xref: /dragonfly/sys/dev/netif/my/if_my.c (revision e8364298)
1 /*
2  * Copyright (c) 2002 Myson Technology Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions, and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. The name of the author may not be used to endorse or promote products
12  *    derived from this software without specific prior written permission.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
18  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * Written by: yen_cw@myson.com.tw  available at: http://www.myson.com.tw/
27  *
28  * $FreeBSD: src/sys/dev/my/if_my.c,v 1.2.2.4 2002/04/17 02:05:27 julian Exp $
29  * $DragonFly: src/sys/dev/netif/my/if_my.c,v 1.11 2004/07/02 17:42:18 joerg Exp $
30  *
31  * Myson fast ethernet PCI NIC driver
32  *
33  * $Id: if_my.c,v 1.40 2001/11/30 03:55:00 <yen_cw@myson.com.tw> wpaul Exp $
34  */
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/sockio.h>
38 #include <sys/mbuf.h>
39 #include <sys/malloc.h>
40 #include <sys/kernel.h>
41 #include <sys/socket.h>
42 #include <sys/queue.h>
43 #include <sys/types.h>
44 #include <sys/bus.h>
45 #include <sys/module.h>
46 
47 #define NBPFILTER	1
48 
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_media.h>
53 #include <net/if_dl.h>
54 #include <net/bpf.h>
55 
56 #include <vm/vm.h>		/* for vtophys */
57 #include <vm/pmap.h>		/* for vtophys */
58 #include <machine/clock.h>	/* for DELAY */
59 #include <machine/bus_memio.h>
60 #include <machine/bus_pio.h>
61 #include <machine/bus.h>
62 #include <machine/resource.h>
63 #include <sys/bus.h>
64 #include <sys/rman.h>
65 
66 #include <bus/pci/pcireg.h>
67 #include <bus/pci/pcivar.h>
68 
69 #include "../mii_layer/mii.h"
70 #include "../mii_layer/miivar.h"
71 
72 #include "miibus_if.h"
73 
74 /*
75  * #define MY_USEIOSPACE
76  */
77 
78 static int      MY_USEIOSPACE = 1;
79 
80 #if (MY_USEIOSPACE)
81 #define MY_RES                  SYS_RES_IOPORT
82 #define MY_RID                  MY_PCI_LOIO
83 #else
84 #define MY_RES                  SYS_RES_MEMORY
85 #define MY_RID                  MY_PCI_LOMEM
86 #endif
87 
88 
89 #include "if_myreg.h"
90 
91 /*
92  * Various supported device vendors/types and their names.
93  */
94 struct my_type *my_info_tmp;
95 static struct my_type my_devs[] = {
96 	{MYSONVENDORID, MTD800ID, "Myson MTD80X Based Fast Ethernet Card"},
97 	{MYSONVENDORID, MTD803ID, "Myson MTD80X Based Fast Ethernet Card"},
98 	{MYSONVENDORID, MTD891ID, "Myson MTD89X Based Giga Ethernet Card"},
99 	{0, 0, NULL}
100 };
101 
102 /*
103  * Various supported PHY vendors/types and their names. Note that this driver
104  * will work with pretty much any MII-compliant PHY, so failure to positively
105  * identify the chip is not a fatal error.
106  */
107 static struct my_type my_phys[] = {
108 	{MysonPHYID0, MysonPHYID0, "<MYSON MTD981>"},
109 	{SeeqPHYID0, SeeqPHYID0, "<SEEQ 80225>"},
110 	{AhdocPHYID0, AhdocPHYID0, "<AHDOC 101>"},
111 	{MarvellPHYID0, MarvellPHYID0, "<MARVELL 88E1000>"},
112 	{LevelOnePHYID0, LevelOnePHYID0, "<LevelOne LXT1000>"},
113 	{0, 0, "<MII-compliant physical interface>"}
114 };
115 
116 static int      my_probe(device_t);
117 static int      my_attach(device_t);
118 static int      my_detach(device_t);
119 static int      my_newbuf(struct my_softc *, struct my_chain_onefrag *);
120 static int      my_encap(struct my_softc *, struct my_chain *, struct mbuf *);
121 static void     my_rxeof(struct my_softc *);
122 static void     my_txeof(struct my_softc *);
123 static void     my_txeoc(struct my_softc *);
124 static void     my_intr(void *);
125 static void     my_start(struct ifnet *);
126 static int      my_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
127 static void     my_init(void *);
128 static void     my_stop(struct my_softc *);
129 static void     my_watchdog(struct ifnet *);
130 static void     my_shutdown(device_t);
131 static int      my_ifmedia_upd(struct ifnet *);
132 static void     my_ifmedia_sts(struct ifnet *, struct ifmediareq *);
133 static u_int16_t my_phy_readreg(struct my_softc *, int);
134 static void     my_phy_writereg(struct my_softc *, int, int);
135 static void     my_autoneg_xmit(struct my_softc *);
136 static void     my_autoneg_mii(struct my_softc *, int, int);
137 static void     my_setmode_mii(struct my_softc *, int);
138 static void     my_getmode_mii(struct my_softc *);
139 static void     my_setcfg(struct my_softc *, int);
140 static u_int8_t my_calchash(caddr_t);
141 static void     my_setmulti(struct my_softc *);
142 static void     my_reset(struct my_softc *);
143 static int      my_list_rx_init(struct my_softc *);
144 static int      my_list_tx_init(struct my_softc *);
145 static long     my_send_cmd_to_phy(struct my_softc *, int, int);
146 
147 #define MY_SETBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
148 #define MY_CLRBIT(sc, reg, x) CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
149 
150 static device_method_t my_methods[] = {
151 	/* Device interface */
152 	DEVMETHOD(device_probe, my_probe),
153 	DEVMETHOD(device_attach, my_attach),
154 	DEVMETHOD(device_detach, my_detach),
155 	DEVMETHOD(device_shutdown, my_shutdown),
156 
157 	{0, 0}
158 };
159 
160 static driver_t my_driver = {
161 	"my",
162 	my_methods,
163 	sizeof(struct my_softc)
164 };
165 
166 static devclass_t my_devclass;
167 
168 DECLARE_DUMMY_MODULE(if_my);
169 DRIVER_MODULE(if_my, pci, my_driver, my_devclass, 0, 0);
170 
171 static long
172 my_send_cmd_to_phy(struct my_softc * sc, int opcode, int regad)
173 {
174 	long            miir;
175 	int             i;
176 	int             mask, data;
177 
178 	MY_LOCK(sc);
179 
180 	/* enable MII output */
181 	miir = CSR_READ_4(sc, MY_MANAGEMENT);
182 	miir &= 0xfffffff0;
183 
184 	miir |= MY_MASK_MIIR_MII_WRITE + MY_MASK_MIIR_MII_MDO;
185 
186 	/* send 32 1's preamble */
187 	for (i = 0; i < 32; i++) {
188 		/* low MDC; MDO is already high (miir) */
189 		miir &= ~MY_MASK_MIIR_MII_MDC;
190 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
191 
192 		/* high MDC */
193 		miir |= MY_MASK_MIIR_MII_MDC;
194 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
195 	}
196 
197 	/* calculate ST+OP+PHYAD+REGAD+TA */
198 	data = opcode | (sc->my_phy_addr << 7) | (regad << 2);
199 
200 	/* sent out */
201 	mask = 0x8000;
202 	while (mask) {
203 		/* low MDC, prepare MDO */
204 		miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
205 		if (mask & data)
206 			miir |= MY_MASK_MIIR_MII_MDO;
207 
208 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
209 		/* high MDC */
210 		miir |= MY_MASK_MIIR_MII_MDC;
211 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
212 		DELAY(30);
213 
214 		/* next */
215 		mask >>= 1;
216 		if (mask == 0x2 && opcode == MY_OP_READ)
217 			miir &= ~MY_MASK_MIIR_MII_WRITE;
218 	}
219 
220 	MY_UNLOCK(sc);
221 	return miir;
222 }
223 
224 
225 static          u_int16_t
226 my_phy_readreg(struct my_softc * sc, int reg)
227 {
228 	long            miir;
229 	int             mask, data;
230 
231 	MY_LOCK(sc);
232 
233 	if (sc->my_info->my_did == MTD803ID)
234 		data = CSR_READ_2(sc, MY_PHYBASE + reg * 2);
235 	else {
236 		miir = my_send_cmd_to_phy(sc, MY_OP_READ, reg);
237 
238 		/* read data */
239 		mask = 0x8000;
240 		data = 0;
241 		while (mask) {
242 			/* low MDC */
243 			miir &= ~MY_MASK_MIIR_MII_MDC;
244 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
245 
246 			/* read MDI */
247 			miir = CSR_READ_4(sc, MY_MANAGEMENT);
248 			if (miir & MY_MASK_MIIR_MII_MDI)
249 				data |= mask;
250 
251 			/* high MDC, and wait */
252 			miir |= MY_MASK_MIIR_MII_MDC;
253 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
254 			DELAY(30);
255 
256 			/* next */
257 			mask >>= 1;
258 		}
259 
260 		/* low MDC */
261 		miir &= ~MY_MASK_MIIR_MII_MDC;
262 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
263 	}
264 
265 	MY_UNLOCK(sc);
266 	return (u_int16_t) data;
267 }
268 
269 
270 static void
271 my_phy_writereg(struct my_softc * sc, int reg, int data)
272 {
273 	long            miir;
274 	int             mask;
275 
276 	MY_LOCK(sc);
277 
278 	if (sc->my_info->my_did == MTD803ID)
279 		CSR_WRITE_2(sc, MY_PHYBASE + reg * 2, data);
280 	else {
281 		miir = my_send_cmd_to_phy(sc, MY_OP_WRITE, reg);
282 
283 		/* write data */
284 		mask = 0x8000;
285 		while (mask) {
286 			/* low MDC, prepare MDO */
287 			miir &= ~(MY_MASK_MIIR_MII_MDC + MY_MASK_MIIR_MII_MDO);
288 			if (mask & data)
289 				miir |= MY_MASK_MIIR_MII_MDO;
290 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
291 			DELAY(1);
292 
293 			/* high MDC */
294 			miir |= MY_MASK_MIIR_MII_MDC;
295 			CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
296 			DELAY(1);
297 
298 			/* next */
299 			mask >>= 1;
300 		}
301 
302 		/* low MDC */
303 		miir &= ~MY_MASK_MIIR_MII_MDC;
304 		CSR_WRITE_4(sc, MY_MANAGEMENT, miir);
305 	}
306 	MY_UNLOCK(sc);
307 	return;
308 }
309 
310 static          u_int8_t
311 my_calchash(caddr_t addr)
312 {
313 	u_int32_t       crc, carry;
314 	int             i, j;
315 	u_int8_t        c;
316 
317 	/* Compute CRC for the address value. */
318 	crc = 0xFFFFFFFF;	/* initial value */
319 
320 	for (i = 0; i < 6; i++) {
321 		c = *(addr + i);
322 		for (j = 0; j < 8; j++) {
323 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
324 			crc <<= 1;
325 			c >>= 1;
326 			if (carry)
327 				crc = (crc ^ 0x04c11db6) | carry;
328 		}
329 	}
330 
331 	/*
332 	 * return the filter bit position Note: I arrived at the following
333 	 * nonsense through experimentation. It's not the usual way to
334 	 * generate the bit position but it's the only thing I could come up
335 	 * with that works.
336 	 */
337 	return (~(crc >> 26) & 0x0000003F);
338 }
339 
340 
341 /*
342  * Program the 64-bit multicast hash filter.
343  */
344 static void
345 my_setmulti(struct my_softc * sc)
346 {
347 	struct ifnet   *ifp;
348 	int             h = 0;
349 	u_int32_t       hashes[2] = {0, 0};
350 	struct ifmultiaddr *ifma;
351 	u_int32_t       rxfilt;
352 	int             mcnt = 0;
353 
354 	MY_LOCK(sc);
355 
356 	ifp = &sc->arpcom.ac_if;
357 
358 	rxfilt = CSR_READ_4(sc, MY_TCRRCR);
359 
360 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
361 		rxfilt |= MY_AM;
362 		CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
363 		CSR_WRITE_4(sc, MY_MAR0, 0xFFFFFFFF);
364 		CSR_WRITE_4(sc, MY_MAR1, 0xFFFFFFFF);
365 
366 		MY_UNLOCK(sc);
367 
368 		return;
369 	}
370 	/* first, zot all the existing hash bits */
371 	CSR_WRITE_4(sc, MY_MAR0, 0);
372 	CSR_WRITE_4(sc, MY_MAR1, 0);
373 
374 	/* now program new ones */
375 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
376 		if (ifma->ifma_addr->sa_family != AF_LINK)
377 			continue;
378 		h = my_calchash(LLADDR((struct sockaddr_dl *) ifma->ifma_addr));
379 		if (h < 32)
380 			hashes[0] |= (1 << h);
381 		else
382 			hashes[1] |= (1 << (h - 32));
383 		mcnt++;
384 	}
385 
386 	if (mcnt)
387 		rxfilt |= MY_AM;
388 	else
389 		rxfilt &= ~MY_AM;
390 	CSR_WRITE_4(sc, MY_MAR0, hashes[0]);
391 	CSR_WRITE_4(sc, MY_MAR1, hashes[1]);
392 	CSR_WRITE_4(sc, MY_TCRRCR, rxfilt);
393 	MY_UNLOCK(sc);
394 	return;
395 }
396 
397 /*
398  * Initiate an autonegotiation session.
399  */
400 static void
401 my_autoneg_xmit(struct my_softc * sc)
402 {
403 	u_int16_t       phy_sts = 0;
404 
405 	MY_LOCK(sc);
406 
407 	my_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
408 	DELAY(500);
409 	while (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_RESET);
410 
411 	phy_sts = my_phy_readreg(sc, PHY_BMCR);
412 	phy_sts |= PHY_BMCR_AUTONEGENBL | PHY_BMCR_AUTONEGRSTR;
413 	my_phy_writereg(sc, PHY_BMCR, phy_sts);
414 
415 	MY_UNLOCK(sc);
416 	return;
417 }
418 
419 
420 /*
421  * Invoke autonegotiation on a PHY.
422  */
423 static void
424 my_autoneg_mii(struct my_softc * sc, int flag, int verbose)
425 {
426 	u_int16_t       phy_sts = 0, media, advert, ability;
427 	u_int16_t       ability2 = 0;
428 	struct ifnet   *ifp;
429 	struct ifmedia *ifm;
430 
431 	MY_LOCK(sc);
432 
433 	ifm = &sc->ifmedia;
434 	ifp = &sc->arpcom.ac_if;
435 
436 	ifm->ifm_media = IFM_ETHER | IFM_AUTO;
437 
438 #ifndef FORCE_AUTONEG_TFOUR
439 	/*
440 	 * First, see if autoneg is supported. If not, there's no point in
441 	 * continuing.
442 	 */
443 	phy_sts = my_phy_readreg(sc, PHY_BMSR);
444 	if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
445 		if (verbose)
446 			printf("my%d: autonegotiation not supported\n",
447 			    sc->my_unit);
448 		ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
449 		MY_UNLOCK(sc);
450 		return;
451 	}
452 #endif
453 	switch (flag) {
454 	case MY_FLAG_FORCEDELAY:
455 		/*
456 		 * XXX Never use this option anywhere but in the probe
457 		 * routine: making the kernel stop dead in its tracks for
458 		 * three whole seconds after we've gone multi-user is really
459 		 * bad manners.
460 		 */
461 		my_autoneg_xmit(sc);
462 		DELAY(5000000);
463 		break;
464 	case MY_FLAG_SCHEDDELAY:
465 		/*
466 		 * Wait for the transmitter to go idle before starting an
467 		 * autoneg session, otherwise my_start() may clobber our
468 		 * timeout, and we don't want to allow transmission during an
469 		 * autoneg session since that can screw it up.
470 		 */
471 		if (sc->my_cdata.my_tx_head != NULL) {
472 			sc->my_want_auto = 1;
473 			MY_UNLOCK(sc);
474 			return;
475 		}
476 		my_autoneg_xmit(sc);
477 		ifp->if_timer = 5;
478 		sc->my_autoneg = 1;
479 		sc->my_want_auto = 0;
480 		MY_UNLOCK(sc);
481 		return;
482 	case MY_FLAG_DELAYTIMEO:
483 		ifp->if_timer = 0;
484 		sc->my_autoneg = 0;
485 		break;
486 	default:
487 		printf("my%d: invalid autoneg flag: %d\n", sc->my_unit, flag);
488 		MY_UNLOCK(sc);
489 		return;
490 	}
491 
492 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
493 		if (verbose)
494 			printf("my%d: autoneg complete, ", sc->my_unit);
495 		phy_sts = my_phy_readreg(sc, PHY_BMSR);
496 	} else {
497 		if (verbose)
498 			printf("my%d: autoneg not complete, ", sc->my_unit);
499 	}
500 
501 	media = my_phy_readreg(sc, PHY_BMCR);
502 
503 	/* Link is good. Report modes and set duplex mode. */
504 	if (my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
505 		if (verbose)
506 			printf("my%d: link status good. ", sc->my_unit);
507 		advert = my_phy_readreg(sc, PHY_ANAR);
508 		ability = my_phy_readreg(sc, PHY_LPAR);
509 		if ((sc->my_pinfo->my_vid == MarvellPHYID0) ||
510 		    (sc->my_pinfo->my_vid == LevelOnePHYID0)) {
511 			ability2 = my_phy_readreg(sc, PHY_1000SR);
512 			if (ability2 & PHY_1000SR_1000BTXFULL) {
513 				advert = 0;
514 				ability = 0;
515 				/*
516 				 * this version did not support 1000M,
517 				 * ifm->ifm_media =
518 				 * IFM_ETHER|IFM_1000_TX|IFM_FDX;
519 				 */
520 				ifm->ifm_media =
521 				    IFM_ETHER | IFM_100_TX | IFM_FDX;
522 				media &= ~PHY_BMCR_SPEEDSEL;
523 				media |= PHY_BMCR_1000;
524 				media |= PHY_BMCR_DUPLEX;
525 				printf("(full-duplex, 1000Mbps)\n");
526 			} else if (ability2 & PHY_1000SR_1000BTXHALF) {
527 				advert = 0;
528 				ability = 0;
529 				/*
530 				 * this version did not support 1000M,
531 				 * ifm->ifm_media = IFM_ETHER|IFM_1000_TX;
532 				 */
533 				ifm->ifm_media = IFM_ETHER | IFM_100_TX;
534 				media &= ~PHY_BMCR_SPEEDSEL;
535 				media &= ~PHY_BMCR_DUPLEX;
536 				media |= PHY_BMCR_1000;
537 				printf("(half-duplex, 1000Mbps)\n");
538 			}
539 		}
540 		if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
541 			ifm->ifm_media = IFM_ETHER | IFM_100_T4;
542 			media |= PHY_BMCR_SPEEDSEL;
543 			media &= ~PHY_BMCR_DUPLEX;
544 			printf("(100baseT4)\n");
545 		} else if (advert & PHY_ANAR_100BTXFULL &&
546 			   ability & PHY_ANAR_100BTXFULL) {
547 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
548 			media |= PHY_BMCR_SPEEDSEL;
549 			media |= PHY_BMCR_DUPLEX;
550 			printf("(full-duplex, 100Mbps)\n");
551 		} else if (advert & PHY_ANAR_100BTXHALF &&
552 			   ability & PHY_ANAR_100BTXHALF) {
553 			ifm->ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
554 			media |= PHY_BMCR_SPEEDSEL;
555 			media &= ~PHY_BMCR_DUPLEX;
556 			printf("(half-duplex, 100Mbps)\n");
557 		} else if (advert & PHY_ANAR_10BTFULL &&
558 			   ability & PHY_ANAR_10BTFULL) {
559 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
560 			media &= ~PHY_BMCR_SPEEDSEL;
561 			media |= PHY_BMCR_DUPLEX;
562 			printf("(full-duplex, 10Mbps)\n");
563 		} else if (advert) {
564 			ifm->ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
565 			media &= ~PHY_BMCR_SPEEDSEL;
566 			media &= ~PHY_BMCR_DUPLEX;
567 			printf("(half-duplex, 10Mbps)\n");
568 		}
569 		media &= ~PHY_BMCR_AUTONEGENBL;
570 
571 		/* Set ASIC's duplex mode to match the PHY. */
572 		my_phy_writereg(sc, PHY_BMCR, media);
573 		my_setcfg(sc, media);
574 	} else {
575 		if (verbose)
576 			printf("my%d: no carrier\n", sc->my_unit);
577 	}
578 
579 	my_init(sc);
580 	if (sc->my_tx_pend) {
581 		sc->my_autoneg = 0;
582 		sc->my_tx_pend = 0;
583 		my_start(ifp);
584 	}
585 	MY_UNLOCK(sc);
586 	return;
587 }
588 
589 /*
590  * To get PHY ability.
591  */
592 static void
593 my_getmode_mii(struct my_softc * sc)
594 {
595 	u_int16_t       bmsr;
596 	struct ifnet   *ifp;
597 
598 	MY_LOCK(sc);
599 	ifp = &sc->arpcom.ac_if;
600 	bmsr = my_phy_readreg(sc, PHY_BMSR);
601 	if (bootverbose)
602 		printf("my%d: PHY status word: %x\n", sc->my_unit, bmsr);
603 
604 	/* fallback */
605 	sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_HDX;
606 
607 	if (bmsr & PHY_BMSR_10BTHALF) {
608 		if (bootverbose)
609 			printf("my%d: 10Mbps half-duplex mode supported\n",
610 			       sc->my_unit);
611 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_HDX,
612 		    0, NULL);
613 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T, 0, NULL);
614 	}
615 	if (bmsr & PHY_BMSR_10BTFULL) {
616 		if (bootverbose)
617 			printf("my%d: 10Mbps full-duplex mode supported\n",
618 			    sc->my_unit);
619 
620 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX,
621 		    0, NULL);
622 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_10_T | IFM_FDX;
623 	}
624 	if (bmsr & PHY_BMSR_100BTXHALF) {
625 		if (bootverbose)
626 			printf("my%d: 100Mbps half-duplex mode supported\n",
627 			       sc->my_unit);
628 		ifp->if_baudrate = 100000000;
629 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL);
630 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_HDX,
631 			    0, NULL);
632 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_HDX;
633 	}
634 	if (bmsr & PHY_BMSR_100BTXFULL) {
635 		if (bootverbose)
636 			printf("my%d: 100Mbps full-duplex mode supported\n",
637 			    sc->my_unit);
638 		ifp->if_baudrate = 100000000;
639 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX,
640 		    0, NULL);
641 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_TX | IFM_FDX;
642 	}
643 	/* Some also support 100BaseT4. */
644 	if (bmsr & PHY_BMSR_100BT4) {
645 		if (bootverbose)
646 			printf("my%d: 100baseT4 mode supported\n", sc->my_unit);
647 		ifp->if_baudrate = 100000000;
648 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_T4, 0, NULL);
649 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_100_T4;
650 #ifdef FORCE_AUTONEG_TFOUR
651 		if (bootverbose)
652 			printf("my%d: forcing on autoneg support for BT4\n",
653 			    sc->my_unit);
654 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0 NULL):
655 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
656 #endif
657 	}
658 #if 0				/* this version did not support 1000M, */
659 	if (sc->my_pinfo->my_vid == MarvellPHYID0) {
660 		if (bootverbose)
661 			printf("my%d: 1000Mbps half-duplex mode supported\n",
662 			       sc->my_unit);
663 
664 		ifp->if_baudrate = 1000000000;
665 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_TX, 0, NULL);
666 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_TX | IFM_HDX,
667 		    0, NULL);
668 		if (bootverbose)
669 			printf("my%d: 1000Mbps full-duplex mode supported\n",
670 			   sc->my_unit);
671 		ifp->if_baudrate = 1000000000;
672 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_TX | IFM_FDX,
673 		    0, NULL);
674 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_1000_TX | IFM_FDX;
675 	}
676 #endif
677 	if (bmsr & PHY_BMSR_CANAUTONEG) {
678 		if (bootverbose)
679 			printf("my%d: autoneg supported\n", sc->my_unit);
680 		ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
681 		sc->ifmedia.ifm_media = IFM_ETHER | IFM_AUTO;
682 	}
683 	MY_UNLOCK(sc);
684 	return;
685 }
686 
687 /*
688  * Set speed and duplex mode.
689  */
690 static void
691 my_setmode_mii(struct my_softc * sc, int media)
692 {
693 	u_int16_t       bmcr;
694 	struct ifnet   *ifp;
695 
696 	MY_LOCK(sc);
697 	ifp = &sc->arpcom.ac_if;
698 	/*
699 	 * If an autoneg session is in progress, stop it.
700 	 */
701 	if (sc->my_autoneg) {
702 		printf("my%d: canceling autoneg session\n", sc->my_unit);
703 		ifp->if_timer = sc->my_autoneg = sc->my_want_auto = 0;
704 		bmcr = my_phy_readreg(sc, PHY_BMCR);
705 		bmcr &= ~PHY_BMCR_AUTONEGENBL;
706 		my_phy_writereg(sc, PHY_BMCR, bmcr);
707 	}
708 	printf("my%d: selecting MII, ", sc->my_unit);
709 	bmcr = my_phy_readreg(sc, PHY_BMCR);
710 	bmcr &= ~(PHY_BMCR_AUTONEGENBL | PHY_BMCR_SPEEDSEL | PHY_BMCR_1000 |
711 		  PHY_BMCR_DUPLEX | PHY_BMCR_LOOPBK);
712 
713 #if 0				/* this version did not support 1000M, */
714 	if (IFM_SUBTYPE(media) == IFM_1000_TX) {
715 		printf("1000Mbps/T4, half-duplex\n");
716 		bmcr &= ~PHY_BMCR_SPEEDSEL;
717 		bmcr &= ~PHY_BMCR_DUPLEX;
718 		bmcr |= PHY_BMCR_1000;
719 	}
720 #endif
721 	if (IFM_SUBTYPE(media) == IFM_100_T4) {
722 		printf("100Mbps/T4, half-duplex\n");
723 		bmcr |= PHY_BMCR_SPEEDSEL;
724 		bmcr &= ~PHY_BMCR_DUPLEX;
725 	}
726 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
727 		printf("100Mbps, ");
728 		bmcr |= PHY_BMCR_SPEEDSEL;
729 	}
730 	if (IFM_SUBTYPE(media) == IFM_10_T) {
731 		printf("10Mbps, ");
732 		bmcr &= ~PHY_BMCR_SPEEDSEL;
733 	}
734 	if ((media & IFM_GMASK) == IFM_FDX) {
735 		printf("full duplex\n");
736 		bmcr |= PHY_BMCR_DUPLEX;
737 	} else {
738 		printf("half duplex\n");
739 		bmcr &= ~PHY_BMCR_DUPLEX;
740 	}
741 	my_phy_writereg(sc, PHY_BMCR, bmcr);
742 	my_setcfg(sc, bmcr);
743 	MY_UNLOCK(sc);
744 	return;
745 }
746 
747 /*
748  * The Myson manual states that in order to fiddle with the 'full-duplex' and
749  * '100Mbps' bits in the netconfig register, we first have to put the
750  * transmit and/or receive logic in the idle state.
751  */
752 static void
753 my_setcfg(struct my_softc * sc, int bmcr)
754 {
755 	int             i, restart = 0;
756 
757 	MY_LOCK(sc);
758 	if (CSR_READ_4(sc, MY_TCRRCR) & (MY_TE | MY_RE)) {
759 		restart = 1;
760 		MY_CLRBIT(sc, MY_TCRRCR, (MY_TE | MY_RE));
761 		for (i = 0; i < MY_TIMEOUT; i++) {
762 			DELAY(10);
763 			if (!(CSR_READ_4(sc, MY_TCRRCR) &
764 			    (MY_TXRUN | MY_RXRUN)))
765 				break;
766 		}
767 		if (i == MY_TIMEOUT)
768 			printf("my%d: failed to force tx and rx to idle \n",
769 			    sc->my_unit);
770 	}
771 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS1000);
772 	MY_CLRBIT(sc, MY_TCRRCR, MY_PS10);
773 	if (bmcr & PHY_BMCR_1000)
774 		MY_SETBIT(sc, MY_TCRRCR, MY_PS1000);
775 	else if (!(bmcr & PHY_BMCR_SPEEDSEL))
776 		MY_SETBIT(sc, MY_TCRRCR, MY_PS10);
777 	if (bmcr & PHY_BMCR_DUPLEX)
778 		MY_SETBIT(sc, MY_TCRRCR, MY_FD);
779 	else
780 		MY_CLRBIT(sc, MY_TCRRCR, MY_FD);
781 	if (restart)
782 		MY_SETBIT(sc, MY_TCRRCR, MY_TE | MY_RE);
783 	MY_UNLOCK(sc);
784 	return;
785 }
786 
787 static void
788 my_reset(struct my_softc * sc)
789 {
790 	int    i;
791 
792 	MY_LOCK(sc);
793 	MY_SETBIT(sc, MY_BCR, MY_SWR);
794 	for (i = 0; i < MY_TIMEOUT; i++) {
795 		DELAY(10);
796 		if (!(CSR_READ_4(sc, MY_BCR) & MY_SWR))
797 			break;
798 	}
799 	if (i == MY_TIMEOUT)
800 		printf("m0x%d: reset never completed!\n", sc->my_unit);
801 
802 	/* Wait a little while for the chip to get its brains in order. */
803 	DELAY(1000);
804 	MY_UNLOCK(sc);
805 	return;
806 }
807 
808 /*
809  * Probe for a Myson chip. Check the PCI vendor and device IDs against our
810  * list and return a device name if we find a match.
811  */
812 static int
813 my_probe(device_t dev)
814 {
815 	struct my_type *t;
816 
817 	t = my_devs;
818 	while (t->my_name != NULL) {
819 		if ((pci_get_vendor(dev) == t->my_vid) &&
820 		    (pci_get_device(dev) == t->my_did)) {
821 			device_set_desc(dev, t->my_name);
822 			my_info_tmp = t;
823 			return (0);
824 		}
825 		t++;
826 	}
827 	return (ENXIO);
828 }
829 
830 /*
831  * Attach the interface. Allocate softc structures, do ifmedia setup and
832  * ethernet/BPF attach.
833  */
834 static int
835 my_attach(device_t dev)
836 {
837 	int             s, i;
838 	u_char          eaddr[ETHER_ADDR_LEN];
839 	u_int32_t       command, iobase;
840 	struct my_softc *sc;
841 	struct ifnet   *ifp;
842 	int             media = IFM_ETHER | IFM_100_TX | IFM_FDX;
843 	unsigned int    round;
844 	caddr_t         roundptr;
845 	struct my_type *p;
846 	u_int16_t       phy_vid, phy_did, phy_sts = 0;
847 	int             rid, unit, error = 0;
848 
849 	s = splimp();
850 	sc = device_get_softc(dev);
851 	unit = device_get_unit(dev);
852 	if (sc == NULL) {
853 		printf("my%d: no memory for softc struct!\n", unit);
854 		error = ENXIO;
855 		goto fail;
856 
857 	}
858 	bzero(sc, sizeof(struct my_softc));
859 	/*mtx_init(&sc->my_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);*/
860 	MY_LOCK(sc);
861 
862 	/*
863 	 * Map control/status registers.
864 	 */
865 #if 0
866 	command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
867 	command |= (PCIM_CMD_PORTEN | PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
868 	pci_write_config(dev, PCI_COMMAND_STATUS_REG, command & 0x000000ff, 4);
869 	command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
870 #endif
871 	command = pci_read_config(dev, PCIR_COMMAND, 4);
872 	command |= (PCIM_CMD_PORTEN | PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
873 	pci_write_config(dev, PCIR_COMMAND, command & 0x000000ff, 4);
874 	command = pci_read_config(dev, PCIR_COMMAND, 4);
875 
876 	if (my_info_tmp->my_did == MTD800ID) {
877 		iobase = pci_read_config(dev, MY_PCI_LOIO, 4);
878 		if (iobase & 0x300)
879 			MY_USEIOSPACE = 0;
880 	}
881 	if (MY_USEIOSPACE) {
882 		if (!(command & PCIM_CMD_PORTEN)) {
883 			printf("my%d: failed to enable I/O ports!\n", unit);
884 			free(sc, M_DEVBUF);
885 			error = ENXIO;
886 			goto fail;
887 		}
888 #if 0
889 		if (!pci_map_port(config_id, MY_PCI_LOIO, (u_int16_t *) & (sc->my_bhandle))) {
890 			printf("my%d: couldn't map ports\n", unit);
891 			error = ENXIO;
892 			goto fail;
893 		}
894 
895 		sc->my_btag = I386_BUS_SPACE_IO;
896 #endif
897 	} else {
898 		if (!(command & PCIM_CMD_MEMEN)) {
899 			printf("my%d: failed to enable memory mapping!\n",
900 			    unit);
901 			error = ENXIO;
902 			goto fail;
903 		}
904 #if 0
905 		 if (!pci_map_mem(config_id, MY_PCI_LOMEM, &vbase, &pbase)) {
906 			printf ("my%d: couldn't map memory\n", unit);
907 			error = ENXIO;
908 			goto fail;
909 		}
910 		sc->my_btag = I386_BUS_SPACE_MEM;
911 		sc->my_bhandle = vbase;
912 #endif
913 	}
914 
915 	rid = MY_RID;
916 	sc->my_res = bus_alloc_resource(dev, MY_RES, &rid,
917 					0, ~0, 1, RF_ACTIVE);
918 
919 	if (sc->my_res == NULL) {
920 		printf("my%d: couldn't map ports/memory\n", unit);
921 		error = ENXIO;
922 		goto fail;
923 	}
924 	sc->my_btag = rman_get_bustag(sc->my_res);
925 	sc->my_bhandle = rman_get_bushandle(sc->my_res);
926 
927 	rid = 0;
928 	sc->my_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
929 					RF_SHAREABLE | RF_ACTIVE);
930 
931 	if (sc->my_irq == NULL) {
932 		printf("my%d: couldn't map interrupt\n", unit);
933 		bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
934 		error = ENXIO;
935 		goto fail;
936 	}
937 	error = bus_setup_intr(dev, sc->my_irq, INTR_TYPE_NET,
938 			       my_intr, sc, &sc->my_intrhand);
939 
940 	if (error) {
941 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
942 		bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
943 		printf("my%d: couldn't set up irq\n", unit);
944 		goto fail;
945 	}
946 	callout_handle_init(&sc->my_stat_ch);
947 
948 	sc->my_info = my_info_tmp;
949 
950 	/* Reset the adapter. */
951 	my_reset(sc);
952 
953 	/*
954 	 * Get station address
955 	 */
956 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
957 		eaddr[i] = CSR_READ_1(sc, MY_PAR0 + i);
958 
959 	sc->my_unit = unit;
960 
961 	sc->my_ldata_ptr = malloc(sizeof(struct my_list_data) + 8,
962 				  M_DEVBUF, M_WAITOK);
963 	if (sc->my_ldata_ptr == NULL) {
964 		free(sc, M_DEVBUF);
965 		printf("my%d: no memory for list buffers!\n", unit);
966 		error = ENXIO;
967 		goto fail;
968 	}
969 	sc->my_ldata = (struct my_list_data *) sc->my_ldata_ptr;
970 	round = (unsigned int)sc->my_ldata_ptr & 0xF;
971 	roundptr = sc->my_ldata_ptr;
972 	for (i = 0; i < 8; i++) {
973 		if (round % 8) {
974 			round++;
975 			roundptr++;
976 		} else
977 			break;
978 	}
979 	sc->my_ldata = (struct my_list_data *) roundptr;
980 	bzero(sc->my_ldata, sizeof(struct my_list_data));
981 
982 	ifp = &sc->arpcom.ac_if;
983 	ifp->if_softc = sc;
984 	if_initname(ifp, "my", unit);
985 	ifp->if_mtu = ETHERMTU;
986 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
987 	ifp->if_ioctl = my_ioctl;
988 	ifp->if_output = ether_output;
989 	ifp->if_start = my_start;
990 	ifp->if_watchdog = my_watchdog;
991 	ifp->if_init = my_init;
992 	ifp->if_baudrate = 10000000;
993 	ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
994 
995 	if (sc->my_info->my_did == MTD803ID)
996 		sc->my_pinfo = my_phys;
997 	else {
998 		if (bootverbose)
999 			printf("my%d: probing for a PHY\n", sc->my_unit);
1000 		for (i = MY_PHYADDR_MIN; i < MY_PHYADDR_MAX + 1; i++) {
1001 			if (bootverbose)
1002 				printf("my%d: checking address: %d\n",
1003 				    sc->my_unit, i);
1004 			sc->my_phy_addr = i;
1005 			phy_sts = my_phy_readreg(sc, PHY_BMSR);
1006 			if ((phy_sts != 0) && (phy_sts != 0xffff))
1007 				break;
1008 			else
1009 				phy_sts = 0;
1010 		}
1011 		if (phy_sts) {
1012 			phy_vid = my_phy_readreg(sc, PHY_VENID);
1013 			phy_did = my_phy_readreg(sc, PHY_DEVID);
1014 			if (bootverbose) {
1015 				printf("my%d: found PHY at address %d, ",
1016 				    sc->my_unit, sc->my_phy_addr);
1017 				printf("vendor id: %x device id: %x\n",
1018 				    phy_vid, phy_did);
1019 			}
1020 			p = my_phys;
1021 			while (p->my_vid) {
1022 				if (phy_vid == p->my_vid) {
1023 					sc->my_pinfo = p;
1024 					break;
1025 				}
1026 				p++;
1027 			}
1028 			if (sc->my_pinfo == NULL)
1029 				sc->my_pinfo = &my_phys[PHY_UNKNOWN];
1030 			if (bootverbose)
1031 				printf("my%d: PHY type: %s\n",
1032 				       sc->my_unit, sc->my_pinfo->my_name);
1033 		} else {
1034 			printf("my%d: MII without any phy!\n", sc->my_unit);
1035 			error = ENXIO;
1036 			goto fail;
1037 		}
1038 	}
1039 
1040 	/* Do ifmedia setup. */
1041 	ifmedia_init(&sc->ifmedia, 0, my_ifmedia_upd, my_ifmedia_sts);
1042 	my_getmode_mii(sc);
1043 	my_autoneg_mii(sc, MY_FLAG_FORCEDELAY, 1);
1044 	media = sc->ifmedia.ifm_media;
1045 	my_stop(sc);
1046 	ifmedia_set(&sc->ifmedia, media);
1047 
1048 	ether_ifattach(ifp, eaddr);
1049 
1050 #if 0
1051 	at_shutdown(my_shutdown, sc, SHUTDOWN_POST_SYNC);
1052 	shutdownhook_establish(my_shutdown, sc);
1053 #endif
1054 
1055 	MY_UNLOCK(sc);
1056 	return (0);
1057 
1058 fail:
1059 	MY_UNLOCK(sc);
1060 	/*mtx_destroy(&sc->my_mtx);*/
1061 	splx(s);
1062 	return (error);
1063 }
1064 
1065 static int
1066 my_detach(device_t dev)
1067 {
1068 	struct my_softc *sc;
1069 	struct ifnet   *ifp;
1070 	int             s;
1071 
1072 	s = splimp();
1073 	sc = device_get_softc(dev);
1074 	MY_LOCK(sc);
1075 	ifp = &sc->arpcom.ac_if;
1076 	ether_ifdetach(ifp);
1077 	my_stop(sc);
1078 
1079 #if 0
1080 	bus_generic_detach(dev);
1081 	device_delete_child(dev, sc->rl_miibus);
1082 #endif
1083 
1084 	bus_teardown_intr(dev, sc->my_irq, sc->my_intrhand);
1085 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->my_irq);
1086 	bus_release_resource(dev, MY_RES, MY_RID, sc->my_res);
1087 #if 0
1088 	contigfree(sc->my_cdata.my_rx_buf, MY_RXBUFLEN + 32, M_DEVBUF);
1089 #endif
1090 	free(sc, M_DEVBUF);
1091 	MY_UNLOCK(sc);
1092 	splx(s);
1093 	/*mtx_destroy(&sc->my_mtx);*/
1094 	return (0);
1095 }
1096 
1097 
1098 /*
1099  * Initialize the transmit descriptors.
1100  */
1101 static int
1102 my_list_tx_init(struct my_softc * sc)
1103 {
1104 	struct my_chain_data *cd;
1105 	struct my_list_data *ld;
1106 	int             i;
1107 
1108 	MY_LOCK(sc);
1109 	cd = &sc->my_cdata;
1110 	ld = sc->my_ldata;
1111 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1112 		cd->my_tx_chain[i].my_ptr = &ld->my_tx_list[i];
1113 		if (i == (MY_TX_LIST_CNT - 1))
1114 			cd->my_tx_chain[i].my_nextdesc = &cd->my_tx_chain[0];
1115 		else
1116 			cd->my_tx_chain[i].my_nextdesc =
1117 			    &cd->my_tx_chain[i + 1];
1118 	}
1119 	cd->my_tx_free = &cd->my_tx_chain[0];
1120 	cd->my_tx_tail = cd->my_tx_head = NULL;
1121 	MY_UNLOCK(sc);
1122 	return (0);
1123 }
1124 
1125 /*
1126  * Initialize the RX descriptors and allocate mbufs for them. Note that we
1127  * arrange the descriptors in a closed ring, so that the last descriptor
1128  * points back to the first.
1129  */
1130 static int
1131 my_list_rx_init(struct my_softc * sc)
1132 {
1133 	struct my_chain_data *cd;
1134 	struct my_list_data *ld;
1135 	int             i;
1136 
1137 	MY_LOCK(sc);
1138 	cd = &sc->my_cdata;
1139 	ld = sc->my_ldata;
1140 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1141 		cd->my_rx_chain[i].my_ptr =
1142 		    (struct my_desc *) & ld->my_rx_list[i];
1143 		if (my_newbuf(sc, &cd->my_rx_chain[i]) == ENOBUFS)
1144 			return (ENOBUFS);
1145 		if (i == (MY_RX_LIST_CNT - 1)) {
1146 			cd->my_rx_chain[i].my_nextdesc = &cd->my_rx_chain[0];
1147 			ld->my_rx_list[i].my_next = vtophys(&ld->my_rx_list[0]);
1148 		} else {
1149 			cd->my_rx_chain[i].my_nextdesc =
1150 			    &cd->my_rx_chain[i + 1];
1151 			ld->my_rx_list[i].my_next =
1152 			    vtophys(&ld->my_rx_list[i + 1]);
1153 		}
1154 	}
1155 	cd->my_rx_head = &cd->my_rx_chain[0];
1156 	MY_UNLOCK(sc);
1157 	return (0);
1158 }
1159 
1160 /*
1161  * Initialize an RX descriptor and attach an MBUF cluster.
1162  */
1163 static int
1164 my_newbuf(struct my_softc * sc, struct my_chain_onefrag * c)
1165 {
1166 	struct mbuf    *m_new = NULL;
1167 
1168 	MY_LOCK(sc);
1169 	MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1170 	if (m_new == NULL) {
1171 		printf("my%d: no memory for rx list -- packet dropped!\n",
1172 		       sc->my_unit);
1173 		return (ENOBUFS);
1174 	}
1175 	MCLGET(m_new, MB_DONTWAIT);
1176 	if (!(m_new->m_flags & M_EXT)) {
1177 		printf("my%d: no memory for rx list -- packet dropped!\n",
1178 		       sc->my_unit);
1179 		m_freem(m_new);
1180 		return (ENOBUFS);
1181 	}
1182 	c->my_mbuf = m_new;
1183 	c->my_ptr->my_data = vtophys(mtod(m_new, caddr_t));
1184 	c->my_ptr->my_ctl = (MCLBYTES - 1) << MY_RBSShift;
1185 	c->my_ptr->my_status = MY_OWNByNIC;
1186 	MY_UNLOCK(sc);
1187 	return (0);
1188 }
1189 
1190 /*
1191  * A frame has been uploaded: pass the resulting mbuf chain up to the higher
1192  * level protocols.
1193  */
1194 static void
1195 my_rxeof(struct my_softc * sc)
1196 {
1197 	struct ether_header *eh;
1198 	struct mbuf    *m;
1199 	struct ifnet   *ifp;
1200 	struct my_chain_onefrag *cur_rx;
1201 	int             total_len = 0;
1202 	u_int32_t       rxstat;
1203 
1204 	MY_LOCK(sc);
1205 	ifp = &sc->arpcom.ac_if;
1206 	while (!((rxstat = sc->my_cdata.my_rx_head->my_ptr->my_status)
1207 	    & MY_OWNByNIC)) {
1208 		cur_rx = sc->my_cdata.my_rx_head;
1209 		sc->my_cdata.my_rx_head = cur_rx->my_nextdesc;
1210 
1211 		if (rxstat & MY_ES) {	/* error summary: give up this rx pkt */
1212 			ifp->if_ierrors++;
1213 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1214 			continue;
1215 		}
1216 		/* No errors; receive the packet. */
1217 		total_len = (rxstat & MY_FLNGMASK) >> MY_FLNGShift;
1218 		total_len -= ETHER_CRC_LEN;
1219 
1220 		if (total_len < MINCLSIZE) {
1221 			m = m_devget(mtod(cur_rx->my_mbuf, char *),
1222 			    total_len, 0, ifp, NULL);
1223 			cur_rx->my_ptr->my_status = MY_OWNByNIC;
1224 			if (m == NULL) {
1225 				ifp->if_ierrors++;
1226 				continue;
1227 			}
1228 		} else {
1229 			m = cur_rx->my_mbuf;
1230 			/*
1231 			 * Try to conjure up a new mbuf cluster. If that
1232 			 * fails, it means we have an out of memory condition
1233 			 * and should leave the buffer in place and continue.
1234 			 * This will result in a lost packet, but there's
1235 			 * little else we can do in this situation.
1236 			 */
1237 			if (my_newbuf(sc, cur_rx) == ENOBUFS) {
1238 				ifp->if_ierrors++;
1239 				cur_rx->my_ptr->my_status = MY_OWNByNIC;
1240 				continue;
1241 			}
1242 			m->m_pkthdr.rcvif = ifp;
1243 			m->m_pkthdr.len = m->m_len = total_len;
1244 		}
1245 		ifp->if_ipackets++;
1246 		eh = mtod(m, struct ether_header *);
1247 #if NBPFILTER > 0
1248 		/*
1249 		 * Handle BPF listeners. Let the BPF user see the packet, but
1250 		 * don't pass it up to the ether_input() layer unless it's a
1251 		 * broadcast packet, multicast packet, matches our ethernet
1252 		 * address or the interface is in promiscuous mode.
1253 		 */
1254 		if (ifp->if_bpf) {
1255 			bpf_mtap(ifp, m);
1256 			if (ifp->if_flags & IFF_PROMISC &&
1257 			    (bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
1258 				ETHER_ADDR_LEN) &&
1259 			     (eh->ether_dhost[0] & 1) == 0)) {
1260 				m_freem(m);
1261 				continue;
1262 			}
1263 		}
1264 #endif
1265 		/* Remove header from mbuf and pass it on. */
1266 		m_adj(m, sizeof(struct ether_header));
1267 		ether_input(ifp, eh, m);
1268 	}
1269 	MY_UNLOCK(sc);
1270 	return;
1271 }
1272 
1273 
1274 /*
1275  * A frame was downloaded to the chip. It's safe for us to clean up the list
1276  * buffers.
1277  */
1278 static void
1279 my_txeof(struct my_softc * sc)
1280 {
1281 	struct my_chain *cur_tx;
1282 	struct ifnet   *ifp;
1283 
1284 	MY_LOCK(sc);
1285 	ifp = &sc->arpcom.ac_if;
1286 	/* Clear the timeout timer. */
1287 	ifp->if_timer = 0;
1288 	if (sc->my_cdata.my_tx_head == NULL)
1289 		return;
1290 	/*
1291 	 * Go through our tx list and free mbufs for those frames that have
1292 	 * been transmitted.
1293 	 */
1294 	while (sc->my_cdata.my_tx_head->my_mbuf != NULL) {
1295 		u_int32_t       txstat;
1296 
1297 		cur_tx = sc->my_cdata.my_tx_head;
1298 		txstat = MY_TXSTATUS(cur_tx);
1299 		if ((txstat & MY_OWNByNIC) || txstat == MY_UNSENT)
1300 			break;
1301 		if (!(CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced)) {
1302 			if (txstat & MY_TXERR) {
1303 				ifp->if_oerrors++;
1304 				if (txstat & MY_EC) /* excessive collision */
1305 					ifp->if_collisions++;
1306 				if (txstat & MY_LC)	/* late collision */
1307 					ifp->if_collisions++;
1308 			}
1309 			ifp->if_collisions += (txstat & MY_NCRMASK) >>
1310 			    MY_NCRShift;
1311 		}
1312 		ifp->if_opackets++;
1313 		m_freem(cur_tx->my_mbuf);
1314 		cur_tx->my_mbuf = NULL;
1315 		if (sc->my_cdata.my_tx_head == sc->my_cdata.my_tx_tail) {
1316 			sc->my_cdata.my_tx_head = NULL;
1317 			sc->my_cdata.my_tx_tail = NULL;
1318 			break;
1319 		}
1320 		sc->my_cdata.my_tx_head = cur_tx->my_nextdesc;
1321 	}
1322 	if (CSR_READ_4(sc, MY_TCRRCR) & MY_Enhanced) {
1323 		ifp->if_collisions += (CSR_READ_4(sc, MY_TSR) & MY_NCRMask);
1324 	}
1325 	MY_UNLOCK(sc);
1326 	return;
1327 }
1328 
1329 /*
1330  * TX 'end of channel' interrupt handler.
1331  */
1332 static void
1333 my_txeoc(struct my_softc * sc)
1334 {
1335 	struct ifnet   *ifp;
1336 
1337 	MY_LOCK(sc);
1338 	ifp = &sc->arpcom.ac_if;
1339 	ifp->if_timer = 0;
1340 	if (sc->my_cdata.my_tx_head == NULL) {
1341 		ifp->if_flags &= ~IFF_OACTIVE;
1342 		sc->my_cdata.my_tx_tail = NULL;
1343 		if (sc->my_want_auto)
1344 			my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1345 	} else {
1346 		if (MY_TXOWN(sc->my_cdata.my_tx_head) == MY_UNSENT) {
1347 			MY_TXOWN(sc->my_cdata.my_tx_head) = MY_OWNByNIC;
1348 			ifp->if_timer = 5;
1349 			CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);
1350 		}
1351 	}
1352 	MY_UNLOCK(sc);
1353 	return;
1354 }
1355 
1356 static void
1357 my_intr(void *arg)
1358 {
1359 	struct my_softc *sc;
1360 	struct ifnet   *ifp;
1361 	u_int32_t       status;
1362 
1363 	sc = arg;
1364 	MY_LOCK(sc);
1365 	ifp = &sc->arpcom.ac_if;
1366 	if (!(ifp->if_flags & IFF_UP)) {
1367 		MY_UNLOCK(sc);
1368 		return;
1369 	}
1370 	/* Disable interrupts. */
1371 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1372 
1373 	for (;;) {
1374 		status = CSR_READ_4(sc, MY_ISR);
1375 		status &= MY_INTRS;
1376 		if (status)
1377 			CSR_WRITE_4(sc, MY_ISR, status);
1378 		else
1379 			break;
1380 
1381 		if (status & MY_RI)	/* receive interrupt */
1382 			my_rxeof(sc);
1383 
1384 		if ((status & MY_RBU) || (status & MY_RxErr)) {
1385 			/* rx buffer unavailable or rx error */
1386 			ifp->if_ierrors++;
1387 #ifdef foo
1388 			my_stop(sc);
1389 			my_reset(sc);
1390 			my_init(sc);
1391 #endif
1392 		}
1393 		if (status & MY_TI)	/* tx interrupt */
1394 			my_txeof(sc);
1395 		if (status & MY_ETI)	/* tx early interrupt */
1396 			my_txeof(sc);
1397 		if (status & MY_TBU)	/* tx buffer unavailable */
1398 			my_txeoc(sc);
1399 
1400 #if 0				/* 90/1/18 delete */
1401 		if (status & MY_FBE) {
1402 			my_reset(sc);
1403 			my_init(sc);
1404 		}
1405 #endif
1406 
1407 	}
1408 
1409 	/* Re-enable interrupts. */
1410 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1411 	if (ifp->if_snd.ifq_head != NULL)
1412 		my_start(ifp);
1413 	MY_UNLOCK(sc);
1414 	return;
1415 }
1416 
1417 /*
1418  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1419  * pointers to the fragment pointers.
1420  */
1421 static int
1422 my_encap(struct my_softc * sc, struct my_chain * c, struct mbuf * m_head)
1423 {
1424 	struct my_desc *f = NULL;
1425 	int             total_len;
1426 	struct mbuf    *m, *m_new = NULL;
1427 
1428 	MY_LOCK(sc);
1429 	/* calculate the total tx pkt length */
1430 	total_len = 0;
1431 	for (m = m_head; m != NULL; m = m->m_next)
1432 		total_len += m->m_len;
1433 	/*
1434 	 * Start packing the mbufs in this chain into the fragment pointers.
1435 	 * Stop when we run out of fragments or hit the end of the mbuf
1436 	 * chain.
1437 	 */
1438 	m = m_head;
1439 	MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1440 	if (m_new == NULL) {
1441 		printf("my%d: no memory for tx list", sc->my_unit);
1442 		return (1);
1443 	}
1444 	if (m_head->m_pkthdr.len > MHLEN) {
1445 		MCLGET(m_new, MB_DONTWAIT);
1446 		if (!(m_new->m_flags & M_EXT)) {
1447 			m_freem(m_new);
1448 			printf("my%d: no memory for tx list", sc->my_unit);
1449 			return (1);
1450 		}
1451 	}
1452 	m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t));
1453 	m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1454 	m_freem(m_head);
1455 	m_head = m_new;
1456 	f = &c->my_ptr->my_frag[0];
1457 	f->my_status = 0;
1458 	f->my_data = vtophys(mtod(m_new, caddr_t));
1459 	total_len = m_new->m_len;
1460 	f->my_ctl = MY_TXFD | MY_TXLD | MY_CRCEnable | MY_PADEnable;
1461 	f->my_ctl |= total_len << MY_PKTShift;	/* pkt size */
1462 	f->my_ctl |= total_len;	/* buffer size */
1463 	/* 89/12/29 add, for mtd891 *//* [ 89? ] */
1464 	if (sc->my_info->my_did == MTD891ID)
1465 		f->my_ctl |= MY_ETIControl | MY_RetryTxLC;
1466 	c->my_mbuf = m_head;
1467 	c->my_lastdesc = 0;
1468 	MY_TXNEXT(c) = vtophys(&c->my_nextdesc->my_ptr->my_frag[0]);
1469 	MY_UNLOCK(sc);
1470 	return (0);
1471 }
1472 
1473 /*
1474  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1475  * to the mbuf data regions directly in the transmit lists. We also save a
1476  * copy of the pointers since the transmit list fragment pointers are
1477  * physical addresses.
1478  */
1479 static void
1480 my_start(struct ifnet * ifp)
1481 {
1482 	struct my_softc *sc;
1483 	struct mbuf    *m_head = NULL;
1484 	struct my_chain *cur_tx = NULL, *start_tx;
1485 
1486 	sc = ifp->if_softc;
1487 	MY_LOCK(sc);
1488 	if (sc->my_autoneg) {
1489 		sc->my_tx_pend = 1;
1490 		MY_UNLOCK(sc);
1491 		return;
1492 	}
1493 	/*
1494 	 * Check for an available queue slot. If there are none, punt.
1495 	 */
1496 	if (sc->my_cdata.my_tx_free->my_mbuf != NULL) {
1497 		ifp->if_flags |= IFF_OACTIVE;
1498 		MY_UNLOCK(sc);
1499 		return;
1500 	}
1501 	start_tx = sc->my_cdata.my_tx_free;
1502 	while (sc->my_cdata.my_tx_free->my_mbuf == NULL) {
1503 		IF_DEQUEUE(&ifp->if_snd, m_head);
1504 		if (m_head == NULL)
1505 			break;
1506 
1507 		/* Pick a descriptor off the free list. */
1508 		cur_tx = sc->my_cdata.my_tx_free;
1509 		sc->my_cdata.my_tx_free = cur_tx->my_nextdesc;
1510 
1511 		/* Pack the data into the descriptor. */
1512 		my_encap(sc, cur_tx, m_head);
1513 
1514 		if (cur_tx != start_tx)
1515 			MY_TXOWN(cur_tx) = MY_OWNByNIC;
1516 #if NBPFILTER > 0
1517 		/*
1518 		 * If there's a BPF listener, bounce a copy of this frame to
1519 		 * him.
1520 		 */
1521 		if (ifp->if_bpf)
1522 			bpf_mtap(ifp, cur_tx->my_mbuf);
1523 #endif
1524 	}
1525 	/*
1526 	 * If there are no packets queued, bail.
1527 	 */
1528 	if (cur_tx == NULL) {
1529 		MY_UNLOCK(sc);
1530 		return;
1531 	}
1532 	/*
1533 	 * Place the request for the upload interrupt in the last descriptor
1534 	 * in the chain. This way, if we're chaining several packets at once,
1535 	 * we'll only get an interupt once for the whole chain rather than
1536 	 * once for each packet.
1537 	 */
1538 	MY_TXCTL(cur_tx) |= MY_TXIC;
1539 	cur_tx->my_ptr->my_frag[0].my_ctl |= MY_TXIC;
1540 	sc->my_cdata.my_tx_tail = cur_tx;
1541 	if (sc->my_cdata.my_tx_head == NULL)
1542 		sc->my_cdata.my_tx_head = start_tx;
1543 	MY_TXOWN(start_tx) = MY_OWNByNIC;
1544 	CSR_WRITE_4(sc, MY_TXPDR, 0xFFFFFFFF);	/* tx polling demand */
1545 
1546 	/*
1547 	 * Set a timeout in case the chip goes out to lunch.
1548 	 */
1549 	ifp->if_timer = 5;
1550 	MY_UNLOCK(sc);
1551 	return;
1552 }
1553 
1554 static void
1555 my_init(void *xsc)
1556 {
1557 	struct my_softc *sc = xsc;
1558 	struct ifnet   *ifp = &sc->arpcom.ac_if;
1559 	int             s;
1560 	u_int16_t       phy_bmcr = 0;
1561 
1562 	MY_LOCK(sc);
1563 	if (sc->my_autoneg) {
1564 		MY_UNLOCK(sc);
1565 		return;
1566 	}
1567 	s = splimp();
1568 	if (sc->my_pinfo != NULL)
1569 		phy_bmcr = my_phy_readreg(sc, PHY_BMCR);
1570 	/*
1571 	 * Cancel pending I/O and free all RX/TX buffers.
1572 	 */
1573 	my_stop(sc);
1574 	my_reset(sc);
1575 
1576 	/*
1577 	 * Set cache alignment and burst length.
1578 	 */
1579 #if 0				/* 89/9/1 modify,  */
1580 	CSR_WRITE_4(sc, MY_BCR, MY_RPBLE512);
1581 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF);
1582 #endif
1583 	CSR_WRITE_4(sc, MY_BCR, MY_PBL8);
1584 	CSR_WRITE_4(sc, MY_TCRRCR, MY_TFTSF | MY_RBLEN | MY_RPBLE512);
1585 	/*
1586 	 * 89/12/29 add, for mtd891,
1587 	 */
1588 	if (sc->my_info->my_did == MTD891ID) {
1589 		MY_SETBIT(sc, MY_BCR, MY_PROG);
1590 		MY_SETBIT(sc, MY_TCRRCR, MY_Enhanced);
1591 	}
1592 	my_setcfg(sc, phy_bmcr);
1593 	/* Init circular RX list. */
1594 	if (my_list_rx_init(sc) == ENOBUFS) {
1595 		printf("my%d: init failed: no memory for rx buffers\n",
1596 		    sc->my_unit);
1597 		my_stop(sc);
1598 		(void)splx(s);
1599 		MY_UNLOCK(sc);
1600 		return;
1601 	}
1602 	/* Init TX descriptors. */
1603 	my_list_tx_init(sc);
1604 
1605 	/* If we want promiscuous mode, set the allframes bit. */
1606 	if (ifp->if_flags & IFF_PROMISC)
1607 		MY_SETBIT(sc, MY_TCRRCR, MY_PROM);
1608 	else
1609 		MY_CLRBIT(sc, MY_TCRRCR, MY_PROM);
1610 
1611 	/*
1612 	 * Set capture broadcast bit to capture broadcast frames.
1613 	 */
1614 	if (ifp->if_flags & IFF_BROADCAST)
1615 		MY_SETBIT(sc, MY_TCRRCR, MY_AB);
1616 	else
1617 		MY_CLRBIT(sc, MY_TCRRCR, MY_AB);
1618 
1619 	/*
1620 	 * Program the multicast filter, if necessary.
1621 	 */
1622 	my_setmulti(sc);
1623 
1624 	/*
1625 	 * Load the address of the RX list.
1626 	 */
1627 	MY_CLRBIT(sc, MY_TCRRCR, MY_RE);
1628 	CSR_WRITE_4(sc, MY_RXLBA, vtophys(&sc->my_ldata->my_rx_list[0]));
1629 
1630 	/*
1631 	 * Enable interrupts.
1632 	 */
1633 	CSR_WRITE_4(sc, MY_IMR, MY_INTRS);
1634 	CSR_WRITE_4(sc, MY_ISR, 0xFFFFFFFF);
1635 
1636 	/* Enable receiver and transmitter. */
1637 	MY_SETBIT(sc, MY_TCRRCR, MY_RE);
1638 	MY_CLRBIT(sc, MY_TCRRCR, MY_TE);
1639 	CSR_WRITE_4(sc, MY_TXLBA, vtophys(&sc->my_ldata->my_tx_list[0]));
1640 	MY_SETBIT(sc, MY_TCRRCR, MY_TE);
1641 
1642 	/* Restore state of BMCR */
1643 	if (sc->my_pinfo != NULL)
1644 		my_phy_writereg(sc, PHY_BMCR, phy_bmcr);
1645 	ifp->if_flags |= IFF_RUNNING;
1646 	ifp->if_flags &= ~IFF_OACTIVE;
1647 	(void)splx(s);
1648 	MY_UNLOCK(sc);
1649 	return;
1650 }
1651 
1652 /*
1653  * Set media options.
1654  */
1655 
1656 static int
1657 my_ifmedia_upd(struct ifnet * ifp)
1658 {
1659 	struct my_softc *sc;
1660 	struct ifmedia *ifm;
1661 
1662 	sc = ifp->if_softc;
1663 	MY_LOCK(sc);
1664 	ifm = &sc->ifmedia;
1665 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
1666 		MY_UNLOCK(sc);
1667 		return (EINVAL);
1668 	}
1669 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
1670 		my_autoneg_mii(sc, MY_FLAG_SCHEDDELAY, 1);
1671 	else
1672 		my_setmode_mii(sc, ifm->ifm_media);
1673 	MY_UNLOCK(sc);
1674 	return (0);
1675 }
1676 
1677 /*
1678  * Report current media status.
1679  */
1680 
1681 static void
1682 my_ifmedia_sts(struct ifnet * ifp, struct ifmediareq * ifmr)
1683 {
1684 	struct my_softc *sc;
1685 	u_int16_t advert = 0, ability = 0;
1686 
1687 	sc = ifp->if_softc;
1688 	MY_LOCK(sc);
1689 	ifmr->ifm_active = IFM_ETHER;
1690 	if (!(my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
1691 #if 0				/* this version did not support 1000M, */
1692 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_1000)
1693 			ifmr->ifm_active = IFM_ETHER | IFM_1000TX;
1694 #endif
1695 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
1696 			ifmr->ifm_active = IFM_ETHER | IFM_100_TX;
1697 		else
1698 			ifmr->ifm_active = IFM_ETHER | IFM_10_T;
1699 		if (my_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
1700 			ifmr->ifm_active |= IFM_FDX;
1701 		else
1702 			ifmr->ifm_active |= IFM_HDX;
1703 
1704 		MY_UNLOCK(sc);
1705 		return;
1706 	}
1707 	ability = my_phy_readreg(sc, PHY_LPAR);
1708 	advert = my_phy_readreg(sc, PHY_ANAR);
1709 
1710 #if 0				/* this version did not support 1000M, */
1711 	if (sc->my_pinfo->my_vid = MarvellPHYID0) {
1712 		ability2 = my_phy_readreg(sc, PHY_1000SR);
1713 		if (ability2 & PHY_1000SR_1000BTXFULL) {
1714 			advert = 0;
1715 			ability = 0;
1716 	  		ifmr->ifm_active = IFM_ETHER|IFM_1000_TX|IFM_FDX;
1717 	  	} else if (ability & PHY_1000SR_1000BTXHALF) {
1718 			advert = 0;
1719 			ability = 0;
1720 			ifmr->ifm_active = IFM_ETHER|IFM_1000_TX|IFM_HDX;
1721 		}
1722 	}
1723 #endif
1724 	if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4)
1725 		ifmr->ifm_active = IFM_ETHER | IFM_100_T4;
1726 	else if (advert & PHY_ANAR_100BTXFULL && ability & PHY_ANAR_100BTXFULL)
1727 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1728 	else if (advert & PHY_ANAR_100BTXHALF && ability & PHY_ANAR_100BTXHALF)
1729 		ifmr->ifm_active = IFM_ETHER | IFM_100_TX | IFM_HDX;
1730 	else if (advert & PHY_ANAR_10BTFULL && ability & PHY_ANAR_10BTFULL)
1731 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_FDX;
1732 	else if (advert & PHY_ANAR_10BTHALF && ability & PHY_ANAR_10BTHALF)
1733 		ifmr->ifm_active = IFM_ETHER | IFM_10_T | IFM_HDX;
1734 	MY_UNLOCK(sc);
1735 	return;
1736 }
1737 
1738 static int
1739 my_ioctl(struct ifnet * ifp, u_long command, caddr_t data, struct ucred *cr)
1740 {
1741 	struct my_softc *sc = ifp->if_softc;
1742 	struct ifreq   *ifr = (struct ifreq *) data;
1743 	int             s, error = 0;
1744 
1745 	s = splimp();
1746 	MY_LOCK(sc);
1747 	switch (command) {
1748 	case SIOCSIFADDR:
1749 	case SIOCGIFADDR:
1750 	case SIOCSIFMTU:
1751 		error = ether_ioctl(ifp, command, data);
1752 		break;
1753 	case SIOCSIFFLAGS:
1754 		if (ifp->if_flags & IFF_UP)
1755 			my_init(sc);
1756 		else if (ifp->if_flags & IFF_RUNNING)
1757 			my_stop(sc);
1758 		error = 0;
1759 		break;
1760 	case SIOCADDMULTI:
1761 	case SIOCDELMULTI:
1762 		my_setmulti(sc);
1763 		error = 0;
1764 		break;
1765 	case SIOCGIFMEDIA:
1766 	case SIOCSIFMEDIA:
1767 		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
1768 		break;
1769 	default:
1770 		error = EINVAL;
1771 		break;
1772 	}
1773 	MY_UNLOCK(sc);
1774 	(void)splx(s);
1775 	return (error);
1776 }
1777 
1778 static void
1779 my_watchdog(struct ifnet * ifp)
1780 {
1781 	struct my_softc *sc;
1782 
1783 	sc = ifp->if_softc;
1784 	MY_LOCK(sc);
1785 	if (sc->my_autoneg) {
1786 		my_autoneg_mii(sc, MY_FLAG_DELAYTIMEO, 1);
1787 		MY_UNLOCK(sc);
1788 		return;
1789 	}
1790 	ifp->if_oerrors++;
1791 	printf("my%d: watchdog timeout\n", sc->my_unit);
1792 	if (!(my_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
1793 		printf("my%d: no carrier - transceiver cable problem?\n",
1794 		    sc->my_unit);
1795 	my_stop(sc);
1796 	my_reset(sc);
1797 	my_init(sc);
1798 	if (ifp->if_snd.ifq_head != NULL)
1799 		my_start(ifp);
1800 	MY_LOCK(sc);
1801 	return;
1802 }
1803 
1804 
1805 /*
1806  * Stop the adapter and free any mbufs allocated to the RX and TX lists.
1807  */
1808 static void
1809 my_stop(struct my_softc * sc)
1810 {
1811 	int    i;
1812 	struct ifnet   *ifp;
1813 
1814 	MY_LOCK(sc);
1815 	ifp = &sc->arpcom.ac_if;
1816 	ifp->if_timer = 0;
1817 
1818 	MY_CLRBIT(sc, MY_TCRRCR, (MY_RE | MY_TE));
1819 	CSR_WRITE_4(sc, MY_IMR, 0x00000000);
1820 	CSR_WRITE_4(sc, MY_TXLBA, 0x00000000);
1821 	CSR_WRITE_4(sc, MY_RXLBA, 0x00000000);
1822 
1823 	/*
1824 	 * Free data in the RX lists.
1825 	 */
1826 	for (i = 0; i < MY_RX_LIST_CNT; i++) {
1827 		if (sc->my_cdata.my_rx_chain[i].my_mbuf != NULL) {
1828 			m_freem(sc->my_cdata.my_rx_chain[i].my_mbuf);
1829 			sc->my_cdata.my_rx_chain[i].my_mbuf = NULL;
1830 		}
1831 	}
1832 	bzero((char *)&sc->my_ldata->my_rx_list,
1833 	    sizeof(sc->my_ldata->my_rx_list));
1834 	/*
1835 	 * Free the TX list buffers.
1836 	 */
1837 	for (i = 0; i < MY_TX_LIST_CNT; i++) {
1838 		if (sc->my_cdata.my_tx_chain[i].my_mbuf != NULL) {
1839 			m_freem(sc->my_cdata.my_tx_chain[i].my_mbuf);
1840 			sc->my_cdata.my_tx_chain[i].my_mbuf = NULL;
1841 		}
1842 	}
1843 	bzero((char *)&sc->my_ldata->my_tx_list,
1844 	    sizeof(sc->my_ldata->my_tx_list));
1845 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1846 	MY_UNLOCK(sc);
1847 	return;
1848 }
1849 
1850 /*
1851  * Stop all chip I/O so that the kernel's probe routines don't get confused
1852  * by errant DMAs when rebooting.
1853  */
1854 static void
1855 my_shutdown(device_t dev)
1856 {
1857 	struct my_softc *sc;
1858 
1859 	sc = device_get_softc(dev);
1860 	my_stop(sc);
1861 	return;
1862 }
1863