xref: /dragonfly/sys/dev/netif/lge/if_lge.c (revision 685c703c)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/lge/if_lge.c,v 1.5.2.2 2001/12/14 19:49:23 jlemon Exp $
34  * $DragonFly: src/sys/dev/netif/lge/if_lge.c,v 1.36 2006/08/01 18:05:02 swildner Exp $
35  */
36 
37 /*
38  * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
39  * documentation not available, but ask me nicely.
40  *
41  * Written by Bill Paul <william.paul@windriver.com>
42  * Wind River Systems
43  */
44 
45 /*
46  * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
47  * It's a 64-bit PCI part that supports TCP/IP checksum offload,
48  * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
49  * are three supported methods for data transfer between host and
50  * NIC: programmed I/O, traditional scatter/gather DMA and Packet
51  * Propulsion Technology (tm) DMA. The latter mechanism is a form
52  * of double buffer DMA where the packet data is copied to a
53  * pre-allocated DMA buffer who's physical address has been loaded
54  * into a table at device initialization time. The rationale is that
55  * the virtual to physical address translation needed for normal
56  * scatter/gather DMA is more expensive than the data copy needed
57  * for double buffering. This may be true in Windows NT and the like,
58  * but it isn't true for us, at least on the x86 arch. This driver
59  * uses the scatter/gather I/O method for both TX and RX.
60  *
61  * The LXT1001 only supports TCP/IP checksum offload on receive.
62  * Also, the VLAN tagging is done using a 16-entry table which allows
63  * the chip to perform hardware filtering based on VLAN tags. Sadly,
64  * our vlan support doesn't currently play well with this kind of
65  * hardware support.
66  *
67  * Special thanks to:
68  * - Jeff James at Intel, for arranging to have the LXT1001 manual
69  *   released (at long last)
70  * - Beny Chen at D-Link, for actually sending it to me
71  * - Brad Short and Keith Alexis at SMC, for sending me sample
72  *   SMC9462SX and SMC9462TX adapters for testing
73  * - Paul Saab at Y!, for not killing me (though it remains to be seen
74  *   if in fact he did me much of a favor)
75  */
76 
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/sockio.h>
80 #include <sys/mbuf.h>
81 #include <sys/malloc.h>
82 #include <sys/kernel.h>
83 #include <sys/socket.h>
84 #include <sys/serialize.h>
85 #include <sys/thread2.h>
86 
87 #include <net/if.h>
88 #include <net/ifq_var.h>
89 #include <net/if_arp.h>
90 #include <net/ethernet.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 
94 #include <net/bpf.h>
95 
96 #include <vm/vm.h>              /* for vtophys */
97 #include <vm/pmap.h>            /* for vtophys */
98 #include <machine/bus.h>
99 #include <machine/resource.h>
100 #include <sys/bus.h>
101 #include <sys/rman.h>
102 
103 #include <dev/netif/mii_layer/mii.h>
104 #include <dev/netif/mii_layer/miivar.h>
105 
106 #include <bus/pci/pcidevs.h>
107 #include <bus/pci/pcireg.h>
108 #include <bus/pci/pcivar.h>
109 
110 #define LGE_USEIOSPACE
111 
112 #include "if_lgereg.h"
113 
114 /* "controller miibus0" required.  See GENERIC if you get errors here. */
115 #include "miibus_if.h"
116 
117 /*
118  * Various supported device vendors/types and their names.
119  */
120 static struct lge_type lge_devs[] = {
121 	{ PCI_VENDOR_LEVELONE, PCI_PRODUCT_LEVELONE_LXT1001,
122 	    "Level 1 Gigabit Ethernet" },
123 	{ 0, 0, NULL }
124 };
125 
126 static int	lge_probe(device_t);
127 static int	lge_attach(device_t);
128 static int	lge_detach(device_t);
129 
130 static int	lge_alloc_jumbo_mem(struct lge_softc *);
131 static void	lge_free_jumbo_mem(struct lge_softc *);
132 static struct lge_jslot
133 		*lge_jalloc(struct lge_softc *);
134 static void	lge_jfree(void *);
135 static void	lge_jref(void *);
136 
137 static int	lge_newbuf(struct lge_softc *, struct lge_rx_desc *,
138 			   struct mbuf *);
139 static int	lge_encap(struct lge_softc *, struct mbuf *, uint32_t *);
140 static void	lge_rxeof(struct lge_softc *, int);
141 static void	lge_rxeoc(struct lge_softc *);
142 static void	lge_txeof(struct lge_softc *);
143 static void	lge_intr(void *);
144 static void	lge_tick(void *);
145 static void	lge_tick_serialized(void *);
146 static void	lge_start(struct ifnet *);
147 static int	lge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
148 static void	lge_init(void *);
149 static void	lge_stop(struct lge_softc *);
150 static void	lge_watchdog(struct ifnet *);
151 static void	lge_shutdown(device_t);
152 static int	lge_ifmedia_upd(struct ifnet *);
153 static void	lge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
154 
155 static void	lge_eeprom_getword(struct lge_softc *, int, uint16_t *);
156 static void	lge_read_eeprom(struct lge_softc *, caddr_t, int, int);
157 
158 static int	lge_miibus_readreg(device_t, int, int);
159 static int	lge_miibus_writereg(device_t, int, int, int);
160 static void	lge_miibus_statchg(device_t);
161 
162 static void	lge_setmulti(struct lge_softc *);
163 static void	lge_reset(struct lge_softc *);
164 static int	lge_list_rx_init(struct lge_softc *);
165 static int	lge_list_tx_init(struct lge_softc *);
166 
167 #ifdef LGE_USEIOSPACE
168 #define LGE_RES			SYS_RES_IOPORT
169 #define LGE_RID			LGE_PCI_LOIO
170 #else
171 #define LGE_RES			SYS_RES_MEMORY
172 #define LGE_RID			LGE_PCI_LOMEM
173 #endif
174 
175 static device_method_t lge_methods[] = {
176 	/* Device interface */
177 	DEVMETHOD(device_probe,		lge_probe),
178 	DEVMETHOD(device_attach,	lge_attach),
179 	DEVMETHOD(device_detach,	lge_detach),
180 	DEVMETHOD(device_shutdown,	lge_shutdown),
181 
182 	/* bus interface */
183 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
184 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
185 
186 	/* MII interface */
187 	DEVMETHOD(miibus_readreg,	lge_miibus_readreg),
188 	DEVMETHOD(miibus_writereg,	lge_miibus_writereg),
189 	DEVMETHOD(miibus_statchg,	lge_miibus_statchg),
190 
191 	{ 0, 0 }
192 };
193 
194 static DEFINE_CLASS_0(lge, lge_driver, lge_methods, sizeof(struct lge_softc));
195 static devclass_t lge_devclass;
196 
197 DECLARE_DUMMY_MODULE(if_lge);
198 DRIVER_MODULE(if_lge, pci, lge_driver, lge_devclass, 0, 0);
199 DRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, 0, 0);
200 
201 #define LGE_SETBIT(sc, reg, x)				\
202 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
203 
204 #define LGE_CLRBIT(sc, reg, x)				\
205 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
206 
207 #define SIO_SET(x)					\
208 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | (x))
209 
210 #define SIO_CLR(x)					\
211 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~(x))
212 
213 /*
214  * Read a word of data stored in the EEPROM at address 'addr.'
215  */
216 static void
217 lge_eeprom_getword(struct lge_softc *sc, int addr, uint16_t *dest)
218 {
219 	int i;
220 	uint32_t val;
221 
222 	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
223 	    LGE_EECTL_SINGLEACCESS | ((addr >> 1) << 8));
224 
225 	for (i = 0; i < LGE_TIMEOUT; i++) {
226 		if ((CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ) == 0)
227 			break;
228 	}
229 
230 	if (i == LGE_TIMEOUT) {
231 		printf("lge%d: EEPROM read timed out\n", sc->lge_unit);
232 		return;
233 	}
234 
235 	val = CSR_READ_4(sc, LGE_EEDATA);
236 
237 	if (addr & 1)
238 		*dest = (val >> 16) & 0xFFFF;
239 	else
240 		*dest = val & 0xFFFF;
241 }
242 
243 /*
244  * Read a sequence of words from the EEPROM.
245  */
246 static void
247 lge_read_eeprom(struct lge_softc *sc, caddr_t dest, int off, int cnt)
248 {
249 	int i;
250 	uint16_t word = 0, *ptr;
251 
252 	for (i = 0; i < cnt; i++) {
253 		lge_eeprom_getword(sc, off + i, &word);
254 		ptr = (uint16_t *)(dest + (i * 2));
255 		*ptr = ntohs(word);
256 	}
257 }
258 
259 static int
260 lge_miibus_readreg(device_t dev, int phy, int reg)
261 {
262 	struct lge_softc *sc = device_get_softc(dev);
263 	int i;
264 
265 	/*
266 	 * If we have a non-PCS PHY, pretend that the internal
267 	 * autoneg stuff at PHY address 0 isn't there so that
268 	 * the miibus code will find only the GMII PHY.
269 	 */
270 	if (sc->lge_pcs == 0 && phy == 0)
271 		return(0);
272 
273 	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
274 
275 	for (i = 0; i < LGE_TIMEOUT; i++) {
276 		if ((CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY) == 0)
277 			break;
278 	}
279 
280 	if (i == LGE_TIMEOUT) {
281 		printf("lge%d: PHY read timed out\n", sc->lge_unit);
282 		return(0);
283 	}
284 
285 	return(CSR_READ_4(sc, LGE_GMIICTL) >> 16);
286 }
287 
288 static int
289 lge_miibus_writereg(device_t dev, int phy, int reg, int data)
290 {
291 	struct lge_softc *sc = device_get_softc(dev);
292 	int i;
293 
294 	CSR_WRITE_4(sc, LGE_GMIICTL,
295 	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
296 
297 	for (i = 0; i < LGE_TIMEOUT; i++) {
298 		if ((CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY) == 0)
299 			break;
300 	}
301 
302 	if (i == LGE_TIMEOUT) {
303 		printf("lge%d: PHY write timed out\n", sc->lge_unit);
304 		return(0);
305 	}
306 
307 	return(0);
308 }
309 
310 static void
311 lge_miibus_statchg(device_t dev)
312 {
313 	struct lge_softc *sc = device_get_softc(dev);
314 	struct mii_data *mii = device_get_softc(sc->lge_miibus);
315 
316 	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
317 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
318 	case IFM_1000_T:
319 	case IFM_1000_SX:
320 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
321 		break;
322 	case IFM_100_TX:
323 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
324 		break;
325 	case IFM_10_T:
326 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
327 		break;
328 	default:
329 		/*
330 		 * Choose something, even if it's wrong. Clearing
331 		 * all the bits will hose autoneg on the internal
332 		 * PHY.
333 		 */
334 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
335 		break;
336 	}
337 
338 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
339 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
340 	else
341 		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
342 }
343 
344 static void
345 lge_setmulti(struct lge_softc *sc)
346 {
347 	struct ifnet *ifp = &sc->arpcom.ac_if;
348 	struct ifmultiaddr *ifma;
349 	uint32_t h = 0, hashes[2] = { 0, 0 };
350 
351 	/* Make sure multicast hash table is enabled. */
352 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_MCAST);
353 
354 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
355 		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
356 		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
357 		return;
358 	}
359 
360 	/* first, zot all the existing hash bits */
361 	CSR_WRITE_4(sc, LGE_MAR0, 0);
362 	CSR_WRITE_4(sc, LGE_MAR1, 0);
363 
364 	/* now program new ones */
365 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
366 		if (ifma->ifma_addr->sa_family != AF_LINK)
367 			continue;
368 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
369 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
370 		if (h < 32)
371 			hashes[0] |= (1 << h);
372 		else
373 			hashes[1] |= (1 << (h - 32));
374 	}
375 
376 	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
377 	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
378 
379 	return;
380 }
381 
382 static void
383 lge_reset(struct lge_softc *sc)
384 {
385 	int i;
386 
387 	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0 | LGE_MODE1_SOFTRST);
388 
389 	for (i = 0; i < LGE_TIMEOUT; i++) {
390 		if ((CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST) == 0)
391 			break;
392 	}
393 
394 	if (i == LGE_TIMEOUT)
395 		printf("lge%d: reset never completed\n", sc->lge_unit);
396 
397 	/* Wait a little while for the chip to get its brains in order. */
398 	DELAY(1000);
399 }
400 
401 /*
402  * Probe for a Level 1 chip. Check the PCI vendor and device
403  * IDs against our list and return a device name if we find a match.
404  */
405 static int
406 lge_probe(device_t dev)
407 {
408 	struct lge_type *t;
409 	uint16_t vendor, product;
410 
411 	vendor = pci_get_vendor(dev);
412 	product = pci_get_device(dev);
413 
414 	for (t = lge_devs; t->lge_name != NULL; t++) {
415 		if (vendor == t->lge_vid && product == t->lge_did) {
416 			device_set_desc(dev, t->lge_name);
417 			return(0);
418 		}
419 	}
420 
421 	return(ENXIO);
422 }
423 
424 /*
425  * Attach the interface. Allocate softc structures, do ifmedia
426  * setup and ethernet/BPF attach.
427  */
428 static int
429 lge_attach(device_t dev)
430 {
431 	uint8_t eaddr[ETHER_ADDR_LEN];
432 	struct lge_softc *sc;
433 	struct ifnet *ifp;
434 	int unit, error = 0, rid;
435 
436 	sc = device_get_softc(dev);
437 	unit = device_get_unit(dev);
438 	callout_init(&sc->lge_stat_timer);
439 	lwkt_serialize_init(&sc->lge_jslot_serializer);
440 
441 	/*
442 	 * Handle power management nonsense.
443 	 */
444 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
445 		uint32_t iobase, membase, irq;
446 
447 		/* Save important PCI config data. */
448 		iobase = pci_read_config(dev, LGE_PCI_LOIO, 4);
449 		membase = pci_read_config(dev, LGE_PCI_LOMEM, 4);
450 		irq = pci_read_config(dev, LGE_PCI_INTLINE, 4);
451 
452 		/* Reset the power state. */
453 		device_printf(dev, "chip is in D%d power mode "
454 		"-- setting to D0\n", pci_get_powerstate(dev));
455 
456 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
457 
458 		/* Restore PCI config data. */
459 		pci_write_config(dev, LGE_PCI_LOIO, iobase, 4);
460 		pci_write_config(dev, LGE_PCI_LOMEM, membase, 4);
461 		pci_write_config(dev, LGE_PCI_INTLINE, irq, 4);
462 	}
463 
464 	pci_enable_busmaster(dev);
465 
466 	rid = LGE_RID;
467 	sc->lge_res = bus_alloc_resource_any(dev, LGE_RES, &rid, RF_ACTIVE);
468 
469 	if (sc->lge_res == NULL) {
470 		printf("lge%d: couldn't map ports/memory\n", unit);
471 		error = ENXIO;
472 		goto fail;
473 	}
474 
475 	sc->lge_btag = rman_get_bustag(sc->lge_res);
476 	sc->lge_bhandle = rman_get_bushandle(sc->lge_res);
477 
478 	/* Allocate interrupt */
479 	rid = 0;
480 	sc->lge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
481 	    RF_SHAREABLE | RF_ACTIVE);
482 
483 	if (sc->lge_irq == NULL) {
484 		printf("lge%d: couldn't map interrupt\n", unit);
485 		error = ENXIO;
486 		goto fail;
487 	}
488 
489 	/* Reset the adapter. */
490 	lge_reset(sc);
491 
492 	/*
493 	 * Get station address from the EEPROM.
494 	 */
495 	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1);
496 	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1);
497 	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1);
498 
499 	sc->lge_unit = unit;
500 
501 	sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF,
502 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
503 
504 	if (sc->lge_ldata == NULL) {
505 		printf("lge%d: no memory for list buffers!\n", unit);
506 		error = ENXIO;
507 		goto fail;
508 	}
509 	bzero(sc->lge_ldata, sizeof(struct lge_list_data));
510 
511 	/* Try to allocate memory for jumbo buffers. */
512 	if (lge_alloc_jumbo_mem(sc)) {
513 		printf("lge%d: jumbo buffer allocation failed\n",
514                     sc->lge_unit);
515 		error = ENXIO;
516 		goto fail;
517 	}
518 
519 	ifp = &sc->arpcom.ac_if;
520 	ifp->if_softc = sc;
521 	if_initname(ifp, "lge", unit);
522 	ifp->if_mtu = ETHERMTU;
523 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
524 	ifp->if_ioctl = lge_ioctl;
525 	ifp->if_start = lge_start;
526 	ifp->if_watchdog = lge_watchdog;
527 	ifp->if_init = lge_init;
528 	ifp->if_baudrate = 1000000000;
529 	ifq_set_maxlen(&ifp->if_snd, LGE_TX_LIST_CNT - 1);
530 	ifq_set_ready(&ifp->if_snd);
531 	ifp->if_capabilities = IFCAP_RXCSUM;
532 	ifp->if_capenable = ifp->if_capabilities;
533 
534 	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
535 		sc->lge_pcs = 1;
536 	else
537 		sc->lge_pcs = 0;
538 
539 	/*
540 	 * Do MII setup.
541 	 */
542 	if (mii_phy_probe(dev, &sc->lge_miibus,
543 	    lge_ifmedia_upd, lge_ifmedia_sts)) {
544 		printf("lge%d: MII without any PHY!\n", sc->lge_unit);
545 		error = ENXIO;
546 		goto fail;
547 	}
548 
549 	/*
550 	 * Call MI attach routine.
551 	 */
552 	ether_ifattach(ifp, eaddr, NULL);
553 
554 	error = bus_setup_intr(dev, sc->lge_irq, INTR_NETSAFE,
555 			       lge_intr, sc, &sc->lge_intrhand,
556 			       ifp->if_serializer);
557 	if (error) {
558 		ether_ifdetach(ifp);
559 		printf("lge%d: couldn't set up irq\n", unit);
560 		goto fail;
561 	}
562 
563 	return(0);
564 
565 fail:
566 	lge_detach(dev);
567 	return(error);
568 }
569 
570 static int
571 lge_detach(device_t dev)
572 {
573 	struct lge_softc *sc= device_get_softc(dev);
574 	struct ifnet *ifp = &sc->arpcom.ac_if;
575 
576 	if (device_is_attached(dev)) {
577 		lwkt_serialize_enter(ifp->if_serializer);
578 		lge_reset(sc);
579 		lge_stop(sc);
580 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
581 		lwkt_serialize_exit(ifp->if_serializer);
582 
583 		ether_ifdetach(ifp);
584 	}
585 
586 	if (sc->lge_miibus)
587 		device_delete_child(dev, sc->lge_miibus);
588 	bus_generic_detach(dev);
589 
590 	if (sc->lge_irq)
591 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
592 	if (sc->lge_res)
593 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
594 
595 	if (sc->lge_ldata)
596 		contigfree(sc->lge_ldata, sizeof(struct lge_list_data),
597 			   M_DEVBUF);
598 	lge_free_jumbo_mem(sc);
599 
600 	return(0);
601 }
602 
603 /*
604  * Initialize the transmit descriptors.
605  */
606 static int
607 lge_list_tx_init(struct lge_softc *sc)
608 {
609 	struct lge_list_data *ld;
610 	struct lge_ring_data *cd;
611 	int i;
612 
613 	cd = &sc->lge_cdata;
614 	ld = sc->lge_ldata;
615 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
616 		ld->lge_tx_list[i].lge_mbuf = NULL;
617 		ld->lge_tx_list[i].lge_ctl = 0;
618 	}
619 
620 	cd->lge_tx_prod = cd->lge_tx_cons = 0;
621 
622 	return(0);
623 }
624 
625 
626 /*
627  * Initialize the RX descriptors and allocate mbufs for them. Note that
628  * we arralge the descriptors in a closed ring, so that the last descriptor
629  * points back to the first.
630  */
631 static int
632 lge_list_rx_init(struct lge_softc *sc)
633 {
634 	struct lge_list_data *ld;
635 	struct lge_ring_data *cd;
636 	int i;
637 
638 	ld = sc->lge_ldata;
639 	cd = &sc->lge_cdata;
640 
641 	cd->lge_rx_prod = cd->lge_rx_cons = 0;
642 
643 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
644 
645 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
646 		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
647 			break;
648 		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
649 			return(ENOBUFS);
650 	}
651 
652 	/* Clear possible 'rx command queue empty' interrupt. */
653 	CSR_READ_4(sc, LGE_ISR);
654 
655 	return(0);
656 }
657 
658 /*
659  * Initialize an RX descriptor and attach an MBUF cluster.
660  */
661 static int
662 lge_newbuf(struct lge_softc *sc, struct lge_rx_desc *c, struct mbuf *m)
663 {
664 	struct mbuf *m_new = NULL;
665 	struct lge_jslot *buf;
666 
667 	if (m == NULL) {
668 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
669 		if (m_new == NULL) {
670 			printf("lge%d: no memory for rx list "
671 			    "-- packet dropped!\n", sc->lge_unit);
672 			return(ENOBUFS);
673 		}
674 
675 		/* Allocate the jumbo buffer */
676 		buf = lge_jalloc(sc);
677 		if (buf == NULL) {
678 #ifdef LGE_VERBOSE
679 			printf("lge%d: jumbo allocation failed "
680 			    "-- packet dropped!\n", sc->lge_unit);
681 #endif
682 			m_freem(m_new);
683 			return(ENOBUFS);
684 		}
685 		/* Attach the buffer to the mbuf */
686 		m_new->m_ext.ext_arg = buf;
687 		m_new->m_ext.ext_buf = buf->lge_buf;
688 		m_new->m_ext.ext_free = lge_jfree;
689 		m_new->m_ext.ext_ref = lge_jref;
690 		m_new->m_ext.ext_size = LGE_JUMBO_FRAMELEN;
691 
692 		m_new->m_data = m_new->m_ext.ext_buf;
693 		m_new->m_flags |= M_EXT;
694 		m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
695 	} else {
696 		m_new = m;
697 		m_new->m_len = m_new->m_pkthdr.len = LGE_JLEN;
698 		m_new->m_data = m_new->m_ext.ext_buf;
699 	}
700 
701 	/*
702 	 * Adjust alignment so packet payload begins on a
703 	 * longword boundary. Mandatory for Alpha, useful on
704 	 * x86 too.
705 	*/
706 	m_adj(m_new, ETHER_ALIGN);
707 
708 	c->lge_mbuf = m_new;
709 	c->lge_fragptr_hi = 0;
710 	c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t));
711 	c->lge_fraglen = m_new->m_len;
712 	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
713 	c->lge_sts = 0;
714 
715 	/*
716 	 * Put this buffer in the RX command FIFO. To do this,
717 	 * we just write the physical address of the descriptor
718 	 * into the RX descriptor address registers. Note that
719 	 * there are two registers, one high DWORD and one low
720 	 * DWORD, which lets us specify a 64-bit address if
721 	 * desired. We only use a 32-bit address for now.
722 	 * Writing to the low DWORD register is what actually
723 	 * causes the command to be issued, so we do that
724 	 * last.
725 	 */
726 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c));
727 	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
728 
729 	return(0);
730 }
731 
732 static int
733 lge_alloc_jumbo_mem(struct lge_softc *sc)
734 {
735 	struct lge_jslot *entry;
736 	caddr_t ptr;
737 	int i;
738 
739 	/* Grab a big chunk o' storage. */
740 	sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF,
741 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
742 
743 	if (sc->lge_cdata.lge_jumbo_buf == NULL) {
744 		printf("lge%d: no memory for jumbo buffers!\n", sc->lge_unit);
745 		return(ENOBUFS);
746 	}
747 
748 	SLIST_INIT(&sc->lge_jfree_listhead);
749 
750 	/*
751 	 * Now divide it up into 9K pieces and save the addresses
752 	 * in an array.
753 	 */
754 	ptr = sc->lge_cdata.lge_jumbo_buf;
755 	for (i = 0; i < LGE_JSLOTS; i++) {
756 		entry = &sc->lge_cdata.lge_jslots[i];
757 		entry->lge_sc = sc;
758 		entry->lge_buf = ptr;
759 		entry->lge_inuse = 0;
760 		entry->lge_slot = i;
761 		SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jslot_link);
762 		ptr += LGE_JLEN;
763 	}
764 
765 	return(0);
766 }
767 
768 static void
769 lge_free_jumbo_mem(struct lge_softc *sc)
770 {
771 	if (sc->lge_cdata.lge_jumbo_buf)
772 		contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF);
773 }
774 
775 /*
776  * Allocate a jumbo buffer.
777  */
778 static struct lge_jslot *
779 lge_jalloc(struct lge_softc *sc)
780 {
781 	struct lge_jslot *entry;
782 
783 	lwkt_serialize_enter(&sc->lge_jslot_serializer);
784 	entry = SLIST_FIRST(&sc->lge_jfree_listhead);
785 	if (entry) {
786 		SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jslot_link);
787 		entry->lge_inuse = 1;
788 	} else {
789 #ifdef LGE_VERBOSE
790 		printf("lge%d: no free jumbo buffers\n", sc->lge_unit);
791 #endif
792 	}
793 	lwkt_serialize_exit(&sc->lge_jslot_serializer);
794 	return(entry);
795 }
796 
797 /*
798  * Adjust usage count on a jumbo buffer. In general this doesn't
799  * get used much because our jumbo buffers don't get passed around
800  * a lot, but it's implemented for correctness.
801  */
802 static void
803 lge_jref(void *arg)
804 {
805 	struct lge_jslot *entry = (struct lge_jslot *)arg;
806 	struct lge_softc *sc = entry->lge_sc;
807 
808 	if (&sc->lge_cdata.lge_jslots[entry->lge_slot] != entry)
809 		panic("lge_jref: asked to reference buffer "
810 		    "that we don't manage!");
811 	else if (entry->lge_inuse == 0)
812 		panic("lge_jref: buffer already free!");
813 	else
814 		atomic_add_int(&entry->lge_inuse, 1);
815 }
816 
817 /*
818  * Release a jumbo buffer.
819  */
820 static void
821 lge_jfree(void *arg)
822 {
823 	struct lge_jslot *entry = (struct lge_jslot *)arg;
824 	struct lge_softc *sc = entry->lge_sc;
825 
826 	if (sc == NULL)
827 		panic("lge_jfree: can't find softc pointer!");
828 
829 	if (&sc->lge_cdata.lge_jslots[entry->lge_slot] != entry) {
830 		panic("lge_jfree: asked to free buffer that we don't manage!");
831 	} else if (entry->lge_inuse == 0) {
832 		panic("lge_jfree: buffer already free!");
833 	} else {
834 		lwkt_serialize_enter(&sc->lge_jslot_serializer);
835 		atomic_subtract_int(&entry->lge_inuse, 1);
836 		if (entry->lge_inuse == 0) {
837 			SLIST_INSERT_HEAD(&sc->lge_jfree_listhead,
838 					  entry, jslot_link);
839 		}
840 		lwkt_serialize_exit(&sc->lge_jslot_serializer);
841 	}
842 }
843 
844 /*
845  * A frame has been uploaded: pass the resulting mbuf chain up to
846  * the higher level protocols.
847  */
848 static void
849 lge_rxeof(struct lge_softc *sc, int cnt)
850 {
851         struct ifnet *ifp = &sc->arpcom.ac_if;
852         struct mbuf *m;
853 	struct lge_rx_desc *cur_rx;
854 	int c, i, total_len = 0;
855 	uint32_t rxsts, rxctl;
856 
857 
858 	/* Find out how many frames were processed. */
859 	c = cnt;
860 	i = sc->lge_cdata.lge_rx_cons;
861 
862 	/* Suck them in. */
863 	while(c) {
864 		struct mbuf *m0 = NULL;
865 
866 		cur_rx = &sc->lge_ldata->lge_rx_list[i];
867 		rxctl = cur_rx->lge_ctl;
868 		rxsts = cur_rx->lge_sts;
869 		m = cur_rx->lge_mbuf;
870 		cur_rx->lge_mbuf = NULL;
871 		total_len = LGE_RXBYTES(cur_rx);
872 		LGE_INC(i, LGE_RX_LIST_CNT);
873 		c--;
874 
875 		/*
876 		 * If an error occurs, update stats, clear the
877 		 * status word and leave the mbuf cluster in place:
878 		 * it should simply get re-used next time this descriptor
879 	 	 * comes up in the ring.
880 		 */
881 		if (rxctl & LGE_RXCTL_ERRMASK) {
882 			ifp->if_ierrors++;
883 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
884 			continue;
885 		}
886 
887 		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
888 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
889 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
890 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
891 			if (m0 == NULL) {
892 				printf("lge%d: no receive buffers "
893 				    "available -- packet dropped!\n",
894 				    sc->lge_unit);
895 				ifp->if_ierrors++;
896 				continue;
897 			}
898 			m_adj(m0, ETHER_ALIGN);
899 			m = m0;
900 		} else {
901 			m->m_pkthdr.rcvif = ifp;
902 			m->m_pkthdr.len = m->m_len = total_len;
903 		}
904 
905 		ifp->if_ipackets++;
906 
907 		/* Do IP checksum checking. */
908 		if (rxsts & LGE_RXSTS_ISIP)
909 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
910 		if (!(rxsts & LGE_RXSTS_IPCSUMERR))
911 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
912 		if ((rxsts & LGE_RXSTS_ISTCP &&
913 		    !(rxsts & LGE_RXSTS_TCPCSUMERR)) ||
914 		    (rxsts & LGE_RXSTS_ISUDP &&
915 		    !(rxsts & LGE_RXSTS_UDPCSUMERR))) {
916 			m->m_pkthdr.csum_flags |=
917 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
918 			m->m_pkthdr.csum_data = 0xffff;
919 		}
920 
921 		ifp->if_input(ifp, m);
922 	}
923 
924 	sc->lge_cdata.lge_rx_cons = i;
925 }
926 
927 static void
928 lge_rxeoc(struct lge_softc *sc)
929 {
930 	struct ifnet *ifp = &sc->arpcom.ac_if;
931 
932 	ifp->if_flags &= ~IFF_RUNNING;
933 	lge_init(sc);
934 }
935 
936 /*
937  * A frame was downloaded to the chip. It's safe for us to clean up
938  * the list buffers.
939  */
940 static void
941 lge_txeof(struct lge_softc *sc)
942 {
943 	struct ifnet *ifp = &sc->arpcom.ac_if;
944 	struct lge_tx_desc *cur_tx = NULL;
945 	uint32_t idx, txdone;
946 
947 	/* Clear the timeout timer. */
948 	ifp->if_timer = 0;
949 
950 	/*
951 	 * Go through our tx list and free mbufs for those
952 	 * frames that have been transmitted.
953 	 */
954 	idx = sc->lge_cdata.lge_tx_cons;
955 	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
956 
957 	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
958 		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
959 
960 		ifp->if_opackets++;
961 		if (cur_tx->lge_mbuf != NULL) {
962 			m_freem(cur_tx->lge_mbuf);
963 			cur_tx->lge_mbuf = NULL;
964 		}
965 		cur_tx->lge_ctl = 0;
966 
967 		txdone--;
968 		LGE_INC(idx, LGE_TX_LIST_CNT);
969 		ifp->if_timer = 0;
970 	}
971 
972 	sc->lge_cdata.lge_tx_cons = idx;
973 
974 	if (cur_tx != NULL)
975 		ifp->if_flags &= ~IFF_OACTIVE;
976 }
977 
978 static void
979 lge_tick(void *xsc)
980 {
981 	struct lge_softc *sc = xsc;
982 	struct ifnet *ifp = &sc->arpcom.ac_if;
983 
984 	lwkt_serialize_enter(ifp->if_serializer);
985 	lge_tick_serialized(xsc);
986 	lwkt_serialize_exit(ifp->if_serializer);
987 }
988 
989 static void
990 lge_tick_serialized(void *xsc)
991 {
992 	struct lge_softc *sc = xsc;
993 	struct mii_data *mii;
994 	struct ifnet *ifp = &sc->arpcom.ac_if;
995 
996 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
997 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
998 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
999 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1000 
1001 	if (!sc->lge_link) {
1002 		mii = device_get_softc(sc->lge_miibus);
1003 		mii_tick(mii);
1004 		mii_pollstat(mii);
1005 		if (mii->mii_media_status & IFM_ACTIVE &&
1006 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1007 			sc->lge_link++;
1008 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX||
1009 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
1010 				printf("lge%d: gigabit link up\n",
1011 				    sc->lge_unit);
1012 			if (!ifq_is_empty(&ifp->if_snd))
1013 				(*ifp->if_start)(ifp);
1014 		}
1015 	}
1016 
1017 	callout_reset(&sc->lge_stat_timer, hz, lge_tick, sc);
1018 }
1019 
1020 static void
1021 lge_intr(void *arg)
1022 {
1023 	struct lge_softc *sc = arg;
1024 	struct ifnet *ifp = &sc->arpcom.ac_if;
1025 	uint32_t status;
1026 
1027 	/* Supress unwanted interrupts */
1028 	if ((ifp->if_flags & IFF_UP) == 0) {
1029 		lge_stop(sc);
1030 		return;
1031 	}
1032 
1033 	for (;;) {
1034 		/*
1035 		 * Reading the ISR register clears all interrupts, and
1036 		 * clears the 'interrupts enabled' bit in the IMR
1037 		 * register.
1038 		 */
1039 		status = CSR_READ_4(sc, LGE_ISR);
1040 
1041 		if ((status & LGE_INTRS) == 0)
1042 			break;
1043 
1044 		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
1045 			lge_txeof(sc);
1046 
1047 		if (status & LGE_ISR_RXDMA_DONE)
1048 			lge_rxeof(sc, LGE_RX_DMACNT(status));
1049 
1050 		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
1051 			lge_rxeoc(sc);
1052 
1053 		if (status & LGE_ISR_PHY_INTR) {
1054 			sc->lge_link = 0;
1055 			callout_stop(&sc->lge_stat_timer);
1056 			lge_tick_serialized(sc);
1057 		}
1058 	}
1059 
1060 	/* Re-enable interrupts. */
1061 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
1062 
1063 	if (!ifq_is_empty(&ifp->if_snd))
1064 		(*ifp->if_start)(ifp);
1065 }
1066 
1067 /*
1068  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1069  * pointers to the fragment pointers.
1070  */
1071 static int
1072 lge_encap(struct lge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
1073 {
1074 	struct lge_frag *f = NULL;
1075 	struct lge_tx_desc *cur_tx;
1076 	struct mbuf *m;
1077 	int frag = 0, tot_len = 0;
1078 
1079 	/*
1080  	 * Start packing the mbufs in this chain into
1081 	 * the fragment pointers. Stop when we run out
1082  	 * of fragments or hit the end of the mbuf chain.
1083 	 */
1084 	m = m_head;
1085 	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
1086 	frag = 0;
1087 
1088 	for (m = m_head; m != NULL; m = m->m_next) {
1089 		if (m->m_len != 0) {
1090 			tot_len += m->m_len;
1091 			f = &cur_tx->lge_frags[frag];
1092 			f->lge_fraglen = m->m_len;
1093 			f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t));
1094 			f->lge_fragptr_hi = 0;
1095 			frag++;
1096 		}
1097 	}
1098 
1099 	if (m != NULL)
1100 		return(ENOBUFS);
1101 
1102 	cur_tx->lge_mbuf = m_head;
1103 	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
1104 	LGE_INC((*txidx), LGE_TX_LIST_CNT);
1105 
1106 	/* Queue for transmit */
1107 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx));
1108 
1109 	return(0);
1110 }
1111 
1112 /*
1113  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1114  * to the mbuf data regions directly in the transmit lists. We also save a
1115  * copy of the pointers since the transmit list fragment pointers are
1116  * physical addresses.
1117  */
1118 
1119 static void
1120 lge_start(struct ifnet *ifp)
1121 {
1122 	struct lge_softc *sc = ifp->if_softc;
1123 	struct mbuf *m_head = NULL;
1124 	uint32_t idx;
1125 	int need_timer;
1126 
1127 	if (!sc->lge_link)
1128 		return;
1129 
1130 	idx = sc->lge_cdata.lge_tx_prod;
1131 
1132 	if (ifp->if_flags & IFF_OACTIVE)
1133 		return;
1134 
1135 	need_timer = 0;
1136 	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
1137 		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
1138 			break;
1139 
1140 		m_head = ifq_poll(&ifp->if_snd);
1141 		if (m_head == NULL)
1142 			break;
1143 
1144 		if (lge_encap(sc, m_head, &idx)) {
1145 			ifp->if_flags |= IFF_OACTIVE;
1146 			break;
1147 		}
1148 		ifq_dequeue(&ifp->if_snd, m_head);
1149 		need_timer = 1;
1150 
1151 		BPF_MTAP(ifp, m_head);
1152 	}
1153 
1154 	if (!need_timer)
1155 		return;
1156 
1157 	sc->lge_cdata.lge_tx_prod = idx;
1158 
1159 	/*
1160 	 * Set a timeout in case the chip goes out to lunch.
1161 	 */
1162 	ifp->if_timer = 5;
1163 }
1164 
1165 static void
1166 lge_init(void *xsc)
1167 {
1168 	struct lge_softc *sc = xsc;
1169 	struct ifnet *ifp = &sc->arpcom.ac_if;
1170 	struct mii_data *mii;
1171 
1172 	if (ifp->if_flags & IFF_RUNNING)
1173 		return;
1174 
1175 	/*
1176 	 * Cancel pending I/O and free all RX/TX buffers.
1177 	 */
1178 	lge_stop(sc);
1179 	lge_reset(sc);
1180 
1181 	mii = device_get_softc(sc->lge_miibus);
1182 
1183 	/* Set MAC address */
1184 	CSR_WRITE_4(sc, LGE_PAR0, *(uint32_t *)(&sc->arpcom.ac_enaddr[0]));
1185 	CSR_WRITE_4(sc, LGE_PAR1, *(uint32_t *)(&sc->arpcom.ac_enaddr[4]));
1186 
1187 	/* Init circular RX list. */
1188 	if (lge_list_rx_init(sc) == ENOBUFS) {
1189 		printf("lge%d: initialization failed: no "
1190 		    "memory for rx buffers\n", sc->lge_unit);
1191 		lge_stop(sc);
1192 		return;
1193 	}
1194 
1195 	/*
1196 	 * Init tx descriptors.
1197 	 */
1198 	lge_list_tx_init(sc);
1199 
1200 	/* Set initial value for MODE1 register. */
1201 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST |
1202 	    LGE_MODE1_TX_CRC | LGE_MODE1_TXPAD |
1203 	    LGE_MODE1_RX_FLOWCTL | LGE_MODE1_SETRST_CTL0 |
1204 	    LGE_MODE1_SETRST_CTL1 | LGE_MODE1_SETRST_CTL2);
1205 
1206 	 /* If we want promiscuous mode, set the allframes bit. */
1207 	if (ifp->if_flags & IFF_PROMISC) {
1208 		CSR_WRITE_4(sc, LGE_MODE1,
1209 		    LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_PROMISC);
1210 	} else {
1211 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1212 	}
1213 
1214 	/*
1215 	 * Set the capture broadcast bit to capture broadcast frames.
1216 	 */
1217 	if (ifp->if_flags & IFF_BROADCAST) {
1218 		CSR_WRITE_4(sc, LGE_MODE1,
1219 		    LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_BCAST);
1220 	} else {
1221 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1222 	}
1223 
1224 	/* Packet padding workaround? */
1225 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1226 
1227 	/* No error frames */
1228 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1229 
1230 	/* Receive large frames */
1231 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_GIANTS);
1232 
1233 	/* Workaround: disable RX/TX flow control */
1234 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1235 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1236 
1237 	/* Make sure to strip CRC from received frames */
1238 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1239 
1240 	/* Turn off magic packet mode */
1241 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1242 
1243 	/* Turn off all VLAN stuff */
1244 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX | LGE_MODE1_VLAN_TX |
1245 	    LGE_MODE1_VLAN_STRIP | LGE_MODE1_VLAN_INSERT);
1246 
1247 	/* Workarond: FIFO overflow */
1248 	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1249 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1250 
1251 	/*
1252 	 * Load the multicast filter.
1253 	 */
1254 	lge_setmulti(sc);
1255 
1256 	/*
1257 	 * Enable hardware checksum validation for all received IPv4
1258 	 * packets, do not reject packets with bad checksums.
1259 	 */
1260 	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM |
1261 	    LGE_MODE2_RX_TCPCSUM | LGE_MODE2_RX_UDPCSUM |
1262 	    LGE_MODE2_RX_ERRCSUM);
1263 
1264 	/*
1265 	 * Enable the delivery of PHY interrupts based on
1266 	 * link/speed/duplex status chalges.
1267 	 */
1268 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0 | LGE_MODE1_GMIIPOLL);
1269 
1270 	/* Enable receiver and transmitter. */
1271 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1272 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_ENB);
1273 
1274 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1275 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_TX_ENB);
1276 
1277 	/*
1278 	 * Enable interrupts.
1279 	 */
1280 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0 |
1281 	    LGE_IMR_SETRST_CTL1 | LGE_IMR_INTR_ENB|LGE_INTRS);
1282 
1283 	lge_ifmedia_upd(ifp);
1284 
1285 	ifp->if_flags |= IFF_RUNNING;
1286 	ifp->if_flags &= ~IFF_OACTIVE;
1287 
1288 	callout_reset(&sc->lge_stat_timer, hz, lge_tick, sc);
1289 }
1290 
1291 /*
1292  * Set media options.
1293  */
1294 static int
1295 lge_ifmedia_upd(struct ifnet *ifp)
1296 {
1297 	struct lge_softc *sc = ifp->if_softc;
1298 	struct mii_data *mii = device_get_softc(sc->lge_miibus);
1299 
1300 	sc->lge_link = 0;
1301 	if (mii->mii_instance) {
1302 		struct mii_softc *miisc;
1303 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1304 			mii_phy_reset(miisc);
1305 	}
1306 	mii_mediachg(mii);
1307 
1308 	return(0);
1309 }
1310 
1311 /*
1312  * Report current media status.
1313  */
1314 static void
1315 lge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1316 {
1317 	struct lge_softc *sc = ifp->if_softc;
1318 	struct mii_data *mii;
1319 
1320 	mii = device_get_softc(sc->lge_miibus);
1321 	mii_pollstat(mii);
1322 	ifmr->ifm_active = mii->mii_media_active;
1323 	ifmr->ifm_status = mii->mii_media_status;
1324 }
1325 
1326 static int
1327 lge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1328 {
1329 	struct lge_softc *sc = ifp->if_softc;
1330 	struct ifreq *ifr = (struct ifreq *) data;
1331 	struct mii_data	 *mii;
1332 	int error = 0;
1333 
1334 	switch(command) {
1335 	case SIOCSIFMTU:
1336 		if (ifr->ifr_mtu > LGE_JUMBO_MTU)
1337 			error = EINVAL;
1338 		else
1339 			ifp->if_mtu = ifr->ifr_mtu;
1340 		break;
1341 	case SIOCSIFFLAGS:
1342 		if (ifp->if_flags & IFF_UP) {
1343 			if (ifp->if_flags & IFF_RUNNING &&
1344 			    ifp->if_flags & IFF_PROMISC &&
1345 			    !(sc->lge_if_flags & IFF_PROMISC)) {
1346 				CSR_WRITE_4(sc, LGE_MODE1,
1347 				    LGE_MODE1_SETRST_CTL1|
1348 				    LGE_MODE1_RX_PROMISC);
1349 			} else if (ifp->if_flags & IFF_RUNNING &&
1350 			    !(ifp->if_flags & IFF_PROMISC) &&
1351 			    sc->lge_if_flags & IFF_PROMISC) {
1352 				CSR_WRITE_4(sc, LGE_MODE1,
1353 				    LGE_MODE1_RX_PROMISC);
1354 			} else {
1355 				ifp->if_flags &= ~IFF_RUNNING;
1356 				lge_init(sc);
1357 			}
1358 		} else {
1359 			if (ifp->if_flags & IFF_RUNNING)
1360 				lge_stop(sc);
1361 		}
1362 		sc->lge_if_flags = ifp->if_flags;
1363 		error = 0;
1364 		break;
1365 	case SIOCADDMULTI:
1366 	case SIOCDELMULTI:
1367 		lge_setmulti(sc);
1368 		error = 0;
1369 		break;
1370 	case SIOCGIFMEDIA:
1371 	case SIOCSIFMEDIA:
1372 		mii = device_get_softc(sc->lge_miibus);
1373 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1374 		break;
1375 	default:
1376 		error = ether_ioctl(ifp, command, data);
1377 		break;
1378 	}
1379 
1380 	return(error);
1381 }
1382 
1383 static void
1384 lge_watchdog(struct ifnet *ifp)
1385 {
1386 	struct lge_softc *sc = ifp->if_softc;
1387 
1388 	ifp->if_oerrors++;
1389 	printf("lge%d: watchdog timeout\n", sc->lge_unit);
1390 
1391 	lge_stop(sc);
1392 	lge_reset(sc);
1393 	ifp->if_flags &= ~IFF_RUNNING;
1394 	lge_init(sc);
1395 
1396 	if (!ifq_is_empty(&ifp->if_snd))
1397 		(*ifp->if_start)(ifp);
1398 }
1399 
1400 /*
1401  * Stop the adapter and free any mbufs allocated to the
1402  * RX and TX lists.
1403  */
1404 static void
1405 lge_stop(struct lge_softc *sc)
1406 {
1407 	struct ifnet *ifp = &sc->arpcom.ac_if;
1408 	int i;
1409 
1410 	ifp->if_timer = 0;
1411 	callout_stop(&sc->lge_stat_timer);
1412 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1413 
1414 	/* Disable receiver and transmitter. */
1415 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1416 	sc->lge_link = 0;
1417 
1418 	/*
1419 	 * Free data in the RX lists.
1420 	 */
1421 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1422 		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1423 			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1424 			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1425 		}
1426 	}
1427 	bzero(&sc->lge_ldata->lge_rx_list, sizeof(sc->lge_ldata->lge_rx_list));
1428 
1429 	/*
1430 	 * Free the TX list buffers.
1431 	 */
1432 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1433 		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1434 			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1435 			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1436 		}
1437 	}
1438 
1439 	bzero(&sc->lge_ldata->lge_tx_list, sizeof(sc->lge_ldata->lge_tx_list));
1440 
1441 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1442 }
1443 
1444 /*
1445  * Stop all chip I/O so that the kernel's probe routines don't
1446  * get confused by errant DMAs when rebooting.
1447  */
1448 static void
1449 lge_shutdown(device_t dev)
1450 {
1451 	struct lge_softc *sc = device_get_softc(dev);
1452 
1453 	lge_reset(sc);
1454 	lge_stop(sc);
1455 }
1456