xref: /dragonfly/sys/dev/netif/lge/if_lge.c (revision fb151170)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/lge/if_lge.c,v 1.5.2.2 2001/12/14 19:49:23 jlemon Exp $
34  */
35 
36 /*
37  * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
38  * documentation not available, but ask me nicely.
39  *
40  * Written by Bill Paul <william.paul@windriver.com>
41  * Wind River Systems
42  */
43 
44 /*
45  * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
46  * It's a 64-bit PCI part that supports TCP/IP checksum offload,
47  * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
48  * are three supported methods for data transfer between host and
49  * NIC: programmed I/O, traditional scatter/gather DMA and Packet
50  * Propulsion Technology (tm) DMA. The latter mechanism is a form
51  * of double buffer DMA where the packet data is copied to a
52  * pre-allocated DMA buffer who's physical address has been loaded
53  * into a table at device initialization time. The rationale is that
54  * the virtual to physical address translation needed for normal
55  * scatter/gather DMA is more expensive than the data copy needed
56  * for double buffering. This may be true in Windows NT and the like,
57  * but it isn't true for us, at least on the x86 arch. This driver
58  * uses the scatter/gather I/O method for both TX and RX.
59  *
60  * The LXT1001 only supports TCP/IP checksum offload on receive.
61  * Also, the VLAN tagging is done using a 16-entry table which allows
62  * the chip to perform hardware filtering based on VLAN tags. Sadly,
63  * our vlan support doesn't currently play well with this kind of
64  * hardware support.
65  *
66  * Special thanks to:
67  * - Jeff James at Intel, for arranging to have the LXT1001 manual
68  *   released (at long last)
69  * - Beny Chen at D-Link, for actually sending it to me
70  * - Brad Short and Keith Alexis at SMC, for sending me sample
71  *   SMC9462SX and SMC9462TX adapters for testing
72  * - Paul Saab at Y!, for not killing me (though it remains to be seen
73  *   if in fact he did me much of a favor)
74  */
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/sockio.h>
79 #include <sys/mbuf.h>
80 #include <sys/malloc.h>
81 #include <sys/kernel.h>
82 #include <sys/interrupt.h>
83 #include <sys/socket.h>
84 #include <sys/serialize.h>
85 #include <sys/thread2.h>
86 
87 #include <net/if.h>
88 #include <net/ifq_var.h>
89 #include <net/if_arp.h>
90 #include <net/ethernet.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 
94 #include <net/bpf.h>
95 
96 #include <vm/vm.h>              /* for vtophys */
97 #include <vm/pmap.h>            /* for vtophys */
98 #include <sys/bus.h>
99 #include <sys/rman.h>
100 
101 #include <dev/netif/mii_layer/mii.h>
102 #include <dev/netif/mii_layer/miivar.h>
103 
104 #include <bus/pci/pcidevs.h>
105 #include <bus/pci/pcireg.h>
106 #include <bus/pci/pcivar.h>
107 
108 #define LGE_USEIOSPACE
109 
110 #include "if_lgereg.h"
111 
112 /* "controller miibus0" required.  See GENERIC if you get errors here. */
113 #include "miibus_if.h"
114 
115 /*
116  * Various supported device vendors/types and their names.
117  */
118 static struct lge_type lge_devs[] = {
119 	{ PCI_VENDOR_LEVELONE, PCI_PRODUCT_LEVELONE_LXT1001,
120 	    "Level 1 Gigabit Ethernet" },
121 	{ 0, 0, NULL }
122 };
123 
124 static int	lge_probe(device_t);
125 static int	lge_attach(device_t);
126 static int	lge_detach(device_t);
127 
128 static int	lge_alloc_jumbo_mem(struct lge_softc *);
129 static void	lge_free_jumbo_mem(struct lge_softc *);
130 static struct lge_jslot
131 		*lge_jalloc(struct lge_softc *);
132 static void	lge_jfree(void *);
133 static void	lge_jref(void *);
134 
135 static int	lge_newbuf(struct lge_softc *, struct lge_rx_desc *,
136 			   struct mbuf *);
137 static int	lge_encap(struct lge_softc *, struct mbuf *, uint32_t *);
138 static void	lge_rxeof(struct lge_softc *, int);
139 static void	lge_rxeoc(struct lge_softc *);
140 static void	lge_txeof(struct lge_softc *);
141 static void	lge_intr(void *);
142 static void	lge_tick(void *);
143 static void	lge_tick_serialized(void *);
144 static void	lge_start(struct ifnet *);
145 static int	lge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
146 static void	lge_init(void *);
147 static void	lge_stop(struct lge_softc *);
148 static void	lge_watchdog(struct ifnet *);
149 static void	lge_shutdown(device_t);
150 static int	lge_ifmedia_upd(struct ifnet *);
151 static void	lge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
152 
153 static void	lge_eeprom_getword(struct lge_softc *, int, uint16_t *);
154 static void	lge_read_eeprom(struct lge_softc *, caddr_t, int, int);
155 
156 static int	lge_miibus_readreg(device_t, int, int);
157 static int	lge_miibus_writereg(device_t, int, int, int);
158 static void	lge_miibus_statchg(device_t);
159 
160 static void	lge_setmulti(struct lge_softc *);
161 static void	lge_reset(struct lge_softc *);
162 static int	lge_list_rx_init(struct lge_softc *);
163 static int	lge_list_tx_init(struct lge_softc *);
164 
165 #ifdef LGE_USEIOSPACE
166 #define LGE_RES			SYS_RES_IOPORT
167 #define LGE_RID			LGE_PCI_LOIO
168 #else
169 #define LGE_RES			SYS_RES_MEMORY
170 #define LGE_RID			LGE_PCI_LOMEM
171 #endif
172 
173 static device_method_t lge_methods[] = {
174 	/* Device interface */
175 	DEVMETHOD(device_probe,		lge_probe),
176 	DEVMETHOD(device_attach,	lge_attach),
177 	DEVMETHOD(device_detach,	lge_detach),
178 	DEVMETHOD(device_shutdown,	lge_shutdown),
179 
180 	/* bus interface */
181 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
182 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
183 
184 	/* MII interface */
185 	DEVMETHOD(miibus_readreg,	lge_miibus_readreg),
186 	DEVMETHOD(miibus_writereg,	lge_miibus_writereg),
187 	DEVMETHOD(miibus_statchg,	lge_miibus_statchg),
188 
189 	{ 0, 0 }
190 };
191 
192 static DEFINE_CLASS_0(lge, lge_driver, lge_methods, sizeof(struct lge_softc));
193 static devclass_t lge_devclass;
194 
195 DECLARE_DUMMY_MODULE(if_lge);
196 DRIVER_MODULE(if_lge, pci, lge_driver, lge_devclass, NULL, NULL);
197 DRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, NULL, NULL);
198 
199 #define LGE_SETBIT(sc, reg, x)				\
200 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
201 
202 #define LGE_CLRBIT(sc, reg, x)				\
203 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
204 
205 #define SIO_SET(x)					\
206 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | (x))
207 
208 #define SIO_CLR(x)					\
209 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~(x))
210 
211 /*
212  * Read a word of data stored in the EEPROM at address 'addr.'
213  */
214 static void
215 lge_eeprom_getword(struct lge_softc *sc, int addr, uint16_t *dest)
216 {
217 	int i;
218 	uint32_t val;
219 
220 	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
221 	    LGE_EECTL_SINGLEACCESS | ((addr >> 1) << 8));
222 
223 	for (i = 0; i < LGE_TIMEOUT; i++) {
224 		if ((CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ) == 0)
225 			break;
226 	}
227 
228 	if (i == LGE_TIMEOUT) {
229 		kprintf("lge%d: EEPROM read timed out\n", sc->lge_unit);
230 		return;
231 	}
232 
233 	val = CSR_READ_4(sc, LGE_EEDATA);
234 
235 	if (addr & 1)
236 		*dest = (val >> 16) & 0xFFFF;
237 	else
238 		*dest = val & 0xFFFF;
239 }
240 
241 /*
242  * Read a sequence of words from the EEPROM.
243  */
244 static void
245 lge_read_eeprom(struct lge_softc *sc, caddr_t dest, int off, int cnt)
246 {
247 	int i;
248 	uint16_t word = 0, *ptr;
249 
250 	for (i = 0; i < cnt; i++) {
251 		lge_eeprom_getword(sc, off + i, &word);
252 		ptr = (uint16_t *)(dest + (i * 2));
253 		*ptr = ntohs(word);
254 	}
255 }
256 
257 static int
258 lge_miibus_readreg(device_t dev, int phy, int reg)
259 {
260 	struct lge_softc *sc = device_get_softc(dev);
261 	int i;
262 
263 	/*
264 	 * If we have a non-PCS PHY, pretend that the internal
265 	 * autoneg stuff at PHY address 0 isn't there so that
266 	 * the miibus code will find only the GMII PHY.
267 	 */
268 	if (sc->lge_pcs == 0 && phy == 0)
269 		return(0);
270 
271 	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
272 
273 	for (i = 0; i < LGE_TIMEOUT; i++) {
274 		if ((CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY) == 0)
275 			break;
276 	}
277 
278 	if (i == LGE_TIMEOUT) {
279 		kprintf("lge%d: PHY read timed out\n", sc->lge_unit);
280 		return(0);
281 	}
282 
283 	return(CSR_READ_4(sc, LGE_GMIICTL) >> 16);
284 }
285 
286 static int
287 lge_miibus_writereg(device_t dev, int phy, int reg, int data)
288 {
289 	struct lge_softc *sc = device_get_softc(dev);
290 	int i;
291 
292 	CSR_WRITE_4(sc, LGE_GMIICTL,
293 	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
294 
295 	for (i = 0; i < LGE_TIMEOUT; i++) {
296 		if ((CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY) == 0)
297 			break;
298 	}
299 
300 	if (i == LGE_TIMEOUT) {
301 		kprintf("lge%d: PHY write timed out\n", sc->lge_unit);
302 		return(0);
303 	}
304 
305 	return(0);
306 }
307 
308 static void
309 lge_miibus_statchg(device_t dev)
310 {
311 	struct lge_softc *sc = device_get_softc(dev);
312 	struct mii_data *mii = device_get_softc(sc->lge_miibus);
313 
314 	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
315 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
316 	case IFM_1000_T:
317 	case IFM_1000_SX:
318 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
319 		break;
320 	case IFM_100_TX:
321 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
322 		break;
323 	case IFM_10_T:
324 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
325 		break;
326 	default:
327 		/*
328 		 * Choose something, even if it's wrong. Clearing
329 		 * all the bits will hose autoneg on the internal
330 		 * PHY.
331 		 */
332 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
333 		break;
334 	}
335 
336 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
337 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
338 	else
339 		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
340 }
341 
342 static void
343 lge_setmulti(struct lge_softc *sc)
344 {
345 	struct ifnet *ifp = &sc->arpcom.ac_if;
346 	struct ifmultiaddr *ifma;
347 	uint32_t h = 0, hashes[2] = { 0, 0 };
348 
349 	/* Make sure multicast hash table is enabled. */
350 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_MCAST);
351 
352 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
353 		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
354 		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
355 		return;
356 	}
357 
358 	/* first, zot all the existing hash bits */
359 	CSR_WRITE_4(sc, LGE_MAR0, 0);
360 	CSR_WRITE_4(sc, LGE_MAR1, 0);
361 
362 	/* now program new ones */
363 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
364 		if (ifma->ifma_addr->sa_family != AF_LINK)
365 			continue;
366 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
367 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
368 		if (h < 32)
369 			hashes[0] |= (1 << h);
370 		else
371 			hashes[1] |= (1 << (h - 32));
372 	}
373 
374 	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
375 	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
376 
377 	return;
378 }
379 
380 static void
381 lge_reset(struct lge_softc *sc)
382 {
383 	int i;
384 
385 	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0 | LGE_MODE1_SOFTRST);
386 
387 	for (i = 0; i < LGE_TIMEOUT; i++) {
388 		if ((CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST) == 0)
389 			break;
390 	}
391 
392 	if (i == LGE_TIMEOUT)
393 		kprintf("lge%d: reset never completed\n", sc->lge_unit);
394 
395 	/* Wait a little while for the chip to get its brains in order. */
396 	DELAY(1000);
397 }
398 
399 /*
400  * Probe for a Level 1 chip. Check the PCI vendor and device
401  * IDs against our list and return a device name if we find a match.
402  */
403 static int
404 lge_probe(device_t dev)
405 {
406 	struct lge_type *t;
407 	uint16_t vendor, product;
408 
409 	vendor = pci_get_vendor(dev);
410 	product = pci_get_device(dev);
411 
412 	for (t = lge_devs; t->lge_name != NULL; t++) {
413 		if (vendor == t->lge_vid && product == t->lge_did) {
414 			device_set_desc(dev, t->lge_name);
415 			return(0);
416 		}
417 	}
418 
419 	return(ENXIO);
420 }
421 
422 /*
423  * Attach the interface. Allocate softc structures, do ifmedia
424  * setup and ethernet/BPF attach.
425  */
426 static int
427 lge_attach(device_t dev)
428 {
429 	uint8_t eaddr[ETHER_ADDR_LEN];
430 	struct lge_softc *sc;
431 	struct ifnet *ifp;
432 	int unit, error = 0, rid;
433 
434 	sc = device_get_softc(dev);
435 	unit = device_get_unit(dev);
436 	callout_init(&sc->lge_stat_timer);
437 	lwkt_serialize_init(&sc->lge_jslot_serializer);
438 
439 	/*
440 	 * Handle power management nonsense.
441 	 */
442 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
443 		uint32_t iobase, membase, irq;
444 
445 		/* Save important PCI config data. */
446 		iobase = pci_read_config(dev, LGE_PCI_LOIO, 4);
447 		membase = pci_read_config(dev, LGE_PCI_LOMEM, 4);
448 		irq = pci_read_config(dev, LGE_PCI_INTLINE, 4);
449 
450 		/* Reset the power state. */
451 		device_printf(dev, "chip is in D%d power mode "
452 		"-- setting to D0\n", pci_get_powerstate(dev));
453 
454 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
455 
456 		/* Restore PCI config data. */
457 		pci_write_config(dev, LGE_PCI_LOIO, iobase, 4);
458 		pci_write_config(dev, LGE_PCI_LOMEM, membase, 4);
459 		pci_write_config(dev, LGE_PCI_INTLINE, irq, 4);
460 	}
461 
462 	pci_enable_busmaster(dev);
463 
464 	rid = LGE_RID;
465 	sc->lge_res = bus_alloc_resource_any(dev, LGE_RES, &rid, RF_ACTIVE);
466 
467 	if (sc->lge_res == NULL) {
468 		kprintf("lge%d: couldn't map ports/memory\n", unit);
469 		error = ENXIO;
470 		goto fail;
471 	}
472 
473 	sc->lge_btag = rman_get_bustag(sc->lge_res);
474 	sc->lge_bhandle = rman_get_bushandle(sc->lge_res);
475 
476 	/* Allocate interrupt */
477 	rid = 0;
478 	sc->lge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
479 	    RF_SHAREABLE | RF_ACTIVE);
480 
481 	if (sc->lge_irq == NULL) {
482 		kprintf("lge%d: couldn't map interrupt\n", unit);
483 		error = ENXIO;
484 		goto fail;
485 	}
486 
487 	/* Reset the adapter. */
488 	lge_reset(sc);
489 
490 	/*
491 	 * Get station address from the EEPROM.
492 	 */
493 	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1);
494 	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1);
495 	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1);
496 
497 	sc->lge_unit = unit;
498 
499 	sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF,
500 	    M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
501 
502 	if (sc->lge_ldata == NULL) {
503 		kprintf("lge%d: no memory for list buffers!\n", unit);
504 		error = ENXIO;
505 		goto fail;
506 	}
507 
508 	/* Try to allocate memory for jumbo buffers. */
509 	if (lge_alloc_jumbo_mem(sc)) {
510 		kprintf("lge%d: jumbo buffer allocation failed\n",
511                     sc->lge_unit);
512 		error = ENXIO;
513 		goto fail;
514 	}
515 
516 	ifp = &sc->arpcom.ac_if;
517 	ifp->if_softc = sc;
518 	if_initname(ifp, "lge", unit);
519 	ifp->if_mtu = ETHERMTU;
520 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
521 	ifp->if_ioctl = lge_ioctl;
522 	ifp->if_start = lge_start;
523 	ifp->if_watchdog = lge_watchdog;
524 	ifp->if_init = lge_init;
525 	ifp->if_baudrate = 1000000000;
526 	ifq_set_maxlen(&ifp->if_snd, LGE_TX_LIST_CNT - 1);
527 	ifq_set_ready(&ifp->if_snd);
528 	ifp->if_capabilities = IFCAP_RXCSUM;
529 	ifp->if_capenable = ifp->if_capabilities;
530 
531 	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
532 		sc->lge_pcs = 1;
533 	else
534 		sc->lge_pcs = 0;
535 
536 	/*
537 	 * Do MII setup.
538 	 */
539 	if (mii_phy_probe(dev, &sc->lge_miibus,
540 	    lge_ifmedia_upd, lge_ifmedia_sts)) {
541 		kprintf("lge%d: MII without any PHY!\n", sc->lge_unit);
542 		error = ENXIO;
543 		goto fail;
544 	}
545 
546 	/*
547 	 * Call MI attach routine.
548 	 */
549 	ether_ifattach(ifp, eaddr, NULL);
550 
551 	error = bus_setup_intr(dev, sc->lge_irq, INTR_MPSAFE,
552 			       lge_intr, sc, &sc->lge_intrhand,
553 			       ifp->if_serializer);
554 	if (error) {
555 		ether_ifdetach(ifp);
556 		kprintf("lge%d: couldn't set up irq\n", unit);
557 		goto fail;
558 	}
559 
560 	ifp->if_cpuid = rman_get_cpuid(sc->lge_irq);
561 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
562 
563 	return(0);
564 
565 fail:
566 	lge_detach(dev);
567 	return(error);
568 }
569 
570 static int
571 lge_detach(device_t dev)
572 {
573 	struct lge_softc *sc= device_get_softc(dev);
574 	struct ifnet *ifp = &sc->arpcom.ac_if;
575 
576 	if (device_is_attached(dev)) {
577 		lwkt_serialize_enter(ifp->if_serializer);
578 		lge_reset(sc);
579 		lge_stop(sc);
580 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
581 		lwkt_serialize_exit(ifp->if_serializer);
582 
583 		ether_ifdetach(ifp);
584 	}
585 
586 	if (sc->lge_miibus)
587 		device_delete_child(dev, sc->lge_miibus);
588 	bus_generic_detach(dev);
589 
590 	if (sc->lge_irq)
591 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
592 	if (sc->lge_res)
593 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
594 
595 	if (sc->lge_ldata)
596 		contigfree(sc->lge_ldata, sizeof(struct lge_list_data),
597 			   M_DEVBUF);
598 	lge_free_jumbo_mem(sc);
599 
600 	return(0);
601 }
602 
603 /*
604  * Initialize the transmit descriptors.
605  */
606 static int
607 lge_list_tx_init(struct lge_softc *sc)
608 {
609 	struct lge_list_data *ld;
610 	struct lge_ring_data *cd;
611 	int i;
612 
613 	cd = &sc->lge_cdata;
614 	ld = sc->lge_ldata;
615 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
616 		ld->lge_tx_list[i].lge_mbuf = NULL;
617 		ld->lge_tx_list[i].lge_ctl = 0;
618 	}
619 
620 	cd->lge_tx_prod = cd->lge_tx_cons = 0;
621 
622 	return(0);
623 }
624 
625 
626 /*
627  * Initialize the RX descriptors and allocate mbufs for them. Note that
628  * we arralge the descriptors in a closed ring, so that the last descriptor
629  * points back to the first.
630  */
631 static int
632 lge_list_rx_init(struct lge_softc *sc)
633 {
634 	struct lge_list_data *ld;
635 	struct lge_ring_data *cd;
636 	int i;
637 
638 	ld = sc->lge_ldata;
639 	cd = &sc->lge_cdata;
640 
641 	cd->lge_rx_prod = cd->lge_rx_cons = 0;
642 
643 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
644 
645 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
646 		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
647 			break;
648 		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
649 			return(ENOBUFS);
650 	}
651 
652 	/* Clear possible 'rx command queue empty' interrupt. */
653 	CSR_READ_4(sc, LGE_ISR);
654 
655 	return(0);
656 }
657 
658 /*
659  * Initialize an RX descriptor and attach an MBUF cluster.
660  */
661 static int
662 lge_newbuf(struct lge_softc *sc, struct lge_rx_desc *c, struct mbuf *m)
663 {
664 	struct mbuf *m_new = NULL;
665 	struct lge_jslot *buf;
666 
667 	if (m == NULL) {
668 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
669 		if (m_new == NULL) {
670 			kprintf("lge%d: no memory for rx list "
671 			    "-- packet dropped!\n", sc->lge_unit);
672 			return(ENOBUFS);
673 		}
674 
675 		/* Allocate the jumbo buffer */
676 		buf = lge_jalloc(sc);
677 		if (buf == NULL) {
678 #ifdef LGE_VERBOSE
679 			kprintf("lge%d: jumbo allocation failed "
680 			    "-- packet dropped!\n", sc->lge_unit);
681 #endif
682 			m_freem(m_new);
683 			return(ENOBUFS);
684 		}
685 		/* Attach the buffer to the mbuf */
686 		m_new->m_ext.ext_arg = buf;
687 		m_new->m_ext.ext_buf = buf->lge_buf;
688 		m_new->m_ext.ext_free = lge_jfree;
689 		m_new->m_ext.ext_ref = lge_jref;
690 		m_new->m_ext.ext_size = LGE_JUMBO_FRAMELEN;
691 
692 		m_new->m_data = m_new->m_ext.ext_buf;
693 		m_new->m_flags |= M_EXT;
694 		m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
695 	} else {
696 		m_new = m;
697 		m_new->m_len = m_new->m_pkthdr.len = LGE_JLEN;
698 		m_new->m_data = m_new->m_ext.ext_buf;
699 	}
700 
701 	/*
702 	 * Adjust alignment so packet payload begins on a
703 	 * longword boundary. Mandatory for Alpha, useful on
704 	 * x86 too.
705 	*/
706 	m_adj(m_new, ETHER_ALIGN);
707 
708 	c->lge_mbuf = m_new;
709 	c->lge_fragptr_hi = 0;
710 	c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t));
711 	c->lge_fraglen = m_new->m_len;
712 	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
713 	c->lge_sts = 0;
714 
715 	/*
716 	 * Put this buffer in the RX command FIFO. To do this,
717 	 * we just write the physical address of the descriptor
718 	 * into the RX descriptor address registers. Note that
719 	 * there are two registers, one high DWORD and one low
720 	 * DWORD, which lets us specify a 64-bit address if
721 	 * desired. We only use a 32-bit address for now.
722 	 * Writing to the low DWORD register is what actually
723 	 * causes the command to be issued, so we do that
724 	 * last.
725 	 */
726 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c));
727 	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
728 
729 	return(0);
730 }
731 
732 static int
733 lge_alloc_jumbo_mem(struct lge_softc *sc)
734 {
735 	struct lge_jslot *entry;
736 	caddr_t ptr;
737 	int i;
738 
739 	/* Grab a big chunk o' storage. */
740 	sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF,
741 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
742 
743 	if (sc->lge_cdata.lge_jumbo_buf == NULL) {
744 		kprintf("lge%d: no memory for jumbo buffers!\n", sc->lge_unit);
745 		return(ENOBUFS);
746 	}
747 
748 	SLIST_INIT(&sc->lge_jfree_listhead);
749 
750 	/*
751 	 * Now divide it up into 9K pieces and save the addresses
752 	 * in an array.
753 	 */
754 	ptr = sc->lge_cdata.lge_jumbo_buf;
755 	for (i = 0; i < LGE_JSLOTS; i++) {
756 		entry = &sc->lge_cdata.lge_jslots[i];
757 		entry->lge_sc = sc;
758 		entry->lge_buf = ptr;
759 		entry->lge_inuse = 0;
760 		entry->lge_slot = i;
761 		SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jslot_link);
762 		ptr += LGE_JLEN;
763 	}
764 
765 	return(0);
766 }
767 
768 static void
769 lge_free_jumbo_mem(struct lge_softc *sc)
770 {
771 	if (sc->lge_cdata.lge_jumbo_buf)
772 		contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF);
773 }
774 
775 /*
776  * Allocate a jumbo buffer.
777  */
778 static struct lge_jslot *
779 lge_jalloc(struct lge_softc *sc)
780 {
781 	struct lge_jslot *entry;
782 
783 	lwkt_serialize_enter(&sc->lge_jslot_serializer);
784 	entry = SLIST_FIRST(&sc->lge_jfree_listhead);
785 	if (entry) {
786 		SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jslot_link);
787 		entry->lge_inuse = 1;
788 	} else {
789 #ifdef LGE_VERBOSE
790 		kprintf("lge%d: no free jumbo buffers\n", sc->lge_unit);
791 #endif
792 	}
793 	lwkt_serialize_exit(&sc->lge_jslot_serializer);
794 	return(entry);
795 }
796 
797 /*
798  * Adjust usage count on a jumbo buffer. In general this doesn't
799  * get used much because our jumbo buffers don't get passed around
800  * a lot, but it's implemented for correctness.
801  */
802 static void
803 lge_jref(void *arg)
804 {
805 	struct lge_jslot *entry = (struct lge_jslot *)arg;
806 	struct lge_softc *sc = entry->lge_sc;
807 
808 	if (&sc->lge_cdata.lge_jslots[entry->lge_slot] != entry)
809 		panic("lge_jref: asked to reference buffer "
810 		    "that we don't manage!");
811 	else if (entry->lge_inuse == 0)
812 		panic("lge_jref: buffer already free!");
813 	else
814 		atomic_add_int(&entry->lge_inuse, 1);
815 }
816 
817 /*
818  * Release a jumbo buffer.
819  */
820 static void
821 lge_jfree(void *arg)
822 {
823 	struct lge_jslot *entry = (struct lge_jslot *)arg;
824 	struct lge_softc *sc = entry->lge_sc;
825 
826 	if (sc == NULL)
827 		panic("lge_jfree: can't find softc pointer!");
828 
829 	if (&sc->lge_cdata.lge_jslots[entry->lge_slot] != entry) {
830 		panic("lge_jfree: asked to free buffer that we don't manage!");
831 	} else if (entry->lge_inuse == 0) {
832 		panic("lge_jfree: buffer already free!");
833 	} else {
834 		lwkt_serialize_enter(&sc->lge_jslot_serializer);
835 		atomic_subtract_int(&entry->lge_inuse, 1);
836 		if (entry->lge_inuse == 0) {
837 			SLIST_INSERT_HEAD(&sc->lge_jfree_listhead,
838 					  entry, jslot_link);
839 		}
840 		lwkt_serialize_exit(&sc->lge_jslot_serializer);
841 	}
842 }
843 
844 /*
845  * A frame has been uploaded: pass the resulting mbuf chain up to
846  * the higher level protocols.
847  */
848 static void
849 lge_rxeof(struct lge_softc *sc, int cnt)
850 {
851         struct ifnet *ifp = &sc->arpcom.ac_if;
852         struct mbuf *m;
853 	struct lge_rx_desc *cur_rx;
854 	int c, i, total_len = 0;
855 	uint32_t rxsts, rxctl;
856 
857 
858 	/* Find out how many frames were processed. */
859 	c = cnt;
860 	i = sc->lge_cdata.lge_rx_cons;
861 
862 	/* Suck them in. */
863 	while(c) {
864 		struct mbuf *m0 = NULL;
865 
866 		cur_rx = &sc->lge_ldata->lge_rx_list[i];
867 		rxctl = cur_rx->lge_ctl;
868 		rxsts = cur_rx->lge_sts;
869 		m = cur_rx->lge_mbuf;
870 		cur_rx->lge_mbuf = NULL;
871 		total_len = LGE_RXBYTES(cur_rx);
872 		LGE_INC(i, LGE_RX_LIST_CNT);
873 		c--;
874 
875 		/*
876 		 * If an error occurs, update stats, clear the
877 		 * status word and leave the mbuf cluster in place:
878 		 * it should simply get re-used next time this descriptor
879 	 	 * comes up in the ring.
880 		 */
881 		if (rxctl & LGE_RXCTL_ERRMASK) {
882 			ifp->if_ierrors++;
883 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
884 			continue;
885 		}
886 
887 		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
888 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
889 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
890 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
891 			if (m0 == NULL) {
892 				kprintf("lge%d: no receive buffers "
893 				    "available -- packet dropped!\n",
894 				    sc->lge_unit);
895 				ifp->if_ierrors++;
896 				continue;
897 			}
898 			m_adj(m0, ETHER_ALIGN);
899 			m = m0;
900 		} else {
901 			m->m_pkthdr.rcvif = ifp;
902 			m->m_pkthdr.len = m->m_len = total_len;
903 		}
904 
905 		ifp->if_ipackets++;
906 
907 		/* Do IP checksum checking. */
908 		if (rxsts & LGE_RXSTS_ISIP)
909 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
910 		if (!(rxsts & LGE_RXSTS_IPCSUMERR))
911 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
912 		if ((rxsts & LGE_RXSTS_ISTCP &&
913 		    !(rxsts & LGE_RXSTS_TCPCSUMERR)) ||
914 		    (rxsts & LGE_RXSTS_ISUDP &&
915 		    !(rxsts & LGE_RXSTS_UDPCSUMERR))) {
916 			m->m_pkthdr.csum_flags |=
917 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
918 			    CSUM_FRAG_NOT_CHECKED;
919 			m->m_pkthdr.csum_data = 0xffff;
920 		}
921 
922 		ifp->if_input(ifp, m);
923 	}
924 
925 	sc->lge_cdata.lge_rx_cons = i;
926 }
927 
928 static void
929 lge_rxeoc(struct lge_softc *sc)
930 {
931 	struct ifnet *ifp = &sc->arpcom.ac_if;
932 
933 	ifp->if_flags &= ~IFF_RUNNING;
934 	lge_init(sc);
935 }
936 
937 /*
938  * A frame was downloaded to the chip. It's safe for us to clean up
939  * the list buffers.
940  */
941 static void
942 lge_txeof(struct lge_softc *sc)
943 {
944 	struct ifnet *ifp = &sc->arpcom.ac_if;
945 	struct lge_tx_desc *cur_tx = NULL;
946 	uint32_t idx, txdone;
947 
948 	/* Clear the timeout timer. */
949 	ifp->if_timer = 0;
950 
951 	/*
952 	 * Go through our tx list and free mbufs for those
953 	 * frames that have been transmitted.
954 	 */
955 	idx = sc->lge_cdata.lge_tx_cons;
956 	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
957 
958 	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
959 		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
960 
961 		ifp->if_opackets++;
962 		if (cur_tx->lge_mbuf != NULL) {
963 			m_freem(cur_tx->lge_mbuf);
964 			cur_tx->lge_mbuf = NULL;
965 		}
966 		cur_tx->lge_ctl = 0;
967 
968 		txdone--;
969 		LGE_INC(idx, LGE_TX_LIST_CNT);
970 		ifp->if_timer = 0;
971 	}
972 
973 	sc->lge_cdata.lge_tx_cons = idx;
974 
975 	if (cur_tx != NULL)
976 		ifp->if_flags &= ~IFF_OACTIVE;
977 }
978 
979 static void
980 lge_tick(void *xsc)
981 {
982 	struct lge_softc *sc = xsc;
983 	struct ifnet *ifp = &sc->arpcom.ac_if;
984 
985 	lwkt_serialize_enter(ifp->if_serializer);
986 	lge_tick_serialized(xsc);
987 	lwkt_serialize_exit(ifp->if_serializer);
988 }
989 
990 static void
991 lge_tick_serialized(void *xsc)
992 {
993 	struct lge_softc *sc = xsc;
994 	struct mii_data *mii;
995 	struct ifnet *ifp = &sc->arpcom.ac_if;
996 
997 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
998 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
999 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
1000 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1001 
1002 	if (!sc->lge_link) {
1003 		mii = device_get_softc(sc->lge_miibus);
1004 		mii_tick(mii);
1005 		mii_pollstat(mii);
1006 		if (mii->mii_media_status & IFM_ACTIVE &&
1007 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1008 			sc->lge_link++;
1009 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX||
1010 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
1011 				kprintf("lge%d: gigabit link up\n",
1012 				    sc->lge_unit);
1013 			if (!ifq_is_empty(&ifp->if_snd))
1014 				if_devstart(ifp);
1015 		}
1016 	}
1017 
1018 	callout_reset(&sc->lge_stat_timer, hz, lge_tick, sc);
1019 }
1020 
1021 static void
1022 lge_intr(void *arg)
1023 {
1024 	struct lge_softc *sc = arg;
1025 	struct ifnet *ifp = &sc->arpcom.ac_if;
1026 	uint32_t status;
1027 
1028 	/* Supress unwanted interrupts */
1029 	if ((ifp->if_flags & IFF_UP) == 0) {
1030 		lge_stop(sc);
1031 		return;
1032 	}
1033 
1034 	for (;;) {
1035 		/*
1036 		 * Reading the ISR register clears all interrupts, and
1037 		 * clears the 'interrupts enabled' bit in the IMR
1038 		 * register.
1039 		 */
1040 		status = CSR_READ_4(sc, LGE_ISR);
1041 
1042 		if ((status & LGE_INTRS) == 0)
1043 			break;
1044 
1045 		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
1046 			lge_txeof(sc);
1047 
1048 		if (status & LGE_ISR_RXDMA_DONE)
1049 			lge_rxeof(sc, LGE_RX_DMACNT(status));
1050 
1051 		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
1052 			lge_rxeoc(sc);
1053 
1054 		if (status & LGE_ISR_PHY_INTR) {
1055 			sc->lge_link = 0;
1056 			callout_stop(&sc->lge_stat_timer);
1057 			lge_tick_serialized(sc);
1058 		}
1059 	}
1060 
1061 	/* Re-enable interrupts. */
1062 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
1063 
1064 	if (!ifq_is_empty(&ifp->if_snd))
1065 		if_devstart(ifp);
1066 }
1067 
1068 /*
1069  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1070  * pointers to the fragment pointers.
1071  */
1072 static int
1073 lge_encap(struct lge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
1074 {
1075 	struct lge_frag *f = NULL;
1076 	struct lge_tx_desc *cur_tx;
1077 	struct mbuf *m;
1078 	int frag = 0, tot_len = 0;
1079 
1080 	/*
1081  	 * Start packing the mbufs in this chain into
1082 	 * the fragment pointers. Stop when we run out
1083  	 * of fragments or hit the end of the mbuf chain.
1084 	 */
1085 	m = m_head;
1086 	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
1087 	frag = 0;
1088 
1089 	for (m = m_head; m != NULL; m = m->m_next) {
1090 		if (m->m_len != 0) {
1091 			if (frag == LGE_FRAG_CNT)
1092 				break;
1093 
1094 			tot_len += m->m_len;
1095 			f = &cur_tx->lge_frags[frag];
1096 			f->lge_fraglen = m->m_len;
1097 			f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t));
1098 			f->lge_fragptr_hi = 0;
1099 			frag++;
1100 		}
1101 	}
1102 	/* Caller should make sure that 'm_head' is not excessive fragmented */
1103 	KASSERT(m == NULL, ("too many fragments\n"));
1104 
1105 	cur_tx->lge_mbuf = m_head;
1106 	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
1107 	LGE_INC((*txidx), LGE_TX_LIST_CNT);
1108 
1109 	/* Queue for transmit */
1110 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx));
1111 
1112 	return(0);
1113 }
1114 
1115 /*
1116  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1117  * to the mbuf data regions directly in the transmit lists. We also save a
1118  * copy of the pointers since the transmit list fragment pointers are
1119  * physical addresses.
1120  */
1121 
1122 static void
1123 lge_start(struct ifnet *ifp)
1124 {
1125 	struct lge_softc *sc = ifp->if_softc;
1126 	struct mbuf *m_head = NULL, *m_defragged;
1127 	uint32_t idx;
1128 	int need_timer;
1129 
1130 	if (!sc->lge_link) {
1131 		ifq_purge(&ifp->if_snd);
1132 		return;
1133 	}
1134 
1135 	idx = sc->lge_cdata.lge_tx_prod;
1136 
1137 	if (ifp->if_flags & IFF_OACTIVE)
1138 		return;
1139 
1140 	need_timer = 0;
1141 	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
1142 		struct mbuf *m;
1143 		int frags;
1144 
1145 		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0) {
1146 			ifp->if_flags |= IFF_OACTIVE;
1147 			break;
1148 		}
1149 
1150 		m_defragged = NULL;
1151 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1152 		if (m_head == NULL)
1153 			break;
1154 
1155 again:
1156 		frags = 0;
1157 		for (m = m_head; m != NULL; m = m->m_next)
1158 			++frags;
1159 		if (frags > LGE_FRAG_CNT) {
1160 			if (m_defragged != NULL) {
1161 				/*
1162 				 * Even after defragmentation, there
1163 				 * are still too many fragments, so
1164 				 * drop this packet.
1165 				 */
1166 				m_freem(m_head);
1167 				continue;
1168 			}
1169 
1170 			m_defragged = m_defrag(m_head, MB_DONTWAIT);
1171 			if (m_defragged == NULL) {
1172 				m_freem(m_head);
1173 				continue;
1174 			}
1175 			m_head = m_defragged;
1176 
1177 			/* Recount # of fragments */
1178 			goto again;
1179 		}
1180 
1181 		lge_encap(sc, m_head, &idx);
1182 		need_timer = 1;
1183 
1184 		BPF_MTAP(ifp, m_head);
1185 	}
1186 
1187 	if (!need_timer)
1188 		return;
1189 
1190 	sc->lge_cdata.lge_tx_prod = idx;
1191 
1192 	/*
1193 	 * Set a timeout in case the chip goes out to lunch.
1194 	 */
1195 	ifp->if_timer = 5;
1196 }
1197 
1198 static void
1199 lge_init(void *xsc)
1200 {
1201 	struct lge_softc *sc = xsc;
1202 	struct ifnet *ifp = &sc->arpcom.ac_if;
1203 	struct mii_data *mii;
1204 
1205 	if (ifp->if_flags & IFF_RUNNING)
1206 		return;
1207 
1208 	/*
1209 	 * Cancel pending I/O and free all RX/TX buffers.
1210 	 */
1211 	lge_stop(sc);
1212 	lge_reset(sc);
1213 
1214 	mii = device_get_softc(sc->lge_miibus);
1215 
1216 	/* Set MAC address */
1217 	CSR_WRITE_4(sc, LGE_PAR0, *(uint32_t *)(&sc->arpcom.ac_enaddr[0]));
1218 	CSR_WRITE_4(sc, LGE_PAR1, *(uint32_t *)(&sc->arpcom.ac_enaddr[4]));
1219 
1220 	/* Init circular RX list. */
1221 	if (lge_list_rx_init(sc) == ENOBUFS) {
1222 		kprintf("lge%d: initialization failed: no "
1223 		    "memory for rx buffers\n", sc->lge_unit);
1224 		lge_stop(sc);
1225 		return;
1226 	}
1227 
1228 	/*
1229 	 * Init tx descriptors.
1230 	 */
1231 	lge_list_tx_init(sc);
1232 
1233 	/* Set initial value for MODE1 register. */
1234 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST |
1235 	    LGE_MODE1_TX_CRC | LGE_MODE1_TXPAD |
1236 	    LGE_MODE1_RX_FLOWCTL | LGE_MODE1_SETRST_CTL0 |
1237 	    LGE_MODE1_SETRST_CTL1 | LGE_MODE1_SETRST_CTL2);
1238 
1239 	 /* If we want promiscuous mode, set the allframes bit. */
1240 	if (ifp->if_flags & IFF_PROMISC) {
1241 		CSR_WRITE_4(sc, LGE_MODE1,
1242 		    LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_PROMISC);
1243 	} else {
1244 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1245 	}
1246 
1247 	/*
1248 	 * Set the capture broadcast bit to capture broadcast frames.
1249 	 */
1250 	if (ifp->if_flags & IFF_BROADCAST) {
1251 		CSR_WRITE_4(sc, LGE_MODE1,
1252 		    LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_BCAST);
1253 	} else {
1254 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1255 	}
1256 
1257 	/* Packet padding workaround? */
1258 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1259 
1260 	/* No error frames */
1261 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1262 
1263 	/* Receive large frames */
1264 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_GIANTS);
1265 
1266 	/* Workaround: disable RX/TX flow control */
1267 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1268 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1269 
1270 	/* Make sure to strip CRC from received frames */
1271 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1272 
1273 	/* Turn off magic packet mode */
1274 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1275 
1276 	/* Turn off all VLAN stuff */
1277 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX | LGE_MODE1_VLAN_TX |
1278 	    LGE_MODE1_VLAN_STRIP | LGE_MODE1_VLAN_INSERT);
1279 
1280 	/* Workarond: FIFO overflow */
1281 	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1282 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1283 
1284 	/*
1285 	 * Load the multicast filter.
1286 	 */
1287 	lge_setmulti(sc);
1288 
1289 	/*
1290 	 * Enable hardware checksum validation for all received IPv4
1291 	 * packets, do not reject packets with bad checksums.
1292 	 */
1293 	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM |
1294 	    LGE_MODE2_RX_TCPCSUM | LGE_MODE2_RX_UDPCSUM |
1295 	    LGE_MODE2_RX_ERRCSUM);
1296 
1297 	/*
1298 	 * Enable the delivery of PHY interrupts based on
1299 	 * link/speed/duplex status chalges.
1300 	 */
1301 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0 | LGE_MODE1_GMIIPOLL);
1302 
1303 	/* Enable receiver and transmitter. */
1304 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1305 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_RX_ENB);
1306 
1307 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1308 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1 | LGE_MODE1_TX_ENB);
1309 
1310 	/*
1311 	 * Enable interrupts.
1312 	 */
1313 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0 |
1314 	    LGE_IMR_SETRST_CTL1 | LGE_IMR_INTR_ENB|LGE_INTRS);
1315 
1316 	lge_ifmedia_upd(ifp);
1317 
1318 	ifp->if_flags |= IFF_RUNNING;
1319 	ifp->if_flags &= ~IFF_OACTIVE;
1320 
1321 	callout_reset(&sc->lge_stat_timer, hz, lge_tick, sc);
1322 }
1323 
1324 /*
1325  * Set media options.
1326  */
1327 static int
1328 lge_ifmedia_upd(struct ifnet *ifp)
1329 {
1330 	struct lge_softc *sc = ifp->if_softc;
1331 	struct mii_data *mii = device_get_softc(sc->lge_miibus);
1332 
1333 	sc->lge_link = 0;
1334 	if (mii->mii_instance) {
1335 		struct mii_softc *miisc;
1336 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1337 			mii_phy_reset(miisc);
1338 	}
1339 	mii_mediachg(mii);
1340 
1341 	return(0);
1342 }
1343 
1344 /*
1345  * Report current media status.
1346  */
1347 static void
1348 lge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1349 {
1350 	struct lge_softc *sc = ifp->if_softc;
1351 	struct mii_data *mii;
1352 
1353 	mii = device_get_softc(sc->lge_miibus);
1354 	mii_pollstat(mii);
1355 	ifmr->ifm_active = mii->mii_media_active;
1356 	ifmr->ifm_status = mii->mii_media_status;
1357 }
1358 
1359 static int
1360 lge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1361 {
1362 	struct lge_softc *sc = ifp->if_softc;
1363 	struct ifreq *ifr = (struct ifreq *) data;
1364 	struct mii_data	 *mii;
1365 	int error = 0;
1366 
1367 	switch(command) {
1368 	case SIOCSIFMTU:
1369 		if (ifr->ifr_mtu > LGE_JUMBO_MTU)
1370 			error = EINVAL;
1371 		else
1372 			ifp->if_mtu = ifr->ifr_mtu;
1373 		break;
1374 	case SIOCSIFFLAGS:
1375 		if (ifp->if_flags & IFF_UP) {
1376 			if (ifp->if_flags & IFF_RUNNING &&
1377 			    ifp->if_flags & IFF_PROMISC &&
1378 			    !(sc->lge_if_flags & IFF_PROMISC)) {
1379 				CSR_WRITE_4(sc, LGE_MODE1,
1380 				    LGE_MODE1_SETRST_CTL1|
1381 				    LGE_MODE1_RX_PROMISC);
1382 			} else if (ifp->if_flags & IFF_RUNNING &&
1383 			    !(ifp->if_flags & IFF_PROMISC) &&
1384 			    sc->lge_if_flags & IFF_PROMISC) {
1385 				CSR_WRITE_4(sc, LGE_MODE1,
1386 				    LGE_MODE1_RX_PROMISC);
1387 			} else {
1388 				ifp->if_flags &= ~IFF_RUNNING;
1389 				lge_init(sc);
1390 			}
1391 		} else {
1392 			if (ifp->if_flags & IFF_RUNNING)
1393 				lge_stop(sc);
1394 		}
1395 		sc->lge_if_flags = ifp->if_flags;
1396 		error = 0;
1397 		break;
1398 	case SIOCADDMULTI:
1399 	case SIOCDELMULTI:
1400 		lge_setmulti(sc);
1401 		error = 0;
1402 		break;
1403 	case SIOCGIFMEDIA:
1404 	case SIOCSIFMEDIA:
1405 		mii = device_get_softc(sc->lge_miibus);
1406 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1407 		break;
1408 	default:
1409 		error = ether_ioctl(ifp, command, data);
1410 		break;
1411 	}
1412 
1413 	return(error);
1414 }
1415 
1416 static void
1417 lge_watchdog(struct ifnet *ifp)
1418 {
1419 	struct lge_softc *sc = ifp->if_softc;
1420 
1421 	ifp->if_oerrors++;
1422 	kprintf("lge%d: watchdog timeout\n", sc->lge_unit);
1423 
1424 	lge_stop(sc);
1425 	lge_reset(sc);
1426 	ifp->if_flags &= ~IFF_RUNNING;
1427 	lge_init(sc);
1428 
1429 	if (!ifq_is_empty(&ifp->if_snd))
1430 		if_devstart(ifp);
1431 }
1432 
1433 /*
1434  * Stop the adapter and free any mbufs allocated to the
1435  * RX and TX lists.
1436  */
1437 static void
1438 lge_stop(struct lge_softc *sc)
1439 {
1440 	struct ifnet *ifp = &sc->arpcom.ac_if;
1441 	int i;
1442 
1443 	ifp->if_timer = 0;
1444 	callout_stop(&sc->lge_stat_timer);
1445 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1446 
1447 	/* Disable receiver and transmitter. */
1448 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1449 	sc->lge_link = 0;
1450 
1451 	/*
1452 	 * Free data in the RX lists.
1453 	 */
1454 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1455 		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1456 			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1457 			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1458 		}
1459 	}
1460 	bzero(&sc->lge_ldata->lge_rx_list, sizeof(sc->lge_ldata->lge_rx_list));
1461 
1462 	/*
1463 	 * Free the TX list buffers.
1464 	 */
1465 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1466 		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1467 			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1468 			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1469 		}
1470 	}
1471 
1472 	bzero(&sc->lge_ldata->lge_tx_list, sizeof(sc->lge_ldata->lge_tx_list));
1473 
1474 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1475 }
1476 
1477 /*
1478  * Stop all chip I/O so that the kernel's probe routines don't
1479  * get confused by errant DMAs when rebooting.
1480  */
1481 static void
1482 lge_shutdown(device_t dev)
1483 {
1484 	struct lge_softc *sc = device_get_softc(dev);
1485 
1486 	lge_reset(sc);
1487 	lge_stop(sc);
1488 }
1489