xref: /dragonfly/sys/dev/netif/my/if_my.c (revision e1acdbad)
1 /*
2  * Copyright (c) 2002 Myson Technology Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions, and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. The name of the author may not be used to endorse or promote products
12  *    derived from this software without specific prior written permission.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
18  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * Written by: yen_cw@myson.com.tw  available at: http://www.myson.com.tw/
27  *
28  * $FreeBSD: src/sys/dev/my/if_my.c,v 1.2.2.4 2002/04/17 02:05:27 julian Exp $
29  * $DragonFly: src/sys/dev/netif/my/if_my.c,v 1.16 2005/02/19 00:40:45 joerg Exp $
30  *
31  * Myson fast ethernet PCI NIC driver
32  *
33  * $Id: if_my.c,v 1.40 2001/11/30 03:55:00 <yen_cw@myson.com.tw> wpaul Exp $
34  */
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/sockio.h>
38 #include <sys/mbuf.h>
39 #include <sys/malloc.h>
40 #include <sys/kernel.h>
41 #include <sys/socket.h>
42 #include <sys/queue.h>
43 #include <sys/types.h>
44 #include <sys/bus.h>
45 #include <sys/module.h>
46 
47 #define NBPFILTER	1
48 
49 #include <net/if.h>
50 #include <net/ifq_var.h>
51 #include <net/if_arp.h>
52 #include <net/ethernet.h>
53 #include <net/if_media.h>
54 #include <net/if_dl.h>
55 #include <net/bpf.h>
56 
57 #include <vm/vm.h>		/* for vtophys */
58 #include <vm/pmap.h>		/* for vtophys */
59 #include <machine/clock.h>	/* for DELAY */
60 #include <machine/bus_memio.h>
61 #include <machine/bus_pio.h>
62 #include <machine/bus.h>
63 #include <machine/resource.h>
64 #include <sys/bus.h>
65 #include <sys/rman.h>
66 
67 #include <bus/pci/pcireg.h>
68 #include <bus/pci/pcivar.h>
69 
70 #include "../mii_layer/mii.h"
71 #include "../mii_layer/miivar.h"
72 
73 #include "miibus_if.h"
74 
75 /*
76  * #define MY_USEIOSPACE
77  */
78 
79 static int      MY_USEIOSPACE = 1;
80 
81 #if (MY_USEIOSPACE)
82 #define MY_RES                  SYS_RES_IOPORT
83 #define MY_RID                  MY_PCI_LOIO
84 #else
85 #define MY_RES                  SYS_RES_MEMORY
86 #define MY_RID                  MY_PCI_LOMEM
87 #endif
88 
89 
90 #include "if_myreg.h"
91 
92 /*
93  * Various supported device vendors/types and their names.
94  */
95 struct my_type *my_info_tmp;
96 static struct my_type my_devs[] = {
97 	{MYSONVENDORID, MTD800ID, "Myson MTD80X Based Fast Ethernet Card"},
98 	{MYSONVENDORID, MTD803ID, "Myson MTD80X Based Fast Ethernet Card"},
99 	{MYSONVENDORID, MTD891ID, "Myson MTD89X Based Giga Ethernet Card"},
100 	{0, 0, NULL}
101 };
102 
103 /*
104  * Various supported PHY vendors/types and their names. Note that this driver
105  * will work with pretty much any MII-compliant PHY, so failure to positively
106  * identify the chip is not a fatal error.
107  */
108 static struct my_type my_phys[] = {
109 	{MysonPHYID0, MysonPHYID0, "<MYSON MTD981>"},
110 	{SeeqPHYID0, SeeqPHYID0, "<SEEQ 80225>"},
111 	{AhdocPHYID0, AhdocPHYID0, "<AHDOC 101>"},
112 	{MarvellPHYID0, MarvellPHYID0, "<MARVELL 88E1000>"},
113 	{LevelOnePHYID0, LevelOnePHYID0, "<LevelOne LXT1000>"},
114 	{0, 0, "<MII-compliant physical interface>"}
115 };
116 
117 static int      my_probe(device_t);
118 static int      my_attach(device_t);
119 static int      my_detach(device_t);
120 static int      my_newbuf(struct my_softc *, struct my_chain_onefrag *);
121 static int      my_encap(struct my_softc *, struct my_chain *, struct mbuf *);
122 static void     my_rxeof(struct my_softc *);
123 static void     my_txeof(struct my_softc *);
124 static void     my_txeoc(struct my_softc *);
125 static void     my_intr(void *);
126 static void     my_start(struct ifnet *);
127 static int      my_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
128 static void     my_init(void *);
129 static void     my_stop(struct my_softc *);
130 static void     my_watchdog(struct ifnet *);
131 static void     my_shutdown(device_t);
132 static int      my_ifmedia_upd(struct ifnet *);
133 static void     my_ifmedia_sts(struct ifnet *, struct ifmediareq *);
134 static u_int16_t my_phy_readreg(struct my_softc *, int);
135 static void     my_phy_writereg(struct my_softc *, int, int);
136 static void     my_autoneg_xmit(struct my_softc *);
137 static void     my_autoneg_mii(struct my_softc *, int, int);
138 static void     my_setmode_mii(struct my_softc *, int);
139 static void     my_getmode_mii(struct my_softc *);
140 static void     my_setcfg(struct my_softc *, int);
141 static u_int8_t my_calchash(caddr_t);
142 static void     my_setmulti(struct my_softc *);
143 static void     my_reset(struct my_softc *);
144 static int      my_list_rx_init(struct my_softc *);
145 static int      my_list_tx_init(struct my_softc *);
146 static long     my_send_cmd_to_phy(struct my_softc *, int, int);
147 
148 #define MY_SETBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
149 #define MY_CLRBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
150 
151 static device_method_t my_methods[] = {
152 	/* Device interface */
153 	DEVMETHOD(device_probe, my_probe),
154 	DEVMETHOD(device_attach, my_attach),
155 	DEVMETHOD(device_detach, my_detach),
156 	DEVMETHOD(device_shutdown, my_shutdown),
157 
158 	{0, 0}
159 };
160 
161 static driver_t my_driver = {
162 	"my",
163 	my_methods,
164 	sizeof(struct my_softc)
165 };
166 
167 static devclass_t my_devclass;
168 
169 DECLARE_DUMMY_MODULE(if_my);
170 DRIVER_MODULE(if_my, pci, my_driver, my_devclass, 0, 0);
171 
172 static long
173 my_send_cmd_to_phy(struct my_softc * sc, int opcode, int regad)
174 {
175 	long            miir;
176 	int             i;
177 	int             mask, data;
178 
179 	MY_LOCK(sc);
180 
181 	/* enable MII output */
182 	miir = CSR_READ_4(sc, MY_MANAGEMENT);
183 	miir &= 0xfffffff0;
184 
185 	miir |= MY_MASK_MIIR_MII_WRITE + MY_MASK_MIIR_MII_MDO;
186 
187 	/* send 32 1's preamble */
188 	for (i = 0; i < 32; i++) {
189 		/* low MDC; MDO is already high (miir) */
190 		miir &= ~MY_MASK_MIIR_MII_MDC;
191 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
192 
193 		/* high MDC */
194 		miir |= MY_MASK_MIIR_MII_MDC;
195 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
196 	}
197 
198 	/* calculate ST+OP+PHYAD+REGAD+TA */
199 	data = opcode | (sc->my_phy_addr << 7) | (regad << 2);
200 
201 	/* sent out */
202 	mask = 0x8000;
203 	while (mask) {
204 		/* low MDC, prepare MDO */
205 		miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
206 		if (mask & data)
207 			miir |= MY_MASK_MIIR_MII_MDO;
208 
209 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
210 		/* high MDC */
211 		miir |= MY_MASK_MIIR_MII_MDC;
212 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
213 		DELAY(30);
214 
215 		/* next */
216 		mask >>= 1;
217 		if (mask == 0x2 && opcode == MY_OP_READ)
218 			miir &= ~MY_MASK_MIIR_MII_WRITE;
219 	}
220 
221 	MY_UNLOCK(sc);
222 	return miir;
223 }
224 
225 
226 static          u_int16_t
227 my_phy_readreg(struct my_softc * sc, int reg)
228 {
229 	long            miir;
230 	int             mask, data;
231 
232 	MY_LOCK(sc);
233 
234 	if (sc->my_info->my_did == MTD803ID)
235 		data = CSR_READ_2(sc, MY_PHYBASE + reg * 2);
236 	else {
237 		miir = my_send_cmd_to_phy(sc, MY_OP_READ, reg);
238 
239 		/* read data */
240 		mask = 0x8000;
241 		data = 0;
242 		while (mask) {
243 			/* low MDC */
244 			miir &= ~MY_MASK_MIIR_MII_MDC;
245 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
246 
247 			/* read MDI */
248 			miir = CSR_READ_4(sc, MY_MANAGEMENT);
249 			if (miir & MY_MASK_MIIR_MII_MDI)
250 				data |= mask;
251 
252 			/* high MDC, and wait */
253 			miir |= MY_MASK_MIIR_MII_MDC;
254 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
255 			DELAY(30);
256 
257 			/* next */
258 			mask >>= 1;
259 		}
260 
261 		/* low MDC */
262 		miir &= ~MY_MASK_MIIR_MII_MDC;
263 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
264 	}
265 
266 	MY_UNLOCK(sc);
267 	return (u_int16_t) data;
268 }
269 
270 
271 static void
272 my_phy_writereg(struct my_softc * sc, int reg, int data)
273 {
274 	long            miir;
275 	int             mask;
276 
277 	MY_LOCK(sc);
278 
279 	if (sc->my_info->my_did == MTD803ID)
280 		CSR_WRITE_2(sc, MY_PHYBASE + reg * 2, data);
281 	else {
282 		miir = my_send_cmd_to_phy(sc, MY_OP_WRITE, reg);
283 
284 		/* write data */
285 		mask = 0x8000;
286 		while (mask) {
287 			/* low MDC, prepare MDO */
288 			miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
289 			if (mask & data)
290 				miir |= MY_MASK_MIIR_MII_MDO;
291 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
292 			DELAY(1);
293 
294 			/* high MDC */
295 			miir |= MY_MASK_MIIR_MII_MDC;
296 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
297 			DELAY(1);
298 
299 			/* next */
300 			mask >>= 1;
301 		}
302 
303 		/* low MDC */
304 		miir &= ~MY_MASK_MIIR_MII_MDC;
305 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
306 	}
307 	MY_UNLOCK(sc);
308 	return;
309 }
310 
311 static          u_int8_t
312 my_calchash(caddr_t addr)
313 {
314 	u_int32_t       crc, carry;
315 	int             i, j;
316 	u_int8_t        c;
317 
318 	/* Compute CRC for the address value. */
319 	crc = 0xFFFFFFFF;	/* initial value */
320 
321 	for (i = 0; i < 6; i++) {
322 		c = *(addr + i);
323 		for (j = 0; j < 8; j++) {
324 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
325 			crc <<= 1;
326 			c >>= 1;
327 			if (carry)
328 				crc = (crc ^ 0x04c11db6) | carry;
329 		}
330 	}
331 
332 	/*
333 	 * return the filter bit position Note: I arrived at the following
334 	 * nonsense through experimentation. It's not the usual way to
335 	 * generate the bit position but it's the only thing I could come up
336 	 * with that works.
337 	 */
338 	return (~(crc >> 26) & 0x0000003F);
339 }
340 
341 
342 /*
343  * Program the 64-bit multicast hash filter.
344  */
345 static void
346 my_setmulti(struct my_softc * sc)
347 {
348 	struct ifnet   *ifp;
349 	int             h = 0;
350 	u_int32_t       hashes[2] = {0, 0};
351 	struct ifmultiaddr *ifma;
352 	u_int32_t       rxfilt;
353 	int             mcnt = 0;
354 
355 	MY_LOCK(sc);
356 
357 	ifp = &sc->arpcom.ac_if;
358 
359 	rxfilt = CSR_READ_4(sc, MY_TCRRCR);
360 
361 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
362 		rxfilt |= MY_AM;
363 		CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
364 		CSR_WRITE_4(sc, MY_MAR0, 0xFFFFFFFF);
365 		CSR_WRITE_4(sc, MY_MAR1, 0xFFFFFFFF);
366 
367 		MY_UNLOCK(sc);
368 
369 		return;
370 	}
371 	/* first, zot all the existing hash bits */
372 	CSR_WRITE_4(sc, MY_MAR0, 0);
373 	CSR_WRITE_4(sc, MY_MAR1, 0);
374 
375 	/* now program new ones */
376 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
377 		if (ifma->ifma_addr->sa_family != AF_LINK)
378 			continue;
379 		h = my_calchash(LLADDR((struct sockaddr_dl *) ifma->ifma_addr));
380 		if (h < 32)
381 			hashes[0] |= (1 << h);
382 		else
383 			hashes[1] |= (1 << (h - 32));
384 		mcnt++;
385 	}
386 
387 	if (mcnt)
388 		rxfilt |= MY_AM;
389 	else
390 		rxfilt &= ~MY_AM;
391 	CSR_WRITE_4(sc, MY_MAR0, hashes[0]);
392 	CSR_WRITE_4(sc, MY_MAR1, hashes[1]);
393 	CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
394 	MY_UNLOCK(sc);
395 	return;
396 }
397 
398 /*
399  * Initiate an autonegotiation session.
400  */
401 static void
402 my_autoneg_xmit(struct my_softc * sc)
403 {
404 	u_int16_t       phy_sts = 0;
405 
406 	MY_LOCK(sc);
407 
408 	my_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
409 	DELAY(500);
410 	while (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_RESET);
411 
412 	phy_sts = my_phy_readreg(sc, PHY_BMCR);
413 	phy_sts |= PHY_BMCR_AUTONEGENBL | PHY_BMCR_AUTONEGRSTR;
414 	my_phy_writereg(sc, PHY_BMCR, phy_sts);
415 
416 	MY_UNLOCK(sc);
417 	return;
418 }
419 
420 
421 /*
422  * Invoke autonegotiation on a PHY.
423  */
424 static void
425 my_autoneg_mii(struct my_softc * sc, int flag, int verbose)
426 {
427 	u_int16_t       phy_sts = 0, media, advert, ability;
428 	u_int16_t       ability2 = 0;
429 	struct ifnet   *ifp;
430 	struct ifmedia *ifm;
431 
432 	MY_LOCK(sc);
433 
434 	ifm = &sc->ifmedia;
435 	ifp = &sc->arpcom.ac_if;
436 
437 	ifm->ifm_media = IFM_ETHER | IFM_AUTO;
438 
439 #ifndef FORCE_AUTONEG_TFOUR
440 	/*
441 	 * First, see if autoneg is supported. If not, there's no point in
442 	 * continuing.
443 	 */
444 	phy_sts = my_phy_readreg(sc, PHY_BMSR);
445 	if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
446 		if (verbose)
447 			printf("my%d: autonegotiation not supported\n",
448 			    sc->my_unit);
449 		ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
450 		MY_UNLOCK(sc);
451 		return;
452 	}
453 #endif
454 	switch (flag) {
455 	case MY_FLAG_FORCEDELAY:
456 		/*
457 		 * XXX Never use this option anywhere but in the probe
458 		 * routine: making the kernel stop dead in its tracks for
459 		 * three whole seconds after we've gone multi-user is really
460 		 * bad manners.
461 		 */
462 		my_autoneg_xmit(sc);
463 		DELAY(5000000);
464 		break;
465 	case MY_FLAG_SCHEDDELAY:
466 		/*
467 		 * Wait for the transmitter to go idle before starting an
468 		 * autoneg session, otherwise my_start() may clobber our
469 		 * timeout, and we don't want to allow transmission during an
470 		 * autoneg session since that can screw it up.
471 		 */
472 		if (sc->my_cdata.my_tx_head != NULL) {
473 			sc->my_want_auto = 1;
474 			MY_UNLOCK(sc);
475 			return;
476 		}
477 		my_autoneg_xmit(sc);
478 		ifp->if_timer = 5;
479 		sc->my_autoneg = 1;
480 		sc->my_want_auto = 0;
481 		MY_UNLOCK(sc);
482 		return;
483 	case MY_FLAG_DELAYTIMEO:
484 		ifp->if_timer = 0;
485 		sc->my_autoneg = 0;
486 		break;
487 	default:
488 		printf("my%d: invalid autoneg flag: %d\n", sc->my_unit, flag);
489 		MY_UNLOCK(sc);
490 		return;
491 	}
492 
493 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
494 		if (verbose)
495 			printf("my%d: autoneg complete, ", sc->my_unit);
496 		phy_sts = my_phy_readreg(sc, PHY_BMSR);
497 	} else {
498 		if (verbose)
499 			printf("my%d: autoneg not complete, ", sc->my_unit);
500 	}
501 
502 	media = my_phy_readreg(sc, PHY_BMCR);
503 
504 	/* Link is good. Report modes and set duplex mode. */
505 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
506 		if (verbose)
507 			printf("my%d: link status good. ", sc->my_unit);
508 		advert = my_phy_readreg(sc, PHY_ANAR);
509 		ability = my_phy_readreg(sc, PHY_LPAR);
510 		if ((sc->my_pinfo->my_vid == MarvellPHYID0) ||
511 		    (sc->my_pinfo->my_vid == LevelOnePHYID0)) {
512 			ability2 = my_phy_readreg(sc, PHY_1000SR);
513 			if (ability2 & PHY_1000SR_1000BTXFULL) {
514 				advert = 0;
515 				ability = 0;
516 				/*
517 				 * this version did not support 1000M,
518 				 * ifm->ifm_media =
519 				 * IFM_ETHER | IFM_1000_T | IFM_FDX;
520 				 */
521 				ifm->ifm_media =
522 				    IFM_ETHER | IFM_100_TX | IFM_FDX;
523 				media &= ~PHY_BMCR_SPEEDSEL;
524 				media |= PHY_BMCR_1000;
525 				media |= PHY_BMCR_DUPLEX;
526 				printf("(full-duplex, 1000Mbps)\n");
527 			} else if (ability2 & PHY_1000SR_1000BTXHALF) {
528 				advert = 0;
529 				ability = 0;
530 				/*
531 				 * this version did not support 1000M,
532 				 * ifm->ifm_media = IFM_ETHER | IFM_1000_T;
533 				 */
534 				ifm->ifm_media = IFM_ETHER | IFM_100_TX;
535 				media &= ~PHY_BMCR_SPEEDSEL;
536 				media &= ~PHY_BMCR_DUPLEX;
537 				media |= PHY_BMCR_1000;
538 				printf("(half-duplex, 1000Mbps)\n");
539 			}
540 		}
541 		if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
542 			ifm->ifm_media = IFM_ETHER | IFM_100_T4;
543 			media |= PHY_BMCR_SPEEDSEL;
544 			media &= ~PHY_BMCR_DUPLEX;
545 			printf("(100baseT4)\n");
546 		} else if (advert & PHY_ANAR_100BTXFULL &&
547 			   ability & PHY_ANAR_100BTXFULL) {
548 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
549 			media |= PHY_BMCR_SPEEDSEL;
550 			media |= PHY_BMCR_DUPLEX;
551 			printf("(full-duplex, 100Mbps)\n");
552 		} else if (advert & PHY_ANAR_100BTXHALF &&
553 			   ability & PHY_ANAR_100BTXHALF) {
554 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
555 			media |= PHY_BMCR_SPEEDSEL;
556 			media &= ~PHY_BMCR_DUPLEX;
557 			printf("(half-duplex, 100Mbps)\n");
558 		} else if (advert & PHY_ANAR_10BTFULL &&
559 			   ability & PHY_ANAR_10BTFULL) {
560 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
561 			media &= ~PHY_BMCR_SPEEDSEL;
562 			media |= PHY_BMCR_DUPLEX;
563 			printf("(full-duplex, 10Mbps)\n");
564 		} else if (advert) {
565 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
566 			media &= ~PHY_BMCR_SPEEDSEL;
567 			media &= ~PHY_BMCR_DUPLEX;
568 			printf("(half-duplex, 10Mbps)\n");
569 		}
570 		media &= ~PHY_BMCR_AUTONEGENBL;
571 
572 		/* Set ASIC's duplex mode to match the PHY. */
573 		my_phy_writereg(sc, PHY_BMCR, media);
574 		my_setcfg(sc, media);
575 	} else {
576 		if (verbose)
577 			printf("my%d: no carrier\n", sc->my_unit);
578 	}
579 
580 	my_init(sc);
581 	if (sc->my_tx_pend) {
582 		sc->my_autoneg = 0;
583 		sc->my_tx_pend = 0;
584 		my_start(ifp);
585 	}
586 	MY_UNLOCK(sc);
587 	return;
588 }
589 
590 /*
591  * To get PHY ability.
592  */
593 static void
594 my_getmode_mii(struct my_softc * sc)
595 {
596 	u_int16_t       bmsr;
597 	struct ifnet   *ifp;
598 
599 	MY_LOCK(sc);
600 	ifp = &sc->arpcom.ac_if;
601 	bmsr = my_phy_readreg(sc, PHY_BMSR);
602 	if (bootverbose)
603 		printf("my%d: PHY status word: %x\n", sc->my_unit, bmsr);
604 
605 	/* fallback */
606 	sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
607 
608 	if (bmsr & PHY_BMSR_10BTHALF) {
609 		if (bootverbose)
610 			printf("my%d: 10Mbps half-duplex mode supported\n",
611 			       sc->my_unit);
612 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_HDX,
613 		    0, NULL);
614 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
615 	}
616 	if (bmsr & PHY_BMSR_10BTFULL) {
617 		if (bootverbose)
618 			printf("my%d: 10Mbps full-duplex mode supported\n",
619 			    sc->my_unit);
620 
621 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
622 		    0, NULL);
623 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
624 	}
625 	if (bmsr & PHY_BMSR_100BTXHALF) {
626 		if (bootverbose)
627 			printf("my%d: 100Mbps half-duplex mode supported\n",
628 			       sc->my_unit);
629 		ifp->if_baudrate = 100000000;
630 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
631 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_HDX,
632 			    0, NULL);
633 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
634 	}
635 	if (bmsr & PHY_BMSR_100BTXFULL) {
636 		if (bootverbose)
637 			printf("my%d: 100Mbps full-duplex mode supported\n",
638 			    sc->my_unit);
639 		ifp->if_baudrate = 100000000;
640 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
641 		    0, NULL);
642 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
643 	}
644 	/* Some also support 100BaseT4. */
645 	if (bmsr & PHY_BMSR_100BT4) {
646 		if (bootverbose)
647 			printf("my%d: 100baseT4 mode supported\n", sc->my_unit);
648 		ifp->if_baudrate = 100000000;
649 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_T4, 0, NULL);
650 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_T4;
651 #ifdef FORCE_AUTONEG_TFOUR
652 		if (bootverbose)
653 			printf("my%d: forcing on autoneg support for BT4\n",
654 			    sc->my_unit);
655 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0 NULL):
656 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
657 #endif
658 	}
659 #if 0				/* this version did not support 1000M, */
660 	if (sc->my_pinfo->my_vid == MarvellPHYID0) {
661 		if (bootverbose)
662 			printf("my%d: 1000Mbps half-duplex mode supported\n",
663 			       sc->my_unit);
664 
665 		ifp->if_baudrate = 1000000000;
666 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL);
667 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_HDX,
668 		    0, NULL);
669 		if (bootverbose)
670 			printf("my%d: 1000Mbps full-duplex mode supported\n",
671 			   sc->my_unit);
672 		ifp->if_baudrate = 1000000000;
673 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX,
674 		    0, NULL);
675 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_1000_T | IFM_FDX;
676 	}
677 #endif
678 	if (bmsr & PHY_BMSR_CANAUTONEG) {
679 		if (bootverbose)
680 			printf("my%d: autoneg supported\n", sc->my_unit);
681 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
682 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
683 	}
684 	MY_UNLOCK(sc);
685 	return;
686 }
687 
688 /*
689  * Set speed and duplex mode.
690  */
691 static void
692 my_setmode_mii(struct my_softc * sc, int media)
693 {
694 	u_int16_t       bmcr;
695 	struct ifnet   *ifp;
696 
697 	MY_LOCK(sc);
698 	ifp = &sc->arpcom.ac_if;
699 	/*
700 	 * If an autoneg session is in progress, stop it.
701 	 */
702 	if (sc->my_autoneg) {
703 		printf("my%d: canceling autoneg session\n", sc->my_unit);
704 		ifp->if_timer = sc->my_autoneg = sc->my_want_auto = 0;
705 		bmcr = my_phy_readreg(sc, PHY_BMCR);
706 		bmcr &= ~PHY_BMCR_AUTONEGENBL;
707 		my_phy_writereg(sc, PHY_BMCR, bmcr);
708 	}
709 	printf("my%d: selecting MII, ", sc->my_unit);
710 	bmcr = my_phy_readreg(sc, PHY_BMCR);
711 	bmcr &= ~(PHY_BMCR_AUTONEGENBL | PHY_BMCR_SPEEDSEL | PHY_BMCR_1000 |
712 		  PHY_BMCR_DUPLEX | PHY_BMCR_LOOPBK);
713 
714 #if 0				/* this version did not support 1000M, */
715 	if (IFM_SUBTYPE(media) == IFM_1000_T) {
716 		printf("1000Mbps/T4, half-duplex\n");
717 		bmcr &= ~PHY_BMCR_SPEEDSEL;
718 		bmcr &= ~PHY_BMCR_DUPLEX;
719 		bmcr |= PHY_BMCR_1000;
720 	}
721 #endif
722 	if (IFM_SUBTYPE(media) == IFM_100_T4) {
723 		printf("100Mbps/T4, half-duplex\n");
724 		bmcr |= PHY_BMCR_SPEEDSEL;
725 		bmcr &= ~PHY_BMCR_DUPLEX;
726 	}
727 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
728 		printf("100Mbps, ");
729 		bmcr |= PHY_BMCR_SPEEDSEL;
730 	}
731 	if (IFM_SUBTYPE(media) == IFM_10_T) {
732 		printf("10Mbps, ");
733 		bmcr &= ~PHY_BMCR_SPEEDSEL;
734 	}
735 	if ((media & IFM_GMASK) == IFM_FDX) {
736 		printf("full duplex\n");
737 		bmcr |= PHY_BMCR_DUPLEX;
738 	} else {
739 		printf("half duplex\n");
740 		bmcr &= ~PHY_BMCR_DUPLEX;
741 	}
742 	my_phy_writereg(sc, PHY_BMCR, bmcr);
743 	my_setcfg(sc, bmcr);
744 	MY_UNLOCK(sc);
745 	return;
746 }
747 
748 /*
749  * The Myson manual states that in order to fiddle with the 'full-duplex' and
750  * '100Mbps' bits in the netconfig register, we first have to put the
751  * transmit and/or receive logic in the idle state.
752  */
753 static void
754 my_setcfg(struct my_softc * sc, int bmcr)
755 {
756 	int             i, restart = 0;
757 
758 	MY_LOCK(sc);
759 	if (CSR_READ_4(sc, MY_TCRRCR) & (MY_TE | MY_RE)) {
760 		restart = 1;
761 		MY_CLRBIT(sc, MY_TCRRCR, (MY_TE | MY_RE));
762 		for (i = 0; i < MY_TIMEOUT; i++) {
763 			DELAY(10);
764 			if (!(CSR_READ_4(sc, MY_TCRRCR) &
765 			    (MY_TXRUN | MY_RXRUN)))
766 				break;
767 		}
768 		if (i == MY_TIMEOUT)
769 			printf("my%d: failed to force tx and rx to idle \n",
770 			    sc->my_unit);
771 	}
772 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS1000);
773 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS10);
774 	if (bmcr & PHY_BMCR_1000)
775 		MY_SETBIT(sc, MY_TCRRCR, MY_PS1000);
776 	else if (!(bmcr & PHY_BMCR_SPEEDSEL))
777 		MY_SETBIT(sc, MY_TCRRCR, MY_PS10);
778 	if (bmcr & PHY_BMCR_DUPLEX)
779 		MY_SETBIT(sc, MY_TCRRCR, MY_FD);
780 	else
781 		MY_CLRBIT(sc, MY_TCRRCR, MY_FD);
782 	if (restart)
783 		MY_SETBIT(sc, MY_TCRRCR, MY_TE | MY_RE);
784 	MY_UNLOCK(sc);
785 	return;
786 }
787 
788 static void
789 my_reset(struct my_softc * sc)
790 {
791 	int    i;
792 
793 	MY_LOCK(sc);
794 	MY_SETBIT(sc, MY_BCR, MY_SWR);
795 	for (i = 0; i < MY_TIMEOUT; i++) {
796 		DELAY(10);
797 		if (!(CSR_READ_4(sc, MY_BCR) & MY_SWR))
798 			break;
799 	}
800 	if (i == MY_TIMEOUT)
801 		printf("m0x%d: reset never completed!\n", sc->my_unit);
802 
803 	/* Wait a little while for the chip to get its brains in order. */
804 	DELAY(1000);
805 	MY_UNLOCK(sc);
806 	return;
807 }
808 
809 /*
810  * Probe for a Myson chip. Check the PCI vendor and device IDs against our
811  * list and return a device name if we find a match.
812  */
813 static int
814 my_probe(device_t dev)
815 {
816 	struct my_type *t;
817 
818 	t = my_devs;
819 	while (t->my_name != NULL) {
820 		if ((pci_get_vendor(dev) == t->my_vid) &&
821 		    (pci_get_device(dev) == t->my_did)) {
822 			device_set_desc(dev, t->my_name);
823 			my_info_tmp = t;
824 			return (0);
825 		}
826 		t++;
827 	}
828 	return (ENXIO);
829 }
830 
831 /*
832  * Attach the interface. Allocate softc structures, do ifmedia setup and
833  * ethernet/BPF attach.
834  */
835 static int
836 my_attach(device_t dev)
837 {
838 	int             s, i;
839 	u_char          eaddr[ETHER_ADDR_LEN];
840 	u_int32_t       command, iobase;
841 	struct my_softc *sc;
842 	struct ifnet   *ifp;
843 	int             media = IFM_ETHER | IFM_100_TX | IFM_FDX;
844 	unsigned int    round;
845 	caddr_t         roundptr;
846 	struct my_type *p;
847 	u_int16_t       phy_vid, phy_did, phy_sts = 0;
848 	int             rid, unit, error = 0;
849 
850 	s = splimp();
851 	sc = device_get_softc(dev);
852 	unit = device_get_unit(dev);
853 	if (sc == NULL) {
854 		printf("my%d: no memory for softc struct!\n", unit);
855 		error = ENXIO;
856 		goto fail;
857 
858 	}
859 	bzero(sc, sizeof(struct my_softc));
860 	/*mtx_init(&sc->my_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);*/
861 	MY_LOCK(sc);
862 
863 	/*
864 	 * Map control/status registers.
865 	 */
866 #if 0
867 	command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
868 	command |= (PCIM_CMD_PORTEN | PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
869 	pci_write_config(dev, PCI_COMMAND_STATUS_REG, command & 0x000000ff, 4);
870 	command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
871 #endif
872 	command = pci_read_config(dev, PCIR_COMMAND, 4);
873 	command |= (PCIM_CMD_PORTEN | PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
874 	pci_write_config(dev, PCIR_COMMAND, command & 0x000000ff, 4);
875 	command = pci_read_config(dev, PCIR_COMMAND, 4);
876 
877 	if (my_info_tmp->my_did == MTD800ID) {
878 		iobase = pci_read_config(dev, MY_PCI_LOIO, 4);
879 		if (iobase & 0x300)
880 			MY_USEIOSPACE = 0;
881 	}
882 	if (MY_USEIOSPACE) {
883 		if (!(command & PCIM_CMD_PORTEN)) {
884 			printf("my%d: failed to enable I/O ports!\n", unit);
885 			free(sc, M_DEVBUF);
886 			error = ENXIO;
887 			goto fail;
888 		}
889 #if 0
890 		if (!pci_map_port(config_id, MY_PCI_LOIO, (u_int16_t *) & (sc->my_bhandle))) {
891 			printf("my%d: couldn't map ports\n", unit);
892 			error = ENXIO;
893 			goto fail;
894 		}
895 
896 		sc->my_btag = I386_BUS_SPACE_IO;
897 #endif
898 	} else {
899 		if (!(command & PCIM_CMD_MEMEN)) {
900 			printf("my%d: failed to enable memory mapping!\n",
901 			    unit);
902 			error = ENXIO;
903 			goto fail;
904 		}
905 #if 0
906 		 if (!pci_map_mem(config_id, MY_PCI_LOMEM, &vbase, &pbase)) {
907 			printf ("my%d: couldn't map memory\n", unit);
908 			error = ENXIO;
909 			goto fail;
910 		}
911 		sc->my_btag = I386_BUS_SPACE_MEM;
912 		sc->my_bhandle = vbase;
913 #endif
914 	}
915 
916 	rid = MY_RID;
917 	sc->my_res = bus_alloc_resource(dev, MY_RES, &rid,
918 					0, ~0, 1, RF_ACTIVE);
919 
920 	if (sc->my_res == NULL) {
921 		printf("my%d: couldn't map ports/memory\n", unit);
922 		error = ENXIO;
923 		goto fail;
924 	}
925 	sc->my_btag = rman_get_bustag(sc->my_res);
926 	sc->my_bhandle = rman_get_bushandle(sc->my_res);
927 
928 	rid = 0;
929 	sc->my_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
930 					RF_SHAREABLE | RF_ACTIVE);
931 
932 	if (sc->my_irq == NULL) {
933 		printf("my%d: couldn't map interrupt\n", unit);
934 		bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
935 		error = ENXIO;
936 		goto fail;
937 	}
938 	error = bus_setup_intr(dev, sc->my_irq, INTR_TYPE_NET,
939 			       my_intr, sc, &sc->my_intrhand);
940 
941 	if (error) {
942 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
943 		bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
944 		printf("my%d: couldn't set up irq\n", unit);
945 		goto fail;
946 	}
947 	callout_init(&sc->my_stat_ch);
948 
949 	sc->my_info = my_info_tmp;
950 
951 	/* Reset the adapter. */
952 	my_reset(sc);
953 
954 	/*
955 	 * Get station address
956 	 */
957 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
958 		eaddr[i] = CSR_READ_1(sc, MY_PAR0 + i);
959 
960 	sc->my_unit = unit;
961 
962 	sc->my_ldata_ptr = malloc(sizeof(struct my_list_data) + 8,
963 				  M_DEVBUF, M_WAITOK);
964 	if (sc->my_ldata_ptr == NULL) {
965 		free(sc, M_DEVBUF);
966 		printf("my%d: no memory for list buffers!\n", unit);
967 		error = ENXIO;
968 		goto fail;
969 	}
970 	sc->my_ldata = (struct my_list_data *) sc->my_ldata_ptr;
971 	round = (unsigned int)sc->my_ldata_ptr & 0xF;
972 	roundptr = sc->my_ldata_ptr;
973 	for (i = 0; i < 8; i++) {
974 		if (round % 8) {
975 			round++;
976 			roundptr++;
977 		} else
978 			break;
979 	}
980 	sc->my_ldata = (struct my_list_data *) roundptr;
981 	bzero(sc->my_ldata, sizeof(struct my_list_data));
982 
983 	ifp = &sc->arpcom.ac_if;
984 	ifp->if_softc = sc;
985 	if_initname(ifp, "my", unit);
986 	ifp->if_mtu = ETHERMTU;
987 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
988 	ifp->if_ioctl = my_ioctl;
989 	ifp->if_start = my_start;
990 	ifp->if_watchdog = my_watchdog;
991 	ifp->if_init = my_init;
992 	ifp->if_baudrate = 10000000;
993 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
994 	ifq_set_ready(&ifp->if_snd);
995 
996 	if (sc->my_info->my_did == MTD803ID)
997 		sc->my_pinfo = my_phys;
998 	else {
999 		if (bootverbose)
1000 			printf("my%d: probing for a PHY\n", sc->my_unit);
1001 		for (i = MY_PHYADDR_MIN; i < MY_PHYADDR_MAX + 1; i++) {
1002 			if (bootverbose)
1003 				printf("my%d: checking address: %d\n",
1004 				    sc->my_unit, i);
1005 			sc->my_phy_addr = i;
1006 			phy_sts = my_phy_readreg(sc, PHY_BMSR);
1007 			if ((phy_sts != 0) && (phy_sts != 0xffff))
1008 				break;
1009 			else
1010 				phy_sts = 0;
1011 		}
1012 		if (phy_sts) {
1013 			phy_vid = my_phy_readreg(sc, PHY_VENID);
1014 			phy_did = my_phy_readreg(sc, PHY_DEVID);
1015 			if (bootverbose) {
1016 				printf("my%d: found PHY at address %d, ",
1017 				    sc->my_unit, sc->my_phy_addr);
1018 				printf("vendor id: %x device id: %x\n",
1019 				    phy_vid, phy_did);
1020 			}
1021 			p = my_phys;
1022 			while (p->my_vid) {
1023 				if (phy_vid == p->my_vid) {
1024 					sc->my_pinfo = p;
1025 					break;
1026 				}
1027 				p++;
1028 			}
1029 			if (sc->my_pinfo == NULL)
1030 				sc->my_pinfo = &my_phys[PHY_UNKNOWN];
1031 			if (bootverbose)
1032 				printf("my%d: PHY type: %s\n",
1033 				       sc->my_unit, sc->my_pinfo->my_name);
1034 		} else {
1035 			printf("my%d: MII without any phy!\n", sc->my_unit);
1036 			error = ENXIO;
1037 			goto fail;
1038 		}
1039 	}
1040 
1041 	/* Do ifmedia setup. */
1042 	ifmedia_init(&sc->ifmedia, 0, my_ifmedia_upd, my_ifmedia_sts);
1043 	my_getmode_mii(sc);
1044 	my_autoneg_mii(sc, MY_FLAG_FORCEDELAY, 1);
1045 	media = sc->ifmedia.ifm_media;
1046 	my_stop(sc);
1047 	ifmedia_set(&sc->ifmedia, media);
1048 
1049 	ether_ifattach(ifp, eaddr);
1050 
1051 #if 0
1052 	at_shutdown(my_shutdown, sc, SHUTDOWN_POST_SYNC);
1053 	shutdownhook_establish(my_shutdown, sc);
1054 #endif
1055 
1056 	MY_UNLOCK(sc);
1057 	return (0);
1058 
1059 fail:
1060 	MY_UNLOCK(sc);
1061 	/*mtx_destroy(&sc->my_mtx);*/
1062 	splx(s);
1063 	return (error);
1064 }
1065 
1066 static int
1067 my_detach(device_t dev)
1068 {
1069 	struct my_softc *sc;
1070 	struct ifnet   *ifp;
1071 	int             s;
1072 
1073 	s = splimp();
1074 	sc = device_get_softc(dev);
1075 	MY_LOCK(sc);
1076 	ifp = &sc->arpcom.ac_if;
1077 	ether_ifdetach(ifp);
1078 	my_stop(sc);
1079 
1080 #if 0
1081 	bus_generic_detach(dev);
1082 	device_delete_child(dev, sc->rl_miibus);
1083 #endif
1084 
1085 	bus_teardown_intr(dev, sc->my_irq, sc->my_intrhand);
1086 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
1087 	bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
1088 #if 0
1089 	contigfree(sc->my_cdata.my_rx_buf, MY_RXBUFLEN + 32, M_DEVBUF);
1090 #endif
1091 	free(sc, M_DEVBUF);
1092 	MY_UNLOCK(sc);
1093 	splx(s);
1094 	/*mtx_destroy(&sc->my_mtx);*/
1095 	return (0);
1096 }
1097 
1098 
1099 /*
1100  * Initialize the transmit descriptors.
1101  */
1102 static int
1103 my_list_tx_init(struct my_softc * sc)
1104 {
1105 	struct my_chain_data *cd;
1106 	struct my_list_data *ld;
1107 	int             i;
1108 
1109 	MY_LOCK(sc);
1110 	cd = &sc->my_cdata;
1111 	ld = sc->my_ldata;
1112 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1113 		cd->my_tx_chain[i].my_ptr = &ld->my_tx_list[i];
1114 		if (i == (MY_TX_LIST_CNT - 1))
1115 			cd->my_tx_chain[i].my_nextdesc = &cd->my_tx_chain[0];
1116 		else
1117 			cd->my_tx_chain[i].my_nextdesc =
1118 			    &cd->my_tx_chain[i + 1];
1119 	}
1120 	cd->my_tx_free = &cd->my_tx_chain[0];
1121 	cd->my_tx_tail = cd->my_tx_head = NULL;
1122 	MY_UNLOCK(sc);
1123 	return (0);
1124 }
1125 
1126 /*
1127  * Initialize the RX descriptors and allocate mbufs for them. Note that we
1128  * arrange the descriptors in a closed ring, so that the last descriptor
1129  * points back to the first.
1130  */
1131 static int
1132 my_list_rx_init(struct my_softc * sc)
1133 {
1134 	struct my_chain_data *cd;
1135 	struct my_list_data *ld;
1136 	int             i;
1137 
1138 	MY_LOCK(sc);
1139 	cd = &sc->my_cdata;
1140 	ld = sc->my_ldata;
1141 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1142 		cd->my_rx_chain[i].my_ptr =
1143 		    (struct my_desc *) & ld->my_rx_list[i];
1144 		if (my_newbuf(sc, &cd->my_rx_chain[i]) == ENOBUFS)
1145 			return (ENOBUFS);
1146 		if (i == (MY_RX_LIST_CNT - 1)) {
1147 			cd->my_rx_chain[i].my_nextdesc = &cd->my_rx_chain[0];
1148 			ld->my_rx_list[i].my_next = vtophys(&ld->my_rx_list[0]);
1149 		} else {
1150 			cd->my_rx_chain[i].my_nextdesc =
1151 			    &cd->my_rx_chain[i + 1];
1152 			ld->my_rx_list[i].my_next =
1153 			    vtophys(&ld->my_rx_list[i + 1]);
1154 		}
1155 	}
1156 	cd->my_rx_head = &cd->my_rx_chain[0];
1157 	MY_UNLOCK(sc);
1158 	return (0);
1159 }
1160 
1161 /*
1162  * Initialize an RX descriptor and attach an MBUF cluster.
1163  */
1164 static int
1165 my_newbuf(struct my_softc * sc, struct my_chain_onefrag * c)
1166 {
1167 	struct mbuf    *m_new = NULL;
1168 
1169 	MY_LOCK(sc);
1170 	MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1171 	if (m_new == NULL) {
1172 		printf("my%d: no memory for rx list -- packet dropped!\n",
1173 		       sc->my_unit);
1174 		return (ENOBUFS);
1175 	}
1176 	MCLGET(m_new, MB_DONTWAIT);
1177 	if (!(m_new->m_flags & M_EXT)) {
1178 		printf("my%d: no memory for rx list -- packet dropped!\n",
1179 		       sc->my_unit);
1180 		m_freem(m_new);
1181 		return (ENOBUFS);
1182 	}
1183 	c->my_mbuf = m_new;
1184 	c->my_ptr->my_data = vtophys(mtod(m_new, caddr_t));
1185 	c->my_ptr->my_ctl = (MCLBYTES - 1) << MY_RBSShift;
1186 	c->my_ptr->my_status = MY_OWNByNIC;
1187 	MY_UNLOCK(sc);
1188 	return (0);
1189 }
1190 
1191 /*
1192  * A frame has been uploaded: pass the resulting mbuf chain up to the higher
1193  * level protocols.
1194  */
1195 static void
1196 my_rxeof(struct my_softc * sc)
1197 {
1198 	struct mbuf    *m;
1199 	struct ifnet   *ifp;
1200 	struct my_chain_onefrag *cur_rx;
1201 	int             total_len = 0;
1202 	u_int32_t       rxstat;
1203 
1204 	MY_LOCK(sc);
1205 	ifp = &sc->arpcom.ac_if;
1206 	while (!((rxstat = sc->my_cdata.my_rx_head->my_ptr->my_status)
1207 	    & MY_OWNByNIC)) {
1208 		cur_rx = sc->my_cdata.my_rx_head;
1209 		sc->my_cdata.my_rx_head = cur_rx->my_nextdesc;
1210 
1211 		if (rxstat & MY_ES) {	/* error summary: give up this rx pkt */
1212 			ifp->if_ierrors++;
1213 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1214 			continue;
1215 		}
1216 		/* No errors; receive the packet. */
1217 		total_len = (rxstat & MY_FLNGMASK) >> MY_FLNGShift;
1218 		total_len -= ETHER_CRC_LEN;
1219 
1220 		if (total_len < MINCLSIZE) {
1221 			m = m_devget(mtod(cur_rx->my_mbuf, char *),
1222 			    total_len, 0, ifp, NULL);
1223 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1224 			if (m == NULL) {
1225 				ifp->if_ierrors++;
1226 				continue;
1227 			}
1228 		} else {
1229 			m = cur_rx->my_mbuf;
1230 			/*
1231 			 * Try to conjure up a new mbuf cluster. If that
1232 			 * fails, it means we have an out of memory condition
1233 			 * and should leave the buffer in place and continue.
1234 			 * This will result in a lost packet, but there's
1235 			 * little else we can do in this situation.
1236 			 */
1237 			if (my_newbuf(sc, cur_rx) == ENOBUFS) {
1238 				ifp->if_ierrors++;
1239 				cur_rx->my_ptr->my_status = MY_OWNByNIC;
1240 				continue;
1241 			}
1242 			m->m_pkthdr.rcvif = ifp;
1243 			m->m_pkthdr.len = m->m_len = total_len;
1244 		}
1245 		ifp->if_ipackets++;
1246 		(*ifp->if_input)(ifp, m);
1247 	}
1248 	MY_UNLOCK(sc);
1249 	return;
1250 }
1251 
1252 
1253 /*
1254  * A frame was downloaded to the chip. It's safe for us to clean up the list
1255  * buffers.
1256  */
1257 static void
1258 my_txeof(struct my_softc * sc)
1259 {
1260 	struct my_chain *cur_tx;
1261 	struct ifnet   *ifp;
1262 
1263 	MY_LOCK(sc);
1264 	ifp = &sc->arpcom.ac_if;
1265 	/* Clear the timeout timer. */
1266 	ifp->if_timer = 0;
1267 	if (sc->my_cdata.my_tx_head == NULL)
1268 		return;
1269 	/*
1270 	 * Go through our tx list and free mbufs for those frames that have
1271 	 * been transmitted.
1272 	 */
1273 	while (sc->my_cdata.my_tx_head->my_mbuf != NULL) {
1274 		u_int32_t       txstat;
1275 
1276 		cur_tx = sc->my_cdata.my_tx_head;
1277 		txstat = MY_TXSTATUS(cur_tx);
1278 		if ((txstat & MY_OWNByNIC) || txstat == MY_UNSENT)
1279 			break;
1280 		if (!(CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced)) {
1281 			if (txstat & MY_TXERR) {
1282 				ifp->if_oerrors++;
1283 				if (txstat & MY_EC) /* excessive collision */
1284 					ifp->if_collisions++;
1285 				if (txstat & MY_LC)	/* late collision */
1286 					ifp->if_collisions++;
1287 			}
1288 			ifp->if_collisions += (txstat & MY_NCRMASK) >>
1289 			    MY_NCRShift;
1290 		}
1291 		ifp->if_opackets++;
1292 		m_freem(cur_tx->my_mbuf);
1293 		cur_tx->my_mbuf = NULL;
1294 		if (sc->my_cdata.my_tx_head == sc->my_cdata.my_tx_tail) {
1295 			sc->my_cdata.my_tx_head = NULL;
1296 			sc->my_cdata.my_tx_tail = NULL;
1297 			break;
1298 		}
1299 		sc->my_cdata.my_tx_head = cur_tx->my_nextdesc;
1300 	}
1301 	if (CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced) {
1302 		ifp->if_collisions += (CSR_READ_4(sc, MY_TSR) & MY_NCRMask);
1303 	}
1304 	MY_UNLOCK(sc);
1305 	return;
1306 }
1307 
1308 /*
1309  * TX 'end of channel' interrupt handler.
1310  */
1311 static void
1312 my_txeoc(struct my_softc * sc)
1313 {
1314 	struct ifnet   *ifp;
1315 
1316 	MY_LOCK(sc);
1317 	ifp = &sc->arpcom.ac_if;
1318 	ifp->if_timer = 0;
1319 	if (sc->my_cdata.my_tx_head == NULL) {
1320 		ifp->if_flags &= ~IFF_OACTIVE;
1321 		sc->my_cdata.my_tx_tail = NULL;
1322 		if (sc->my_want_auto)
1323 			my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1324 	} else {
1325 		if (MY_TXOWN(sc->my_cdata.my_tx_head) == MY_UNSENT) {
1326 			MY_TXOWN(sc->my_cdata.my_tx_head) = MY_OWNByNIC;
1327 			ifp->if_timer = 5;
1328 			CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);
1329 		}
1330 	}
1331 	MY_UNLOCK(sc);
1332 	return;
1333 }
1334 
1335 static void
1336 my_intr(void *arg)
1337 {
1338 	struct my_softc *sc;
1339 	struct ifnet   *ifp;
1340 	u_int32_t       status;
1341 
1342 	sc = arg;
1343 	MY_LOCK(sc);
1344 	ifp = &sc->arpcom.ac_if;
1345 	if (!(ifp->if_flags & IFF_UP)) {
1346 		MY_UNLOCK(sc);
1347 		return;
1348 	}
1349 	/* Disable interrupts. */
1350 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1351 
1352 	for (;;) {
1353 		status = CSR_READ_4(sc, MY_ISR);
1354 		status &= MY_INTRS;
1355 		if (status)
1356 			CSR_WRITE_4(sc, MY_ISR, status);
1357 		else
1358 			break;
1359 
1360 		if (status & MY_RI)	/* receive interrupt */
1361 			my_rxeof(sc);
1362 
1363 		if ((status & MY_RBU) || (status & MY_RxErr)) {
1364 			/* rx buffer unavailable or rx error */
1365 			ifp->if_ierrors++;
1366 #ifdef foo
1367 			my_stop(sc);
1368 			my_reset(sc);
1369 			my_init(sc);
1370 #endif
1371 		}
1372 		if (status & MY_TI)	/* tx interrupt */
1373 			my_txeof(sc);
1374 		if (status & MY_ETI)	/* tx early interrupt */
1375 			my_txeof(sc);
1376 		if (status & MY_TBU)	/* tx buffer unavailable */
1377 			my_txeoc(sc);
1378 
1379 #if 0				/* 90/1/18 delete */
1380 		if (status & MY_FBE) {
1381 			my_reset(sc);
1382 			my_init(sc);
1383 		}
1384 #endif
1385 
1386 	}
1387 
1388 	/* Re-enable interrupts. */
1389 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1390 	if (!ifq_is_empty(&ifp->if_snd))
1391 		my_start(ifp);
1392 	MY_UNLOCK(sc);
1393 	return;
1394 }
1395 
1396 /*
1397  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1398  * pointers to the fragment pointers.
1399  */
1400 static int
1401 my_encap(struct my_softc * sc, struct my_chain * c, struct mbuf * m_head)
1402 {
1403 	struct my_desc *f = NULL;
1404 	int             total_len;
1405 	struct mbuf    *m, *m_new = NULL;
1406 
1407 	MY_LOCK(sc);
1408 	/* calculate the total tx pkt length */
1409 	total_len = 0;
1410 	for (m = m_head; m != NULL; m = m->m_next)
1411 		total_len += m->m_len;
1412 	/*
1413 	 * Start packing the mbufs in this chain into the fragment pointers.
1414 	 * Stop when we run out of fragments or hit the end of the mbuf
1415 	 * chain.
1416 	 */
1417 	m = m_head;
1418 	MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1419 	if (m_new == NULL) {
1420 		printf("my%d: no memory for tx list", sc->my_unit);
1421 		return (1);
1422 	}
1423 	if (m_head->m_pkthdr.len > MHLEN) {
1424 		MCLGET(m_new, MB_DONTWAIT);
1425 		if (!(m_new->m_flags & M_EXT)) {
1426 			m_freem(m_new);
1427 			printf("my%d: no memory for tx list", sc->my_unit);
1428 			return (1);
1429 		}
1430 	}
1431 	m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t));
1432 	m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1433 	m_freem(m_head);
1434 	m_head = m_new;
1435 	f = &c->my_ptr->my_frag[0];
1436 	f->my_status = 0;
1437 	f->my_data = vtophys(mtod(m_new, caddr_t));
1438 	total_len = m_new->m_len;
1439 	f->my_ctl = MY_TXFD | MY_TXLD | MY_CRCEnable | MY_PADEnable;
1440 	f->my_ctl |= total_len << MY_PKTShift;	/* pkt size */
1441 	f->my_ctl |= total_len;	/* buffer size */
1442 	/* 89/12/29 add, for mtd891 *//* [ 89? ] */
1443 	if (sc->my_info->my_did == MTD891ID)
1444 		f->my_ctl |= MY_ETIControl | MY_RetryTxLC;
1445 	c->my_mbuf = m_head;
1446 	c->my_lastdesc = 0;
1447 	MY_TXNEXT(c) = vtophys(&c->my_nextdesc->my_ptr->my_frag[0]);
1448 	MY_UNLOCK(sc);
1449 	return (0);
1450 }
1451 
1452 /*
1453  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1454  * to the mbuf data regions directly in the transmit lists. We also save a
1455  * copy of the pointers since the transmit list fragment pointers are
1456  * physical addresses.
1457  */
1458 static void
1459 my_start(struct ifnet * ifp)
1460 {
1461 	struct my_softc *sc;
1462 	struct mbuf    *m_head = NULL;
1463 	struct my_chain *cur_tx = NULL, *start_tx;
1464 
1465 	sc = ifp->if_softc;
1466 	MY_LOCK(sc);
1467 	if (sc->my_autoneg) {
1468 		sc->my_tx_pend = 1;
1469 		MY_UNLOCK(sc);
1470 		return;
1471 	}
1472 	/*
1473 	 * Check for an available queue slot. If there are none, punt.
1474 	 */
1475 	if (sc->my_cdata.my_tx_free->my_mbuf != NULL) {
1476 		ifp->if_flags |= IFF_OACTIVE;
1477 		MY_UNLOCK(sc);
1478 		return;
1479 	}
1480 	start_tx = sc->my_cdata.my_tx_free;
1481 	while (sc->my_cdata.my_tx_free->my_mbuf == NULL) {
1482 		m_head = ifq_dequeue(&ifp->if_snd);
1483 		if (m_head == NULL)
1484 			break;
1485 
1486 		/* Pick a descriptor off the free list. */
1487 		cur_tx = sc->my_cdata.my_tx_free;
1488 		sc->my_cdata.my_tx_free = cur_tx->my_nextdesc;
1489 
1490 		/* Pack the data into the descriptor. */
1491 		my_encap(sc, cur_tx, m_head);
1492 
1493 		if (cur_tx != start_tx)
1494 			MY_TXOWN(cur_tx) = MY_OWNByNIC;
1495 		BPF_MTAP(ifp, cur_tx->my_mbuf);
1496 	}
1497 	/*
1498 	 * If there are no packets queued, bail.
1499 	 */
1500 	if (cur_tx == NULL) {
1501 		MY_UNLOCK(sc);
1502 		return;
1503 	}
1504 	/*
1505 	 * Place the request for the upload interrupt in the last descriptor
1506 	 * in the chain. This way, if we're chaining several packets at once,
1507 	 * we'll only get an interupt once for the whole chain rather than
1508 	 * once for each packet.
1509 	 */
1510 	MY_TXCTL(cur_tx) |= MY_TXIC;
1511 	cur_tx->my_ptr->my_frag[0].my_ctl |= MY_TXIC;
1512 	sc->my_cdata.my_tx_tail = cur_tx;
1513 	if (sc->my_cdata.my_tx_head == NULL)
1514 		sc->my_cdata.my_tx_head = start_tx;
1515 	MY_TXOWN(start_tx) = MY_OWNByNIC;
1516 	CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);	/* tx polling demand */
1517 
1518 	/*
1519 	 * Set a timeout in case the chip goes out to lunch.
1520 	 */
1521 	ifp->if_timer = 5;
1522 	MY_UNLOCK(sc);
1523 	return;
1524 }
1525 
1526 static void
1527 my_init(void *xsc)
1528 {
1529 	struct my_softc *sc = xsc;
1530 	struct ifnet   *ifp = &sc->arpcom.ac_if;
1531 	int             s;
1532 	u_int16_t       phy_bmcr = 0;
1533 
1534 	MY_LOCK(sc);
1535 	if (sc->my_autoneg) {
1536 		MY_UNLOCK(sc);
1537 		return;
1538 	}
1539 	s = splimp();
1540 	if (sc->my_pinfo != NULL)
1541 		phy_bmcr = my_phy_readreg(sc, PHY_BMCR);
1542 	/*
1543 	 * Cancel pending I/O and free all RX/TX buffers.
1544 	 */
1545 	my_stop(sc);
1546 	my_reset(sc);
1547 
1548 	/*
1549 	 * Set cache alignment and burst length.
1550 	 */
1551 #if 0				/* 89/9/1 modify,  */
1552 	CSR_WRITE_4(sc, MY_BCR, MY_RPBLE512);
1553 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF);
1554 #endif
1555 	CSR_WRITE_4(sc, MY_BCR, MY_PBL8);
1556 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF | MY_RBLEN | MY_RPBLE512);
1557 	/*
1558 	 * 89/12/29 add, for mtd891,
1559 	 */
1560 	if (sc->my_info->my_did == MTD891ID) {
1561 		MY_SETBIT(sc, MY_BCR, MY_PROG);
1562 		MY_SETBIT(sc, MY_TCRRCR, MY_Enhanced);
1563 	}
1564 	my_setcfg(sc, phy_bmcr);
1565 	/* Init circular RX list. */
1566 	if (my_list_rx_init(sc) == ENOBUFS) {
1567 		printf("my%d: init failed: no memory for rx buffers\n",
1568 		    sc->my_unit);
1569 		my_stop(sc);
1570 		(void)splx(s);
1571 		MY_UNLOCK(sc);
1572 		return;
1573 	}
1574 	/* Init TX descriptors. */
1575 	my_list_tx_init(sc);
1576 
1577 	/* If we want promiscuous mode, set the allframes bit. */
1578 	if (ifp->if_flags & IFF_PROMISC)
1579 		MY_SETBIT(sc, MY_TCRRCR, MY_PROM);
1580 	else
1581 		MY_CLRBIT(sc, MY_TCRRCR, MY_PROM);
1582 
1583 	/*
1584 	 * Set capture broadcast bit to capture broadcast frames.
1585 	 */
1586 	if (ifp->if_flags & IFF_BROADCAST)
1587 		MY_SETBIT(sc, MY_TCRRCR, MY_AB);
1588 	else
1589 		MY_CLRBIT(sc, MY_TCRRCR, MY_AB);
1590 
1591 	/*
1592 	 * Program the multicast filter, if necessary.
1593 	 */
1594 	my_setmulti(sc);
1595 
1596 	/*
1597 	 * Load the address of the RX list.
1598 	 */
1599 	MY_CLRBIT(sc, MY_TCRRCR, MY_RE);
1600 	CSR_WRITE_4(sc, MY_RXLBA, vtophys(&sc->my_ldata->my_rx_list[0]));
1601 
1602 	/*
1603 	 * Enable interrupts.
1604 	 */
1605 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1606 	CSR_WRITE_4(sc, MY_ISR, 0xFFFFFFFF);
1607 
1608 	/* Enable receiver and transmitter. */
1609 	MY_SETBIT(sc, MY_TCRRCR, MY_RE);
1610 	MY_CLRBIT(sc, MY_TCRRCR, MY_TE);
1611 	CSR_WRITE_4(sc, MY_TXLBA, vtophys(&sc->my_ldata->my_tx_list[0]));
1612 	MY_SETBIT(sc, MY_TCRRCR, MY_TE);
1613 
1614 	/* Restore state of BMCR */
1615 	if (sc->my_pinfo != NULL)
1616 		my_phy_writereg(sc, PHY_BMCR, phy_bmcr);
1617 	ifp->if_flags |= IFF_RUNNING;
1618 	ifp->if_flags &= ~IFF_OACTIVE;
1619 	(void)splx(s);
1620 	MY_UNLOCK(sc);
1621 	return;
1622 }
1623 
1624 /*
1625  * Set media options.
1626  */
1627 
1628 static int
1629 my_ifmedia_upd(struct ifnet * ifp)
1630 {
1631 	struct my_softc *sc;
1632 	struct ifmedia *ifm;
1633 
1634 	sc = ifp->if_softc;
1635 	MY_LOCK(sc);
1636 	ifm = &sc->ifmedia;
1637 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
1638 		MY_UNLOCK(sc);
1639 		return (EINVAL);
1640 	}
1641 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
1642 		my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1643 	else
1644 		my_setmode_mii(sc, ifm->ifm_media);
1645 	MY_UNLOCK(sc);
1646 	return (0);
1647 }
1648 
1649 /*
1650  * Report current media status.
1651  */
1652 
1653 static void
1654 my_ifmedia_sts(struct ifnet * ifp, struct ifmediareq * ifmr)
1655 {
1656 	struct my_softc *sc;
1657 	u_int16_t advert = 0, ability = 0;
1658 
1659 	sc = ifp->if_softc;
1660 	MY_LOCK(sc);
1661 	ifmr->ifm_active = IFM_ETHER;
1662 	if (!(my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
1663 #if 0				/* this version did not support 1000M, */
1664 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_1000)
1665 			ifmr->ifm_active = IFM_ETHER | IFM_1000TX;
1666 #endif
1667 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
1668 			ifmr->ifm_active = IFM_ETHER | IFM_100_TX;
1669 		else
1670 			ifmr->ifm_active = IFM_ETHER | IFM_10_T;
1671 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
1672 			ifmr->ifm_active |= IFM_FDX;
1673 		else
1674 			ifmr->ifm_active |= IFM_HDX;
1675 
1676 		MY_UNLOCK(sc);
1677 		return;
1678 	}
1679 	ability = my_phy_readreg(sc, PHY_LPAR);
1680 	advert = my_phy_readreg(sc, PHY_ANAR);
1681 
1682 #if 0				/* this version did not support 1000M, */
1683 	if (sc->my_pinfo->my_vid = MarvellPHYID0) {
1684 		ability2 = my_phy_readreg(sc, PHY_1000SR);
1685 		if (ability2 & PHY_1000SR_1000BTXFULL) {
1686 			advert = 0;
1687 			ability = 0;
1688 	  		ifmr->ifm_active = IFM_ETHER | IFM_1000_T | IFM_FDX;
1689 	  	} else if (ability & PHY_1000SR_1000BTXHALF) {
1690 			advert = 0;
1691 			ability = 0;
1692 			ifmr->ifm_active = IFM_ETHER | IFM_1000_T | IFM_HDX;
1693 		}
1694 	}
1695 #endif
1696 	if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4)
1697 		ifmr->ifm_active = IFM_ETHER | IFM_100_T4;
1698 	else if (advert & PHY_ANAR_100BTXFULL && ability & PHY_ANAR_100BTXFULL)
1699 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1700 	else if (advert & PHY_ANAR_100BTXHALF && ability & PHY_ANAR_100BTXHALF)
1701 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_HDX;
1702 	else if (advert & PHY_ANAR_10BTFULL && ability & PHY_ANAR_10BTFULL)
1703 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_FDX;
1704 	else if (advert & PHY_ANAR_10BTHALF && ability & PHY_ANAR_10BTHALF)
1705 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_HDX;
1706 	MY_UNLOCK(sc);
1707 	return;
1708 }
1709 
1710 static int
1711 my_ioctl(struct ifnet * ifp, u_long command, caddr_t data, struct ucred *cr)
1712 {
1713 	struct my_softc *sc = ifp->if_softc;
1714 	struct ifreq   *ifr = (struct ifreq *) data;
1715 	int             s, error = 0;
1716 
1717 	s = splimp();
1718 	MY_LOCK(sc);
1719 	switch (command) {
1720 	case SIOCSIFADDR:
1721 	case SIOCGIFADDR:
1722 	case SIOCSIFMTU:
1723 		error = ether_ioctl(ifp, command, data);
1724 		break;
1725 	case SIOCSIFFLAGS:
1726 		if (ifp->if_flags & IFF_UP)
1727 			my_init(sc);
1728 		else if (ifp->if_flags & IFF_RUNNING)
1729 			my_stop(sc);
1730 		error = 0;
1731 		break;
1732 	case SIOCADDMULTI:
1733 	case SIOCDELMULTI:
1734 		my_setmulti(sc);
1735 		error = 0;
1736 		break;
1737 	case SIOCGIFMEDIA:
1738 	case SIOCSIFMEDIA:
1739 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
1740 		break;
1741 	default:
1742 		error = EINVAL;
1743 		break;
1744 	}
1745 	MY_UNLOCK(sc);
1746 	(void)splx(s);
1747 	return (error);
1748 }
1749 
1750 static void
1751 my_watchdog(struct ifnet * ifp)
1752 {
1753 	struct my_softc *sc;
1754 
1755 	sc = ifp->if_softc;
1756 	MY_LOCK(sc);
1757 	if (sc->my_autoneg) {
1758 		my_autoneg_mii(sc, MY_FLAG_DELAYTIMEO, 1);
1759 		MY_UNLOCK(sc);
1760 		return;
1761 	}
1762 	ifp->if_oerrors++;
1763 	printf("my%d: watchdog timeout\n", sc->my_unit);
1764 	if (!(my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
1765 		printf("my%d: no carrier - transceiver cable problem?\n",
1766 		    sc->my_unit);
1767 	my_stop(sc);
1768 	my_reset(sc);
1769 	my_init(sc);
1770 	if (!ifq_is_empty(&ifp->if_snd))
1771 		my_start(ifp);
1772 	MY_LOCK(sc);
1773 	return;
1774 }
1775 
1776 
1777 /*
1778  * Stop the adapter and free any mbufs allocated to the RX and TX lists.
1779  */
1780 static void
1781 my_stop(struct my_softc * sc)
1782 {
1783 	int    i;
1784 	struct ifnet   *ifp;
1785 
1786 	MY_LOCK(sc);
1787 	ifp = &sc->arpcom.ac_if;
1788 	ifp->if_timer = 0;
1789 
1790 	MY_CLRBIT(sc, MY_TCRRCR, (MY_RE | MY_TE));
1791 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1792 	CSR_WRITE_4(sc, MY_TXLBA, 0x00000000);
1793 	CSR_WRITE_4(sc, MY_RXLBA, 0x00000000);
1794 
1795 	/*
1796 	 * Free data in the RX lists.
1797 	 */
1798 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1799 		if (sc->my_cdata.my_rx_chain[i].my_mbuf != NULL) {
1800 			m_freem(sc->my_cdata.my_rx_chain[i].my_mbuf);
1801 			sc->my_cdata.my_rx_chain[i].my_mbuf = NULL;
1802 		}
1803 	}
1804 	bzero((char *)&sc->my_ldata->my_rx_list,
1805 	    sizeof(sc->my_ldata->my_rx_list));
1806 	/*
1807 	 * Free the TX list buffers.
1808 	 */
1809 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1810 		if (sc->my_cdata.my_tx_chain[i].my_mbuf != NULL) {
1811 			m_freem(sc->my_cdata.my_tx_chain[i].my_mbuf);
1812 			sc->my_cdata.my_tx_chain[i].my_mbuf = NULL;
1813 		}
1814 	}
1815 	bzero((char *)&sc->my_ldata->my_tx_list,
1816 	    sizeof(sc->my_ldata->my_tx_list));
1817 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1818 	MY_UNLOCK(sc);
1819 	return;
1820 }
1821 
1822 /*
1823  * Stop all chip I/O so that the kernel's probe routines don't get confused
1824  * by errant DMAs when rebooting.
1825  */
1826 static void
1827 my_shutdown(device_t dev)
1828 {
1829 	struct my_softc *sc;
1830 
1831 	sc = device_get_softc(dev);
1832 	my_stop(sc);
1833 	return;
1834 }
1835