xref: /dragonfly/sys/dev/netif/lge/if_lge.c (revision 5dfd06ac)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/lge/if_lge.c,v 1.5.2.2 2001/12/14 19:49:23 jlemon Exp $
34  * $DragonFly: src/sys/dev/netif/lge/if_lge.c,v 1.38 2006/12/22 23:26:20 swildner Exp $
35  */
36 
37 /*
38  * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
39  * documentation not available, but ask me nicely.
40  *
41  * Written by Bill Paul <william.paul@windriver.com>
42  * Wind River Systems
43  */
44 
45 /*
46  * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
47  * It's a 64-bit PCI part that supports TCP/IP checksum offload,
48  * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
49  * are three supported methods for data transfer between host and
50  * NIC: programmed I/O, traditional scatter/gather DMA and Packet
51  * Propulsion Technology (tm) DMA. The latter mechanism is a form
52  * of double buffer DMA where the packet data is copied to a
53  * pre-allocated DMA buffer who's physical address has been loaded
54  * into a table at device initialization time. The rationale is that
55  * the virtual to physical address translation needed for normal
56  * scatter/gather DMA is more expensive than the data copy needed
57  * for double buffering. This may be true in Windows NT and the like,
58  * but it isn't true for us, at least on the x86 arch. This driver
59  * uses the scatter/gather I/O method for both TX and RX.
60  *
61  * The LXT1001 only supports TCP/IP checksum offload on receive.
62  * Also, the VLAN tagging is done using a 16-entry table which allows
63  * the chip to perform hardware filtering based on VLAN tags. Sadly,
64  * our vlan support doesn't currently play well with this kind of
65  * hardware support.
66  *
67  * Special thanks to:
68  * - Jeff James at Intel, for arranging to have the LXT1001 manual
69  *   released (at long last)
70  * - Beny Chen at D-Link, for actually sending it to me
71  * - Brad Short and Keith Alexis at SMC, for sending me sample
72  *   SMC9462SX and SMC9462TX adapters for testing
73  * - Paul Saab at Y!, for not killing me (though it remains to be seen
74  *   if in fact he did me much of a favor)
75  */
76 
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/sockio.h>
80 #include <sys/mbuf.h>
81 #include <sys/malloc.h>
82 #include <sys/kernel.h>
83 #include <sys/socket.h>
84 #include <sys/serialize.h>
85 #include <sys/thread2.h>
86 
87 #include <net/if.h>
88 #include <net/ifq_var.h>
89 #include <net/if_arp.h>
90 #include <net/ethernet.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 
94 #include <net/bpf.h>
95 
96 #include <vm/vm.h>              /* for vtophys */
97 #include <vm/pmap.h>            /* for vtophys */
98 #include <sys/bus.h>
99 #include <sys/rman.h>
100 
101 #include <dev/netif/mii_layer/mii.h>
102 #include <dev/netif/mii_layer/miivar.h>
103 
104 #include <bus/pci/pcidevs.h>
105 #include <bus/pci/pcireg.h>
106 #include <bus/pci/pcivar.h>
107 
108 #define LGE_USEIOSPACE
109 
110 #include "if_lgereg.h"
111 
112 /* "controller miibus0" required.  See GENERIC if you get errors here. */
113 #include "miibus_if.h"
114 
115 /*
116  * Various supported device vendors/types and their names.
117  */
118 static struct lge_type lge_devs[] = {
119 	{ PCI_VENDOR_LEVELONE, PCI_PRODUCT_LEVELONE_LXT1001,
120 	    "Level 1 Gigabit Ethernet" },
121 	{ 0, 0, NULL }
122 };
123 
124 static int	lge_probe(device_t);
125 static int	lge_attach(device_t);
126 static int	lge_detach(device_t);
127 
128 static int	lge_alloc_jumbo_mem(struct lge_softc *);
129 static void	lge_free_jumbo_mem(struct lge_softc *);
130 static struct lge_jslot
131 		*lge_jalloc(struct lge_softc *);
132 static void	lge_jfree(void *);
133 static void	lge_jref(void *);
134 
135 static int	lge_newbuf(struct lge_softc *, struct lge_rx_desc *,
136 			   struct mbuf *);
137 static int	lge_encap(struct lge_softc *, struct mbuf *, uint32_t *);
138 static void	lge_rxeof(struct lge_softc *, int);
139 static void	lge_rxeoc(struct lge_softc *);
140 static void	lge_txeof(struct lge_softc *);
141 static void	lge_intr(void *);
142 static void	lge_tick(void *);
143 static void	lge_tick_serialized(void *);
144 static void	lge_start(struct ifnet *);
145 static int	lge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
146 static void	lge_init(void *);
147 static void	lge_stop(struct lge_softc *);
148 static void	lge_watchdog(struct ifnet *);
149 static void	lge_shutdown(device_t);
150 static int	lge_ifmedia_upd(struct ifnet *);
151 static void	lge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
152 
153 static void	lge_eeprom_getword(struct lge_softc *, int, uint16_t *);
154 static void	lge_read_eeprom(struct lge_softc *, caddr_t, int, int);
155 
156 static int	lge_miibus_readreg(device_t, int, int);
157 static int	lge_miibus_writereg(device_t, int, int, int);
158 static void	lge_miibus_statchg(device_t);
159 
160 static void	lge_setmulti(struct lge_softc *);
161 static void	lge_reset(struct lge_softc *);
162 static int	lge_list_rx_init(struct lge_softc *);
163 static int	lge_list_tx_init(struct lge_softc *);
164 
165 #ifdef LGE_USEIOSPACE
166 #define LGE_RES			SYS_RES_IOPORT
167 #define LGE_RID			LGE_PCI_LOIO
168 #else
169 #define LGE_RES			SYS_RES_MEMORY
170 #define LGE_RID			LGE_PCI_LOMEM
171 #endif
172 
173 static device_method_t lge_methods[] = {
174 	/* Device interface */
175 	DEVMETHOD(device_probe,		lge_probe),
176 	DEVMETHOD(device_attach,	lge_attach),
177 	DEVMETHOD(device_detach,	lge_detach),
178 	DEVMETHOD(device_shutdown,	lge_shutdown),
179 
180 	/* bus interface */
181 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
182 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
183 
184 	/* MII interface */
185 	DEVMETHOD(miibus_readreg,	lge_miibus_readreg),
186 	DEVMETHOD(miibus_writereg,	lge_miibus_writereg),
187 	DEVMETHOD(miibus_statchg,	lge_miibus_statchg),
188 
189 	{ 0, 0 }
190 };
191 
192 static DEFINE_CLASS_0(lge, lge_driver, lge_methods, sizeof(struct lge_softc));
193 static devclass_t lge_devclass;
194 
195 DECLARE_DUMMY_MODULE(if_lge);
196 DRIVER_MODULE(if_lge, pci, lge_driver, lge_devclass, 0, 0);
197 DRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, 0, 0);
198 
199 #define LGE_SETBIT(sc, reg, x)				\
200 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
201 
202 #define LGE_CLRBIT(sc, reg, x)				\
203 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
204 
205 #define SIO_SET(x)					\
206 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | (x))
207 
208 #define SIO_CLR(x)					\
209 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~(x))
210 
211 /*
212  * Read a word of data stored in the EEPROM at address 'addr.'
213  */
214 static void
215 lge_eeprom_getword(struct lge_softc *sc, int addr, uint16_t *dest)
216 {
217 	int i;
218 	uint32_t val;
219 
220 	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
221 	    LGE_EECTL_SINGLEACCESS | ((addr >> 1) << 8));
222 
223 	for (i = 0; i < LGE_TIMEOUT; i++) {
224 		if ((CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ) == 0)
225 			break;
226 	}
227 
228 	if (i == LGE_TIMEOUT) {
229 		kprintf("lge%d: EEPROM read timed out\n", sc->lge_unit);
230 		return;
231 	}
232 
233 	val = CSR_READ_4(sc, LGE_EEDATA);
234 
235 	if (addr & 1)
236 		*dest = (val >> 16) & 0xFFFF;
237 	else
238 		*dest = val & 0xFFFF;
239 }
240 
241 /*
242  * Read a sequence of words from the EEPROM.
243  */
244 static void
245 lge_read_eeprom(struct lge_softc *sc, caddr_t dest, int off, int cnt)
246 {
247 	int i;
248 	uint16_t word = 0, *ptr;
249 
250 	for (i = 0; i < cnt; i++) {
251 		lge_eeprom_getword(sc, off + i, &word);
252 		ptr = (uint16_t *)(dest + (i * 2));
253 		*ptr = ntohs(word);
254 	}
255 }
256 
257 static int
258 lge_miibus_readreg(device_t dev, int phy, int reg)
259 {
260 	struct lge_softc *sc = device_get_softc(dev);
261 	int i;
262 
263 	/*
264 	 * If we have a non-PCS PHY, pretend that the internal
265 	 * autoneg stuff at PHY address 0 isn't there so that
266 	 * the miibus code will find only the GMII PHY.
267 	 */
268 	if (sc->lge_pcs == 0 && phy == 0)
269 		return(0);
270 
271 	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
272 
273 	for (i = 0; i < LGE_TIMEOUT; i++) {
274 		if ((CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY) == 0)
275 			break;
276 	}
277 
278 	if (i == LGE_TIMEOUT) {
279 		kprintf("lge%d: PHY read timed out\n", sc->lge_unit);
280 		return(0);
281 	}
282 
283 	return(CSR_READ_4(sc, LGE_GMIICTL) >> 16);
284 }
285 
286 static int
287 lge_miibus_writereg(device_t dev, int phy, int reg, int data)
288 {
289 	struct lge_softc *sc = device_get_softc(dev);
290 	int i;
291 
292 	CSR_WRITE_4(sc, LGE_GMIICTL,
293 	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
294 
295 	for (i = 0; i < LGE_TIMEOUT; i++) {
296 		if ((CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY) == 0)
297 			break;
298 	}
299 
300 	if (i == LGE_TIMEOUT) {
301 		kprintf("lge%d: PHY write timed out\n", sc->lge_unit);
302 		return(0);
303 	}
304 
305 	return(0);
306 }
307 
308 static void
309 lge_miibus_statchg(device_t dev)
310 {
311 	struct lge_softc *sc = device_get_softc(dev);
312 	struct mii_data *mii = device_get_softc(sc->lge_miibus);
313 
314 	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
315 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
316 	case IFM_1000_T:
317 	case IFM_1000_SX:
318 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
319 		break;
320 	case IFM_100_TX:
321 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
322 		break;
323 	case IFM_10_T:
324 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
325 		break;
326 	default:
327 		/*
328 		 * Choose something, even if it's wrong. Clearing
329 		 * all the bits will hose autoneg on the internal
330 		 * PHY.
331 		 */
332 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
333 		break;
334 	}
335 
336 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
337 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
338 	else
339 		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
340 }
341 
342 static void
343 lge_setmulti(struct lge_softc *sc)
344 {
345 	struct ifnet *ifp = &sc->arpcom.ac_if;
346 	struct ifmultiaddr *ifma;
347 	uint32_t h = 0, hashes[2] = { 0, 0 };
348 
349 	/* Make sure multicast hash table is enabled. */
350 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_MCAST);
351 
352 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
353 		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
354 		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
355 		return;
356 	}
357 
358 	/* first, zot all the existing hash bits */
359 	CSR_WRITE_4(sc, LGE_MAR0, 0);
360 	CSR_WRITE_4(sc, LGE_MAR1, 0);
361 
362 	/* now program new ones */
363 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
364 		if (ifma->ifma_addr->sa_family != AF_LINK)
365 			continue;
366 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
367 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
368 		if (h < 32)
369 			hashes[0] |= (1 << h);
370 		else
371 			hashes[1] |= (1 << (h - 32));
372 	}
373 
374 	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
375 	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
376 
377 	return;
378 }
379 
380 static void
381 lge_reset(struct lge_softc *sc)
382 {
383 	int i;
384 
385 	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0 | LGE_MODE1_SOFTRST);
386 
387 	for (i = 0; i < LGE_TIMEOUT; i++) {
388 		if ((CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST) == 0)
389 			break;
390 	}
391 
392 	if (i == LGE_TIMEOUT)
393 		kprintf("lge%d: reset never completed\n", sc->lge_unit);
394 
395 	/* Wait a little while for the chip to get its brains in order. */
396 	DELAY(1000);
397 }
398 
399 /*
400  * Probe for a Level 1 chip. Check the PCI vendor and device
401  * IDs against our list and return a device name if we find a match.
402  */
403 static int
404 lge_probe(device_t dev)
405 {
406 	struct lge_type *t;
407 	uint16_t vendor, product;
408 
409 	vendor = pci_get_vendor(dev);
410 	product = pci_get_device(dev);
411 
412 	for (t = lge_devs; t->lge_name != NULL; t++) {
413 		if (vendor == t->lge_vid && product == t->lge_did) {
414 			device_set_desc(dev, t->lge_name);
415 			return(0);
416 		}
417 	}
418 
419 	return(ENXIO);
420 }
421 
422 /*
423  * Attach the interface. Allocate softc structures, do ifmedia
424  * setup and ethernet/BPF attach.
425  */
426 static int
427 lge_attach(device_t dev)
428 {
429 	uint8_t eaddr[ETHER_ADDR_LEN];
430 	struct lge_softc *sc;
431 	struct ifnet *ifp;
432 	int unit, error = 0, rid;
433 
434 	sc = device_get_softc(dev);
435 	unit = device_get_unit(dev);
436 	callout_init(&sc->lge_stat_timer);
437 	lwkt_serialize_init(&sc->lge_jslot_serializer);
438 
439 	/*
440 	 * Handle power management nonsense.
441 	 */
442 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
443 		uint32_t iobase, membase, irq;
444 
445 		/* Save important PCI config data. */
446 		iobase = pci_read_config(dev, LGE_PCI_LOIO, 4);
447 		membase = pci_read_config(dev, LGE_PCI_LOMEM, 4);
448 		irq = pci_read_config(dev, LGE_PCI_INTLINE, 4);
449 
450 		/* Reset the power state. */
451 		device_printf(dev, "chip is in D%d power mode "
452 		"-- setting to D0\n", pci_get_powerstate(dev));
453 
454 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
455 
456 		/* Restore PCI config data. */
457 		pci_write_config(dev, LGE_PCI_LOIO, iobase, 4);
458 		pci_write_config(dev, LGE_PCI_LOMEM, membase, 4);
459 		pci_write_config(dev, LGE_PCI_INTLINE, irq, 4);
460 	}
461 
462 	pci_enable_busmaster(dev);
463 
464 	rid = LGE_RID;
465 	sc->lge_res = bus_alloc_resource_any(dev, LGE_RES, &rid, RF_ACTIVE);
466 
467 	if (sc->lge_res == NULL) {
468 		kprintf("lge%d: couldn't map ports/memory\n", unit);
469 		error = ENXIO;
470 		goto fail;
471 	}
472 
473 	sc->lge_btag = rman_get_bustag(sc->lge_res);
474 	sc->lge_bhandle = rman_get_bushandle(sc->lge_res);
475 
476 	/* Allocate interrupt */
477 	rid = 0;
478 	sc->lge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
479 	    RF_SHAREABLE | RF_ACTIVE);
480 
481 	if (sc->lge_irq == NULL) {
482 		kprintf("lge%d: couldn't map interrupt\n", unit);
483 		error = ENXIO;
484 		goto fail;
485 	}
486 
487 	/* Reset the adapter. */
488 	lge_reset(sc);
489 
490 	/*
491 	 * Get station address from the EEPROM.
492 	 */
493 	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1);
494 	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1);
495 	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1);
496 
497 	sc->lge_unit = unit;
498 
499 	sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF,
500 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
501 
502 	if (sc->lge_ldata == NULL) {
503 		kprintf("lge%d: no memory for list buffers!\n", unit);
504 		error = ENXIO;
505 		goto fail;
506 	}
507 	bzero(sc->lge_ldata, sizeof(struct lge_list_data));
508 
509 	/* Try to allocate memory for jumbo buffers. */
510 	if (lge_alloc_jumbo_mem(sc)) {
511 		kprintf("lge%d: jumbo buffer allocation failed\n",
512                     sc->lge_unit);
513 		error = ENXIO;
514 		goto fail;
515 	}
516 
517 	ifp = &sc->arpcom.ac_if;
518 	ifp->if_softc = sc;
519 	if_initname(ifp, "lge", unit);
520 	ifp->if_mtu = ETHERMTU;
521 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
522 	ifp->if_ioctl = lge_ioctl;
523 	ifp->if_start = lge_start;
524 	ifp->if_watchdog = lge_watchdog;
525 	ifp->if_init = lge_init;
526 	ifp->if_baudrate = 1000000000;
527 	ifq_set_maxlen(&ifp->if_snd, LGE_TX_LIST_CNT - 1);
528 	ifq_set_ready(&ifp->if_snd);
529 	ifp->if_capabilities = IFCAP_RXCSUM;
530 	ifp->if_capenable = ifp->if_capabilities;
531 
532 	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
533 		sc->lge_pcs = 1;
534 	else
535 		sc->lge_pcs = 0;
536 
537 	/*
538 	 * Do MII setup.
539 	 */
540 	if (mii_phy_probe(dev, &sc->lge_miibus,
541 	    lge_ifmedia_upd, lge_ifmedia_sts)) {
542 		kprintf("lge%d: MII without any PHY!\n", sc->lge_unit);
543 		error = ENXIO;
544 		goto fail;
545 	}
546 
547 	/*
548 	 * Call MI attach routine.
549 	 */
550 	ether_ifattach(ifp, eaddr, NULL);
551 
552 	error = bus_setup_intr(dev, sc->lge_irq, INTR_NETSAFE,
553 			       lge_intr, sc, &sc->lge_intrhand,
554 			       ifp->if_serializer);
555 	if (error) {
556 		ether_ifdetach(ifp);
557 		kprintf("lge%d: couldn't set up irq\n", unit);
558 		goto fail;
559 	}
560 
561 	return(0);
562 
563 fail:
564 	lge_detach(dev);
565 	return(error);
566 }
567 
568 static int
569 lge_detach(device_t dev)
570 {
571 	struct lge_softc *sc= device_get_softc(dev);
572 	struct ifnet *ifp = &sc->arpcom.ac_if;
573 
574 	if (device_is_attached(dev)) {
575 		lwkt_serialize_enter(ifp->if_serializer);
576 		lge_reset(sc);
577 		lge_stop(sc);
578 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
579 		lwkt_serialize_exit(ifp->if_serializer);
580 
581 		ether_ifdetach(ifp);
582 	}
583 
584 	if (sc->lge_miibus)
585 		device_delete_child(dev, sc->lge_miibus);
586 	bus_generic_detach(dev);
587 
588 	if (sc->lge_irq)
589 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
590 	if (sc->lge_res)
591 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
592 
593 	if (sc->lge_ldata)
594 		contigfree(sc->lge_ldata, sizeof(struct lge_list_data),
595 			   M_DEVBUF);
596 	lge_free_jumbo_mem(sc);
597 
598 	return(0);
599 }
600 
601 /*
602  * Initialize the transmit descriptors.
603  */
604 static int
605 lge_list_tx_init(struct lge_softc *sc)
606 {
607 	struct lge_list_data *ld;
608 	struct lge_ring_data *cd;
609 	int i;
610 
611 	cd = &sc->lge_cdata;
612 	ld = sc->lge_ldata;
613 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
614 		ld->lge_tx_list[i].lge_mbuf = NULL;
615 		ld->lge_tx_list[i].lge_ctl = 0;
616 	}
617 
618 	cd->lge_tx_prod = cd->lge_tx_cons = 0;
619 
620 	return(0);
621 }
622 
623 
624 /*
625  * Initialize the RX descriptors and allocate mbufs for them. Note that
626  * we arralge the descriptors in a closed ring, so that the last descriptor
627  * points back to the first.
628  */
629 static int
630 lge_list_rx_init(struct lge_softc *sc)
631 {
632 	struct lge_list_data *ld;
633 	struct lge_ring_data *cd;
634 	int i;
635 
636 	ld = sc->lge_ldata;
637 	cd = &sc->lge_cdata;
638 
639 	cd->lge_rx_prod = cd->lge_rx_cons = 0;
640 
641 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
642 
643 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
644 		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
645 			break;
646 		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
647 			return(ENOBUFS);
648 	}
649 
650 	/* Clear possible 'rx command queue empty' interrupt. */
651 	CSR_READ_4(sc, LGE_ISR);
652 
653 	return(0);
654 }
655 
656 /*
657  * Initialize an RX descriptor and attach an MBUF cluster.
658  */
659 static int
660 lge_newbuf(struct lge_softc *sc, struct lge_rx_desc *c, struct mbuf *m)
661 {
662 	struct mbuf *m_new = NULL;
663 	struct lge_jslot *buf;
664 
665 	if (m == NULL) {
666 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
667 		if (m_new == NULL) {
668 			kprintf("lge%d: no memory for rx list "
669 			    "-- packet dropped!\n", sc->lge_unit);
670 			return(ENOBUFS);
671 		}
672 
673 		/* Allocate the jumbo buffer */
674 		buf = lge_jalloc(sc);
675 		if (buf == NULL) {
676 #ifdef LGE_VERBOSE
677 			kprintf("lge%d: jumbo allocation failed "
678 			    "-- packet dropped!\n", sc->lge_unit);
679 #endif
680 			m_freem(m_new);
681 			return(ENOBUFS);
682 		}
683 		/* Attach the buffer to the mbuf */
684 		m_new->m_ext.ext_arg = buf;
685 		m_new->m_ext.ext_buf = buf->lge_buf;
686 		m_new->m_ext.ext_free = lge_jfree;
687 		m_new->m_ext.ext_ref = lge_jref;
688 		m_new->m_ext.ext_size = LGE_JUMBO_FRAMELEN;
689 
690 		m_new->m_data = m_new->m_ext.ext_buf;
691 		m_new->m_flags |= M_EXT;
692 		m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
693 	} else {
694 		m_new = m;
695 		m_new->m_len = m_new->m_pkthdr.len = LGE_JLEN;
696 		m_new->m_data = m_new->m_ext.ext_buf;
697 	}
698 
699 	/*
700 	 * Adjust alignment so packet payload begins on a
701 	 * longword boundary. Mandatory for Alpha, useful on
702 	 * x86 too.
703 	*/
704 	m_adj(m_new, ETHER_ALIGN);
705 
706 	c->lge_mbuf = m_new;
707 	c->lge_fragptr_hi = 0;
708 	c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t));
709 	c->lge_fraglen = m_new->m_len;
710 	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
711 	c->lge_sts = 0;
712 
713 	/*
714 	 * Put this buffer in the RX command FIFO. To do this,
715 	 * we just write the physical address of the descriptor
716 	 * into the RX descriptor address registers. Note that
717 	 * there are two registers, one high DWORD and one low
718 	 * DWORD, which lets us specify a 64-bit address if
719 	 * desired. We only use a 32-bit address for now.
720 	 * Writing to the low DWORD register is what actually
721 	 * causes the command to be issued, so we do that
722 	 * last.
723 	 */
724 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c));
725 	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
726 
727 	return(0);
728 }
729 
730 static int
731 lge_alloc_jumbo_mem(struct lge_softc *sc)
732 {
733 	struct lge_jslot *entry;
734 	caddr_t ptr;
735 	int i;
736 
737 	/* Grab a big chunk o' storage. */
738 	sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF,
739 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
740 
741 	if (sc->lge_cdata.lge_jumbo_buf == NULL) {
742 		kprintf("lge%d: no memory for jumbo buffers!\n", sc->lge_unit);
743 		return(ENOBUFS);
744 	}
745 
746 	SLIST_INIT(&sc->lge_jfree_listhead);
747 
748 	/*
749 	 * Now divide it up into 9K pieces and save the addresses
750 	 * in an array.
751 	 */
752 	ptr = sc->lge_cdata.lge_jumbo_buf;
753 	for (i = 0; i < LGE_JSLOTS; i++) {
754 		entry = &sc->lge_cdata.lge_jslots[i];
755 		entry->lge_sc = sc;
756 		entry->lge_buf = ptr;
757 		entry->lge_inuse = 0;
758 		entry->lge_slot = i;
759 		SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jslot_link);
760 		ptr += LGE_JLEN;
761 	}
762 
763 	return(0);
764 }
765 
766 static void
767 lge_free_jumbo_mem(struct lge_softc *sc)
768 {
769 	if (sc->lge_cdata.lge_jumbo_buf)
770 		contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF);
771 }
772 
773 /*
774  * Allocate a jumbo buffer.
775  */
776 static struct lge_jslot *
777 lge_jalloc(struct lge_softc *sc)
778 {
779 	struct lge_jslot *entry;
780 
781 	lwkt_serialize_enter(&sc->lge_jslot_serializer);
782 	entry = SLIST_FIRST(&sc->lge_jfree_listhead);
783 	if (entry) {
784 		SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jslot_link);
785 		entry->lge_inuse = 1;
786 	} else {
787 #ifdef LGE_VERBOSE
788 		kprintf("lge%d: no free jumbo buffers\n", sc->lge_unit);
789 #endif
790 	}
791 	lwkt_serialize_exit(&sc->lge_jslot_serializer);
792 	return(entry);
793 }
794 
795 /*
796  * Adjust usage count on a jumbo buffer. In general this doesn't
797  * get used much because our jumbo buffers don't get passed around
798  * a lot, but it's implemented for correctness.
799  */
800 static void
801 lge_jref(void *arg)
802 {
803 	struct lge_jslot *entry = (struct lge_jslot *)arg;
804 	struct lge_softc *sc = entry->lge_sc;
805 
806 	if (&sc->lge_cdata.lge_jslots[entry->lge_slot] != entry)
807 		panic("lge_jref: asked to reference buffer "
808 		    "that we don't manage!");
809 	else if (entry->lge_inuse == 0)
810 		panic("lge_jref: buffer already free!");
811 	else
812 		atomic_add_int(&entry->lge_inuse, 1);
813 }
814 
815 /*
816  * Release a jumbo buffer.
817  */
818 static void
819 lge_jfree(void *arg)
820 {
821 	struct lge_jslot *entry = (struct lge_jslot *)arg;
822 	struct lge_softc *sc = entry->lge_sc;
823 
824 	if (sc == NULL)
825 		panic("lge_jfree: can't find softc pointer!");
826 
827 	if (&sc->lge_cdata.lge_jslots[entry->lge_slot] != entry) {
828 		panic("lge_jfree: asked to free buffer that we don't manage!");
829 	} else if (entry->lge_inuse == 0) {
830 		panic("lge_jfree: buffer already free!");
831 	} else {
832 		lwkt_serialize_enter(&sc->lge_jslot_serializer);
833 		atomic_subtract_int(&entry->lge_inuse, 1);
834 		if (entry->lge_inuse == 0) {
835 			SLIST_INSERT_HEAD(&sc->lge_jfree_listhead,
836 					  entry, jslot_link);
837 		}
838 		lwkt_serialize_exit(&sc->lge_jslot_serializer);
839 	}
840 }
841 
842 /*
843  * A frame has been uploaded: pass the resulting mbuf chain up to
844  * the higher level protocols.
845  */
846 static void
847 lge_rxeof(struct lge_softc *sc, int cnt)
848 {
849         struct ifnet *ifp = &sc->arpcom.ac_if;
850         struct mbuf *m;
851 	struct lge_rx_desc *cur_rx;
852 	int c, i, total_len = 0;
853 	uint32_t rxsts, rxctl;
854 
855 
856 	/* Find out how many frames were processed. */
857 	c = cnt;
858 	i = sc->lge_cdata.lge_rx_cons;
859 
860 	/* Suck them in. */
861 	while(c) {
862 		struct mbuf *m0 = NULL;
863 
864 		cur_rx = &sc->lge_ldata->lge_rx_list[i];
865 		rxctl = cur_rx->lge_ctl;
866 		rxsts = cur_rx->lge_sts;
867 		m = cur_rx->lge_mbuf;
868 		cur_rx->lge_mbuf = NULL;
869 		total_len = LGE_RXBYTES(cur_rx);
870 		LGE_INC(i, LGE_RX_LIST_CNT);
871 		c--;
872 
873 		/*
874 		 * If an error occurs, update stats, clear the
875 		 * status word and leave the mbuf cluster in place:
876 		 * it should simply get re-used next time this descriptor
877 	 	 * comes up in the ring.
878 		 */
879 		if (rxctl & LGE_RXCTL_ERRMASK) {
880 			ifp->if_ierrors++;
881 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
882 			continue;
883 		}
884 
885 		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
886 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
887 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
888 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
889 			if (m0 == NULL) {
890 				kprintf("lge%d: no receive buffers "
891 				    "available -- packet dropped!\n",
892 				    sc->lge_unit);
893 				ifp->if_ierrors++;
894 				continue;
895 			}
896 			m_adj(m0, ETHER_ALIGN);
897 			m = m0;
898 		} else {
899 			m->m_pkthdr.rcvif = ifp;
900 			m->m_pkthdr.len = m->m_len = total_len;
901 		}
902 
903 		ifp->if_ipackets++;
904 
905 		/* Do IP checksum checking. */
906 		if (rxsts & LGE_RXSTS_ISIP)
907 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
908 		if (!(rxsts & LGE_RXSTS_IPCSUMERR))
909 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
910 		if ((rxsts & LGE_RXSTS_ISTCP &&
911 		    !(rxsts & LGE_RXSTS_TCPCSUMERR)) ||
912 		    (rxsts & LGE_RXSTS_ISUDP &&
913 		    !(rxsts & LGE_RXSTS_UDPCSUMERR))) {
914 			m->m_pkthdr.csum_flags |=
915 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
916 			m->m_pkthdr.csum_data = 0xffff;
917 		}
918 
919 		ifp->if_input(ifp, m);
920 	}
921 
922 	sc->lge_cdata.lge_rx_cons = i;
923 }
924 
925 static void
926 lge_rxeoc(struct lge_softc *sc)
927 {
928 	struct ifnet *ifp = &sc->arpcom.ac_if;
929 
930 	ifp->if_flags &= ~IFF_RUNNING;
931 	lge_init(sc);
932 }
933 
934 /*
935  * A frame was downloaded to the chip. It's safe for us to clean up
936  * the list buffers.
937  */
938 static void
939 lge_txeof(struct lge_softc *sc)
940 {
941 	struct ifnet *ifp = &sc->arpcom.ac_if;
942 	struct lge_tx_desc *cur_tx = NULL;
943 	uint32_t idx, txdone;
944 
945 	/* Clear the timeout timer. */
946 	ifp->if_timer = 0;
947 
948 	/*
949 	 * Go through our tx list and free mbufs for those
950 	 * frames that have been transmitted.
951 	 */
952 	idx = sc->lge_cdata.lge_tx_cons;
953 	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
954 
955 	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
956 		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
957 
958 		ifp->if_opackets++;
959 		if (cur_tx->lge_mbuf != NULL) {
960 			m_freem(cur_tx->lge_mbuf);
961 			cur_tx->lge_mbuf = NULL;
962 		}
963 		cur_tx->lge_ctl = 0;
964 
965 		txdone--;
966 		LGE_INC(idx, LGE_TX_LIST_CNT);
967 		ifp->if_timer = 0;
968 	}
969 
970 	sc->lge_cdata.lge_tx_cons = idx;
971 
972 	if (cur_tx != NULL)
973 		ifp->if_flags &= ~IFF_OACTIVE;
974 }
975 
976 static void
977 lge_tick(void *xsc)
978 {
979 	struct lge_softc *sc = xsc;
980 	struct ifnet *ifp = &sc->arpcom.ac_if;
981 
982 	lwkt_serialize_enter(ifp->if_serializer);
983 	lge_tick_serialized(xsc);
984 	lwkt_serialize_exit(ifp->if_serializer);
985 }
986 
987 static void
988 lge_tick_serialized(void *xsc)
989 {
990 	struct lge_softc *sc = xsc;
991 	struct mii_data *mii;
992 	struct ifnet *ifp = &sc->arpcom.ac_if;
993 
994 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
995 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
996 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
997 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
998 
999 	if (!sc->lge_link) {
1000 		mii = device_get_softc(sc->lge_miibus);
1001 		mii_tick(mii);
1002 		mii_pollstat(mii);
1003 		if (mii->mii_media_status & IFM_ACTIVE &&
1004 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1005 			sc->lge_link++;
1006 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX||
1007 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
1008 				kprintf("lge%d: gigabit link up\n",
1009 				    sc->lge_unit);
1010 			if (!ifq_is_empty(&ifp->if_snd))
1011 				(*ifp->if_start)(ifp);
1012 		}
1013 	}
1014 
1015 	callout_reset(&sc->lge_stat_timer, hz, lge_tick, sc);
1016 }
1017 
1018 static void
1019 lge_intr(void *arg)
1020 {
1021 	struct lge_softc *sc = arg;
1022 	struct ifnet *ifp = &sc->arpcom.ac_if;
1023 	uint32_t status;
1024 
1025 	/* Supress unwanted interrupts */
1026 	if ((ifp->if_flags & IFF_UP) == 0) {
1027 		lge_stop(sc);
1028 		return;
1029 	}
1030 
1031 	for (;;) {
1032 		/*
1033 		 * Reading the ISR register clears all interrupts, and
1034 		 * clears the 'interrupts enabled' bit in the IMR
1035 		 * register.
1036 		 */
1037 		status = CSR_READ_4(sc, LGE_ISR);
1038 
1039 		if ((status & LGE_INTRS) == 0)
1040 			break;
1041 
1042 		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
1043 			lge_txeof(sc);
1044 
1045 		if (status & LGE_ISR_RXDMA_DONE)
1046 			lge_rxeof(sc, LGE_RX_DMACNT(status));
1047 
1048 		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
1049 			lge_rxeoc(sc);
1050 
1051 		if (status & LGE_ISR_PHY_INTR) {
1052 			sc->lge_link = 0;
1053 			callout_stop(&sc->lge_stat_timer);
1054 			lge_tick_serialized(sc);
1055 		}
1056 	}
1057 
1058 	/* Re-enable interrupts. */
1059 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
1060 
1061 	if (!ifq_is_empty(&ifp->if_snd))
1062 		(*ifp->if_start)(ifp);
1063 }
1064 
1065 /*
1066  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1067  * pointers to the fragment pointers.
1068  */
1069 static int
1070 lge_encap(struct lge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
1071 {
1072 	struct lge_frag *f = NULL;
1073 	struct lge_tx_desc *cur_tx;
1074 	struct mbuf *m;
1075 	int frag = 0, tot_len = 0;
1076 
1077 	/*
1078  	 * Start packing the mbufs in this chain into
1079 	 * the fragment pointers. Stop when we run out
1080  	 * of fragments or hit the end of the mbuf chain.
1081 	 */
1082 	m = m_head;
1083 	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
1084 	frag = 0;
1085 
1086 	for (m = m_head; m != NULL; m = m->m_next) {
1087 		if (m->m_len != 0) {
1088 			tot_len += m->m_len;
1089 			f = &cur_tx->lge_frags[frag];
1090 			f->lge_fraglen = m->m_len;
1091 			f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t));
1092 			f->lge_fragptr_hi = 0;
1093 			frag++;
1094 		}
1095 	}
1096 
1097 	if (m != NULL)
1098 		return(ENOBUFS);
1099 
1100 	cur_tx->lge_mbuf = m_head;
1101 	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
1102 	LGE_INC((*txidx), LGE_TX_LIST_CNT);
1103 
1104 	/* Queue for transmit */
1105 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx));
1106 
1107 	return(0);
1108 }
1109 
1110 /*
1111  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1112  * to the mbuf data regions directly in the transmit lists. We also save a
1113  * copy of the pointers since the transmit list fragment pointers are
1114  * physical addresses.
1115  */
1116 
1117 static void
1118 lge_start(struct ifnet *ifp)
1119 {
1120 	struct lge_softc *sc = ifp->if_softc;
1121 	struct mbuf *m_head = NULL;
1122 	uint32_t idx;
1123 	int need_timer;
1124 
1125 	if (!sc->lge_link)
1126 		return;
1127 
1128 	idx = sc->lge_cdata.lge_tx_prod;
1129 
1130 	if (ifp->if_flags & IFF_OACTIVE)
1131 		return;
1132 
1133 	need_timer = 0;
1134 	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
1135 		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
1136 			break;
1137 
1138 		m_head = ifq_poll(&ifp->if_snd);
1139 		if (m_head == NULL)
1140 			break;
1141 
1142 		if (lge_encap(sc, m_head, &idx)) {
1143 			ifp->if_flags |= IFF_OACTIVE;
1144 			break;
1145 		}
1146 		ifq_dequeue(&ifp->if_snd, m_head);
1147 		need_timer = 1;
1148 
1149 		BPF_MTAP(ifp, m_head);
1150 	}
1151 
1152 	if (!need_timer)
1153 		return;
1154 
1155 	sc->lge_cdata.lge_tx_prod = idx;
1156 
1157 	/*
1158 	 * Set a timeout in case the chip goes out to lunch.
1159 	 */
1160 	ifp->if_timer = 5;
1161 }
1162 
1163 static void
1164 lge_init(void *xsc)
1165 {
1166 	struct lge_softc *sc = xsc;
1167 	struct ifnet *ifp = &sc->arpcom.ac_if;
1168 	struct mii_data *mii;
1169 
1170 	if (ifp->if_flags & IFF_RUNNING)
1171 		return;
1172 
1173 	/*
1174 	 * Cancel pending I/O and free all RX/TX buffers.
1175 	 */
1176 	lge_stop(sc);
1177 	lge_reset(sc);
1178 
1179 	mii = device_get_softc(sc->lge_miibus);
1180 
1181 	/* Set MAC address */
1182 	CSR_WRITE_4(sc, LGE_PAR0, *(uint32_t *)(&sc->arpcom.ac_enaddr[0]));
1183 	CSR_WRITE_4(sc, LGE_PAR1, *(uint32_t *)(&sc->arpcom.ac_enaddr[4]));
1184 
1185 	/* Init circular RX list. */
1186 	if (lge_list_rx_init(sc) == ENOBUFS) {
1187 		kprintf("lge%d: initialization failed: no "
1188 		    "memory for rx buffers\n", sc->lge_unit);
1189 		lge_stop(sc);
1190 		return;
1191 	}
1192 
1193 	/*
1194 	 * Init tx descriptors.
1195 	 */
1196 	lge_list_tx_init(sc);
1197 
1198 	/* Set initial value for MODE1 register. */
1199 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST |
1200 	    LGE_MODE1_TX_CRC | LGE_MODE1_TXPAD |
1201 	    LGE_MODE1_RX_FLOWCTL | LGE_MODE1_SETRST_CTL0 |
1202 	    LGE_MODE1_SETRST_CTL1 | LGE_MODE1_SETRST_CTL2);
1203 
1204 	 /* If we want promiscuous mode, set the allframes bit. */
1205 	if (ifp->if_flags & IFF_PROMISC) {
1206 		CSR_WRITE_4(sc, LGE_MODE1,
1207 		    LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_PROMISC);
1208 	} else {
1209 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1210 	}
1211 
1212 	/*
1213 	 * Set the capture broadcast bit to capture broadcast frames.
1214 	 */
1215 	if (ifp->if_flags & IFF_BROADCAST) {
1216 		CSR_WRITE_4(sc, LGE_MODE1,
1217 		    LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_BCAST);
1218 	} else {
1219 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1220 	}
1221 
1222 	/* Packet padding workaround? */
1223 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1224 
1225 	/* No error frames */
1226 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1227 
1228 	/* Receive large frames */
1229 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_GIANTS);
1230 
1231 	/* Workaround: disable RX/TX flow control */
1232 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1233 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1234 
1235 	/* Make sure to strip CRC from received frames */
1236 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1237 
1238 	/* Turn off magic packet mode */
1239 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1240 
1241 	/* Turn off all VLAN stuff */
1242 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX | LGE_MODE1_VLAN_TX |
1243 	    LGE_MODE1_VLAN_STRIP | LGE_MODE1_VLAN_INSERT);
1244 
1245 	/* Workarond: FIFO overflow */
1246 	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1247 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1248 
1249 	/*
1250 	 * Load the multicast filter.
1251 	 */
1252 	lge_setmulti(sc);
1253 
1254 	/*
1255 	 * Enable hardware checksum validation for all received IPv4
1256 	 * packets, do not reject packets with bad checksums.
1257 	 */
1258 	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM |
1259 	    LGE_MODE2_RX_TCPCSUM | LGE_MODE2_RX_UDPCSUM |
1260 	    LGE_MODE2_RX_ERRCSUM);
1261 
1262 	/*
1263 	 * Enable the delivery of PHY interrupts based on
1264 	 * link/speed/duplex status chalges.
1265 	 */
1266 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0 | LGE_MODE1_GMIIPOLL);
1267 
1268 	/* Enable receiver and transmitter. */
1269 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1270 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_ENB);
1271 
1272 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1273 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_TX_ENB);
1274 
1275 	/*
1276 	 * Enable interrupts.
1277 	 */
1278 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0 |
1279 	    LGE_IMR_SETRST_CTL1 | LGE_IMR_INTR_ENB|LGE_INTRS);
1280 
1281 	lge_ifmedia_upd(ifp);
1282 
1283 	ifp->if_flags |= IFF_RUNNING;
1284 	ifp->if_flags &= ~IFF_OACTIVE;
1285 
1286 	callout_reset(&sc->lge_stat_timer, hz, lge_tick, sc);
1287 }
1288 
1289 /*
1290  * Set media options.
1291  */
1292 static int
1293 lge_ifmedia_upd(struct ifnet *ifp)
1294 {
1295 	struct lge_softc *sc = ifp->if_softc;
1296 	struct mii_data *mii = device_get_softc(sc->lge_miibus);
1297 
1298 	sc->lge_link = 0;
1299 	if (mii->mii_instance) {
1300 		struct mii_softc *miisc;
1301 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1302 			mii_phy_reset(miisc);
1303 	}
1304 	mii_mediachg(mii);
1305 
1306 	return(0);
1307 }
1308 
1309 /*
1310  * Report current media status.
1311  */
1312 static void
1313 lge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1314 {
1315 	struct lge_softc *sc = ifp->if_softc;
1316 	struct mii_data *mii;
1317 
1318 	mii = device_get_softc(sc->lge_miibus);
1319 	mii_pollstat(mii);
1320 	ifmr->ifm_active = mii->mii_media_active;
1321 	ifmr->ifm_status = mii->mii_media_status;
1322 }
1323 
1324 static int
1325 lge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1326 {
1327 	struct lge_softc *sc = ifp->if_softc;
1328 	struct ifreq *ifr = (struct ifreq *) data;
1329 	struct mii_data	 *mii;
1330 	int error = 0;
1331 
1332 	switch(command) {
1333 	case SIOCSIFMTU:
1334 		if (ifr->ifr_mtu > LGE_JUMBO_MTU)
1335 			error = EINVAL;
1336 		else
1337 			ifp->if_mtu = ifr->ifr_mtu;
1338 		break;
1339 	case SIOCSIFFLAGS:
1340 		if (ifp->if_flags & IFF_UP) {
1341 			if (ifp->if_flags & IFF_RUNNING &&
1342 			    ifp->if_flags & IFF_PROMISC &&
1343 			    !(sc->lge_if_flags & IFF_PROMISC)) {
1344 				CSR_WRITE_4(sc, LGE_MODE1,
1345 				    LGE_MODE1_SETRST_CTL1|
1346 				    LGE_MODE1_RX_PROMISC);
1347 			} else if (ifp->if_flags & IFF_RUNNING &&
1348 			    !(ifp->if_flags & IFF_PROMISC) &&
1349 			    sc->lge_if_flags & IFF_PROMISC) {
1350 				CSR_WRITE_4(sc, LGE_MODE1,
1351 				    LGE_MODE1_RX_PROMISC);
1352 			} else {
1353 				ifp->if_flags &= ~IFF_RUNNING;
1354 				lge_init(sc);
1355 			}
1356 		} else {
1357 			if (ifp->if_flags & IFF_RUNNING)
1358 				lge_stop(sc);
1359 		}
1360 		sc->lge_if_flags = ifp->if_flags;
1361 		error = 0;
1362 		break;
1363 	case SIOCADDMULTI:
1364 	case SIOCDELMULTI:
1365 		lge_setmulti(sc);
1366 		error = 0;
1367 		break;
1368 	case SIOCGIFMEDIA:
1369 	case SIOCSIFMEDIA:
1370 		mii = device_get_softc(sc->lge_miibus);
1371 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1372 		break;
1373 	default:
1374 		error = ether_ioctl(ifp, command, data);
1375 		break;
1376 	}
1377 
1378 	return(error);
1379 }
1380 
1381 static void
1382 lge_watchdog(struct ifnet *ifp)
1383 {
1384 	struct lge_softc *sc = ifp->if_softc;
1385 
1386 	ifp->if_oerrors++;
1387 	kprintf("lge%d: watchdog timeout\n", sc->lge_unit);
1388 
1389 	lge_stop(sc);
1390 	lge_reset(sc);
1391 	ifp->if_flags &= ~IFF_RUNNING;
1392 	lge_init(sc);
1393 
1394 	if (!ifq_is_empty(&ifp->if_snd))
1395 		(*ifp->if_start)(ifp);
1396 }
1397 
1398 /*
1399  * Stop the adapter and free any mbufs allocated to the
1400  * RX and TX lists.
1401  */
1402 static void
1403 lge_stop(struct lge_softc *sc)
1404 {
1405 	struct ifnet *ifp = &sc->arpcom.ac_if;
1406 	int i;
1407 
1408 	ifp->if_timer = 0;
1409 	callout_stop(&sc->lge_stat_timer);
1410 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1411 
1412 	/* Disable receiver and transmitter. */
1413 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1414 	sc->lge_link = 0;
1415 
1416 	/*
1417 	 * Free data in the RX lists.
1418 	 */
1419 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1420 		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1421 			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1422 			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1423 		}
1424 	}
1425 	bzero(&sc->lge_ldata->lge_rx_list, sizeof(sc->lge_ldata->lge_rx_list));
1426 
1427 	/*
1428 	 * Free the TX list buffers.
1429 	 */
1430 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1431 		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1432 			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1433 			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1434 		}
1435 	}
1436 
1437 	bzero(&sc->lge_ldata->lge_tx_list, sizeof(sc->lge_ldata->lge_tx_list));
1438 
1439 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1440 }
1441 
1442 /*
1443  * Stop all chip I/O so that the kernel's probe routines don't
1444  * get confused by errant DMAs when rebooting.
1445  */
1446 static void
1447 lge_shutdown(device_t dev)
1448 {
1449 	struct lge_softc *sc = device_get_softc(dev);
1450 
1451 	lge_reset(sc);
1452 	lge_stop(sc);
1453 }
1454