817 		default:
818 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
819 			break;
820 		}
821 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
822 	} else {
823 		sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
824 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
825 	}
826 
827 #ifdef notyet
828 	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0)
829 		sc->jme_caps |= JME_CAP_PMCAP;
830 #endif
831 
832 	/*
833 	 * Create sysctl tree
834 	 */
835 	jme_sysctl_node(sc);
836 
837 	/* Allocate DMA stuffs */
838 	error = jme_dma_alloc(sc);
839 	if (error)
840 		goto fail;
841 
842 	ifp->if_softc = sc;
843 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
844 	ifp->if_init = jme_init;
845 	ifp->if_ioctl = jme_ioctl;
846 	ifp->if_start = jme_start;
847 #ifdef DEVICE_POLLING
848 	ifp->if_poll = jme_poll;
849 #endif
850 	ifp->if_watchdog = jme_watchdog;
851 	ifp->if_serialize = jme_serialize;
852 	ifp->if_deserialize = jme_deserialize;
853 	ifp->if_tryserialize = jme_tryserialize;
854 #ifdef INVARIANTS
855 	ifp->if_serialize_assert = jme_serialize_assert;
856 #endif
857 	ifq_set_maxlen(&ifp->if_snd, sc->jme_tx_desc_cnt - JME_TXD_RSVD);
858 	ifq_set_ready(&ifp->if_snd);
859 
860 	/* JMC250 supports Tx/Rx checksum offload and hardware vlan tagging. */
861 	ifp->if_capabilities = IFCAP_HWCSUM |
862 			       IFCAP_VLAN_MTU |
863 			       IFCAP_VLAN_HWTAGGING;
864 	if (sc->jme_rx_ring_cnt > JME_NRXRING_MIN)
865 		ifp->if_capabilities |= IFCAP_RSS;
866 	ifp->if_capenable = ifp->if_capabilities;
867 
868 	/*
869 	 * Disable TXCSUM by default to improve bulk data
870 	 * transmit performance (+20Mbps improvement).
871 	 */
872 	ifp->if_capenable &= ~IFCAP_TXCSUM;
873 
874 	if (ifp->if_capenable & IFCAP_TXCSUM)
875 		ifp->if_hwassist = JME_CSUM_FEATURES;
876 
877 	/* Set up MII bus. */
878 	error = mii_phy_probe(dev, &sc->jme_miibus,
879 			      jme_mediachange, jme_mediastatus);
880 	if (error) {
881 		device_printf(dev, "no PHY found!\n");
882 		goto fail;
883 	}
884 
885 	/*
886 	 * Save PHYADDR for FPGA mode PHY.
887 	 */
888 	if (sc->jme_caps & JME_CAP_FPGA) {
889 		struct mii_data *mii = device_get_softc(sc->jme_miibus);
890 
891 		if (mii->mii_instance != 0) {
892 			struct mii_softc *miisc;
893 
894 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
895 				if (miisc->mii_phy != 0) {
896 					sc->jme_phyaddr = miisc->mii_phy;
897 					break;
898 				}
899 			}
900 			if (sc->jme_phyaddr != 0) {
901 				device_printf(sc->jme_dev,
902 				    "FPGA PHY is at %d\n", sc->jme_phyaddr);
903 				/* vendor magic. */
904 				jme_miibus_writereg(dev, sc->jme_phyaddr,
905 				    JMPHY_CONF, JMPHY_CONF_DEFFIFO);
906 
907 				/* XXX should we clear JME_WA_EXTFIFO */
908 			}
909 		}
910 	}
911 
912 	ether_ifattach(ifp, eaddr, NULL);
913 
914 	/* Tell the upper layer(s) we support long frames. */
915 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
916 
917 	error = bus_setup_intr(dev, sc->jme_irq_res, INTR_MPSAFE, jme_intr, sc,
918 			       &sc->jme_irq_handle, &sc->jme_serialize);
919 	if (error) {
920 		device_printf(dev, "could not set up interrupt handler.\n");
921 		ether_ifdetach(ifp);
922 		goto fail;
923 	}
924 
925 	ifp->if_cpuid = rman_get_cpuid(sc->jme_irq_res);
926 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
927 	return 0;
928 fail:
929 	jme_detach(dev);
930 	return (error);
931 }
932 
933 static int
934 jme_detach(device_t dev)
935 {
936 	struct jme_softc *sc = device_get_softc(dev);
937 
938 	if (device_is_attached(dev)) {
939 		struct ifnet *ifp = &sc->arpcom.ac_if;
940 
941 		ifnet_serialize_all(ifp);
942 		jme_stop(sc);
943 		bus_teardown_intr(dev, sc->jme_irq_res, sc->jme_irq_handle);
944 		ifnet_deserialize_all(ifp);
945 
946 		ether_ifdetach(ifp);
947 	}
948 
949 	if (sc->jme_sysctl_tree != NULL)
950 		sysctl_ctx_free(&sc->jme_sysctl_ctx);
951 
952 	if (sc->jme_miibus != NULL)
953 		device_delete_child(dev, sc->jme_miibus);
954 	bus_generic_detach(dev);
955 
956 	if (sc->jme_irq_res != NULL) {
957 		bus_release_resource(dev, SYS_RES_IRQ, sc->jme_irq_rid,
958 				     sc->jme_irq_res);
959 	}
960 	if (sc->jme_irq_type == PCI_INTR_TYPE_MSI)
961 		pci_release_msi(dev);
962 
963 	if (sc->jme_mem_res != NULL) {
964 		bus_release_resource(dev, SYS_RES_MEMORY, sc->jme_mem_rid,
965 				     sc->jme_mem_res);
966 	}
967 
968 	jme_dma_free(sc);
969 
970 	return (0);
971 }
972 
973 static void
974 jme_sysctl_node(struct jme_softc *sc)
975 {
976 	int coal_max;
977 #ifdef JME_RSS_DEBUG
978 	char rx_ring_pkt[32];
979 	int r;
980 #endif
981 
982 	sysctl_ctx_init(&sc->jme_sysctl_ctx);
983 	sc->jme_sysctl_tree = SYSCTL_ADD_NODE(&sc->jme_sysctl_ctx,
984 				SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
985 				device_get_nameunit(sc->jme_dev),
986 				CTLFLAG_RD, 0, "");
987 	if (sc->jme_sysctl_tree == NULL) {
988 		device_printf(sc->jme_dev, "can't add sysctl node\n");
989 		return;
990 	}
991 
992 	SYSCTL_ADD_PROC(&sc->jme_sysctl_ctx,
993 	    SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
994 	    "tx_coal_to", CTLTYPE_INT | CTLFLAG_RW,
995 	    sc, 0, jme_sysctl_tx_coal_to, "I", "jme tx coalescing timeout");
996 
997 	SYSCTL_ADD_PROC(&sc->jme_sysctl_ctx,
998 	    SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
999 	    "tx_coal_pkt", CTLTYPE_INT | CTLFLAG_RW,
1000 	    sc, 0, jme_sysctl_tx_coal_pkt, "I", "jme tx coalescing packet");
1001 
1002 	SYSCTL_ADD_PROC(&sc->jme_sysctl_ctx,
1003 	    SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1004 	    "rx_coal_to", CTLTYPE_INT | CTLFLAG_RW,
1005 	    sc, 0, jme_sysctl_rx_coal_to, "I", "jme rx coalescing timeout");
1006 
1007 	SYSCTL_ADD_PROC(&sc->jme_sysctl_ctx,
1008 	    SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1009 	    "rx_coal_pkt", CTLTYPE_INT | CTLFLAG_RW,
1010 	    sc, 0, jme_sysctl_rx_coal_pkt, "I", "jme rx coalescing packet");
1011 
1012 	SYSCTL_ADD_INT(&sc->jme_sysctl_ctx,
1013 		       SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1014 		       "rx_desc_count", CTLFLAG_RD, &sc->jme_rx_desc_cnt,
1015 		       0, "RX desc count");
1016 	SYSCTL_ADD_INT(&sc->jme_sysctl_ctx,
1017 		       SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1018 		       "tx_desc_count", CTLFLAG_RD, &sc->jme_tx_desc_cnt,
1019 		       0, "TX desc count");
1020 	SYSCTL_ADD_INT(&sc->jme_sysctl_ctx,
1021 		       SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1022 		       "rx_ring_count", CTLFLAG_RD, &sc->jme_rx_ring_cnt,
1023 		       0, "RX ring count");
1024 	SYSCTL_ADD_INT(&sc->jme_sysctl_ctx,
1025 		       SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1026 		       "rx_ring_inuse", CTLFLAG_RD, &sc->jme_rx_ring_inuse,
1027 		       0, "RX ring in use");
1028 #ifdef JME_RSS_DEBUG
1029 	SYSCTL_ADD_INT(&sc->jme_sysctl_ctx,
1030 		       SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1031 		       "rss_debug", CTLFLAG_RW, &sc->jme_rss_debug,
1032 		       0, "RSS debug level");
1033 	for (r = 0; r < sc->jme_rx_ring_cnt; ++r) {
1034 		ksnprintf(rx_ring_pkt, sizeof(rx_ring_pkt), "rx_ring%d_pkt", r);
1035 		SYSCTL_ADD_UINT(&sc->jme_sysctl_ctx,
1036 				SYSCTL_CHILDREN(sc->jme_sysctl_tree), OID_AUTO,
1037 				rx_ring_pkt, CTLFLAG_RW,
1038 				&sc->jme_rx_ring_pkt[r],
1039 				0, "RXed packets");
1040 	}
1041 #endif
1042 
1043 	/*
1044 	 * Set default coalesce valves
1045 	 */
1046 	sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1047 	sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1048 	sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1049 	sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1050 
1051 	/*
1052 	 * Adjust coalesce valves, in case that the number of TX/RX
1053 	 * descs are set to small values by users.
1054 	 *
1055 	 * NOTE: coal_max will not be zero, since number of descs
1056 	 * must aligned by JME_NDESC_ALIGN (16 currently)
1057 	 */
1058 	coal_max = sc->jme_tx_desc_cnt / 6;
1059 	if (coal_max < sc->jme_tx_coal_pkt)
1060 		sc->jme_tx_coal_pkt = coal_max;
1061 
1062 	coal_max = sc->jme_rx_desc_cnt / 4;
1063 	if (coal_max < sc->jme_rx_coal_pkt)
1064 		sc->jme_rx_coal_pkt = coal_max;
1065 }
1066 
1067 static int
1068 jme_dma_alloc(struct jme_softc *sc)
1069 {
1070 	struct jme_txdesc *txd;
1071 	bus_dmamem_t dmem;
1072 	int error, i;
1073 
1074 	sc->jme_cdata.jme_txdesc =
1075 	kmalloc(sc->jme_tx_desc_cnt * sizeof(struct jme_txdesc),
1076 		M_DEVBUF, M_WAITOK | M_ZERO);
1077 	for (i = 0; i < sc->jme_rx_ring_cnt; ++i) {
1078 		sc->jme_cdata.jme_rx_data[i].jme_rxdesc =
1079 		kmalloc(sc->jme_rx_desc_cnt * sizeof(struct jme_rxdesc),
1080 			M_DEVBUF, M_WAITOK | M_ZERO);
1081 	}
1082 
1083 	/* Create parent ring tag. */
1084 	error = bus_dma_tag_create(NULL,/* parent */
1085 	    1, JME_RING_BOUNDARY,	/* algnmnt, boundary */
1086 	    sc->jme_lowaddr,		/* lowaddr */
1087 	    BUS_SPACE_MAXADDR,		/* highaddr */
1088 	    NULL, NULL,			/* filter, filterarg */
1089 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1090 	    0,				/* nsegments */
1091 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1092 	    0,				/* flags */
1093 	    &sc->jme_cdata.jme_ring_tag);
1094 	if (error) {
1095 		device_printf(sc->jme_dev,
1096 		    "could not create parent ring DMA tag.\n");
1097 		return error;
1098 	}
1099 
1100 	/*
1101 	 * Create DMA stuffs for TX ring
1102 	 */
1103 	error = bus_dmamem_coherent(sc->jme_cdata.jme_ring_tag,
1104 			JME_TX_RING_ALIGN, 0,
1105 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1106 			JME_TX_RING_SIZE(sc),
1107 			BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
1108 	if (error) {
1109 		device_printf(sc->jme_dev, "could not allocate Tx ring.\n");
1110 		return error;
1111 	}
1112 	sc->jme_cdata.jme_tx_ring_tag = dmem.dmem_tag;
1113 	sc->jme_cdata.jme_tx_ring_map = dmem.dmem_map;
1114 	sc->jme_cdata.jme_tx_ring = dmem.dmem_addr;
1115 	sc->jme_cdata.jme_tx_ring_paddr = dmem.dmem_busaddr;
1116 
1117 	/*
1118 	 * Create DMA stuffs for RX rings
1119 	 */
1120 	for (i = 0; i < sc->jme_rx_ring_cnt; ++i) {
1121 		error = jme_rxring_dma_alloc(sc, i);
1122 		if (error)
1123 			return error;
1124 	}
1125 
1126 	/* Create parent buffer tag. */
1127 	error = bus_dma_tag_create(NULL,/* parent */
1128 	    1, 0,			/* algnmnt, boundary */
1129 	    sc->jme_lowaddr,		/* lowaddr */
1130 	    BUS_SPACE_MAXADDR,		/* highaddr */
1131 	    NULL, NULL,			/* filter, filterarg */
1132 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1133 	    0,				/* nsegments */
1134 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1135 	    0,				/* flags */
1136 	    &sc->jme_cdata.jme_buffer_tag);
1137 	if (error) {
1138 		device_printf(sc->jme_dev,
1139 		    "could not create parent buffer DMA tag.\n");
1140 		return error;
1141 	}
1142 
1143 	/*
1144 	 * Create DMA stuffs for shadow status block
1145 	 */
1146 	error = bus_dmamem_coherent(sc->jme_cdata.jme_buffer_tag,
1147 			JME_SSB_ALIGN, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1148 			JME_SSB_SIZE, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
1149 	if (error) {
1150 		device_printf(sc->jme_dev,
1151 		    "could not create shadow status block.\n");
1152 		return error;
1153 	}
1154 	sc->jme_cdata.jme_ssb_tag = dmem.dmem_tag;
1155 	sc->jme_cdata.jme_ssb_map = dmem.dmem_map;
1156 	sc->jme_cdata.jme_ssb_block = dmem.dmem_addr;
1157 	sc->jme_cdata.jme_ssb_block_paddr = dmem.dmem_busaddr;
1158 
1159 	/*
1160 	 * Create DMA stuffs for TX buffers
1161 	 */
1162 
1163 	/* Create tag for Tx buffers. */
1164 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1165 	    1, 0,			/* algnmnt, boundary */
1166 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1167 	    BUS_SPACE_MAXADDR,		/* highaddr */
1168 	    NULL, NULL,			/* filter, filterarg */
1169 	    JME_JUMBO_FRAMELEN,		/* maxsize */
1170 	    JME_MAXTXSEGS,		/* nsegments */
1171 	    JME_MAXSEGSIZE,		/* maxsegsize */
1172 	    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,/* flags */
1173 	    &sc->jme_cdata.jme_tx_tag);
1174 	if (error != 0) {
1175 		device_printf(sc->jme_dev, "could not create Tx DMA tag.\n");
1176 		return error;
1177 	}
1178 
1179 	/* Create DMA maps for Tx buffers. */
1180 	for (i = 0; i < sc->jme_tx_desc_cnt; i++) {
1181 		txd = &sc->jme_cdata.jme_txdesc[i];
1182 		error = bus_dmamap_create(sc->jme_cdata.jme_tx_tag,
1183 				BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1184 				&txd->tx_dmamap);
1185 		if (error) {
1186 			int j;
1187 
1188 			device_printf(sc->jme_dev,
1189 			    "could not create %dth Tx dmamap.\n", i);
1190 
1191 			for (j = 0; j < i; ++j) {
1192 				txd = &sc->jme_cdata.jme_txdesc[j];
1193 				bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag,
1194 						   txd->tx_dmamap);
1195 			}
1196 			bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag);
1197 			sc->jme_cdata.jme_tx_tag = NULL;
1198 			return error;
1199 		}
1200 	}
1201 
1202 	/*
1203 	 * Create DMA stuffs for RX buffers
1204 	 */
1205 	for (i = 0; i < sc->jme_rx_ring_cnt; ++i) {
1206 		error = jme_rxbuf_dma_alloc(sc, i);
1207 		if (error)
1208 			return error;
1209 	}
1210 	return 0;
1211 }
1212 
1213 static void
1214 jme_dma_free(struct jme_softc *sc)
1215 {
1216 	struct jme_txdesc *txd;
1217 	struct jme_rxdesc *rxd;
1218 	struct jme_rxdata *rdata;
1219 	int i, r;
1220 
1221 	/* Tx ring */
1222 	if (sc->jme_cdata.jme_tx_ring_tag != NULL) {
1223 		bus_dmamap_unload(sc->jme_cdata.jme_tx_ring_tag,
1224 		    sc->jme_cdata.jme_tx_ring_map);
1225 		bus_dmamem_free(sc->jme_cdata.jme_tx_ring_tag,
1226 		    sc->jme_cdata.jme_tx_ring,
1227 		    sc->jme_cdata.jme_tx_ring_map);
1228 		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_ring_tag);
1229 		sc->jme_cdata.jme_tx_ring_tag = NULL;
1230 	}
1231 
1232 	/* Rx ring */
1233 	for (r = 0; r < sc->jme_rx_ring_cnt; ++r) {
1234 		rdata = &sc->jme_cdata.jme_rx_data[r];
1235 		if (rdata->jme_rx_ring_tag != NULL) {
1236 			bus_dmamap_unload(rdata->jme_rx_ring_tag,
1237 					  rdata->jme_rx_ring_map);
1238 			bus_dmamem_free(rdata->jme_rx_ring_tag,
1239 					rdata->jme_rx_ring,
1240 					rdata->jme_rx_ring_map);
1241 			bus_dma_tag_destroy(rdata->jme_rx_ring_tag);
1242 			rdata->jme_rx_ring_tag = NULL;
1243 		}
1244 	}
1245 
1246 	/* Tx buffers */
1247 	if (sc->jme_cdata.jme_tx_tag != NULL) {
1248 		for (i = 0; i < sc->jme_tx_desc_cnt; i++) {
1249 			txd = &sc->jme_cdata.jme_txdesc[i];
1250 			bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag,
1251 			    txd->tx_dmamap);
1252 		}
1253 		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag);
1254 		sc->jme_cdata.jme_tx_tag = NULL;
1255 	}
1256 
1257 	/* Rx buffers */
1258 	for (r = 0; r < sc->jme_rx_ring_cnt; ++r) {
1259 		rdata = &sc->jme_cdata.jme_rx_data[r];
1260 		if (rdata->jme_rx_tag != NULL) {
1261 			for (i = 0; i < sc->jme_rx_desc_cnt; i++) {
1262 				rxd = &rdata->jme_rxdesc[i];
1263 				bus_dmamap_destroy(rdata->jme_rx_tag,
1264 						   rxd->rx_dmamap);
1265 			}
1266 			bus_dmamap_destroy(rdata->jme_rx_tag,
1267 					   rdata->jme_rx_sparemap);
1268 			bus_dma_tag_destroy(rdata->jme_rx_tag);
1269 			rdata->jme_rx_tag = NULL;
1270 		}
1271 	}
1272 
1273 	/* Shadow status block. */
1274 	if (sc->jme_cdata.jme_ssb_tag != NULL) {
1275 		bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag,
1276 		    sc->jme_cdata.jme_ssb_map);
1277 		bus_dmamem_free(sc->jme_cdata.jme_ssb_tag,
1278 		    sc->jme_cdata.jme_ssb_block,
1279 		    sc->jme_cdata.jme_ssb_map);
1280 		bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag);
1281 		sc->jme_cdata.jme_ssb_tag = NULL;
1282 	}
1283 
1284 	if (sc->jme_cdata.jme_buffer_tag != NULL) {
1285 		bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag);
1286 		sc->jme_cdata.jme_buffer_tag = NULL;
1287 	}
1288 	if (sc->jme_cdata.jme_ring_tag != NULL) {
1289 		bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag);
1290 		sc->jme_cdata.jme_ring_tag = NULL;
1291 	}
1292 
1293 	if (sc->jme_cdata.jme_txdesc != NULL) {
1294 		kfree(sc->jme_cdata.jme_txdesc, M_DEVBUF);
1295 		sc->jme_cdata.jme_txdesc = NULL;
1296 	}
1297 	for (r = 0; r < sc->jme_rx_ring_cnt; ++r) {
1298 		rdata = &sc->jme_cdata.jme_rx_data[r];
1299 		if (rdata->jme_rxdesc != NULL) {
1300 			kfree(rdata->jme_rxdesc, M_DEVBUF);
1301 			rdata->jme_rxdesc = NULL;
1302 		}
1303 	}
1304 }
1305 
1306 /*
1307  *	Make sure the interface is stopped at reboot time.
1308  */
1309 static int
1310 jme_shutdown(device_t dev)
1311 {
1312 	return jme_suspend(dev);
1313 }
1314 
1315 #ifdef notyet
1316 /*
1317  * Unlike other ethernet controllers, JMC250 requires
1318  * explicit resetting link speed to 10/100Mbps as gigabit
1319  * link will cunsume more power than 375mA.
1320  * Note, we reset the link speed to 10/100Mbps with
1321  * auto-negotiation but we don't know whether that operation
1322  * would succeed or not as we have no control after powering
1323  * off. If the renegotiation fail WOL may not work. Running
1324  * at 1Gbps draws more power than 375mA at 3.3V which is
1325  * specified in PCI specification and that would result in
1326  * complete shutdowning power to ethernet controller.
1327  *
1328  * TODO
1329  *  Save current negotiated media speed/duplex/flow-control
1330  *  to softc and restore the same link again after resuming.
1331  *  PHY handling such as power down/resetting to 100Mbps
1332  *  may be better handled in suspend method in phy driver.
1333  */
1334 static void
1335 jme_setlinkspeed(struct jme_softc *sc)
1336 {
1337 	struct mii_data *mii;
1338 	int aneg, i;
1339 
1340 	JME_LOCK_ASSERT(sc);
1341 
1342 	mii = device_get_softc(sc->jme_miibus);
1343 	mii_pollstat(mii);
1344 	aneg = 0;
1345 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1346 		switch IFM_SUBTYPE(mii->mii_media_active) {
1347 		case IFM_10_T:
1348 		case IFM_100_TX:
1349 			return;
1350 		case IFM_1000_T:
1351 			aneg++;
1352 		default:
1353 			break;
1354 		}
1355 	}
1356 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0);
1357 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR,
1358 	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1359 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR,
1360 	    BMCR_AUTOEN | BMCR_STARTNEG);
1361 	DELAY(1000);
1362 	if (aneg != 0) {
1363 		/* Poll link state until jme(4) get a 10/100 link. */
1364 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1365 			mii_pollstat(mii);
1366 			if ((mii->mii_media_status & IFM_AVALID) != 0) {
1367 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
1368 				case IFM_10_T:
1369 				case IFM_100_TX:
1370 					jme_mac_config(sc);
1371 					return;
1372 				default:
1373 					break;
1374 				}
1375 			}
1376 			JME_UNLOCK(sc);
1377 			pause("jmelnk", hz);
1378 			JME_LOCK(sc);
1379 		}
1380 		if (i == MII_ANEGTICKS_GIGE)
1381 			device_printf(sc->jme_dev, "establishing link failed, "
1382 			    "WOL may not work!");
1383 	}
1384 	/*
1385 	 * No link, force MAC to have 100Mbps, full-duplex link.
1386 	 * This is the last resort and may/may not work.
1387 	 */
1388 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1389 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1390 	jme_mac_config(sc);
1391 }
1392 
1393 static void
1394 jme_setwol(struct jme_softc *sc)
1395 {
1396 	struct ifnet *ifp = &sc->arpcom.ac_if;
1397 	uint32_t gpr, pmcs;
1398 	uint16_t pmstat;
1399 	int pmc;
1400 
1401 	if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1402 		/* No PME capability, PHY power down. */
1403 		jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
1404 		    MII_BMCR, BMCR_PDOWN);
1405 		return;
1406 	}
1407 
1408 	gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
1409 	pmcs = CSR_READ_4(sc, JME_PMCS);
1410 	pmcs &= ~PMCS_WOL_ENB_MASK;
1411 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1412 		pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
1413 		/* Enable PME message. */
1414 		gpr |= GPREG0_PME_ENB;
1415 		/* For gigabit controllers, reset link speed to 10/100. */
1416 		if ((sc->jme_caps & JME_CAP_FASTETH) == 0)
1417 			jme_setlinkspeed(sc);
1418 	}
1419 
1420 	CSR_WRITE_4(sc, JME_PMCS, pmcs);
1421 	CSR_WRITE_4(sc, JME_GPREG0, gpr);
1422 
1423 	/* Request PME. */
1424 	pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2);
1425 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1426 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1427 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1428 	pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1429 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1430 		/* No WOL, PHY power down. */
1431 		jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
1432 		    MII_BMCR, BMCR_PDOWN);
1433 	}
1434 }
1435 #endif
1436 
1437 static int
1438 jme_suspend(device_t dev)
1439 {
1440 	struct jme_softc *sc = device_get_softc(dev);
1441 	struct ifnet *ifp = &sc->arpcom.ac_if;
1442 
1443 	ifnet_serialize_all(ifp);
1444 	jme_stop(sc);
1445 #ifdef notyet
1446 	jme_setwol(sc);
1447 #endif
1448 	ifnet_deserialize_all(ifp);
1449 
1450 	return (0);
1451 }
1452 
1453 static int
1454 jme_resume(device_t dev)
1455 {
1456 	struct jme_softc *sc = device_get_softc(dev);
1457 	struct ifnet *ifp = &sc->arpcom.ac_if;
1458 #ifdef notyet
1459 	int pmc;
1460 #endif
1461 
1462 	ifnet_serialize_all(ifp);
1463 
1464 #ifdef notyet
1465 	if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1466 		uint16_t pmstat;
1467 
1468 		pmstat = pci_read_config(sc->jme_dev,
1469 		    pmc + PCIR_POWER_STATUS, 2);
1470 		/* Disable PME clear PME status. */
1471 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1472 		pci_write_config(sc->jme_dev,
1473 		    pmc + PCIR_POWER_STATUS, pmstat, 2);
1474 	}
1475 #endif
1476 
1477 	if (ifp->if_flags & IFF_UP)
1478 		jme_init(sc);
1479 
1480 	ifnet_deserialize_all(ifp);
1481 
1482 	return (0);
1483 }
1484 
1485 static int
1486 jme_encap(struct jme_softc *sc, struct mbuf **m_head)
1487 {
1488 	struct jme_txdesc *txd;
1489 	struct jme_desc *desc;
1490 	struct mbuf *m;
1491 	bus_dma_segment_t txsegs[JME_MAXTXSEGS];
1492 	int maxsegs, nsegs;
1493 	int error, i, prod, symbol_desc;
1494 	uint32_t cflags, flag64;
1495 
1496 	M_ASSERTPKTHDR((*m_head));
1497 
1498 	prod = sc->jme_cdata.jme_tx_prod;
1499 	txd = &sc->jme_cdata.jme_txdesc[prod];
1500 
1501 	if (sc->jme_lowaddr != BUS_SPACE_MAXADDR_32BIT)
1502 		symbol_desc = 1;
1503 	else
1504 		symbol_desc = 0;
1505 
1506 	maxsegs = (sc->jme_tx_desc_cnt - sc->jme_cdata.jme_tx_cnt) -
1507 		  (JME_TXD_RSVD + symbol_desc);
1508 	if (maxsegs > JME_MAXTXSEGS)
1509 		maxsegs = JME_MAXTXSEGS;
1510 	KASSERT(maxsegs >= (sc->jme_txd_spare - symbol_desc),
1511 		("not enough segments %d\n", maxsegs));
1512 
1513 	error = bus_dmamap_load_mbuf_defrag(sc->jme_cdata.jme_tx_tag,
1514 			txd->tx_dmamap, m_head,
1515 			txsegs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1516 	if (error)
1517 		goto fail;
1518 
1519 	bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
1520 			BUS_DMASYNC_PREWRITE);
1521 
1522 	m = *m_head;
1523 	cflags = 0;
1524 
1525 	/* Configure checksum offload. */
1526 	if (m->m_pkthdr.csum_flags & CSUM_IP)
1527 		cflags |= JME_TD_IPCSUM;
1528 	if (m->m_pkthdr.csum_flags & CSUM_TCP)
1529 		cflags |= JME_TD_TCPCSUM;
1530 	if (m->m_pkthdr.csum_flags & CSUM_UDP)
1531 		cflags |= JME_TD_UDPCSUM;
1532 
1533 	/* Configure VLAN. */
1534 	if (m->m_flags & M_VLANTAG) {
1535 		cflags |= (m->m_pkthdr.ether_vlantag & JME_TD_VLAN_MASK);
1536 		cflags |= JME_TD_VLAN_TAG;
1537 	}
1538 
1539 	desc = &sc->jme_cdata.jme_tx_ring[prod];
1540 	desc->flags = htole32(cflags);
1541 	desc->addr_hi = htole32(m->m_pkthdr.len);
1542 	if (sc->jme_lowaddr != BUS_SPACE_MAXADDR_32BIT) {
1543 		/*
1544 		 * Use 64bits TX desc chain format.
1545 		 *
1546 		 * The first TX desc of the chain, which is setup here,
1547 		 * is just a symbol TX desc carrying no payload.
1548 		 */
1549 		flag64 = JME_TD_64BIT;
1550 		desc->buflen = 0;
1551 		desc->addr_lo = 0;
1552 
1553 		/* No effective TX desc is consumed */
1554 		i = 0;
1555 	} else {
1556 		/*
1557 		 * Use 32bits TX desc chain format.
1558 		 *
1559 		 * The first TX desc of the chain, which is setup here,
1560 		 * is an effective TX desc carrying the first segment of
1561 		 * the mbuf chain.
1562 		 */
1563 		flag64 = 0;
1564 		desc->buflen = htole32(txsegs[0].ds_len);
1565 		desc->addr_lo = htole32(JME_ADDR_LO(txsegs[0].ds_addr));
1566 
1567 		/* One effective TX desc is consumed */
1568 		i = 1;
1569 	}
1570 	sc->jme_cdata.jme_tx_cnt++;
1571 	KKASSERT(sc->jme_cdata.jme_tx_cnt - i <
1572 		 sc->jme_tx_desc_cnt - JME_TXD_RSVD);
1573 	JME_DESC_INC(prod, sc->jme_tx_desc_cnt);
1574 
1575 	txd->tx_ndesc = 1 - i;
1576 	for (; i < nsegs; i++) {
1577 		desc = &sc->jme_cdata.jme_tx_ring[prod];
1578 		desc->flags = htole32(JME_TD_OWN | flag64);
1579 		desc->buflen = htole32(txsegs[i].ds_len);
1580 		desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr));
1581 		desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr));
1582 
1583 		sc->jme_cdata.jme_tx_cnt++;
1584 		KKASSERT(sc->jme_cdata.jme_tx_cnt <=
1585 			 sc->jme_tx_desc_cnt - JME_TXD_RSVD);
1586 		JME_DESC_INC(prod, sc->jme_tx_desc_cnt);
1587 	}
1588 
1589 	/* Update producer index. */
1590 	sc->jme_cdata.jme_tx_prod = prod;
1591 	/*
1592 	 * Finally request interrupt and give the first descriptor
1593 	 * owenership to hardware.
1594 	 */
1595 	desc = txd->tx_desc;
1596 	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1597 
1598 	txd->tx_m = m;
1599 	txd->tx_ndesc += nsegs;
1600 
1601 	return 0;
1602 fail:
1603 	m_freem(*m_head);
1604 	*m_head = NULL;
1605 	return error;
1606 }
1607 
1608 static void
1609 jme_start(struct ifnet *ifp)
1610 {
1611 	struct jme_softc *sc = ifp->if_softc;
1612 	struct mbuf *m_head;
1613 	int enq = 0;
1614 
1615 	ASSERT_SERIALIZED(&sc->jme_cdata.jme_tx_serialize);
1616 
1617 	if ((sc->jme_flags & JME_FLAG_LINK) == 0) {
1618 		ifq_purge(&ifp->if_snd);
1619 		return;
1620 	}
1621 
1622 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1623 		return;
1624 
1625 	if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT(sc))
1626 		jme_txeof(sc);
1627 
1628 	while (!ifq_is_empty(&ifp->if_snd)) {
1629 		/*
1630 		 * Check number of available TX descs, always
1631 		 * leave JME_TXD_RSVD free TX descs.
1632 		 */
1633 		if (sc->jme_cdata.jme_tx_cnt + sc->jme_txd_spare >
1634 		    sc->jme_tx_desc_cnt - JME_TXD_RSVD) {
1635 			ifp->if_flags |= IFF_OACTIVE;
1636 			break;
1637 		}
1638 
1639 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1640 		if (m_head == NULL)
1641 			break;
1642 
1643 		/*
1644 		 * Pack the data into the transmit ring. If we
1645 		 * don't have room, set the OACTIVE flag and wait
1646 		 * for the NIC to drain the ring.
1647 		 */
1648 		if (jme_encap(sc, &m_head)) {
1649 			KKASSERT(m_head == NULL);
1650 			ifp->if_oerrors++;
1651 			ifp->if_flags |= IFF_OACTIVE;
1652 			break;
1653 		}
1654 		enq++;
1655 
1656 		/*
1657 		 * If there's a BPF listener, bounce a copy of this frame
1658 		 * to him.
1659 		 */
1660 		ETHER_BPF_MTAP(ifp, m_head);
1661 	}
1662 
1663 	if (enq > 0) {
1664 		/*
1665 		 * Reading TXCSR takes very long time under heavy load
1666 		 * so cache TXCSR value and writes the ORed value with
1667 		 * the kick command to the TXCSR. This saves one register
1668 		 * access cycle.
1669 		 */
1670 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
1671 		    TXCSR_TXQ_N_START(TXCSR_TXQ0));
1672 		/* Set a timeout in case the chip goes out to lunch. */
1673 		ifp->if_timer = JME_TX_TIMEOUT;
1674 	}
1675 }
1676 
1677 static void
1678 jme_watchdog(struct ifnet *ifp)
1679 {
1680 	struct jme_softc *sc = ifp->if_softc;
1681 
1682 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1683 
1684 	if ((sc->jme_flags & JME_FLAG_LINK) == 0) {
1685 		if_printf(ifp, "watchdog timeout (missed link)\n");
1686 		ifp->if_oerrors++;
1687 		jme_init(sc);
1688 		return;
1689 	}
1690 
1691 	jme_txeof(sc);
1692 	if (sc->jme_cdata.jme_tx_cnt == 0) {
1693 		if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
1694 			  "-- recovering\n");
1695 		if (!ifq_is_empty(&ifp->if_snd))
1696 			if_devstart(ifp);
1697 		return;
1698 	}
1699 
1700 	if_printf(ifp, "watchdog timeout\n");
1701 	ifp->if_oerrors++;
1702 	jme_init(sc);
1703 	if (!ifq_is_empty(&ifp->if_snd))
1704 		if_devstart(ifp);
1705 }
1706 
1707 static int
1708 jme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1709 {
1710 	struct jme_softc *sc = ifp->if_softc;
1711 	struct mii_data *mii = device_get_softc(sc->jme_miibus);
1712 	struct ifreq *ifr = (struct ifreq *)data;
1713 	int error = 0, mask;
1714 
1715 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1716 
1717 	switch (cmd) {
1718 	case SIOCSIFMTU:
1719 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU ||
1720 		    (!(sc->jme_caps & JME_CAP_JUMBO) &&
1721 		     ifr->ifr_mtu > JME_MAX_MTU)) {
1722 			error = EINVAL;
1723 			break;
1724 		}
1725 
1726 		if (ifp->if_mtu != ifr->ifr_mtu) {
1727 			/*
1728 			 * No special configuration is required when interface
1729 			 * MTU is changed but availability of Tx checksum
1730 			 * offload should be chcked against new MTU size as
1731 			 * FIFO size is just 2K.
1732 			 */
1733 			if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) {
1734 				ifp->if_capenable &= ~IFCAP_TXCSUM;
1735 				ifp->if_hwassist &= ~JME_CSUM_FEATURES;
1736 			}
1737 			ifp->if_mtu = ifr->ifr_mtu;
1738 			if (ifp->if_flags & IFF_RUNNING)
1739 				jme_init(sc);
1740 		}
1741 		break;
1742 
1743 	case SIOCSIFFLAGS:
1744 		if (ifp->if_flags & IFF_UP) {
1745 			if (ifp->if_flags & IFF_RUNNING) {
1746 				if ((ifp->if_flags ^ sc->jme_if_flags) &
1747 				    (IFF_PROMISC | IFF_ALLMULTI))
1748 					jme_set_filter(sc);
1749 			} else {
1750 				jme_init(sc);
1751 			}
1752 		} else {
1753 			if (ifp->if_flags & IFF_RUNNING)
1754 				jme_stop(sc);
1755 		}
1756 		sc->jme_if_flags = ifp->if_flags;
1757 		break;
1758 
1759 	case SIOCADDMULTI:
1760 	case SIOCDELMULTI:
1761 		if (ifp->if_flags & IFF_RUNNING)
1762 			jme_set_filter(sc);
1763 		break;
1764 
1765 	case SIOCSIFMEDIA:
1766 	case SIOCGIFMEDIA:
1767 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1768 		break;
1769 
1770 	case SIOCSIFCAP:
1771 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1772 
1773 		if ((mask & IFCAP_TXCSUM) && ifp->if_mtu < JME_TX_FIFO_SIZE) {
1774 			ifp->if_capenable ^= IFCAP_TXCSUM;
1775 			if (IFCAP_TXCSUM & ifp->if_capenable)
1776 				ifp->if_hwassist |= JME_CSUM_FEATURES;
1777 			else
1778 				ifp->if_hwassist &= ~JME_CSUM_FEATURES;
1779 		}
1780 		if (mask & IFCAP_RXCSUM) {
1781 			uint32_t reg;
1782 
1783 			ifp->if_capenable ^= IFCAP_RXCSUM;
1784 			reg = CSR_READ_4(sc, JME_RXMAC);
1785 			reg &= ~RXMAC_CSUM_ENB;
1786 			if (ifp->if_capenable & IFCAP_RXCSUM)
1787 				reg |= RXMAC_CSUM_ENB;
1788 			CSR_WRITE_4(sc, JME_RXMAC, reg);
1789 		}
1790 
1791 		if (mask & IFCAP_VLAN_HWTAGGING) {
1792 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1793 			jme_set_vlan(sc);
1794 		}
1795 
1796 		if (mask & IFCAP_RSS) {
1797 			ifp->if_capenable ^= IFCAP_RSS;
1798 			if (ifp->if_flags & IFF_RUNNING)
1799 				jme_init(sc);
1800 		}
1801 		break;
1802 
1803 	default:
1804 		error = ether_ioctl(ifp, cmd, data);
1805 		break;
1806 	}
1807 	return (error);
1808 }
1809 
1810 static void
1811 jme_mac_config(struct jme_softc *sc)
1812 {
1813 	struct mii_data *mii;
1814 	uint32_t ghc, rxmac, txmac, txpause, gp1;
1815 	int phyconf = JMPHY_CONF_DEFFIFO, hdx = 0;
1816 
1817 	mii = device_get_softc(sc->jme_miibus);
1818 
1819 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
1820 	DELAY(10);
1821 	CSR_WRITE_4(sc, JME_GHC, 0);
1822 	ghc = 0;
1823 	rxmac = CSR_READ_4(sc, JME_RXMAC);
1824 	rxmac &= ~RXMAC_FC_ENB;
1825 	txmac = CSR_READ_4(sc, JME_TXMAC);
1826 	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
1827 	txpause = CSR_READ_4(sc, JME_TXPFC);
1828 	txpause &= ~TXPFC_PAUSE_ENB;
1829 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1830 		ghc |= GHC_FULL_DUPLEX;
1831 		rxmac &= ~RXMAC_COLL_DET_ENB;
1832 		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
1833 		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
1834 		    TXMAC_FRAME_BURST);
1835 #ifdef notyet
1836 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1837 			txpause |= TXPFC_PAUSE_ENB;
1838 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1839 			rxmac |= RXMAC_FC_ENB;
1840 #endif
1841 		/* Disable retry transmit timer/retry limit. */
1842 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
1843 		    ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
1844 	} else {
1845 		rxmac |= RXMAC_COLL_DET_ENB;
1846 		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
1847 		/* Enable retry transmit timer/retry limit. */
1848 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
1849 		    TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
1850 	}
1851 
1852 	/*
1853 	 * Reprogram Tx/Rx MACs with resolved speed/duplex.
1854 	 */
1855 	gp1 = CSR_READ_4(sc, JME_GPREG1);
1856 	gp1 &= ~GPREG1_WA_HDX;
1857 
1858 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
1859 		hdx = 1;
1860 
1861 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1862 	case IFM_10_T:
1863 		ghc |= GHC_SPEED_10 | sc->jme_clksrc;
1864 		if (hdx)
1865 			gp1 |= GPREG1_WA_HDX;
1866 		break;
1867 
1868 	case IFM_100_TX:
1869 		ghc |= GHC_SPEED_100 | sc->jme_clksrc;
1870 		if (hdx)
1871 			gp1 |= GPREG1_WA_HDX;
1872 
1873 		/*
1874 		 * Use extended FIFO depth to workaround CRC errors
1875 		 * emitted by chips before JMC250B
1876 		 */
1877 		phyconf = JMPHY_CONF_EXTFIFO;
1878 		break;
1879 
1880 	case IFM_1000_T:
1881 		if (sc->jme_caps & JME_CAP_FASTETH)
1882 			break;
1883 
1884 		ghc |= GHC_SPEED_1000 | sc->jme_clksrc_1000;
1885 		if (hdx)
1886 			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
1887 		break;
1888 
1889 	default:
1890 		break;
1891 	}
1892 	CSR_WRITE_4(sc, JME_GHC, ghc);
1893 	CSR_WRITE_4(sc, JME_RXMAC, rxmac);
1894 	CSR_WRITE_4(sc, JME_TXMAC, txmac);
1895 	CSR_WRITE_4(sc, JME_TXPFC, txpause);
1896 
1897 	if (sc->jme_workaround & JME_WA_EXTFIFO) {
1898 		jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
1899 				    JMPHY_CONF, phyconf);
1900 	}
1901 	if (sc->jme_workaround & JME_WA_HDX)
1902 		CSR_WRITE_4(sc, JME_GPREG1, gp1);
1903 }
1904 
1905 static void
1906 jme_intr(void *xsc)
1907 {
1908 	struct jme_softc *sc = xsc;
1909 	struct ifnet *ifp = &sc->arpcom.ac_if;
1910 	uint32_t status;
1911 	int r;
1912 
1913 	ASSERT_SERIALIZED(&sc->jme_serialize);
1914 
1915 	status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
1916 	if (status == 0 || status == 0xFFFFFFFF)
1917 		return;
1918 
1919 	/* Disable interrupts. */
1920 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
1921 
1922 	status = CSR_READ_4(sc, JME_INTR_STATUS);
1923 	if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
1924 		goto back;
1925 
1926 	/* Reset PCC counter/timer and Ack interrupts. */
1927 	status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
1928 
1929 	if (status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO))
1930 		status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
1931 
1932 	for (r = 0; r < sc->jme_rx_ring_inuse; ++r) {
1933 		if (status & jme_rx_status[r].jme_coal) {
1934 			status |= jme_rx_status[r].jme_coal |
1935 				  jme_rx_status[r].jme_comp;
1936 		}
1937 	}
1938 
1939 	CSR_WRITE_4(sc, JME_INTR_STATUS, status);
1940 
1941 	if (ifp->if_flags & IFF_RUNNING) {
1942 		if (status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO))
1943 			jme_rx_intr(sc, status);
1944 
1945 		if (status & INTR_RXQ_DESC_EMPTY) {
1946 			/*
1947 			 * Notify hardware availability of new Rx buffers.
1948 			 * Reading RXCSR takes very long time under heavy
1949 			 * load so cache RXCSR value and writes the ORed
1950 			 * value with the kick command to the RXCSR. This
1951 			 * saves one register access cycle.
1952 			 */
1953 			CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
1954 			    RXCSR_RX_ENB | RXCSR_RXQ_START);
1955 		}
1956 
1957 		if (status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) {
1958 			lwkt_serialize_enter(&sc->jme_cdata.jme_tx_serialize);
1959 			jme_txeof(sc);
1960 			if (!ifq_is_empty(&ifp->if_snd))
1961 				if_devstart(ifp);
1962 			lwkt_serialize_exit(&sc->jme_cdata.jme_tx_serialize);
1963 		}
1964 	}
1965 back:
1966 	/* Reenable interrupts. */
1967 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
1968 }
1969 
1970 static void
1971 jme_txeof(struct jme_softc *sc)
1972 {
1973 	struct ifnet *ifp = &sc->arpcom.ac_if;
1974 	struct jme_txdesc *txd;
1975 	uint32_t status;
1976 	int cons, nsegs;
1977 
1978 	cons = sc->jme_cdata.jme_tx_cons;
1979 	if (cons == sc->jme_cdata.jme_tx_prod)
1980 		return;
1981 
1982 	/*
1983 	 * Go through our Tx list and free mbufs for those
1984 	 * frames which have been transmitted.
1985 	 */
1986 	while (cons != sc->jme_cdata.jme_tx_prod) {
1987 		txd = &sc->jme_cdata.jme_txdesc[cons];
1988 		KASSERT(txd->tx_m != NULL,
1989 			("%s: freeing NULL mbuf!\n", __func__));
1990 
1991 		status = le32toh(txd->tx_desc->flags);
1992 		if ((status & JME_TD_OWN) == JME_TD_OWN)
1993 			break;
1994 
1995 		if (status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) {
1996 			ifp->if_oerrors++;
1997 		} else {
1998 			ifp->if_opackets++;
1999 			if (status & JME_TD_COLLISION) {
2000 				ifp->if_collisions +=
2001 				    le32toh(txd->tx_desc->buflen) &
2002 				    JME_TD_BUF_LEN_MASK;
2003 			}
2004 		}
2005 
2006 		/*
2007 		 * Only the first descriptor of multi-descriptor
2008 		 * transmission is updated so driver have to skip entire
2009 		 * chained buffers for the transmiited frame. In other
2010 		 * words, JME_TD_OWN bit is valid only at the first
2011 		 * descriptor of a multi-descriptor transmission.
2012 		 */
2013 		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
2014 			sc->jme_cdata.jme_tx_ring[cons].flags = 0;
2015 			JME_DESC_INC(cons, sc->jme_tx_desc_cnt);
2016 		}
2017 
2018 		/* Reclaim transferred mbufs. */
2019 		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
2020 		m_freem(txd->tx_m);
2021 		txd->tx_m = NULL;
2022 		sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc;
2023 		KASSERT(sc->jme_cdata.jme_tx_cnt >= 0,
2024 			("%s: Active Tx desc counter was garbled\n", __func__));
2025 		txd->tx_ndesc = 0;
2026 	}
2027 	sc->jme_cdata.jme_tx_cons = cons;
2028 
2029 	if (sc->jme_cdata.jme_tx_cnt == 0)
2030 		ifp->if_timer = 0;
2031 
2032 	if (sc->jme_cdata.jme_tx_cnt + sc->jme_txd_spare <=
2033 	    sc->jme_tx_desc_cnt - JME_TXD_RSVD)
2034 		ifp->if_flags &= ~IFF_OACTIVE;
2035 }
2036 
2037 static __inline void
2038 jme_discard_rxbufs(struct jme_softc *sc, int ring, int cons, int count)
2039 {
2040 	struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[ring];
2041 	int i;
2042 
2043 	for (i = 0; i < count; ++i) {
2044 		struct jme_desc *desc = &rdata->jme_rx_ring[cons];
2045 
2046 		desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
2047 		desc->buflen = htole32(MCLBYTES);
2048 		JME_DESC_INC(cons, sc->jme_rx_desc_cnt);
2049 	}
2050 }
2051 
2052 static __inline struct pktinfo *
2053 jme_pktinfo(struct pktinfo *pi, uint32_t flags)
2054 {
2055 	if (flags & JME_RD_IPV4)
2056 		pi->pi_netisr = NETISR_IP;
2057 	else if (flags & JME_RD_IPV6)
2058 		pi->pi_netisr = NETISR_IPV6;
2059 	else
2060 		return NULL;
2061 
2062 	pi->pi_flags = 0;
2063 	pi->pi_l3proto = IPPROTO_UNKNOWN;
2064 
2065 	if (flags & JME_RD_MORE_FRAG)
2066 		pi->pi_flags |= PKTINFO_FLAG_FRAG;
2067 	else if (flags & JME_RD_TCP)
2068 		pi->pi_l3proto = IPPROTO_TCP;
2069 	else if (flags & JME_RD_UDP)
2070 		pi->pi_l3proto = IPPROTO_UDP;
2071 	else
2072 		pi = NULL;
2073 	return pi;
2074 }
2075 
2076 /* Receive a frame. */
2077 static void
2078 jme_rxpkt(struct jme_softc *sc, int ring, struct mbuf_chain *chain)
2079 {
2080 	struct ifnet *ifp = &sc->arpcom.ac_if;
2081 	struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[ring];
2082 	struct jme_desc *desc;
2083 	struct jme_rxdesc *rxd;
2084 	struct mbuf *mp, *m;
2085 	uint32_t flags, status, hash, hashinfo;
2086 	int cons, count, nsegs;
2087 
2088 	cons = rdata->jme_rx_cons;
2089 	desc = &rdata->jme_rx_ring[cons];
2090 	flags = le32toh(desc->flags);
2091 	status = le32toh(desc->buflen);
2092 	hash = le32toh(desc->addr_hi);
2093 	hashinfo = le32toh(desc->addr_lo);
2094 	nsegs = JME_RX_NSEGS(status);
2095 
2096 	JME_RSS_DPRINTF(sc, 15, "ring%d, flags 0x%08x, "
2097 			"hash 0x%08x, hash info 0x%08x\n",
2098 			ring, flags, hash, hashinfo);
2099 
2100 	if (status & JME_RX_ERR_STAT) {
2101 		ifp->if_ierrors++;
2102 		jme_discard_rxbufs(sc, ring, cons, nsegs);
2103 #ifdef JME_SHOW_ERRORS
2104 		device_printf(sc->jme_dev, "%s : receive error = 0x%b\n",
2105 		    __func__, JME_RX_ERR(status), JME_RX_ERR_BITS);
2106 #endif
2107 		rdata->jme_rx_cons += nsegs;
2108 		rdata->jme_rx_cons %= sc->jme_rx_desc_cnt;
2109 		return;
2110 	}
2111 
2112 	rdata->jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
2113 	for (count = 0; count < nsegs; count++,
2114 	     JME_DESC_INC(cons, sc->jme_rx_desc_cnt)) {
2115 		rxd = &rdata->jme_rxdesc[cons];
2116 		mp = rxd->rx_m;
2117 
2118 		/* Add a new receive buffer to the ring. */
2119 		if (jme_newbuf(sc, ring, rxd, 0) != 0) {
2120 			ifp->if_iqdrops++;
2121 			/* Reuse buffer. */
2122 			jme_discard_rxbufs(sc, ring, cons, nsegs - count);
2123 			if (rdata->jme_rxhead != NULL) {
2124 				m_freem(rdata->jme_rxhead);
2125 				JME_RXCHAIN_RESET(sc, ring);
2126 			}
2127 			break;
2128 		}
2129 
2130 		/*
2131 		 * Assume we've received a full sized frame.
2132 		 * Actual size is fixed when we encounter the end of
2133 		 * multi-segmented frame.
2134 		 */
2135 		mp->m_len = MCLBYTES;
2136 
2137 		/* Chain received mbufs. */
2138 		if (rdata->jme_rxhead == NULL) {
2139 			rdata->jme_rxhead = mp;
2140 			rdata->jme_rxtail = mp;
2141 		} else {
2142 			/*
2143 			 * Receive processor can receive a maximum frame
2144 			 * size of 65535 bytes.
2145 			 */
2146 			rdata->jme_rxtail->m_next = mp;
2147 			rdata->jme_rxtail = mp;
2148 		}
2149 
2150 		if (count == nsegs - 1) {
2151 			struct pktinfo pi0, *pi;
2152 
2153 			/* Last desc. for this frame. */
2154 			m = rdata->jme_rxhead;
2155 			m->m_pkthdr.len = rdata->jme_rxlen;
2156 			if (nsegs > 1) {
2157 				/* Set first mbuf size. */
2158 				m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
2159 				/* Set last mbuf size. */
2160 				mp->m_len = rdata->jme_rxlen -
2161 				    ((MCLBYTES - JME_RX_PAD_BYTES) +
2162 				    (MCLBYTES * (nsegs - 2)));
2163 			} else {
2164 				m->m_len = rdata->jme_rxlen;
2165 			}
2166 			m->m_pkthdr.rcvif = ifp;
2167 
2168 			/*
2169 			 * Account for 10bytes auto padding which is used
2170 			 * to align IP header on 32bit boundary. Also note,
2171 			 * CRC bytes is automatically removed by the
2172 			 * hardware.
2173 			 */
2174 			m->m_data += JME_RX_PAD_BYTES;
2175 
2176 			/* Set checksum information. */
2177 			if ((ifp->if_capenable & IFCAP_RXCSUM) &&
2178 			    (flags & JME_RD_IPV4)) {
2179 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2180 				if (flags & JME_RD_IPCSUM)
2181 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2182 				if ((flags & JME_RD_MORE_FRAG) == 0 &&
2183 				    ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
2184 				     (JME_RD_TCP | JME_RD_TCPCSUM) ||
2185 				     (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
2186 				     (JME_RD_UDP | JME_RD_UDPCSUM))) {
2187 					m->m_pkthdr.csum_flags |=
2188 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2189 					m->m_pkthdr.csum_data = 0xffff;
2190 				}
2191 			}
2192 
2193 			/* Check for VLAN tagged packets. */
2194 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) &&
2195 			    (flags & JME_RD_VLAN_TAG)) {
2196 				m->m_pkthdr.ether_vlantag =
2197 				    flags & JME_RD_VLAN_MASK;
2198 				m->m_flags |= M_VLANTAG;
2199 			}
2200 
2201 			ifp->if_ipackets++;
2202 
2203 			if (ifp->if_capenable & IFCAP_RSS)
2204 				pi = jme_pktinfo(&pi0, flags);
2205 			else
2206 				pi = NULL;
2207 
2208 			if (pi != NULL &&
2209 			    (hashinfo & JME_RD_HASH_FN_MASK) != 0) {
2210 				m->m_flags |= M_HASH;
2211 				m->m_pkthdr.hash = toeplitz_hash(hash);
2212 			}
2213 
2214 #ifdef JME_RSS_DEBUG
2215 			if (pi != NULL) {
2216 				JME_RSS_DPRINTF(sc, 10,
2217 				    "isr %d flags %08x, l3 %d %s\n",
2218 				    pi->pi_netisr, pi->pi_flags,
2219 				    pi->pi_l3proto,
2220 				    (m->m_flags & M_HASH) ? "hash" : "");
2221 			}
2222 #endif
2223 
2224 			/* Pass it on. */
2225 			ether_input_chain(ifp, m, pi, chain);
2226 
2227 			/* Reset mbuf chains. */
2228 			JME_RXCHAIN_RESET(sc, ring);
2229 #ifdef JME_RSS_DEBUG
2230 			sc->jme_rx_ring_pkt[ring]++;
2231 #endif
2232 		}
2233 	}
2234 
2235 	rdata->jme_rx_cons += nsegs;
2236 	rdata->jme_rx_cons %= sc->jme_rx_desc_cnt;
2237 }
2238 
2239 static int
2240 jme_rxeof_chain(struct jme_softc *sc, int ring, struct mbuf_chain *chain,
2241 		int count)
2242 {
2243 	struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[ring];
2244 	struct jme_desc *desc;
2245 	int nsegs, prog, pktlen;
2246 
2247 	prog = 0;
2248 	for (;;) {
2249 #ifdef DEVICE_POLLING
2250 		if (count >= 0 && count-- == 0)
2251 			break;
2252 #endif
2253 		desc = &rdata->jme_rx_ring[rdata->jme_rx_cons];
2254 		if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
2255 			break;
2256 		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
2257 			break;
2258 
2259 		/*
2260 		 * Check number of segments against received bytes.
2261 		 * Non-matching value would indicate that hardware
2262 		 * is still trying to update Rx descriptors. I'm not
2263 		 * sure whether this check is needed.
2264 		 */
2265 		nsegs = JME_RX_NSEGS(le32toh(desc->buflen));
2266 		pktlen = JME_RX_BYTES(le32toh(desc->buflen));
2267 		if (nsegs != howmany(pktlen, MCLBYTES)) {
2268 			if_printf(&sc->arpcom.ac_if, "RX fragment count(%d) "
2269 				  "and packet size(%d) mismach\n",
2270 				  nsegs, pktlen);
2271 			break;
2272 		}
2273 
2274 		/* Received a frame. */
2275 		jme_rxpkt(sc, ring, chain);
2276 		prog++;
2277 	}
2278 	return prog;
2279 }
2280 
2281 static void
2282 jme_rxeof(struct jme_softc *sc, int ring)
2283 {
2284 	struct mbuf_chain chain[MAXCPU];
2285 
2286 	ether_input_chain_init(chain);
2287 	if (jme_rxeof_chain(sc, ring, chain, -1))
2288 		ether_input_dispatch(chain);
2289 }
2290 
2291 static void
2292 jme_tick(void *xsc)
2293 {
2294 	struct jme_softc *sc = xsc;
2295 	struct ifnet *ifp = &sc->arpcom.ac_if;
2296 	struct mii_data *mii = device_get_softc(sc->jme_miibus);
2297 
2298 	ifnet_serialize_all(ifp);
2299 
2300 	mii_tick(mii);
2301 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2302 
2303 	ifnet_deserialize_all(ifp);
2304 }
2305 
2306 static void
2307 jme_reset(struct jme_softc *sc)
2308 {
2309 	uint32_t val;
2310 
2311 	/* Make sure that TX and RX are stopped */
2312 	jme_stop_tx(sc);
2313 	jme_stop_rx(sc);
2314 
2315 	/* Start reset */
2316 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2317 	DELAY(20);
2318 
2319 	/*
2320 	 * Hold reset bit before stop reset
2321 	 */
2322 
2323 	/* Disable TXMAC and TXOFL clock sources */
2324 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2325 	/* Disable RXMAC clock source */
2326 	val = CSR_READ_4(sc, JME_GPREG1);
2327 	CSR_WRITE_4(sc, JME_GPREG1, val | GPREG1_DIS_RXMAC_CLKSRC);
2328 	/* Flush */
2329 	CSR_READ_4(sc, JME_GHC);
2330 
2331 	/* Stop reset */
2332 	CSR_WRITE_4(sc, JME_GHC, 0);
2333 	/* Flush */
2334 	CSR_READ_4(sc, JME_GHC);
2335 
2336 	/*
2337 	 * Clear reset bit after stop reset
2338 	 */
2339 
2340 	/* Enable TXMAC and TXOFL clock sources */
2341 	CSR_WRITE_4(sc, JME_GHC, GHC_TXOFL_CLKSRC | GHC_TXMAC_CLKSRC);
2342 	/* Enable RXMAC clock source */
2343 	val = CSR_READ_4(sc, JME_GPREG1);
2344 	CSR_WRITE_4(sc, JME_GPREG1, val & ~GPREG1_DIS_RXMAC_CLKSRC);
2345 	/* Flush */
2346 	CSR_READ_4(sc, JME_GHC);
2347 
2348 	/* Disable TXMAC and TXOFL clock sources */
2349 	CSR_WRITE_4(sc, JME_GHC, 0);
2350 	/* Disable RXMAC clock source */
2351 	val = CSR_READ_4(sc, JME_GPREG1);
2352 	CSR_WRITE_4(sc, JME_GPREG1, val | GPREG1_DIS_RXMAC_CLKSRC);
2353 	/* Flush */
2354 	CSR_READ_4(sc, JME_GHC);
2355 
2356 	/* Enable TX and RX */
2357 	val = CSR_READ_4(sc, JME_TXCSR);
2358 	CSR_WRITE_4(sc, JME_TXCSR, val | TXCSR_TX_ENB);
2359 	val = CSR_READ_4(sc, JME_RXCSR);
2360 	CSR_WRITE_4(sc, JME_RXCSR, val | RXCSR_RX_ENB);
2361 	/* Flush */
2362 	CSR_READ_4(sc, JME_TXCSR);
2363 	CSR_READ_4(sc, JME_RXCSR);
2364 
2365 	/* Enable TXMAC and TXOFL clock sources */
2366 	CSR_WRITE_4(sc, JME_GHC, GHC_TXOFL_CLKSRC | GHC_TXMAC_CLKSRC);
2367 	/* Eisable RXMAC clock source */
2368 	val = CSR_READ_4(sc, JME_GPREG1);
2369 	CSR_WRITE_4(sc, JME_GPREG1, val & ~GPREG1_DIS_RXMAC_CLKSRC);
2370 	/* Flush */
2371 	CSR_READ_4(sc, JME_GHC);
2372 
2373 	/* Stop TX and RX */
2374 	jme_stop_tx(sc);
2375 	jme_stop_rx(sc);
2376 }
2377 
2378 static void
2379 jme_init(void *xsc)
2380 {
2381 	struct jme_softc *sc = xsc;
2382 	struct ifnet *ifp = &sc->arpcom.ac_if;
2383 	struct mii_data *mii;
2384 	uint8_t eaddr[ETHER_ADDR_LEN];
2385 	bus_addr_t paddr;
2386 	uint32_t reg;
2387 	int error, r;
2388 
2389 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2390 
2391 	/*
2392 	 * Cancel any pending I/O.
2393 	 */
2394 	jme_stop(sc);
2395 
2396 	/*
2397 	 * Reset the chip to a known state.
2398 	 */
2399 	jme_reset(sc);
2400 
2401 	sc->jme_txd_spare =
2402 	howmany(ifp->if_mtu + sizeof(struct ether_vlan_header), MCLBYTES);
2403 	KKASSERT(sc->jme_txd_spare >= 1);
2404 
2405 	/*
2406 	 * If we use 64bit address mode for transmitting, each Tx request
2407 	 * needs one more symbol descriptor.
2408 	 */
2409 	if (sc->jme_lowaddr != BUS_SPACE_MAXADDR_32BIT)
2410 		sc->jme_txd_spare += 1;
2411 
2412 	if (ifp->if_capenable & IFCAP_RSS)
2413 		jme_enable_rss(sc);
2414 	else
2415 		jme_disable_rss(sc);
2416 
2417 	/* Init RX descriptors */
2418 	for (r = 0; r < sc->jme_rx_ring_inuse; ++r) {
2419 		error = jme_init_rx_ring(sc, r);
2420 		if (error) {
2421 			if_printf(ifp, "initialization failed: "
2422 				  "no memory for %dth RX ring.\n", r);
2423 			jme_stop(sc);
2424 			return;
2425 		}
2426 	}
2427 
2428 	/* Init TX descriptors */
2429 	jme_init_tx_ring(sc);
2430 
2431 	/* Initialize shadow status block. */
2432 	jme_init_ssb(sc);
2433 
2434 	/* Reprogram the station address. */
2435 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2436 	CSR_WRITE_4(sc, JME_PAR0,
2437 	    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
2438 	CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
2439 
2440 	/*
2441 	 * Configure Tx queue.
2442 	 *  Tx priority queue weight value : 0
2443 	 *  Tx FIFO threshold for processing next packet : 16QW
2444 	 *  Maximum Tx DMA length : 512
2445 	 *  Allow Tx DMA burst.
2446 	 */
2447 	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
2448 	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
2449 	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
2450 	sc->jme_txcsr |= sc->jme_tx_dma_size;
2451 	sc->jme_txcsr |= TXCSR_DMA_BURST;
2452 	CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2453 
2454 	/* Set Tx descriptor counter. */
2455 	CSR_WRITE_4(sc, JME_TXQDC, sc->jme_tx_desc_cnt);
2456 
2457 	/* Set Tx ring address to the hardware. */
2458 	paddr = sc->jme_cdata.jme_tx_ring_paddr;
2459 	CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2460 	CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2461 
2462 	/* Configure TxMAC parameters. */
2463 	reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
2464 	reg |= TXMAC_THRESH_1_PKT;
2465 	reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
2466 	CSR_WRITE_4(sc, JME_TXMAC, reg);
2467 
2468 	/*
2469 	 * Configure Rx queue.
2470 	 *  FIFO full threshold for transmitting Tx pause packet : 128T
2471 	 *  FIFO threshold for processing next packet : 128QW
2472 	 *  Rx queue 0 select
2473 	 *  Max Rx DMA length : 128
2474 	 *  Rx descriptor retry : 32
2475 	 *  Rx descriptor retry time gap : 256ns
2476 	 *  Don't receive runt/bad frame.
2477 	 */
2478 	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
2479 #if 0
2480 	/*
2481 	 * Since Rx FIFO size is 4K bytes, receiving frames larger
2482 	 * than 4K bytes will suffer from Rx FIFO overruns. So
2483 	 * decrease FIFO threshold to reduce the FIFO overruns for
2484 	 * frames larger than 4000 bytes.
2485 	 * For best performance of standard MTU sized frames use
2486 	 * maximum allowable FIFO threshold, 128QW.
2487 	 */
2488 	if ((ifp->if_mtu + ETHER_HDR_LEN + EVL_ENCAPLEN + ETHER_CRC_LEN) >
2489 	    JME_RX_FIFO_SIZE)
2490 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2491 	else
2492 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
2493 #else
2494 	/* Improve PCI Express compatibility */
2495 	sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2496 #endif
2497 	sc->jme_rxcsr |= sc->jme_rx_dma_size;
2498 	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
2499 	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
2500 	/* XXX TODO DROP_BAD */
2501 
2502 	for (r = 0; r < sc->jme_rx_ring_inuse; ++r) {
2503 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RXQ_N_SEL(r));
2504 
2505 		/* Set Rx descriptor counter. */
2506 		CSR_WRITE_4(sc, JME_RXQDC, sc->jme_rx_desc_cnt);
2507 
2508 		/* Set Rx ring address to the hardware. */
2509 		paddr = sc->jme_cdata.jme_rx_data[r].jme_rx_ring_paddr;
2510 		CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2511 		CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2512 	}
2513 
2514 	/* Clear receive filter. */
2515 	CSR_WRITE_4(sc, JME_RXMAC, 0);
2516 
2517 	/* Set up the receive filter. */
2518 	jme_set_filter(sc);
2519 	jme_set_vlan(sc);
2520 
2521 	/*
2522 	 * Disable all WOL bits as WOL can interfere normal Rx
2523 	 * operation. Also clear WOL detection status bits.
2524 	 */
2525 	reg = CSR_READ_4(sc, JME_PMCS);
2526 	reg &= ~PMCS_WOL_ENB_MASK;
2527 	CSR_WRITE_4(sc, JME_PMCS, reg);
2528 
2529 	/*
2530 	 * Pad 10bytes right before received frame. This will greatly
2531 	 * help Rx performance on strict-alignment architectures as
2532 	 * it does not need to copy the frame to align the payload.
2533 	 */
2534 	reg = CSR_READ_4(sc, JME_RXMAC);
2535 	reg |= RXMAC_PAD_10BYTES;
2536 
2537 	if (ifp->if_capenable & IFCAP_RXCSUM)
2538 		reg |= RXMAC_CSUM_ENB;
2539 	CSR_WRITE_4(sc, JME_RXMAC, reg);
2540 
2541 	/* Configure general purpose reg0 */
2542 	reg = CSR_READ_4(sc, JME_GPREG0);
2543 	reg &= ~GPREG0_PCC_UNIT_MASK;
2544 	/* Set PCC timer resolution to micro-seconds unit. */
2545 	reg |= GPREG0_PCC_UNIT_US;
2546 	/*
2547 	 * Disable all shadow register posting as we have to read
2548 	 * JME_INTR_STATUS register in jme_intr. Also it seems
2549 	 * that it's hard to synchronize interrupt status between
2550 	 * hardware and software with shadow posting due to
2551 	 * requirements of bus_dmamap_sync(9).
2552 	 */
2553 	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
2554 	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
2555 	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
2556 	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
2557 	/* Disable posting of DW0. */
2558 	reg &= ~GPREG0_POST_DW0_ENB;
2559 	/* Clear PME message. */
2560 	reg &= ~GPREG0_PME_ENB;
2561 	/* Set PHY address. */
2562 	reg &= ~GPREG0_PHY_ADDR_MASK;
2563 	reg |= sc->jme_phyaddr;
2564 	CSR_WRITE_4(sc, JME_GPREG0, reg);
2565 
2566 	/* Configure Tx queue 0 packet completion coalescing. */
2567 	jme_set_tx_coal(sc);
2568 
2569 	/* Configure Rx queue 0 packet completion coalescing. */
2570 	jme_set_rx_coal(sc);
2571 
2572 	/* Configure shadow status block but don't enable posting. */
2573 	paddr = sc->jme_cdata.jme_ssb_block_paddr;
2574 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
2575 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
2576 
2577 	/* Disable Timer 1 and Timer 2. */
2578 	CSR_WRITE_4(sc, JME_TIMER1, 0);
2579 	CSR_WRITE_4(sc, JME_TIMER2, 0);
2580 
2581 	/* Configure retry transmit period, retry limit value. */
2582 	CSR_WRITE_4(sc, JME_TXTRHD,
2583 	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
2584 	    TXTRHD_RT_PERIOD_MASK) |
2585 	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
2586 	    TXTRHD_RT_LIMIT_SHIFT));
2587 
2588 #ifdef DEVICE_POLLING
2589 	if (!(ifp->if_flags & IFF_POLLING))
2590 #endif
2591 	/* Initialize the interrupt mask. */
2592 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2593 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2594 
2595 	/*
2596 	 * Enabling Tx/Rx DMA engines and Rx queue processing is
2597 	 * done after detection of valid link in jme_miibus_statchg.
2598 	 */
2599 	sc->jme_flags &= ~JME_FLAG_LINK;
2600 
2601 	/* Set the current media. */
2602 	mii = device_get_softc(sc->jme_miibus);
2603 	mii_mediachg(mii);
2604 
2605 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2606 
2607 	ifp->if_flags |= IFF_RUNNING;
2608 	ifp->if_flags &= ~IFF_OACTIVE;
2609 }
2610 
2611 static void
2612 jme_stop(struct jme_softc *sc)
2613 {
2614 	struct ifnet *ifp = &sc->arpcom.ac_if;
2615 	struct jme_txdesc *txd;
2616 	struct jme_rxdesc *rxd;
2617 	struct jme_rxdata *rdata;
2618 	int i, r;
2619 
2620 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2621 
2622 	/*
2623 	 * Mark the interface down and cancel the watchdog timer.
2624 	 */
2625 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2626 	ifp->if_timer = 0;
2627 
2628 	callout_stop(&sc->jme_tick_ch);
2629 	sc->jme_flags &= ~JME_FLAG_LINK;
2630 
2631 	/*
2632 	 * Disable interrupts.
2633 	 */
2634 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2635 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2636 
2637 	/* Disable updating shadow status block. */
2638 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
2639 	    CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
2640 
2641 	/* Stop receiver, transmitter. */
2642 	jme_stop_rx(sc);
2643 	jme_stop_tx(sc);
2644 
2645 	/*
2646 	 * Free partial finished RX segments
2647 	 */
2648 	for (r = 0; r < sc->jme_rx_ring_inuse; ++r) {
2649 		rdata = &sc->jme_cdata.jme_rx_data[r];
2650 		if (rdata->jme_rxhead != NULL)
2651 			m_freem(rdata->jme_rxhead);
2652 		JME_RXCHAIN_RESET(sc, r);
2653 	}
2654 
2655 	/*
2656 	 * Free RX and TX mbufs still in the queues.
2657 	 */
2658 	for (r = 0; r < sc->jme_rx_ring_inuse; ++r) {
2659 		rdata = &sc->jme_cdata.jme_rx_data[r];
2660 		for (i = 0; i < sc->jme_rx_desc_cnt; i++) {
2661 			rxd = &rdata->jme_rxdesc[i];
2662 			if (rxd->rx_m != NULL) {
2663 				bus_dmamap_unload(rdata->jme_rx_tag,
2664 						  rxd->rx_dmamap);
2665 				m_freem(rxd->rx_m);
2666 				rxd->rx_m = NULL;
2667 			}
2668 		}
2669 	}
2670 	for (i = 0; i < sc->jme_tx_desc_cnt; i++) {
2671 		txd = &sc->jme_cdata.jme_txdesc[i];
2672 		if (txd->tx_m != NULL) {
2673 			bus_dmamap_unload(sc->jme_cdata.jme_tx_tag,
2674 			    txd->tx_dmamap);
2675 			m_freem(txd->tx_m);
2676 			txd->tx_m = NULL;
2677 			txd->tx_ndesc = 0;
2678 		}
2679         }
2680 }
2681 
2682 static void
2683 jme_stop_tx(struct jme_softc *sc)
2684 {
2685 	uint32_t reg;
2686 	int i;
2687 
2688 	reg = CSR_READ_4(sc, JME_TXCSR);
2689 	if ((reg & TXCSR_TX_ENB) == 0)
2690 		return;
2691 	reg &= ~TXCSR_TX_ENB;
2692 	CSR_WRITE_4(sc, JME_TXCSR, reg);
2693 	for (i = JME_TIMEOUT; i > 0; i--) {
2694 		DELAY(1);
2695 		if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
2696 			break;
2697 	}
2698 	if (i == 0)
2699 		device_printf(sc->jme_dev, "stopping transmitter timeout!\n");
2700 }
2701 
2702 static void
2703 jme_stop_rx(struct jme_softc *sc)
2704 {
2705 	uint32_t reg;
2706 	int i;
2707 
2708 	reg = CSR_READ_4(sc, JME_RXCSR);
2709 	if ((reg & RXCSR_RX_ENB) == 0)
2710 		return;
2711 	reg &= ~RXCSR_RX_ENB;
2712 	CSR_WRITE_4(sc, JME_RXCSR, reg);
2713 	for (i = JME_TIMEOUT; i > 0; i--) {
2714 		DELAY(1);
2715 		if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
2716 			break;
2717 	}
2718 	if (i == 0)
2719 		device_printf(sc->jme_dev, "stopping recevier timeout!\n");
2720 }
2721 
2722 static void
2723 jme_init_tx_ring(struct jme_softc *sc)
2724 {
2725 	struct jme_chain_data *cd;
2726 	struct jme_txdesc *txd;
2727 	int i;
2728 
2729 	sc->jme_cdata.jme_tx_prod = 0;
2730 	sc->jme_cdata.jme_tx_cons = 0;
2731 	sc->jme_cdata.jme_tx_cnt = 0;
2732 
2733 	cd = &sc->jme_cdata;
2734 	bzero(cd->jme_tx_ring, JME_TX_RING_SIZE(sc));
2735 	for (i = 0; i < sc->jme_tx_desc_cnt; i++) {
2736 		txd = &sc->jme_cdata.jme_txdesc[i];
2737 		txd->tx_m = NULL;
2738 		txd->tx_desc = &cd->jme_tx_ring[i];
2739 		txd->tx_ndesc = 0;
2740 	}
2741 }
2742 
2743 static void
2744 jme_init_ssb(struct jme_softc *sc)
2745 {
2746 	struct jme_chain_data *cd;
2747 
2748 	cd = &sc->jme_cdata;
2749 	bzero(cd->jme_ssb_block, JME_SSB_SIZE);
2750 }
2751 
2752 static int
2753 jme_init_rx_ring(struct jme_softc *sc, int ring)
2754 {
2755 	struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[ring];
2756 	struct jme_rxdesc *rxd;
2757 	int i;
2758 
2759 	KKASSERT(rdata->jme_rxhead == NULL &&
2760 		 rdata->jme_rxtail == NULL &&
2761 		 rdata->jme_rxlen == 0);
2762 	rdata->jme_rx_cons = 0;
2763 
2764 	bzero(rdata->jme_rx_ring, JME_RX_RING_SIZE(sc));
2765 	for (i = 0; i < sc->jme_rx_desc_cnt; i++) {
2766 		int error;
2767 
2768 		rxd = &rdata->jme_rxdesc[i];
2769 		rxd->rx_m = NULL;
2770 		rxd->rx_desc = &rdata->jme_rx_ring[i];
2771 		error = jme_newbuf(sc, ring, rxd, 1);
2772 		if (error)
2773 			return error;
2774 	}
2775 	return 0;
2776 }
2777 
2778 static int
2779 jme_newbuf(struct jme_softc *sc, int ring, struct jme_rxdesc *rxd, int init)
2780 {
2781 	struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[ring];
2782 	struct jme_desc *desc;
2783 	struct mbuf *m;
2784 	bus_dma_segment_t segs;
2785 	bus_dmamap_t map;
2786 	int error, nsegs;
2787 
2788 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2789 	if (m == NULL)
2790 		return ENOBUFS;
2791 	/*
2792 	 * JMC250 has 64bit boundary alignment limitation so jme(4)
2793 	 * takes advantage of 10 bytes padding feature of hardware
2794 	 * in order not to copy entire frame to align IP header on
2795 	 * 32bit boundary.
2796 	 */
2797 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2798 
2799 	error = bus_dmamap_load_mbuf_segment(rdata->jme_rx_tag,
2800 			rdata->jme_rx_sparemap, m, &segs, 1, &nsegs,
2801 			BUS_DMA_NOWAIT);
2802 	if (error) {
2803 		m_freem(m);
2804 		if (init)
2805 			if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
2806 		return error;
2807 	}
2808 
2809 	if (rxd->rx_m != NULL) {
2810 		bus_dmamap_sync(rdata->jme_rx_tag, rxd->rx_dmamap,
2811 				BUS_DMASYNC_POSTREAD);
2812 		bus_dmamap_unload(rdata->jme_rx_tag, rxd->rx_dmamap);
2813 	}
2814 	map = rxd->rx_dmamap;
2815 	rxd->rx_dmamap = rdata->jme_rx_sparemap;
2816 	rdata->jme_rx_sparemap = map;
2817 	rxd->rx_m = m;
2818 
2819 	desc = rxd->rx_desc;
2820 	desc->buflen = htole32(segs.ds_len);
2821 	desc->addr_lo = htole32(JME_ADDR_LO(segs.ds_addr));
2822 	desc->addr_hi = htole32(JME_ADDR_HI(segs.ds_addr));
2823 	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
2824 
2825 	return 0;
2826 }
2827 
2828 static void
2829 jme_set_vlan(struct jme_softc *sc)
2830 {
2831 	struct ifnet *ifp = &sc->arpcom.ac_if;
2832 	uint32_t reg;
2833 
2834 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2835 
2836 	reg = CSR_READ_4(sc, JME_RXMAC);
2837 	reg &= ~RXMAC_VLAN_ENB;
2838 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
2839 		reg |= RXMAC_VLAN_ENB;
2840 	CSR_WRITE_4(sc, JME_RXMAC, reg);
2841 }
2842 
2843 static void
2844 jme_set_filter(struct jme_softc *sc)
2845 {
2846 	struct ifnet *ifp = &sc->arpcom.ac_if;
2847 	struct ifmultiaddr *ifma;
2848 	uint32_t crc;
2849 	uint32_t mchash[2];
2850 	uint32_t rxcfg;
2851 
2852 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2853 
2854 	rxcfg = CSR_READ_4(sc, JME_RXMAC);
2855 	rxcfg &= ~(RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
2856 	    RXMAC_ALLMULTI);
2857 
2858 	/*
2859 	 * Always accept frames destined to our station address.
2860 	 * Always accept broadcast frames.
2861 	 */
2862 	rxcfg |= RXMAC_UNICAST | RXMAC_BROADCAST;
2863 
2864 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2865 		if (ifp->if_flags & IFF_PROMISC)
2866 			rxcfg |= RXMAC_PROMISC;
2867 		if (ifp->if_flags & IFF_ALLMULTI)
2868 			rxcfg |= RXMAC_ALLMULTI;
2869 		CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF);
2870 		CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF);
2871 		CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
2872 		return;
2873 	}
2874 
2875 	/*
2876 	 * Set up the multicast address filter by passing all multicast
2877 	 * addresses through a CRC generator, and then using the low-order
2878 	 * 6 bits as an index into the 64 bit multicast hash table.  The
2879 	 * high order bits select the register, while the rest of the bits
2880 	 * select the bit within the register.
2881 	 */
2882 	rxcfg |= RXMAC_MULTICAST;
2883 	bzero(mchash, sizeof(mchash));
2884 
2885 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2886 		if (ifma->ifma_addr->sa_family != AF_LINK)
2887 			continue;
2888 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
2889 		    ifma->ifma_addr), ETHER_ADDR_LEN);
2890 
2891 		/* Just want the 6 least significant bits. */
2892 		crc &= 0x3f;
2893 
2894 		/* Set the corresponding bit in the hash table. */
2895 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
2896 	}
2897 
2898 	CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
2899 	CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
2900 	CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
2901 }
2902 
2903 static int
2904 jme_sysctl_tx_coal_to(SYSCTL_HANDLER_ARGS)
2905 {
2906 	struct jme_softc *sc = arg1;
2907 	struct ifnet *ifp = &sc->arpcom.ac_if;
2908 	int error, v;
2909 
2910 	ifnet_serialize_all(ifp);
2911 
2912 	v = sc->jme_tx_coal_to;
2913 	error = sysctl_handle_int(oidp, &v, 0, req);
2914 	if (error || req->newptr == NULL)
2915 		goto back;
2916 
2917 	if (v < PCCTX_COAL_TO_MIN || v > PCCTX_COAL_TO_MAX) {
2918 		error = EINVAL;
2919 		goto back;
2920 	}
2921 
2922 	if (v != sc->jme_tx_coal_to) {
2923 		sc->jme_tx_coal_to = v;
2924 		if (ifp->if_flags & IFF_RUNNING)
2925 			jme_set_tx_coal(sc);
2926 	}
2927 back:
2928 	ifnet_deserialize_all(ifp);
2929 	return error;
2930 }
2931 
2932 static int
2933 jme_sysctl_tx_coal_pkt(SYSCTL_HANDLER_ARGS)
2934 {
2935 	struct jme_softc *sc = arg1;
2936 	struct ifnet *ifp = &sc->arpcom.ac_if;
2937 	int error, v;
2938 
2939 	ifnet_serialize_all(ifp);
2940 
2941 	v = sc->jme_tx_coal_pkt;
2942 	error = sysctl_handle_int(oidp, &v, 0, req);
2943 	if (error || req->newptr == NULL)
2944 		goto back;
2945 
2946 	if (v < PCCTX_COAL_PKT_MIN || v > PCCTX_COAL_PKT_MAX) {
2947 		error = EINVAL;
2948 		goto back;
2949 	}
2950 
2951 	if (v != sc->jme_tx_coal_pkt) {
2952 		sc->jme_tx_coal_pkt = v;
2953 		if (ifp->if_flags & IFF_RUNNING)
2954 			jme_set_tx_coal(sc);
2955 	}
2956 back:
2957 	ifnet_deserialize_all(ifp);
2958 	return error;
2959 }
2960 
2961 static int
2962 jme_sysctl_rx_coal_to(SYSCTL_HANDLER_ARGS)
2963 {
2964 	struct jme_softc *sc = arg1;
2965 	struct ifnet *ifp = &sc->arpcom.ac_if;
2966 	int error, v;
2967 
2968 	ifnet_serialize_all(ifp);
2969 
2970 	v = sc->jme_rx_coal_to;
2971 	error = sysctl_handle_int(oidp, &v, 0, req);
2972 	if (error || req->newptr == NULL)
2973 		goto back;
2974 
2975 	if (v < PCCRX_COAL_TO_MIN || v > PCCRX_COAL_TO_MAX) {
2976 		error = EINVAL;
2977 		goto back;
2978 	}
2979 
2980 	if (v != sc->jme_rx_coal_to) {
2981 		sc->jme_rx_coal_to = v;
2982 		if (ifp->if_flags & IFF_RUNNING)
2983 			jme_set_rx_coal(sc);
2984 	}
2985 back:
2986 	ifnet_deserialize_all(ifp);
2987 	return error;
2988 }
2989 
2990 static int
2991 jme_sysctl_rx_coal_pkt(SYSCTL_HANDLER_ARGS)
2992 {
2993 	struct jme_softc *sc = arg1;
2994 	struct ifnet *ifp = &sc->arpcom.ac_if;
2995 	int error, v;
2996 
2997 	ifnet_serialize_all(ifp);
2998 
2999 	v = sc->jme_rx_coal_pkt;
3000 	error = sysctl_handle_int(oidp, &v, 0, req);
3001 	if (error || req->newptr == NULL)
3002 		goto back;
3003 
3004 	if (v < PCCRX_COAL_PKT_MIN || v > PCCRX_COAL_PKT_MAX) {
3005 		error = EINVAL;
3006 		goto back;
3007 	}
3008 
3009 	if (v != sc->jme_rx_coal_pkt) {
3010 		sc->jme_rx_coal_pkt = v;
3011 		if (ifp->if_flags & IFF_RUNNING)
3012 			jme_set_rx_coal(sc);
3013 	}
3014 back:
3015 	ifnet_deserialize_all(ifp);
3016 	return error;
3017 }
3018 
3019 static void
3020 jme_set_tx_coal(struct jme_softc *sc)
3021 {
3022 	uint32_t reg;
3023 
3024 	reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
3025 	    PCCTX_COAL_TO_MASK;
3026 	reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
3027 	    PCCTX_COAL_PKT_MASK;
3028 	reg |= PCCTX_COAL_TXQ0;
3029 	CSR_WRITE_4(sc, JME_PCCTX, reg);
3030 }
3031 
3032 static void
3033 jme_set_rx_coal(struct jme_softc *sc)
3034 {
3035 	uint32_t reg;
3036 	int r;
3037 
3038 	reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
3039 	    PCCRX_COAL_TO_MASK;
3040 	reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
3041 	    PCCRX_COAL_PKT_MASK;
3042 	for (r = 0; r < sc->jme_rx_ring_cnt; ++r) {
3043 		if (r < sc->jme_rx_ring_inuse)
3044 			CSR_WRITE_4(sc, JME_PCCRX(r), reg);
3045 		else
3046 			CSR_WRITE_4(sc, JME_PCCRX(r), 0);
3047 	}
3048 }
3049 
3050 #ifdef DEVICE_POLLING
3051 
3052 static void
3053 jme_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3054 {
3055 	struct jme_softc *sc = ifp->if_softc;
3056 	struct mbuf_chain chain[MAXCPU];
3057 	uint32_t status;
3058 	int r, prog = 0;
3059 
3060 	ASSERT_SERIALIZED(&sc->jme_serialize);
3061 
3062 	switch (cmd) {
3063 	case POLL_REGISTER:
3064 		CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
3065 		break;
3066 
3067 	case POLL_DEREGISTER:
3068 		CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
3069 		break;
3070 
3071 	case POLL_AND_CHECK_STATUS:
3072 	case POLL_ONLY:
3073 		status = CSR_READ_4(sc, JME_INTR_STATUS);
3074 
3075 		ether_input_chain_init(chain);
3076 		for (r = 0; r < sc->jme_rx_ring_inuse; ++r) {
3077 			struct jme_rxdata *rdata =
3078 			    &sc->jme_cdata.jme_rx_data[r];
3079 
3080 			lwkt_serialize_enter(&rdata->jme_rx_serialize);
3081 			prog += jme_rxeof_chain(sc, r, chain, count);
3082 			lwkt_serialize_exit(&rdata->jme_rx_serialize);
3083 		}
3084 		if (prog)
3085 			ether_input_dispatch(chain);
3086 
3087 		if (status & INTR_RXQ_DESC_EMPTY) {
3088 			CSR_WRITE_4(sc, JME_INTR_STATUS, status);
3089 			CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
3090 			    RXCSR_RX_ENB | RXCSR_RXQ_START);
3091 		}
3092 
3093 		lwkt_serialize_enter(&sc->jme_cdata.jme_tx_serialize);
3094 		jme_txeof(sc);
3095 		if (!ifq_is_empty(&ifp->if_snd))
3096 			if_devstart(ifp);
3097 		lwkt_serialize_exit(&sc->jme_cdata.jme_tx_serialize);
3098 		break;
3099 	}
3100 }
3101 
3102 #endif	/* DEVICE_POLLING */
3103 
3104 static int
3105 jme_rxring_dma_alloc(struct jme_softc *sc, int ring)
3106 {
3107 	struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[ring];
3108 	bus_dmamem_t dmem;
3109 	int error;
3110 
3111 	error = bus_dmamem_coherent(sc->jme_cdata.jme_ring_tag,
3112 			JME_RX_RING_ALIGN, 0,
3113 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3114 			JME_RX_RING_SIZE(sc),
3115 			BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
3116 	if (error) {
3117 		device_printf(sc->jme_dev,
3118 		    "could not allocate %dth Rx ring.\n", ring);
3119 		return error;
3120 	}
3121 	rdata->jme_rx_ring_tag = dmem.dmem_tag;
3122 	rdata->jme_rx_ring_map = dmem.dmem_map;
3123 	rdata->jme_rx_ring = dmem.dmem_addr;
3124 	rdata->jme_rx_ring_paddr = dmem.dmem_busaddr;
3125 
3126 	return 0;
3127 }
3128 
3129 static int
3130 jme_rxbuf_dma_alloc(struct jme_softc *sc, int ring)
3131 {
3132 	struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[ring];
3133 	int i, error;
3134 
3135 	/* Create tag for Rx buffers. */
3136 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
3137 	    JME_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
3138 	    BUS_SPACE_MAXADDR,		/* lowaddr */
3139 	    BUS_SPACE_MAXADDR,		/* highaddr */
3140 	    NULL, NULL,			/* filter, filterarg */
3141 	    MCLBYTES,			/* maxsize */
3142 	    1,				/* nsegments */
3143 	    MCLBYTES,			/* maxsegsize */
3144 	    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ALIGNED,/* flags */
3145 	    &rdata->jme_rx_tag);
3146 	if (error) {
3147 		device_printf(sc->jme_dev,
3148 		    "could not create %dth Rx DMA tag.\n", ring);
3149 		return error;
3150 	}
3151 
3152 	/* Create DMA maps for Rx buffers. */
3153 	error = bus_dmamap_create(rdata->jme_rx_tag, BUS_DMA_WAITOK,
3154 				  &rdata->jme_rx_sparemap);
3155 	if (error) {
3156 		device_printf(sc->jme_dev,
3157 		    "could not create %dth spare Rx dmamap.\n", ring);
3158 		bus_dma_tag_destroy(rdata->jme_rx_tag);
3159 		rdata->jme_rx_tag = NULL;
3160 		return error;
3161 	}
3162 	for (i = 0; i < sc->jme_rx_desc_cnt; i++) {
3163 		struct jme_rxdesc *rxd = &rdata->jme_rxdesc[i];
3164 
3165 		error = bus_dmamap_create(rdata->jme_rx_tag, BUS_DMA_WAITOK,
3166 					  &rxd->rx_dmamap);
3167 		if (error) {
3168 			int j;
3169 
3170 			device_printf(sc->jme_dev,
3171 			    "could not create %dth Rx dmamap "
3172 			    "for %dth RX ring.\n", i, ring);
3173 
3174 			for (j = 0; j < i; ++j) {
3175 				rxd = &rdata->jme_rxdesc[j];
3176 				bus_dmamap_destroy(rdata->jme_rx_tag,
3177 						   rxd->rx_dmamap);
3178 			}
3179 			bus_dmamap_destroy(rdata->jme_rx_tag,
3180 					   rdata->jme_rx_sparemap);
3181 			bus_dma_tag_destroy(rdata->jme_rx_tag);
3182 			rdata->jme_rx_tag = NULL;
3183 			return error;
3184 		}
3185 	}
3186 	return 0;
3187 }
3188 
3189 static void
3190 jme_rx_intr(struct jme_softc *sc, uint32_t status)
3191 {
3192 	struct mbuf_chain chain[MAXCPU];
3193 	int r, prog = 0;
3194 
3195 	ether_input_chain_init(chain);
3196 	for (r = 0; r < sc->jme_rx_ring_inuse; ++r) {
3197 		if (status & jme_rx_status[r].jme_coal) {
3198 			struct jme_rxdata *rdata =
3199 			    &sc->jme_cdata.jme_rx_data[r];
3200 
3201 			lwkt_serialize_enter(&rdata->jme_rx_serialize);
3202 			prog += jme_rxeof_chain(sc, r, chain, -1);
3203 			lwkt_serialize_exit(&rdata->jme_rx_serialize);
3204 		}
3205 	}
3206 	if (prog)
3207 		ether_input_dispatch(chain);
3208 }
3209 
3210 static void
3211 jme_enable_rss(struct jme_softc *sc)
3212 {
3213 	uint32_t rssc, ind;
3214 	uint8_t key[RSSKEY_NREGS * RSSKEY_REGSIZE];
3215 	int i;
3216 
3217 	sc->jme_rx_ring_inuse = sc->jme_rx_ring_cnt;
3218 
3219 	KASSERT(sc->jme_rx_ring_inuse == JME_NRXRING_2 ||
3220 		sc->jme_rx_ring_inuse == JME_NRXRING_4,
3221 		("%s: invalid # of RX rings (%d)\n",
3222 		 sc->arpcom.ac_if.if_xname, sc->jme_rx_ring_inuse));
3223 
3224 	rssc = RSSC_HASH_64_ENTRY;
3225 	rssc |= RSSC_HASH_IPV4 | RSSC_HASH_IPV4_TCP;
3226 	rssc |= sc->jme_rx_ring_inuse >> 1;
3227 	JME_RSS_DPRINTF(sc, 1, "rssc 0x%08x\n", rssc);
3228 	CSR_WRITE_4(sc, JME_RSSC, rssc);
3229 
3230 	toeplitz_get_key(key, sizeof(key));
3231 	for (i = 0; i < RSSKEY_NREGS; ++i) {
3232 		uint32_t keyreg;
3233 
3234 		keyreg = RSSKEY_REGVAL(key, i);
3235 		JME_RSS_DPRINTF(sc, 5, "keyreg%d 0x%08x\n", i, keyreg);
3236 
3237 		CSR_WRITE_4(sc, RSSKEY_REG(i), keyreg);
3238 	}
3239 
3240 	/*
3241 	 * Create redirect table in following fashion:
3242 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
3243 	 */
3244 	ind = 0;
3245 	for (i = 0; i < RSSTBL_REGSIZE; ++i) {
3246 		int q;
3247 
3248 		q = i % sc->jme_rx_ring_inuse;
3249 		ind |= q << (i * 8);
3250 	}
3251 	JME_RSS_DPRINTF(sc, 1, "ind 0x%08x\n", ind);
3252 
3253 	for (i = 0; i < RSSTBL_NREGS; ++i)
3254 		CSR_WRITE_4(sc, RSSTBL_REG(i), ind);
3255 }
3256 
3257 static void
3258 jme_disable_rss(struct jme_softc *sc)
3259 {
3260 	sc->jme_rx_ring_inuse = JME_NRXRING_1;
3261 	CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
3262 }
3263 
3264 static void
3265 jme_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3266 {
3267 	struct jme_softc *sc = ifp->if_softc;
3268 
3269 	switch (slz) {
3270 	case IFNET_SERIALIZE_ALL:
3271 		lwkt_serialize_array_enter(sc->jme_serialize_arr,
3272 		    sc->jme_serialize_cnt, 0);
3273 		break;
3274 
3275 	case IFNET_SERIALIZE_MAIN:
3276 		lwkt_serialize_enter(&sc->jme_serialize);
3277 		break;
3278 
3279 	case IFNET_SERIALIZE_TX:
3280 		lwkt_serialize_enter(&sc->jme_cdata.jme_tx_serialize);
3281 		break;
3282 
3283 	case IFNET_SERIALIZE_RX(0):
3284 		lwkt_serialize_enter(
3285 		    &sc->jme_cdata.jme_rx_data[0].jme_rx_serialize);
3286 		break;
3287 
3288 	case IFNET_SERIALIZE_RX(1):
3289 		lwkt_serialize_enter(
3290 		    &sc->jme_cdata.jme_rx_data[1].jme_rx_serialize);
3291 		break;
3292 
3293 	case IFNET_SERIALIZE_RX(2):
3294 		lwkt_serialize_enter(
3295 		    &sc->jme_cdata.jme_rx_data[2].jme_rx_serialize);
3296 		break;
3297 
3298 	case IFNET_SERIALIZE_RX(3):
3299 		lwkt_serialize_enter(
3300 		    &sc->jme_cdata.jme_rx_data[3].jme_rx_serialize);
3301 		break;
3302 
3303 	default:
3304 		panic("%s unsupported serialize type\n", ifp->if_xname);
3305 	}
3306 }
3307 
3308 static void
3309 jme_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3310 {
3311 	struct jme_softc *sc = ifp->if_softc;
3312 
3313 	switch (slz) {
3314 	case IFNET_SERIALIZE_ALL:
3315 		lwkt_serialize_array_exit(sc->jme_serialize_arr,
3316 		    sc->jme_serialize_cnt, 0);
3317 		break;
3318 
3319 	case IFNET_SERIALIZE_MAIN:
3320 		lwkt_serialize_exit(&sc->jme_serialize);
3321 		break;
3322 
3323 	case IFNET_SERIALIZE_TX:
3324 		lwkt_serialize_exit(&sc->jme_cdata.jme_tx_serialize);
3325 		break;
3326 
3327 	case IFNET_SERIALIZE_RX(0):
3328 		lwkt_serialize_exit(
3329 		    &sc->jme_cdata.jme_rx_data[0].jme_rx_serialize);
3330 		break;
3331 
3332 	case IFNET_SERIALIZE_RX(1):
3333 		lwkt_serialize_exit(
3334 		    &sc->jme_cdata.jme_rx_data[1].jme_rx_serialize);
3335 		break;
3336 
3337 	case IFNET_SERIALIZE_RX(2):
3338 		lwkt_serialize_exit(
3339 		    &sc->jme_cdata.jme_rx_data[2].jme_rx_serialize);
3340 		break;
3341 
3342 	case IFNET_SERIALIZE_RX(3):
3343 		lwkt_serialize_exit(
3344 		    &sc->jme_cdata.jme_rx_data[3].jme_rx_serialize);
3345 		break;
3346 
3347 	default:
3348 		panic("%s unsupported serialize type\n", ifp->if_xname);
3349 	}
3350 }
3351 
3352 static int
3353 jme_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3354 {
3355 	struct jme_softc *sc = ifp->if_softc;
3356 
3357 	switch (slz) {
3358 	case IFNET_SERIALIZE_ALL:
3359 		return lwkt_serialize_array_try(sc->jme_serialize_arr,
3360 		    sc->jme_serialize_cnt, 0);
3361 
3362 	case IFNET_SERIALIZE_MAIN:
3363 		return lwkt_serialize_try(&sc->jme_serialize);
3364 
3365 	case IFNET_SERIALIZE_TX:
3366 		return lwkt_serialize_try(&sc->jme_cdata.jme_tx_serialize);
3367 
3368 	case IFNET_SERIALIZE_RX(0):
3369 		return lwkt_serialize_try(
3370 		    &sc->jme_cdata.jme_rx_data[0].jme_rx_serialize);
3371 
3372 	case IFNET_SERIALIZE_RX(1):
3373 		return lwkt_serialize_try(
3374 		    &sc->jme_cdata.jme_rx_data[1].jme_rx_serialize);
3375 
3376 	case IFNET_SERIALIZE_RX(2):
3377 		return lwkt_serialize_try(
3378 		    &sc->jme_cdata.jme_rx_data[2].jme_rx_serialize);
3379 
3380 	case IFNET_SERIALIZE_RX(3):
3381 		return lwkt_serialize_try(
3382 		    &sc->jme_cdata.jme_rx_data[3].jme_rx_serialize);
3383 
3384 	default:
3385 		panic("%s unsupported serialize type\n", ifp->if_xname);
3386 	}
3387 }
3388 
3389 #ifdef INVARIANTS
3390 
3391 static void
3392 jme_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3393     boolean_t serialized)
3394 {
3395 	struct jme_softc *sc = ifp->if_softc;
3396 	struct jme_rxdata *rdata;
3397 	int i;
3398 
3399 	switch (slz) {
3400 	case IFNET_SERIALIZE_ALL:
3401 		if (serialized) {
3402 			for (i = 0; i < sc->jme_serialize_cnt; ++i)
3403 				ASSERT_SERIALIZED(sc->jme_serialize_arr[i]);
3404 		} else {
3405 			for (i = 0; i < sc->jme_serialize_cnt; ++i)
3406 				ASSERT_NOT_SERIALIZED(sc->jme_serialize_arr[i]);
3407 		}
3408 		break;
3409 
3410 	case IFNET_SERIALIZE_MAIN:
3411 		if (serialized)
3412 			ASSERT_SERIALIZED(&sc->jme_serialize);
3413 		else
3414 			ASSERT_NOT_SERIALIZED(&sc->jme_serialize);
3415 		break;
3416 
3417 	case IFNET_SERIALIZE_TX:
3418 		if (serialized)
3419 			ASSERT_SERIALIZED(&sc->jme_cdata.jme_tx_serialize);
3420 		else
3421 			ASSERT_NOT_SERIALIZED(&sc->jme_cdata.jme_tx_serialize);
3422 		break;
3423 
3424 	case IFNET_SERIALIZE_RX(0):
3425 		rdata = &sc->jme_cdata.jme_rx_data[0];
3426 		if (serialized)
3427 			ASSERT_SERIALIZED(&rdata->jme_rx_serialize);
3428 		else
3429 			ASSERT_NOT_SERIALIZED(&rdata->jme_rx_serialize);
3430 		break;
3431 
3432 	case IFNET_SERIALIZE_RX(1):
3433 		rdata = &sc->jme_cdata.jme_rx_data[1];
3434 		if (serialized)
3435 			ASSERT_SERIALIZED(&rdata->jme_rx_serialize);
3436 		else
3437 			ASSERT_NOT_SERIALIZED(&rdata->jme_rx_serialize);
3438 		break;
3439 
3440 	case IFNET_SERIALIZE_RX(2):
3441 		rdata = &sc->jme_cdata.jme_rx_data[2];
3442 		if (serialized)
3443 			ASSERT_SERIALIZED(&rdata->jme_rx_serialize);
3444 		else
3445 			ASSERT_NOT_SERIALIZED(&rdata->jme_rx_serialize);
3446 		break;
3447 
3448 	case IFNET_SERIALIZE_RX(3):
3449 		rdata = &sc->jme_cdata.jme_rx_data[3];
3450 		if (serialized)
3451 			ASSERT_SERIALIZED(&rdata->jme_rx_serialize);
3452 		else
3453 			ASSERT_NOT_SERIALIZED(&rdata->jme_rx_serialize);
3454 		break;
3455 
3456 	default:
3457 		panic("%s unsupported serialize type\n", ifp->if_xname);
3458 	}
3459 }
3460 
3461 #endif	/* INVARIANTS */
3462