xref: /dragonfly/sys/dev/netif/lge/if_lge.c (revision 9348a738)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/lge/if_lge.c,v 1.5.2.2 2001/12/14 19:49:23 jlemon Exp $
34  */
35 
36 /*
37  * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
38  * documentation not available, but ask me nicely.
39  *
40  * Written by Bill Paul <william.paul@windriver.com>
41  * Wind River Systems
42  */
43 
44 /*
45  * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
46  * It's a 64-bit PCI part that supports TCP/IP checksum offload,
47  * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
48  * are three supported methods for data transfer between host and
49  * NIC: programmed I/O, traditional scatter/gather DMA and Packet
50  * Propulsion Technology (tm) DMA. The latter mechanism is a form
51  * of double buffer DMA where the packet data is copied to a
52  * pre-allocated DMA buffer who's physical address has been loaded
53  * into a table at device initialization time. The rationale is that
54  * the virtual to physical address translation needed for normal
55  * scatter/gather DMA is more expensive than the data copy needed
56  * for double buffering. This may be true in Windows NT and the like,
57  * but it isn't true for us, at least on the x86 arch. This driver
58  * uses the scatter/gather I/O method for both TX and RX.
59  *
60  * The LXT1001 only supports TCP/IP checksum offload on receive.
61  * Also, the VLAN tagging is done using a 16-entry table which allows
62  * the chip to perform hardware filtering based on VLAN tags. Sadly,
63  * our vlan support doesn't currently play well with this kind of
64  * hardware support.
65  *
66  * Special thanks to:
67  * - Jeff James at Intel, for arranging to have the LXT1001 manual
68  *   released (at long last)
69  * - Beny Chen at D-Link, for actually sending it to me
70  * - Brad Short and Keith Alexis at SMC, for sending me sample
71  *   SMC9462SX and SMC9462TX adapters for testing
72  * - Paul Saab at Y!, for not killing me (though it remains to be seen
73  *   if in fact he did me much of a favor)
74  */
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/sockio.h>
79 #include <sys/mbuf.h>
80 #include <sys/malloc.h>
81 #include <sys/kernel.h>
82 #include <sys/interrupt.h>
83 #include <sys/socket.h>
84 #include <sys/serialize.h>
85 #include <sys/thread2.h>
86 
87 #include <net/if.h>
88 #include <net/ifq_var.h>
89 #include <net/if_arp.h>
90 #include <net/ethernet.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 
94 #include <net/bpf.h>
95 
96 #include <vm/vm.h>              /* for vtophys */
97 #include <vm/pmap.h>            /* for vtophys */
98 #include <sys/bus.h>
99 #include <sys/rman.h>
100 
101 #include <dev/netif/mii_layer/mii.h>
102 #include <dev/netif/mii_layer/miivar.h>
103 
104 #include "pcidevs.h"
105 #include <bus/pci/pcireg.h>
106 #include <bus/pci/pcivar.h>
107 
108 #define LGE_USEIOSPACE
109 
110 #include "if_lgereg.h"
111 
112 /* "controller miibus0" required.  See GENERIC if you get errors here. */
113 #include "miibus_if.h"
114 
115 /*
116  * Various supported device vendors/types and their names.
117  */
118 static struct lge_type lge_devs[] = {
119 	{ PCI_VENDOR_LEVELONE, PCI_PRODUCT_LEVELONE_LXT1001,
120 	    "Level 1 Gigabit Ethernet" },
121 	{ 0, 0, NULL }
122 };
123 
124 static int	lge_probe(device_t);
125 static int	lge_attach(device_t);
126 static int	lge_detach(device_t);
127 
128 static int	lge_alloc_jumbo_mem(struct lge_softc *);
129 static void	lge_free_jumbo_mem(struct lge_softc *);
130 static struct lge_jslot
131 		*lge_jalloc(struct lge_softc *);
132 static void	lge_jfree(void *);
133 static void	lge_jref(void *);
134 
135 static int	lge_newbuf(struct lge_softc *, struct lge_rx_desc *,
136 			   struct mbuf *);
137 static int	lge_encap(struct lge_softc *, struct mbuf *, uint32_t *);
138 static void	lge_rxeof(struct lge_softc *, int);
139 static void	lge_rxeoc(struct lge_softc *);
140 static void	lge_txeof(struct lge_softc *);
141 static void	lge_intr(void *);
142 static void	lge_tick(void *);
143 static void	lge_tick_serialized(void *);
144 static void	lge_start(struct ifnet *, struct ifaltq_subque *);
145 static int	lge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
146 static void	lge_init(void *);
147 static void	lge_stop(struct lge_softc *);
148 static void	lge_watchdog(struct ifnet *);
149 static void	lge_shutdown(device_t);
150 static int	lge_ifmedia_upd(struct ifnet *);
151 static void	lge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
152 
153 static void	lge_eeprom_getword(struct lge_softc *, int, uint16_t *);
154 static void	lge_read_eeprom(struct lge_softc *, caddr_t, int, int);
155 
156 static int	lge_miibus_readreg(device_t, int, int);
157 static int	lge_miibus_writereg(device_t, int, int, int);
158 static void	lge_miibus_statchg(device_t);
159 
160 static void	lge_setmulti(struct lge_softc *);
161 static void	lge_reset(struct lge_softc *);
162 static int	lge_list_rx_init(struct lge_softc *);
163 static int	lge_list_tx_init(struct lge_softc *);
164 
165 #ifdef LGE_USEIOSPACE
166 #define LGE_RES			SYS_RES_IOPORT
167 #define LGE_RID			LGE_PCI_LOIO
168 #else
169 #define LGE_RES			SYS_RES_MEMORY
170 #define LGE_RID			LGE_PCI_LOMEM
171 #endif
172 
173 static device_method_t lge_methods[] = {
174 	/* Device interface */
175 	DEVMETHOD(device_probe,		lge_probe),
176 	DEVMETHOD(device_attach,	lge_attach),
177 	DEVMETHOD(device_detach,	lge_detach),
178 	DEVMETHOD(device_shutdown,	lge_shutdown),
179 
180 	/* bus interface */
181 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
182 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
183 
184 	/* MII interface */
185 	DEVMETHOD(miibus_readreg,	lge_miibus_readreg),
186 	DEVMETHOD(miibus_writereg,	lge_miibus_writereg),
187 	DEVMETHOD(miibus_statchg,	lge_miibus_statchg),
188 
189 	DEVMETHOD_END
190 };
191 
192 static DEFINE_CLASS_0(lge, lge_driver, lge_methods, sizeof(struct lge_softc));
193 static devclass_t lge_devclass;
194 
195 DECLARE_DUMMY_MODULE(if_lge);
196 DRIVER_MODULE(if_lge, pci, lge_driver, lge_devclass, NULL, NULL);
197 DRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, NULL, NULL);
198 
199 #define LGE_SETBIT(sc, reg, x)				\
200 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
201 
202 #define LGE_CLRBIT(sc, reg, x)				\
203 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
204 
205 #define SIO_SET(x)					\
206 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | (x))
207 
208 #define SIO_CLR(x)					\
209 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~(x))
210 
211 /*
212  * Read a word of data stored in the EEPROM at address 'addr.'
213  */
214 static void
215 lge_eeprom_getword(struct lge_softc *sc, int addr, uint16_t *dest)
216 {
217 	int i;
218 	uint32_t val;
219 
220 	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
221 	    LGE_EECTL_SINGLEACCESS | ((addr >> 1) << 8));
222 
223 	for (i = 0; i < LGE_TIMEOUT; i++) {
224 		if ((CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ) == 0)
225 			break;
226 	}
227 
228 	if (i == LGE_TIMEOUT) {
229 		kprintf("lge%d: EEPROM read timed out\n", sc->lge_unit);
230 		return;
231 	}
232 
233 	val = CSR_READ_4(sc, LGE_EEDATA);
234 
235 	if (addr & 1)
236 		*dest = (val >> 16) & 0xFFFF;
237 	else
238 		*dest = val & 0xFFFF;
239 }
240 
241 /*
242  * Read a sequence of words from the EEPROM.
243  */
244 static void
245 lge_read_eeprom(struct lge_softc *sc, caddr_t dest, int off, int cnt)
246 {
247 	int i;
248 	uint16_t word = 0, *ptr;
249 
250 	for (i = 0; i < cnt; i++) {
251 		lge_eeprom_getword(sc, off + i, &word);
252 		ptr = (uint16_t *)(dest + (i * 2));
253 		*ptr = ntohs(word);
254 	}
255 }
256 
257 static int
258 lge_miibus_readreg(device_t dev, int phy, int reg)
259 {
260 	struct lge_softc *sc = device_get_softc(dev);
261 	int i;
262 
263 	/*
264 	 * If we have a non-PCS PHY, pretend that the internal
265 	 * autoneg stuff at PHY address 0 isn't there so that
266 	 * the miibus code will find only the GMII PHY.
267 	 */
268 	if (sc->lge_pcs == 0 && phy == 0)
269 		return(0);
270 
271 	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
272 
273 	for (i = 0; i < LGE_TIMEOUT; i++) {
274 		if ((CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY) == 0)
275 			break;
276 	}
277 
278 	if (i == LGE_TIMEOUT) {
279 		kprintf("lge%d: PHY read timed out\n", sc->lge_unit);
280 		return(0);
281 	}
282 
283 	return(CSR_READ_4(sc, LGE_GMIICTL) >> 16);
284 }
285 
286 static int
287 lge_miibus_writereg(device_t dev, int phy, int reg, int data)
288 {
289 	struct lge_softc *sc = device_get_softc(dev);
290 	int i;
291 
292 	CSR_WRITE_4(sc, LGE_GMIICTL,
293 	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
294 
295 	for (i = 0; i < LGE_TIMEOUT; i++) {
296 		if ((CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY) == 0)
297 			break;
298 	}
299 
300 	if (i == LGE_TIMEOUT) {
301 		kprintf("lge%d: PHY write timed out\n", sc->lge_unit);
302 		return(0);
303 	}
304 
305 	return(0);
306 }
307 
308 static void
309 lge_miibus_statchg(device_t dev)
310 {
311 	struct lge_softc *sc = device_get_softc(dev);
312 	struct mii_data *mii = device_get_softc(sc->lge_miibus);
313 
314 	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
315 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
316 	case IFM_1000_T:
317 	case IFM_1000_SX:
318 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
319 		break;
320 	case IFM_100_TX:
321 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
322 		break;
323 	case IFM_10_T:
324 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
325 		break;
326 	default:
327 		/*
328 		 * Choose something, even if it's wrong. Clearing
329 		 * all the bits will hose autoneg on the internal
330 		 * PHY.
331 		 */
332 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
333 		break;
334 	}
335 
336 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
337 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
338 	else
339 		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
340 }
341 
342 static void
343 lge_setmulti(struct lge_softc *sc)
344 {
345 	struct ifnet *ifp = &sc->arpcom.ac_if;
346 	struct ifmultiaddr *ifma;
347 	uint32_t h = 0, hashes[2] = { 0, 0 };
348 
349 	/* Make sure multicast hash table is enabled. */
350 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_MCAST);
351 
352 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
353 		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
354 		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
355 		return;
356 	}
357 
358 	/* first, zot all the existing hash bits */
359 	CSR_WRITE_4(sc, LGE_MAR0, 0);
360 	CSR_WRITE_4(sc, LGE_MAR1, 0);
361 
362 	/* now program new ones */
363 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
364 		if (ifma->ifma_addr->sa_family != AF_LINK)
365 			continue;
366 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
367 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
368 		if (h < 32)
369 			hashes[0] |= (1 << h);
370 		else
371 			hashes[1] |= (1 << (h - 32));
372 	}
373 
374 	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
375 	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
376 
377 	return;
378 }
379 
380 static void
381 lge_reset(struct lge_softc *sc)
382 {
383 	int i;
384 
385 	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0 | LGE_MODE1_SOFTRST);
386 
387 	for (i = 0; i < LGE_TIMEOUT; i++) {
388 		if ((CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST) == 0)
389 			break;
390 	}
391 
392 	if (i == LGE_TIMEOUT)
393 		kprintf("lge%d: reset never completed\n", sc->lge_unit);
394 
395 	/* Wait a little while for the chip to get its brains in order. */
396 	DELAY(1000);
397 }
398 
399 /*
400  * Probe for a Level 1 chip. Check the PCI vendor and device
401  * IDs against our list and return a device name if we find a match.
402  */
403 static int
404 lge_probe(device_t dev)
405 {
406 	struct lge_type *t;
407 	uint16_t vendor, product;
408 
409 	vendor = pci_get_vendor(dev);
410 	product = pci_get_device(dev);
411 
412 	for (t = lge_devs; t->lge_name != NULL; t++) {
413 		if (vendor == t->lge_vid && product == t->lge_did) {
414 			device_set_desc(dev, t->lge_name);
415 			return(0);
416 		}
417 	}
418 
419 	return(ENXIO);
420 }
421 
422 /*
423  * Attach the interface. Allocate softc structures, do ifmedia
424  * setup and ethernet/BPF attach.
425  */
426 static int
427 lge_attach(device_t dev)
428 {
429 	uint8_t eaddr[ETHER_ADDR_LEN];
430 	struct lge_softc *sc;
431 	struct ifnet *ifp;
432 	int unit, error = 0, rid;
433 
434 	sc = device_get_softc(dev);
435 	unit = device_get_unit(dev);
436 	callout_init(&sc->lge_stat_timer);
437 	lwkt_serialize_init(&sc->lge_jslot_serializer);
438 
439 	/*
440 	 * Handle power management nonsense.
441 	 */
442 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
443 		uint32_t iobase, membase, irq;
444 
445 		/* Save important PCI config data. */
446 		iobase = pci_read_config(dev, LGE_PCI_LOIO, 4);
447 		membase = pci_read_config(dev, LGE_PCI_LOMEM, 4);
448 		irq = pci_read_config(dev, LGE_PCI_INTLINE, 4);
449 
450 		/* Reset the power state. */
451 		device_printf(dev, "chip is in D%d power mode "
452 		"-- setting to D0\n", pci_get_powerstate(dev));
453 
454 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
455 
456 		/* Restore PCI config data. */
457 		pci_write_config(dev, LGE_PCI_LOIO, iobase, 4);
458 		pci_write_config(dev, LGE_PCI_LOMEM, membase, 4);
459 		pci_write_config(dev, LGE_PCI_INTLINE, irq, 4);
460 	}
461 
462 	pci_enable_busmaster(dev);
463 
464 	rid = LGE_RID;
465 	sc->lge_res = bus_alloc_resource_any(dev, LGE_RES, &rid, RF_ACTIVE);
466 
467 	if (sc->lge_res == NULL) {
468 		kprintf("lge%d: couldn't map ports/memory\n", unit);
469 		error = ENXIO;
470 		goto fail;
471 	}
472 
473 	sc->lge_btag = rman_get_bustag(sc->lge_res);
474 	sc->lge_bhandle = rman_get_bushandle(sc->lge_res);
475 
476 	/* Allocate interrupt */
477 	rid = 0;
478 	sc->lge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
479 	    RF_SHAREABLE | RF_ACTIVE);
480 
481 	if (sc->lge_irq == NULL) {
482 		kprintf("lge%d: couldn't map interrupt\n", unit);
483 		error = ENXIO;
484 		goto fail;
485 	}
486 
487 	/* Reset the adapter. */
488 	lge_reset(sc);
489 
490 	/*
491 	 * Get station address from the EEPROM.
492 	 */
493 	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1);
494 	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1);
495 	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1);
496 
497 	sc->lge_unit = unit;
498 
499 	sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF,
500 	    M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
501 
502 	if (sc->lge_ldata == NULL) {
503 		kprintf("lge%d: no memory for list buffers!\n", unit);
504 		error = ENXIO;
505 		goto fail;
506 	}
507 
508 	/* Try to allocate memory for jumbo buffers. */
509 	if (lge_alloc_jumbo_mem(sc)) {
510 		kprintf("lge%d: jumbo buffer allocation failed\n",
511                     sc->lge_unit);
512 		error = ENXIO;
513 		goto fail;
514 	}
515 
516 	ifp = &sc->arpcom.ac_if;
517 	ifp->if_softc = sc;
518 	if_initname(ifp, "lge", unit);
519 	ifp->if_mtu = ETHERMTU;
520 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
521 	ifp->if_ioctl = lge_ioctl;
522 	ifp->if_start = lge_start;
523 	ifp->if_watchdog = lge_watchdog;
524 	ifp->if_init = lge_init;
525 	ifp->if_baudrate = 1000000000;
526 	ifq_set_maxlen(&ifp->if_snd, LGE_TX_LIST_CNT - 1);
527 	ifq_set_ready(&ifp->if_snd);
528 	ifp->if_capabilities = IFCAP_RXCSUM;
529 	ifp->if_capenable = ifp->if_capabilities;
530 
531 	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
532 		sc->lge_pcs = 1;
533 	else
534 		sc->lge_pcs = 0;
535 
536 	/*
537 	 * Do MII setup.
538 	 */
539 	if (mii_phy_probe(dev, &sc->lge_miibus,
540 	    lge_ifmedia_upd, lge_ifmedia_sts)) {
541 		kprintf("lge%d: MII without any PHY!\n", sc->lge_unit);
542 		error = ENXIO;
543 		goto fail;
544 	}
545 
546 	/*
547 	 * Call MI attach routine.
548 	 */
549 	ether_ifattach(ifp, eaddr, NULL);
550 
551 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->lge_irq));
552 
553 	error = bus_setup_intr(dev, sc->lge_irq, INTR_MPSAFE,
554 			       lge_intr, sc, &sc->lge_intrhand,
555 			       ifp->if_serializer);
556 	if (error) {
557 		ether_ifdetach(ifp);
558 		kprintf("lge%d: couldn't set up irq\n", unit);
559 		goto fail;
560 	}
561 
562 	return(0);
563 
564 fail:
565 	lge_detach(dev);
566 	return(error);
567 }
568 
569 static int
570 lge_detach(device_t dev)
571 {
572 	struct lge_softc *sc= device_get_softc(dev);
573 	struct ifnet *ifp = &sc->arpcom.ac_if;
574 
575 	if (device_is_attached(dev)) {
576 		lwkt_serialize_enter(ifp->if_serializer);
577 		lge_reset(sc);
578 		lge_stop(sc);
579 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
580 		lwkt_serialize_exit(ifp->if_serializer);
581 
582 		ether_ifdetach(ifp);
583 	}
584 
585 	if (sc->lge_miibus)
586 		device_delete_child(dev, sc->lge_miibus);
587 	bus_generic_detach(dev);
588 
589 	if (sc->lge_irq)
590 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
591 	if (sc->lge_res)
592 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
593 
594 	if (sc->lge_ldata)
595 		contigfree(sc->lge_ldata, sizeof(struct lge_list_data),
596 			   M_DEVBUF);
597 	lge_free_jumbo_mem(sc);
598 
599 	return(0);
600 }
601 
602 /*
603  * Initialize the transmit descriptors.
604  */
605 static int
606 lge_list_tx_init(struct lge_softc *sc)
607 {
608 	struct lge_list_data *ld;
609 	struct lge_ring_data *cd;
610 	int i;
611 
612 	cd = &sc->lge_cdata;
613 	ld = sc->lge_ldata;
614 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
615 		ld->lge_tx_list[i].lge_mbuf = NULL;
616 		ld->lge_tx_list[i].lge_ctl = 0;
617 	}
618 
619 	cd->lge_tx_prod = cd->lge_tx_cons = 0;
620 
621 	return(0);
622 }
623 
624 
625 /*
626  * Initialize the RX descriptors and allocate mbufs for them. Note that
627  * we arralge the descriptors in a closed ring, so that the last descriptor
628  * points back to the first.
629  */
630 static int
631 lge_list_rx_init(struct lge_softc *sc)
632 {
633 	struct lge_list_data *ld;
634 	struct lge_ring_data *cd;
635 	int i;
636 
637 	ld = sc->lge_ldata;
638 	cd = &sc->lge_cdata;
639 
640 	cd->lge_rx_prod = cd->lge_rx_cons = 0;
641 
642 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
643 
644 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
645 		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
646 			break;
647 		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
648 			return(ENOBUFS);
649 	}
650 
651 	/* Clear possible 'rx command queue empty' interrupt. */
652 	CSR_READ_4(sc, LGE_ISR);
653 
654 	return(0);
655 }
656 
657 /*
658  * Initialize an RX descriptor and attach an MBUF cluster.
659  */
660 static int
661 lge_newbuf(struct lge_softc *sc, struct lge_rx_desc *c, struct mbuf *m)
662 {
663 	struct mbuf *m_new = NULL;
664 	struct lge_jslot *buf;
665 
666 	if (m == NULL) {
667 		MGETHDR(m_new, M_NOWAIT, MT_DATA);
668 		if (m_new == NULL) {
669 			kprintf("lge%d: no memory for rx list "
670 			    "-- packet dropped!\n", sc->lge_unit);
671 			return(ENOBUFS);
672 		}
673 
674 		/* Allocate the jumbo buffer */
675 		buf = lge_jalloc(sc);
676 		if (buf == NULL) {
677 #ifdef LGE_VERBOSE
678 			kprintf("lge%d: jumbo allocation failed "
679 			    "-- packet dropped!\n", sc->lge_unit);
680 #endif
681 			m_freem(m_new);
682 			return(ENOBUFS);
683 		}
684 		/* Attach the buffer to the mbuf */
685 		m_new->m_ext.ext_arg = buf;
686 		m_new->m_ext.ext_buf = buf->lge_buf;
687 		m_new->m_ext.ext_free = lge_jfree;
688 		m_new->m_ext.ext_ref = lge_jref;
689 		m_new->m_ext.ext_size = LGE_JUMBO_FRAMELEN;
690 
691 		m_new->m_data = m_new->m_ext.ext_buf;
692 		m_new->m_flags |= M_EXT;
693 		m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
694 	} else {
695 		m_new = m;
696 		m_new->m_len = m_new->m_pkthdr.len = LGE_JLEN;
697 		m_new->m_data = m_new->m_ext.ext_buf;
698 	}
699 
700 	/*
701 	 * Adjust alignment so packet payload begins on a
702 	 * longword boundary. Mandatory for Alpha, useful on
703 	 * x86 too.
704 	*/
705 	m_adj(m_new, ETHER_ALIGN);
706 
707 	c->lge_mbuf = m_new;
708 	c->lge_fragptr_hi = 0;
709 	c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t));
710 	c->lge_fraglen = m_new->m_len;
711 	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
712 	c->lge_sts = 0;
713 
714 	/*
715 	 * Put this buffer in the RX command FIFO. To do this,
716 	 * we just write the physical address of the descriptor
717 	 * into the RX descriptor address registers. Note that
718 	 * there are two registers, one high DWORD and one low
719 	 * DWORD, which lets us specify a 64-bit address if
720 	 * desired. We only use a 32-bit address for now.
721 	 * Writing to the low DWORD register is what actually
722 	 * causes the command to be issued, so we do that
723 	 * last.
724 	 */
725 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c));
726 	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
727 
728 	return(0);
729 }
730 
731 static int
732 lge_alloc_jumbo_mem(struct lge_softc *sc)
733 {
734 	struct lge_jslot *entry;
735 	caddr_t ptr;
736 	int i;
737 
738 	/* Grab a big chunk o' storage. */
739 	sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF,
740 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
741 
742 	if (sc->lge_cdata.lge_jumbo_buf == NULL) {
743 		kprintf("lge%d: no memory for jumbo buffers!\n", sc->lge_unit);
744 		return(ENOBUFS);
745 	}
746 
747 	SLIST_INIT(&sc->lge_jfree_listhead);
748 
749 	/*
750 	 * Now divide it up into 9K pieces and save the addresses
751 	 * in an array.
752 	 */
753 	ptr = sc->lge_cdata.lge_jumbo_buf;
754 	for (i = 0; i < LGE_JSLOTS; i++) {
755 		entry = &sc->lge_cdata.lge_jslots[i];
756 		entry->lge_sc = sc;
757 		entry->lge_buf = ptr;
758 		entry->lge_inuse = 0;
759 		entry->lge_slot = i;
760 		SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jslot_link);
761 		ptr += LGE_JLEN;
762 	}
763 
764 	return(0);
765 }
766 
767 static void
768 lge_free_jumbo_mem(struct lge_softc *sc)
769 {
770 	if (sc->lge_cdata.lge_jumbo_buf)
771 		contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF);
772 }
773 
774 /*
775  * Allocate a jumbo buffer.
776  */
777 static struct lge_jslot *
778 lge_jalloc(struct lge_softc *sc)
779 {
780 	struct lge_jslot *entry;
781 
782 	lwkt_serialize_enter(&sc->lge_jslot_serializer);
783 	entry = SLIST_FIRST(&sc->lge_jfree_listhead);
784 	if (entry) {
785 		SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jslot_link);
786 		entry->lge_inuse = 1;
787 	} else {
788 #ifdef LGE_VERBOSE
789 		kprintf("lge%d: no free jumbo buffers\n", sc->lge_unit);
790 #endif
791 	}
792 	lwkt_serialize_exit(&sc->lge_jslot_serializer);
793 	return(entry);
794 }
795 
796 /*
797  * Adjust usage count on a jumbo buffer. In general this doesn't
798  * get used much because our jumbo buffers don't get passed around
799  * a lot, but it's implemented for correctness.
800  */
801 static void
802 lge_jref(void *arg)
803 {
804 	struct lge_jslot *entry = (struct lge_jslot *)arg;
805 	struct lge_softc *sc = entry->lge_sc;
806 
807 	if (&sc->lge_cdata.lge_jslots[entry->lge_slot] != entry)
808 		panic("lge_jref: asked to reference buffer "
809 		    "that we don't manage!");
810 	else if (entry->lge_inuse == 0)
811 		panic("lge_jref: buffer already free!");
812 	else
813 		atomic_add_int(&entry->lge_inuse, 1);
814 }
815 
816 /*
817  * Release a jumbo buffer.
818  */
819 static void
820 lge_jfree(void *arg)
821 {
822 	struct lge_jslot *entry = (struct lge_jslot *)arg;
823 	struct lge_softc *sc = entry->lge_sc;
824 
825 	if (sc == NULL)
826 		panic("lge_jfree: can't find softc pointer!");
827 
828 	if (&sc->lge_cdata.lge_jslots[entry->lge_slot] != entry) {
829 		panic("lge_jfree: asked to free buffer that we don't manage!");
830 	} else if (entry->lge_inuse == 0) {
831 		panic("lge_jfree: buffer already free!");
832 	} else {
833 		lwkt_serialize_enter(&sc->lge_jslot_serializer);
834 		atomic_subtract_int(&entry->lge_inuse, 1);
835 		if (entry->lge_inuse == 0) {
836 			SLIST_INSERT_HEAD(&sc->lge_jfree_listhead,
837 					  entry, jslot_link);
838 		}
839 		lwkt_serialize_exit(&sc->lge_jslot_serializer);
840 	}
841 }
842 
843 /*
844  * A frame has been uploaded: pass the resulting mbuf chain up to
845  * the higher level protocols.
846  */
847 static void
848 lge_rxeof(struct lge_softc *sc, int cnt)
849 {
850         struct ifnet *ifp = &sc->arpcom.ac_if;
851         struct mbuf *m;
852 	struct lge_rx_desc *cur_rx;
853 	int c, i, total_len = 0;
854 	uint32_t rxsts, rxctl;
855 
856 
857 	/* Find out how many frames were processed. */
858 	c = cnt;
859 	i = sc->lge_cdata.lge_rx_cons;
860 
861 	/* Suck them in. */
862 	while(c) {
863 		struct mbuf *m0 = NULL;
864 
865 		cur_rx = &sc->lge_ldata->lge_rx_list[i];
866 		rxctl = cur_rx->lge_ctl;
867 		rxsts = cur_rx->lge_sts;
868 		m = cur_rx->lge_mbuf;
869 		cur_rx->lge_mbuf = NULL;
870 		total_len = LGE_RXBYTES(cur_rx);
871 		LGE_INC(i, LGE_RX_LIST_CNT);
872 		c--;
873 
874 		/*
875 		 * If an error occurs, update stats, clear the
876 		 * status word and leave the mbuf cluster in place:
877 		 * it should simply get re-used next time this descriptor
878 	 	 * comes up in the ring.
879 		 */
880 		if (rxctl & LGE_RXCTL_ERRMASK) {
881 			IFNET_STAT_INC(ifp, ierrors, 1);
882 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
883 			continue;
884 		}
885 
886 		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
887 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
888 				      total_len + ETHER_ALIGN, 0, ifp);
889 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
890 			if (m0 == NULL) {
891 				kprintf("lge%d: no receive buffers "
892 				    "available -- packet dropped!\n",
893 				    sc->lge_unit);
894 				IFNET_STAT_INC(ifp, ierrors, 1);
895 				continue;
896 			}
897 			m_adj(m0, ETHER_ALIGN);
898 			m = m0;
899 		} else {
900 			m->m_pkthdr.rcvif = ifp;
901 			m->m_pkthdr.len = m->m_len = total_len;
902 		}
903 
904 		IFNET_STAT_INC(ifp, ipackets, 1);
905 
906 		/* Do IP checksum checking. */
907 		if (rxsts & LGE_RXSTS_ISIP)
908 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
909 		if (!(rxsts & LGE_RXSTS_IPCSUMERR))
910 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
911 		if ((rxsts & LGE_RXSTS_ISTCP &&
912 		    !(rxsts & LGE_RXSTS_TCPCSUMERR)) ||
913 		    (rxsts & LGE_RXSTS_ISUDP &&
914 		    !(rxsts & LGE_RXSTS_UDPCSUMERR))) {
915 			m->m_pkthdr.csum_flags |=
916 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
917 			    CSUM_FRAG_NOT_CHECKED;
918 			m->m_pkthdr.csum_data = 0xffff;
919 		}
920 
921 		ifp->if_input(ifp, m, NULL, -1);
922 	}
923 
924 	sc->lge_cdata.lge_rx_cons = i;
925 }
926 
927 static void
928 lge_rxeoc(struct lge_softc *sc)
929 {
930 	struct ifnet *ifp = &sc->arpcom.ac_if;
931 
932 	ifp->if_flags &= ~IFF_RUNNING;
933 	lge_init(sc);
934 }
935 
936 /*
937  * A frame was downloaded to the chip. It's safe for us to clean up
938  * the list buffers.
939  */
940 static void
941 lge_txeof(struct lge_softc *sc)
942 {
943 	struct ifnet *ifp = &sc->arpcom.ac_if;
944 	struct lge_tx_desc *cur_tx = NULL;
945 	uint32_t idx, txdone;
946 
947 	/* Clear the timeout timer. */
948 	ifp->if_timer = 0;
949 
950 	/*
951 	 * Go through our tx list and free mbufs for those
952 	 * frames that have been transmitted.
953 	 */
954 	idx = sc->lge_cdata.lge_tx_cons;
955 	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
956 
957 	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
958 		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
959 
960 		IFNET_STAT_INC(ifp, opackets, 1);
961 		if (cur_tx->lge_mbuf != NULL) {
962 			m_freem(cur_tx->lge_mbuf);
963 			cur_tx->lge_mbuf = NULL;
964 		}
965 		cur_tx->lge_ctl = 0;
966 
967 		txdone--;
968 		LGE_INC(idx, LGE_TX_LIST_CNT);
969 		ifp->if_timer = 0;
970 	}
971 
972 	sc->lge_cdata.lge_tx_cons = idx;
973 
974 	if (cur_tx != NULL)
975 		ifq_clr_oactive(&ifp->if_snd);
976 }
977 
978 static void
979 lge_tick(void *xsc)
980 {
981 	struct lge_softc *sc = xsc;
982 	struct ifnet *ifp = &sc->arpcom.ac_if;
983 
984 	lwkt_serialize_enter(ifp->if_serializer);
985 	lge_tick_serialized(xsc);
986 	lwkt_serialize_exit(ifp->if_serializer);
987 }
988 
989 static void
990 lge_tick_serialized(void *xsc)
991 {
992 	struct lge_softc *sc = xsc;
993 	struct mii_data *mii;
994 	struct ifnet *ifp = &sc->arpcom.ac_if;
995 
996 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
997 	IFNET_STAT_INC(ifp, collisions, CSR_READ_4(sc, LGE_STATSVAL));
998 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
999 	IFNET_STAT_INC(ifp, collisions, CSR_READ_4(sc, LGE_STATSVAL));
1000 
1001 	if (!sc->lge_link) {
1002 		mii = device_get_softc(sc->lge_miibus);
1003 		mii_tick(mii);
1004 		mii_pollstat(mii);
1005 		if (mii->mii_media_status & IFM_ACTIVE &&
1006 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1007 			sc->lge_link++;
1008 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX||
1009 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
1010 				kprintf("lge%d: gigabit link up\n",
1011 				    sc->lge_unit);
1012 			if (!ifq_is_empty(&ifp->if_snd))
1013 				if_devstart(ifp);
1014 		}
1015 	}
1016 
1017 	callout_reset(&sc->lge_stat_timer, hz, lge_tick, sc);
1018 }
1019 
1020 static void
1021 lge_intr(void *arg)
1022 {
1023 	struct lge_softc *sc = arg;
1024 	struct ifnet *ifp = &sc->arpcom.ac_if;
1025 	uint32_t status;
1026 
1027 	/* Supress unwanted interrupts */
1028 	if ((ifp->if_flags & IFF_UP) == 0) {
1029 		lge_stop(sc);
1030 		return;
1031 	}
1032 
1033 	for (;;) {
1034 		/*
1035 		 * Reading the ISR register clears all interrupts, and
1036 		 * clears the 'interrupts enabled' bit in the IMR
1037 		 * register.
1038 		 */
1039 		status = CSR_READ_4(sc, LGE_ISR);
1040 
1041 		if ((status & LGE_INTRS) == 0)
1042 			break;
1043 
1044 		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
1045 			lge_txeof(sc);
1046 
1047 		if (status & LGE_ISR_RXDMA_DONE)
1048 			lge_rxeof(sc, LGE_RX_DMACNT(status));
1049 
1050 		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
1051 			lge_rxeoc(sc);
1052 
1053 		if (status & LGE_ISR_PHY_INTR) {
1054 			sc->lge_link = 0;
1055 			callout_stop(&sc->lge_stat_timer);
1056 			lge_tick_serialized(sc);
1057 		}
1058 	}
1059 
1060 	/* Re-enable interrupts. */
1061 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
1062 
1063 	if (!ifq_is_empty(&ifp->if_snd))
1064 		if_devstart(ifp);
1065 }
1066 
1067 /*
1068  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1069  * pointers to the fragment pointers.
1070  */
1071 static int
1072 lge_encap(struct lge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
1073 {
1074 	struct lge_frag *f = NULL;
1075 	struct lge_tx_desc *cur_tx;
1076 	struct mbuf *m;
1077 	int frag = 0, tot_len = 0;
1078 
1079 	/*
1080  	 * Start packing the mbufs in this chain into
1081 	 * the fragment pointers. Stop when we run out
1082  	 * of fragments or hit the end of the mbuf chain.
1083 	 */
1084 	m = m_head;
1085 	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
1086 	frag = 0;
1087 
1088 	for (m = m_head; m != NULL; m = m->m_next) {
1089 		if (m->m_len != 0) {
1090 			if (frag == LGE_FRAG_CNT)
1091 				break;
1092 
1093 			tot_len += m->m_len;
1094 			f = &cur_tx->lge_frags[frag];
1095 			f->lge_fraglen = m->m_len;
1096 			f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t));
1097 			f->lge_fragptr_hi = 0;
1098 			frag++;
1099 		}
1100 	}
1101 	/* Caller should make sure that 'm_head' is not excessive fragmented */
1102 	KASSERT(m == NULL, ("too many fragments"));
1103 
1104 	cur_tx->lge_mbuf = m_head;
1105 	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
1106 	LGE_INC((*txidx), LGE_TX_LIST_CNT);
1107 
1108 	/* Queue for transmit */
1109 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx));
1110 
1111 	return(0);
1112 }
1113 
1114 /*
1115  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1116  * to the mbuf data regions directly in the transmit lists. We also save a
1117  * copy of the pointers since the transmit list fragment pointers are
1118  * physical addresses.
1119  */
1120 
1121 static void
1122 lge_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1123 {
1124 	struct lge_softc *sc = ifp->if_softc;
1125 	struct mbuf *m_head = NULL, *m_defragged;
1126 	uint32_t idx;
1127 	int need_timer;
1128 
1129 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1130 
1131 	if (!sc->lge_link) {
1132 		ifq_purge(&ifp->if_snd);
1133 		return;
1134 	}
1135 
1136 	idx = sc->lge_cdata.lge_tx_prod;
1137 
1138 	if (ifq_is_oactive(&ifp->if_snd))
1139 		return;
1140 
1141 	need_timer = 0;
1142 	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
1143 		struct mbuf *m;
1144 		int frags;
1145 
1146 		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0) {
1147 			ifq_set_oactive(&ifp->if_snd);
1148 			break;
1149 		}
1150 
1151 		m_defragged = NULL;
1152 		m_head = ifq_dequeue(&ifp->if_snd);
1153 		if (m_head == NULL)
1154 			break;
1155 
1156 again:
1157 		frags = 0;
1158 		for (m = m_head; m != NULL; m = m->m_next)
1159 			++frags;
1160 		if (frags > LGE_FRAG_CNT) {
1161 			if (m_defragged != NULL) {
1162 				/*
1163 				 * Even after defragmentation, there
1164 				 * are still too many fragments, so
1165 				 * drop this packet.
1166 				 */
1167 				m_freem(m_head);
1168 				continue;
1169 			}
1170 
1171 			m_defragged = m_defrag(m_head, M_NOWAIT);
1172 			if (m_defragged == NULL) {
1173 				m_freem(m_head);
1174 				continue;
1175 			}
1176 			m_head = m_defragged;
1177 
1178 			/* Recount # of fragments */
1179 			goto again;
1180 		}
1181 
1182 		lge_encap(sc, m_head, &idx);
1183 		need_timer = 1;
1184 
1185 		BPF_MTAP(ifp, m_head);
1186 	}
1187 
1188 	if (!need_timer)
1189 		return;
1190 
1191 	sc->lge_cdata.lge_tx_prod = idx;
1192 
1193 	/*
1194 	 * Set a timeout in case the chip goes out to lunch.
1195 	 */
1196 	ifp->if_timer = 5;
1197 }
1198 
1199 static void
1200 lge_init(void *xsc)
1201 {
1202 	struct lge_softc *sc = xsc;
1203 	struct ifnet *ifp = &sc->arpcom.ac_if;
1204 
1205 	if (ifp->if_flags & IFF_RUNNING)
1206 		return;
1207 
1208 	/*
1209 	 * Cancel pending I/O and free all RX/TX buffers.
1210 	 */
1211 	lge_stop(sc);
1212 	lge_reset(sc);
1213 
1214 	/* Set MAC address */
1215 	CSR_WRITE_4(sc, LGE_PAR0, *(uint32_t *)(&sc->arpcom.ac_enaddr[0]));
1216 	CSR_WRITE_4(sc, LGE_PAR1, *(uint32_t *)(&sc->arpcom.ac_enaddr[4]));
1217 
1218 	/* Init circular RX list. */
1219 	if (lge_list_rx_init(sc) == ENOBUFS) {
1220 		kprintf("lge%d: initialization failed: no "
1221 		    "memory for rx buffers\n", sc->lge_unit);
1222 		lge_stop(sc);
1223 		return;
1224 	}
1225 
1226 	/*
1227 	 * Init tx descriptors.
1228 	 */
1229 	lge_list_tx_init(sc);
1230 
1231 	/* Set initial value for MODE1 register. */
1232 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST |
1233 	    LGE_MODE1_TX_CRC | LGE_MODE1_TXPAD |
1234 	    LGE_MODE1_RX_FLOWCTL | LGE_MODE1_SETRST_CTL0 |
1235 	    LGE_MODE1_SETRST_CTL1 | LGE_MODE1_SETRST_CTL2);
1236 
1237 	 /* If we want promiscuous mode, set the allframes bit. */
1238 	if (ifp->if_flags & IFF_PROMISC) {
1239 		CSR_WRITE_4(sc, LGE_MODE1,
1240 		    LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_PROMISC);
1241 	} else {
1242 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1243 	}
1244 
1245 	/*
1246 	 * Set the capture broadcast bit to capture broadcast frames.
1247 	 */
1248 	if (ifp->if_flags & IFF_BROADCAST) {
1249 		CSR_WRITE_4(sc, LGE_MODE1,
1250 		    LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_BCAST);
1251 	} else {
1252 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1253 	}
1254 
1255 	/* Packet padding workaround? */
1256 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1257 
1258 	/* No error frames */
1259 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1260 
1261 	/* Receive large frames */
1262 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_GIANTS);
1263 
1264 	/* Workaround: disable RX/TX flow control */
1265 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1266 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1267 
1268 	/* Make sure to strip CRC from received frames */
1269 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1270 
1271 	/* Turn off magic packet mode */
1272 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1273 
1274 	/* Turn off all VLAN stuff */
1275 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX | LGE_MODE1_VLAN_TX |
1276 	    LGE_MODE1_VLAN_STRIP | LGE_MODE1_VLAN_INSERT);
1277 
1278 	/* Workarond: FIFO overflow */
1279 	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1280 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1281 
1282 	/*
1283 	 * Load the multicast filter.
1284 	 */
1285 	lge_setmulti(sc);
1286 
1287 	/*
1288 	 * Enable hardware checksum validation for all received IPv4
1289 	 * packets, do not reject packets with bad checksums.
1290 	 */
1291 	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM |
1292 	    LGE_MODE2_RX_TCPCSUM | LGE_MODE2_RX_UDPCSUM |
1293 	    LGE_MODE2_RX_ERRCSUM);
1294 
1295 	/*
1296 	 * Enable the delivery of PHY interrupts based on
1297 	 * link/speed/duplex status chalges.
1298 	 */
1299 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0 | LGE_MODE1_GMIIPOLL);
1300 
1301 	/* Enable receiver and transmitter. */
1302 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1303 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_ENB);
1304 
1305 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1306 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_TX_ENB);
1307 
1308 	/*
1309 	 * Enable interrupts.
1310 	 */
1311 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0 |
1312 	    LGE_IMR_SETRST_CTL1 | LGE_IMR_INTR_ENB|LGE_INTRS);
1313 
1314 	lge_ifmedia_upd(ifp);
1315 
1316 	ifp->if_flags |= IFF_RUNNING;
1317 	ifq_clr_oactive(&ifp->if_snd);
1318 
1319 	callout_reset(&sc->lge_stat_timer, hz, lge_tick, sc);
1320 }
1321 
1322 /*
1323  * Set media options.
1324  */
1325 static int
1326 lge_ifmedia_upd(struct ifnet *ifp)
1327 {
1328 	struct lge_softc *sc = ifp->if_softc;
1329 	struct mii_data *mii = device_get_softc(sc->lge_miibus);
1330 
1331 	sc->lge_link = 0;
1332 	if (mii->mii_instance) {
1333 		struct mii_softc *miisc;
1334 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1335 			mii_phy_reset(miisc);
1336 	}
1337 	mii_mediachg(mii);
1338 
1339 	return(0);
1340 }
1341 
1342 /*
1343  * Report current media status.
1344  */
1345 static void
1346 lge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1347 {
1348 	struct lge_softc *sc = ifp->if_softc;
1349 	struct mii_data *mii;
1350 
1351 	mii = device_get_softc(sc->lge_miibus);
1352 	mii_pollstat(mii);
1353 	ifmr->ifm_active = mii->mii_media_active;
1354 	ifmr->ifm_status = mii->mii_media_status;
1355 }
1356 
1357 static int
1358 lge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1359 {
1360 	struct lge_softc *sc = ifp->if_softc;
1361 	struct ifreq *ifr = (struct ifreq *) data;
1362 	struct mii_data	 *mii;
1363 	int error = 0;
1364 
1365 	switch(command) {
1366 	case SIOCSIFMTU:
1367 		if (ifr->ifr_mtu > LGE_JUMBO_MTU)
1368 			error = EINVAL;
1369 		else
1370 			ifp->if_mtu = ifr->ifr_mtu;
1371 		break;
1372 	case SIOCSIFFLAGS:
1373 		if (ifp->if_flags & IFF_UP) {
1374 			if (ifp->if_flags & IFF_RUNNING &&
1375 			    ifp->if_flags & IFF_PROMISC &&
1376 			    !(sc->lge_if_flags & IFF_PROMISC)) {
1377 				CSR_WRITE_4(sc, LGE_MODE1,
1378 				    LGE_MODE1_SETRST_CTL1|
1379 				    LGE_MODE1_RX_PROMISC);
1380 			} else if (ifp->if_flags & IFF_RUNNING &&
1381 			    !(ifp->if_flags & IFF_PROMISC) &&
1382 			    sc->lge_if_flags & IFF_PROMISC) {
1383 				CSR_WRITE_4(sc, LGE_MODE1,
1384 				    LGE_MODE1_RX_PROMISC);
1385 			} else {
1386 				ifp->if_flags &= ~IFF_RUNNING;
1387 				lge_init(sc);
1388 			}
1389 		} else {
1390 			if (ifp->if_flags & IFF_RUNNING)
1391 				lge_stop(sc);
1392 		}
1393 		sc->lge_if_flags = ifp->if_flags;
1394 		error = 0;
1395 		break;
1396 	case SIOCADDMULTI:
1397 	case SIOCDELMULTI:
1398 		lge_setmulti(sc);
1399 		error = 0;
1400 		break;
1401 	case SIOCGIFMEDIA:
1402 	case SIOCSIFMEDIA:
1403 		mii = device_get_softc(sc->lge_miibus);
1404 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1405 		break;
1406 	default:
1407 		error = ether_ioctl(ifp, command, data);
1408 		break;
1409 	}
1410 
1411 	return(error);
1412 }
1413 
1414 static void
1415 lge_watchdog(struct ifnet *ifp)
1416 {
1417 	struct lge_softc *sc = ifp->if_softc;
1418 
1419 	IFNET_STAT_INC(ifp, oerrors, 1);
1420 	kprintf("lge%d: watchdog timeout\n", sc->lge_unit);
1421 
1422 	lge_stop(sc);
1423 	lge_reset(sc);
1424 	ifp->if_flags &= ~IFF_RUNNING;
1425 	lge_init(sc);
1426 
1427 	if (!ifq_is_empty(&ifp->if_snd))
1428 		if_devstart(ifp);
1429 }
1430 
1431 /*
1432  * Stop the adapter and free any mbufs allocated to the
1433  * RX and TX lists.
1434  */
1435 static void
1436 lge_stop(struct lge_softc *sc)
1437 {
1438 	struct ifnet *ifp = &sc->arpcom.ac_if;
1439 	int i;
1440 
1441 	ifp->if_timer = 0;
1442 	callout_stop(&sc->lge_stat_timer);
1443 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1444 
1445 	/* Disable receiver and transmitter. */
1446 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1447 	sc->lge_link = 0;
1448 
1449 	/*
1450 	 * Free data in the RX lists.
1451 	 */
1452 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1453 		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1454 			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1455 			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1456 		}
1457 	}
1458 	bzero(&sc->lge_ldata->lge_rx_list, sizeof(sc->lge_ldata->lge_rx_list));
1459 
1460 	/*
1461 	 * Free the TX list buffers.
1462 	 */
1463 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1464 		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1465 			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1466 			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1467 		}
1468 	}
1469 
1470 	bzero(&sc->lge_ldata->lge_tx_list, sizeof(sc->lge_ldata->lge_tx_list));
1471 
1472 	ifp->if_flags &= ~IFF_RUNNING;
1473 	ifq_clr_oactive(&ifp->if_snd);
1474 }
1475 
1476 /*
1477  * Stop all chip I/O so that the kernel's probe routines don't
1478  * get confused by errant DMAs when rebooting.
1479  */
1480 static void
1481 lge_shutdown(device_t dev)
1482 {
1483 	struct lge_softc *sc = device_get_softc(dev);
1484 
1485 	lge_reset(sc);
1486 	lge_stop(sc);
1487 }
1488