xref: /dragonfly/sys/dev/netif/lge/if_lge.c (revision 9ddb8543)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/lge/if_lge.c,v 1.5.2.2 2001/12/14 19:49:23 jlemon Exp $
34  * $DragonFly: src/sys/dev/netif/lge/if_lge.c,v 1.42 2008/08/17 04:32:33 sephe Exp $
35  */
36 
37 /*
38  * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
39  * documentation not available, but ask me nicely.
40  *
41  * Written by Bill Paul <william.paul@windriver.com>
42  * Wind River Systems
43  */
44 
45 /*
46  * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
47  * It's a 64-bit PCI part that supports TCP/IP checksum offload,
48  * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
49  * are three supported methods for data transfer between host and
50  * NIC: programmed I/O, traditional scatter/gather DMA and Packet
51  * Propulsion Technology (tm) DMA. The latter mechanism is a form
52  * of double buffer DMA where the packet data is copied to a
53  * pre-allocated DMA buffer who's physical address has been loaded
54  * into a table at device initialization time. The rationale is that
55  * the virtual to physical address translation needed for normal
56  * scatter/gather DMA is more expensive than the data copy needed
57  * for double buffering. This may be true in Windows NT and the like,
58  * but it isn't true for us, at least on the x86 arch. This driver
59  * uses the scatter/gather I/O method for both TX and RX.
60  *
61  * The LXT1001 only supports TCP/IP checksum offload on receive.
62  * Also, the VLAN tagging is done using a 16-entry table which allows
63  * the chip to perform hardware filtering based on VLAN tags. Sadly,
64  * our vlan support doesn't currently play well with this kind of
65  * hardware support.
66  *
67  * Special thanks to:
68  * - Jeff James at Intel, for arranging to have the LXT1001 manual
69  *   released (at long last)
70  * - Beny Chen at D-Link, for actually sending it to me
71  * - Brad Short and Keith Alexis at SMC, for sending me sample
72  *   SMC9462SX and SMC9462TX adapters for testing
73  * - Paul Saab at Y!, for not killing me (though it remains to be seen
74  *   if in fact he did me much of a favor)
75  */
76 
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/sockio.h>
80 #include <sys/mbuf.h>
81 #include <sys/malloc.h>
82 #include <sys/kernel.h>
83 #include <sys/interrupt.h>
84 #include <sys/socket.h>
85 #include <sys/serialize.h>
86 #include <sys/thread2.h>
87 
88 #include <net/if.h>
89 #include <net/ifq_var.h>
90 #include <net/if_arp.h>
91 #include <net/ethernet.h>
92 #include <net/if_dl.h>
93 #include <net/if_media.h>
94 
95 #include <net/bpf.h>
96 
97 #include <vm/vm.h>              /* for vtophys */
98 #include <vm/pmap.h>            /* for vtophys */
99 #include <sys/bus.h>
100 #include <sys/rman.h>
101 
102 #include <dev/netif/mii_layer/mii.h>
103 #include <dev/netif/mii_layer/miivar.h>
104 
105 #include <bus/pci/pcidevs.h>
106 #include <bus/pci/pcireg.h>
107 #include <bus/pci/pcivar.h>
108 
109 #define LGE_USEIOSPACE
110 
111 #include "if_lgereg.h"
112 
113 /* "controller miibus0" required.  See GENERIC if you get errors here. */
114 #include "miibus_if.h"
115 
116 /*
117  * Various supported device vendors/types and their names.
118  */
119 static struct lge_type lge_devs[] = {
120 	{ PCI_VENDOR_LEVELONE, PCI_PRODUCT_LEVELONE_LXT1001,
121 	    "Level 1 Gigabit Ethernet" },
122 	{ 0, 0, NULL }
123 };
124 
125 static int	lge_probe(device_t);
126 static int	lge_attach(device_t);
127 static int	lge_detach(device_t);
128 
129 static int	lge_alloc_jumbo_mem(struct lge_softc *);
130 static void	lge_free_jumbo_mem(struct lge_softc *);
131 static struct lge_jslot
132 		*lge_jalloc(struct lge_softc *);
133 static void	lge_jfree(void *);
134 static void	lge_jref(void *);
135 
136 static int	lge_newbuf(struct lge_softc *, struct lge_rx_desc *,
137 			   struct mbuf *);
138 static int	lge_encap(struct lge_softc *, struct mbuf *, uint32_t *);
139 static void	lge_rxeof(struct lge_softc *, int);
140 static void	lge_rxeoc(struct lge_softc *);
141 static void	lge_txeof(struct lge_softc *);
142 static void	lge_intr(void *);
143 static void	lge_tick(void *);
144 static void	lge_tick_serialized(void *);
145 static void	lge_start(struct ifnet *);
146 static int	lge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
147 static void	lge_init(void *);
148 static void	lge_stop(struct lge_softc *);
149 static void	lge_watchdog(struct ifnet *);
150 static void	lge_shutdown(device_t);
151 static int	lge_ifmedia_upd(struct ifnet *);
152 static void	lge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
153 
154 static void	lge_eeprom_getword(struct lge_softc *, int, uint16_t *);
155 static void	lge_read_eeprom(struct lge_softc *, caddr_t, int, int);
156 
157 static int	lge_miibus_readreg(device_t, int, int);
158 static int	lge_miibus_writereg(device_t, int, int, int);
159 static void	lge_miibus_statchg(device_t);
160 
161 static void	lge_setmulti(struct lge_softc *);
162 static void	lge_reset(struct lge_softc *);
163 static int	lge_list_rx_init(struct lge_softc *);
164 static int	lge_list_tx_init(struct lge_softc *);
165 
166 #ifdef LGE_USEIOSPACE
167 #define LGE_RES			SYS_RES_IOPORT
168 #define LGE_RID			LGE_PCI_LOIO
169 #else
170 #define LGE_RES			SYS_RES_MEMORY
171 #define LGE_RID			LGE_PCI_LOMEM
172 #endif
173 
174 static device_method_t lge_methods[] = {
175 	/* Device interface */
176 	DEVMETHOD(device_probe,		lge_probe),
177 	DEVMETHOD(device_attach,	lge_attach),
178 	DEVMETHOD(device_detach,	lge_detach),
179 	DEVMETHOD(device_shutdown,	lge_shutdown),
180 
181 	/* bus interface */
182 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
183 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
184 
185 	/* MII interface */
186 	DEVMETHOD(miibus_readreg,	lge_miibus_readreg),
187 	DEVMETHOD(miibus_writereg,	lge_miibus_writereg),
188 	DEVMETHOD(miibus_statchg,	lge_miibus_statchg),
189 
190 	{ 0, 0 }
191 };
192 
193 static DEFINE_CLASS_0(lge, lge_driver, lge_methods, sizeof(struct lge_softc));
194 static devclass_t lge_devclass;
195 
196 DECLARE_DUMMY_MODULE(if_lge);
197 DRIVER_MODULE(if_lge, pci, lge_driver, lge_devclass, 0, 0);
198 DRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, 0, 0);
199 
200 #define LGE_SETBIT(sc, reg, x)				\
201 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
202 
203 #define LGE_CLRBIT(sc, reg, x)				\
204 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
205 
206 #define SIO_SET(x)					\
207 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | (x))
208 
209 #define SIO_CLR(x)					\
210 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~(x))
211 
212 /*
213  * Read a word of data stored in the EEPROM at address 'addr.'
214  */
215 static void
216 lge_eeprom_getword(struct lge_softc *sc, int addr, uint16_t *dest)
217 {
218 	int i;
219 	uint32_t val;
220 
221 	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
222 	    LGE_EECTL_SINGLEACCESS | ((addr >> 1) << 8));
223 
224 	for (i = 0; i < LGE_TIMEOUT; i++) {
225 		if ((CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ) == 0)
226 			break;
227 	}
228 
229 	if (i == LGE_TIMEOUT) {
230 		kprintf("lge%d: EEPROM read timed out\n", sc->lge_unit);
231 		return;
232 	}
233 
234 	val = CSR_READ_4(sc, LGE_EEDATA);
235 
236 	if (addr & 1)
237 		*dest = (val >> 16) & 0xFFFF;
238 	else
239 		*dest = val & 0xFFFF;
240 }
241 
242 /*
243  * Read a sequence of words from the EEPROM.
244  */
245 static void
246 lge_read_eeprom(struct lge_softc *sc, caddr_t dest, int off, int cnt)
247 {
248 	int i;
249 	uint16_t word = 0, *ptr;
250 
251 	for (i = 0; i < cnt; i++) {
252 		lge_eeprom_getword(sc, off + i, &word);
253 		ptr = (uint16_t *)(dest + (i * 2));
254 		*ptr = ntohs(word);
255 	}
256 }
257 
258 static int
259 lge_miibus_readreg(device_t dev, int phy, int reg)
260 {
261 	struct lge_softc *sc = device_get_softc(dev);
262 	int i;
263 
264 	/*
265 	 * If we have a non-PCS PHY, pretend that the internal
266 	 * autoneg stuff at PHY address 0 isn't there so that
267 	 * the miibus code will find only the GMII PHY.
268 	 */
269 	if (sc->lge_pcs == 0 && phy == 0)
270 		return(0);
271 
272 	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
273 
274 	for (i = 0; i < LGE_TIMEOUT; i++) {
275 		if ((CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY) == 0)
276 			break;
277 	}
278 
279 	if (i == LGE_TIMEOUT) {
280 		kprintf("lge%d: PHY read timed out\n", sc->lge_unit);
281 		return(0);
282 	}
283 
284 	return(CSR_READ_4(sc, LGE_GMIICTL) >> 16);
285 }
286 
287 static int
288 lge_miibus_writereg(device_t dev, int phy, int reg, int data)
289 {
290 	struct lge_softc *sc = device_get_softc(dev);
291 	int i;
292 
293 	CSR_WRITE_4(sc, LGE_GMIICTL,
294 	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
295 
296 	for (i = 0; i < LGE_TIMEOUT; i++) {
297 		if ((CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY) == 0)
298 			break;
299 	}
300 
301 	if (i == LGE_TIMEOUT) {
302 		kprintf("lge%d: PHY write timed out\n", sc->lge_unit);
303 		return(0);
304 	}
305 
306 	return(0);
307 }
308 
309 static void
310 lge_miibus_statchg(device_t dev)
311 {
312 	struct lge_softc *sc = device_get_softc(dev);
313 	struct mii_data *mii = device_get_softc(sc->lge_miibus);
314 
315 	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
316 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
317 	case IFM_1000_T:
318 	case IFM_1000_SX:
319 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
320 		break;
321 	case IFM_100_TX:
322 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
323 		break;
324 	case IFM_10_T:
325 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
326 		break;
327 	default:
328 		/*
329 		 * Choose something, even if it's wrong. Clearing
330 		 * all the bits will hose autoneg on the internal
331 		 * PHY.
332 		 */
333 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
334 		break;
335 	}
336 
337 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
338 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
339 	else
340 		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
341 }
342 
343 static void
344 lge_setmulti(struct lge_softc *sc)
345 {
346 	struct ifnet *ifp = &sc->arpcom.ac_if;
347 	struct ifmultiaddr *ifma;
348 	uint32_t h = 0, hashes[2] = { 0, 0 };
349 
350 	/* Make sure multicast hash table is enabled. */
351 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_MCAST);
352 
353 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
354 		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
355 		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
356 		return;
357 	}
358 
359 	/* first, zot all the existing hash bits */
360 	CSR_WRITE_4(sc, LGE_MAR0, 0);
361 	CSR_WRITE_4(sc, LGE_MAR1, 0);
362 
363 	/* now program new ones */
364 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
365 		if (ifma->ifma_addr->sa_family != AF_LINK)
366 			continue;
367 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
368 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
369 		if (h < 32)
370 			hashes[0] |= (1 << h);
371 		else
372 			hashes[1] |= (1 << (h - 32));
373 	}
374 
375 	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
376 	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
377 
378 	return;
379 }
380 
381 static void
382 lge_reset(struct lge_softc *sc)
383 {
384 	int i;
385 
386 	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0 | LGE_MODE1_SOFTRST);
387 
388 	for (i = 0; i < LGE_TIMEOUT; i++) {
389 		if ((CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST) == 0)
390 			break;
391 	}
392 
393 	if (i == LGE_TIMEOUT)
394 		kprintf("lge%d: reset never completed\n", sc->lge_unit);
395 
396 	/* Wait a little while for the chip to get its brains in order. */
397 	DELAY(1000);
398 }
399 
400 /*
401  * Probe for a Level 1 chip. Check the PCI vendor and device
402  * IDs against our list and return a device name if we find a match.
403  */
404 static int
405 lge_probe(device_t dev)
406 {
407 	struct lge_type *t;
408 	uint16_t vendor, product;
409 
410 	vendor = pci_get_vendor(dev);
411 	product = pci_get_device(dev);
412 
413 	for (t = lge_devs; t->lge_name != NULL; t++) {
414 		if (vendor == t->lge_vid && product == t->lge_did) {
415 			device_set_desc(dev, t->lge_name);
416 			return(0);
417 		}
418 	}
419 
420 	return(ENXIO);
421 }
422 
423 /*
424  * Attach the interface. Allocate softc structures, do ifmedia
425  * setup and ethernet/BPF attach.
426  */
427 static int
428 lge_attach(device_t dev)
429 {
430 	uint8_t eaddr[ETHER_ADDR_LEN];
431 	struct lge_softc *sc;
432 	struct ifnet *ifp;
433 	int unit, error = 0, rid;
434 
435 	sc = device_get_softc(dev);
436 	unit = device_get_unit(dev);
437 	callout_init(&sc->lge_stat_timer);
438 	lwkt_serialize_init(&sc->lge_jslot_serializer);
439 
440 	/*
441 	 * Handle power management nonsense.
442 	 */
443 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
444 		uint32_t iobase, membase, irq;
445 
446 		/* Save important PCI config data. */
447 		iobase = pci_read_config(dev, LGE_PCI_LOIO, 4);
448 		membase = pci_read_config(dev, LGE_PCI_LOMEM, 4);
449 		irq = pci_read_config(dev, LGE_PCI_INTLINE, 4);
450 
451 		/* Reset the power state. */
452 		device_printf(dev, "chip is in D%d power mode "
453 		"-- setting to D0\n", pci_get_powerstate(dev));
454 
455 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
456 
457 		/* Restore PCI config data. */
458 		pci_write_config(dev, LGE_PCI_LOIO, iobase, 4);
459 		pci_write_config(dev, LGE_PCI_LOMEM, membase, 4);
460 		pci_write_config(dev, LGE_PCI_INTLINE, irq, 4);
461 	}
462 
463 	pci_enable_busmaster(dev);
464 
465 	rid = LGE_RID;
466 	sc->lge_res = bus_alloc_resource_any(dev, LGE_RES, &rid, RF_ACTIVE);
467 
468 	if (sc->lge_res == NULL) {
469 		kprintf("lge%d: couldn't map ports/memory\n", unit);
470 		error = ENXIO;
471 		goto fail;
472 	}
473 
474 	sc->lge_btag = rman_get_bustag(sc->lge_res);
475 	sc->lge_bhandle = rman_get_bushandle(sc->lge_res);
476 
477 	/* Allocate interrupt */
478 	rid = 0;
479 	sc->lge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
480 	    RF_SHAREABLE | RF_ACTIVE);
481 
482 	if (sc->lge_irq == NULL) {
483 		kprintf("lge%d: couldn't map interrupt\n", unit);
484 		error = ENXIO;
485 		goto fail;
486 	}
487 
488 	/* Reset the adapter. */
489 	lge_reset(sc);
490 
491 	/*
492 	 * Get station address from the EEPROM.
493 	 */
494 	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1);
495 	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1);
496 	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1);
497 
498 	sc->lge_unit = unit;
499 
500 	sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF,
501 	    M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
502 
503 	if (sc->lge_ldata == NULL) {
504 		kprintf("lge%d: no memory for list buffers!\n", unit);
505 		error = ENXIO;
506 		goto fail;
507 	}
508 
509 	/* Try to allocate memory for jumbo buffers. */
510 	if (lge_alloc_jumbo_mem(sc)) {
511 		kprintf("lge%d: jumbo buffer allocation failed\n",
512                     sc->lge_unit);
513 		error = ENXIO;
514 		goto fail;
515 	}
516 
517 	ifp = &sc->arpcom.ac_if;
518 	ifp->if_softc = sc;
519 	if_initname(ifp, "lge", unit);
520 	ifp->if_mtu = ETHERMTU;
521 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
522 	ifp->if_ioctl = lge_ioctl;
523 	ifp->if_start = lge_start;
524 	ifp->if_watchdog = lge_watchdog;
525 	ifp->if_init = lge_init;
526 	ifp->if_baudrate = 1000000000;
527 	ifq_set_maxlen(&ifp->if_snd, LGE_TX_LIST_CNT - 1);
528 	ifq_set_ready(&ifp->if_snd);
529 	ifp->if_capabilities = IFCAP_RXCSUM;
530 	ifp->if_capenable = ifp->if_capabilities;
531 
532 	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
533 		sc->lge_pcs = 1;
534 	else
535 		sc->lge_pcs = 0;
536 
537 	/*
538 	 * Do MII setup.
539 	 */
540 	if (mii_phy_probe(dev, &sc->lge_miibus,
541 	    lge_ifmedia_upd, lge_ifmedia_sts)) {
542 		kprintf("lge%d: MII without any PHY!\n", sc->lge_unit);
543 		error = ENXIO;
544 		goto fail;
545 	}
546 
547 	/*
548 	 * Call MI attach routine.
549 	 */
550 	ether_ifattach(ifp, eaddr, NULL);
551 
552 	error = bus_setup_intr(dev, sc->lge_irq, INTR_MPSAFE,
553 			       lge_intr, sc, &sc->lge_intrhand,
554 			       ifp->if_serializer);
555 	if (error) {
556 		ether_ifdetach(ifp);
557 		kprintf("lge%d: couldn't set up irq\n", unit);
558 		goto fail;
559 	}
560 
561 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->lge_irq));
562 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
563 
564 	return(0);
565 
566 fail:
567 	lge_detach(dev);
568 	return(error);
569 }
570 
571 static int
572 lge_detach(device_t dev)
573 {
574 	struct lge_softc *sc= device_get_softc(dev);
575 	struct ifnet *ifp = &sc->arpcom.ac_if;
576 
577 	if (device_is_attached(dev)) {
578 		lwkt_serialize_enter(ifp->if_serializer);
579 		lge_reset(sc);
580 		lge_stop(sc);
581 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
582 		lwkt_serialize_exit(ifp->if_serializer);
583 
584 		ether_ifdetach(ifp);
585 	}
586 
587 	if (sc->lge_miibus)
588 		device_delete_child(dev, sc->lge_miibus);
589 	bus_generic_detach(dev);
590 
591 	if (sc->lge_irq)
592 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
593 	if (sc->lge_res)
594 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
595 
596 	if (sc->lge_ldata)
597 		contigfree(sc->lge_ldata, sizeof(struct lge_list_data),
598 			   M_DEVBUF);
599 	lge_free_jumbo_mem(sc);
600 
601 	return(0);
602 }
603 
604 /*
605  * Initialize the transmit descriptors.
606  */
607 static int
608 lge_list_tx_init(struct lge_softc *sc)
609 {
610 	struct lge_list_data *ld;
611 	struct lge_ring_data *cd;
612 	int i;
613 
614 	cd = &sc->lge_cdata;
615 	ld = sc->lge_ldata;
616 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
617 		ld->lge_tx_list[i].lge_mbuf = NULL;
618 		ld->lge_tx_list[i].lge_ctl = 0;
619 	}
620 
621 	cd->lge_tx_prod = cd->lge_tx_cons = 0;
622 
623 	return(0);
624 }
625 
626 
627 /*
628  * Initialize the RX descriptors and allocate mbufs for them. Note that
629  * we arralge the descriptors in a closed ring, so that the last descriptor
630  * points back to the first.
631  */
632 static int
633 lge_list_rx_init(struct lge_softc *sc)
634 {
635 	struct lge_list_data *ld;
636 	struct lge_ring_data *cd;
637 	int i;
638 
639 	ld = sc->lge_ldata;
640 	cd = &sc->lge_cdata;
641 
642 	cd->lge_rx_prod = cd->lge_rx_cons = 0;
643 
644 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
645 
646 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
647 		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
648 			break;
649 		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
650 			return(ENOBUFS);
651 	}
652 
653 	/* Clear possible 'rx command queue empty' interrupt. */
654 	CSR_READ_4(sc, LGE_ISR);
655 
656 	return(0);
657 }
658 
659 /*
660  * Initialize an RX descriptor and attach an MBUF cluster.
661  */
662 static int
663 lge_newbuf(struct lge_softc *sc, struct lge_rx_desc *c, struct mbuf *m)
664 {
665 	struct mbuf *m_new = NULL;
666 	struct lge_jslot *buf;
667 
668 	if (m == NULL) {
669 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
670 		if (m_new == NULL) {
671 			kprintf("lge%d: no memory for rx list "
672 			    "-- packet dropped!\n", sc->lge_unit);
673 			return(ENOBUFS);
674 		}
675 
676 		/* Allocate the jumbo buffer */
677 		buf = lge_jalloc(sc);
678 		if (buf == NULL) {
679 #ifdef LGE_VERBOSE
680 			kprintf("lge%d: jumbo allocation failed "
681 			    "-- packet dropped!\n", sc->lge_unit);
682 #endif
683 			m_freem(m_new);
684 			return(ENOBUFS);
685 		}
686 		/* Attach the buffer to the mbuf */
687 		m_new->m_ext.ext_arg = buf;
688 		m_new->m_ext.ext_buf = buf->lge_buf;
689 		m_new->m_ext.ext_free = lge_jfree;
690 		m_new->m_ext.ext_ref = lge_jref;
691 		m_new->m_ext.ext_size = LGE_JUMBO_FRAMELEN;
692 
693 		m_new->m_data = m_new->m_ext.ext_buf;
694 		m_new->m_flags |= M_EXT;
695 		m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
696 	} else {
697 		m_new = m;
698 		m_new->m_len = m_new->m_pkthdr.len = LGE_JLEN;
699 		m_new->m_data = m_new->m_ext.ext_buf;
700 	}
701 
702 	/*
703 	 * Adjust alignment so packet payload begins on a
704 	 * longword boundary. Mandatory for Alpha, useful on
705 	 * x86 too.
706 	*/
707 	m_adj(m_new, ETHER_ALIGN);
708 
709 	c->lge_mbuf = m_new;
710 	c->lge_fragptr_hi = 0;
711 	c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t));
712 	c->lge_fraglen = m_new->m_len;
713 	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
714 	c->lge_sts = 0;
715 
716 	/*
717 	 * Put this buffer in the RX command FIFO. To do this,
718 	 * we just write the physical address of the descriptor
719 	 * into the RX descriptor address registers. Note that
720 	 * there are two registers, one high DWORD and one low
721 	 * DWORD, which lets us specify a 64-bit address if
722 	 * desired. We only use a 32-bit address for now.
723 	 * Writing to the low DWORD register is what actually
724 	 * causes the command to be issued, so we do that
725 	 * last.
726 	 */
727 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c));
728 	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
729 
730 	return(0);
731 }
732 
733 static int
734 lge_alloc_jumbo_mem(struct lge_softc *sc)
735 {
736 	struct lge_jslot *entry;
737 	caddr_t ptr;
738 	int i;
739 
740 	/* Grab a big chunk o' storage. */
741 	sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF,
742 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
743 
744 	if (sc->lge_cdata.lge_jumbo_buf == NULL) {
745 		kprintf("lge%d: no memory for jumbo buffers!\n", sc->lge_unit);
746 		return(ENOBUFS);
747 	}
748 
749 	SLIST_INIT(&sc->lge_jfree_listhead);
750 
751 	/*
752 	 * Now divide it up into 9K pieces and save the addresses
753 	 * in an array.
754 	 */
755 	ptr = sc->lge_cdata.lge_jumbo_buf;
756 	for (i = 0; i < LGE_JSLOTS; i++) {
757 		entry = &sc->lge_cdata.lge_jslots[i];
758 		entry->lge_sc = sc;
759 		entry->lge_buf = ptr;
760 		entry->lge_inuse = 0;
761 		entry->lge_slot = i;
762 		SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jslot_link);
763 		ptr += LGE_JLEN;
764 	}
765 
766 	return(0);
767 }
768 
769 static void
770 lge_free_jumbo_mem(struct lge_softc *sc)
771 {
772 	if (sc->lge_cdata.lge_jumbo_buf)
773 		contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF);
774 }
775 
776 /*
777  * Allocate a jumbo buffer.
778  */
779 static struct lge_jslot *
780 lge_jalloc(struct lge_softc *sc)
781 {
782 	struct lge_jslot *entry;
783 
784 	lwkt_serialize_enter(&sc->lge_jslot_serializer);
785 	entry = SLIST_FIRST(&sc->lge_jfree_listhead);
786 	if (entry) {
787 		SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jslot_link);
788 		entry->lge_inuse = 1;
789 	} else {
790 #ifdef LGE_VERBOSE
791 		kprintf("lge%d: no free jumbo buffers\n", sc->lge_unit);
792 #endif
793 	}
794 	lwkt_serialize_exit(&sc->lge_jslot_serializer);
795 	return(entry);
796 }
797 
798 /*
799  * Adjust usage count on a jumbo buffer. In general this doesn't
800  * get used much because our jumbo buffers don't get passed around
801  * a lot, but it's implemented for correctness.
802  */
803 static void
804 lge_jref(void *arg)
805 {
806 	struct lge_jslot *entry = (struct lge_jslot *)arg;
807 	struct lge_softc *sc = entry->lge_sc;
808 
809 	if (&sc->lge_cdata.lge_jslots[entry->lge_slot] != entry)
810 		panic("lge_jref: asked to reference buffer "
811 		    "that we don't manage!");
812 	else if (entry->lge_inuse == 0)
813 		panic("lge_jref: buffer already free!");
814 	else
815 		atomic_add_int(&entry->lge_inuse, 1);
816 }
817 
818 /*
819  * Release a jumbo buffer.
820  */
821 static void
822 lge_jfree(void *arg)
823 {
824 	struct lge_jslot *entry = (struct lge_jslot *)arg;
825 	struct lge_softc *sc = entry->lge_sc;
826 
827 	if (sc == NULL)
828 		panic("lge_jfree: can't find softc pointer!");
829 
830 	if (&sc->lge_cdata.lge_jslots[entry->lge_slot] != entry) {
831 		panic("lge_jfree: asked to free buffer that we don't manage!");
832 	} else if (entry->lge_inuse == 0) {
833 		panic("lge_jfree: buffer already free!");
834 	} else {
835 		lwkt_serialize_enter(&sc->lge_jslot_serializer);
836 		atomic_subtract_int(&entry->lge_inuse, 1);
837 		if (entry->lge_inuse == 0) {
838 			SLIST_INSERT_HEAD(&sc->lge_jfree_listhead,
839 					  entry, jslot_link);
840 		}
841 		lwkt_serialize_exit(&sc->lge_jslot_serializer);
842 	}
843 }
844 
845 /*
846  * A frame has been uploaded: pass the resulting mbuf chain up to
847  * the higher level protocols.
848  */
849 static void
850 lge_rxeof(struct lge_softc *sc, int cnt)
851 {
852         struct ifnet *ifp = &sc->arpcom.ac_if;
853         struct mbuf *m;
854 	struct lge_rx_desc *cur_rx;
855 	int c, i, total_len = 0;
856 	uint32_t rxsts, rxctl;
857 
858 
859 	/* Find out how many frames were processed. */
860 	c = cnt;
861 	i = sc->lge_cdata.lge_rx_cons;
862 
863 	/* Suck them in. */
864 	while(c) {
865 		struct mbuf *m0 = NULL;
866 
867 		cur_rx = &sc->lge_ldata->lge_rx_list[i];
868 		rxctl = cur_rx->lge_ctl;
869 		rxsts = cur_rx->lge_sts;
870 		m = cur_rx->lge_mbuf;
871 		cur_rx->lge_mbuf = NULL;
872 		total_len = LGE_RXBYTES(cur_rx);
873 		LGE_INC(i, LGE_RX_LIST_CNT);
874 		c--;
875 
876 		/*
877 		 * If an error occurs, update stats, clear the
878 		 * status word and leave the mbuf cluster in place:
879 		 * it should simply get re-used next time this descriptor
880 	 	 * comes up in the ring.
881 		 */
882 		if (rxctl & LGE_RXCTL_ERRMASK) {
883 			ifp->if_ierrors++;
884 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
885 			continue;
886 		}
887 
888 		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
889 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
890 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
891 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
892 			if (m0 == NULL) {
893 				kprintf("lge%d: no receive buffers "
894 				    "available -- packet dropped!\n",
895 				    sc->lge_unit);
896 				ifp->if_ierrors++;
897 				continue;
898 			}
899 			m_adj(m0, ETHER_ALIGN);
900 			m = m0;
901 		} else {
902 			m->m_pkthdr.rcvif = ifp;
903 			m->m_pkthdr.len = m->m_len = total_len;
904 		}
905 
906 		ifp->if_ipackets++;
907 
908 		/* Do IP checksum checking. */
909 		if (rxsts & LGE_RXSTS_ISIP)
910 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
911 		if (!(rxsts & LGE_RXSTS_IPCSUMERR))
912 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
913 		if ((rxsts & LGE_RXSTS_ISTCP &&
914 		    !(rxsts & LGE_RXSTS_TCPCSUMERR)) ||
915 		    (rxsts & LGE_RXSTS_ISUDP &&
916 		    !(rxsts & LGE_RXSTS_UDPCSUMERR))) {
917 			m->m_pkthdr.csum_flags |=
918 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
919 			    CSUM_FRAG_NOT_CHECKED;
920 			m->m_pkthdr.csum_data = 0xffff;
921 		}
922 
923 		ifp->if_input(ifp, m);
924 	}
925 
926 	sc->lge_cdata.lge_rx_cons = i;
927 }
928 
929 static void
930 lge_rxeoc(struct lge_softc *sc)
931 {
932 	struct ifnet *ifp = &sc->arpcom.ac_if;
933 
934 	ifp->if_flags &= ~IFF_RUNNING;
935 	lge_init(sc);
936 }
937 
938 /*
939  * A frame was downloaded to the chip. It's safe for us to clean up
940  * the list buffers.
941  */
942 static void
943 lge_txeof(struct lge_softc *sc)
944 {
945 	struct ifnet *ifp = &sc->arpcom.ac_if;
946 	struct lge_tx_desc *cur_tx = NULL;
947 	uint32_t idx, txdone;
948 
949 	/* Clear the timeout timer. */
950 	ifp->if_timer = 0;
951 
952 	/*
953 	 * Go through our tx list and free mbufs for those
954 	 * frames that have been transmitted.
955 	 */
956 	idx = sc->lge_cdata.lge_tx_cons;
957 	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
958 
959 	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
960 		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
961 
962 		ifp->if_opackets++;
963 		if (cur_tx->lge_mbuf != NULL) {
964 			m_freem(cur_tx->lge_mbuf);
965 			cur_tx->lge_mbuf = NULL;
966 		}
967 		cur_tx->lge_ctl = 0;
968 
969 		txdone--;
970 		LGE_INC(idx, LGE_TX_LIST_CNT);
971 		ifp->if_timer = 0;
972 	}
973 
974 	sc->lge_cdata.lge_tx_cons = idx;
975 
976 	if (cur_tx != NULL)
977 		ifp->if_flags &= ~IFF_OACTIVE;
978 }
979 
980 static void
981 lge_tick(void *xsc)
982 {
983 	struct lge_softc *sc = xsc;
984 	struct ifnet *ifp = &sc->arpcom.ac_if;
985 
986 	lwkt_serialize_enter(ifp->if_serializer);
987 	lge_tick_serialized(xsc);
988 	lwkt_serialize_exit(ifp->if_serializer);
989 }
990 
991 static void
992 lge_tick_serialized(void *xsc)
993 {
994 	struct lge_softc *sc = xsc;
995 	struct mii_data *mii;
996 	struct ifnet *ifp = &sc->arpcom.ac_if;
997 
998 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
999 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1000 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
1001 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1002 
1003 	if (!sc->lge_link) {
1004 		mii = device_get_softc(sc->lge_miibus);
1005 		mii_tick(mii);
1006 		mii_pollstat(mii);
1007 		if (mii->mii_media_status & IFM_ACTIVE &&
1008 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1009 			sc->lge_link++;
1010 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX||
1011 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
1012 				kprintf("lge%d: gigabit link up\n",
1013 				    sc->lge_unit);
1014 			if (!ifq_is_empty(&ifp->if_snd))
1015 				if_devstart(ifp);
1016 		}
1017 	}
1018 
1019 	callout_reset(&sc->lge_stat_timer, hz, lge_tick, sc);
1020 }
1021 
1022 static void
1023 lge_intr(void *arg)
1024 {
1025 	struct lge_softc *sc = arg;
1026 	struct ifnet *ifp = &sc->arpcom.ac_if;
1027 	uint32_t status;
1028 
1029 	/* Supress unwanted interrupts */
1030 	if ((ifp->if_flags & IFF_UP) == 0) {
1031 		lge_stop(sc);
1032 		return;
1033 	}
1034 
1035 	for (;;) {
1036 		/*
1037 		 * Reading the ISR register clears all interrupts, and
1038 		 * clears the 'interrupts enabled' bit in the IMR
1039 		 * register.
1040 		 */
1041 		status = CSR_READ_4(sc, LGE_ISR);
1042 
1043 		if ((status & LGE_INTRS) == 0)
1044 			break;
1045 
1046 		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
1047 			lge_txeof(sc);
1048 
1049 		if (status & LGE_ISR_RXDMA_DONE)
1050 			lge_rxeof(sc, LGE_RX_DMACNT(status));
1051 
1052 		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
1053 			lge_rxeoc(sc);
1054 
1055 		if (status & LGE_ISR_PHY_INTR) {
1056 			sc->lge_link = 0;
1057 			callout_stop(&sc->lge_stat_timer);
1058 			lge_tick_serialized(sc);
1059 		}
1060 	}
1061 
1062 	/* Re-enable interrupts. */
1063 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
1064 
1065 	if (!ifq_is_empty(&ifp->if_snd))
1066 		if_devstart(ifp);
1067 }
1068 
1069 /*
1070  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1071  * pointers to the fragment pointers.
1072  */
1073 static int
1074 lge_encap(struct lge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
1075 {
1076 	struct lge_frag *f = NULL;
1077 	struct lge_tx_desc *cur_tx;
1078 	struct mbuf *m;
1079 	int frag = 0, tot_len = 0;
1080 
1081 	/*
1082  	 * Start packing the mbufs in this chain into
1083 	 * the fragment pointers. Stop when we run out
1084  	 * of fragments or hit the end of the mbuf chain.
1085 	 */
1086 	m = m_head;
1087 	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
1088 	frag = 0;
1089 
1090 	for (m = m_head; m != NULL; m = m->m_next) {
1091 		if (m->m_len != 0) {
1092 			if (frag == LGE_FRAG_CNT)
1093 				break;
1094 
1095 			tot_len += m->m_len;
1096 			f = &cur_tx->lge_frags[frag];
1097 			f->lge_fraglen = m->m_len;
1098 			f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t));
1099 			f->lge_fragptr_hi = 0;
1100 			frag++;
1101 		}
1102 	}
1103 	/* Caller should make sure that 'm_head' is not excessive fragmented */
1104 	KASSERT(m == NULL, ("too many fragments\n"));
1105 
1106 	cur_tx->lge_mbuf = m_head;
1107 	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
1108 	LGE_INC((*txidx), LGE_TX_LIST_CNT);
1109 
1110 	/* Queue for transmit */
1111 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx));
1112 
1113 	return(0);
1114 }
1115 
1116 /*
1117  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1118  * to the mbuf data regions directly in the transmit lists. We also save a
1119  * copy of the pointers since the transmit list fragment pointers are
1120  * physical addresses.
1121  */
1122 
1123 static void
1124 lge_start(struct ifnet *ifp)
1125 {
1126 	struct lge_softc *sc = ifp->if_softc;
1127 	struct mbuf *m_head = NULL, *m_defragged;
1128 	uint32_t idx;
1129 	int need_timer;
1130 
1131 	if (!sc->lge_link) {
1132 		ifq_purge(&ifp->if_snd);
1133 		return;
1134 	}
1135 
1136 	idx = sc->lge_cdata.lge_tx_prod;
1137 
1138 	if (ifp->if_flags & IFF_OACTIVE)
1139 		return;
1140 
1141 	need_timer = 0;
1142 	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
1143 		struct mbuf *m;
1144 		int frags;
1145 
1146 		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0) {
1147 			ifp->if_flags |= IFF_OACTIVE;
1148 			break;
1149 		}
1150 
1151 		m_defragged = NULL;
1152 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1153 		if (m_head == NULL)
1154 			break;
1155 
1156 again:
1157 		frags = 0;
1158 		for (m = m_head; m != NULL; m = m->m_next)
1159 			++frags;
1160 		if (frags > LGE_FRAG_CNT) {
1161 			if (m_defragged != NULL) {
1162 				/*
1163 				 * Even after defragmentation, there
1164 				 * are still too many fragments, so
1165 				 * drop this packet.
1166 				 */
1167 				m_freem(m_head);
1168 				continue;
1169 			}
1170 
1171 			m_defragged = m_defrag(m_head, MB_DONTWAIT);
1172 			if (m_defragged == NULL) {
1173 				m_freem(m_head);
1174 				continue;
1175 			}
1176 			m_head = m_defragged;
1177 
1178 			/* Recount # of fragments */
1179 			goto again;
1180 		}
1181 
1182 		lge_encap(sc, m_head, &idx);
1183 		need_timer = 1;
1184 
1185 		BPF_MTAP(ifp, m_head);
1186 	}
1187 
1188 	if (!need_timer)
1189 		return;
1190 
1191 	sc->lge_cdata.lge_tx_prod = idx;
1192 
1193 	/*
1194 	 * Set a timeout in case the chip goes out to lunch.
1195 	 */
1196 	ifp->if_timer = 5;
1197 }
1198 
1199 static void
1200 lge_init(void *xsc)
1201 {
1202 	struct lge_softc *sc = xsc;
1203 	struct ifnet *ifp = &sc->arpcom.ac_if;
1204 	struct mii_data *mii;
1205 
1206 	if (ifp->if_flags & IFF_RUNNING)
1207 		return;
1208 
1209 	/*
1210 	 * Cancel pending I/O and free all RX/TX buffers.
1211 	 */
1212 	lge_stop(sc);
1213 	lge_reset(sc);
1214 
1215 	mii = device_get_softc(sc->lge_miibus);
1216 
1217 	/* Set MAC address */
1218 	CSR_WRITE_4(sc, LGE_PAR0, *(uint32_t *)(&sc->arpcom.ac_enaddr[0]));
1219 	CSR_WRITE_4(sc, LGE_PAR1, *(uint32_t *)(&sc->arpcom.ac_enaddr[4]));
1220 
1221 	/* Init circular RX list. */
1222 	if (lge_list_rx_init(sc) == ENOBUFS) {
1223 		kprintf("lge%d: initialization failed: no "
1224 		    "memory for rx buffers\n", sc->lge_unit);
1225 		lge_stop(sc);
1226 		return;
1227 	}
1228 
1229 	/*
1230 	 * Init tx descriptors.
1231 	 */
1232 	lge_list_tx_init(sc);
1233 
1234 	/* Set initial value for MODE1 register. */
1235 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST |
1236 	    LGE_MODE1_TX_CRC | LGE_MODE1_TXPAD |
1237 	    LGE_MODE1_RX_FLOWCTL | LGE_MODE1_SETRST_CTL0 |
1238 	    LGE_MODE1_SETRST_CTL1 | LGE_MODE1_SETRST_CTL2);
1239 
1240 	 /* If we want promiscuous mode, set the allframes bit. */
1241 	if (ifp->if_flags & IFF_PROMISC) {
1242 		CSR_WRITE_4(sc, LGE_MODE1,
1243 		    LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_PROMISC);
1244 	} else {
1245 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1246 	}
1247 
1248 	/*
1249 	 * Set the capture broadcast bit to capture broadcast frames.
1250 	 */
1251 	if (ifp->if_flags & IFF_BROADCAST) {
1252 		CSR_WRITE_4(sc, LGE_MODE1,
1253 		    LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_BCAST);
1254 	} else {
1255 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1256 	}
1257 
1258 	/* Packet padding workaround? */
1259 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1260 
1261 	/* No error frames */
1262 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1263 
1264 	/* Receive large frames */
1265 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_GIANTS);
1266 
1267 	/* Workaround: disable RX/TX flow control */
1268 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1269 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1270 
1271 	/* Make sure to strip CRC from received frames */
1272 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1273 
1274 	/* Turn off magic packet mode */
1275 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1276 
1277 	/* Turn off all VLAN stuff */
1278 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX | LGE_MODE1_VLAN_TX |
1279 	    LGE_MODE1_VLAN_STRIP | LGE_MODE1_VLAN_INSERT);
1280 
1281 	/* Workarond: FIFO overflow */
1282 	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1283 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1284 
1285 	/*
1286 	 * Load the multicast filter.
1287 	 */
1288 	lge_setmulti(sc);
1289 
1290 	/*
1291 	 * Enable hardware checksum validation for all received IPv4
1292 	 * packets, do not reject packets with bad checksums.
1293 	 */
1294 	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM |
1295 	    LGE_MODE2_RX_TCPCSUM | LGE_MODE2_RX_UDPCSUM |
1296 	    LGE_MODE2_RX_ERRCSUM);
1297 
1298 	/*
1299 	 * Enable the delivery of PHY interrupts based on
1300 	 * link/speed/duplex status chalges.
1301 	 */
1302 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0 | LGE_MODE1_GMIIPOLL);
1303 
1304 	/* Enable receiver and transmitter. */
1305 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1306 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_ENB);
1307 
1308 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1309 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_TX_ENB);
1310 
1311 	/*
1312 	 * Enable interrupts.
1313 	 */
1314 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0 |
1315 	    LGE_IMR_SETRST_CTL1 | LGE_IMR_INTR_ENB|LGE_INTRS);
1316 
1317 	lge_ifmedia_upd(ifp);
1318 
1319 	ifp->if_flags |= IFF_RUNNING;
1320 	ifp->if_flags &= ~IFF_OACTIVE;
1321 
1322 	callout_reset(&sc->lge_stat_timer, hz, lge_tick, sc);
1323 }
1324 
1325 /*
1326  * Set media options.
1327  */
1328 static int
1329 lge_ifmedia_upd(struct ifnet *ifp)
1330 {
1331 	struct lge_softc *sc = ifp->if_softc;
1332 	struct mii_data *mii = device_get_softc(sc->lge_miibus);
1333 
1334 	sc->lge_link = 0;
1335 	if (mii->mii_instance) {
1336 		struct mii_softc *miisc;
1337 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1338 			mii_phy_reset(miisc);
1339 	}
1340 	mii_mediachg(mii);
1341 
1342 	return(0);
1343 }
1344 
1345 /*
1346  * Report current media status.
1347  */
1348 static void
1349 lge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1350 {
1351 	struct lge_softc *sc = ifp->if_softc;
1352 	struct mii_data *mii;
1353 
1354 	mii = device_get_softc(sc->lge_miibus);
1355 	mii_pollstat(mii);
1356 	ifmr->ifm_active = mii->mii_media_active;
1357 	ifmr->ifm_status = mii->mii_media_status;
1358 }
1359 
1360 static int
1361 lge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1362 {
1363 	struct lge_softc *sc = ifp->if_softc;
1364 	struct ifreq *ifr = (struct ifreq *) data;
1365 	struct mii_data	 *mii;
1366 	int error = 0;
1367 
1368 	switch(command) {
1369 	case SIOCSIFMTU:
1370 		if (ifr->ifr_mtu > LGE_JUMBO_MTU)
1371 			error = EINVAL;
1372 		else
1373 			ifp->if_mtu = ifr->ifr_mtu;
1374 		break;
1375 	case SIOCSIFFLAGS:
1376 		if (ifp->if_flags & IFF_UP) {
1377 			if (ifp->if_flags & IFF_RUNNING &&
1378 			    ifp->if_flags & IFF_PROMISC &&
1379 			    !(sc->lge_if_flags & IFF_PROMISC)) {
1380 				CSR_WRITE_4(sc, LGE_MODE1,
1381 				    LGE_MODE1_SETRST_CTL1|
1382 				    LGE_MODE1_RX_PROMISC);
1383 			} else if (ifp->if_flags & IFF_RUNNING &&
1384 			    !(ifp->if_flags & IFF_PROMISC) &&
1385 			    sc->lge_if_flags & IFF_PROMISC) {
1386 				CSR_WRITE_4(sc, LGE_MODE1,
1387 				    LGE_MODE1_RX_PROMISC);
1388 			} else {
1389 				ifp->if_flags &= ~IFF_RUNNING;
1390 				lge_init(sc);
1391 			}
1392 		} else {
1393 			if (ifp->if_flags & IFF_RUNNING)
1394 				lge_stop(sc);
1395 		}
1396 		sc->lge_if_flags = ifp->if_flags;
1397 		error = 0;
1398 		break;
1399 	case SIOCADDMULTI:
1400 	case SIOCDELMULTI:
1401 		lge_setmulti(sc);
1402 		error = 0;
1403 		break;
1404 	case SIOCGIFMEDIA:
1405 	case SIOCSIFMEDIA:
1406 		mii = device_get_softc(sc->lge_miibus);
1407 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1408 		break;
1409 	default:
1410 		error = ether_ioctl(ifp, command, data);
1411 		break;
1412 	}
1413 
1414 	return(error);
1415 }
1416 
1417 static void
1418 lge_watchdog(struct ifnet *ifp)
1419 {
1420 	struct lge_softc *sc = ifp->if_softc;
1421 
1422 	ifp->if_oerrors++;
1423 	kprintf("lge%d: watchdog timeout\n", sc->lge_unit);
1424 
1425 	lge_stop(sc);
1426 	lge_reset(sc);
1427 	ifp->if_flags &= ~IFF_RUNNING;
1428 	lge_init(sc);
1429 
1430 	if (!ifq_is_empty(&ifp->if_snd))
1431 		if_devstart(ifp);
1432 }
1433 
1434 /*
1435  * Stop the adapter and free any mbufs allocated to the
1436  * RX and TX lists.
1437  */
1438 static void
1439 lge_stop(struct lge_softc *sc)
1440 {
1441 	struct ifnet *ifp = &sc->arpcom.ac_if;
1442 	int i;
1443 
1444 	ifp->if_timer = 0;
1445 	callout_stop(&sc->lge_stat_timer);
1446 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1447 
1448 	/* Disable receiver and transmitter. */
1449 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1450 	sc->lge_link = 0;
1451 
1452 	/*
1453 	 * Free data in the RX lists.
1454 	 */
1455 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1456 		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1457 			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1458 			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1459 		}
1460 	}
1461 	bzero(&sc->lge_ldata->lge_rx_list, sizeof(sc->lge_ldata->lge_rx_list));
1462 
1463 	/*
1464 	 * Free the TX list buffers.
1465 	 */
1466 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1467 		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1468 			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1469 			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1470 		}
1471 	}
1472 
1473 	bzero(&sc->lge_ldata->lge_tx_list, sizeof(sc->lge_ldata->lge_tx_list));
1474 
1475 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1476 }
1477 
1478 /*
1479  * Stop all chip I/O so that the kernel's probe routines don't
1480  * get confused by errant DMAs when rebooting.
1481  */
1482 static void
1483 lge_shutdown(device_t dev)
1484 {
1485 	struct lge_softc *sc = device_get_softc(dev);
1486 
1487 	lge_reset(sc);
1488 	lge_stop(sc);
1489 }
1490