xref: /dragonfly/sys/dev/netif/my/if_my.c (revision 23265324)
1 /*
2  * Copyright (c) 2002 Myson Technology Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions, and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. The name of the author may not be used to endorse or promote products
12  *    derived from this software without specific prior written permission.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
18  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * Written by: yen_cw@myson.com.tw  available at: http://www.myson.com.tw/
27  *
28  * $FreeBSD: src/sys/dev/my/if_my.c,v 1.2.2.4 2002/04/17 02:05:27 julian Exp $
29  * $DragonFly: src/sys/dev/netif/my/if_my.c,v 1.27 2006/12/22 23:26:21 swildner Exp $
30  *
31  * Myson fast ethernet PCI NIC driver
32  *
33  * $Id: if_my.c,v 1.40 2001/11/30 03:55:00 <yen_cw@myson.com.tw> wpaul Exp $
34  */
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/sockio.h>
38 #include <sys/mbuf.h>
39 #include <sys/malloc.h>
40 #include <sys/kernel.h>
41 #include <sys/socket.h>
42 #include <sys/queue.h>
43 #include <sys/bus.h>
44 #include <sys/module.h>
45 #include <sys/serialize.h>
46 #include <sys/bus.h>
47 #include <sys/rman.h>
48 
49 #include <sys/thread2.h>
50 
51 #include <net/if.h>
52 #include <net/ifq_var.h>
53 #include <net/if_arp.h>
54 #include <net/ethernet.h>
55 #include <net/if_media.h>
56 #include <net/if_dl.h>
57 #include <net/bpf.h>
58 
59 #include <vm/vm.h>		/* for vtophys */
60 #include <vm/pmap.h>		/* for vtophys */
61 #include <machine/clock.h>	/* for DELAY */
62 
63 #include <bus/pci/pcireg.h>
64 #include <bus/pci/pcivar.h>
65 
66 #include "../mii_layer/mii.h"
67 #include "../mii_layer/miivar.h"
68 
69 #include "miibus_if.h"
70 
71 /*
72  * #define MY_USEIOSPACE
73  */
74 
75 static int      MY_USEIOSPACE = 1;
76 
77 #if (MY_USEIOSPACE)
78 #define MY_RES                  SYS_RES_IOPORT
79 #define MY_RID                  MY_PCI_LOIO
80 #else
81 #define MY_RES                  SYS_RES_MEMORY
82 #define MY_RID                  MY_PCI_LOMEM
83 #endif
84 
85 
86 #include "if_myreg.h"
87 
88 /*
89  * Various supported device vendors/types and their names.
90  */
91 static struct my_type my_devs[] = {
92 	{MYSONVENDORID, MTD800ID, "Myson MTD80X Based Fast Ethernet Card"},
93 	{MYSONVENDORID, MTD803ID, "Myson MTD80X Based Fast Ethernet Card"},
94 	{MYSONVENDORID, MTD891ID, "Myson MTD89X Based Giga Ethernet Card"},
95 	{0, 0, NULL}
96 };
97 
98 /*
99  * Various supported PHY vendors/types and their names. Note that this driver
100  * will work with pretty much any MII-compliant PHY, so failure to positively
101  * identify the chip is not a fatal error.
102  */
103 static struct my_type my_phys[] = {
104 	{MysonPHYID0, MysonPHYID0, "<MYSON MTD981>"},
105 	{SeeqPHYID0, SeeqPHYID0, "<SEEQ 80225>"},
106 	{AhdocPHYID0, AhdocPHYID0, "<AHDOC 101>"},
107 	{MarvellPHYID0, MarvellPHYID0, "<MARVELL 88E1000>"},
108 	{LevelOnePHYID0, LevelOnePHYID0, "<LevelOne LXT1000>"},
109 	{0, 0, "<MII-compliant physical interface>"}
110 };
111 
112 static int      my_probe(device_t);
113 static int      my_attach(device_t);
114 static int      my_detach(device_t);
115 static int      my_newbuf(struct my_softc *, struct my_chain_onefrag *);
116 static int      my_encap(struct my_softc *, struct my_chain *, struct mbuf *);
117 static void     my_rxeof(struct my_softc *);
118 static void     my_txeof(struct my_softc *);
119 static void     my_txeoc(struct my_softc *);
120 static void     my_intr(void *);
121 static void     my_start(struct ifnet *);
122 static int      my_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
123 static void     my_init(void *);
124 static void     my_stop(struct my_softc *);
125 static void     my_watchdog(struct ifnet *);
126 static void     my_shutdown(device_t);
127 static int      my_ifmedia_upd(struct ifnet *);
128 static void     my_ifmedia_sts(struct ifnet *, struct ifmediareq *);
129 static u_int16_t my_phy_readreg(struct my_softc *, int);
130 static void     my_phy_writereg(struct my_softc *, int, int);
131 static void     my_autoneg_xmit(struct my_softc *);
132 static void     my_autoneg_mii(struct my_softc *, int, int);
133 static void     my_setmode_mii(struct my_softc *, int);
134 static void     my_getmode_mii(struct my_softc *);
135 static void     my_setcfg(struct my_softc *, int);
136 static u_int8_t my_calchash(caddr_t);
137 static void     my_setmulti(struct my_softc *);
138 static void     my_reset(struct my_softc *);
139 static int      my_list_rx_init(struct my_softc *);
140 static int      my_list_tx_init(struct my_softc *);
141 static long     my_send_cmd_to_phy(struct my_softc *, int, int);
142 
143 #define MY_SETBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
144 #define MY_CLRBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
145 
146 static device_method_t my_methods[] = {
147 	/* Device interface */
148 	DEVMETHOD(device_probe, my_probe),
149 	DEVMETHOD(device_attach, my_attach),
150 	DEVMETHOD(device_detach, my_detach),
151 	DEVMETHOD(device_shutdown, my_shutdown),
152 
153 	{0, 0}
154 };
155 
156 static driver_t my_driver = {
157 	"my",
158 	my_methods,
159 	sizeof(struct my_softc)
160 };
161 
162 static devclass_t my_devclass;
163 
164 DECLARE_DUMMY_MODULE(if_my);
165 DRIVER_MODULE(if_my, pci, my_driver, my_devclass, 0, 0);
166 
167 static long
168 my_send_cmd_to_phy(struct my_softc * sc, int opcode, int regad)
169 {
170 	long            miir;
171 	int             i;
172 	int             mask, data;
173 
174 	/* enable MII output */
175 	miir = CSR_READ_4(sc, MY_MANAGEMENT);
176 	miir &= 0xfffffff0;
177 
178 	miir |= MY_MASK_MIIR_MII_WRITE + MY_MASK_MIIR_MII_MDO;
179 
180 	/* send 32 1's preamble */
181 	for (i = 0; i < 32; i++) {
182 		/* low MDC; MDO is already high (miir) */
183 		miir &= ~MY_MASK_MIIR_MII_MDC;
184 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
185 
186 		/* high MDC */
187 		miir |= MY_MASK_MIIR_MII_MDC;
188 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
189 	}
190 
191 	/* calculate ST+OP+PHYAD+REGAD+TA */
192 	data = opcode | (sc->my_phy_addr << 7) | (regad << 2);
193 
194 	/* sent out */
195 	mask = 0x8000;
196 	while (mask) {
197 		/* low MDC, prepare MDO */
198 		miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
199 		if (mask & data)
200 			miir |= MY_MASK_MIIR_MII_MDO;
201 
202 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
203 		/* high MDC */
204 		miir |= MY_MASK_MIIR_MII_MDC;
205 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
206 		DELAY(30);
207 
208 		/* next */
209 		mask >>= 1;
210 		if (mask == 0x2 && opcode == MY_OP_READ)
211 			miir &= ~MY_MASK_MIIR_MII_WRITE;
212 	}
213 
214 	return miir;
215 }
216 
217 
218 static          u_int16_t
219 my_phy_readreg(struct my_softc * sc, int reg)
220 {
221 	long            miir;
222 	int             mask, data;
223 
224 	if (sc->my_info->my_did == MTD803ID)
225 		data = CSR_READ_2(sc, MY_PHYBASE + reg * 2);
226 	else {
227 		miir = my_send_cmd_to_phy(sc, MY_OP_READ, reg);
228 
229 		/* read data */
230 		mask = 0x8000;
231 		data = 0;
232 		while (mask) {
233 			/* low MDC */
234 			miir &= ~MY_MASK_MIIR_MII_MDC;
235 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
236 
237 			/* read MDI */
238 			miir = CSR_READ_4(sc, MY_MANAGEMENT);
239 			if (miir & MY_MASK_MIIR_MII_MDI)
240 				data |= mask;
241 
242 			/* high MDC, and wait */
243 			miir |= MY_MASK_MIIR_MII_MDC;
244 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
245 			DELAY(30);
246 
247 			/* next */
248 			mask >>= 1;
249 		}
250 
251 		/* low MDC */
252 		miir &= ~MY_MASK_MIIR_MII_MDC;
253 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
254 	}
255 
256 	return (u_int16_t) data;
257 }
258 
259 
260 static void
261 my_phy_writereg(struct my_softc * sc, int reg, int data)
262 {
263 	long            miir;
264 	int             mask;
265 
266 	if (sc->my_info->my_did == MTD803ID)
267 		CSR_WRITE_2(sc, MY_PHYBASE + reg * 2, data);
268 	else {
269 		miir = my_send_cmd_to_phy(sc, MY_OP_WRITE, reg);
270 
271 		/* write data */
272 		mask = 0x8000;
273 		while (mask) {
274 			/* low MDC, prepare MDO */
275 			miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
276 			if (mask & data)
277 				miir |= MY_MASK_MIIR_MII_MDO;
278 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
279 			DELAY(1);
280 
281 			/* high MDC */
282 			miir |= MY_MASK_MIIR_MII_MDC;
283 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
284 			DELAY(1);
285 
286 			/* next */
287 			mask >>= 1;
288 		}
289 
290 		/* low MDC */
291 		miir &= ~MY_MASK_MIIR_MII_MDC;
292 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
293 	}
294 }
295 
296 static          u_int8_t
297 my_calchash(caddr_t addr)
298 {
299 	u_int32_t       crc, carry;
300 	int             i, j;
301 	u_int8_t        c;
302 
303 	/* Compute CRC for the address value. */
304 	crc = 0xFFFFFFFF;	/* initial value */
305 
306 	for (i = 0; i < 6; i++) {
307 		c = *(addr + i);
308 		for (j = 0; j < 8; j++) {
309 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
310 			crc <<= 1;
311 			c >>= 1;
312 			if (carry)
313 				crc = (crc ^ 0x04c11db6) | carry;
314 		}
315 	}
316 
317 	/*
318 	 * return the filter bit position Note: I arrived at the following
319 	 * nonsense through experimentation. It's not the usual way to
320 	 * generate the bit position but it's the only thing I could come up
321 	 * with that works.
322 	 */
323 	return (~(crc >> 26) & 0x0000003F);
324 }
325 
326 
327 /*
328  * Program the 64-bit multicast hash filter.
329  */
330 static void
331 my_setmulti(struct my_softc * sc)
332 {
333 	struct ifnet *ifp = &sc->arpcom.ac_if;
334 	int             h = 0;
335 	u_int32_t       hashes[2] = {0, 0};
336 	struct ifmultiaddr *ifma;
337 	u_int32_t       rxfilt;
338 	int             mcnt = 0;
339 
340 	rxfilt = CSR_READ_4(sc, MY_TCRRCR);
341 
342 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
343 		rxfilt |= MY_AM;
344 		CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
345 		CSR_WRITE_4(sc, MY_MAR0, 0xFFFFFFFF);
346 		CSR_WRITE_4(sc, MY_MAR1, 0xFFFFFFFF);
347 
348 		return;
349 	}
350 	/* first, zot all the existing hash bits */
351 	CSR_WRITE_4(sc, MY_MAR0, 0);
352 	CSR_WRITE_4(sc, MY_MAR1, 0);
353 
354 	/* now program new ones */
355 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
356 		if (ifma->ifma_addr->sa_family != AF_LINK)
357 			continue;
358 		h = my_calchash(LLADDR((struct sockaddr_dl *) ifma->ifma_addr));
359 		if (h < 32)
360 			hashes[0] |= (1 << h);
361 		else
362 			hashes[1] |= (1 << (h - 32));
363 		mcnt++;
364 	}
365 
366 	if (mcnt)
367 		rxfilt |= MY_AM;
368 	else
369 		rxfilt &= ~MY_AM;
370 	CSR_WRITE_4(sc, MY_MAR0, hashes[0]);
371 	CSR_WRITE_4(sc, MY_MAR1, hashes[1]);
372 	CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
373 }
374 
375 /*
376  * Initiate an autonegotiation session.
377  */
378 static void
379 my_autoneg_xmit(struct my_softc * sc)
380 {
381 	u_int16_t       phy_sts = 0;
382 
383 	my_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
384 	DELAY(500);
385 	while (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_RESET);
386 
387 	phy_sts = my_phy_readreg(sc, PHY_BMCR);
388 	phy_sts |= PHY_BMCR_AUTONEGENBL | PHY_BMCR_AUTONEGRSTR;
389 	my_phy_writereg(sc, PHY_BMCR, phy_sts);
390 }
391 
392 
393 /*
394  * Invoke autonegotiation on a PHY.
395  */
396 static void
397 my_autoneg_mii(struct my_softc * sc, int flag, int verbose)
398 {
399 	u_int16_t       phy_sts = 0, media, advert, ability;
400 	u_int16_t       ability2 = 0;
401 	struct ifnet *ifp = &sc->arpcom.ac_if;
402 	struct ifmedia *ifm = &sc->ifmedia;
403 
404 	ifm->ifm_media = IFM_ETHER | IFM_AUTO;
405 
406 #ifndef FORCE_AUTONEG_TFOUR
407 	/*
408 	 * First, see if autoneg is supported. If not, there's no point in
409 	 * continuing.
410 	 */
411 	phy_sts = my_phy_readreg(sc, PHY_BMSR);
412 	if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
413 		if (verbose)
414 			kprintf("my%d: autonegotiation not supported\n",
415 			    sc->my_unit);
416 		ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
417 		return;
418 	}
419 #endif
420 	switch (flag) {
421 	case MY_FLAG_FORCEDELAY:
422 		/*
423 		 * XXX Never use this option anywhere but in the probe
424 		 * routine: making the kernel stop dead in its tracks for
425 		 * three whole seconds after we've gone multi-user is really
426 		 * bad manners.
427 		 */
428 		my_autoneg_xmit(sc);
429 		DELAY(5000000);
430 		break;
431 	case MY_FLAG_SCHEDDELAY:
432 		/*
433 		 * Wait for the transmitter to go idle before starting an
434 		 * autoneg session, otherwise my_start() may clobber our
435 		 * timeout, and we don't want to allow transmission during an
436 		 * autoneg session since that can screw it up.
437 		 */
438 		if (sc->my_cdata.my_tx_head != NULL) {
439 			sc->my_want_auto = 1;
440 			return;
441 		}
442 		my_autoneg_xmit(sc);
443 		ifp->if_timer = 5;
444 		sc->my_autoneg = 1;
445 		sc->my_want_auto = 0;
446 		return;
447 	case MY_FLAG_DELAYTIMEO:
448 		ifp->if_timer = 0;
449 		sc->my_autoneg = 0;
450 		break;
451 	default:
452 		kprintf("my%d: invalid autoneg flag: %d\n", sc->my_unit, flag);
453 		return;
454 	}
455 
456 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
457 		if (verbose)
458 			kprintf("my%d: autoneg complete, ", sc->my_unit);
459 		phy_sts = my_phy_readreg(sc, PHY_BMSR);
460 	} else {
461 		if (verbose)
462 			kprintf("my%d: autoneg not complete, ", sc->my_unit);
463 	}
464 
465 	media = my_phy_readreg(sc, PHY_BMCR);
466 
467 	/* Link is good. Report modes and set duplex mode. */
468 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
469 		if (verbose)
470 			kprintf("my%d: link status good. ", sc->my_unit);
471 		advert = my_phy_readreg(sc, PHY_ANAR);
472 		ability = my_phy_readreg(sc, PHY_LPAR);
473 		if ((sc->my_pinfo->my_vid == MarvellPHYID0) ||
474 		    (sc->my_pinfo->my_vid == LevelOnePHYID0)) {
475 			ability2 = my_phy_readreg(sc, PHY_1000SR);
476 			if (ability2 & PHY_1000SR_1000BTXFULL) {
477 				advert = 0;
478 				ability = 0;
479 				/*
480 				 * this version did not support 1000M,
481 				 * ifm->ifm_media =
482 				 * IFM_ETHER | IFM_1000_T | IFM_FDX;
483 				 */
484 				ifm->ifm_media =
485 				    IFM_ETHER | IFM_100_TX | IFM_FDX;
486 				media &= ~PHY_BMCR_SPEEDSEL;
487 				media |= PHY_BMCR_1000;
488 				media |= PHY_BMCR_DUPLEX;
489 				kprintf("(full-duplex, 1000Mbps)\n");
490 			} else if (ability2 & PHY_1000SR_1000BTXHALF) {
491 				advert = 0;
492 				ability = 0;
493 				/*
494 				 * this version did not support 1000M,
495 				 * ifm->ifm_media = IFM_ETHER | IFM_1000_T;
496 				 */
497 				ifm->ifm_media = IFM_ETHER | IFM_100_TX;
498 				media &= ~PHY_BMCR_SPEEDSEL;
499 				media &= ~PHY_BMCR_DUPLEX;
500 				media |= PHY_BMCR_1000;
501 				kprintf("(half-duplex, 1000Mbps)\n");
502 			}
503 		}
504 		if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
505 			ifm->ifm_media = IFM_ETHER | IFM_100_T4;
506 			media |= PHY_BMCR_SPEEDSEL;
507 			media &= ~PHY_BMCR_DUPLEX;
508 			kprintf("(100baseT4)\n");
509 		} else if (advert & PHY_ANAR_100BTXFULL &&
510 			   ability & PHY_ANAR_100BTXFULL) {
511 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
512 			media |= PHY_BMCR_SPEEDSEL;
513 			media |= PHY_BMCR_DUPLEX;
514 			kprintf("(full-duplex, 100Mbps)\n");
515 		} else if (advert & PHY_ANAR_100BTXHALF &&
516 			   ability & PHY_ANAR_100BTXHALF) {
517 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
518 			media |= PHY_BMCR_SPEEDSEL;
519 			media &= ~PHY_BMCR_DUPLEX;
520 			kprintf("(half-duplex, 100Mbps)\n");
521 		} else if (advert & PHY_ANAR_10BTFULL &&
522 			   ability & PHY_ANAR_10BTFULL) {
523 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
524 			media &= ~PHY_BMCR_SPEEDSEL;
525 			media |= PHY_BMCR_DUPLEX;
526 			kprintf("(full-duplex, 10Mbps)\n");
527 		} else if (advert) {
528 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
529 			media &= ~PHY_BMCR_SPEEDSEL;
530 			media &= ~PHY_BMCR_DUPLEX;
531 			kprintf("(half-duplex, 10Mbps)\n");
532 		}
533 		media &= ~PHY_BMCR_AUTONEGENBL;
534 
535 		/* Set ASIC's duplex mode to match the PHY. */
536 		my_phy_writereg(sc, PHY_BMCR, media);
537 		my_setcfg(sc, media);
538 	} else {
539 		if (verbose)
540 			kprintf("my%d: no carrier\n", sc->my_unit);
541 	}
542 
543 	my_init(sc);
544 	if (sc->my_tx_pend) {
545 		sc->my_autoneg = 0;
546 		sc->my_tx_pend = 0;
547 		my_start(ifp);
548 	}
549 }
550 
551 /*
552  * To get PHY ability.
553  */
554 static void
555 my_getmode_mii(struct my_softc * sc)
556 {
557 	struct ifnet *ifp = &sc->arpcom.ac_if;
558 	u_int16_t       bmsr;
559 
560 	bmsr = my_phy_readreg(sc, PHY_BMSR);
561 	if (bootverbose)
562 		kprintf("my%d: PHY status word: %x\n", sc->my_unit, bmsr);
563 
564 	/* fallback */
565 	sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
566 
567 	if (bmsr & PHY_BMSR_10BTHALF) {
568 		if (bootverbose)
569 			kprintf("my%d: 10Mbps half-duplex mode supported\n",
570 			       sc->my_unit);
571 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_HDX,
572 		    0, NULL);
573 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
574 	}
575 	if (bmsr & PHY_BMSR_10BTFULL) {
576 		if (bootverbose)
577 			kprintf("my%d: 10Mbps full-duplex mode supported\n",
578 			    sc->my_unit);
579 
580 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
581 		    0, NULL);
582 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
583 	}
584 	if (bmsr & PHY_BMSR_100BTXHALF) {
585 		if (bootverbose)
586 			kprintf("my%d: 100Mbps half-duplex mode supported\n",
587 			       sc->my_unit);
588 		ifp->if_baudrate = 100000000;
589 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
590 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_HDX,
591 			    0, NULL);
592 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
593 	}
594 	if (bmsr & PHY_BMSR_100BTXFULL) {
595 		if (bootverbose)
596 			kprintf("my%d: 100Mbps full-duplex mode supported\n",
597 			    sc->my_unit);
598 		ifp->if_baudrate = 100000000;
599 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
600 		    0, NULL);
601 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
602 	}
603 	/* Some also support 100BaseT4. */
604 	if (bmsr & PHY_BMSR_100BT4) {
605 		if (bootverbose)
606 			kprintf("my%d: 100baseT4 mode supported\n", sc->my_unit);
607 		ifp->if_baudrate = 100000000;
608 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_T4, 0, NULL);
609 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_T4;
610 #ifdef FORCE_AUTONEG_TFOUR
611 		if (bootverbose)
612 			kprintf("my%d: forcing on autoneg support for BT4\n",
613 			    sc->my_unit);
614 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0 NULL):
615 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
616 #endif
617 	}
618 #if 0				/* this version did not support 1000M, */
619 	if (sc->my_pinfo->my_vid == MarvellPHYID0) {
620 		if (bootverbose)
621 			kprintf("my%d: 1000Mbps half-duplex mode supported\n",
622 			       sc->my_unit);
623 
624 		ifp->if_baudrate = 1000000000;
625 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL);
626 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_HDX,
627 		    0, NULL);
628 		if (bootverbose)
629 			kprintf("my%d: 1000Mbps full-duplex mode supported\n",
630 			   sc->my_unit);
631 		ifp->if_baudrate = 1000000000;
632 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX,
633 		    0, NULL);
634 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_1000_T | IFM_FDX;
635 	}
636 #endif
637 	if (bmsr & PHY_BMSR_CANAUTONEG) {
638 		if (bootverbose)
639 			kprintf("my%d: autoneg supported\n", sc->my_unit);
640 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
641 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
642 	}
643 }
644 
645 /*
646  * Set speed and duplex mode.
647  */
648 static void
649 my_setmode_mii(struct my_softc * sc, int media)
650 {
651 	struct ifnet *ifp = &sc->arpcom.ac_if;
652 	u_int16_t       bmcr;
653 
654 	/*
655 	 * If an autoneg session is in progress, stop it.
656 	 */
657 	if (sc->my_autoneg) {
658 		kprintf("my%d: canceling autoneg session\n", sc->my_unit);
659 		ifp->if_timer = sc->my_autoneg = sc->my_want_auto = 0;
660 		bmcr = my_phy_readreg(sc, PHY_BMCR);
661 		bmcr &= ~PHY_BMCR_AUTONEGENBL;
662 		my_phy_writereg(sc, PHY_BMCR, bmcr);
663 	}
664 	kprintf("my%d: selecting MII, ", sc->my_unit);
665 	bmcr = my_phy_readreg(sc, PHY_BMCR);
666 	bmcr &= ~(PHY_BMCR_AUTONEGENBL | PHY_BMCR_SPEEDSEL | PHY_BMCR_1000 |
667 		  PHY_BMCR_DUPLEX | PHY_BMCR_LOOPBK);
668 
669 #if 0				/* this version did not support 1000M, */
670 	if (IFM_SUBTYPE(media) == IFM_1000_T) {
671 		kprintf("1000Mbps/T4, half-duplex\n");
672 		bmcr &= ~PHY_BMCR_SPEEDSEL;
673 		bmcr &= ~PHY_BMCR_DUPLEX;
674 		bmcr |= PHY_BMCR_1000;
675 	}
676 #endif
677 	if (IFM_SUBTYPE(media) == IFM_100_T4) {
678 		kprintf("100Mbps/T4, half-duplex\n");
679 		bmcr |= PHY_BMCR_SPEEDSEL;
680 		bmcr &= ~PHY_BMCR_DUPLEX;
681 	}
682 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
683 		kprintf("100Mbps, ");
684 		bmcr |= PHY_BMCR_SPEEDSEL;
685 	}
686 	if (IFM_SUBTYPE(media) == IFM_10_T) {
687 		kprintf("10Mbps, ");
688 		bmcr &= ~PHY_BMCR_SPEEDSEL;
689 	}
690 	if ((media & IFM_GMASK) == IFM_FDX) {
691 		kprintf("full duplex\n");
692 		bmcr |= PHY_BMCR_DUPLEX;
693 	} else {
694 		kprintf("half duplex\n");
695 		bmcr &= ~PHY_BMCR_DUPLEX;
696 	}
697 	my_phy_writereg(sc, PHY_BMCR, bmcr);
698 	my_setcfg(sc, bmcr);
699 }
700 
701 /*
702  * The Myson manual states that in order to fiddle with the 'full-duplex' and
703  * '100Mbps' bits in the netconfig register, we first have to put the
704  * transmit and/or receive logic in the idle state.
705  */
706 static void
707 my_setcfg(struct my_softc * sc, int bmcr)
708 {
709 	int             i, restart = 0;
710 
711 	if (CSR_READ_4(sc, MY_TCRRCR) & (MY_TE | MY_RE)) {
712 		restart = 1;
713 		MY_CLRBIT(sc, MY_TCRRCR, (MY_TE | MY_RE));
714 		for (i = 0; i < MY_TIMEOUT; i++) {
715 			DELAY(10);
716 			if (!(CSR_READ_4(sc, MY_TCRRCR) &
717 			    (MY_TXRUN | MY_RXRUN)))
718 				break;
719 		}
720 		if (i == MY_TIMEOUT)
721 			kprintf("my%d: failed to force tx and rx to idle \n",
722 			    sc->my_unit);
723 	}
724 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS1000);
725 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS10);
726 	if (bmcr & PHY_BMCR_1000)
727 		MY_SETBIT(sc, MY_TCRRCR, MY_PS1000);
728 	else if (!(bmcr & PHY_BMCR_SPEEDSEL))
729 		MY_SETBIT(sc, MY_TCRRCR, MY_PS10);
730 	if (bmcr & PHY_BMCR_DUPLEX)
731 		MY_SETBIT(sc, MY_TCRRCR, MY_FD);
732 	else
733 		MY_CLRBIT(sc, MY_TCRRCR, MY_FD);
734 	if (restart)
735 		MY_SETBIT(sc, MY_TCRRCR, MY_TE | MY_RE);
736 }
737 
738 static void
739 my_reset(struct my_softc * sc)
740 {
741 	int    i;
742 
743 	MY_SETBIT(sc, MY_BCR, MY_SWR);
744 	for (i = 0; i < MY_TIMEOUT; i++) {
745 		DELAY(10);
746 		if (!(CSR_READ_4(sc, MY_BCR) & MY_SWR))
747 			break;
748 	}
749 	if (i == MY_TIMEOUT)
750 		kprintf("m0x%d: reset never completed!\n", sc->my_unit);
751 
752 	/* Wait a little while for the chip to get its brains in order. */
753 	DELAY(1000);
754 }
755 
756 /*
757  * Probe for a Myson chip. Check the PCI vendor and device IDs against our
758  * list and return a device name if we find a match.
759  */
760 static int
761 my_probe(device_t dev)
762 {
763 	struct my_type *t;
764 	uint16_t vendor, product;
765 
766 	vendor = pci_get_vendor(dev);
767 	product = pci_get_device(dev);
768 
769 	for (t = my_devs; t->my_name != NULL; t++) {
770 		if (vendor == t->my_vid && product == t->my_did) {
771 			device_set_desc(dev, t->my_name);
772 			return (0);
773 		}
774 	}
775 
776 	return (ENXIO);
777 }
778 
779 /*
780  * Attach the interface. Allocate softc structures, do ifmedia setup and
781  * ethernet/BPF attach.
782  */
783 static int
784 my_attach(device_t dev)
785 {
786 	int             i;
787 	u_char          eaddr[ETHER_ADDR_LEN];
788 	u_int32_t       command, iobase;
789 	struct my_softc *sc;
790 	struct ifnet   *ifp;
791 	int             media = IFM_ETHER | IFM_100_TX | IFM_FDX;
792 	unsigned int    round;
793 	caddr_t         roundptr;
794 	struct my_type *p;
795 	u_int16_t       phy_vid, phy_did, phy_sts = 0;
796 	int             rid, unit, error = 0;
797 	struct my_type *t;
798 	uint16_t vendor, product;
799 
800 	vendor = pci_get_vendor(dev);
801 	product = pci_get_device(dev);
802 
803 	for (t = my_devs; t->my_name != NULL; t++) {
804 		if (vendor == t->my_vid && product == t->my_did)
805 			break;
806 	}
807 
808 	if (t->my_name == NULL)
809 		return(ENXIO);
810 
811 	sc = device_get_softc(dev);
812 	unit = device_get_unit(dev);
813 
814 	/*
815 	 * Map control/status registers.
816 	 */
817 	command = pci_read_config(dev, PCIR_COMMAND, 4);
818 	command |= (PCIM_CMD_PORTEN | PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
819 	pci_write_config(dev, PCIR_COMMAND, command & 0x000000ff, 4);
820 	command = pci_read_config(dev, PCIR_COMMAND, 4);
821 
822 	if (t->my_did == MTD800ID) {
823 		iobase = pci_read_config(dev, MY_PCI_LOIO, 4);
824 		if (iobase & 0x300)
825 			MY_USEIOSPACE = 0;
826 	}
827 	if (MY_USEIOSPACE) {
828 		if (!(command & PCIM_CMD_PORTEN)) {
829 			kprintf("my%d: failed to enable I/O ports!\n", unit);
830 			error = ENXIO;
831 			return(error);
832 		}
833 	} else {
834 		if (!(command & PCIM_CMD_MEMEN)) {
835 			kprintf("my%d: failed to enable memory mapping!\n",
836 			    unit);
837 			error = ENXIO;
838 			return(error);
839 		}
840 	}
841 
842 	rid = MY_RID;
843 	sc->my_res = bus_alloc_resource_any(dev, MY_RES, &rid, RF_ACTIVE);
844 
845 	if (sc->my_res == NULL) {
846 		kprintf("my%d: couldn't map ports/memory\n", unit);
847 		error = ENXIO;
848 		goto fail;
849 	}
850 	sc->my_btag = rman_get_bustag(sc->my_res);
851 	sc->my_bhandle = rman_get_bushandle(sc->my_res);
852 
853 	rid = 0;
854 	sc->my_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
855 	    RF_SHAREABLE | RF_ACTIVE);
856 
857 	if (sc->my_irq == NULL) {
858 		kprintf("my%d: couldn't map interrupt\n", unit);
859 		error = ENXIO;
860 		goto fail;
861 	}
862 
863 	sc->my_info = t;
864 
865 	/* Reset the adapter. */
866 	my_reset(sc);
867 
868 	/*
869 	 * Get station address
870 	 */
871 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
872 		eaddr[i] = CSR_READ_1(sc, MY_PAR0 + i);
873 
874 	sc->my_unit = unit;
875 
876 	sc->my_ldata_ptr = kmalloc(sizeof(struct my_list_data) + 8,
877 				  M_DEVBUF, M_WAITOK);
878 	if (sc->my_ldata_ptr == NULL) {
879 		kprintf("my%d: no memory for list buffers!\n", unit);
880 		error = ENXIO;
881 		goto fail;
882 	}
883 	sc->my_ldata = (struct my_list_data *) sc->my_ldata_ptr;
884 	round = (unsigned int)sc->my_ldata_ptr & 0xF;
885 	roundptr = sc->my_ldata_ptr;
886 	for (i = 0; i < 8; i++) {
887 		if (round % 8) {
888 			round++;
889 			roundptr++;
890 		} else
891 			break;
892 	}
893 	sc->my_ldata = (struct my_list_data *) roundptr;
894 	bzero(sc->my_ldata, sizeof(struct my_list_data));
895 
896 	ifp = &sc->arpcom.ac_if;
897 	ifp->if_softc = sc;
898 	if_initname(ifp, "my", unit);
899 	ifp->if_mtu = ETHERMTU;
900 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
901 	ifp->if_ioctl = my_ioctl;
902 	ifp->if_start = my_start;
903 	ifp->if_watchdog = my_watchdog;
904 	ifp->if_init = my_init;
905 	ifp->if_baudrate = 10000000;
906 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
907 	ifq_set_ready(&ifp->if_snd);
908 
909 	if (sc->my_info->my_did == MTD803ID)
910 		sc->my_pinfo = my_phys;
911 	else {
912 		if (bootverbose)
913 			kprintf("my%d: probing for a PHY\n", sc->my_unit);
914 		for (i = MY_PHYADDR_MIN; i < MY_PHYADDR_MAX + 1; i++) {
915 			if (bootverbose)
916 				kprintf("my%d: checking address: %d\n",
917 				    sc->my_unit, i);
918 			sc->my_phy_addr = i;
919 			phy_sts = my_phy_readreg(sc, PHY_BMSR);
920 			if ((phy_sts != 0) && (phy_sts != 0xffff))
921 				break;
922 			else
923 				phy_sts = 0;
924 		}
925 		if (phy_sts) {
926 			phy_vid = my_phy_readreg(sc, PHY_VENID);
927 			phy_did = my_phy_readreg(sc, PHY_DEVID);
928 			if (bootverbose) {
929 				kprintf("my%d: found PHY at address %d, ",
930 				    sc->my_unit, sc->my_phy_addr);
931 				kprintf("vendor id: %x device id: %x\n",
932 				    phy_vid, phy_did);
933 			}
934 			p = my_phys;
935 			while (p->my_vid) {
936 				if (phy_vid == p->my_vid) {
937 					sc->my_pinfo = p;
938 					break;
939 				}
940 				p++;
941 			}
942 			if (sc->my_pinfo == NULL)
943 				sc->my_pinfo = &my_phys[PHY_UNKNOWN];
944 			if (bootverbose)
945 				kprintf("my%d: PHY type: %s\n",
946 				       sc->my_unit, sc->my_pinfo->my_name);
947 		} else {
948 			kprintf("my%d: MII without any phy!\n", sc->my_unit);
949 			error = ENXIO;
950 			goto fail;
951 		}
952 	}
953 
954 	/* Do ifmedia setup. */
955 	ifmedia_init(&sc->ifmedia, 0, my_ifmedia_upd, my_ifmedia_sts);
956 	my_getmode_mii(sc);
957 	my_autoneg_mii(sc, MY_FLAG_FORCEDELAY, 1);
958 	media = sc->ifmedia.ifm_media;
959 	my_stop(sc);
960 	ifmedia_set(&sc->ifmedia, media);
961 
962 	ether_ifattach(ifp, eaddr, NULL);
963 
964 	error = bus_setup_intr(dev, sc->my_irq, INTR_NETSAFE,
965 			       my_intr, sc, &sc->my_intrhand,
966 			       ifp->if_serializer);
967 	if (error) {
968 		ether_ifdetach(ifp);
969 		kprintf("my%d: couldn't set up irq\n", unit);
970 		goto fail;
971 	}
972 
973 	return (0);
974 
975 fail:
976 	my_detach(dev);
977 	return (error);
978 }
979 
980 static int
981 my_detach(device_t dev)
982 {
983 	struct my_softc *sc = device_get_softc(dev);
984 	struct ifnet *ifp = &sc->arpcom.ac_if;
985 
986 	if (device_is_attached(dev)) {
987 		lwkt_serialize_enter(ifp->if_serializer);
988 		my_stop(sc);
989 		bus_teardown_intr(dev, sc->my_irq, sc->my_intrhand);
990 		lwkt_serialize_exit(ifp->if_serializer);
991 
992 		ether_ifdetach(ifp);
993 	}
994 
995 	if (sc->my_irq)
996 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
997 	if (sc->my_res)
998 		bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
999 
1000 	return (0);
1001 }
1002 
1003 
1004 /*
1005  * Initialize the transmit descriptors.
1006  */
1007 static int
1008 my_list_tx_init(struct my_softc * sc)
1009 {
1010 	struct my_chain_data *cd;
1011 	struct my_list_data *ld;
1012 	int             i;
1013 
1014 	cd = &sc->my_cdata;
1015 	ld = sc->my_ldata;
1016 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1017 		cd->my_tx_chain[i].my_ptr = &ld->my_tx_list[i];
1018 		if (i == (MY_TX_LIST_CNT - 1))
1019 			cd->my_tx_chain[i].my_nextdesc = &cd->my_tx_chain[0];
1020 		else
1021 			cd->my_tx_chain[i].my_nextdesc =
1022 			    &cd->my_tx_chain[i + 1];
1023 	}
1024 	cd->my_tx_free = &cd->my_tx_chain[0];
1025 	cd->my_tx_tail = cd->my_tx_head = NULL;
1026 	return (0);
1027 }
1028 
1029 /*
1030  * Initialize the RX descriptors and allocate mbufs for them. Note that we
1031  * arrange the descriptors in a closed ring, so that the last descriptor
1032  * points back to the first.
1033  */
1034 static int
1035 my_list_rx_init(struct my_softc * sc)
1036 {
1037 	struct my_chain_data *cd;
1038 	struct my_list_data *ld;
1039 	int             i;
1040 
1041 	cd = &sc->my_cdata;
1042 	ld = sc->my_ldata;
1043 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1044 		cd->my_rx_chain[i].my_ptr =
1045 		    (struct my_desc *) & ld->my_rx_list[i];
1046 		if (my_newbuf(sc, &cd->my_rx_chain[i]) == ENOBUFS)
1047 			return (ENOBUFS);
1048 		if (i == (MY_RX_LIST_CNT - 1)) {
1049 			cd->my_rx_chain[i].my_nextdesc = &cd->my_rx_chain[0];
1050 			ld->my_rx_list[i].my_next = vtophys(&ld->my_rx_list[0]);
1051 		} else {
1052 			cd->my_rx_chain[i].my_nextdesc =
1053 			    &cd->my_rx_chain[i + 1];
1054 			ld->my_rx_list[i].my_next =
1055 			    vtophys(&ld->my_rx_list[i + 1]);
1056 		}
1057 	}
1058 	cd->my_rx_head = &cd->my_rx_chain[0];
1059 	return (0);
1060 }
1061 
1062 /*
1063  * Initialize an RX descriptor and attach an MBUF cluster.
1064  */
1065 static int
1066 my_newbuf(struct my_softc * sc, struct my_chain_onefrag * c)
1067 {
1068 	struct mbuf    *m_new = NULL;
1069 
1070 	MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1071 	if (m_new == NULL) {
1072 		kprintf("my%d: no memory for rx list -- packet dropped!\n",
1073 		       sc->my_unit);
1074 		return (ENOBUFS);
1075 	}
1076 	MCLGET(m_new, MB_DONTWAIT);
1077 	if (!(m_new->m_flags & M_EXT)) {
1078 		kprintf("my%d: no memory for rx list -- packet dropped!\n",
1079 		       sc->my_unit);
1080 		m_freem(m_new);
1081 		return (ENOBUFS);
1082 	}
1083 	c->my_mbuf = m_new;
1084 	c->my_ptr->my_data = vtophys(mtod(m_new, caddr_t));
1085 	c->my_ptr->my_ctl = (MCLBYTES - 1) << MY_RBSShift;
1086 	c->my_ptr->my_status = MY_OWNByNIC;
1087 	return (0);
1088 }
1089 
1090 /*
1091  * A frame has been uploaded: pass the resulting mbuf chain up to the higher
1092  * level protocols.
1093  */
1094 static void
1095 my_rxeof(struct my_softc * sc)
1096 {
1097 	struct mbuf *m;
1098 	struct ifnet *ifp = &sc->arpcom.ac_if;
1099 	struct my_chain_onefrag *cur_rx;
1100 	int total_len = 0;
1101 	u_int32_t rxstat;
1102 
1103 	while (!((rxstat = sc->my_cdata.my_rx_head->my_ptr->my_status)
1104 	    & MY_OWNByNIC)) {
1105 		cur_rx = sc->my_cdata.my_rx_head;
1106 		sc->my_cdata.my_rx_head = cur_rx->my_nextdesc;
1107 
1108 		if (rxstat & MY_ES) {	/* error summary: give up this rx pkt */
1109 			ifp->if_ierrors++;
1110 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1111 			continue;
1112 		}
1113 		/* No errors; receive the packet. */
1114 		total_len = (rxstat & MY_FLNGMASK) >> MY_FLNGShift;
1115 		total_len -= ETHER_CRC_LEN;
1116 
1117 		if (total_len < MINCLSIZE) {
1118 			m = m_devget(mtod(cur_rx->my_mbuf, char *),
1119 			    total_len, 0, ifp, NULL);
1120 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1121 			if (m == NULL) {
1122 				ifp->if_ierrors++;
1123 				continue;
1124 			}
1125 		} else {
1126 			m = cur_rx->my_mbuf;
1127 			/*
1128 			 * Try to conjure up a new mbuf cluster. If that
1129 			 * fails, it means we have an out of memory condition
1130 			 * and should leave the buffer in place and continue.
1131 			 * This will result in a lost packet, but there's
1132 			 * little else we can do in this situation.
1133 			 */
1134 			if (my_newbuf(sc, cur_rx) == ENOBUFS) {
1135 				ifp->if_ierrors++;
1136 				cur_rx->my_ptr->my_status = MY_OWNByNIC;
1137 				continue;
1138 			}
1139 			m->m_pkthdr.rcvif = ifp;
1140 			m->m_pkthdr.len = m->m_len = total_len;
1141 		}
1142 		ifp->if_ipackets++;
1143 		ifp->if_input(ifp, m);
1144 	}
1145 }
1146 
1147 
1148 /*
1149  * A frame was downloaded to the chip. It's safe for us to clean up the list
1150  * buffers.
1151  */
1152 static void
1153 my_txeof(struct my_softc * sc)
1154 {
1155 	struct ifnet *ifp = &sc->arpcom.ac_if;
1156 	struct my_chain *cur_tx;
1157 
1158 	/* Clear the timeout timer. */
1159 	ifp->if_timer = 0;
1160 	if (sc->my_cdata.my_tx_head == NULL)
1161 		return;
1162 	/*
1163 	 * Go through our tx list and free mbufs for those frames that have
1164 	 * been transmitted.
1165 	 */
1166 	while (sc->my_cdata.my_tx_head->my_mbuf != NULL) {
1167 		u_int32_t       txstat;
1168 
1169 		cur_tx = sc->my_cdata.my_tx_head;
1170 		txstat = MY_TXSTATUS(cur_tx);
1171 		if ((txstat & MY_OWNByNIC) || txstat == MY_UNSENT)
1172 			break;
1173 		if (!(CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced)) {
1174 			if (txstat & MY_TXERR) {
1175 				ifp->if_oerrors++;
1176 				if (txstat & MY_EC) /* excessive collision */
1177 					ifp->if_collisions++;
1178 				if (txstat & MY_LC)	/* late collision */
1179 					ifp->if_collisions++;
1180 			}
1181 			ifp->if_collisions += (txstat & MY_NCRMASK) >>
1182 			    MY_NCRShift;
1183 		}
1184 		ifp->if_opackets++;
1185 		m_freem(cur_tx->my_mbuf);
1186 		cur_tx->my_mbuf = NULL;
1187 		if (sc->my_cdata.my_tx_head == sc->my_cdata.my_tx_tail) {
1188 			sc->my_cdata.my_tx_head = NULL;
1189 			sc->my_cdata.my_tx_tail = NULL;
1190 			break;
1191 		}
1192 		sc->my_cdata.my_tx_head = cur_tx->my_nextdesc;
1193 	}
1194 	if (CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced) {
1195 		ifp->if_collisions += (CSR_READ_4(sc, MY_TSR) & MY_NCRMask);
1196 	}
1197 }
1198 
1199 /*
1200  * TX 'end of channel' interrupt handler.
1201  */
1202 static void
1203 my_txeoc(struct my_softc * sc)
1204 {
1205 	struct ifnet *ifp = &sc->arpcom.ac_if;
1206 
1207 	ifp->if_timer = 0;
1208 	if (sc->my_cdata.my_tx_head == NULL) {
1209 		ifp->if_flags &= ~IFF_OACTIVE;
1210 		sc->my_cdata.my_tx_tail = NULL;
1211 		if (sc->my_want_auto)
1212 			my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1213 	} else {
1214 		if (MY_TXOWN(sc->my_cdata.my_tx_head) == MY_UNSENT) {
1215 			MY_TXOWN(sc->my_cdata.my_tx_head) = MY_OWNByNIC;
1216 			ifp->if_timer = 5;
1217 			CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);
1218 		}
1219 	}
1220 }
1221 
1222 static void
1223 my_intr(void *arg)
1224 {
1225 	struct my_softc *sc = arg;
1226 	struct ifnet *ifp = &sc->arpcom.ac_if;
1227 	u_int32_t status;
1228 
1229 	if (!(ifp->if_flags & IFF_UP))
1230 		return;
1231 
1232 	/* Disable interrupts. */
1233 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1234 
1235 	for (;;) {
1236 		status = CSR_READ_4(sc, MY_ISR);
1237 		status &= MY_INTRS;
1238 		if (status)
1239 			CSR_WRITE_4(sc, MY_ISR, status);
1240 		else
1241 			break;
1242 
1243 		if (status & MY_RI)	/* receive interrupt */
1244 			my_rxeof(sc);
1245 
1246 		if ((status & MY_RBU) || (status & MY_RxErr)) {
1247 			/* rx buffer unavailable or rx error */
1248 			ifp->if_ierrors++;
1249 #ifdef foo
1250 			my_stop(sc);
1251 			my_reset(sc);
1252 			my_init(sc);
1253 #endif
1254 		}
1255 		if (status & MY_TI)	/* tx interrupt */
1256 			my_txeof(sc);
1257 		if (status & MY_ETI)	/* tx early interrupt */
1258 			my_txeof(sc);
1259 		if (status & MY_TBU)	/* tx buffer unavailable */
1260 			my_txeoc(sc);
1261 
1262 #if 0				/* 90/1/18 delete */
1263 		if (status & MY_FBE) {
1264 			my_reset(sc);
1265 			my_init(sc);
1266 		}
1267 #endif
1268 
1269 	}
1270 
1271 	/* Re-enable interrupts. */
1272 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1273 	if (!ifq_is_empty(&ifp->if_snd))
1274 		my_start(ifp);
1275 }
1276 
1277 /*
1278  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1279  * pointers to the fragment pointers.
1280  */
1281 static int
1282 my_encap(struct my_softc * sc, struct my_chain * c, struct mbuf * m_head)
1283 {
1284 	struct my_desc *f = NULL;
1285 	int             total_len;
1286 	struct mbuf    *m, *m_new = NULL;
1287 
1288 	/* calculate the total tx pkt length */
1289 	total_len = 0;
1290 	for (m = m_head; m != NULL; m = m->m_next)
1291 		total_len += m->m_len;
1292 	/*
1293 	 * Start packing the mbufs in this chain into the fragment pointers.
1294 	 * Stop when we run out of fragments or hit the end of the mbuf
1295 	 * chain.
1296 	 */
1297 	m = m_head;
1298 	MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1299 	if (m_new == NULL) {
1300 		kprintf("my%d: no memory for tx list", sc->my_unit);
1301 		return (1);
1302 	}
1303 	if (m_head->m_pkthdr.len > MHLEN) {
1304 		MCLGET(m_new, MB_DONTWAIT);
1305 		if (!(m_new->m_flags & M_EXT)) {
1306 			m_freem(m_new);
1307 			kprintf("my%d: no memory for tx list", sc->my_unit);
1308 			return (1);
1309 		}
1310 	}
1311 	m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t));
1312 	m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1313 	m_freem(m_head);
1314 	m_head = m_new;
1315 	f = &c->my_ptr->my_frag[0];
1316 	f->my_status = 0;
1317 	f->my_data = vtophys(mtod(m_new, caddr_t));
1318 	total_len = m_new->m_len;
1319 	f->my_ctl = MY_TXFD | MY_TXLD | MY_CRCEnable | MY_PADEnable;
1320 	f->my_ctl |= total_len << MY_PKTShift;	/* pkt size */
1321 	f->my_ctl |= total_len;	/* buffer size */
1322 	/* 89/12/29 add, for mtd891 *//* [ 89? ] */
1323 	if (sc->my_info->my_did == MTD891ID)
1324 		f->my_ctl |= MY_ETIControl | MY_RetryTxLC;
1325 	c->my_mbuf = m_head;
1326 	c->my_lastdesc = 0;
1327 	MY_TXNEXT(c) = vtophys(&c->my_nextdesc->my_ptr->my_frag[0]);
1328 	return (0);
1329 }
1330 
1331 /*
1332  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1333  * to the mbuf data regions directly in the transmit lists. We also save a
1334  * copy of the pointers since the transmit list fragment pointers are
1335  * physical addresses.
1336  */
1337 static void
1338 my_start(struct ifnet * ifp)
1339 {
1340 	struct my_softc *sc = ifp->if_softc;
1341 	struct mbuf    *m_head = NULL;
1342 	struct my_chain *cur_tx = NULL, *start_tx;
1343 
1344 	crit_enter();
1345 
1346 	if (sc->my_autoneg) {
1347 		sc->my_tx_pend = 1;
1348 		crit_exit();
1349 		return;
1350 	}
1351 	/*
1352 	 * Check for an available queue slot. If there are none, punt.
1353 	 */
1354 	if (sc->my_cdata.my_tx_free->my_mbuf != NULL) {
1355 		ifp->if_flags |= IFF_OACTIVE;
1356 		crit_exit();
1357 		return;
1358 	}
1359 
1360 	start_tx = sc->my_cdata.my_tx_free;
1361 	while (sc->my_cdata.my_tx_free->my_mbuf == NULL) {
1362 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1363 		if (m_head == NULL)
1364 			break;
1365 
1366 		/* Pick a descriptor off the free list. */
1367 		cur_tx = sc->my_cdata.my_tx_free;
1368 		sc->my_cdata.my_tx_free = cur_tx->my_nextdesc;
1369 
1370 		/* Pack the data into the descriptor. */
1371 		my_encap(sc, cur_tx, m_head);
1372 
1373 		if (cur_tx != start_tx)
1374 			MY_TXOWN(cur_tx) = MY_OWNByNIC;
1375 		BPF_MTAP(ifp, cur_tx->my_mbuf);
1376 	}
1377 	/*
1378 	 * If there are no packets queued, bail.
1379 	 */
1380 	if (cur_tx == NULL) {
1381 		crit_exit();
1382 		return;
1383 	}
1384 	/*
1385 	 * Place the request for the upload interrupt in the last descriptor
1386 	 * in the chain. This way, if we're chaining several packets at once,
1387 	 * we'll only get an interupt once for the whole chain rather than
1388 	 * once for each packet.
1389 	 */
1390 	MY_TXCTL(cur_tx) |= MY_TXIC;
1391 	cur_tx->my_ptr->my_frag[0].my_ctl |= MY_TXIC;
1392 	sc->my_cdata.my_tx_tail = cur_tx;
1393 	if (sc->my_cdata.my_tx_head == NULL)
1394 		sc->my_cdata.my_tx_head = start_tx;
1395 	MY_TXOWN(start_tx) = MY_OWNByNIC;
1396 	CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);	/* tx polling demand */
1397 
1398 	/*
1399 	 * Set a timeout in case the chip goes out to lunch.
1400 	 */
1401 	ifp->if_timer = 5;
1402 
1403 	crit_exit();
1404 }
1405 
1406 static void
1407 my_init(void *xsc)
1408 {
1409 	struct my_softc *sc = xsc;
1410 	struct ifnet   *ifp = &sc->arpcom.ac_if;
1411 	u_int16_t       phy_bmcr = 0;
1412 
1413 	crit_enter();
1414 	if (sc->my_autoneg) {
1415 		crit_exit();
1416 		return;
1417 	}
1418 	if (sc->my_pinfo != NULL)
1419 		phy_bmcr = my_phy_readreg(sc, PHY_BMCR);
1420 	/*
1421 	 * Cancel pending I/O and free all RX/TX buffers.
1422 	 */
1423 	my_stop(sc);
1424 	my_reset(sc);
1425 
1426 	/*
1427 	 * Set cache alignment and burst length.
1428 	 */
1429 #if 0				/* 89/9/1 modify,  */
1430 	CSR_WRITE_4(sc, MY_BCR, MY_RPBLE512);
1431 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF);
1432 #endif
1433 	CSR_WRITE_4(sc, MY_BCR, MY_PBL8);
1434 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF | MY_RBLEN | MY_RPBLE512);
1435 	/*
1436 	 * 89/12/29 add, for mtd891,
1437 	 */
1438 	if (sc->my_info->my_did == MTD891ID) {
1439 		MY_SETBIT(sc, MY_BCR, MY_PROG);
1440 		MY_SETBIT(sc, MY_TCRRCR, MY_Enhanced);
1441 	}
1442 	my_setcfg(sc, phy_bmcr);
1443 	/* Init circular RX list. */
1444 	if (my_list_rx_init(sc) == ENOBUFS) {
1445 		kprintf("my%d: init failed: no memory for rx buffers\n",
1446 		    sc->my_unit);
1447 		my_stop(sc);
1448 		crit_exit();
1449 		return;
1450 	}
1451 	/* Init TX descriptors. */
1452 	my_list_tx_init(sc);
1453 
1454 	/* If we want promiscuous mode, set the allframes bit. */
1455 	if (ifp->if_flags & IFF_PROMISC)
1456 		MY_SETBIT(sc, MY_TCRRCR, MY_PROM);
1457 	else
1458 		MY_CLRBIT(sc, MY_TCRRCR, MY_PROM);
1459 
1460 	/*
1461 	 * Set capture broadcast bit to capture broadcast frames.
1462 	 */
1463 	if (ifp->if_flags & IFF_BROADCAST)
1464 		MY_SETBIT(sc, MY_TCRRCR, MY_AB);
1465 	else
1466 		MY_CLRBIT(sc, MY_TCRRCR, MY_AB);
1467 
1468 	/*
1469 	 * Program the multicast filter, if necessary.
1470 	 */
1471 	my_setmulti(sc);
1472 
1473 	/*
1474 	 * Load the address of the RX list.
1475 	 */
1476 	MY_CLRBIT(sc, MY_TCRRCR, MY_RE);
1477 	CSR_WRITE_4(sc, MY_RXLBA, vtophys(&sc->my_ldata->my_rx_list[0]));
1478 
1479 	/*
1480 	 * Enable interrupts.
1481 	 */
1482 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1483 	CSR_WRITE_4(sc, MY_ISR, 0xFFFFFFFF);
1484 
1485 	/* Enable receiver and transmitter. */
1486 	MY_SETBIT(sc, MY_TCRRCR, MY_RE);
1487 	MY_CLRBIT(sc, MY_TCRRCR, MY_TE);
1488 	CSR_WRITE_4(sc, MY_TXLBA, vtophys(&sc->my_ldata->my_tx_list[0]));
1489 	MY_SETBIT(sc, MY_TCRRCR, MY_TE);
1490 
1491 	/* Restore state of BMCR */
1492 	if (sc->my_pinfo != NULL)
1493 		my_phy_writereg(sc, PHY_BMCR, phy_bmcr);
1494 	ifp->if_flags |= IFF_RUNNING;
1495 	ifp->if_flags &= ~IFF_OACTIVE;
1496 	crit_exit();
1497 }
1498 
1499 /*
1500  * Set media options.
1501  */
1502 
1503 static int
1504 my_ifmedia_upd(struct ifnet * ifp)
1505 {
1506 	struct my_softc *sc = ifp->if_softc;
1507 	struct ifmedia *ifm = &sc->ifmedia;
1508 
1509 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1510 		return (EINVAL);
1511 
1512 	crit_enter();
1513 
1514 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
1515 		my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1516 	else
1517 		my_setmode_mii(sc, ifm->ifm_media);
1518 
1519 	crit_exit();
1520 
1521 	return (0);
1522 }
1523 
1524 /*
1525  * Report current media status.
1526  */
1527 
1528 static void
1529 my_ifmedia_sts(struct ifnet * ifp, struct ifmediareq * ifmr)
1530 {
1531 	struct my_softc *sc = ifp->if_softc;
1532 	u_int16_t advert = 0, ability = 0;
1533 
1534 	crit_enter();
1535 
1536 	ifmr->ifm_active = IFM_ETHER;
1537 	if (!(my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
1538 #if 0				/* this version did not support 1000M, */
1539 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_1000)
1540 			ifmr->ifm_active = IFM_ETHER | IFM_1000TX;
1541 #endif
1542 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
1543 			ifmr->ifm_active = IFM_ETHER | IFM_100_TX;
1544 		else
1545 			ifmr->ifm_active = IFM_ETHER | IFM_10_T;
1546 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
1547 			ifmr->ifm_active |= IFM_FDX;
1548 		else
1549 			ifmr->ifm_active |= IFM_HDX;
1550 
1551 		crit_exit();
1552 
1553 		return;
1554 	}
1555 	ability = my_phy_readreg(sc, PHY_LPAR);
1556 	advert = my_phy_readreg(sc, PHY_ANAR);
1557 
1558 #if 0				/* this version did not support 1000M, */
1559 	if (sc->my_pinfo->my_vid = MarvellPHYID0) {
1560 		ability2 = my_phy_readreg(sc, PHY_1000SR);
1561 		if (ability2 & PHY_1000SR_1000BTXFULL) {
1562 			advert = 0;
1563 			ability = 0;
1564 	  		ifmr->ifm_active = IFM_ETHER | IFM_1000_T | IFM_FDX;
1565 	  	} else if (ability & PHY_1000SR_1000BTXHALF) {
1566 			advert = 0;
1567 			ability = 0;
1568 			ifmr->ifm_active = IFM_ETHER | IFM_1000_T | IFM_HDX;
1569 		}
1570 	}
1571 #endif
1572 	if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4)
1573 		ifmr->ifm_active = IFM_ETHER | IFM_100_T4;
1574 	else if (advert & PHY_ANAR_100BTXFULL && ability & PHY_ANAR_100BTXFULL)
1575 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1576 	else if (advert & PHY_ANAR_100BTXHALF && ability & PHY_ANAR_100BTXHALF)
1577 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_HDX;
1578 	else if (advert & PHY_ANAR_10BTFULL && ability & PHY_ANAR_10BTFULL)
1579 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_FDX;
1580 	else if (advert & PHY_ANAR_10BTHALF && ability & PHY_ANAR_10BTHALF)
1581 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_HDX;
1582 
1583 	crit_exit();
1584 }
1585 
1586 static int
1587 my_ioctl(struct ifnet * ifp, u_long command, caddr_t data, struct ucred *cr)
1588 {
1589 	struct my_softc *sc = ifp->if_softc;
1590 	struct ifreq   *ifr = (struct ifreq *) data;
1591 	int             error = 0;
1592 
1593 	crit_enter();
1594 	switch (command) {
1595 	case SIOCSIFFLAGS:
1596 		if (ifp->if_flags & IFF_UP)
1597 			my_init(sc);
1598 		else if (ifp->if_flags & IFF_RUNNING)
1599 			my_stop(sc);
1600 		error = 0;
1601 		break;
1602 	case SIOCADDMULTI:
1603 	case SIOCDELMULTI:
1604 		my_setmulti(sc);
1605 		error = 0;
1606 		break;
1607 	case SIOCGIFMEDIA:
1608 	case SIOCSIFMEDIA:
1609 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
1610 		break;
1611 	default:
1612 		error = ether_ioctl(ifp, command, data);
1613 		break;
1614 	}
1615 
1616 	crit_exit();
1617 	return (error);
1618 }
1619 
1620 static void
1621 my_watchdog(struct ifnet * ifp)
1622 {
1623 	struct my_softc *sc = ifp->if_softc;
1624 
1625 	crit_enter();
1626 
1627 	if (sc->my_autoneg) {
1628 		my_autoneg_mii(sc, MY_FLAG_DELAYTIMEO, 1);
1629 		crit_exit();
1630 		return;
1631 	}
1632 	ifp->if_oerrors++;
1633 	kprintf("my%d: watchdog timeout\n", sc->my_unit);
1634 	if (!(my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
1635 		kprintf("my%d: no carrier - transceiver cable problem?\n",
1636 		    sc->my_unit);
1637 	my_stop(sc);
1638 	my_reset(sc);
1639 	my_init(sc);
1640 	if (!ifq_is_empty(&ifp->if_snd))
1641 		my_start(ifp);
1642 	crit_exit();
1643 }
1644 
1645 
1646 /*
1647  * Stop the adapter and free any mbufs allocated to the RX and TX lists.
1648  */
1649 static void
1650 my_stop(struct my_softc * sc)
1651 {
1652 	struct ifnet *ifp = &sc->arpcom.ac_if;
1653 	int    i;
1654 
1655 	ifp->if_timer = 0;
1656 
1657 	MY_CLRBIT(sc, MY_TCRRCR, (MY_RE | MY_TE));
1658 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1659 	CSR_WRITE_4(sc, MY_TXLBA, 0x00000000);
1660 	CSR_WRITE_4(sc, MY_RXLBA, 0x00000000);
1661 
1662 	/*
1663 	 * Free data in the RX lists.
1664 	 */
1665 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1666 		if (sc->my_cdata.my_rx_chain[i].my_mbuf != NULL) {
1667 			m_freem(sc->my_cdata.my_rx_chain[i].my_mbuf);
1668 			sc->my_cdata.my_rx_chain[i].my_mbuf = NULL;
1669 		}
1670 	}
1671 	bzero((char *)&sc->my_ldata->my_rx_list,
1672 	    sizeof(sc->my_ldata->my_rx_list));
1673 	/*
1674 	 * Free the TX list buffers.
1675 	 */
1676 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1677 		if (sc->my_cdata.my_tx_chain[i].my_mbuf != NULL) {
1678 			m_freem(sc->my_cdata.my_tx_chain[i].my_mbuf);
1679 			sc->my_cdata.my_tx_chain[i].my_mbuf = NULL;
1680 		}
1681 	}
1682 	bzero((char *)&sc->my_ldata->my_tx_list,
1683 	    sizeof(sc->my_ldata->my_tx_list));
1684 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1685 }
1686 
1687 /*
1688  * Stop all chip I/O so that the kernel's probe routines don't get confused
1689  * by errant DMAs when rebooting.
1690  */
1691 static void
1692 my_shutdown(device_t dev)
1693 {
1694 	struct my_softc *sc;
1695 
1696 	sc = device_get_softc(dev);
1697 	my_stop(sc);
1698 	return;
1699 }
1700