xref: /dragonfly/sys/dev/netif/my/if_my.c (revision 9b5ae8ee)
1 /*
2  * Copyright (c) 2002 Myson Technology Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions, and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. The name of the author may not be used to endorse or promote products
12  *    derived from this software without specific prior written permission.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
18  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * Written by: yen_cw@myson.com.tw  available at: http://www.myson.com.tw/
27  *
28  * $FreeBSD: src/sys/dev/my/if_my.c,v 1.2.2.4 2002/04/17 02:05:27 julian Exp $
29  * $DragonFly: src/sys/dev/netif/my/if_my.c,v 1.28 2007/03/11 03:46:48 swildner Exp $
30  *
31  * Myson fast ethernet PCI NIC driver
32  *
33  * $Id: if_my.c,v 1.40 2001/11/30 03:55:00 <yen_cw@myson.com.tw> wpaul Exp $
34  */
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/sockio.h>
38 #include <sys/mbuf.h>
39 #include <sys/malloc.h>
40 #include <sys/kernel.h>
41 #include <sys/socket.h>
42 #include <sys/queue.h>
43 #include <sys/bus.h>
44 #include <sys/module.h>
45 #include <sys/serialize.h>
46 #include <sys/bus.h>
47 #include <sys/rman.h>
48 
49 #include <sys/thread2.h>
50 
51 #include <net/if.h>
52 #include <net/ifq_var.h>
53 #include <net/if_arp.h>
54 #include <net/ethernet.h>
55 #include <net/if_media.h>
56 #include <net/if_dl.h>
57 #include <net/bpf.h>
58 
59 #include <vm/vm.h>		/* for vtophys */
60 #include <vm/pmap.h>		/* for vtophys */
61 #include <machine/clock.h>	/* for DELAY */
62 
63 #include <bus/pci/pcireg.h>
64 #include <bus/pci/pcivar.h>
65 
66 /*
67  * #define MY_USEIOSPACE
68  */
69 
70 static int      MY_USEIOSPACE = 1;
71 
72 #if (MY_USEIOSPACE)
73 #define MY_RES                  SYS_RES_IOPORT
74 #define MY_RID                  MY_PCI_LOIO
75 #else
76 #define MY_RES                  SYS_RES_MEMORY
77 #define MY_RID                  MY_PCI_LOMEM
78 #endif
79 
80 
81 #include "if_myreg.h"
82 
83 /*
84  * Various supported device vendors/types and their names.
85  */
86 static struct my_type my_devs[] = {
87 	{MYSONVENDORID, MTD800ID, "Myson MTD80X Based Fast Ethernet Card"},
88 	{MYSONVENDORID, MTD803ID, "Myson MTD80X Based Fast Ethernet Card"},
89 	{MYSONVENDORID, MTD891ID, "Myson MTD89X Based Giga Ethernet Card"},
90 	{0, 0, NULL}
91 };
92 
93 /*
94  * Various supported PHY vendors/types and their names. Note that this driver
95  * will work with pretty much any MII-compliant PHY, so failure to positively
96  * identify the chip is not a fatal error.
97  */
98 static struct my_type my_phys[] = {
99 	{MysonPHYID0, MysonPHYID0, "<MYSON MTD981>"},
100 	{SeeqPHYID0, SeeqPHYID0, "<SEEQ 80225>"},
101 	{AhdocPHYID0, AhdocPHYID0, "<AHDOC 101>"},
102 	{MarvellPHYID0, MarvellPHYID0, "<MARVELL 88E1000>"},
103 	{LevelOnePHYID0, LevelOnePHYID0, "<LevelOne LXT1000>"},
104 	{0, 0, "<MII-compliant physical interface>"}
105 };
106 
107 static int      my_probe(device_t);
108 static int      my_attach(device_t);
109 static int      my_detach(device_t);
110 static int      my_newbuf(struct my_softc *, struct my_chain_onefrag *);
111 static int      my_encap(struct my_softc *, struct my_chain *, struct mbuf *);
112 static void     my_rxeof(struct my_softc *);
113 static void     my_txeof(struct my_softc *);
114 static void     my_txeoc(struct my_softc *);
115 static void     my_intr(void *);
116 static void     my_start(struct ifnet *);
117 static int      my_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
118 static void     my_init(void *);
119 static void     my_stop(struct my_softc *);
120 static void     my_watchdog(struct ifnet *);
121 static void     my_shutdown(device_t);
122 static int      my_ifmedia_upd(struct ifnet *);
123 static void     my_ifmedia_sts(struct ifnet *, struct ifmediareq *);
124 static u_int16_t my_phy_readreg(struct my_softc *, int);
125 static void     my_phy_writereg(struct my_softc *, int, int);
126 static void     my_autoneg_xmit(struct my_softc *);
127 static void     my_autoneg_mii(struct my_softc *, int, int);
128 static void     my_setmode_mii(struct my_softc *, int);
129 static void     my_getmode_mii(struct my_softc *);
130 static void     my_setcfg(struct my_softc *, int);
131 static u_int8_t my_calchash(caddr_t);
132 static void     my_setmulti(struct my_softc *);
133 static void     my_reset(struct my_softc *);
134 static int      my_list_rx_init(struct my_softc *);
135 static int      my_list_tx_init(struct my_softc *);
136 static long     my_send_cmd_to_phy(struct my_softc *, int, int);
137 
138 #define MY_SETBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
139 #define MY_CLRBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
140 
141 static device_method_t my_methods[] = {
142 	/* Device interface */
143 	DEVMETHOD(device_probe, my_probe),
144 	DEVMETHOD(device_attach, my_attach),
145 	DEVMETHOD(device_detach, my_detach),
146 	DEVMETHOD(device_shutdown, my_shutdown),
147 
148 	{0, 0}
149 };
150 
151 static driver_t my_driver = {
152 	"my",
153 	my_methods,
154 	sizeof(struct my_softc)
155 };
156 
157 static devclass_t my_devclass;
158 
159 DECLARE_DUMMY_MODULE(if_my);
160 DRIVER_MODULE(if_my, pci, my_driver, my_devclass, 0, 0);
161 
162 static long
163 my_send_cmd_to_phy(struct my_softc * sc, int opcode, int regad)
164 {
165 	long            miir;
166 	int             i;
167 	int             mask, data;
168 
169 	/* enable MII output */
170 	miir = CSR_READ_4(sc, MY_MANAGEMENT);
171 	miir &= 0xfffffff0;
172 
173 	miir |= MY_MASK_MIIR_MII_WRITE + MY_MASK_MIIR_MII_MDO;
174 
175 	/* send 32 1's preamble */
176 	for (i = 0; i < 32; i++) {
177 		/* low MDC; MDO is already high (miir) */
178 		miir &= ~MY_MASK_MIIR_MII_MDC;
179 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
180 
181 		/* high MDC */
182 		miir |= MY_MASK_MIIR_MII_MDC;
183 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
184 	}
185 
186 	/* calculate ST+OP+PHYAD+REGAD+TA */
187 	data = opcode | (sc->my_phy_addr << 7) | (regad << 2);
188 
189 	/* sent out */
190 	mask = 0x8000;
191 	while (mask) {
192 		/* low MDC, prepare MDO */
193 		miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
194 		if (mask & data)
195 			miir |= MY_MASK_MIIR_MII_MDO;
196 
197 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
198 		/* high MDC */
199 		miir |= MY_MASK_MIIR_MII_MDC;
200 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
201 		DELAY(30);
202 
203 		/* next */
204 		mask >>= 1;
205 		if (mask == 0x2 && opcode == MY_OP_READ)
206 			miir &= ~MY_MASK_MIIR_MII_WRITE;
207 	}
208 
209 	return miir;
210 }
211 
212 
213 static          u_int16_t
214 my_phy_readreg(struct my_softc * sc, int reg)
215 {
216 	long            miir;
217 	int             mask, data;
218 
219 	if (sc->my_info->my_did == MTD803ID)
220 		data = CSR_READ_2(sc, MY_PHYBASE + reg * 2);
221 	else {
222 		miir = my_send_cmd_to_phy(sc, MY_OP_READ, reg);
223 
224 		/* read data */
225 		mask = 0x8000;
226 		data = 0;
227 		while (mask) {
228 			/* low MDC */
229 			miir &= ~MY_MASK_MIIR_MII_MDC;
230 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
231 
232 			/* read MDI */
233 			miir = CSR_READ_4(sc, MY_MANAGEMENT);
234 			if (miir & MY_MASK_MIIR_MII_MDI)
235 				data |= mask;
236 
237 			/* high MDC, and wait */
238 			miir |= MY_MASK_MIIR_MII_MDC;
239 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
240 			DELAY(30);
241 
242 			/* next */
243 			mask >>= 1;
244 		}
245 
246 		/* low MDC */
247 		miir &= ~MY_MASK_MIIR_MII_MDC;
248 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
249 	}
250 
251 	return (u_int16_t) data;
252 }
253 
254 
255 static void
256 my_phy_writereg(struct my_softc * sc, int reg, int data)
257 {
258 	long            miir;
259 	int             mask;
260 
261 	if (sc->my_info->my_did == MTD803ID)
262 		CSR_WRITE_2(sc, MY_PHYBASE + reg * 2, data);
263 	else {
264 		miir = my_send_cmd_to_phy(sc, MY_OP_WRITE, reg);
265 
266 		/* write data */
267 		mask = 0x8000;
268 		while (mask) {
269 			/* low MDC, prepare MDO */
270 			miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
271 			if (mask & data)
272 				miir |= MY_MASK_MIIR_MII_MDO;
273 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
274 			DELAY(1);
275 
276 			/* high MDC */
277 			miir |= MY_MASK_MIIR_MII_MDC;
278 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
279 			DELAY(1);
280 
281 			/* next */
282 			mask >>= 1;
283 		}
284 
285 		/* low MDC */
286 		miir &= ~MY_MASK_MIIR_MII_MDC;
287 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
288 	}
289 }
290 
291 static          u_int8_t
292 my_calchash(caddr_t addr)
293 {
294 	u_int32_t       crc, carry;
295 	int             i, j;
296 	u_int8_t        c;
297 
298 	/* Compute CRC for the address value. */
299 	crc = 0xFFFFFFFF;	/* initial value */
300 
301 	for (i = 0; i < 6; i++) {
302 		c = *(addr + i);
303 		for (j = 0; j < 8; j++) {
304 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
305 			crc <<= 1;
306 			c >>= 1;
307 			if (carry)
308 				crc = (crc ^ 0x04c11db6) | carry;
309 		}
310 	}
311 
312 	/*
313 	 * return the filter bit position Note: I arrived at the following
314 	 * nonsense through experimentation. It's not the usual way to
315 	 * generate the bit position but it's the only thing I could come up
316 	 * with that works.
317 	 */
318 	return (~(crc >> 26) & 0x0000003F);
319 }
320 
321 
322 /*
323  * Program the 64-bit multicast hash filter.
324  */
325 static void
326 my_setmulti(struct my_softc * sc)
327 {
328 	struct ifnet *ifp = &sc->arpcom.ac_if;
329 	int             h = 0;
330 	u_int32_t       hashes[2] = {0, 0};
331 	struct ifmultiaddr *ifma;
332 	u_int32_t       rxfilt;
333 	int             mcnt = 0;
334 
335 	rxfilt = CSR_READ_4(sc, MY_TCRRCR);
336 
337 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
338 		rxfilt |= MY_AM;
339 		CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
340 		CSR_WRITE_4(sc, MY_MAR0, 0xFFFFFFFF);
341 		CSR_WRITE_4(sc, MY_MAR1, 0xFFFFFFFF);
342 
343 		return;
344 	}
345 	/* first, zot all the existing hash bits */
346 	CSR_WRITE_4(sc, MY_MAR0, 0);
347 	CSR_WRITE_4(sc, MY_MAR1, 0);
348 
349 	/* now program new ones */
350 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
351 		if (ifma->ifma_addr->sa_family != AF_LINK)
352 			continue;
353 		h = my_calchash(LLADDR((struct sockaddr_dl *) ifma->ifma_addr));
354 		if (h < 32)
355 			hashes[0] |= (1 << h);
356 		else
357 			hashes[1] |= (1 << (h - 32));
358 		mcnt++;
359 	}
360 
361 	if (mcnt)
362 		rxfilt |= MY_AM;
363 	else
364 		rxfilt &= ~MY_AM;
365 	CSR_WRITE_4(sc, MY_MAR0, hashes[0]);
366 	CSR_WRITE_4(sc, MY_MAR1, hashes[1]);
367 	CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
368 }
369 
370 /*
371  * Initiate an autonegotiation session.
372  */
373 static void
374 my_autoneg_xmit(struct my_softc * sc)
375 {
376 	u_int16_t       phy_sts = 0;
377 
378 	my_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
379 	DELAY(500);
380 	while (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_RESET);
381 
382 	phy_sts = my_phy_readreg(sc, PHY_BMCR);
383 	phy_sts |= PHY_BMCR_AUTONEGENBL | PHY_BMCR_AUTONEGRSTR;
384 	my_phy_writereg(sc, PHY_BMCR, phy_sts);
385 }
386 
387 
388 /*
389  * Invoke autonegotiation on a PHY.
390  */
391 static void
392 my_autoneg_mii(struct my_softc * sc, int flag, int verbose)
393 {
394 	u_int16_t       phy_sts = 0, media, advert, ability;
395 	u_int16_t       ability2 = 0;
396 	struct ifnet *ifp = &sc->arpcom.ac_if;
397 	struct ifmedia *ifm = &sc->ifmedia;
398 
399 	ifm->ifm_media = IFM_ETHER | IFM_AUTO;
400 
401 #ifndef FORCE_AUTONEG_TFOUR
402 	/*
403 	 * First, see if autoneg is supported. If not, there's no point in
404 	 * continuing.
405 	 */
406 	phy_sts = my_phy_readreg(sc, PHY_BMSR);
407 	if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
408 		if (verbose)
409 			kprintf("my%d: autonegotiation not supported\n",
410 			    sc->my_unit);
411 		ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
412 		return;
413 	}
414 #endif
415 	switch (flag) {
416 	case MY_FLAG_FORCEDELAY:
417 		/*
418 		 * XXX Never use this option anywhere but in the probe
419 		 * routine: making the kernel stop dead in its tracks for
420 		 * three whole seconds after we've gone multi-user is really
421 		 * bad manners.
422 		 */
423 		my_autoneg_xmit(sc);
424 		DELAY(5000000);
425 		break;
426 	case MY_FLAG_SCHEDDELAY:
427 		/*
428 		 * Wait for the transmitter to go idle before starting an
429 		 * autoneg session, otherwise my_start() may clobber our
430 		 * timeout, and we don't want to allow transmission during an
431 		 * autoneg session since that can screw it up.
432 		 */
433 		if (sc->my_cdata.my_tx_head != NULL) {
434 			sc->my_want_auto = 1;
435 			return;
436 		}
437 		my_autoneg_xmit(sc);
438 		ifp->if_timer = 5;
439 		sc->my_autoneg = 1;
440 		sc->my_want_auto = 0;
441 		return;
442 	case MY_FLAG_DELAYTIMEO:
443 		ifp->if_timer = 0;
444 		sc->my_autoneg = 0;
445 		break;
446 	default:
447 		kprintf("my%d: invalid autoneg flag: %d\n", sc->my_unit, flag);
448 		return;
449 	}
450 
451 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
452 		if (verbose)
453 			kprintf("my%d: autoneg complete, ", sc->my_unit);
454 		phy_sts = my_phy_readreg(sc, PHY_BMSR);
455 	} else {
456 		if (verbose)
457 			kprintf("my%d: autoneg not complete, ", sc->my_unit);
458 	}
459 
460 	media = my_phy_readreg(sc, PHY_BMCR);
461 
462 	/* Link is good. Report modes and set duplex mode. */
463 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
464 		if (verbose)
465 			kprintf("my%d: link status good. ", sc->my_unit);
466 		advert = my_phy_readreg(sc, PHY_ANAR);
467 		ability = my_phy_readreg(sc, PHY_LPAR);
468 		if ((sc->my_pinfo->my_vid == MarvellPHYID0) ||
469 		    (sc->my_pinfo->my_vid == LevelOnePHYID0)) {
470 			ability2 = my_phy_readreg(sc, PHY_1000SR);
471 			if (ability2 & PHY_1000SR_1000BTXFULL) {
472 				advert = 0;
473 				ability = 0;
474 				/*
475 				 * this version did not support 1000M,
476 				 * ifm->ifm_media =
477 				 * IFM_ETHER | IFM_1000_T | IFM_FDX;
478 				 */
479 				ifm->ifm_media =
480 				    IFM_ETHER | IFM_100_TX | IFM_FDX;
481 				media &= ~PHY_BMCR_SPEEDSEL;
482 				media |= PHY_BMCR_1000;
483 				media |= PHY_BMCR_DUPLEX;
484 				kprintf("(full-duplex, 1000Mbps)\n");
485 			} else if (ability2 & PHY_1000SR_1000BTXHALF) {
486 				advert = 0;
487 				ability = 0;
488 				/*
489 				 * this version did not support 1000M,
490 				 * ifm->ifm_media = IFM_ETHER | IFM_1000_T;
491 				 */
492 				ifm->ifm_media = IFM_ETHER | IFM_100_TX;
493 				media &= ~PHY_BMCR_SPEEDSEL;
494 				media &= ~PHY_BMCR_DUPLEX;
495 				media |= PHY_BMCR_1000;
496 				kprintf("(half-duplex, 1000Mbps)\n");
497 			}
498 		}
499 		if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
500 			ifm->ifm_media = IFM_ETHER | IFM_100_T4;
501 			media |= PHY_BMCR_SPEEDSEL;
502 			media &= ~PHY_BMCR_DUPLEX;
503 			kprintf("(100baseT4)\n");
504 		} else if (advert & PHY_ANAR_100BTXFULL &&
505 			   ability & PHY_ANAR_100BTXFULL) {
506 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
507 			media |= PHY_BMCR_SPEEDSEL;
508 			media |= PHY_BMCR_DUPLEX;
509 			kprintf("(full-duplex, 100Mbps)\n");
510 		} else if (advert & PHY_ANAR_100BTXHALF &&
511 			   ability & PHY_ANAR_100BTXHALF) {
512 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
513 			media |= PHY_BMCR_SPEEDSEL;
514 			media &= ~PHY_BMCR_DUPLEX;
515 			kprintf("(half-duplex, 100Mbps)\n");
516 		} else if (advert & PHY_ANAR_10BTFULL &&
517 			   ability & PHY_ANAR_10BTFULL) {
518 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
519 			media &= ~PHY_BMCR_SPEEDSEL;
520 			media |= PHY_BMCR_DUPLEX;
521 			kprintf("(full-duplex, 10Mbps)\n");
522 		} else if (advert) {
523 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
524 			media &= ~PHY_BMCR_SPEEDSEL;
525 			media &= ~PHY_BMCR_DUPLEX;
526 			kprintf("(half-duplex, 10Mbps)\n");
527 		}
528 		media &= ~PHY_BMCR_AUTONEGENBL;
529 
530 		/* Set ASIC's duplex mode to match the PHY. */
531 		my_phy_writereg(sc, PHY_BMCR, media);
532 		my_setcfg(sc, media);
533 	} else {
534 		if (verbose)
535 			kprintf("my%d: no carrier\n", sc->my_unit);
536 	}
537 
538 	my_init(sc);
539 	if (sc->my_tx_pend) {
540 		sc->my_autoneg = 0;
541 		sc->my_tx_pend = 0;
542 		my_start(ifp);
543 	}
544 }
545 
546 /*
547  * To get PHY ability.
548  */
549 static void
550 my_getmode_mii(struct my_softc * sc)
551 {
552 	struct ifnet *ifp = &sc->arpcom.ac_if;
553 	u_int16_t       bmsr;
554 
555 	bmsr = my_phy_readreg(sc, PHY_BMSR);
556 	if (bootverbose)
557 		kprintf("my%d: PHY status word: %x\n", sc->my_unit, bmsr);
558 
559 	/* fallback */
560 	sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
561 
562 	if (bmsr & PHY_BMSR_10BTHALF) {
563 		if (bootverbose)
564 			kprintf("my%d: 10Mbps half-duplex mode supported\n",
565 			       sc->my_unit);
566 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_HDX,
567 		    0, NULL);
568 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
569 	}
570 	if (bmsr & PHY_BMSR_10BTFULL) {
571 		if (bootverbose)
572 			kprintf("my%d: 10Mbps full-duplex mode supported\n",
573 			    sc->my_unit);
574 
575 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
576 		    0, NULL);
577 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
578 	}
579 	if (bmsr & PHY_BMSR_100BTXHALF) {
580 		if (bootverbose)
581 			kprintf("my%d: 100Mbps half-duplex mode supported\n",
582 			       sc->my_unit);
583 		ifp->if_baudrate = 100000000;
584 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
585 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_HDX,
586 			    0, NULL);
587 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
588 	}
589 	if (bmsr & PHY_BMSR_100BTXFULL) {
590 		if (bootverbose)
591 			kprintf("my%d: 100Mbps full-duplex mode supported\n",
592 			    sc->my_unit);
593 		ifp->if_baudrate = 100000000;
594 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
595 		    0, NULL);
596 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
597 	}
598 	/* Some also support 100BaseT4. */
599 	if (bmsr & PHY_BMSR_100BT4) {
600 		if (bootverbose)
601 			kprintf("my%d: 100baseT4 mode supported\n", sc->my_unit);
602 		ifp->if_baudrate = 100000000;
603 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_T4, 0, NULL);
604 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_T4;
605 #ifdef FORCE_AUTONEG_TFOUR
606 		if (bootverbose)
607 			kprintf("my%d: forcing on autoneg support for BT4\n",
608 			    sc->my_unit);
609 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0 NULL):
610 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
611 #endif
612 	}
613 #if 0				/* this version did not support 1000M, */
614 	if (sc->my_pinfo->my_vid == MarvellPHYID0) {
615 		if (bootverbose)
616 			kprintf("my%d: 1000Mbps half-duplex mode supported\n",
617 			       sc->my_unit);
618 
619 		ifp->if_baudrate = 1000000000;
620 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL);
621 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_HDX,
622 		    0, NULL);
623 		if (bootverbose)
624 			kprintf("my%d: 1000Mbps full-duplex mode supported\n",
625 			   sc->my_unit);
626 		ifp->if_baudrate = 1000000000;
627 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX,
628 		    0, NULL);
629 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_1000_T | IFM_FDX;
630 	}
631 #endif
632 	if (bmsr & PHY_BMSR_CANAUTONEG) {
633 		if (bootverbose)
634 			kprintf("my%d: autoneg supported\n", sc->my_unit);
635 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
636 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
637 	}
638 }
639 
640 /*
641  * Set speed and duplex mode.
642  */
643 static void
644 my_setmode_mii(struct my_softc * sc, int media)
645 {
646 	struct ifnet *ifp = &sc->arpcom.ac_if;
647 	u_int16_t       bmcr;
648 
649 	/*
650 	 * If an autoneg session is in progress, stop it.
651 	 */
652 	if (sc->my_autoneg) {
653 		kprintf("my%d: canceling autoneg session\n", sc->my_unit);
654 		ifp->if_timer = sc->my_autoneg = sc->my_want_auto = 0;
655 		bmcr = my_phy_readreg(sc, PHY_BMCR);
656 		bmcr &= ~PHY_BMCR_AUTONEGENBL;
657 		my_phy_writereg(sc, PHY_BMCR, bmcr);
658 	}
659 	kprintf("my%d: selecting MII, ", sc->my_unit);
660 	bmcr = my_phy_readreg(sc, PHY_BMCR);
661 	bmcr &= ~(PHY_BMCR_AUTONEGENBL | PHY_BMCR_SPEEDSEL | PHY_BMCR_1000 |
662 		  PHY_BMCR_DUPLEX | PHY_BMCR_LOOPBK);
663 
664 #if 0				/* this version did not support 1000M, */
665 	if (IFM_SUBTYPE(media) == IFM_1000_T) {
666 		kprintf("1000Mbps/T4, half-duplex\n");
667 		bmcr &= ~PHY_BMCR_SPEEDSEL;
668 		bmcr &= ~PHY_BMCR_DUPLEX;
669 		bmcr |= PHY_BMCR_1000;
670 	}
671 #endif
672 	if (IFM_SUBTYPE(media) == IFM_100_T4) {
673 		kprintf("100Mbps/T4, half-duplex\n");
674 		bmcr |= PHY_BMCR_SPEEDSEL;
675 		bmcr &= ~PHY_BMCR_DUPLEX;
676 	}
677 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
678 		kprintf("100Mbps, ");
679 		bmcr |= PHY_BMCR_SPEEDSEL;
680 	}
681 	if (IFM_SUBTYPE(media) == IFM_10_T) {
682 		kprintf("10Mbps, ");
683 		bmcr &= ~PHY_BMCR_SPEEDSEL;
684 	}
685 	if ((media & IFM_GMASK) == IFM_FDX) {
686 		kprintf("full duplex\n");
687 		bmcr |= PHY_BMCR_DUPLEX;
688 	} else {
689 		kprintf("half duplex\n");
690 		bmcr &= ~PHY_BMCR_DUPLEX;
691 	}
692 	my_phy_writereg(sc, PHY_BMCR, bmcr);
693 	my_setcfg(sc, bmcr);
694 }
695 
696 /*
697  * The Myson manual states that in order to fiddle with the 'full-duplex' and
698  * '100Mbps' bits in the netconfig register, we first have to put the
699  * transmit and/or receive logic in the idle state.
700  */
701 static void
702 my_setcfg(struct my_softc * sc, int bmcr)
703 {
704 	int             i, restart = 0;
705 
706 	if (CSR_READ_4(sc, MY_TCRRCR) & (MY_TE | MY_RE)) {
707 		restart = 1;
708 		MY_CLRBIT(sc, MY_TCRRCR, (MY_TE | MY_RE));
709 		for (i = 0; i < MY_TIMEOUT; i++) {
710 			DELAY(10);
711 			if (!(CSR_READ_4(sc, MY_TCRRCR) &
712 			    (MY_TXRUN | MY_RXRUN)))
713 				break;
714 		}
715 		if (i == MY_TIMEOUT)
716 			kprintf("my%d: failed to force tx and rx to idle \n",
717 			    sc->my_unit);
718 	}
719 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS1000);
720 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS10);
721 	if (bmcr & PHY_BMCR_1000)
722 		MY_SETBIT(sc, MY_TCRRCR, MY_PS1000);
723 	else if (!(bmcr & PHY_BMCR_SPEEDSEL))
724 		MY_SETBIT(sc, MY_TCRRCR, MY_PS10);
725 	if (bmcr & PHY_BMCR_DUPLEX)
726 		MY_SETBIT(sc, MY_TCRRCR, MY_FD);
727 	else
728 		MY_CLRBIT(sc, MY_TCRRCR, MY_FD);
729 	if (restart)
730 		MY_SETBIT(sc, MY_TCRRCR, MY_TE | MY_RE);
731 }
732 
733 static void
734 my_reset(struct my_softc * sc)
735 {
736 	int    i;
737 
738 	MY_SETBIT(sc, MY_BCR, MY_SWR);
739 	for (i = 0; i < MY_TIMEOUT; i++) {
740 		DELAY(10);
741 		if (!(CSR_READ_4(sc, MY_BCR) & MY_SWR))
742 			break;
743 	}
744 	if (i == MY_TIMEOUT)
745 		kprintf("m0x%d: reset never completed!\n", sc->my_unit);
746 
747 	/* Wait a little while for the chip to get its brains in order. */
748 	DELAY(1000);
749 }
750 
751 /*
752  * Probe for a Myson chip. Check the PCI vendor and device IDs against our
753  * list and return a device name if we find a match.
754  */
755 static int
756 my_probe(device_t dev)
757 {
758 	struct my_type *t;
759 	uint16_t vendor, product;
760 
761 	vendor = pci_get_vendor(dev);
762 	product = pci_get_device(dev);
763 
764 	for (t = my_devs; t->my_name != NULL; t++) {
765 		if (vendor == t->my_vid && product == t->my_did) {
766 			device_set_desc(dev, t->my_name);
767 			return (0);
768 		}
769 	}
770 
771 	return (ENXIO);
772 }
773 
774 /*
775  * Attach the interface. Allocate softc structures, do ifmedia setup and
776  * ethernet/BPF attach.
777  */
778 static int
779 my_attach(device_t dev)
780 {
781 	int             i;
782 	u_char          eaddr[ETHER_ADDR_LEN];
783 	u_int32_t       command, iobase;
784 	struct my_softc *sc;
785 	struct ifnet   *ifp;
786 	int             media = IFM_ETHER | IFM_100_TX | IFM_FDX;
787 	unsigned int    round;
788 	caddr_t         roundptr;
789 	struct my_type *p;
790 	u_int16_t       phy_vid, phy_did, phy_sts = 0;
791 	int             rid, unit, error = 0;
792 	struct my_type *t;
793 	uint16_t vendor, product;
794 
795 	vendor = pci_get_vendor(dev);
796 	product = pci_get_device(dev);
797 
798 	for (t = my_devs; t->my_name != NULL; t++) {
799 		if (vendor == t->my_vid && product == t->my_did)
800 			break;
801 	}
802 
803 	if (t->my_name == NULL)
804 		return(ENXIO);
805 
806 	sc = device_get_softc(dev);
807 	unit = device_get_unit(dev);
808 
809 	/*
810 	 * Map control/status registers.
811 	 */
812 	command = pci_read_config(dev, PCIR_COMMAND, 4);
813 	command |= (PCIM_CMD_PORTEN | PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
814 	pci_write_config(dev, PCIR_COMMAND, command & 0x000000ff, 4);
815 	command = pci_read_config(dev, PCIR_COMMAND, 4);
816 
817 	if (t->my_did == MTD800ID) {
818 		iobase = pci_read_config(dev, MY_PCI_LOIO, 4);
819 		if (iobase & 0x300)
820 			MY_USEIOSPACE = 0;
821 	}
822 	if (MY_USEIOSPACE) {
823 		if (!(command & PCIM_CMD_PORTEN)) {
824 			kprintf("my%d: failed to enable I/O ports!\n", unit);
825 			error = ENXIO;
826 			return(error);
827 		}
828 	} else {
829 		if (!(command & PCIM_CMD_MEMEN)) {
830 			kprintf("my%d: failed to enable memory mapping!\n",
831 			    unit);
832 			error = ENXIO;
833 			return(error);
834 		}
835 	}
836 
837 	rid = MY_RID;
838 	sc->my_res = bus_alloc_resource_any(dev, MY_RES, &rid, RF_ACTIVE);
839 
840 	if (sc->my_res == NULL) {
841 		kprintf("my%d: couldn't map ports/memory\n", unit);
842 		error = ENXIO;
843 		goto fail;
844 	}
845 	sc->my_btag = rman_get_bustag(sc->my_res);
846 	sc->my_bhandle = rman_get_bushandle(sc->my_res);
847 
848 	rid = 0;
849 	sc->my_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
850 	    RF_SHAREABLE | RF_ACTIVE);
851 
852 	if (sc->my_irq == NULL) {
853 		kprintf("my%d: couldn't map interrupt\n", unit);
854 		error = ENXIO;
855 		goto fail;
856 	}
857 
858 	sc->my_info = t;
859 
860 	/* Reset the adapter. */
861 	my_reset(sc);
862 
863 	/*
864 	 * Get station address
865 	 */
866 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
867 		eaddr[i] = CSR_READ_1(sc, MY_PAR0 + i);
868 
869 	sc->my_unit = unit;
870 
871 	sc->my_ldata_ptr = kmalloc(sizeof(struct my_list_data) + 8,
872 				  M_DEVBUF, M_WAITOK);
873 	if (sc->my_ldata_ptr == NULL) {
874 		kprintf("my%d: no memory for list buffers!\n", unit);
875 		error = ENXIO;
876 		goto fail;
877 	}
878 	sc->my_ldata = (struct my_list_data *) sc->my_ldata_ptr;
879 	round = (unsigned int)sc->my_ldata_ptr & 0xF;
880 	roundptr = sc->my_ldata_ptr;
881 	for (i = 0; i < 8; i++) {
882 		if (round % 8) {
883 			round++;
884 			roundptr++;
885 		} else
886 			break;
887 	}
888 	sc->my_ldata = (struct my_list_data *) roundptr;
889 	bzero(sc->my_ldata, sizeof(struct my_list_data));
890 
891 	ifp = &sc->arpcom.ac_if;
892 	ifp->if_softc = sc;
893 	if_initname(ifp, "my", unit);
894 	ifp->if_mtu = ETHERMTU;
895 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
896 	ifp->if_ioctl = my_ioctl;
897 	ifp->if_start = my_start;
898 	ifp->if_watchdog = my_watchdog;
899 	ifp->if_init = my_init;
900 	ifp->if_baudrate = 10000000;
901 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
902 	ifq_set_ready(&ifp->if_snd);
903 
904 	if (sc->my_info->my_did == MTD803ID)
905 		sc->my_pinfo = my_phys;
906 	else {
907 		if (bootverbose)
908 			kprintf("my%d: probing for a PHY\n", sc->my_unit);
909 		for (i = MY_PHYADDR_MIN; i < MY_PHYADDR_MAX + 1; i++) {
910 			if (bootverbose)
911 				kprintf("my%d: checking address: %d\n",
912 				    sc->my_unit, i);
913 			sc->my_phy_addr = i;
914 			phy_sts = my_phy_readreg(sc, PHY_BMSR);
915 			if ((phy_sts != 0) && (phy_sts != 0xffff))
916 				break;
917 			else
918 				phy_sts = 0;
919 		}
920 		if (phy_sts) {
921 			phy_vid = my_phy_readreg(sc, PHY_VENID);
922 			phy_did = my_phy_readreg(sc, PHY_DEVID);
923 			if (bootverbose) {
924 				kprintf("my%d: found PHY at address %d, ",
925 				    sc->my_unit, sc->my_phy_addr);
926 				kprintf("vendor id: %x device id: %x\n",
927 				    phy_vid, phy_did);
928 			}
929 			p = my_phys;
930 			while (p->my_vid) {
931 				if (phy_vid == p->my_vid) {
932 					sc->my_pinfo = p;
933 					break;
934 				}
935 				p++;
936 			}
937 			if (sc->my_pinfo == NULL)
938 				sc->my_pinfo = &my_phys[PHY_UNKNOWN];
939 			if (bootverbose)
940 				kprintf("my%d: PHY type: %s\n",
941 				       sc->my_unit, sc->my_pinfo->my_name);
942 		} else {
943 			kprintf("my%d: MII without any phy!\n", sc->my_unit);
944 			error = ENXIO;
945 			goto fail;
946 		}
947 	}
948 
949 	/* Do ifmedia setup. */
950 	ifmedia_init(&sc->ifmedia, 0, my_ifmedia_upd, my_ifmedia_sts);
951 	my_getmode_mii(sc);
952 	my_autoneg_mii(sc, MY_FLAG_FORCEDELAY, 1);
953 	media = sc->ifmedia.ifm_media;
954 	my_stop(sc);
955 	ifmedia_set(&sc->ifmedia, media);
956 
957 	ether_ifattach(ifp, eaddr, NULL);
958 
959 	error = bus_setup_intr(dev, sc->my_irq, INTR_NETSAFE,
960 			       my_intr, sc, &sc->my_intrhand,
961 			       ifp->if_serializer);
962 	if (error) {
963 		ether_ifdetach(ifp);
964 		kprintf("my%d: couldn't set up irq\n", unit);
965 		goto fail;
966 	}
967 
968 	return (0);
969 
970 fail:
971 	my_detach(dev);
972 	return (error);
973 }
974 
975 static int
976 my_detach(device_t dev)
977 {
978 	struct my_softc *sc = device_get_softc(dev);
979 	struct ifnet *ifp = &sc->arpcom.ac_if;
980 
981 	if (device_is_attached(dev)) {
982 		lwkt_serialize_enter(ifp->if_serializer);
983 		my_stop(sc);
984 		bus_teardown_intr(dev, sc->my_irq, sc->my_intrhand);
985 		lwkt_serialize_exit(ifp->if_serializer);
986 
987 		ether_ifdetach(ifp);
988 	}
989 
990 	if (sc->my_irq)
991 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
992 	if (sc->my_res)
993 		bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
994 
995 	return (0);
996 }
997 
998 
999 /*
1000  * Initialize the transmit descriptors.
1001  */
1002 static int
1003 my_list_tx_init(struct my_softc * sc)
1004 {
1005 	struct my_chain_data *cd;
1006 	struct my_list_data *ld;
1007 	int             i;
1008 
1009 	cd = &sc->my_cdata;
1010 	ld = sc->my_ldata;
1011 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1012 		cd->my_tx_chain[i].my_ptr = &ld->my_tx_list[i];
1013 		if (i == (MY_TX_LIST_CNT - 1))
1014 			cd->my_tx_chain[i].my_nextdesc = &cd->my_tx_chain[0];
1015 		else
1016 			cd->my_tx_chain[i].my_nextdesc =
1017 			    &cd->my_tx_chain[i + 1];
1018 	}
1019 	cd->my_tx_free = &cd->my_tx_chain[0];
1020 	cd->my_tx_tail = cd->my_tx_head = NULL;
1021 	return (0);
1022 }
1023 
1024 /*
1025  * Initialize the RX descriptors and allocate mbufs for them. Note that we
1026  * arrange the descriptors in a closed ring, so that the last descriptor
1027  * points back to the first.
1028  */
1029 static int
1030 my_list_rx_init(struct my_softc * sc)
1031 {
1032 	struct my_chain_data *cd;
1033 	struct my_list_data *ld;
1034 	int             i;
1035 
1036 	cd = &sc->my_cdata;
1037 	ld = sc->my_ldata;
1038 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1039 		cd->my_rx_chain[i].my_ptr =
1040 		    (struct my_desc *) & ld->my_rx_list[i];
1041 		if (my_newbuf(sc, &cd->my_rx_chain[i]) == ENOBUFS)
1042 			return (ENOBUFS);
1043 		if (i == (MY_RX_LIST_CNT - 1)) {
1044 			cd->my_rx_chain[i].my_nextdesc = &cd->my_rx_chain[0];
1045 			ld->my_rx_list[i].my_next = vtophys(&ld->my_rx_list[0]);
1046 		} else {
1047 			cd->my_rx_chain[i].my_nextdesc =
1048 			    &cd->my_rx_chain[i + 1];
1049 			ld->my_rx_list[i].my_next =
1050 			    vtophys(&ld->my_rx_list[i + 1]);
1051 		}
1052 	}
1053 	cd->my_rx_head = &cd->my_rx_chain[0];
1054 	return (0);
1055 }
1056 
1057 /*
1058  * Initialize an RX descriptor and attach an MBUF cluster.
1059  */
1060 static int
1061 my_newbuf(struct my_softc * sc, struct my_chain_onefrag * c)
1062 {
1063 	struct mbuf    *m_new = NULL;
1064 
1065 	MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1066 	if (m_new == NULL) {
1067 		kprintf("my%d: no memory for rx list -- packet dropped!\n",
1068 		       sc->my_unit);
1069 		return (ENOBUFS);
1070 	}
1071 	MCLGET(m_new, MB_DONTWAIT);
1072 	if (!(m_new->m_flags & M_EXT)) {
1073 		kprintf("my%d: no memory for rx list -- packet dropped!\n",
1074 		       sc->my_unit);
1075 		m_freem(m_new);
1076 		return (ENOBUFS);
1077 	}
1078 	c->my_mbuf = m_new;
1079 	c->my_ptr->my_data = vtophys(mtod(m_new, caddr_t));
1080 	c->my_ptr->my_ctl = (MCLBYTES - 1) << MY_RBSShift;
1081 	c->my_ptr->my_status = MY_OWNByNIC;
1082 	return (0);
1083 }
1084 
1085 /*
1086  * A frame has been uploaded: pass the resulting mbuf chain up to the higher
1087  * level protocols.
1088  */
1089 static void
1090 my_rxeof(struct my_softc * sc)
1091 {
1092 	struct mbuf *m;
1093 	struct ifnet *ifp = &sc->arpcom.ac_if;
1094 	struct my_chain_onefrag *cur_rx;
1095 	int total_len = 0;
1096 	u_int32_t rxstat;
1097 
1098 	while (!((rxstat = sc->my_cdata.my_rx_head->my_ptr->my_status)
1099 	    & MY_OWNByNIC)) {
1100 		cur_rx = sc->my_cdata.my_rx_head;
1101 		sc->my_cdata.my_rx_head = cur_rx->my_nextdesc;
1102 
1103 		if (rxstat & MY_ES) {	/* error summary: give up this rx pkt */
1104 			ifp->if_ierrors++;
1105 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1106 			continue;
1107 		}
1108 		/* No errors; receive the packet. */
1109 		total_len = (rxstat & MY_FLNGMASK) >> MY_FLNGShift;
1110 		total_len -= ETHER_CRC_LEN;
1111 
1112 		if (total_len < MINCLSIZE) {
1113 			m = m_devget(mtod(cur_rx->my_mbuf, char *),
1114 			    total_len, 0, ifp, NULL);
1115 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1116 			if (m == NULL) {
1117 				ifp->if_ierrors++;
1118 				continue;
1119 			}
1120 		} else {
1121 			m = cur_rx->my_mbuf;
1122 			/*
1123 			 * Try to conjure up a new mbuf cluster. If that
1124 			 * fails, it means we have an out of memory condition
1125 			 * and should leave the buffer in place and continue.
1126 			 * This will result in a lost packet, but there's
1127 			 * little else we can do in this situation.
1128 			 */
1129 			if (my_newbuf(sc, cur_rx) == ENOBUFS) {
1130 				ifp->if_ierrors++;
1131 				cur_rx->my_ptr->my_status = MY_OWNByNIC;
1132 				continue;
1133 			}
1134 			m->m_pkthdr.rcvif = ifp;
1135 			m->m_pkthdr.len = m->m_len = total_len;
1136 		}
1137 		ifp->if_ipackets++;
1138 		ifp->if_input(ifp, m);
1139 	}
1140 }
1141 
1142 
1143 /*
1144  * A frame was downloaded to the chip. It's safe for us to clean up the list
1145  * buffers.
1146  */
1147 static void
1148 my_txeof(struct my_softc * sc)
1149 {
1150 	struct ifnet *ifp = &sc->arpcom.ac_if;
1151 	struct my_chain *cur_tx;
1152 
1153 	/* Clear the timeout timer. */
1154 	ifp->if_timer = 0;
1155 	if (sc->my_cdata.my_tx_head == NULL)
1156 		return;
1157 	/*
1158 	 * Go through our tx list and free mbufs for those frames that have
1159 	 * been transmitted.
1160 	 */
1161 	while (sc->my_cdata.my_tx_head->my_mbuf != NULL) {
1162 		u_int32_t       txstat;
1163 
1164 		cur_tx = sc->my_cdata.my_tx_head;
1165 		txstat = MY_TXSTATUS(cur_tx);
1166 		if ((txstat & MY_OWNByNIC) || txstat == MY_UNSENT)
1167 			break;
1168 		if (!(CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced)) {
1169 			if (txstat & MY_TXERR) {
1170 				ifp->if_oerrors++;
1171 				if (txstat & MY_EC) /* excessive collision */
1172 					ifp->if_collisions++;
1173 				if (txstat & MY_LC)	/* late collision */
1174 					ifp->if_collisions++;
1175 			}
1176 			ifp->if_collisions += (txstat & MY_NCRMASK) >>
1177 			    MY_NCRShift;
1178 		}
1179 		ifp->if_opackets++;
1180 		m_freem(cur_tx->my_mbuf);
1181 		cur_tx->my_mbuf = NULL;
1182 		if (sc->my_cdata.my_tx_head == sc->my_cdata.my_tx_tail) {
1183 			sc->my_cdata.my_tx_head = NULL;
1184 			sc->my_cdata.my_tx_tail = NULL;
1185 			break;
1186 		}
1187 		sc->my_cdata.my_tx_head = cur_tx->my_nextdesc;
1188 	}
1189 	if (CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced) {
1190 		ifp->if_collisions += (CSR_READ_4(sc, MY_TSR) & MY_NCRMask);
1191 	}
1192 }
1193 
1194 /*
1195  * TX 'end of channel' interrupt handler.
1196  */
1197 static void
1198 my_txeoc(struct my_softc * sc)
1199 {
1200 	struct ifnet *ifp = &sc->arpcom.ac_if;
1201 
1202 	ifp->if_timer = 0;
1203 	if (sc->my_cdata.my_tx_head == NULL) {
1204 		ifp->if_flags &= ~IFF_OACTIVE;
1205 		sc->my_cdata.my_tx_tail = NULL;
1206 		if (sc->my_want_auto)
1207 			my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1208 	} else {
1209 		if (MY_TXOWN(sc->my_cdata.my_tx_head) == MY_UNSENT) {
1210 			MY_TXOWN(sc->my_cdata.my_tx_head) = MY_OWNByNIC;
1211 			ifp->if_timer = 5;
1212 			CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);
1213 		}
1214 	}
1215 }
1216 
1217 static void
1218 my_intr(void *arg)
1219 {
1220 	struct my_softc *sc = arg;
1221 	struct ifnet *ifp = &sc->arpcom.ac_if;
1222 	u_int32_t status;
1223 
1224 	if (!(ifp->if_flags & IFF_UP))
1225 		return;
1226 
1227 	/* Disable interrupts. */
1228 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1229 
1230 	for (;;) {
1231 		status = CSR_READ_4(sc, MY_ISR);
1232 		status &= MY_INTRS;
1233 		if (status)
1234 			CSR_WRITE_4(sc, MY_ISR, status);
1235 		else
1236 			break;
1237 
1238 		if (status & MY_RI)	/* receive interrupt */
1239 			my_rxeof(sc);
1240 
1241 		if ((status & MY_RBU) || (status & MY_RxErr)) {
1242 			/* rx buffer unavailable or rx error */
1243 			ifp->if_ierrors++;
1244 #ifdef foo
1245 			my_stop(sc);
1246 			my_reset(sc);
1247 			my_init(sc);
1248 #endif
1249 		}
1250 		if (status & MY_TI)	/* tx interrupt */
1251 			my_txeof(sc);
1252 		if (status & MY_ETI)	/* tx early interrupt */
1253 			my_txeof(sc);
1254 		if (status & MY_TBU)	/* tx buffer unavailable */
1255 			my_txeoc(sc);
1256 
1257 #if 0				/* 90/1/18 delete */
1258 		if (status & MY_FBE) {
1259 			my_reset(sc);
1260 			my_init(sc);
1261 		}
1262 #endif
1263 
1264 	}
1265 
1266 	/* Re-enable interrupts. */
1267 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1268 	if (!ifq_is_empty(&ifp->if_snd))
1269 		my_start(ifp);
1270 }
1271 
1272 /*
1273  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1274  * pointers to the fragment pointers.
1275  */
1276 static int
1277 my_encap(struct my_softc * sc, struct my_chain * c, struct mbuf * m_head)
1278 {
1279 	struct my_desc *f = NULL;
1280 	int             total_len;
1281 	struct mbuf    *m, *m_new = NULL;
1282 
1283 	/* calculate the total tx pkt length */
1284 	total_len = 0;
1285 	for (m = m_head; m != NULL; m = m->m_next)
1286 		total_len += m->m_len;
1287 	/*
1288 	 * Start packing the mbufs in this chain into the fragment pointers.
1289 	 * Stop when we run out of fragments or hit the end of the mbuf
1290 	 * chain.
1291 	 */
1292 	m = m_head;
1293 	MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1294 	if (m_new == NULL) {
1295 		kprintf("my%d: no memory for tx list", sc->my_unit);
1296 		return (1);
1297 	}
1298 	if (m_head->m_pkthdr.len > MHLEN) {
1299 		MCLGET(m_new, MB_DONTWAIT);
1300 		if (!(m_new->m_flags & M_EXT)) {
1301 			m_freem(m_new);
1302 			kprintf("my%d: no memory for tx list", sc->my_unit);
1303 			return (1);
1304 		}
1305 	}
1306 	m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t));
1307 	m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1308 	m_freem(m_head);
1309 	m_head = m_new;
1310 	f = &c->my_ptr->my_frag[0];
1311 	f->my_status = 0;
1312 	f->my_data = vtophys(mtod(m_new, caddr_t));
1313 	total_len = m_new->m_len;
1314 	f->my_ctl = MY_TXFD | MY_TXLD | MY_CRCEnable | MY_PADEnable;
1315 	f->my_ctl |= total_len << MY_PKTShift;	/* pkt size */
1316 	f->my_ctl |= total_len;	/* buffer size */
1317 	/* 89/12/29 add, for mtd891 *//* [ 89? ] */
1318 	if (sc->my_info->my_did == MTD891ID)
1319 		f->my_ctl |= MY_ETIControl | MY_RetryTxLC;
1320 	c->my_mbuf = m_head;
1321 	c->my_lastdesc = 0;
1322 	MY_TXNEXT(c) = vtophys(&c->my_nextdesc->my_ptr->my_frag[0]);
1323 	return (0);
1324 }
1325 
1326 /*
1327  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1328  * to the mbuf data regions directly in the transmit lists. We also save a
1329  * copy of the pointers since the transmit list fragment pointers are
1330  * physical addresses.
1331  */
1332 static void
1333 my_start(struct ifnet * ifp)
1334 {
1335 	struct my_softc *sc = ifp->if_softc;
1336 	struct mbuf    *m_head = NULL;
1337 	struct my_chain *cur_tx = NULL, *start_tx;
1338 
1339 	crit_enter();
1340 
1341 	if (sc->my_autoneg) {
1342 		sc->my_tx_pend = 1;
1343 		crit_exit();
1344 		return;
1345 	}
1346 	/*
1347 	 * Check for an available queue slot. If there are none, punt.
1348 	 */
1349 	if (sc->my_cdata.my_tx_free->my_mbuf != NULL) {
1350 		ifp->if_flags |= IFF_OACTIVE;
1351 		crit_exit();
1352 		return;
1353 	}
1354 
1355 	start_tx = sc->my_cdata.my_tx_free;
1356 	while (sc->my_cdata.my_tx_free->my_mbuf == NULL) {
1357 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1358 		if (m_head == NULL)
1359 			break;
1360 
1361 		/* Pick a descriptor off the free list. */
1362 		cur_tx = sc->my_cdata.my_tx_free;
1363 		sc->my_cdata.my_tx_free = cur_tx->my_nextdesc;
1364 
1365 		/* Pack the data into the descriptor. */
1366 		my_encap(sc, cur_tx, m_head);
1367 
1368 		if (cur_tx != start_tx)
1369 			MY_TXOWN(cur_tx) = MY_OWNByNIC;
1370 		BPF_MTAP(ifp, cur_tx->my_mbuf);
1371 	}
1372 	/*
1373 	 * If there are no packets queued, bail.
1374 	 */
1375 	if (cur_tx == NULL) {
1376 		crit_exit();
1377 		return;
1378 	}
1379 	/*
1380 	 * Place the request for the upload interrupt in the last descriptor
1381 	 * in the chain. This way, if we're chaining several packets at once,
1382 	 * we'll only get an interupt once for the whole chain rather than
1383 	 * once for each packet.
1384 	 */
1385 	MY_TXCTL(cur_tx) |= MY_TXIC;
1386 	cur_tx->my_ptr->my_frag[0].my_ctl |= MY_TXIC;
1387 	sc->my_cdata.my_tx_tail = cur_tx;
1388 	if (sc->my_cdata.my_tx_head == NULL)
1389 		sc->my_cdata.my_tx_head = start_tx;
1390 	MY_TXOWN(start_tx) = MY_OWNByNIC;
1391 	CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);	/* tx polling demand */
1392 
1393 	/*
1394 	 * Set a timeout in case the chip goes out to lunch.
1395 	 */
1396 	ifp->if_timer = 5;
1397 
1398 	crit_exit();
1399 }
1400 
1401 static void
1402 my_init(void *xsc)
1403 {
1404 	struct my_softc *sc = xsc;
1405 	struct ifnet   *ifp = &sc->arpcom.ac_if;
1406 	u_int16_t       phy_bmcr = 0;
1407 
1408 	crit_enter();
1409 	if (sc->my_autoneg) {
1410 		crit_exit();
1411 		return;
1412 	}
1413 	if (sc->my_pinfo != NULL)
1414 		phy_bmcr = my_phy_readreg(sc, PHY_BMCR);
1415 	/*
1416 	 * Cancel pending I/O and free all RX/TX buffers.
1417 	 */
1418 	my_stop(sc);
1419 	my_reset(sc);
1420 
1421 	/*
1422 	 * Set cache alignment and burst length.
1423 	 */
1424 #if 0				/* 89/9/1 modify,  */
1425 	CSR_WRITE_4(sc, MY_BCR, MY_RPBLE512);
1426 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF);
1427 #endif
1428 	CSR_WRITE_4(sc, MY_BCR, MY_PBL8);
1429 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF | MY_RBLEN | MY_RPBLE512);
1430 	/*
1431 	 * 89/12/29 add, for mtd891,
1432 	 */
1433 	if (sc->my_info->my_did == MTD891ID) {
1434 		MY_SETBIT(sc, MY_BCR, MY_PROG);
1435 		MY_SETBIT(sc, MY_TCRRCR, MY_Enhanced);
1436 	}
1437 	my_setcfg(sc, phy_bmcr);
1438 	/* Init circular RX list. */
1439 	if (my_list_rx_init(sc) == ENOBUFS) {
1440 		kprintf("my%d: init failed: no memory for rx buffers\n",
1441 		    sc->my_unit);
1442 		my_stop(sc);
1443 		crit_exit();
1444 		return;
1445 	}
1446 	/* Init TX descriptors. */
1447 	my_list_tx_init(sc);
1448 
1449 	/* If we want promiscuous mode, set the allframes bit. */
1450 	if (ifp->if_flags & IFF_PROMISC)
1451 		MY_SETBIT(sc, MY_TCRRCR, MY_PROM);
1452 	else
1453 		MY_CLRBIT(sc, MY_TCRRCR, MY_PROM);
1454 
1455 	/*
1456 	 * Set capture broadcast bit to capture broadcast frames.
1457 	 */
1458 	if (ifp->if_flags & IFF_BROADCAST)
1459 		MY_SETBIT(sc, MY_TCRRCR, MY_AB);
1460 	else
1461 		MY_CLRBIT(sc, MY_TCRRCR, MY_AB);
1462 
1463 	/*
1464 	 * Program the multicast filter, if necessary.
1465 	 */
1466 	my_setmulti(sc);
1467 
1468 	/*
1469 	 * Load the address of the RX list.
1470 	 */
1471 	MY_CLRBIT(sc, MY_TCRRCR, MY_RE);
1472 	CSR_WRITE_4(sc, MY_RXLBA, vtophys(&sc->my_ldata->my_rx_list[0]));
1473 
1474 	/*
1475 	 * Enable interrupts.
1476 	 */
1477 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1478 	CSR_WRITE_4(sc, MY_ISR, 0xFFFFFFFF);
1479 
1480 	/* Enable receiver and transmitter. */
1481 	MY_SETBIT(sc, MY_TCRRCR, MY_RE);
1482 	MY_CLRBIT(sc, MY_TCRRCR, MY_TE);
1483 	CSR_WRITE_4(sc, MY_TXLBA, vtophys(&sc->my_ldata->my_tx_list[0]));
1484 	MY_SETBIT(sc, MY_TCRRCR, MY_TE);
1485 
1486 	/* Restore state of BMCR */
1487 	if (sc->my_pinfo != NULL)
1488 		my_phy_writereg(sc, PHY_BMCR, phy_bmcr);
1489 	ifp->if_flags |= IFF_RUNNING;
1490 	ifp->if_flags &= ~IFF_OACTIVE;
1491 	crit_exit();
1492 }
1493 
1494 /*
1495  * Set media options.
1496  */
1497 
1498 static int
1499 my_ifmedia_upd(struct ifnet * ifp)
1500 {
1501 	struct my_softc *sc = ifp->if_softc;
1502 	struct ifmedia *ifm = &sc->ifmedia;
1503 
1504 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1505 		return (EINVAL);
1506 
1507 	crit_enter();
1508 
1509 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
1510 		my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1511 	else
1512 		my_setmode_mii(sc, ifm->ifm_media);
1513 
1514 	crit_exit();
1515 
1516 	return (0);
1517 }
1518 
1519 /*
1520  * Report current media status.
1521  */
1522 
1523 static void
1524 my_ifmedia_sts(struct ifnet * ifp, struct ifmediareq * ifmr)
1525 {
1526 	struct my_softc *sc = ifp->if_softc;
1527 	u_int16_t advert = 0, ability = 0;
1528 
1529 	crit_enter();
1530 
1531 	ifmr->ifm_active = IFM_ETHER;
1532 	if (!(my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
1533 #if 0				/* this version did not support 1000M, */
1534 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_1000)
1535 			ifmr->ifm_active = IFM_ETHER | IFM_1000TX;
1536 #endif
1537 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
1538 			ifmr->ifm_active = IFM_ETHER | IFM_100_TX;
1539 		else
1540 			ifmr->ifm_active = IFM_ETHER | IFM_10_T;
1541 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
1542 			ifmr->ifm_active |= IFM_FDX;
1543 		else
1544 			ifmr->ifm_active |= IFM_HDX;
1545 
1546 		crit_exit();
1547 
1548 		return;
1549 	}
1550 	ability = my_phy_readreg(sc, PHY_LPAR);
1551 	advert = my_phy_readreg(sc, PHY_ANAR);
1552 
1553 #if 0				/* this version did not support 1000M, */
1554 	if (sc->my_pinfo->my_vid = MarvellPHYID0) {
1555 		ability2 = my_phy_readreg(sc, PHY_1000SR);
1556 		if (ability2 & PHY_1000SR_1000BTXFULL) {
1557 			advert = 0;
1558 			ability = 0;
1559 	  		ifmr->ifm_active = IFM_ETHER | IFM_1000_T | IFM_FDX;
1560 	  	} else if (ability & PHY_1000SR_1000BTXHALF) {
1561 			advert = 0;
1562 			ability = 0;
1563 			ifmr->ifm_active = IFM_ETHER | IFM_1000_T | IFM_HDX;
1564 		}
1565 	}
1566 #endif
1567 	if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4)
1568 		ifmr->ifm_active = IFM_ETHER | IFM_100_T4;
1569 	else if (advert & PHY_ANAR_100BTXFULL && ability & PHY_ANAR_100BTXFULL)
1570 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1571 	else if (advert & PHY_ANAR_100BTXHALF && ability & PHY_ANAR_100BTXHALF)
1572 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_HDX;
1573 	else if (advert & PHY_ANAR_10BTFULL && ability & PHY_ANAR_10BTFULL)
1574 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_FDX;
1575 	else if (advert & PHY_ANAR_10BTHALF && ability & PHY_ANAR_10BTHALF)
1576 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_HDX;
1577 
1578 	crit_exit();
1579 }
1580 
1581 static int
1582 my_ioctl(struct ifnet * ifp, u_long command, caddr_t data, struct ucred *cr)
1583 {
1584 	struct my_softc *sc = ifp->if_softc;
1585 	struct ifreq   *ifr = (struct ifreq *) data;
1586 	int             error = 0;
1587 
1588 	crit_enter();
1589 	switch (command) {
1590 	case SIOCSIFFLAGS:
1591 		if (ifp->if_flags & IFF_UP)
1592 			my_init(sc);
1593 		else if (ifp->if_flags & IFF_RUNNING)
1594 			my_stop(sc);
1595 		error = 0;
1596 		break;
1597 	case SIOCADDMULTI:
1598 	case SIOCDELMULTI:
1599 		my_setmulti(sc);
1600 		error = 0;
1601 		break;
1602 	case SIOCGIFMEDIA:
1603 	case SIOCSIFMEDIA:
1604 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
1605 		break;
1606 	default:
1607 		error = ether_ioctl(ifp, command, data);
1608 		break;
1609 	}
1610 
1611 	crit_exit();
1612 	return (error);
1613 }
1614 
1615 static void
1616 my_watchdog(struct ifnet * ifp)
1617 {
1618 	struct my_softc *sc = ifp->if_softc;
1619 
1620 	crit_enter();
1621 
1622 	if (sc->my_autoneg) {
1623 		my_autoneg_mii(sc, MY_FLAG_DELAYTIMEO, 1);
1624 		crit_exit();
1625 		return;
1626 	}
1627 	ifp->if_oerrors++;
1628 	kprintf("my%d: watchdog timeout\n", sc->my_unit);
1629 	if (!(my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
1630 		kprintf("my%d: no carrier - transceiver cable problem?\n",
1631 		    sc->my_unit);
1632 	my_stop(sc);
1633 	my_reset(sc);
1634 	my_init(sc);
1635 	if (!ifq_is_empty(&ifp->if_snd))
1636 		my_start(ifp);
1637 	crit_exit();
1638 }
1639 
1640 
1641 /*
1642  * Stop the adapter and free any mbufs allocated to the RX and TX lists.
1643  */
1644 static void
1645 my_stop(struct my_softc * sc)
1646 {
1647 	struct ifnet *ifp = &sc->arpcom.ac_if;
1648 	int    i;
1649 
1650 	ifp->if_timer = 0;
1651 
1652 	MY_CLRBIT(sc, MY_TCRRCR, (MY_RE | MY_TE));
1653 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1654 	CSR_WRITE_4(sc, MY_TXLBA, 0x00000000);
1655 	CSR_WRITE_4(sc, MY_RXLBA, 0x00000000);
1656 
1657 	/*
1658 	 * Free data in the RX lists.
1659 	 */
1660 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1661 		if (sc->my_cdata.my_rx_chain[i].my_mbuf != NULL) {
1662 			m_freem(sc->my_cdata.my_rx_chain[i].my_mbuf);
1663 			sc->my_cdata.my_rx_chain[i].my_mbuf = NULL;
1664 		}
1665 	}
1666 	bzero((char *)&sc->my_ldata->my_rx_list,
1667 	    sizeof(sc->my_ldata->my_rx_list));
1668 	/*
1669 	 * Free the TX list buffers.
1670 	 */
1671 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1672 		if (sc->my_cdata.my_tx_chain[i].my_mbuf != NULL) {
1673 			m_freem(sc->my_cdata.my_tx_chain[i].my_mbuf);
1674 			sc->my_cdata.my_tx_chain[i].my_mbuf = NULL;
1675 		}
1676 	}
1677 	bzero((char *)&sc->my_ldata->my_tx_list,
1678 	    sizeof(sc->my_ldata->my_tx_list));
1679 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1680 }
1681 
1682 /*
1683  * Stop all chip I/O so that the kernel's probe routines don't get confused
1684  * by errant DMAs when rebooting.
1685  */
1686 static void
1687 my_shutdown(device_t dev)
1688 {
1689 	struct my_softc *sc;
1690 
1691 	sc = device_get_softc(dev);
1692 	my_stop(sc);
1693 	return;
1694 }
1695