xref: /dragonfly/sys/dev/netif/jme/if_jme.c (revision 896f2e3a)
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: src/sys/dev/jme/if_jme.c,v 1.2 2008/07/18 04:20:48 yongari Exp $
28  */
29 
30 #include "opt_ifpoll.h"
31 #include "opt_jme.h"
32 
33 #include <sys/param.h>
34 #include <sys/endian.h>
35 #include <sys/kernel.h>
36 #include <sys/bus.h>
37 #include <sys/interrupt.h>
38 #include <sys/malloc.h>
39 #include <sys/proc.h>
40 #include <sys/rman.h>
41 #include <sys/serialize.h>
42 #include <sys/serialize2.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/sysctl.h>
46 
47 #include <net/ethernet.h>
48 #include <net/if.h>
49 #include <net/bpf.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_media.h>
53 #include <net/if_poll.h>
54 #include <net/ifq_var.h>
55 #include <net/toeplitz.h>
56 #include <net/toeplitz2.h>
57 #include <net/vlan/if_vlan_var.h>
58 #include <net/vlan/if_vlan_ether.h>
59 
60 #include <netinet/ip.h>
61 #include <netinet/tcp.h>
62 
63 #include <dev/netif/mii_layer/mii.h>
64 #include <dev/netif/mii_layer/miivar.h>
65 #include <dev/netif/mii_layer/jmphyreg.h>
66 
67 #include <bus/pci/pcireg.h>
68 #include <bus/pci/pcivar.h>
69 #include "pcidevs.h"
70 
71 #include <dev/netif/jme/if_jmereg.h>
72 #include <dev/netif/jme/if_jmevar.h>
73 
74 #include "miibus_if.h"
75 
76 #define JME_TICK_CPUID		0	/* DO NOT CHANGE THIS */
77 
78 #define	JME_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
79 
80 #ifdef JME_RSS_DEBUG
81 #define JME_RSS_DPRINTF(sc, lvl, fmt, ...) \
82 do { \
83 	if ((sc)->jme_rss_debug >= (lvl)) \
84 		if_printf(&(sc)->arpcom.ac_if, fmt, __VA_ARGS__); \
85 } while (0)
86 #else	/* !JME_RSS_DEBUG */
87 #define JME_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
88 #endif	/* JME_RSS_DEBUG */
89 
90 static int	jme_probe(device_t);
91 static int	jme_attach(device_t);
92 static int	jme_detach(device_t);
93 static int	jme_shutdown(device_t);
94 static int	jme_suspend(device_t);
95 static int	jme_resume(device_t);
96 
97 static int	jme_miibus_readreg(device_t, int, int);
98 static int	jme_miibus_writereg(device_t, int, int, int);
99 static void	jme_miibus_statchg(device_t);
100 
101 static void	jme_init(void *);
102 static int	jme_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
103 static void	jme_start(struct ifnet *, struct ifaltq_subque *);
104 static void	jme_watchdog(struct ifnet *);
105 static void	jme_mediastatus(struct ifnet *, struct ifmediareq *);
106 static int	jme_mediachange(struct ifnet *);
107 #ifdef IFPOLL_ENABLE
108 static void	jme_npoll(struct ifnet *, struct ifpoll_info *);
109 static void	jme_npoll_status(struct ifnet *);
110 static void	jme_npoll_rx(struct ifnet *, void *, int);
111 static void	jme_npoll_tx(struct ifnet *, void *, int);
112 #endif
113 static void	jme_serialize(struct ifnet *, enum ifnet_serialize);
114 static void	jme_deserialize(struct ifnet *, enum ifnet_serialize);
115 static int	jme_tryserialize(struct ifnet *, enum ifnet_serialize);
116 #ifdef INVARIANTS
117 static void	jme_serialize_assert(struct ifnet *, enum ifnet_serialize,
118 		    boolean_t);
119 #endif
120 
121 static void	jme_intr(void *);
122 static void	jme_msix_tx(void *);
123 static void	jme_msix_rx(void *);
124 static void	jme_msix_status(void *);
125 static void	jme_txeof(struct jme_txdata *);
126 static void	jme_rxeof(struct jme_rxdata *, int, int);
127 static void	jme_rx_intr(struct jme_softc *, uint32_t);
128 static void	jme_enable_intr(struct jme_softc *);
129 static void	jme_disable_intr(struct jme_softc *);
130 static void	jme_rx_restart(struct jme_softc *, uint32_t);
131 
132 static int	jme_msix_setup(device_t);
133 static void	jme_msix_teardown(device_t, int);
134 static int	jme_intr_setup(device_t);
135 static void	jme_intr_teardown(device_t);
136 static void	jme_msix_try_alloc(device_t);
137 static void	jme_msix_free(device_t);
138 static int	jme_intr_alloc(device_t);
139 static void	jme_intr_free(device_t);
140 static int	jme_dma_alloc(struct jme_softc *);
141 static void	jme_dma_free(struct jme_softc *);
142 static int	jme_init_rx_ring(struct jme_rxdata *);
143 static void	jme_init_tx_ring(struct jme_txdata *);
144 static void	jme_init_ssb(struct jme_softc *);
145 static int	jme_newbuf(struct jme_rxdata *, struct jme_rxdesc *, int);
146 static int	jme_encap(struct jme_txdata *, struct mbuf **, int *);
147 static void	jme_rxpkt(struct jme_rxdata *, int);
148 static int	jme_rxring_dma_alloc(struct jme_rxdata *);
149 static int	jme_rxbuf_dma_alloc(struct jme_rxdata *);
150 static int	jme_rxbuf_dma_filter(void *, bus_addr_t);
151 
152 static void	jme_tick(void *);
153 static void	jme_stop(struct jme_softc *);
154 static void	jme_reset(struct jme_softc *);
155 static void	jme_set_msinum(struct jme_softc *);
156 static void	jme_set_vlan(struct jme_softc *);
157 static void	jme_set_filter(struct jme_softc *);
158 static void	jme_stop_tx(struct jme_softc *);
159 static void	jme_stop_rx(struct jme_softc *);
160 static void	jme_mac_config(struct jme_softc *);
161 static void	jme_reg_macaddr(struct jme_softc *, uint8_t[]);
162 static int	jme_eeprom_macaddr(struct jme_softc *, uint8_t[]);
163 static int	jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
164 #ifdef notyet
165 static void	jme_setwol(struct jme_softc *);
166 static void	jme_setlinkspeed(struct jme_softc *);
167 #endif
168 static void	jme_set_tx_coal(struct jme_softc *);
169 static void	jme_set_rx_coal(struct jme_softc *);
170 static void	jme_enable_rss(struct jme_softc *);
171 static void	jme_disable_rss(struct jme_softc *);
172 static void	jme_serialize_skipmain(struct jme_softc *);
173 static void	jme_deserialize_skipmain(struct jme_softc *);
174 static void	jme_phy_poweron(struct jme_softc *);
175 static void	jme_phy_poweroff(struct jme_softc *);
176 static int	jme_miiext_read(struct jme_softc *, int);
177 static void	jme_miiext_write(struct jme_softc *, int, int);
178 static void	jme_phy_init(struct jme_softc *);
179 
180 static void	jme_sysctl_node(struct jme_softc *);
181 static int	jme_sysctl_tx_coal_to(SYSCTL_HANDLER_ARGS);
182 static int	jme_sysctl_tx_coal_pkt(SYSCTL_HANDLER_ARGS);
183 static int	jme_sysctl_rx_coal_to(SYSCTL_HANDLER_ARGS);
184 static int	jme_sysctl_rx_coal_pkt(SYSCTL_HANDLER_ARGS);
185 #ifdef IFPOLL_ENABLE
186 static int	jme_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
187 static int	jme_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
188 #endif
189 
190 /*
191  * Devices supported by this driver.
192  */
193 static const struct jme_dev {
194 	uint16_t	jme_vendorid;
195 	uint16_t	jme_deviceid;
196 	uint32_t	jme_caps;
197 	const char	*jme_name;
198 } jme_devs[] = {
199 	{ PCI_VENDOR_JMICRON, PCI_PRODUCT_JMICRON_JMC250,
200 	    JME_CAP_JUMBO,
201 	    "JMicron Inc, JMC250 Gigabit Ethernet" },
202 	{ PCI_VENDOR_JMICRON, PCI_PRODUCT_JMICRON_JMC260,
203 	    JME_CAP_FASTETH,
204 	    "JMicron Inc, JMC260 Fast Ethernet" },
205 	{ 0, 0, 0, NULL }
206 };
207 
208 static device_method_t jme_methods[] = {
209 	/* Device interface. */
210 	DEVMETHOD(device_probe,		jme_probe),
211 	DEVMETHOD(device_attach,	jme_attach),
212 	DEVMETHOD(device_detach,	jme_detach),
213 	DEVMETHOD(device_shutdown,	jme_shutdown),
214 	DEVMETHOD(device_suspend,	jme_suspend),
215 	DEVMETHOD(device_resume,	jme_resume),
216 
217 	/* Bus interface. */
218 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
219 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
220 
221 	/* MII interface. */
222 	DEVMETHOD(miibus_readreg,	jme_miibus_readreg),
223 	DEVMETHOD(miibus_writereg,	jme_miibus_writereg),
224 	DEVMETHOD(miibus_statchg,	jme_miibus_statchg),
225 
226 	{ NULL, NULL }
227 };
228 
229 static driver_t jme_driver = {
230 	"jme",
231 	jme_methods,
232 	sizeof(struct jme_softc)
233 };
234 
235 static devclass_t jme_devclass;
236 
237 DECLARE_DUMMY_MODULE(if_jme);
238 MODULE_DEPEND(if_jme, miibus, 1, 1, 1);
239 DRIVER_MODULE(if_jme, pci, jme_driver, jme_devclass, NULL, NULL);
240 DRIVER_MODULE(miibus, jme, miibus_driver, miibus_devclass, NULL, NULL);
241 
242 static const struct {
243 	uint32_t	jme_coal;
244 	uint32_t	jme_comp;
245 	uint32_t	jme_empty;
246 } jme_rx_status[JME_NRXRING_MAX] = {
247 	{ INTR_RXQ0_COAL | INTR_RXQ0_COAL_TO, INTR_RXQ0_COMP,
248 	  INTR_RXQ0_DESC_EMPTY },
249 	{ INTR_RXQ1_COAL | INTR_RXQ1_COAL_TO, INTR_RXQ1_COMP,
250 	  INTR_RXQ1_DESC_EMPTY },
251 	{ INTR_RXQ2_COAL | INTR_RXQ2_COAL_TO, INTR_RXQ2_COMP,
252 	  INTR_RXQ2_DESC_EMPTY },
253 	{ INTR_RXQ3_COAL | INTR_RXQ3_COAL_TO, INTR_RXQ3_COMP,
254 	  INTR_RXQ3_DESC_EMPTY }
255 };
256 
257 static int	jme_rx_desc_count = JME_RX_DESC_CNT_DEF;
258 static int	jme_tx_desc_count = JME_TX_DESC_CNT_DEF;
259 static int	jme_rx_ring_count = 0;
260 static int	jme_msi_enable = 1;
261 static int	jme_msix_enable = 1;
262 
263 TUNABLE_INT("hw.jme.rx_desc_count", &jme_rx_desc_count);
264 TUNABLE_INT("hw.jme.tx_desc_count", &jme_tx_desc_count);
265 TUNABLE_INT("hw.jme.rx_ring_count", &jme_rx_ring_count);
266 TUNABLE_INT("hw.jme.msi.enable", &jme_msi_enable);
267 TUNABLE_INT("hw.jme.msix.enable", &jme_msix_enable);
268 
269 static __inline void
270 jme_setup_rxdesc(struct jme_rxdesc *rxd)
271 {
272 	struct jme_desc *desc;
273 
274 	desc = rxd->rx_desc;
275 	desc->buflen = htole32(MCLBYTES);
276 	desc->addr_lo = htole32(JME_ADDR_LO(rxd->rx_paddr));
277 	desc->addr_hi = htole32(JME_ADDR_HI(rxd->rx_paddr));
278 	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
279 }
280 
281 /*
282  *	Read a PHY register on the MII of the JMC250.
283  */
284 static int
285 jme_miibus_readreg(device_t dev, int phy, int reg)
286 {
287 	struct jme_softc *sc = device_get_softc(dev);
288 	uint32_t val;
289 	int i;
290 
291 	/* For FPGA version, PHY address 0 should be ignored. */
292 	if (sc->jme_caps & JME_CAP_FPGA) {
293 		if (phy == 0)
294 			return (0);
295 	} else {
296 		if (sc->jme_phyaddr != phy)
297 			return (0);
298 	}
299 
300 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
301 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
302 
303 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
304 		DELAY(1);
305 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
306 			break;
307 	}
308 	if (i == 0) {
309 		device_printf(sc->jme_dev, "phy read timeout: "
310 			      "phy %d, reg %d\n", phy, reg);
311 		return (0);
312 	}
313 
314 	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
315 }
316 
317 /*
318  *	Write a PHY register on the MII of the JMC250.
319  */
320 static int
321 jme_miibus_writereg(device_t dev, int phy, int reg, int val)
322 {
323 	struct jme_softc *sc = device_get_softc(dev);
324 	int i;
325 
326 	/* For FPGA version, PHY address 0 should be ignored. */
327 	if (sc->jme_caps & JME_CAP_FPGA) {
328 		if (phy == 0)
329 			return (0);
330 	} else {
331 		if (sc->jme_phyaddr != phy)
332 			return (0);
333 	}
334 
335 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
336 	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
337 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
338 
339 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
340 		DELAY(1);
341 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
342 			break;
343 	}
344 	if (i == 0) {
345 		device_printf(sc->jme_dev, "phy write timeout: "
346 			      "phy %d, reg %d\n", phy, reg);
347 	}
348 
349 	return (0);
350 }
351 
352 /*
353  *	Callback from MII layer when media changes.
354  */
355 static void
356 jme_miibus_statchg(device_t dev)
357 {
358 	struct jme_softc *sc = device_get_softc(dev);
359 	struct ifnet *ifp = &sc->arpcom.ac_if;
360 	struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
361 	struct mii_data *mii;
362 	struct jme_txdesc *txd;
363 	bus_addr_t paddr;
364 	int i, r;
365 
366 	if (sc->jme_in_tick)
367 		jme_serialize_skipmain(sc);
368 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
369 
370 	if ((ifp->if_flags & IFF_RUNNING) == 0)
371 		goto done;
372 
373 	mii = device_get_softc(sc->jme_miibus);
374 
375 	sc->jme_has_link = FALSE;
376 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
377 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
378 		case IFM_10_T:
379 		case IFM_100_TX:
380 			sc->jme_has_link = TRUE;
381 			break;
382 		case IFM_1000_T:
383 			if (sc->jme_caps & JME_CAP_FASTETH)
384 				break;
385 			sc->jme_has_link = TRUE;
386 			break;
387 		default:
388 			break;
389 		}
390 	}
391 
392 	/*
393 	 * Disabling Rx/Tx MACs have a side-effect of resetting
394 	 * JME_TXNDA/JME_RXNDA register to the first address of
395 	 * Tx/Rx descriptor address. So driver should reset its
396 	 * internal procucer/consumer pointer and reclaim any
397 	 * allocated resources.  Note, just saving the value of
398 	 * JME_TXNDA and JME_RXNDA registers before stopping MAC
399 	 * and restoring JME_TXNDA/JME_RXNDA register is not
400 	 * sufficient to make sure correct MAC state because
401 	 * stopping MAC operation can take a while and hardware
402 	 * might have updated JME_TXNDA/JME_RXNDA registers
403 	 * during the stop operation.
404 	 */
405 
406 	/* Disable interrupts */
407 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
408 
409 	/* Stop driver */
410 	ifp->if_flags &= ~IFF_RUNNING;
411 	ifq_clr_oactive(&ifp->if_snd);
412 	ifp->if_timer = 0;
413 	callout_stop(&sc->jme_tick_ch);
414 
415 	/* Stop receiver/transmitter. */
416 	jme_stop_rx(sc);
417 	jme_stop_tx(sc);
418 
419 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
420 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[r];
421 
422 		jme_rxeof(rdata, -1, -1);
423 		if (rdata->jme_rxhead != NULL)
424 			m_freem(rdata->jme_rxhead);
425 		JME_RXCHAIN_RESET(rdata);
426 
427 		/*
428 		 * Reuse configured Rx descriptors and reset
429 		 * procuder/consumer index.
430 		 */
431 		rdata->jme_rx_cons = 0;
432 	}
433 	if (JME_ENABLE_HWRSS(sc))
434 		jme_enable_rss(sc);
435 	else
436 		jme_disable_rss(sc);
437 
438 	jme_txeof(tdata);
439 	if (tdata->jme_tx_cnt != 0) {
440 		/* Remove queued packets for transmit. */
441 		for (i = 0; i < tdata->jme_tx_desc_cnt; i++) {
442 			txd = &tdata->jme_txdesc[i];
443 			if (txd->tx_m != NULL) {
444 				bus_dmamap_unload( tdata->jme_tx_tag,
445 				    txd->tx_dmamap);
446 				m_freem(txd->tx_m);
447 				txd->tx_m = NULL;
448 				txd->tx_ndesc = 0;
449 				IFNET_STAT_INC(ifp, oerrors, 1);
450 			}
451 		}
452 	}
453 	jme_init_tx_ring(tdata);
454 
455 	/* Initialize shadow status block. */
456 	jme_init_ssb(sc);
457 
458 	/* Program MAC with resolved speed/duplex/flow-control. */
459 	if (sc->jme_has_link) {
460 		jme_mac_config(sc);
461 
462 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
463 
464 		/* Set Tx ring address to the hardware. */
465 		paddr = tdata->jme_tx_ring_paddr;
466 		CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
467 		CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
468 
469 		for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
470 			CSR_WRITE_4(sc, JME_RXCSR,
471 			    sc->jme_rxcsr | RXCSR_RXQ_N_SEL(r));
472 
473 			/* Set Rx ring address to the hardware. */
474 			paddr = sc->jme_cdata.jme_rx_data[r].jme_rx_ring_paddr;
475 			CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
476 			CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
477 		}
478 
479 		/* Restart receiver/transmitter. */
480 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
481 		    RXCSR_RXQ_START);
482 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
483 	}
484 
485 	ifp->if_flags |= IFF_RUNNING;
486 	ifq_clr_oactive(&ifp->if_snd);
487 	callout_reset_bycpu(&sc->jme_tick_ch, hz, jme_tick, sc,
488 	    JME_TICK_CPUID);
489 
490 #ifdef IFPOLL_ENABLE
491 	if (!(ifp->if_flags & IFF_NPOLLING))
492 #endif
493 	/* Reenable interrupts. */
494 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
495 
496 done:
497 	if (sc->jme_in_tick)
498 		jme_deserialize_skipmain(sc);
499 }
500 
501 /*
502  *	Get the current interface media status.
503  */
504 static void
505 jme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
506 {
507 	struct jme_softc *sc = ifp->if_softc;
508 	struct mii_data *mii = device_get_softc(sc->jme_miibus);
509 
510 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
511 
512 	mii_pollstat(mii);
513 	ifmr->ifm_status = mii->mii_media_status;
514 	ifmr->ifm_active = mii->mii_media_active;
515 }
516 
517 /*
518  *	Set hardware to newly-selected media.
519  */
520 static int
521 jme_mediachange(struct ifnet *ifp)
522 {
523 	struct jme_softc *sc = ifp->if_softc;
524 	struct mii_data *mii = device_get_softc(sc->jme_miibus);
525 	int error;
526 
527 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
528 
529 	if (mii->mii_instance != 0) {
530 		struct mii_softc *miisc;
531 
532 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
533 			mii_phy_reset(miisc);
534 	}
535 	error = mii_mediachg(mii);
536 
537 	return (error);
538 }
539 
540 static int
541 jme_probe(device_t dev)
542 {
543 	const struct jme_dev *sp;
544 	uint16_t vid, did;
545 
546 	vid = pci_get_vendor(dev);
547 	did = pci_get_device(dev);
548 	for (sp = jme_devs; sp->jme_name != NULL; ++sp) {
549 		if (vid == sp->jme_vendorid && did == sp->jme_deviceid) {
550 			struct jme_softc *sc = device_get_softc(dev);
551 
552 			sc->jme_caps = sp->jme_caps;
553 			device_set_desc(dev, sp->jme_name);
554 			return (0);
555 		}
556 	}
557 	return (ENXIO);
558 }
559 
560 static int
561 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
562 {
563 	uint32_t reg;
564 	int i;
565 
566 	*val = 0;
567 	for (i = JME_TIMEOUT; i > 0; i--) {
568 		reg = CSR_READ_4(sc, JME_SMBCSR);
569 		if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
570 			break;
571 		DELAY(1);
572 	}
573 
574 	if (i == 0) {
575 		device_printf(sc->jme_dev, "EEPROM idle timeout!\n");
576 		return (ETIMEDOUT);
577 	}
578 
579 	reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
580 	CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
581 	for (i = JME_TIMEOUT; i > 0; i--) {
582 		DELAY(1);
583 		reg = CSR_READ_4(sc, JME_SMBINTF);
584 		if ((reg & SMBINTF_CMD_TRIGGER) == 0)
585 			break;
586 	}
587 
588 	if (i == 0) {
589 		device_printf(sc->jme_dev, "EEPROM read timeout!\n");
590 		return (ETIMEDOUT);
591 	}
592 
593 	reg = CSR_READ_4(sc, JME_SMBINTF);
594 	*val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
595 
596 	return (0);
597 }
598 
599 static int
600 jme_eeprom_macaddr(struct jme_softc *sc, uint8_t eaddr[])
601 {
602 	uint8_t fup, reg, val;
603 	uint32_t offset;
604 	int match;
605 
606 	offset = 0;
607 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
608 	    fup != JME_EEPROM_SIG0)
609 		return (ENOENT);
610 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
611 	    fup != JME_EEPROM_SIG1)
612 		return (ENOENT);
613 	match = 0;
614 	do {
615 		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
616 			break;
617 		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) ==
618 		    (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
619 			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
620 				break;
621 			if (reg >= JME_PAR0 &&
622 			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
623 				if (jme_eeprom_read_byte(sc, offset + 2,
624 				    &val) != 0)
625 					break;
626 				eaddr[reg - JME_PAR0] = val;
627 				match++;
628 			}
629 		}
630 		/* Check for the end of EEPROM descriptor. */
631 		if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
632 			break;
633 		/* Try next eeprom descriptor. */
634 		offset += JME_EEPROM_DESC_BYTES;
635 	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
636 
637 	if (match == ETHER_ADDR_LEN)
638 		return (0);
639 
640 	return (ENOENT);
641 }
642 
643 static void
644 jme_reg_macaddr(struct jme_softc *sc, uint8_t eaddr[])
645 {
646 	uint32_t par0, par1;
647 
648 	/* Read station address. */
649 	par0 = CSR_READ_4(sc, JME_PAR0);
650 	par1 = CSR_READ_4(sc, JME_PAR1);
651 	par1 &= 0xFFFF;
652 	if ((par0 == 0 && par1 == 0) || (par0 & 0x1)) {
653 		device_printf(sc->jme_dev,
654 		    "generating fake ethernet address.\n");
655 		par0 = karc4random();
656 		/* Set OUI to JMicron. */
657 		eaddr[0] = 0x00;
658 		eaddr[1] = 0x1B;
659 		eaddr[2] = 0x8C;
660 		eaddr[3] = (par0 >> 16) & 0xff;
661 		eaddr[4] = (par0 >> 8) & 0xff;
662 		eaddr[5] = par0 & 0xff;
663 	} else {
664 		eaddr[0] = (par0 >> 0) & 0xFF;
665 		eaddr[1] = (par0 >> 8) & 0xFF;
666 		eaddr[2] = (par0 >> 16) & 0xFF;
667 		eaddr[3] = (par0 >> 24) & 0xFF;
668 		eaddr[4] = (par1 >> 0) & 0xFF;
669 		eaddr[5] = (par1 >> 8) & 0xFF;
670 	}
671 }
672 
673 static int
674 jme_attach(device_t dev)
675 {
676 	struct jme_softc *sc = device_get_softc(dev);
677 	struct ifnet *ifp = &sc->arpcom.ac_if;
678 	uint32_t reg;
679 	uint16_t did;
680 	uint8_t pcie_ptr, rev;
681 	int error = 0, i, j, rx_desc_cnt, coal_max;
682 	uint8_t eaddr[ETHER_ADDR_LEN];
683 #ifdef IFPOLL_ENABLE
684 	int offset, offset_def;
685 #endif
686 
687 	/*
688 	 * Initialize serializers
689 	 */
690 	lwkt_serialize_init(&sc->jme_serialize);
691 	lwkt_serialize_init(&sc->jme_cdata.jme_tx_data.jme_tx_serialize);
692 	for (i = 0; i < JME_NRXRING_MAX; ++i) {
693 		lwkt_serialize_init(
694 		    &sc->jme_cdata.jme_rx_data[i].jme_rx_serialize);
695 	}
696 
697 	/*
698 	 * Get # of RX ring descriptors
699 	 */
700 	rx_desc_cnt = device_getenv_int(dev, "rx_desc_count",
701 	    jme_rx_desc_count);
702 	rx_desc_cnt = roundup(rx_desc_cnt, JME_NDESC_ALIGN);
703 	if (rx_desc_cnt > JME_NDESC_MAX)
704 		rx_desc_cnt = JME_NDESC_MAX;
705 
706 	/*
707 	 * Get # of TX ring descriptors
708 	 */
709 	sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt =
710 	    device_getenv_int(dev, "tx_desc_count", jme_tx_desc_count);
711 	sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt =
712 	    roundup(sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt, JME_NDESC_ALIGN);
713 	if (sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt > JME_NDESC_MAX)
714 		sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt = JME_NDESC_MAX;
715 
716 	/*
717 	 * Get # of RX rings
718 	 */
719 	sc->jme_cdata.jme_rx_ring_cnt = device_getenv_int(dev, "rx_ring_count",
720 	    jme_rx_ring_count);
721 	sc->jme_cdata.jme_rx_ring_cnt =
722 	    if_ring_count2(sc->jme_cdata.jme_rx_ring_cnt, JME_NRXRING_MAX);
723 
724 	/*
725 	 * Initialize serializer array
726 	 */
727 	i = 0;
728 
729 	KKASSERT(i < JME_NSERIALIZE);
730 	sc->jme_serialize_arr[i++] = &sc->jme_serialize;
731 
732 	KKASSERT(i < JME_NSERIALIZE);
733 	sc->jme_serialize_arr[i++] =
734 	    &sc->jme_cdata.jme_tx_data.jme_tx_serialize;
735 
736 	for (j = 0; j < sc->jme_cdata.jme_rx_ring_cnt; ++j) {
737 		KKASSERT(i < JME_NSERIALIZE);
738 		sc->jme_serialize_arr[i++] =
739 		    &sc->jme_cdata.jme_rx_data[j].jme_rx_serialize;
740 	}
741 
742 	KKASSERT(i <= JME_NSERIALIZE);
743 	sc->jme_serialize_cnt = i;
744 
745 	/*
746 	 * Setup TX ring specific data
747 	 */
748 	sc->jme_cdata.jme_tx_data.jme_sc = sc;
749 
750 	/*
751 	 * Setup RX rings specific data
752 	 */
753 	for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
754 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[i];
755 
756 		rdata->jme_sc = sc;
757 		rdata->jme_rx_coal = jme_rx_status[i].jme_coal;
758 		rdata->jme_rx_comp = jme_rx_status[i].jme_comp;
759 		rdata->jme_rx_empty = jme_rx_status[i].jme_empty;
760 		rdata->jme_rx_idx = i;
761 		rdata->jme_rx_desc_cnt = rx_desc_cnt;
762 	}
763 
764 	sc->jme_dev = dev;
765 	sc->jme_lowaddr = BUS_SPACE_MAXADDR;
766 
767 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
768 
769 	callout_init(&sc->jme_tick_ch);
770 
771 #ifndef BURN_BRIDGES
772 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
773 		uint32_t irq, mem;
774 
775 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
776 		mem = pci_read_config(dev, JME_PCIR_BAR, 4);
777 
778 		device_printf(dev, "chip is in D%d power mode "
779 		    "-- setting to D0\n", pci_get_powerstate(dev));
780 
781 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
782 
783 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
784 		pci_write_config(dev, JME_PCIR_BAR, mem, 4);
785 	}
786 #endif	/* !BURN_BRIDGE */
787 
788 	/* Enable bus mastering */
789 	pci_enable_busmaster(dev);
790 
791 	/*
792 	 * Allocate IO memory
793 	 *
794 	 * JMC250 supports both memory mapped and I/O register space
795 	 * access.  Because I/O register access should use different
796 	 * BARs to access registers it's waste of time to use I/O
797 	 * register spce access.  JMC250 uses 16K to map entire memory
798 	 * space.
799 	 */
800 	sc->jme_mem_rid = JME_PCIR_BAR;
801 	sc->jme_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
802 						 &sc->jme_mem_rid, RF_ACTIVE);
803 	if (sc->jme_mem_res == NULL) {
804 		device_printf(dev, "can't allocate IO memory\n");
805 		return ENXIO;
806 	}
807 	sc->jme_mem_bt = rman_get_bustag(sc->jme_mem_res);
808 	sc->jme_mem_bh = rman_get_bushandle(sc->jme_mem_res);
809 
810 	/*
811 	 * Allocate IRQ
812 	 */
813 	error = jme_intr_alloc(dev);
814 	if (error)
815 		goto fail;
816 
817 	/*
818 	 * Extract revisions
819 	 */
820 	reg = CSR_READ_4(sc, JME_CHIPMODE);
821 	if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
822 	    CHIPMODE_NOT_FPGA) {
823 		sc->jme_caps |= JME_CAP_FPGA;
824 		if (bootverbose) {
825 			device_printf(dev, "FPGA revision: 0x%04x\n",
826 				      (reg & CHIPMODE_FPGA_REV_MASK) >>
827 				      CHIPMODE_FPGA_REV_SHIFT);
828 		}
829 	}
830 
831 	/* NOTE: FM revision is put in the upper 4 bits */
832 	rev = ((reg & CHIPMODE_REVFM_MASK) >> CHIPMODE_REVFM_SHIFT) << 4;
833 	rev |= (reg & CHIPMODE_REVECO_MASK) >> CHIPMODE_REVECO_SHIFT;
834 	if (bootverbose)
835 		device_printf(dev, "Revision (FM/ECO): 0x%02x\n", rev);
836 
837 	did = pci_get_device(dev);
838 	switch (did) {
839 	case PCI_PRODUCT_JMICRON_JMC250:
840 		if (rev == JME_REV1_A2)
841 			sc->jme_workaround |= JME_WA_EXTFIFO | JME_WA_HDX;
842 		break;
843 
844 	case PCI_PRODUCT_JMICRON_JMC260:
845 		if (rev == JME_REV2) {
846 			sc->jme_lowaddr = BUS_SPACE_MAXADDR_32BIT;
847 			sc->jme_phycom0 = 0x608a;
848 		} else if (rev == JME_REV2_2) {
849 			sc->jme_phycom0 = 0x408a;
850 		}
851 		break;
852 
853 	default:
854 		panic("unknown device id 0x%04x", did);
855 	}
856 	if (rev >= JME_REV2) {
857 		sc->jme_clksrc = GHC_TXOFL_CLKSRC | GHC_TXMAC_CLKSRC;
858 		sc->jme_clksrc_1000 = GHC_TXOFL_CLKSRC_1000 |
859 				      GHC_TXMAC_CLKSRC_1000;
860 	}
861 	if (rev >= JME_REV5)
862 		sc->jme_caps |= JME_CAP_PHYPWR;
863 	if (rev >= JME_REV6 || rev == JME_REV5 || rev == JME_REV5_1 ||
864 	    rev == JME_REV5_3) {
865 		sc->jme_phycom0 = 0x008a;
866 		sc->jme_phycom1 = 0x4109;
867 	} else if (rev == JME_REV3_1 || rev == JME_REV3_2) {
868 		sc->jme_phycom0 = 0xe088;
869 	}
870 
871 	if (rev >= JME_REV2) {
872 		reg = pci_read_config(dev, JME_PCI_SSCTRL, 4);
873 		if ((reg & SSCTRL_PHYMASK) == SSCTRL_PHYEA) {
874 			sc->jme_phycom0 = 0;
875 			sc->jme_phycom1 = 0;
876 		}
877 	}
878 
879 	/* Reset the ethernet controller. */
880 	jme_reset(sc);
881 
882 	/* Map MSI/MSI-X vectors */
883 	jme_set_msinum(sc);
884 
885 	/* Get station address. */
886 	reg = CSR_READ_4(sc, JME_SMBCSR);
887 	if (reg & SMBCSR_EEPROM_PRESENT)
888 		error = jme_eeprom_macaddr(sc, eaddr);
889 	if (error != 0 || (reg & SMBCSR_EEPROM_PRESENT) == 0) {
890 		if (error != 0 && (bootverbose)) {
891 			device_printf(dev, "ethernet hardware address "
892 				      "not found in EEPROM.\n");
893 		}
894 		jme_reg_macaddr(sc, eaddr);
895 	}
896 
897 	/*
898 	 * Save PHY address.
899 	 * Integrated JR0211 has fixed PHY address whereas FPGA version
900 	 * requires PHY probing to get correct PHY address.
901 	 */
902 	if ((sc->jme_caps & JME_CAP_FPGA) == 0) {
903 		sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
904 		    GPREG0_PHY_ADDR_MASK;
905 		if (bootverbose) {
906 			device_printf(dev, "PHY is at address %d.\n",
907 			    sc->jme_phyaddr);
908 		}
909 	} else {
910 		sc->jme_phyaddr = 0;
911 	}
912 
913 	/* Set max allowable DMA size. */
914 	pcie_ptr = pci_get_pciecap_ptr(dev);
915 	if (pcie_ptr != 0) {
916 		uint16_t ctrl;
917 
918 		sc->jme_caps |= JME_CAP_PCIE;
919 		ctrl = pci_read_config(dev, pcie_ptr + PCIER_DEVCTRL, 2);
920 		if (bootverbose) {
921 			device_printf(dev, "Read request size : %d bytes.\n",
922 			    128 << ((ctrl >> 12) & 0x07));
923 			device_printf(dev, "TLP payload size : %d bytes.\n",
924 			    128 << ((ctrl >> 5) & 0x07));
925 		}
926 		switch (ctrl & PCIEM_DEVCTL_MAX_READRQ_MASK) {
927 		case PCIEM_DEVCTL_MAX_READRQ_128:
928 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128;
929 			break;
930 		case PCIEM_DEVCTL_MAX_READRQ_256:
931 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256;
932 			break;
933 		default:
934 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
935 			break;
936 		}
937 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
938 	} else {
939 		sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
940 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
941 	}
942 
943 #ifdef notyet
944 	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0)
945 		sc->jme_caps |= JME_CAP_PMCAP;
946 #endif
947 
948 #ifdef IFPOLL_ENABLE
949 	/*
950 	 * NPOLLING RX CPU offset
951 	 */
952 	if (sc->jme_cdata.jme_rx_ring_cnt == ncpus2) {
953 		offset = 0;
954 	} else {
955 		offset_def = (sc->jme_cdata.jme_rx_ring_cnt *
956 		    device_get_unit(dev)) % ncpus2;
957 		offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
958 		if (offset >= ncpus2 ||
959 		    offset % sc->jme_cdata.jme_rx_ring_cnt != 0) {
960 			device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
961 			    offset, offset_def);
962 			offset = offset_def;
963 		}
964 	}
965 	sc->jme_npoll_rxoff = offset;
966 
967 	/*
968 	 * NPOLLING TX CPU offset
969 	 */
970 	offset_def = sc->jme_npoll_rxoff;
971 	offset = device_getenv_int(dev, "npoll.txoff", offset_def);
972 	if (offset >= ncpus2) {
973 		device_printf(dev, "invalid npoll.txoff %d, use %d\n",
974 		    offset, offset_def);
975 		offset = offset_def;
976 	}
977 	sc->jme_npoll_txoff = offset;
978 #endif
979 
980 	/*
981 	 * Set default coalesce valves
982 	 */
983 	sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
984 	sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
985 	sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
986 	sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
987 
988 	/*
989 	 * Adjust coalesce valves, in case that the number of TX/RX
990 	 * descs are set to small values by users.
991 	 *
992 	 * NOTE: coal_max will not be zero, since number of descs
993 	 * must aligned by JME_NDESC_ALIGN (16 currently)
994 	 */
995 	coal_max = sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt / 2;
996 	if (coal_max < sc->jme_tx_coal_pkt)
997 		sc->jme_tx_coal_pkt = coal_max;
998 
999 	coal_max = sc->jme_cdata.jme_rx_data[0].jme_rx_desc_cnt / 2;
1000 	if (coal_max < sc->jme_rx_coal_pkt)
1001 		sc->jme_rx_coal_pkt = coal_max;
1002 
1003 	sc->jme_cdata.jme_tx_data.jme_tx_wreg = JME_TXWREG_NSEGS;
1004 
1005 	/*
1006 	 * Create sysctl tree
1007 	 */
1008 	jme_sysctl_node(sc);
1009 
1010 	/* Allocate DMA stuffs */
1011 	error = jme_dma_alloc(sc);
1012 	if (error)
1013 		goto fail;
1014 
1015 	ifp->if_softc = sc;
1016 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1017 	ifp->if_init = jme_init;
1018 	ifp->if_ioctl = jme_ioctl;
1019 	ifp->if_start = jme_start;
1020 #ifdef IFPOLL_ENABLE
1021 	ifp->if_npoll = jme_npoll;
1022 #endif
1023 	ifp->if_watchdog = jme_watchdog;
1024 	ifp->if_serialize = jme_serialize;
1025 	ifp->if_deserialize = jme_deserialize;
1026 	ifp->if_tryserialize = jme_tryserialize;
1027 #ifdef INVARIANTS
1028 	ifp->if_serialize_assert = jme_serialize_assert;
1029 #endif
1030 	ifq_set_maxlen(&ifp->if_snd,
1031 	    sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt - JME_TXD_RSVD);
1032 	ifq_set_ready(&ifp->if_snd);
1033 
1034 	/* JMC250 supports Tx/Rx checksum offload and hardware vlan tagging. */
1035 	ifp->if_capabilities = IFCAP_HWCSUM |
1036 			       IFCAP_TSO |
1037 			       IFCAP_VLAN_MTU |
1038 			       IFCAP_VLAN_HWTAGGING;
1039 	if (sc->jme_cdata.jme_rx_ring_cnt > JME_NRXRING_MIN)
1040 		ifp->if_capabilities |= IFCAP_RSS;
1041 	ifp->if_capenable = ifp->if_capabilities;
1042 
1043 	/*
1044 	 * Disable TXCSUM by default to improve bulk data
1045 	 * transmit performance (+20Mbps improvement).
1046 	 */
1047 	ifp->if_capenable &= ~IFCAP_TXCSUM;
1048 
1049 	if (ifp->if_capenable & IFCAP_TXCSUM)
1050 		ifp->if_hwassist |= JME_CSUM_FEATURES;
1051 	ifp->if_hwassist |= CSUM_TSO;
1052 
1053 	/* Set up MII bus. */
1054 	error = mii_phy_probe(dev, &sc->jme_miibus,
1055 			      jme_mediachange, jme_mediastatus);
1056 	if (error) {
1057 		device_printf(dev, "no PHY found!\n");
1058 		goto fail;
1059 	}
1060 
1061 	/*
1062 	 * Save PHYADDR for FPGA mode PHY.
1063 	 */
1064 	if (sc->jme_caps & JME_CAP_FPGA) {
1065 		struct mii_data *mii = device_get_softc(sc->jme_miibus);
1066 
1067 		if (mii->mii_instance != 0) {
1068 			struct mii_softc *miisc;
1069 
1070 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
1071 				if (miisc->mii_phy != 0) {
1072 					sc->jme_phyaddr = miisc->mii_phy;
1073 					break;
1074 				}
1075 			}
1076 			if (sc->jme_phyaddr != 0) {
1077 				device_printf(sc->jme_dev,
1078 				    "FPGA PHY is at %d\n", sc->jme_phyaddr);
1079 				/* vendor magic. */
1080 				jme_miibus_writereg(dev, sc->jme_phyaddr,
1081 				    JMPHY_CONF, JMPHY_CONF_DEFFIFO);
1082 
1083 				/* XXX should we clear JME_WA_EXTFIFO */
1084 			}
1085 		}
1086 	}
1087 
1088 	ether_ifattach(ifp, eaddr, NULL);
1089 
1090 	/* Tell the upper layer(s) we support long frames. */
1091 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1092 
1093 	/* Setup the TX ring's CPUID */
1094 	ifq_set_cpuid(&ifp->if_snd, sc->jme_tx_cpuid);
1095 	ifq_set_hw_serialize(&ifp->if_snd,
1096 	    &sc->jme_cdata.jme_tx_data.jme_tx_serialize);
1097 
1098 	error = jme_intr_setup(dev);
1099 	if (error) {
1100 		ether_ifdetach(ifp);
1101 		goto fail;
1102 	}
1103 
1104 	return 0;
1105 fail:
1106 	jme_detach(dev);
1107 	return (error);
1108 }
1109 
1110 static int
1111 jme_detach(device_t dev)
1112 {
1113 	struct jme_softc *sc = device_get_softc(dev);
1114 
1115 	if (device_is_attached(dev)) {
1116 		struct ifnet *ifp = &sc->arpcom.ac_if;
1117 
1118 		ifnet_serialize_all(ifp);
1119 		jme_stop(sc);
1120 		jme_intr_teardown(dev);
1121 		ifnet_deserialize_all(ifp);
1122 
1123 		ether_ifdetach(ifp);
1124 	}
1125 
1126 	if (sc->jme_miibus != NULL)
1127 		device_delete_child(dev, sc->jme_miibus);
1128 	bus_generic_detach(dev);
1129 
1130 	jme_intr_free(dev);
1131 
1132 	if (sc->jme_mem_res != NULL) {
1133 		bus_release_resource(dev, SYS_RES_MEMORY, sc->jme_mem_rid,
1134 				     sc->jme_mem_res);
1135 	}
1136 
1137 	jme_dma_free(sc);
1138 
1139 	return (0);
1140 }
1141 
1142 static void
1143 jme_sysctl_node(struct jme_softc *sc)
1144 {
1145 	struct sysctl_ctx_list *ctx;
1146 	struct sysctl_oid *tree;
1147 #ifdef JME_RSS_DEBUG
1148 	int r;
1149 #endif
1150 
1151 	ctx = device_get_sysctl_ctx(sc->jme_dev);
1152 	tree = device_get_sysctl_tree(sc->jme_dev);
1153 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1154 	    "tx_coal_to", CTLTYPE_INT | CTLFLAG_RW,
1155 	    sc, 0, jme_sysctl_tx_coal_to, "I", "jme tx coalescing timeout");
1156 
1157 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1158 	    "tx_coal_pkt", CTLTYPE_INT | CTLFLAG_RW,
1159 	    sc, 0, jme_sysctl_tx_coal_pkt, "I", "jme tx coalescing packet");
1160 
1161 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1162 	    "rx_coal_to", CTLTYPE_INT | CTLFLAG_RW,
1163 	    sc, 0, jme_sysctl_rx_coal_to, "I", "jme rx coalescing timeout");
1164 
1165 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1166 	    "rx_coal_pkt", CTLTYPE_INT | CTLFLAG_RW,
1167 	    sc, 0, jme_sysctl_rx_coal_pkt, "I", "jme rx coalescing packet");
1168 
1169 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1170 		       "rx_desc_count", CTLFLAG_RD,
1171 		       &sc->jme_cdata.jme_rx_data[0].jme_rx_desc_cnt,
1172 		       0, "RX desc count");
1173 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1174 		       "tx_desc_count", CTLFLAG_RD,
1175 		       &sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt,
1176 		       0, "TX desc count");
1177 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1178 		       "rx_ring_count", CTLFLAG_RD,
1179 		       &sc->jme_cdata.jme_rx_ring_cnt,
1180 		       0, "RX ring count");
1181 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1182 		       "tx_wreg", CTLFLAG_RW,
1183 		       &sc->jme_cdata.jme_tx_data.jme_tx_wreg, 0,
1184 		       "# of segments before writing to hardware register");
1185 
1186 #ifdef JME_RSS_DEBUG
1187 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1188 		       "rss_debug", CTLFLAG_RW, &sc->jme_rss_debug,
1189 		       0, "RSS debug level");
1190 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
1191 		char rx_ring_desc[32];
1192 
1193 		ksnprintf(rx_ring_desc, sizeof(rx_ring_desc),
1194 		    "rx_ring%d_pkt", r);
1195 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1196 		    rx_ring_desc, CTLFLAG_RW,
1197 		    &sc->jme_cdata.jme_rx_data[r].jme_rx_pkt, "RXed packets");
1198 
1199 		ksnprintf(rx_ring_desc, sizeof(rx_ring_desc),
1200 		    "rx_ring%d_emp", r);
1201 		SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1202 		    rx_ring_desc, CTLFLAG_RW,
1203 		    &sc->jme_cdata.jme_rx_data[r].jme_rx_emp,
1204 		    "# of time RX ring empty");
1205 	}
1206 #endif
1207 
1208 #ifdef IFPOLL_ENABLE
1209 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1210 	    "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
1211 	    jme_sysctl_npoll_rxoff, "I", "NPOLLING RX cpu offset");
1212 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1213 	    "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
1214 	    jme_sysctl_npoll_txoff, "I", "NPOLLING TX cpu offset");
1215 #endif
1216 }
1217 
1218 static int
1219 jme_dma_alloc(struct jme_softc *sc)
1220 {
1221 	struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
1222 	struct jme_txdesc *txd;
1223 	bus_dmamem_t dmem;
1224 	int error, i, asize;
1225 
1226 	asize = __VM_CACHELINE_ALIGN(
1227 	    tdata->jme_tx_desc_cnt * sizeof(struct jme_txdesc));
1228 	tdata->jme_txdesc = kmalloc_cachealign(asize, M_DEVBUF,
1229 	    M_WAITOK | M_ZERO);
1230 
1231 	for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
1232 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[i];
1233 
1234 		asize = __VM_CACHELINE_ALIGN(
1235 		    rdata->jme_rx_desc_cnt * sizeof(struct jme_rxdesc));
1236 		rdata->jme_rxdesc = kmalloc_cachealign(asize, M_DEVBUF,
1237 		    M_WAITOK | M_ZERO);
1238 	}
1239 
1240 	/* Create parent ring tag. */
1241 	error = bus_dma_tag_create(NULL,/* parent */
1242 	    1, JME_RING_BOUNDARY,	/* algnmnt, boundary */
1243 	    sc->jme_lowaddr,		/* lowaddr */
1244 	    BUS_SPACE_MAXADDR,		/* highaddr */
1245 	    NULL, NULL,			/* filter, filterarg */
1246 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1247 	    0,				/* nsegments */
1248 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1249 	    0,				/* flags */
1250 	    &sc->jme_cdata.jme_ring_tag);
1251 	if (error) {
1252 		device_printf(sc->jme_dev,
1253 		    "could not create parent ring DMA tag.\n");
1254 		return error;
1255 	}
1256 
1257 	/*
1258 	 * Create DMA stuffs for TX ring
1259 	 */
1260 	asize = roundup2(JME_TX_RING_SIZE(tdata), JME_TX_RING_ALIGN);
1261 	error = bus_dmamem_coherent(sc->jme_cdata.jme_ring_tag,
1262 			JME_TX_RING_ALIGN, 0,
1263 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1264 			asize, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
1265 	if (error) {
1266 		device_printf(sc->jme_dev, "could not allocate Tx ring.\n");
1267 		return error;
1268 	}
1269 	tdata->jme_tx_ring_tag = dmem.dmem_tag;
1270 	tdata->jme_tx_ring_map = dmem.dmem_map;
1271 	tdata->jme_tx_ring = dmem.dmem_addr;
1272 	tdata->jme_tx_ring_paddr = dmem.dmem_busaddr;
1273 
1274 	/*
1275 	 * Create DMA stuffs for RX rings
1276 	 */
1277 	for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
1278 		error = jme_rxring_dma_alloc(&sc->jme_cdata.jme_rx_data[i]);
1279 		if (error)
1280 			return error;
1281 	}
1282 
1283 	/* Create parent buffer tag. */
1284 	error = bus_dma_tag_create(NULL,/* parent */
1285 	    1, 0,			/* algnmnt, boundary */
1286 	    sc->jme_lowaddr,		/* lowaddr */
1287 	    BUS_SPACE_MAXADDR,		/* highaddr */
1288 	    NULL, NULL,			/* filter, filterarg */
1289 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1290 	    0,				/* nsegments */
1291 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1292 	    0,				/* flags */
1293 	    &sc->jme_cdata.jme_buffer_tag);
1294 	if (error) {
1295 		device_printf(sc->jme_dev,
1296 		    "could not create parent buffer DMA tag.\n");
1297 		return error;
1298 	}
1299 
1300 	/*
1301 	 * Create DMA stuffs for shadow status block
1302 	 */
1303 	asize = roundup2(JME_SSB_SIZE, JME_SSB_ALIGN);
1304 	error = bus_dmamem_coherent(sc->jme_cdata.jme_buffer_tag,
1305 			JME_SSB_ALIGN, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1306 			asize, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
1307 	if (error) {
1308 		device_printf(sc->jme_dev,
1309 		    "could not create shadow status block.\n");
1310 		return error;
1311 	}
1312 	sc->jme_cdata.jme_ssb_tag = dmem.dmem_tag;
1313 	sc->jme_cdata.jme_ssb_map = dmem.dmem_map;
1314 	sc->jme_cdata.jme_ssb_block = dmem.dmem_addr;
1315 	sc->jme_cdata.jme_ssb_block_paddr = dmem.dmem_busaddr;
1316 
1317 	/*
1318 	 * Create DMA stuffs for TX buffers
1319 	 */
1320 
1321 	/* Create tag for Tx buffers. */
1322 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1323 	    1, 0,			/* algnmnt, boundary */
1324 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1325 	    BUS_SPACE_MAXADDR,		/* highaddr */
1326 	    NULL, NULL,			/* filter, filterarg */
1327 	    JME_TSO_MAXSIZE,		/* maxsize */
1328 	    JME_MAXTXSEGS,		/* nsegments */
1329 	    JME_MAXSEGSIZE,		/* maxsegsize */
1330 	    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,/* flags */
1331 	    &tdata->jme_tx_tag);
1332 	if (error != 0) {
1333 		device_printf(sc->jme_dev, "could not create Tx DMA tag.\n");
1334 		return error;
1335 	}
1336 
1337 	/* Create DMA maps for Tx buffers. */
1338 	for (i = 0; i < tdata->jme_tx_desc_cnt; i++) {
1339 		txd = &tdata->jme_txdesc[i];
1340 		error = bus_dmamap_create(tdata->jme_tx_tag,
1341 				BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1342 				&txd->tx_dmamap);
1343 		if (error) {
1344 			int j;
1345 
1346 			device_printf(sc->jme_dev,
1347 			    "could not create %dth Tx dmamap.\n", i);
1348 
1349 			for (j = 0; j < i; ++j) {
1350 				txd = &tdata->jme_txdesc[j];
1351 				bus_dmamap_destroy(tdata->jme_tx_tag,
1352 						   txd->tx_dmamap);
1353 			}
1354 			bus_dma_tag_destroy(tdata->jme_tx_tag);
1355 			tdata->jme_tx_tag = NULL;
1356 			return error;
1357 		}
1358 	}
1359 
1360 	/*
1361 	 * Create DMA stuffs for RX buffers
1362 	 */
1363 	for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
1364 		error = jme_rxbuf_dma_alloc(&sc->jme_cdata.jme_rx_data[i]);
1365 		if (error)
1366 			return error;
1367 	}
1368 	return 0;
1369 }
1370 
1371 static void
1372 jme_dma_free(struct jme_softc *sc)
1373 {
1374 	struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
1375 	struct jme_txdesc *txd;
1376 	struct jme_rxdesc *rxd;
1377 	struct jme_rxdata *rdata;
1378 	int i, r;
1379 
1380 	/* Tx ring */
1381 	if (tdata->jme_tx_ring_tag != NULL) {
1382 		bus_dmamap_unload(tdata->jme_tx_ring_tag,
1383 		    tdata->jme_tx_ring_map);
1384 		bus_dmamem_free(tdata->jme_tx_ring_tag,
1385 		    tdata->jme_tx_ring, tdata->jme_tx_ring_map);
1386 		bus_dma_tag_destroy(tdata->jme_tx_ring_tag);
1387 		tdata->jme_tx_ring_tag = NULL;
1388 	}
1389 
1390 	/* Rx ring */
1391 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
1392 		rdata = &sc->jme_cdata.jme_rx_data[r];
1393 		if (rdata->jme_rx_ring_tag != NULL) {
1394 			bus_dmamap_unload(rdata->jme_rx_ring_tag,
1395 					  rdata->jme_rx_ring_map);
1396 			bus_dmamem_free(rdata->jme_rx_ring_tag,
1397 					rdata->jme_rx_ring,
1398 					rdata->jme_rx_ring_map);
1399 			bus_dma_tag_destroy(rdata->jme_rx_ring_tag);
1400 			rdata->jme_rx_ring_tag = NULL;
1401 		}
1402 	}
1403 
1404 	/* Tx buffers */
1405 	if (tdata->jme_tx_tag != NULL) {
1406 		for (i = 0; i < tdata->jme_tx_desc_cnt; i++) {
1407 			txd = &tdata->jme_txdesc[i];
1408 			bus_dmamap_destroy(tdata->jme_tx_tag, txd->tx_dmamap);
1409 		}
1410 		bus_dma_tag_destroy(tdata->jme_tx_tag);
1411 		tdata->jme_tx_tag = NULL;
1412 	}
1413 
1414 	/* Rx buffers */
1415 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
1416 		rdata = &sc->jme_cdata.jme_rx_data[r];
1417 		if (rdata->jme_rx_tag != NULL) {
1418 			for (i = 0; i < rdata->jme_rx_desc_cnt; i++) {
1419 				rxd = &rdata->jme_rxdesc[i];
1420 				bus_dmamap_destroy(rdata->jme_rx_tag,
1421 						   rxd->rx_dmamap);
1422 			}
1423 			bus_dmamap_destroy(rdata->jme_rx_tag,
1424 					   rdata->jme_rx_sparemap);
1425 			bus_dma_tag_destroy(rdata->jme_rx_tag);
1426 			rdata->jme_rx_tag = NULL;
1427 		}
1428 	}
1429 
1430 	/* Shadow status block. */
1431 	if (sc->jme_cdata.jme_ssb_tag != NULL) {
1432 		bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag,
1433 		    sc->jme_cdata.jme_ssb_map);
1434 		bus_dmamem_free(sc->jme_cdata.jme_ssb_tag,
1435 		    sc->jme_cdata.jme_ssb_block,
1436 		    sc->jme_cdata.jme_ssb_map);
1437 		bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag);
1438 		sc->jme_cdata.jme_ssb_tag = NULL;
1439 	}
1440 
1441 	if (sc->jme_cdata.jme_buffer_tag != NULL) {
1442 		bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag);
1443 		sc->jme_cdata.jme_buffer_tag = NULL;
1444 	}
1445 	if (sc->jme_cdata.jme_ring_tag != NULL) {
1446 		bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag);
1447 		sc->jme_cdata.jme_ring_tag = NULL;
1448 	}
1449 
1450 	if (tdata->jme_txdesc != NULL) {
1451 		kfree(tdata->jme_txdesc, M_DEVBUF);
1452 		tdata->jme_txdesc = NULL;
1453 	}
1454 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
1455 		rdata = &sc->jme_cdata.jme_rx_data[r];
1456 		if (rdata->jme_rxdesc != NULL) {
1457 			kfree(rdata->jme_rxdesc, M_DEVBUF);
1458 			rdata->jme_rxdesc = NULL;
1459 		}
1460 	}
1461 }
1462 
1463 /*
1464  *	Make sure the interface is stopped at reboot time.
1465  */
1466 static int
1467 jme_shutdown(device_t dev)
1468 {
1469 	return jme_suspend(dev);
1470 }
1471 
1472 #ifdef notyet
1473 /*
1474  * Unlike other ethernet controllers, JMC250 requires
1475  * explicit resetting link speed to 10/100Mbps as gigabit
1476  * link will cunsume more power than 375mA.
1477  * Note, we reset the link speed to 10/100Mbps with
1478  * auto-negotiation but we don't know whether that operation
1479  * would succeed or not as we have no control after powering
1480  * off. If the renegotiation fail WOL may not work. Running
1481  * at 1Gbps draws more power than 375mA at 3.3V which is
1482  * specified in PCI specification and that would result in
1483  * complete shutdowning power to ethernet controller.
1484  *
1485  * TODO
1486  *  Save current negotiated media speed/duplex/flow-control
1487  *  to softc and restore the same link again after resuming.
1488  *  PHY handling such as power down/resetting to 100Mbps
1489  *  may be better handled in suspend method in phy driver.
1490  */
1491 static void
1492 jme_setlinkspeed(struct jme_softc *sc)
1493 {
1494 	struct mii_data *mii;
1495 	int aneg, i;
1496 
1497 	JME_LOCK_ASSERT(sc);
1498 
1499 	mii = device_get_softc(sc->jme_miibus);
1500 	mii_pollstat(mii);
1501 	aneg = 0;
1502 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1503 		switch IFM_SUBTYPE(mii->mii_media_active) {
1504 		case IFM_10_T:
1505 		case IFM_100_TX:
1506 			return;
1507 		case IFM_1000_T:
1508 			aneg++;
1509 		default:
1510 			break;
1511 		}
1512 	}
1513 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0);
1514 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR,
1515 	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1516 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR,
1517 	    BMCR_AUTOEN | BMCR_STARTNEG);
1518 	DELAY(1000);
1519 	if (aneg != 0) {
1520 		/* Poll link state until jme(4) get a 10/100 link. */
1521 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1522 			mii_pollstat(mii);
1523 			if ((mii->mii_media_status & IFM_AVALID) != 0) {
1524 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
1525 				case IFM_10_T:
1526 				case IFM_100_TX:
1527 					jme_mac_config(sc);
1528 					return;
1529 				default:
1530 					break;
1531 				}
1532 			}
1533 			JME_UNLOCK(sc);
1534 			pause("jmelnk", hz);
1535 			JME_LOCK(sc);
1536 		}
1537 		if (i == MII_ANEGTICKS_GIGE)
1538 			device_printf(sc->jme_dev, "establishing link failed, "
1539 			    "WOL may not work!");
1540 	}
1541 	/*
1542 	 * No link, force MAC to have 100Mbps, full-duplex link.
1543 	 * This is the last resort and may/may not work.
1544 	 */
1545 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1546 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1547 	jme_mac_config(sc);
1548 }
1549 
1550 static void
1551 jme_setwol(struct jme_softc *sc)
1552 {
1553 	struct ifnet *ifp = &sc->arpcom.ac_if;
1554 	uint32_t gpr, pmcs;
1555 	uint16_t pmstat;
1556 	int pmc;
1557 
1558 	if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1559 		/* No PME capability, PHY power down. */
1560 		jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
1561 		    MII_BMCR, BMCR_PDOWN);
1562 		return;
1563 	}
1564 
1565 	gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
1566 	pmcs = CSR_READ_4(sc, JME_PMCS);
1567 	pmcs &= ~PMCS_WOL_ENB_MASK;
1568 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1569 		pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
1570 		/* Enable PME message. */
1571 		gpr |= GPREG0_PME_ENB;
1572 		/* For gigabit controllers, reset link speed to 10/100. */
1573 		if ((sc->jme_caps & JME_CAP_FASTETH) == 0)
1574 			jme_setlinkspeed(sc);
1575 	}
1576 
1577 	CSR_WRITE_4(sc, JME_PMCS, pmcs);
1578 	CSR_WRITE_4(sc, JME_GPREG0, gpr);
1579 
1580 	/* Request PME. */
1581 	pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2);
1582 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1583 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1584 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1585 	pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1586 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1587 		/* No WOL, PHY power down. */
1588 		jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
1589 		    MII_BMCR, BMCR_PDOWN);
1590 	}
1591 }
1592 #endif
1593 
1594 static int
1595 jme_suspend(device_t dev)
1596 {
1597 	struct jme_softc *sc = device_get_softc(dev);
1598 	struct ifnet *ifp = &sc->arpcom.ac_if;
1599 
1600 	ifnet_serialize_all(ifp);
1601 	jme_stop(sc);
1602 #ifdef notyet
1603 	jme_setwol(sc);
1604 #endif
1605 	ifnet_deserialize_all(ifp);
1606 
1607 	return (0);
1608 }
1609 
1610 static int
1611 jme_resume(device_t dev)
1612 {
1613 	struct jme_softc *sc = device_get_softc(dev);
1614 	struct ifnet *ifp = &sc->arpcom.ac_if;
1615 #ifdef notyet
1616 	int pmc;
1617 #endif
1618 
1619 	ifnet_serialize_all(ifp);
1620 
1621 #ifdef notyet
1622 	if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1623 		uint16_t pmstat;
1624 
1625 		pmstat = pci_read_config(sc->jme_dev,
1626 		    pmc + PCIR_POWER_STATUS, 2);
1627 		/* Disable PME clear PME status. */
1628 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1629 		pci_write_config(sc->jme_dev,
1630 		    pmc + PCIR_POWER_STATUS, pmstat, 2);
1631 	}
1632 #endif
1633 
1634 	if (ifp->if_flags & IFF_UP)
1635 		jme_init(sc);
1636 
1637 	ifnet_deserialize_all(ifp);
1638 
1639 	return (0);
1640 }
1641 
1642 static __inline int
1643 jme_tso_pullup(struct mbuf **mp)
1644 {
1645 	int hoff, iphlen, thoff;
1646 	struct mbuf *m;
1647 
1648 	m = *mp;
1649 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
1650 
1651 	iphlen = m->m_pkthdr.csum_iphlen;
1652 	thoff = m->m_pkthdr.csum_thlen;
1653 	hoff = m->m_pkthdr.csum_lhlen;
1654 
1655 	KASSERT(iphlen > 0, ("invalid ip hlen"));
1656 	KASSERT(thoff > 0, ("invalid tcp hlen"));
1657 	KASSERT(hoff > 0, ("invalid ether hlen"));
1658 
1659 	if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
1660 		m = m_pullup(m, hoff + iphlen + thoff);
1661 		if (m == NULL) {
1662 			*mp = NULL;
1663 			return ENOBUFS;
1664 		}
1665 		*mp = m;
1666 	}
1667 	return 0;
1668 }
1669 
1670 static int
1671 jme_encap(struct jme_txdata *tdata, struct mbuf **m_head, int *segs_used)
1672 {
1673 	struct jme_txdesc *txd;
1674 	struct jme_desc *desc;
1675 	struct mbuf *m;
1676 	bus_dma_segment_t txsegs[JME_MAXTXSEGS];
1677 	int maxsegs, nsegs;
1678 	int error, i, prod, symbol_desc;
1679 	uint32_t cflags, flag64, mss;
1680 
1681 	M_ASSERTPKTHDR((*m_head));
1682 
1683 	if ((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) {
1684 		/* XXX Is this necessary? */
1685 		error = jme_tso_pullup(m_head);
1686 		if (error)
1687 			return error;
1688 	}
1689 
1690 	prod = tdata->jme_tx_prod;
1691 	txd = &tdata->jme_txdesc[prod];
1692 
1693 	if (tdata->jme_sc->jme_lowaddr != BUS_SPACE_MAXADDR_32BIT)
1694 		symbol_desc = 1;
1695 	else
1696 		symbol_desc = 0;
1697 
1698 	maxsegs = (tdata->jme_tx_desc_cnt - tdata->jme_tx_cnt) -
1699 		  (JME_TXD_RSVD + symbol_desc);
1700 	if (maxsegs > JME_MAXTXSEGS)
1701 		maxsegs = JME_MAXTXSEGS;
1702 	KASSERT(maxsegs >= (JME_TXD_SPARE - symbol_desc),
1703 		("not enough segments %d", maxsegs));
1704 
1705 	error = bus_dmamap_load_mbuf_defrag(tdata->jme_tx_tag,
1706 			txd->tx_dmamap, m_head,
1707 			txsegs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1708 	if (error)
1709 		goto fail;
1710 	*segs_used += nsegs;
1711 
1712 	bus_dmamap_sync(tdata->jme_tx_tag, txd->tx_dmamap,
1713 			BUS_DMASYNC_PREWRITE);
1714 
1715 	m = *m_head;
1716 	cflags = 0;
1717 	mss = 0;
1718 
1719 	/* Configure checksum offload. */
1720 	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1721 		mss = (uint32_t)m->m_pkthdr.tso_segsz << JME_TD_MSS_SHIFT;
1722 		cflags |= JME_TD_TSO;
1723 	} else if (m->m_pkthdr.csum_flags & JME_CSUM_FEATURES) {
1724 		if (m->m_pkthdr.csum_flags & CSUM_IP)
1725 			cflags |= JME_TD_IPCSUM;
1726 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1727 			cflags |= JME_TD_TCPCSUM;
1728 		if (m->m_pkthdr.csum_flags & CSUM_UDP)
1729 			cflags |= JME_TD_UDPCSUM;
1730 	}
1731 
1732 	/* Configure VLAN. */
1733 	if (m->m_flags & M_VLANTAG) {
1734 		cflags |= (m->m_pkthdr.ether_vlantag & JME_TD_VLAN_MASK);
1735 		cflags |= JME_TD_VLAN_TAG;
1736 	}
1737 
1738 	desc = &tdata->jme_tx_ring[prod];
1739 	desc->flags = htole32(cflags);
1740 	desc->addr_hi = htole32(m->m_pkthdr.len);
1741 	if (tdata->jme_sc->jme_lowaddr != BUS_SPACE_MAXADDR_32BIT) {
1742 		/*
1743 		 * Use 64bits TX desc chain format.
1744 		 *
1745 		 * The first TX desc of the chain, which is setup here,
1746 		 * is just a symbol TX desc carrying no payload.
1747 		 */
1748 		flag64 = JME_TD_64BIT;
1749 		desc->buflen = htole32(mss);
1750 		desc->addr_lo = 0;
1751 
1752 		*segs_used += 1;
1753 
1754 		/* No effective TX desc is consumed */
1755 		i = 0;
1756 	} else {
1757 		/*
1758 		 * Use 32bits TX desc chain format.
1759 		 *
1760 		 * The first TX desc of the chain, which is setup here,
1761 		 * is an effective TX desc carrying the first segment of
1762 		 * the mbuf chain.
1763 		 */
1764 		flag64 = 0;
1765 		desc->buflen = htole32(mss | txsegs[0].ds_len);
1766 		desc->addr_lo = htole32(JME_ADDR_LO(txsegs[0].ds_addr));
1767 
1768 		/* One effective TX desc is consumed */
1769 		i = 1;
1770 	}
1771 	tdata->jme_tx_cnt++;
1772 	KKASSERT(tdata->jme_tx_cnt - i < tdata->jme_tx_desc_cnt - JME_TXD_RSVD);
1773 	JME_DESC_INC(prod, tdata->jme_tx_desc_cnt);
1774 
1775 	txd->tx_ndesc = 1 - i;
1776 	for (; i < nsegs; i++) {
1777 		desc = &tdata->jme_tx_ring[prod];
1778 		desc->buflen = htole32(txsegs[i].ds_len);
1779 		desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr));
1780 		desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr));
1781 		desc->flags = htole32(JME_TD_OWN | flag64);
1782 
1783 		tdata->jme_tx_cnt++;
1784 		KKASSERT(tdata->jme_tx_cnt <=
1785 			 tdata->jme_tx_desc_cnt - JME_TXD_RSVD);
1786 		JME_DESC_INC(prod, tdata->jme_tx_desc_cnt);
1787 	}
1788 
1789 	/* Update producer index. */
1790 	tdata->jme_tx_prod = prod;
1791 	/*
1792 	 * Finally request interrupt and give the first descriptor
1793 	 * owenership to hardware.
1794 	 */
1795 	desc = txd->tx_desc;
1796 	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1797 
1798 	txd->tx_m = m;
1799 	txd->tx_ndesc += nsegs;
1800 
1801 	return 0;
1802 fail:
1803 	m_freem(*m_head);
1804 	*m_head = NULL;
1805 	return error;
1806 }
1807 
1808 static void
1809 jme_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1810 {
1811 	struct jme_softc *sc = ifp->if_softc;
1812 	struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
1813 	struct mbuf *m_head;
1814 	int enq = 0;
1815 
1816 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1817 	ASSERT_SERIALIZED(&tdata->jme_tx_serialize);
1818 
1819 	if (!sc->jme_has_link) {
1820 		ifq_purge(&ifp->if_snd);
1821 		return;
1822 	}
1823 
1824 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1825 		return;
1826 
1827 	if (tdata->jme_tx_cnt >= JME_TX_DESC_HIWAT(tdata))
1828 		jme_txeof(tdata);
1829 
1830 	while (!ifq_is_empty(&ifp->if_snd)) {
1831 		/*
1832 		 * Check number of available TX descs, always
1833 		 * leave JME_TXD_RSVD free TX descs.
1834 		 */
1835 		if (tdata->jme_tx_cnt + JME_TXD_SPARE >
1836 		    tdata->jme_tx_desc_cnt - JME_TXD_RSVD) {
1837 			ifq_set_oactive(&ifp->if_snd);
1838 			break;
1839 		}
1840 
1841 		m_head = ifq_dequeue(&ifp->if_snd);
1842 		if (m_head == NULL)
1843 			break;
1844 
1845 		/*
1846 		 * Pack the data into the transmit ring. If we
1847 		 * don't have room, set the OACTIVE flag and wait
1848 		 * for the NIC to drain the ring.
1849 		 */
1850 		if (jme_encap(tdata, &m_head, &enq)) {
1851 			KKASSERT(m_head == NULL);
1852 			IFNET_STAT_INC(ifp, oerrors, 1);
1853 			ifq_set_oactive(&ifp->if_snd);
1854 			break;
1855 		}
1856 
1857 		if (enq >= tdata->jme_tx_wreg) {
1858 			CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr |
1859 			    TXCSR_TX_ENB | TXCSR_TXQ_N_START(TXCSR_TXQ0));
1860 			enq = 0;
1861 		}
1862 
1863 		/*
1864 		 * If there's a BPF listener, bounce a copy of this frame
1865 		 * to him.
1866 		 */
1867 		ETHER_BPF_MTAP(ifp, m_head);
1868 
1869 		/* Set a timeout in case the chip goes out to lunch. */
1870 		ifp->if_timer = JME_TX_TIMEOUT;
1871 	}
1872 
1873 	if (enq > 0) {
1874 		/*
1875 		 * Reading TXCSR takes very long time under heavy load
1876 		 * so cache TXCSR value and writes the ORed value with
1877 		 * the kick command to the TXCSR. This saves one register
1878 		 * access cycle.
1879 		 */
1880 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
1881 		    TXCSR_TXQ_N_START(TXCSR_TXQ0));
1882 	}
1883 }
1884 
1885 static void
1886 jme_watchdog(struct ifnet *ifp)
1887 {
1888 	struct jme_softc *sc = ifp->if_softc;
1889 	struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
1890 
1891 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1892 
1893 	if (!sc->jme_has_link) {
1894 		if_printf(ifp, "watchdog timeout (missed link)\n");
1895 		IFNET_STAT_INC(ifp, oerrors, 1);
1896 		jme_init(sc);
1897 		return;
1898 	}
1899 
1900 	jme_txeof(tdata);
1901 	if (tdata->jme_tx_cnt == 0) {
1902 		if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
1903 			  "-- recovering\n");
1904 		if (!ifq_is_empty(&ifp->if_snd))
1905 			if_devstart(ifp);
1906 		return;
1907 	}
1908 
1909 	if_printf(ifp, "watchdog timeout\n");
1910 	IFNET_STAT_INC(ifp, oerrors, 1);
1911 	jme_init(sc);
1912 	if (!ifq_is_empty(&ifp->if_snd))
1913 		if_devstart(ifp);
1914 }
1915 
1916 static int
1917 jme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1918 {
1919 	struct jme_softc *sc = ifp->if_softc;
1920 	struct mii_data *mii = device_get_softc(sc->jme_miibus);
1921 	struct ifreq *ifr = (struct ifreq *)data;
1922 	int error = 0, mask;
1923 
1924 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
1925 
1926 	switch (cmd) {
1927 	case SIOCSIFMTU:
1928 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU ||
1929 		    (!(sc->jme_caps & JME_CAP_JUMBO) &&
1930 		     ifr->ifr_mtu > JME_MAX_MTU)) {
1931 			error = EINVAL;
1932 			break;
1933 		}
1934 
1935 		if (ifp->if_mtu != ifr->ifr_mtu) {
1936 			/*
1937 			 * No special configuration is required when interface
1938 			 * MTU is changed but availability of Tx checksum
1939 			 * offload should be chcked against new MTU size as
1940 			 * FIFO size is just 2K.
1941 			 */
1942 			if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) {
1943 				ifp->if_capenable &=
1944 				    ~(IFCAP_TXCSUM | IFCAP_TSO);
1945 				ifp->if_hwassist &=
1946 				    ~(JME_CSUM_FEATURES | CSUM_TSO);
1947 			}
1948 			ifp->if_mtu = ifr->ifr_mtu;
1949 			if (ifp->if_flags & IFF_RUNNING)
1950 				jme_init(sc);
1951 		}
1952 		break;
1953 
1954 	case SIOCSIFFLAGS:
1955 		if (ifp->if_flags & IFF_UP) {
1956 			if (ifp->if_flags & IFF_RUNNING) {
1957 				if ((ifp->if_flags ^ sc->jme_if_flags) &
1958 				    (IFF_PROMISC | IFF_ALLMULTI))
1959 					jme_set_filter(sc);
1960 			} else {
1961 				jme_init(sc);
1962 			}
1963 		} else {
1964 			if (ifp->if_flags & IFF_RUNNING)
1965 				jme_stop(sc);
1966 		}
1967 		sc->jme_if_flags = ifp->if_flags;
1968 		break;
1969 
1970 	case SIOCADDMULTI:
1971 	case SIOCDELMULTI:
1972 		if (ifp->if_flags & IFF_RUNNING)
1973 			jme_set_filter(sc);
1974 		break;
1975 
1976 	case SIOCSIFMEDIA:
1977 	case SIOCGIFMEDIA:
1978 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1979 		break;
1980 
1981 	case SIOCSIFCAP:
1982 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1983 
1984 		if ((mask & IFCAP_TXCSUM) && ifp->if_mtu < JME_TX_FIFO_SIZE) {
1985 			ifp->if_capenable ^= IFCAP_TXCSUM;
1986 			if (ifp->if_capenable & IFCAP_TXCSUM)
1987 				ifp->if_hwassist |= JME_CSUM_FEATURES;
1988 			else
1989 				ifp->if_hwassist &= ~JME_CSUM_FEATURES;
1990 		}
1991 		if (mask & IFCAP_RXCSUM) {
1992 			uint32_t reg;
1993 
1994 			ifp->if_capenable ^= IFCAP_RXCSUM;
1995 			reg = CSR_READ_4(sc, JME_RXMAC);
1996 			reg &= ~RXMAC_CSUM_ENB;
1997 			if (ifp->if_capenable & IFCAP_RXCSUM)
1998 				reg |= RXMAC_CSUM_ENB;
1999 			CSR_WRITE_4(sc, JME_RXMAC, reg);
2000 		}
2001 
2002 		if (mask & IFCAP_VLAN_HWTAGGING) {
2003 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2004 			jme_set_vlan(sc);
2005 		}
2006 
2007 		if ((mask & IFCAP_TSO) && ifp->if_mtu < JME_TX_FIFO_SIZE) {
2008 			ifp->if_capenable ^= IFCAP_TSO;
2009 			if (ifp->if_capenable & IFCAP_TSO)
2010 				ifp->if_hwassist |= CSUM_TSO;
2011 			else
2012 				ifp->if_hwassist &= ~CSUM_TSO;
2013 		}
2014 
2015 		if (mask & IFCAP_RSS)
2016 			ifp->if_capenable ^= IFCAP_RSS;
2017 		break;
2018 
2019 	default:
2020 		error = ether_ioctl(ifp, cmd, data);
2021 		break;
2022 	}
2023 	return (error);
2024 }
2025 
2026 static void
2027 jme_mac_config(struct jme_softc *sc)
2028 {
2029 	struct mii_data *mii;
2030 	uint32_t ghc, rxmac, txmac, txpause, gp1;
2031 	int phyconf = JMPHY_CONF_DEFFIFO, hdx = 0;
2032 
2033 	mii = device_get_softc(sc->jme_miibus);
2034 
2035 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2036 	DELAY(10);
2037 	CSR_WRITE_4(sc, JME_GHC, 0);
2038 	ghc = 0;
2039 	rxmac = CSR_READ_4(sc, JME_RXMAC);
2040 	rxmac &= ~RXMAC_FC_ENB;
2041 	txmac = CSR_READ_4(sc, JME_TXMAC);
2042 	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
2043 	txpause = CSR_READ_4(sc, JME_TXPFC);
2044 	txpause &= ~TXPFC_PAUSE_ENB;
2045 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2046 		ghc |= GHC_FULL_DUPLEX;
2047 		rxmac &= ~RXMAC_COLL_DET_ENB;
2048 		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
2049 		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
2050 		    TXMAC_FRAME_BURST);
2051 #ifdef notyet
2052 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2053 			txpause |= TXPFC_PAUSE_ENB;
2054 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2055 			rxmac |= RXMAC_FC_ENB;
2056 #endif
2057 		/* Disable retry transmit timer/retry limit. */
2058 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
2059 		    ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
2060 	} else {
2061 		rxmac |= RXMAC_COLL_DET_ENB;
2062 		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
2063 		/* Enable retry transmit timer/retry limit. */
2064 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
2065 		    TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
2066 	}
2067 
2068 	/*
2069 	 * Reprogram Tx/Rx MACs with resolved speed/duplex.
2070 	 */
2071 	gp1 = CSR_READ_4(sc, JME_GPREG1);
2072 	gp1 &= ~GPREG1_WA_HDX;
2073 
2074 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
2075 		hdx = 1;
2076 
2077 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2078 	case IFM_10_T:
2079 		ghc |= GHC_SPEED_10 | sc->jme_clksrc;
2080 		if (hdx)
2081 			gp1 |= GPREG1_WA_HDX;
2082 		break;
2083 
2084 	case IFM_100_TX:
2085 		ghc |= GHC_SPEED_100 | sc->jme_clksrc;
2086 		if (hdx)
2087 			gp1 |= GPREG1_WA_HDX;
2088 
2089 		/*
2090 		 * Use extended FIFO depth to workaround CRC errors
2091 		 * emitted by chips before JMC250B
2092 		 */
2093 		phyconf = JMPHY_CONF_EXTFIFO;
2094 		break;
2095 
2096 	case IFM_1000_T:
2097 		if (sc->jme_caps & JME_CAP_FASTETH)
2098 			break;
2099 
2100 		ghc |= GHC_SPEED_1000 | sc->jme_clksrc_1000;
2101 		if (hdx)
2102 			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
2103 		break;
2104 
2105 	default:
2106 		break;
2107 	}
2108 	CSR_WRITE_4(sc, JME_GHC, ghc);
2109 	CSR_WRITE_4(sc, JME_RXMAC, rxmac);
2110 	CSR_WRITE_4(sc, JME_TXMAC, txmac);
2111 	CSR_WRITE_4(sc, JME_TXPFC, txpause);
2112 
2113 	if (sc->jme_workaround & JME_WA_EXTFIFO) {
2114 		jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2115 				    JMPHY_CONF, phyconf);
2116 	}
2117 	if (sc->jme_workaround & JME_WA_HDX)
2118 		CSR_WRITE_4(sc, JME_GPREG1, gp1);
2119 }
2120 
2121 static void
2122 jme_intr(void *xsc)
2123 {
2124 	struct jme_softc *sc = xsc;
2125 	struct ifnet *ifp = &sc->arpcom.ac_if;
2126 	uint32_t status;
2127 	int r;
2128 
2129 	ASSERT_SERIALIZED(&sc->jme_serialize);
2130 
2131 	status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
2132 	if (status == 0 || status == 0xFFFFFFFF)
2133 		return;
2134 
2135 	/* Disable interrupts. */
2136 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2137 
2138 	status = CSR_READ_4(sc, JME_INTR_STATUS);
2139 	if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
2140 		goto back;
2141 
2142 	/* Reset PCC counter/timer and Ack interrupts. */
2143 	status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
2144 
2145 	if (status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO))
2146 		status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
2147 
2148 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2149 		if (status & jme_rx_status[r].jme_coal) {
2150 			status |= jme_rx_status[r].jme_coal |
2151 				  jme_rx_status[r].jme_comp;
2152 		}
2153 	}
2154 
2155 	CSR_WRITE_4(sc, JME_INTR_STATUS, status);
2156 
2157 	if (ifp->if_flags & IFF_RUNNING) {
2158 		struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
2159 
2160 		if (status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO))
2161 			jme_rx_intr(sc, status);
2162 
2163 		if (status & INTR_RXQ_DESC_EMPTY) {
2164 			/*
2165 			 * Notify hardware availability of new Rx buffers.
2166 			 * Reading RXCSR takes very long time under heavy
2167 			 * load so cache RXCSR value and writes the ORed
2168 			 * value with the kick command to the RXCSR. This
2169 			 * saves one register access cycle.
2170 			 */
2171 			CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
2172 			    RXCSR_RX_ENB | RXCSR_RXQ_START);
2173 		}
2174 
2175 		if (status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) {
2176 			lwkt_serialize_enter(&tdata->jme_tx_serialize);
2177 			jme_txeof(tdata);
2178 			if (!ifq_is_empty(&ifp->if_snd))
2179 				if_devstart(ifp);
2180 			lwkt_serialize_exit(&tdata->jme_tx_serialize);
2181 		}
2182 	}
2183 back:
2184 	/* Reenable interrupts. */
2185 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2186 }
2187 
2188 static void
2189 jme_txeof(struct jme_txdata *tdata)
2190 {
2191 	struct ifnet *ifp = &tdata->jme_sc->arpcom.ac_if;
2192 	int cons;
2193 
2194 	cons = tdata->jme_tx_cons;
2195 	if (cons == tdata->jme_tx_prod)
2196 		return;
2197 
2198 	/*
2199 	 * Go through our Tx list and free mbufs for those
2200 	 * frames which have been transmitted.
2201 	 */
2202 	while (cons != tdata->jme_tx_prod) {
2203 		struct jme_txdesc *txd, *next_txd;
2204 		uint32_t status, next_status;
2205 		int next_cons, nsegs;
2206 
2207 		txd = &tdata->jme_txdesc[cons];
2208 		KASSERT(txd->tx_m != NULL,
2209 			("%s: freeing NULL mbuf!", __func__));
2210 
2211 		status = le32toh(txd->tx_desc->flags);
2212 		if ((status & JME_TD_OWN) == JME_TD_OWN)
2213 			break;
2214 
2215 		/*
2216 		 * NOTE:
2217 		 * This chip will always update the TX descriptor's
2218 		 * buflen field and this updating always happens
2219 		 * after clearing the OWN bit, so even if the OWN
2220 		 * bit is cleared by the chip, we still don't sure
2221 		 * about whether the buflen field has been updated
2222 		 * by the chip or not.  To avoid this race, we wait
2223 		 * for the next TX descriptor's OWN bit to be cleared
2224 		 * by the chip before reusing this TX descriptor.
2225 		 */
2226 		next_cons = cons;
2227 		JME_DESC_ADD(next_cons, txd->tx_ndesc, tdata->jme_tx_desc_cnt);
2228 		next_txd = &tdata->jme_txdesc[next_cons];
2229 		if (next_txd->tx_m == NULL)
2230 			break;
2231 		next_status = le32toh(next_txd->tx_desc->flags);
2232 		if ((next_status & JME_TD_OWN) == JME_TD_OWN)
2233 			break;
2234 
2235 		if (status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) {
2236 			IFNET_STAT_INC(ifp, oerrors, 1);
2237 		} else {
2238 			IFNET_STAT_INC(ifp, opackets, 1);
2239 			if (status & JME_TD_COLLISION) {
2240 				IFNET_STAT_INC(ifp, collisions,
2241 				    le32toh(txd->tx_desc->buflen) &
2242 				    JME_TD_BUF_LEN_MASK);
2243 			}
2244 		}
2245 
2246 		/*
2247 		 * Only the first descriptor of multi-descriptor
2248 		 * transmission is updated so driver have to skip entire
2249 		 * chained buffers for the transmiited frame. In other
2250 		 * words, JME_TD_OWN bit is valid only at the first
2251 		 * descriptor of a multi-descriptor transmission.
2252 		 */
2253 		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
2254 			tdata->jme_tx_ring[cons].flags = 0;
2255 			JME_DESC_INC(cons, tdata->jme_tx_desc_cnt);
2256 		}
2257 
2258 		/* Reclaim transferred mbufs. */
2259 		bus_dmamap_unload(tdata->jme_tx_tag, txd->tx_dmamap);
2260 		m_freem(txd->tx_m);
2261 		txd->tx_m = NULL;
2262 		tdata->jme_tx_cnt -= txd->tx_ndesc;
2263 		KASSERT(tdata->jme_tx_cnt >= 0,
2264 			("%s: Active Tx desc counter was garbled", __func__));
2265 		txd->tx_ndesc = 0;
2266 	}
2267 	tdata->jme_tx_cons = cons;
2268 
2269 	/* 1 for symbol TX descriptor */
2270 	if (tdata->jme_tx_cnt <= JME_MAXTXSEGS + 1)
2271 		ifp->if_timer = 0;
2272 
2273 	if (tdata->jme_tx_cnt + JME_TXD_SPARE <=
2274 	    tdata->jme_tx_desc_cnt - JME_TXD_RSVD)
2275 		ifq_clr_oactive(&ifp->if_snd);
2276 }
2277 
2278 static __inline void
2279 jme_discard_rxbufs(struct jme_rxdata *rdata, int cons, int count)
2280 {
2281 	int i;
2282 
2283 	for (i = 0; i < count; ++i) {
2284 		jme_setup_rxdesc(&rdata->jme_rxdesc[cons]);
2285 		JME_DESC_INC(cons, rdata->jme_rx_desc_cnt);
2286 	}
2287 }
2288 
2289 static __inline struct pktinfo *
2290 jme_pktinfo(struct pktinfo *pi, uint32_t flags)
2291 {
2292 	if (flags & JME_RD_IPV4)
2293 		pi->pi_netisr = NETISR_IP;
2294 	else if (flags & JME_RD_IPV6)
2295 		pi->pi_netisr = NETISR_IPV6;
2296 	else
2297 		return NULL;
2298 
2299 	pi->pi_flags = 0;
2300 	pi->pi_l3proto = IPPROTO_UNKNOWN;
2301 
2302 	if (flags & JME_RD_MORE_FRAG)
2303 		pi->pi_flags |= PKTINFO_FLAG_FRAG;
2304 	else if (flags & JME_RD_TCP)
2305 		pi->pi_l3proto = IPPROTO_TCP;
2306 	else if (flags & JME_RD_UDP)
2307 		pi->pi_l3proto = IPPROTO_UDP;
2308 	else
2309 		pi = NULL;
2310 	return pi;
2311 }
2312 
2313 /* Receive a frame. */
2314 static void
2315 jme_rxpkt(struct jme_rxdata *rdata, int cpuid)
2316 {
2317 	struct ifnet *ifp = &rdata->jme_sc->arpcom.ac_if;
2318 	struct jme_desc *desc;
2319 	struct jme_rxdesc *rxd;
2320 	struct mbuf *mp, *m;
2321 	uint32_t flags, status, hash, hashinfo;
2322 	int cons, count, nsegs;
2323 
2324 	cons = rdata->jme_rx_cons;
2325 	desc = &rdata->jme_rx_ring[cons];
2326 
2327 	flags = le32toh(desc->flags);
2328 	status = le32toh(desc->buflen);
2329 	hash = le32toh(desc->addr_hi);
2330 	hashinfo = le32toh(desc->addr_lo);
2331 	nsegs = JME_RX_NSEGS(status);
2332 
2333 	if (nsegs > 1) {
2334 		/* Skip the first descriptor. */
2335 		JME_DESC_INC(cons, rdata->jme_rx_desc_cnt);
2336 
2337 		/*
2338 		 * Clear the OWN bit of the following RX descriptors;
2339 		 * hardware will not clear the OWN bit except the first
2340 		 * RX descriptor.
2341 		 *
2342 		 * Since the first RX descriptor is setup, i.e. OWN bit
2343 		 * on, before its followins RX descriptors, leaving the
2344 		 * OWN bit on the following RX descriptors will trick
2345 		 * the hardware into thinking that the following RX
2346 		 * descriptors are ready to be used too.
2347 		 */
2348 		for (count = 1; count < nsegs; count++,
2349 		     JME_DESC_INC(cons, rdata->jme_rx_desc_cnt))
2350 			rdata->jme_rx_ring[cons].flags = 0;
2351 
2352 		cons = rdata->jme_rx_cons;
2353 	}
2354 
2355 	JME_RSS_DPRINTF(rdata->jme_sc, 15, "ring%d, flags 0x%08x, "
2356 			"hash 0x%08x, hash info 0x%08x\n",
2357 			rdata->jme_rx_idx, flags, hash, hashinfo);
2358 
2359 	if (status & JME_RX_ERR_STAT) {
2360 		IFNET_STAT_INC(ifp, ierrors, 1);
2361 		jme_discard_rxbufs(rdata, cons, nsegs);
2362 #ifdef JME_SHOW_ERRORS
2363 		if_printf(ifp, "%s : receive error = 0x%b\n",
2364 		    __func__, JME_RX_ERR(status), JME_RX_ERR_BITS);
2365 #endif
2366 		rdata->jme_rx_cons += nsegs;
2367 		rdata->jme_rx_cons %= rdata->jme_rx_desc_cnt;
2368 		return;
2369 	}
2370 
2371 	rdata->jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
2372 	for (count = 0; count < nsegs; count++,
2373 	     JME_DESC_INC(cons, rdata->jme_rx_desc_cnt)) {
2374 		rxd = &rdata->jme_rxdesc[cons];
2375 		mp = rxd->rx_m;
2376 
2377 		/* Add a new receive buffer to the ring. */
2378 		if (jme_newbuf(rdata, rxd, 0) != 0) {
2379 			IFNET_STAT_INC(ifp, iqdrops, 1);
2380 			/* Reuse buffer. */
2381 			jme_discard_rxbufs(rdata, cons, nsegs - count);
2382 			if (rdata->jme_rxhead != NULL) {
2383 				m_freem(rdata->jme_rxhead);
2384 				JME_RXCHAIN_RESET(rdata);
2385 			}
2386 			break;
2387 		}
2388 
2389 		/*
2390 		 * Assume we've received a full sized frame.
2391 		 * Actual size is fixed when we encounter the end of
2392 		 * multi-segmented frame.
2393 		 */
2394 		mp->m_len = MCLBYTES;
2395 
2396 		/* Chain received mbufs. */
2397 		if (rdata->jme_rxhead == NULL) {
2398 			rdata->jme_rxhead = mp;
2399 			rdata->jme_rxtail = mp;
2400 		} else {
2401 			/*
2402 			 * Receive processor can receive a maximum frame
2403 			 * size of 65535 bytes.
2404 			 */
2405 			rdata->jme_rxtail->m_next = mp;
2406 			rdata->jme_rxtail = mp;
2407 		}
2408 
2409 		if (count == nsegs - 1) {
2410 			struct pktinfo pi0, *pi;
2411 
2412 			/* Last desc. for this frame. */
2413 			m = rdata->jme_rxhead;
2414 			m->m_pkthdr.len = rdata->jme_rxlen;
2415 			if (nsegs > 1) {
2416 				/* Set first mbuf size. */
2417 				m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
2418 				/* Set last mbuf size. */
2419 				mp->m_len = rdata->jme_rxlen -
2420 				    ((MCLBYTES - JME_RX_PAD_BYTES) +
2421 				    (MCLBYTES * (nsegs - 2)));
2422 			} else {
2423 				m->m_len = rdata->jme_rxlen;
2424 			}
2425 			m->m_pkthdr.rcvif = ifp;
2426 
2427 			/*
2428 			 * Account for 10bytes auto padding which is used
2429 			 * to align IP header on 32bit boundary. Also note,
2430 			 * CRC bytes is automatically removed by the
2431 			 * hardware.
2432 			 */
2433 			m->m_data += JME_RX_PAD_BYTES;
2434 
2435 			/* Set checksum information. */
2436 			if ((ifp->if_capenable & IFCAP_RXCSUM) &&
2437 			    (flags & JME_RD_IPV4)) {
2438 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2439 				if (flags & JME_RD_IPCSUM)
2440 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2441 				if ((flags & JME_RD_MORE_FRAG) == 0 &&
2442 				    ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
2443 				     (JME_RD_TCP | JME_RD_TCPCSUM) ||
2444 				     (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
2445 				     (JME_RD_UDP | JME_RD_UDPCSUM))) {
2446 					m->m_pkthdr.csum_flags |=
2447 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2448 					m->m_pkthdr.csum_data = 0xffff;
2449 				}
2450 			}
2451 
2452 			/* Check for VLAN tagged packets. */
2453 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) &&
2454 			    (flags & JME_RD_VLAN_TAG)) {
2455 				m->m_pkthdr.ether_vlantag =
2456 				    flags & JME_RD_VLAN_MASK;
2457 				m->m_flags |= M_VLANTAG;
2458 			}
2459 
2460 			IFNET_STAT_INC(ifp, ipackets, 1);
2461 
2462 			if (ifp->if_capenable & IFCAP_RSS)
2463 				pi = jme_pktinfo(&pi0, flags);
2464 			else
2465 				pi = NULL;
2466 
2467 			if (pi != NULL &&
2468 			    (hashinfo & JME_RD_HASH_FN_MASK) ==
2469 			    JME_RD_HASH_FN_TOEPLITZ) {
2470 				m->m_flags |= (M_HASH | M_CKHASH);
2471 				m->m_pkthdr.hash = toeplitz_hash(hash);
2472 			}
2473 
2474 #ifdef JME_RSS_DEBUG
2475 			if (pi != NULL) {
2476 				JME_RSS_DPRINTF(rdata->jme_sc, 10,
2477 				    "isr %d flags %08x, l3 %d %s\n",
2478 				    pi->pi_netisr, pi->pi_flags,
2479 				    pi->pi_l3proto,
2480 				    (m->m_flags & M_HASH) ? "hash" : "");
2481 			}
2482 #endif
2483 
2484 			/* Pass it on. */
2485 			ifp->if_input(ifp, m, pi, cpuid);
2486 
2487 			/* Reset mbuf chains. */
2488 			JME_RXCHAIN_RESET(rdata);
2489 #ifdef JME_RSS_DEBUG
2490 			rdata->jme_rx_pkt++;
2491 #endif
2492 		}
2493 	}
2494 
2495 	rdata->jme_rx_cons += nsegs;
2496 	rdata->jme_rx_cons %= rdata->jme_rx_desc_cnt;
2497 }
2498 
2499 static void
2500 jme_rxeof(struct jme_rxdata *rdata, int count, int cpuid)
2501 {
2502 	struct jme_desc *desc;
2503 	int nsegs, pktlen;
2504 
2505 	for (;;) {
2506 #ifdef IFPOLL_ENABLE
2507 		if (count >= 0 && count-- == 0)
2508 			break;
2509 #endif
2510 		desc = &rdata->jme_rx_ring[rdata->jme_rx_cons];
2511 		if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
2512 			break;
2513 		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
2514 			break;
2515 
2516 		/*
2517 		 * Check number of segments against received bytes.
2518 		 * Non-matching value would indicate that hardware
2519 		 * is still trying to update Rx descriptors. I'm not
2520 		 * sure whether this check is needed.
2521 		 */
2522 		nsegs = JME_RX_NSEGS(le32toh(desc->buflen));
2523 		pktlen = JME_RX_BYTES(le32toh(desc->buflen));
2524 		if (nsegs != howmany(pktlen, MCLBYTES)) {
2525 			if_printf(&rdata->jme_sc->arpcom.ac_if,
2526 			    "RX fragment count(%d) and "
2527 			    "packet size(%d) mismach\n", nsegs, pktlen);
2528 			break;
2529 		}
2530 
2531 		/*
2532 		 * NOTE:
2533 		 * RSS hash and hash information may _not_ be set by the
2534 		 * hardware even if the OWN bit is cleared and VALID bit
2535 		 * is set.
2536 		 *
2537 		 * If the RSS information is not delivered by the hardware
2538 		 * yet, we MUST NOT accept this packet, let alone reusing
2539 		 * its RX descriptor.  If this packet was accepted and its
2540 		 * RX descriptor was reused before hardware delivering the
2541 		 * RSS information, the RX buffer's address would be trashed
2542 		 * by the RSS information delivered by the hardware.
2543 		 */
2544 		if (JME_ENABLE_HWRSS(rdata->jme_sc)) {
2545 			struct jme_rxdesc *rxd;
2546 			uint32_t hashinfo;
2547 
2548 			hashinfo = le32toh(desc->addr_lo);
2549 			rxd = &rdata->jme_rxdesc[rdata->jme_rx_cons];
2550 
2551 			/*
2552 			 * This test should be enough to detect the pending
2553 			 * RSS information delivery, given:
2554 			 * - If RSS hash is not calculated, the hashinfo
2555 			 *   will be 0.  Howvever, the lower 32bits of RX
2556 			 *   buffers' physical address will never be 0.
2557 			 *   (see jme_rxbuf_dma_filter)
2558 			 * - If RSS hash is calculated, the lowest 4 bits
2559 			 *   of hashinfo will be set, while the RX buffers
2560 			 *   are at least 2K aligned.
2561 			 */
2562 			if (hashinfo == JME_ADDR_LO(rxd->rx_paddr)) {
2563 #ifdef JME_SHOW_RSSWB
2564 				if_printf(&rdata->jme_sc->arpcom.ac_if,
2565 				    "RSS is not written back yet\n");
2566 #endif
2567 				break;
2568 			}
2569 		}
2570 
2571 		/* Received a frame. */
2572 		jme_rxpkt(rdata, cpuid);
2573 	}
2574 }
2575 
2576 static void
2577 jme_tick(void *xsc)
2578 {
2579 	struct jme_softc *sc = xsc;
2580 	struct mii_data *mii = device_get_softc(sc->jme_miibus);
2581 
2582 	lwkt_serialize_enter(&sc->jme_serialize);
2583 
2584 	KKASSERT(mycpuid == JME_TICK_CPUID);
2585 
2586 	sc->jme_in_tick = TRUE;
2587 	mii_tick(mii);
2588 	sc->jme_in_tick = FALSE;
2589 
2590 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2591 
2592 	lwkt_serialize_exit(&sc->jme_serialize);
2593 }
2594 
2595 static void
2596 jme_reset(struct jme_softc *sc)
2597 {
2598 	uint32_t val;
2599 
2600 	/* Make sure that TX and RX are stopped */
2601 	jme_stop_tx(sc);
2602 	jme_stop_rx(sc);
2603 
2604 	/* Start reset */
2605 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2606 	DELAY(20);
2607 
2608 	/*
2609 	 * Hold reset bit before stop reset
2610 	 */
2611 
2612 	/* Disable TXMAC and TXOFL clock sources */
2613 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2614 	/* Disable RXMAC clock source */
2615 	val = CSR_READ_4(sc, JME_GPREG1);
2616 	CSR_WRITE_4(sc, JME_GPREG1, val | GPREG1_DIS_RXMAC_CLKSRC);
2617 	/* Flush */
2618 	CSR_READ_4(sc, JME_GHC);
2619 
2620 	/* Stop reset */
2621 	CSR_WRITE_4(sc, JME_GHC, 0);
2622 	/* Flush */
2623 	CSR_READ_4(sc, JME_GHC);
2624 
2625 	/*
2626 	 * Clear reset bit after stop reset
2627 	 */
2628 
2629 	/* Enable TXMAC and TXOFL clock sources */
2630 	CSR_WRITE_4(sc, JME_GHC, GHC_TXOFL_CLKSRC | GHC_TXMAC_CLKSRC);
2631 	/* Enable RXMAC clock source */
2632 	val = CSR_READ_4(sc, JME_GPREG1);
2633 	CSR_WRITE_4(sc, JME_GPREG1, val & ~GPREG1_DIS_RXMAC_CLKSRC);
2634 	/* Flush */
2635 	CSR_READ_4(sc, JME_GHC);
2636 
2637 	/* Disable TXMAC and TXOFL clock sources */
2638 	CSR_WRITE_4(sc, JME_GHC, 0);
2639 	/* Disable RXMAC clock source */
2640 	val = CSR_READ_4(sc, JME_GPREG1);
2641 	CSR_WRITE_4(sc, JME_GPREG1, val | GPREG1_DIS_RXMAC_CLKSRC);
2642 	/* Flush */
2643 	CSR_READ_4(sc, JME_GHC);
2644 
2645 	/* Enable TX and RX */
2646 	val = CSR_READ_4(sc, JME_TXCSR);
2647 	CSR_WRITE_4(sc, JME_TXCSR, val | TXCSR_TX_ENB);
2648 	val = CSR_READ_4(sc, JME_RXCSR);
2649 	CSR_WRITE_4(sc, JME_RXCSR, val | RXCSR_RX_ENB);
2650 	/* Flush */
2651 	CSR_READ_4(sc, JME_TXCSR);
2652 	CSR_READ_4(sc, JME_RXCSR);
2653 
2654 	/* Enable TXMAC and TXOFL clock sources */
2655 	CSR_WRITE_4(sc, JME_GHC, GHC_TXOFL_CLKSRC | GHC_TXMAC_CLKSRC);
2656 	/* Disable RXMAC clock source */
2657 	val = CSR_READ_4(sc, JME_GPREG1);
2658 	CSR_WRITE_4(sc, JME_GPREG1, val & ~GPREG1_DIS_RXMAC_CLKSRC);
2659 	/* Flush */
2660 	CSR_READ_4(sc, JME_GHC);
2661 
2662 	/* Stop TX and RX */
2663 	jme_stop_tx(sc);
2664 	jme_stop_rx(sc);
2665 }
2666 
2667 static void
2668 jme_init(void *xsc)
2669 {
2670 	struct jme_softc *sc = xsc;
2671 	struct ifnet *ifp = &sc->arpcom.ac_if;
2672 	struct mii_data *mii;
2673 	uint8_t eaddr[ETHER_ADDR_LEN];
2674 	bus_addr_t paddr;
2675 	uint32_t reg;
2676 	int error, r;
2677 
2678 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2679 
2680 	/*
2681 	 * Cancel any pending I/O.
2682 	 */
2683 	jme_stop(sc);
2684 
2685 	/*
2686 	 * Reset the chip to a known state.
2687 	 */
2688 	jme_reset(sc);
2689 
2690 	/*
2691 	 * Setup MSI/MSI-X vectors to interrupts mapping
2692 	 */
2693 	jme_set_msinum(sc);
2694 
2695 	if (JME_ENABLE_HWRSS(sc))
2696 		jme_enable_rss(sc);
2697 	else
2698 		jme_disable_rss(sc);
2699 
2700 	/* Init RX descriptors */
2701 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2702 		error = jme_init_rx_ring(&sc->jme_cdata.jme_rx_data[r]);
2703 		if (error) {
2704 			if_printf(ifp, "initialization failed: "
2705 				  "no memory for %dth RX ring.\n", r);
2706 			jme_stop(sc);
2707 			return;
2708 		}
2709 	}
2710 
2711 	/* Init TX descriptors */
2712 	jme_init_tx_ring(&sc->jme_cdata.jme_tx_data);
2713 
2714 	/* Initialize shadow status block. */
2715 	jme_init_ssb(sc);
2716 
2717 	/* Reprogram the station address. */
2718 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2719 	CSR_WRITE_4(sc, JME_PAR0,
2720 	    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
2721 	CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
2722 
2723 	/*
2724 	 * Configure Tx queue.
2725 	 *  Tx priority queue weight value : 0
2726 	 *  Tx FIFO threshold for processing next packet : 16QW
2727 	 *  Maximum Tx DMA length : 512
2728 	 *  Allow Tx DMA burst.
2729 	 */
2730 	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
2731 	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
2732 	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
2733 	sc->jme_txcsr |= sc->jme_tx_dma_size;
2734 	sc->jme_txcsr |= TXCSR_DMA_BURST;
2735 	CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2736 
2737 	/* Set Tx descriptor counter. */
2738 	CSR_WRITE_4(sc, JME_TXQDC, sc->jme_cdata.jme_tx_data.jme_tx_desc_cnt);
2739 
2740 	/* Set Tx ring address to the hardware. */
2741 	paddr = sc->jme_cdata.jme_tx_data.jme_tx_ring_paddr;
2742 	CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2743 	CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2744 
2745 	/* Configure TxMAC parameters. */
2746 	reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
2747 	reg |= TXMAC_THRESH_1_PKT;
2748 	reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
2749 	CSR_WRITE_4(sc, JME_TXMAC, reg);
2750 
2751 	/*
2752 	 * Configure Rx queue.
2753 	 *  FIFO full threshold for transmitting Tx pause packet : 128T
2754 	 *  FIFO threshold for processing next packet : 128QW
2755 	 *  Rx queue 0 select
2756 	 *  Max Rx DMA length : 128
2757 	 *  Rx descriptor retry : 32
2758 	 *  Rx descriptor retry time gap : 256ns
2759 	 *  Don't receive runt/bad frame.
2760 	 */
2761 	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
2762 #if 0
2763 	/*
2764 	 * Since Rx FIFO size is 4K bytes, receiving frames larger
2765 	 * than 4K bytes will suffer from Rx FIFO overruns. So
2766 	 * decrease FIFO threshold to reduce the FIFO overruns for
2767 	 * frames larger than 4000 bytes.
2768 	 * For best performance of standard MTU sized frames use
2769 	 * maximum allowable FIFO threshold, 128QW.
2770 	 */
2771 	if ((ifp->if_mtu + ETHER_HDR_LEN + EVL_ENCAPLEN + ETHER_CRC_LEN) >
2772 	    JME_RX_FIFO_SIZE)
2773 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2774 	else
2775 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
2776 #else
2777 	/* Improve PCI Express compatibility */
2778 	sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2779 #endif
2780 	sc->jme_rxcsr |= sc->jme_rx_dma_size;
2781 	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
2782 	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
2783 	/* XXX TODO DROP_BAD */
2784 
2785 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2786 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[r];
2787 
2788 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RXQ_N_SEL(r));
2789 
2790 		/* Set Rx descriptor counter. */
2791 		CSR_WRITE_4(sc, JME_RXQDC, rdata->jme_rx_desc_cnt);
2792 
2793 		/* Set Rx ring address to the hardware. */
2794 		paddr = rdata->jme_rx_ring_paddr;
2795 		CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2796 		CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2797 	}
2798 
2799 	/* Clear receive filter. */
2800 	CSR_WRITE_4(sc, JME_RXMAC, 0);
2801 
2802 	/* Set up the receive filter. */
2803 	jme_set_filter(sc);
2804 	jme_set_vlan(sc);
2805 
2806 	/*
2807 	 * Disable all WOL bits as WOL can interfere normal Rx
2808 	 * operation. Also clear WOL detection status bits.
2809 	 */
2810 	reg = CSR_READ_4(sc, JME_PMCS);
2811 	reg &= ~PMCS_WOL_ENB_MASK;
2812 	CSR_WRITE_4(sc, JME_PMCS, reg);
2813 
2814 	/*
2815 	 * Pad 10bytes right before received frame. This will greatly
2816 	 * help Rx performance on strict-alignment architectures as
2817 	 * it does not need to copy the frame to align the payload.
2818 	 */
2819 	reg = CSR_READ_4(sc, JME_RXMAC);
2820 	reg |= RXMAC_PAD_10BYTES;
2821 
2822 	if (ifp->if_capenable & IFCAP_RXCSUM)
2823 		reg |= RXMAC_CSUM_ENB;
2824 	CSR_WRITE_4(sc, JME_RXMAC, reg);
2825 
2826 	/* Configure general purpose reg0 */
2827 	reg = CSR_READ_4(sc, JME_GPREG0);
2828 	reg &= ~GPREG0_PCC_UNIT_MASK;
2829 	/* Set PCC timer resolution to micro-seconds unit. */
2830 	reg |= GPREG0_PCC_UNIT_US;
2831 	/*
2832 	 * Disable all shadow register posting as we have to read
2833 	 * JME_INTR_STATUS register in jme_intr. Also it seems
2834 	 * that it's hard to synchronize interrupt status between
2835 	 * hardware and software with shadow posting due to
2836 	 * requirements of bus_dmamap_sync(9).
2837 	 */
2838 	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
2839 	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
2840 	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
2841 	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
2842 	/* Disable posting of DW0. */
2843 	reg &= ~GPREG0_POST_DW0_ENB;
2844 	/* Clear PME message. */
2845 	reg &= ~GPREG0_PME_ENB;
2846 	/* Set PHY address. */
2847 	reg &= ~GPREG0_PHY_ADDR_MASK;
2848 	reg |= sc->jme_phyaddr;
2849 	CSR_WRITE_4(sc, JME_GPREG0, reg);
2850 
2851 	/* Configure Tx queue 0 packet completion coalescing. */
2852 	jme_set_tx_coal(sc);
2853 
2854 	/* Configure Rx queues packet completion coalescing. */
2855 	jme_set_rx_coal(sc);
2856 
2857 	/* Configure shadow status block but don't enable posting. */
2858 	paddr = sc->jme_cdata.jme_ssb_block_paddr;
2859 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
2860 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
2861 
2862 	/* Disable Timer 1 and Timer 2. */
2863 	CSR_WRITE_4(sc, JME_TIMER1, 0);
2864 	CSR_WRITE_4(sc, JME_TIMER2, 0);
2865 
2866 	/* Configure retry transmit period, retry limit value. */
2867 	CSR_WRITE_4(sc, JME_TXTRHD,
2868 	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
2869 	    TXTRHD_RT_PERIOD_MASK) |
2870 	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
2871 	    TXTRHD_RT_LIMIT_SHIFT));
2872 
2873 #ifdef IFPOLL_ENABLE
2874 	if (!(ifp->if_flags & IFF_NPOLLING))
2875 #endif
2876 	/* Initialize the interrupt mask. */
2877 	jme_enable_intr(sc);
2878 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2879 
2880 	/*
2881 	 * Enabling Tx/Rx DMA engines and Rx queue processing is
2882 	 * done after detection of valid link in jme_miibus_statchg.
2883 	 */
2884 	sc->jme_has_link = FALSE;
2885 
2886 	jme_phy_init(sc);
2887 
2888 	/* Set the current media. */
2889 	mii = device_get_softc(sc->jme_miibus);
2890 	mii_mediachg(mii);
2891 
2892 	callout_reset_bycpu(&sc->jme_tick_ch, hz, jme_tick, sc,
2893 	    JME_TICK_CPUID);
2894 
2895 	ifp->if_flags |= IFF_RUNNING;
2896 	ifq_clr_oactive(&ifp->if_snd);
2897 }
2898 
2899 static void
2900 jme_stop(struct jme_softc *sc)
2901 {
2902 	struct ifnet *ifp = &sc->arpcom.ac_if;
2903 	struct jme_txdata *tdata = &sc->jme_cdata.jme_tx_data;
2904 	struct jme_txdesc *txd;
2905 	struct jme_rxdesc *rxd;
2906 	struct jme_rxdata *rdata;
2907 	int i, r;
2908 
2909 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
2910 
2911 	/*
2912 	 * Mark the interface down and cancel the watchdog timer.
2913 	 */
2914 	ifp->if_flags &= ~IFF_RUNNING;
2915 	ifq_clr_oactive(&ifp->if_snd);
2916 	ifp->if_timer = 0;
2917 
2918 	callout_stop(&sc->jme_tick_ch);
2919 	sc->jme_has_link = FALSE;
2920 
2921 	/*
2922 	 * Disable interrupts.
2923 	 */
2924 	jme_disable_intr(sc);
2925 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2926 
2927 	/* Disable updating shadow status block. */
2928 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
2929 	    CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
2930 
2931 	/* Stop receiver, transmitter. */
2932 	jme_stop_rx(sc);
2933 	jme_stop_tx(sc);
2934 
2935 	/*
2936 	 * Free partial finished RX segments
2937 	 */
2938 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2939 		rdata = &sc->jme_cdata.jme_rx_data[r];
2940 		if (rdata->jme_rxhead != NULL)
2941 			m_freem(rdata->jme_rxhead);
2942 		JME_RXCHAIN_RESET(rdata);
2943 	}
2944 
2945 	/*
2946 	 * Free RX and TX mbufs still in the queues.
2947 	 */
2948 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
2949 		rdata = &sc->jme_cdata.jme_rx_data[r];
2950 		for (i = 0; i < rdata->jme_rx_desc_cnt; i++) {
2951 			rxd = &rdata->jme_rxdesc[i];
2952 			if (rxd->rx_m != NULL) {
2953 				bus_dmamap_unload(rdata->jme_rx_tag,
2954 						  rxd->rx_dmamap);
2955 				m_freem(rxd->rx_m);
2956 				rxd->rx_m = NULL;
2957 			}
2958 		}
2959 	}
2960 	for (i = 0; i < tdata->jme_tx_desc_cnt; i++) {
2961 		txd = &tdata->jme_txdesc[i];
2962 		if (txd->tx_m != NULL) {
2963 			bus_dmamap_unload(tdata->jme_tx_tag, txd->tx_dmamap);
2964 			m_freem(txd->tx_m);
2965 			txd->tx_m = NULL;
2966 			txd->tx_ndesc = 0;
2967 		}
2968         }
2969 }
2970 
2971 static void
2972 jme_stop_tx(struct jme_softc *sc)
2973 {
2974 	uint32_t reg;
2975 	int i;
2976 
2977 	reg = CSR_READ_4(sc, JME_TXCSR);
2978 	if ((reg & TXCSR_TX_ENB) == 0)
2979 		return;
2980 	reg &= ~TXCSR_TX_ENB;
2981 	CSR_WRITE_4(sc, JME_TXCSR, reg);
2982 	for (i = JME_TIMEOUT; i > 0; i--) {
2983 		DELAY(1);
2984 		if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
2985 			break;
2986 	}
2987 	if (i == 0)
2988 		device_printf(sc->jme_dev, "stopping transmitter timeout!\n");
2989 }
2990 
2991 static void
2992 jme_stop_rx(struct jme_softc *sc)
2993 {
2994 	uint32_t reg;
2995 	int i;
2996 
2997 	reg = CSR_READ_4(sc, JME_RXCSR);
2998 	if ((reg & RXCSR_RX_ENB) == 0)
2999 		return;
3000 	reg &= ~RXCSR_RX_ENB;
3001 	CSR_WRITE_4(sc, JME_RXCSR, reg);
3002 	for (i = JME_TIMEOUT; i > 0; i--) {
3003 		DELAY(1);
3004 		if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
3005 			break;
3006 	}
3007 	if (i == 0)
3008 		device_printf(sc->jme_dev, "stopping receiver timeout!\n");
3009 }
3010 
3011 static void
3012 jme_init_tx_ring(struct jme_txdata *tdata)
3013 {
3014 	struct jme_txdesc *txd;
3015 	int i;
3016 
3017 	tdata->jme_tx_prod = 0;
3018 	tdata->jme_tx_cons = 0;
3019 	tdata->jme_tx_cnt = 0;
3020 
3021 	bzero(tdata->jme_tx_ring, JME_TX_RING_SIZE(tdata));
3022 	for (i = 0; i < tdata->jme_tx_desc_cnt; i++) {
3023 		txd = &tdata->jme_txdesc[i];
3024 		txd->tx_m = NULL;
3025 		txd->tx_desc = &tdata->jme_tx_ring[i];
3026 		txd->tx_ndesc = 0;
3027 	}
3028 }
3029 
3030 static void
3031 jme_init_ssb(struct jme_softc *sc)
3032 {
3033 	struct jme_chain_data *cd;
3034 
3035 	cd = &sc->jme_cdata;
3036 	bzero(cd->jme_ssb_block, JME_SSB_SIZE);
3037 }
3038 
3039 static int
3040 jme_init_rx_ring(struct jme_rxdata *rdata)
3041 {
3042 	struct jme_rxdesc *rxd;
3043 	int i;
3044 
3045 	KKASSERT(rdata->jme_rxhead == NULL &&
3046 		 rdata->jme_rxtail == NULL &&
3047 		 rdata->jme_rxlen == 0);
3048 	rdata->jme_rx_cons = 0;
3049 
3050 	bzero(rdata->jme_rx_ring, JME_RX_RING_SIZE(rdata));
3051 	for (i = 0; i < rdata->jme_rx_desc_cnt; i++) {
3052 		int error;
3053 
3054 		rxd = &rdata->jme_rxdesc[i];
3055 		rxd->rx_m = NULL;
3056 		rxd->rx_desc = &rdata->jme_rx_ring[i];
3057 		error = jme_newbuf(rdata, rxd, 1);
3058 		if (error)
3059 			return error;
3060 	}
3061 	return 0;
3062 }
3063 
3064 static int
3065 jme_newbuf(struct jme_rxdata *rdata, struct jme_rxdesc *rxd, int init)
3066 {
3067 	struct mbuf *m;
3068 	bus_dma_segment_t segs;
3069 	bus_dmamap_t map;
3070 	int error, nsegs;
3071 
3072 	m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
3073 	if (m == NULL)
3074 		return ENOBUFS;
3075 	/*
3076 	 * JMC250 has 64bit boundary alignment limitation so jme(4)
3077 	 * takes advantage of 10 bytes padding feature of hardware
3078 	 * in order not to copy entire frame to align IP header on
3079 	 * 32bit boundary.
3080 	 */
3081 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3082 
3083 	error = bus_dmamap_load_mbuf_segment(rdata->jme_rx_tag,
3084 			rdata->jme_rx_sparemap, m, &segs, 1, &nsegs,
3085 			BUS_DMA_NOWAIT);
3086 	if (error) {
3087 		m_freem(m);
3088 		if (init) {
3089 			if_printf(&rdata->jme_sc->arpcom.ac_if,
3090 			    "can't load RX mbuf\n");
3091 		}
3092 		return error;
3093 	}
3094 
3095 	if (rxd->rx_m != NULL) {
3096 		bus_dmamap_sync(rdata->jme_rx_tag, rxd->rx_dmamap,
3097 				BUS_DMASYNC_POSTREAD);
3098 		bus_dmamap_unload(rdata->jme_rx_tag, rxd->rx_dmamap);
3099 	}
3100 	map = rxd->rx_dmamap;
3101 	rxd->rx_dmamap = rdata->jme_rx_sparemap;
3102 	rdata->jme_rx_sparemap = map;
3103 	rxd->rx_m = m;
3104 	rxd->rx_paddr = segs.ds_addr;
3105 
3106 	jme_setup_rxdesc(rxd);
3107 	return 0;
3108 }
3109 
3110 static void
3111 jme_set_vlan(struct jme_softc *sc)
3112 {
3113 	struct ifnet *ifp = &sc->arpcom.ac_if;
3114 	uint32_t reg;
3115 
3116 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3117 
3118 	reg = CSR_READ_4(sc, JME_RXMAC);
3119 	reg &= ~RXMAC_VLAN_ENB;
3120 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
3121 		reg |= RXMAC_VLAN_ENB;
3122 	CSR_WRITE_4(sc, JME_RXMAC, reg);
3123 }
3124 
3125 static void
3126 jme_set_filter(struct jme_softc *sc)
3127 {
3128 	struct ifnet *ifp = &sc->arpcom.ac_if;
3129 	struct ifmultiaddr *ifma;
3130 	uint32_t crc;
3131 	uint32_t mchash[2];
3132 	uint32_t rxcfg;
3133 
3134 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3135 
3136 	rxcfg = CSR_READ_4(sc, JME_RXMAC);
3137 	rxcfg &= ~(RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
3138 	    RXMAC_ALLMULTI);
3139 
3140 	/*
3141 	 * Always accept frames destined to our station address.
3142 	 * Always accept broadcast frames.
3143 	 */
3144 	rxcfg |= RXMAC_UNICAST | RXMAC_BROADCAST;
3145 
3146 	if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) {
3147 		if (ifp->if_flags & IFF_PROMISC)
3148 			rxcfg |= RXMAC_PROMISC;
3149 		if (ifp->if_flags & IFF_ALLMULTI)
3150 			rxcfg |= RXMAC_ALLMULTI;
3151 		CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF);
3152 		CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF);
3153 		CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3154 		return;
3155 	}
3156 
3157 	/*
3158 	 * Set up the multicast address filter by passing all multicast
3159 	 * addresses through a CRC generator, and then using the low-order
3160 	 * 6 bits as an index into the 64 bit multicast hash table.  The
3161 	 * high order bits select the register, while the rest of the bits
3162 	 * select the bit within the register.
3163 	 */
3164 	rxcfg |= RXMAC_MULTICAST;
3165 	bzero(mchash, sizeof(mchash));
3166 
3167 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3168 		if (ifma->ifma_addr->sa_family != AF_LINK)
3169 			continue;
3170 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3171 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3172 
3173 		/* Just want the 6 least significant bits. */
3174 		crc &= 0x3f;
3175 
3176 		/* Set the corresponding bit in the hash table. */
3177 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
3178 	}
3179 
3180 	CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
3181 	CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
3182 	CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3183 }
3184 
3185 static int
3186 jme_sysctl_tx_coal_to(SYSCTL_HANDLER_ARGS)
3187 {
3188 	struct jme_softc *sc = arg1;
3189 	struct ifnet *ifp = &sc->arpcom.ac_if;
3190 	int error, v;
3191 
3192 	ifnet_serialize_all(ifp);
3193 
3194 	v = sc->jme_tx_coal_to;
3195 	error = sysctl_handle_int(oidp, &v, 0, req);
3196 	if (error || req->newptr == NULL)
3197 		goto back;
3198 
3199 	if (v < PCCTX_COAL_TO_MIN || v > PCCTX_COAL_TO_MAX) {
3200 		error = EINVAL;
3201 		goto back;
3202 	}
3203 
3204 	if (v != sc->jme_tx_coal_to) {
3205 		sc->jme_tx_coal_to = v;
3206 		if (ifp->if_flags & IFF_RUNNING)
3207 			jme_set_tx_coal(sc);
3208 	}
3209 back:
3210 	ifnet_deserialize_all(ifp);
3211 	return error;
3212 }
3213 
3214 static int
3215 jme_sysctl_tx_coal_pkt(SYSCTL_HANDLER_ARGS)
3216 {
3217 	struct jme_softc *sc = arg1;
3218 	struct ifnet *ifp = &sc->arpcom.ac_if;
3219 	int error, v;
3220 
3221 	ifnet_serialize_all(ifp);
3222 
3223 	v = sc->jme_tx_coal_pkt;
3224 	error = sysctl_handle_int(oidp, &v, 0, req);
3225 	if (error || req->newptr == NULL)
3226 		goto back;
3227 
3228 	if (v < PCCTX_COAL_PKT_MIN || v > PCCTX_COAL_PKT_MAX) {
3229 		error = EINVAL;
3230 		goto back;
3231 	}
3232 
3233 	if (v != sc->jme_tx_coal_pkt) {
3234 		sc->jme_tx_coal_pkt = v;
3235 		if (ifp->if_flags & IFF_RUNNING)
3236 			jme_set_tx_coal(sc);
3237 	}
3238 back:
3239 	ifnet_deserialize_all(ifp);
3240 	return error;
3241 }
3242 
3243 static int
3244 jme_sysctl_rx_coal_to(SYSCTL_HANDLER_ARGS)
3245 {
3246 	struct jme_softc *sc = arg1;
3247 	struct ifnet *ifp = &sc->arpcom.ac_if;
3248 	int error, v;
3249 
3250 	ifnet_serialize_all(ifp);
3251 
3252 	v = sc->jme_rx_coal_to;
3253 	error = sysctl_handle_int(oidp, &v, 0, req);
3254 	if (error || req->newptr == NULL)
3255 		goto back;
3256 
3257 	if (v < PCCRX_COAL_TO_MIN || v > PCCRX_COAL_TO_MAX) {
3258 		error = EINVAL;
3259 		goto back;
3260 	}
3261 
3262 	if (v != sc->jme_rx_coal_to) {
3263 		sc->jme_rx_coal_to = v;
3264 		if (ifp->if_flags & IFF_RUNNING)
3265 			jme_set_rx_coal(sc);
3266 	}
3267 back:
3268 	ifnet_deserialize_all(ifp);
3269 	return error;
3270 }
3271 
3272 static int
3273 jme_sysctl_rx_coal_pkt(SYSCTL_HANDLER_ARGS)
3274 {
3275 	struct jme_softc *sc = arg1;
3276 	struct ifnet *ifp = &sc->arpcom.ac_if;
3277 	int error, v;
3278 
3279 	ifnet_serialize_all(ifp);
3280 
3281 	v = sc->jme_rx_coal_pkt;
3282 	error = sysctl_handle_int(oidp, &v, 0, req);
3283 	if (error || req->newptr == NULL)
3284 		goto back;
3285 
3286 	if (v < PCCRX_COAL_PKT_MIN || v > PCCRX_COAL_PKT_MAX) {
3287 		error = EINVAL;
3288 		goto back;
3289 	}
3290 
3291 	if (v != sc->jme_rx_coal_pkt) {
3292 		sc->jme_rx_coal_pkt = v;
3293 		if (ifp->if_flags & IFF_RUNNING)
3294 			jme_set_rx_coal(sc);
3295 	}
3296 back:
3297 	ifnet_deserialize_all(ifp);
3298 	return error;
3299 }
3300 
3301 static void
3302 jme_set_tx_coal(struct jme_softc *sc)
3303 {
3304 	uint32_t reg;
3305 
3306 	reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
3307 	    PCCTX_COAL_TO_MASK;
3308 	reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
3309 	    PCCTX_COAL_PKT_MASK;
3310 	reg |= PCCTX_COAL_TXQ0;
3311 	CSR_WRITE_4(sc, JME_PCCTX, reg);
3312 }
3313 
3314 static void
3315 jme_set_rx_coal(struct jme_softc *sc)
3316 {
3317 	uint32_t reg;
3318 	int r;
3319 
3320 	reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
3321 	    PCCRX_COAL_TO_MASK;
3322 	reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
3323 	    PCCRX_COAL_PKT_MASK;
3324 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r)
3325 		CSR_WRITE_4(sc, JME_PCCRX(r), reg);
3326 }
3327 
3328 #ifdef IFPOLL_ENABLE
3329 
3330 static void
3331 jme_npoll_status(struct ifnet *ifp)
3332 {
3333 	struct jme_softc *sc = ifp->if_softc;
3334 	uint32_t status;
3335 
3336 	ASSERT_SERIALIZED(&sc->jme_serialize);
3337 
3338 	status = CSR_READ_4(sc, JME_INTR_STATUS);
3339 	if (status & INTR_RXQ_DESC_EMPTY) {
3340 		CSR_WRITE_4(sc, JME_INTR_STATUS, status & INTR_RXQ_DESC_EMPTY);
3341 		jme_rx_restart(sc, status);
3342 	}
3343 }
3344 
3345 static void
3346 jme_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
3347 {
3348 	struct jme_rxdata *rdata = arg;
3349 
3350 	ASSERT_SERIALIZED(&rdata->jme_rx_serialize);
3351 
3352 	jme_rxeof(rdata, cycle, mycpuid);
3353 }
3354 
3355 static void
3356 jme_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
3357 {
3358 	struct jme_txdata *tdata = arg;
3359 
3360 	ASSERT_SERIALIZED(&tdata->jme_tx_serialize);
3361 
3362 	jme_txeof(tdata);
3363 	if (!ifq_is_empty(&ifp->if_snd))
3364 		if_devstart(ifp);
3365 }
3366 
3367 static void
3368 jme_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3369 {
3370 	struct jme_softc *sc = ifp->if_softc;
3371 
3372 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3373 
3374 	if (info) {
3375 		int i, off;
3376 
3377 		info->ifpi_status.status_func = jme_npoll_status;
3378 		info->ifpi_status.serializer = &sc->jme_serialize;
3379 
3380 		off = sc->jme_npoll_txoff;
3381 		KKASSERT(off <= ncpus2);
3382 		info->ifpi_tx[off].poll_func = jme_npoll_tx;
3383 		info->ifpi_tx[off].arg = &sc->jme_cdata.jme_tx_data;
3384 		info->ifpi_tx[off].serializer =
3385 		    &sc->jme_cdata.jme_tx_data.jme_tx_serialize;
3386 		ifq_set_cpuid(&ifp->if_snd, sc->jme_npoll_txoff);
3387 
3388 		off = sc->jme_npoll_rxoff;
3389 		for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
3390 			struct jme_rxdata *rdata =
3391 			    &sc->jme_cdata.jme_rx_data[i];
3392 			int idx = i + off;
3393 
3394 			info->ifpi_rx[idx].poll_func = jme_npoll_rx;
3395 			info->ifpi_rx[idx].arg = rdata;
3396 			info->ifpi_rx[idx].serializer =
3397 			    &rdata->jme_rx_serialize;
3398 		}
3399 
3400 		if (ifp->if_flags & IFF_RUNNING)
3401 			jme_disable_intr(sc);
3402 	} else {
3403 		ifq_set_cpuid(&ifp->if_snd, sc->jme_tx_cpuid);
3404 		if (ifp->if_flags & IFF_RUNNING)
3405 			jme_enable_intr(sc);
3406 	}
3407 }
3408 
3409 static int
3410 jme_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3411 {
3412 	struct jme_softc *sc = (void *)arg1;
3413 	struct ifnet *ifp = &sc->arpcom.ac_if;
3414 	int error, off;
3415 
3416 	off = sc->jme_npoll_rxoff;
3417 	error = sysctl_handle_int(oidp, &off, 0, req);
3418 	if (error || req->newptr == NULL)
3419 		return error;
3420 	if (off < 0)
3421 		return EINVAL;
3422 
3423 	ifnet_serialize_all(ifp);
3424 	if (off >= ncpus2 || off % sc->jme_cdata.jme_rx_ring_cnt != 0) {
3425 		error = EINVAL;
3426 	} else {
3427 		error = 0;
3428 		sc->jme_npoll_rxoff = off;
3429 	}
3430 	ifnet_deserialize_all(ifp);
3431 
3432 	return error;
3433 }
3434 
3435 static int
3436 jme_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3437 {
3438 	struct jme_softc *sc = (void *)arg1;
3439 	struct ifnet *ifp = &sc->arpcom.ac_if;
3440 	int error, off;
3441 
3442 	off = sc->jme_npoll_txoff;
3443 	error = sysctl_handle_int(oidp, &off, 0, req);
3444 	if (error || req->newptr == NULL)
3445 		return error;
3446 	if (off < 0)
3447 		return EINVAL;
3448 
3449 	ifnet_serialize_all(ifp);
3450 	if (off >= ncpus2) {
3451 		error = EINVAL;
3452 	} else {
3453 		error = 0;
3454 		sc->jme_npoll_txoff = off;
3455 	}
3456 	ifnet_deserialize_all(ifp);
3457 
3458 	return error;
3459 }
3460 
3461 #endif	/* IFPOLL_ENABLE */
3462 
3463 static int
3464 jme_rxring_dma_alloc(struct jme_rxdata *rdata)
3465 {
3466 	bus_dmamem_t dmem;
3467 	int error, asize;
3468 
3469 	asize = roundup2(JME_RX_RING_SIZE(rdata), JME_RX_RING_ALIGN);
3470 	error = bus_dmamem_coherent(rdata->jme_sc->jme_cdata.jme_ring_tag,
3471 			JME_RX_RING_ALIGN, 0,
3472 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3473 			asize, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
3474 	if (error) {
3475 		device_printf(rdata->jme_sc->jme_dev,
3476 		    "could not allocate %dth Rx ring.\n", rdata->jme_rx_idx);
3477 		return error;
3478 	}
3479 	rdata->jme_rx_ring_tag = dmem.dmem_tag;
3480 	rdata->jme_rx_ring_map = dmem.dmem_map;
3481 	rdata->jme_rx_ring = dmem.dmem_addr;
3482 	rdata->jme_rx_ring_paddr = dmem.dmem_busaddr;
3483 
3484 	return 0;
3485 }
3486 
3487 static int
3488 jme_rxbuf_dma_filter(void *arg __unused, bus_addr_t paddr)
3489 {
3490 	if ((paddr & 0xffffffff) == 0) {
3491 		/*
3492 		 * Don't allow lower 32bits of the RX buffer's
3493 		 * physical address to be 0, else it will break
3494 		 * hardware pending RSS information delivery
3495 		 * detection on RX path.
3496 		 */
3497 		return 1;
3498 	}
3499 	return 0;
3500 }
3501 
3502 static int
3503 jme_rxbuf_dma_alloc(struct jme_rxdata *rdata)
3504 {
3505 	bus_addr_t lowaddr;
3506 	int i, error;
3507 
3508 	lowaddr = BUS_SPACE_MAXADDR;
3509 	if (JME_ENABLE_HWRSS(rdata->jme_sc)) {
3510 		/* jme_rxbuf_dma_filter will be called */
3511 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
3512 	}
3513 
3514 	/* Create tag for Rx buffers. */
3515 	error = bus_dma_tag_create(
3516 	    rdata->jme_sc->jme_cdata.jme_buffer_tag,/* parent */
3517 	    JME_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
3518 	    lowaddr,			/* lowaddr */
3519 	    BUS_SPACE_MAXADDR,		/* highaddr */
3520 	    jme_rxbuf_dma_filter, NULL,	/* filter, filterarg */
3521 	    MCLBYTES,			/* maxsize */
3522 	    1,				/* nsegments */
3523 	    MCLBYTES,			/* maxsegsize */
3524 	    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ALIGNED,/* flags */
3525 	    &rdata->jme_rx_tag);
3526 	if (error) {
3527 		device_printf(rdata->jme_sc->jme_dev,
3528 		    "could not create %dth Rx DMA tag.\n", rdata->jme_rx_idx);
3529 		return error;
3530 	}
3531 
3532 	/* Create DMA maps for Rx buffers. */
3533 	error = bus_dmamap_create(rdata->jme_rx_tag, BUS_DMA_WAITOK,
3534 				  &rdata->jme_rx_sparemap);
3535 	if (error) {
3536 		device_printf(rdata->jme_sc->jme_dev,
3537 		    "could not create %dth spare Rx dmamap.\n",
3538 		    rdata->jme_rx_idx);
3539 		bus_dma_tag_destroy(rdata->jme_rx_tag);
3540 		rdata->jme_rx_tag = NULL;
3541 		return error;
3542 	}
3543 	for (i = 0; i < rdata->jme_rx_desc_cnt; i++) {
3544 		struct jme_rxdesc *rxd = &rdata->jme_rxdesc[i];
3545 
3546 		error = bus_dmamap_create(rdata->jme_rx_tag, BUS_DMA_WAITOK,
3547 					  &rxd->rx_dmamap);
3548 		if (error) {
3549 			int j;
3550 
3551 			device_printf(rdata->jme_sc->jme_dev,
3552 			    "could not create %dth Rx dmamap "
3553 			    "for %dth RX ring.\n", i, rdata->jme_rx_idx);
3554 
3555 			for (j = 0; j < i; ++j) {
3556 				rxd = &rdata->jme_rxdesc[j];
3557 				bus_dmamap_destroy(rdata->jme_rx_tag,
3558 						   rxd->rx_dmamap);
3559 			}
3560 			bus_dmamap_destroy(rdata->jme_rx_tag,
3561 					   rdata->jme_rx_sparemap);
3562 			bus_dma_tag_destroy(rdata->jme_rx_tag);
3563 			rdata->jme_rx_tag = NULL;
3564 			return error;
3565 		}
3566 	}
3567 	return 0;
3568 }
3569 
3570 static void
3571 jme_rx_intr(struct jme_softc *sc, uint32_t status)
3572 {
3573 	int r, cpuid = mycpuid;
3574 
3575 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
3576 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[r];
3577 
3578 		if (status & rdata->jme_rx_coal) {
3579 			lwkt_serialize_enter(&rdata->jme_rx_serialize);
3580 			jme_rxeof(rdata, -1, cpuid);
3581 			lwkt_serialize_exit(&rdata->jme_rx_serialize);
3582 		}
3583 	}
3584 }
3585 
3586 static void
3587 jme_enable_rss(struct jme_softc *sc)
3588 {
3589 	uint32_t rssc, ind;
3590 	uint8_t key[RSSKEY_NREGS * RSSKEY_REGSIZE];
3591 	int i;
3592 
3593 	KASSERT(sc->jme_cdata.jme_rx_ring_cnt == JME_NRXRING_2 ||
3594 		sc->jme_cdata.jme_rx_ring_cnt == JME_NRXRING_4,
3595 		("%s: invalid # of RX rings (%d)",
3596 		 sc->arpcom.ac_if.if_xname, sc->jme_cdata.jme_rx_ring_cnt));
3597 
3598 	rssc = RSSC_HASH_64_ENTRY;
3599 	rssc |= RSSC_HASH_IPV4 | RSSC_HASH_IPV4_TCP;
3600 	rssc |= sc->jme_cdata.jme_rx_ring_cnt >> 1;
3601 	JME_RSS_DPRINTF(sc, 1, "rssc 0x%08x\n", rssc);
3602 	CSR_WRITE_4(sc, JME_RSSC, rssc);
3603 
3604 	toeplitz_get_key(key, sizeof(key));
3605 	for (i = 0; i < RSSKEY_NREGS; ++i) {
3606 		uint32_t keyreg;
3607 
3608 		keyreg = RSSKEY_REGVAL(key, i);
3609 		JME_RSS_DPRINTF(sc, 5, "keyreg%d 0x%08x, reg 0x%08x\n",
3610 		    i, keyreg, RSSKEY_REG(RSSKEY_NREGS - 1 - i));
3611 
3612 		CSR_WRITE_4(sc, RSSKEY_REG(RSSKEY_NREGS - 1 - i), keyreg);
3613 	}
3614 
3615 	/*
3616 	 * Create redirect table in following fashion:
3617 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
3618 	 */
3619 	ind = 0;
3620 	for (i = 0; i < RSSTBL_REGSIZE; ++i) {
3621 		int q;
3622 
3623 		q = i % sc->jme_cdata.jme_rx_ring_cnt;
3624 		ind |= q << (i * 8);
3625 	}
3626 	JME_RSS_DPRINTF(sc, 1, "ind 0x%08x\n", ind);
3627 
3628 	for (i = 0; i < RSSTBL_NREGS; ++i)
3629 		CSR_WRITE_4(sc, RSSTBL_REG(i), ind);
3630 }
3631 
3632 static void
3633 jme_disable_rss(struct jme_softc *sc)
3634 {
3635 	CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
3636 }
3637 
3638 static void
3639 jme_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3640 {
3641 	struct jme_softc *sc = ifp->if_softc;
3642 
3643 	ifnet_serialize_array_enter(sc->jme_serialize_arr,
3644 	    sc->jme_serialize_cnt, slz);
3645 }
3646 
3647 static void
3648 jme_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3649 {
3650 	struct jme_softc *sc = ifp->if_softc;
3651 
3652 	ifnet_serialize_array_exit(sc->jme_serialize_arr,
3653 	    sc->jme_serialize_cnt, slz);
3654 }
3655 
3656 static int
3657 jme_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3658 {
3659 	struct jme_softc *sc = ifp->if_softc;
3660 
3661 	return ifnet_serialize_array_try(sc->jme_serialize_arr,
3662 	    sc->jme_serialize_cnt, slz);
3663 }
3664 
3665 #ifdef INVARIANTS
3666 
3667 static void
3668 jme_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3669     boolean_t serialized)
3670 {
3671 	struct jme_softc *sc = ifp->if_softc;
3672 
3673 	ifnet_serialize_array_assert(sc->jme_serialize_arr,
3674 	    sc->jme_serialize_cnt, slz, serialized);
3675 }
3676 
3677 #endif	/* INVARIANTS */
3678 
3679 static void
3680 jme_msix_try_alloc(device_t dev)
3681 {
3682 	struct jme_softc *sc = device_get_softc(dev);
3683 	struct jme_msix_data *msix;
3684 	int error, i, r, msix_enable, msix_count;
3685 	int offset, offset_def;
3686 
3687 	msix_count = JME_MSIXCNT(sc->jme_cdata.jme_rx_ring_cnt);
3688 	KKASSERT(msix_count <= JME_NMSIX);
3689 
3690 	msix_enable = device_getenv_int(dev, "msix.enable", jme_msix_enable);
3691 
3692 	/*
3693 	 * We leave the 1st MSI-X vector unused, so we
3694 	 * actually need msix_count + 1 MSI-X vectors.
3695 	 */
3696 	if (!msix_enable || pci_msix_count(dev) < (msix_count + 1))
3697 		return;
3698 
3699 	for (i = 0; i < msix_count; ++i)
3700 		sc->jme_msix[i].jme_msix_rid = -1;
3701 
3702 	i = 0;
3703 
3704 	/*
3705 	 * Setup status MSI-X
3706 	 */
3707 
3708 	msix = &sc->jme_msix[i++];
3709 	msix->jme_msix_cpuid = 0;
3710 	msix->jme_msix_arg = sc;
3711 	msix->jme_msix_func = jme_msix_status;
3712 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
3713 		msix->jme_msix_intrs |=
3714 		    sc->jme_cdata.jme_rx_data[r].jme_rx_empty;
3715 	}
3716 	msix->jme_msix_serialize = &sc->jme_serialize;
3717 	ksnprintf(msix->jme_msix_desc, sizeof(msix->jme_msix_desc), "%s sts",
3718 	    device_get_nameunit(dev));
3719 
3720 	/*
3721 	 * Setup TX MSI-X
3722 	 */
3723 
3724 	offset_def = device_get_unit(dev) % ncpus2;
3725 	offset = device_getenv_int(dev, "msix.txoff", offset_def);
3726 	if (offset >= ncpus2) {
3727 		device_printf(dev, "invalid msix.txoff %d, use %d\n",
3728 		    offset, offset_def);
3729 		offset = offset_def;
3730 	}
3731 
3732 	msix = &sc->jme_msix[i++];
3733 	msix->jme_msix_cpuid = offset;
3734 	sc->jme_tx_cpuid = msix->jme_msix_cpuid;
3735 	msix->jme_msix_arg = &sc->jme_cdata.jme_tx_data;
3736 	msix->jme_msix_func = jme_msix_tx;
3737 	msix->jme_msix_intrs = INTR_TXQ_COAL | INTR_TXQ_COAL_TO;
3738 	msix->jme_msix_serialize = &sc->jme_cdata.jme_tx_data.jme_tx_serialize;
3739 	ksnprintf(msix->jme_msix_desc, sizeof(msix->jme_msix_desc), "%s tx",
3740 	    device_get_nameunit(dev));
3741 
3742 	/*
3743 	 * Setup RX MSI-X
3744 	 */
3745 
3746 	if (sc->jme_cdata.jme_rx_ring_cnt == ncpus2) {
3747 		offset = 0;
3748 	} else {
3749 		offset_def = (sc->jme_cdata.jme_rx_ring_cnt *
3750 		    device_get_unit(dev)) % ncpus2;
3751 
3752 		offset = device_getenv_int(dev, "msix.rxoff", offset_def);
3753 		if (offset >= ncpus2 ||
3754 		    offset % sc->jme_cdata.jme_rx_ring_cnt != 0) {
3755 			device_printf(dev, "invalid msix.rxoff %d, use %d\n",
3756 			    offset, offset_def);
3757 			offset = offset_def;
3758 		}
3759 	}
3760 
3761 	for (r = 0; r < sc->jme_cdata.jme_rx_ring_cnt; ++r) {
3762 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[r];
3763 
3764 		msix = &sc->jme_msix[i++];
3765 		msix->jme_msix_cpuid = r + offset;
3766 		KKASSERT(msix->jme_msix_cpuid < ncpus2);
3767 		msix->jme_msix_arg = rdata;
3768 		msix->jme_msix_func = jme_msix_rx;
3769 		msix->jme_msix_intrs = rdata->jme_rx_coal;
3770 		msix->jme_msix_serialize = &rdata->jme_rx_serialize;
3771 		ksnprintf(msix->jme_msix_desc, sizeof(msix->jme_msix_desc),
3772 		    "%s rx%d", device_get_nameunit(dev), r);
3773 	}
3774 
3775 	KKASSERT(i == msix_count);
3776 
3777 	error = pci_setup_msix(dev);
3778 	if (error)
3779 		return;
3780 
3781 	/* Setup jme_msix_cnt early, so we could cleanup */
3782 	sc->jme_msix_cnt = msix_count;
3783 
3784 	for (i = 0; i < msix_count; ++i) {
3785 		msix = &sc->jme_msix[i];
3786 
3787 		msix->jme_msix_vector = i + 1;
3788 		error = pci_alloc_msix_vector(dev, msix->jme_msix_vector,
3789 		    &msix->jme_msix_rid, msix->jme_msix_cpuid);
3790 		if (error)
3791 			goto back;
3792 
3793 		msix->jme_msix_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
3794 		    &msix->jme_msix_rid, RF_ACTIVE);
3795 		if (msix->jme_msix_res == NULL) {
3796 			error = ENOMEM;
3797 			goto back;
3798 		}
3799 	}
3800 
3801 	for (i = 0; i < JME_INTR_CNT; ++i) {
3802 		uint32_t intr_mask = (1 << i);
3803 		int x;
3804 
3805 		if ((JME_INTRS & intr_mask) == 0)
3806 			continue;
3807 
3808 		for (x = 0; x < msix_count; ++x) {
3809 			msix = &sc->jme_msix[x];
3810 			if (msix->jme_msix_intrs & intr_mask) {
3811 				int reg, shift;
3812 
3813 				reg = i / JME_MSINUM_FACTOR;
3814 				KKASSERT(reg < JME_MSINUM_CNT);
3815 
3816 				shift = (i % JME_MSINUM_FACTOR) * 4;
3817 
3818 				sc->jme_msinum[reg] |=
3819 				    (msix->jme_msix_vector << shift);
3820 
3821 				break;
3822 			}
3823 		}
3824 	}
3825 
3826 	if (bootverbose) {
3827 		for (i = 0; i < JME_MSINUM_CNT; ++i) {
3828 			device_printf(dev, "MSINUM%d: %#x\n", i,
3829 			    sc->jme_msinum[i]);
3830 		}
3831 	}
3832 
3833 	pci_enable_msix(dev);
3834 	sc->jme_irq_type = PCI_INTR_TYPE_MSIX;
3835 
3836 back:
3837 	if (error)
3838 		jme_msix_free(dev);
3839 }
3840 
3841 static int
3842 jme_intr_alloc(device_t dev)
3843 {
3844 	struct jme_softc *sc = device_get_softc(dev);
3845 	u_int irq_flags;
3846 
3847 	jme_msix_try_alloc(dev);
3848 
3849 	if (sc->jme_irq_type != PCI_INTR_TYPE_MSIX) {
3850 		sc->jme_irq_type = pci_alloc_1intr(dev, jme_msi_enable,
3851 		    &sc->jme_irq_rid, &irq_flags);
3852 
3853 		sc->jme_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
3854 		    &sc->jme_irq_rid, irq_flags);
3855 		if (sc->jme_irq_res == NULL) {
3856 			device_printf(dev, "can't allocate irq\n");
3857 			return ENXIO;
3858 		}
3859 		sc->jme_tx_cpuid = rman_get_cpuid(sc->jme_irq_res);
3860 	}
3861 	return 0;
3862 }
3863 
3864 static void
3865 jme_msix_free(device_t dev)
3866 {
3867 	struct jme_softc *sc = device_get_softc(dev);
3868 	int i;
3869 
3870 	KKASSERT(sc->jme_msix_cnt > 1);
3871 
3872 	for (i = 0; i < sc->jme_msix_cnt; ++i) {
3873 		struct jme_msix_data *msix = &sc->jme_msix[i];
3874 
3875 		if (msix->jme_msix_res != NULL) {
3876 			bus_release_resource(dev, SYS_RES_IRQ,
3877 			    msix->jme_msix_rid, msix->jme_msix_res);
3878 			msix->jme_msix_res = NULL;
3879 		}
3880 		if (msix->jme_msix_rid >= 0) {
3881 			pci_release_msix_vector(dev, msix->jme_msix_rid);
3882 			msix->jme_msix_rid = -1;
3883 		}
3884 	}
3885 	pci_teardown_msix(dev);
3886 }
3887 
3888 static void
3889 jme_intr_free(device_t dev)
3890 {
3891 	struct jme_softc *sc = device_get_softc(dev);
3892 
3893 	if (sc->jme_irq_type != PCI_INTR_TYPE_MSIX) {
3894 		if (sc->jme_irq_res != NULL) {
3895 			bus_release_resource(dev, SYS_RES_IRQ, sc->jme_irq_rid,
3896 					     sc->jme_irq_res);
3897 		}
3898 		if (sc->jme_irq_type == PCI_INTR_TYPE_MSI)
3899 			pci_release_msi(dev);
3900 	} else {
3901 		jme_msix_free(dev);
3902 	}
3903 }
3904 
3905 static void
3906 jme_msix_tx(void *xtdata)
3907 {
3908 	struct jme_txdata *tdata = xtdata;
3909 	struct jme_softc *sc = tdata->jme_sc;
3910 	struct ifnet *ifp = &sc->arpcom.ac_if;
3911 
3912 	ASSERT_SERIALIZED(&tdata->jme_tx_serialize);
3913 
3914 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, INTR_TXQ_COAL | INTR_TXQ_COAL_TO);
3915 
3916 	CSR_WRITE_4(sc, JME_INTR_STATUS,
3917 	    INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP);
3918 
3919 	if (ifp->if_flags & IFF_RUNNING) {
3920 		jme_txeof(tdata);
3921 		if (!ifq_is_empty(&ifp->if_snd))
3922 			if_devstart(ifp);
3923 	}
3924 
3925 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, INTR_TXQ_COAL | INTR_TXQ_COAL_TO);
3926 }
3927 
3928 static void
3929 jme_msix_rx(void *xrdata)
3930 {
3931 	struct jme_rxdata *rdata = xrdata;
3932 	struct jme_softc *sc = rdata->jme_sc;
3933 	struct ifnet *ifp = &sc->arpcom.ac_if;
3934 
3935 	ASSERT_SERIALIZED(&rdata->jme_rx_serialize);
3936 
3937 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, rdata->jme_rx_coal);
3938 
3939 	CSR_WRITE_4(sc, JME_INTR_STATUS,
3940 	    rdata->jme_rx_coal | rdata->jme_rx_comp);
3941 
3942 	if (ifp->if_flags & IFF_RUNNING)
3943 		jme_rxeof(rdata, -1, mycpuid);
3944 
3945 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, rdata->jme_rx_coal);
3946 }
3947 
3948 static void
3949 jme_msix_status(void *xsc)
3950 {
3951 	struct jme_softc *sc = xsc;
3952 	struct ifnet *ifp = &sc->arpcom.ac_if;
3953 	uint32_t status;
3954 
3955 	ASSERT_SERIALIZED(&sc->jme_serialize);
3956 
3957 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, INTR_RXQ_DESC_EMPTY);
3958 
3959 	status = CSR_READ_4(sc, JME_INTR_STATUS);
3960 
3961 	if (status & INTR_RXQ_DESC_EMPTY) {
3962 		CSR_WRITE_4(sc, JME_INTR_STATUS, status & INTR_RXQ_DESC_EMPTY);
3963 		if (ifp->if_flags & IFF_RUNNING)
3964 			jme_rx_restart(sc, status);
3965 	}
3966 
3967 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, INTR_RXQ_DESC_EMPTY);
3968 }
3969 
3970 static void
3971 jme_rx_restart(struct jme_softc *sc, uint32_t status)
3972 {
3973 	int i, cpuid = mycpuid;
3974 
3975 	for (i = 0; i < sc->jme_cdata.jme_rx_ring_cnt; ++i) {
3976 		struct jme_rxdata *rdata = &sc->jme_cdata.jme_rx_data[i];
3977 
3978 		if (status & rdata->jme_rx_empty) {
3979 			lwkt_serialize_enter(&rdata->jme_rx_serialize);
3980 			jme_rxeof(rdata, -1, cpuid);
3981 #ifdef JME_RSS_DEBUG
3982 			rdata->jme_rx_emp++;
3983 #endif
3984 			lwkt_serialize_exit(&rdata->jme_rx_serialize);
3985 		}
3986 	}
3987 	CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
3988 	    RXCSR_RXQ_START);
3989 }
3990 
3991 static void
3992 jme_set_msinum(struct jme_softc *sc)
3993 {
3994 	int i;
3995 
3996 	for (i = 0; i < JME_MSINUM_CNT; ++i)
3997 		CSR_WRITE_4(sc, JME_MSINUM(i), sc->jme_msinum[i]);
3998 }
3999 
4000 static int
4001 jme_intr_setup(device_t dev)
4002 {
4003 	struct jme_softc *sc = device_get_softc(dev);
4004 	int error;
4005 
4006 	if (sc->jme_irq_type == PCI_INTR_TYPE_MSIX)
4007 		return jme_msix_setup(dev);
4008 
4009 	error = bus_setup_intr(dev, sc->jme_irq_res, INTR_MPSAFE,
4010 	    jme_intr, sc, &sc->jme_irq_handle, &sc->jme_serialize);
4011 	if (error) {
4012 		device_printf(dev, "could not set up interrupt handler.\n");
4013 		return error;
4014 	}
4015 
4016 	return 0;
4017 }
4018 
4019 static void
4020 jme_intr_teardown(device_t dev)
4021 {
4022 	struct jme_softc *sc = device_get_softc(dev);
4023 
4024 	if (sc->jme_irq_type == PCI_INTR_TYPE_MSIX)
4025 		jme_msix_teardown(dev, sc->jme_msix_cnt);
4026 	else
4027 		bus_teardown_intr(dev, sc->jme_irq_res, sc->jme_irq_handle);
4028 }
4029 
4030 static int
4031 jme_msix_setup(device_t dev)
4032 {
4033 	struct jme_softc *sc = device_get_softc(dev);
4034 	int x;
4035 
4036 	for (x = 0; x < sc->jme_msix_cnt; ++x) {
4037 		struct jme_msix_data *msix = &sc->jme_msix[x];
4038 		int error;
4039 
4040 		error = bus_setup_intr_descr(dev, msix->jme_msix_res,
4041 		    INTR_MPSAFE, msix->jme_msix_func, msix->jme_msix_arg,
4042 		    &msix->jme_msix_handle, msix->jme_msix_serialize,
4043 		    msix->jme_msix_desc);
4044 		if (error) {
4045 			device_printf(dev, "could not set up %s "
4046 			    "interrupt handler.\n", msix->jme_msix_desc);
4047 			jme_msix_teardown(dev, x);
4048 			return error;
4049 		}
4050 	}
4051 	return 0;
4052 }
4053 
4054 static void
4055 jme_msix_teardown(device_t dev, int msix_count)
4056 {
4057 	struct jme_softc *sc = device_get_softc(dev);
4058 	int x;
4059 
4060 	for (x = 0; x < msix_count; ++x) {
4061 		struct jme_msix_data *msix = &sc->jme_msix[x];
4062 
4063 		bus_teardown_intr(dev, msix->jme_msix_res,
4064 		    msix->jme_msix_handle);
4065 	}
4066 }
4067 
4068 static void
4069 jme_serialize_skipmain(struct jme_softc *sc)
4070 {
4071 	lwkt_serialize_array_enter(sc->jme_serialize_arr,
4072 	    sc->jme_serialize_cnt, 1);
4073 }
4074 
4075 static void
4076 jme_deserialize_skipmain(struct jme_softc *sc)
4077 {
4078 	lwkt_serialize_array_exit(sc->jme_serialize_arr,
4079 	    sc->jme_serialize_cnt, 1);
4080 }
4081 
4082 static void
4083 jme_enable_intr(struct jme_softc *sc)
4084 {
4085 	int i;
4086 
4087 	for (i = 0; i < sc->jme_serialize_cnt; ++i)
4088 		lwkt_serialize_handler_enable(sc->jme_serialize_arr[i]);
4089 
4090 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
4091 }
4092 
4093 static void
4094 jme_disable_intr(struct jme_softc *sc)
4095 {
4096 	int i;
4097 
4098 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
4099 
4100 	for (i = 0; i < sc->jme_serialize_cnt; ++i)
4101 		lwkt_serialize_handler_disable(sc->jme_serialize_arr[i]);
4102 }
4103 
4104 static void
4105 jme_phy_poweron(struct jme_softc *sc)
4106 {
4107 	uint16_t bmcr;
4108 
4109 	bmcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR);
4110 	bmcr &= ~BMCR_PDOWN;
4111 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, bmcr);
4112 
4113 	if (sc->jme_caps & JME_CAP_PHYPWR) {
4114 		uint32_t val;
4115 
4116 		val = CSR_READ_4(sc, JME_PHYPWR);
4117 		val &= ~(PHYPWR_DOWN1SEL | PHYPWR_DOWN1SW |
4118 		    PHYPWR_DOWN2 | PHYPWR_CLKSEL);
4119 		CSR_WRITE_4(sc, JME_PHYPWR, val);
4120 
4121 		val = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
4122 		val &= ~PE1_GPREG0_PHYBG;
4123 		val |= PE1_GPREG0_ENBG;
4124 		pci_write_config(sc->jme_dev, JME_PCI_PE1, val, 4);
4125 	}
4126 }
4127 
4128 static void
4129 jme_phy_poweroff(struct jme_softc *sc)
4130 {
4131 	uint16_t bmcr;
4132 
4133 	bmcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR);
4134 	bmcr |= BMCR_PDOWN;
4135 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, bmcr);
4136 
4137 	if (sc->jme_caps & JME_CAP_PHYPWR) {
4138 		uint32_t val;
4139 
4140 		val = CSR_READ_4(sc, JME_PHYPWR);
4141 		val |= PHYPWR_DOWN1SEL | PHYPWR_DOWN1SW |
4142 		    PHYPWR_DOWN2 | PHYPWR_CLKSEL;
4143 		CSR_WRITE_4(sc, JME_PHYPWR, val);
4144 
4145 		val = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
4146 		val &= ~PE1_GPREG0_PHYBG;
4147 		val |= PE1_GPREG0_PDD3COLD;
4148 		pci_write_config(sc->jme_dev, JME_PCI_PE1, val, 4);
4149 	}
4150 }
4151 
4152 static int
4153 jme_miiext_read(struct jme_softc *sc, int reg)
4154 {
4155 	int addr;
4156 
4157 	addr = JME_MII_EXT_ADDR_RD | reg;
4158 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
4159 	    JME_MII_EXT_ADDR, addr);
4160 	return jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr,
4161 	    JME_MII_EXT_DATA);
4162 }
4163 
4164 static void
4165 jme_miiext_write(struct jme_softc *sc, int reg, int val)
4166 {
4167 	int addr;
4168 
4169 	addr = JME_MII_EXT_ADDR_WR | reg;
4170 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
4171 	    JME_MII_EXT_DATA, val);
4172 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
4173 	    JME_MII_EXT_ADDR, addr);
4174 }
4175 
4176 static void
4177 jme_phy_init(struct jme_softc *sc)
4178 {
4179 	uint16_t gtcr;
4180 	int val;
4181 
4182 	jme_phy_poweroff(sc);
4183 	jme_phy_poweron(sc);
4184 
4185 	/* Enable PHY test 1 */
4186 	gtcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR);
4187 	gtcr &= ~GTCR_TEST_MASK;
4188 	gtcr |= GTCR_TEST_1;
4189 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, gtcr);
4190 
4191 	val = jme_miiext_read(sc, JME_MII_EXT_COM2);
4192 	val &= ~JME_MII_EXT_COM2_CALIB_MODE0;
4193 	val |= JME_MII_EXT_COM2_CALIB_LATCH | JME_MII_EXT_COM2_CALIB_EN;
4194 	jme_miiext_write(sc, JME_MII_EXT_COM2, val);
4195 
4196 	DELAY(20000);
4197 
4198 	val = jme_miiext_read(sc, JME_MII_EXT_COM2);
4199 	val &= ~(JME_MII_EXT_COM2_CALIB_MODE0 |
4200 	    JME_MII_EXT_COM2_CALIB_LATCH | JME_MII_EXT_COM2_CALIB_EN);
4201 	jme_miiext_write(sc, JME_MII_EXT_COM2, val);
4202 
4203 	/* Disable PHY test */
4204 	gtcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR);
4205 	gtcr &= ~GTCR_TEST_MASK;
4206 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, gtcr);
4207 
4208 	if (sc->jme_phycom0 != 0)
4209 		jme_miiext_write(sc, JME_MII_EXT_COM0, sc->jme_phycom0);
4210 	if (sc->jme_phycom1 != 0)
4211 		jme_miiext_write(sc, JME_MII_EXT_COM1, sc->jme_phycom1);
4212 }
4213