xref: /dragonfly/sys/dev/netif/nfe/if_nfe.c (revision 299d9671)
1 /*	$OpenBSD: if_nfe.c,v 1.63 2006/06/17 18:00:43 brad Exp $	*/
2 /*	$DragonFly: src/sys/dev/netif/nfe/if_nfe.c,v 1.46 2008/10/28 07:30:49 sephe Exp $	*/
3 
4 /*
5  * Copyright (c) 2006 The DragonFly Project.  All rights reserved.
6  *
7  * This code is derived from software contributed to The DragonFly Project
8  * by Sepherosa Ziehau <sepherosa@gmail.com> and
9  * Matthew Dillon <dillon@apollo.backplane.com>
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  *
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in
19  *    the documentation and/or other materials provided with the
20  *    distribution.
21  * 3. Neither the name of The DragonFly Project nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific, prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
29  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 /*
40  * Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr>
41  * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
42  *
43  * Permission to use, copy, modify, and distribute this software for any
44  * purpose with or without fee is hereby granted, provided that the above
45  * copyright notice and this permission notice appear in all copies.
46  *
47  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
48  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
49  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
50  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
51  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
52  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
53  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
54  */
55 
56 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
57 
58 #include "opt_polling.h"
59 
60 #include <sys/param.h>
61 #include <sys/endian.h>
62 #include <sys/kernel.h>
63 #include <sys/bus.h>
64 #include <sys/interrupt.h>
65 #include <sys/proc.h>
66 #include <sys/rman.h>
67 #include <sys/serialize.h>
68 #include <sys/socket.h>
69 #include <sys/sockio.h>
70 #include <sys/sysctl.h>
71 
72 #include <net/ethernet.h>
73 #include <net/if.h>
74 #include <net/bpf.h>
75 #include <net/if_arp.h>
76 #include <net/if_dl.h>
77 #include <net/if_media.h>
78 #include <net/ifq_var.h>
79 #include <net/if_types.h>
80 #include <net/if_var.h>
81 #include <net/vlan/if_vlan_var.h>
82 #include <net/vlan/if_vlan_ether.h>
83 
84 #include <bus/pci/pcireg.h>
85 #include <bus/pci/pcivar.h>
86 #include <bus/pci/pcidevs.h>
87 
88 #include <dev/netif/mii_layer/mii.h>
89 #include <dev/netif/mii_layer/miivar.h>
90 
91 #include "miibus_if.h"
92 
93 #include <dev/netif/nfe/if_nfereg.h>
94 #include <dev/netif/nfe/if_nfevar.h>
95 
96 #define NFE_CSUM
97 #define NFE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
98 
99 static int	nfe_probe(device_t);
100 static int	nfe_attach(device_t);
101 static int	nfe_detach(device_t);
102 static void	nfe_shutdown(device_t);
103 static int	nfe_resume(device_t);
104 static int	nfe_suspend(device_t);
105 
106 static int	nfe_miibus_readreg(device_t, int, int);
107 static void	nfe_miibus_writereg(device_t, int, int, int);
108 static void	nfe_miibus_statchg(device_t);
109 
110 #ifdef DEVICE_POLLING
111 static void	nfe_poll(struct ifnet *, enum poll_cmd, int);
112 #endif
113 static void	nfe_intr(void *);
114 static int	nfe_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
115 static int	nfe_rxeof(struct nfe_softc *);
116 static int	nfe_txeof(struct nfe_softc *, int);
117 static int	nfe_encap(struct nfe_softc *, struct nfe_tx_ring *,
118 			  struct mbuf *);
119 static void	nfe_start(struct ifnet *);
120 static void	nfe_watchdog(struct ifnet *);
121 static void	nfe_init(void *);
122 static void	nfe_stop(struct nfe_softc *);
123 static struct nfe_jbuf *nfe_jalloc(struct nfe_softc *);
124 static void	nfe_jfree(void *);
125 static void	nfe_jref(void *);
126 static int	nfe_jpool_alloc(struct nfe_softc *, struct nfe_rx_ring *);
127 static void	nfe_jpool_free(struct nfe_softc *, struct nfe_rx_ring *);
128 static int	nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
129 static void	nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
130 static int	nfe_init_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
131 static void	nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
132 static int	nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
133 static void	nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
134 static int	nfe_init_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
135 static void	nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
136 static int	nfe_ifmedia_upd(struct ifnet *);
137 static void	nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
138 static void	nfe_setmulti(struct nfe_softc *);
139 static void	nfe_get_macaddr(struct nfe_softc *, uint8_t *);
140 static void	nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
141 static void	nfe_powerup(device_t);
142 static void	nfe_mac_reset(struct nfe_softc *);
143 static void	nfe_tick(void *);
144 static void	nfe_set_paddr_rxdesc(struct nfe_softc *, struct nfe_rx_ring *,
145 				     int, bus_addr_t);
146 static void	nfe_set_ready_rxdesc(struct nfe_softc *, struct nfe_rx_ring *,
147 				     int);
148 static int	nfe_newbuf_std(struct nfe_softc *, struct nfe_rx_ring *, int,
149 			       int);
150 static int	nfe_newbuf_jumbo(struct nfe_softc *, struct nfe_rx_ring *, int,
151 				 int);
152 static void	nfe_enable_intrs(struct nfe_softc *);
153 static void	nfe_disable_intrs(struct nfe_softc *);
154 
155 static int	nfe_sysctl_imtime(SYSCTL_HANDLER_ARGS);
156 
157 #define NFE_DEBUG
158 #ifdef NFE_DEBUG
159 
160 static int	nfe_debug = 0;
161 static int	nfe_rx_ring_count = NFE_RX_RING_DEF_COUNT;
162 static int	nfe_tx_ring_count = NFE_TX_RING_DEF_COUNT;
163 /* hw timer simulated interrupt moderation @8000Hz */
164 static int	nfe_imtime = -125;
165 
166 TUNABLE_INT("hw.nfe.rx_ring_count", &nfe_rx_ring_count);
167 TUNABLE_INT("hw.nfe.tx_ring_count", &nfe_tx_ring_count);
168 TUNABLE_INT("hw.nfe.imtimer", &nfe_imtime);
169 TUNABLE_INT("hw.nfe.debug", &nfe_debug);
170 
171 #define DPRINTF(sc, fmt, ...) do {		\
172 	if ((sc)->sc_debug) {			\
173 		if_printf(&(sc)->arpcom.ac_if,	\
174 			  fmt, __VA_ARGS__);	\
175 	}					\
176 } while (0)
177 
178 #define DPRINTFN(sc, lv, fmt, ...) do {		\
179 	if ((sc)->sc_debug >= (lv)) {		\
180 		if_printf(&(sc)->arpcom.ac_if,	\
181 			  fmt, __VA_ARGS__);	\
182 	}					\
183 } while (0)
184 
185 #else	/* !NFE_DEBUG */
186 
187 #define DPRINTF(sc, fmt, ...)
188 #define DPRINTFN(sc, lv, fmt, ...)
189 
190 #endif	/* NFE_DEBUG */
191 
192 static const struct nfe_dev {
193 	uint16_t	vid;
194 	uint16_t	did;
195 	const char	*desc;
196 } nfe_devices[] = {
197 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN,
198 	  "NVIDIA nForce Fast Ethernet" },
199 
200 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN,
201 	  "NVIDIA nForce2 Fast Ethernet" },
202 
203 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1,
204 	  "NVIDIA nForce3 Gigabit Ethernet" },
205 
206 	/* XXX TGEN the next chip can also be found in the nForce2 Ultra 400Gb
207 	   chipset, and possibly also the 400R; it might be both nForce2- and
208 	   nForce3-based boards can use the same MCPs (= southbridges) */
209 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2,
210 	  "NVIDIA nForce3 Gigabit Ethernet" },
211 
212 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3,
213 	  "NVIDIA nForce3 Gigabit Ethernet" },
214 
215 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4,
216 	  "NVIDIA nForce3 Gigabit Ethernet" },
217 
218 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5,
219 	  "NVIDIA nForce3 Gigabit Ethernet" },
220 
221 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1,
222 	  "NVIDIA CK804 Gigabit Ethernet" },
223 
224 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2,
225 	  "NVIDIA CK804 Gigabit Ethernet" },
226 
227 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1,
228 	  "NVIDIA MCP04 Gigabit Ethernet" },
229 
230 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2,
231 	  "NVIDIA MCP04 Gigabit Ethernet" },
232 
233 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1,
234 	  "NVIDIA MCP51 Gigabit Ethernet" },
235 
236 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2,
237 	  "NVIDIA MCP51 Gigabit Ethernet" },
238 
239 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1,
240 	  "NVIDIA MCP55 Gigabit Ethernet" },
241 
242 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2,
243 	  "NVIDIA MCP55 Gigabit Ethernet" },
244 
245 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1,
246 	  "NVIDIA MCP61 Gigabit Ethernet" },
247 
248 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2,
249 	  "NVIDIA MCP61 Gigabit Ethernet" },
250 
251 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3,
252 	  "NVIDIA MCP61 Gigabit Ethernet" },
253 
254 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4,
255 	  "NVIDIA MCP61 Gigabit Ethernet" },
256 
257 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1,
258 	  "NVIDIA MCP65 Gigabit Ethernet" },
259 
260 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2,
261 	  "NVIDIA MCP65 Gigabit Ethernet" },
262 
263 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3,
264 	  "NVIDIA MCP65 Gigabit Ethernet" },
265 
266 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4,
267 	  "NVIDIA MCP65 Gigabit Ethernet" },
268 
269 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1,
270 	  "NVIDIA MCP67 Gigabit Ethernet" },
271 
272 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2,
273 	  "NVIDIA MCP67 Gigabit Ethernet" },
274 
275 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3,
276 	  "NVIDIA MCP67 Gigabit Ethernet" },
277 
278 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4,
279 	  "NVIDIA MCP67 Gigabit Ethernet" },
280 
281 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1,
282 	  "NVIDIA MCP73 Gigabit Ethernet" },
283 
284 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2,
285 	  "NVIDIA MCP73 Gigabit Ethernet" },
286 
287 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3,
288 	  "NVIDIA MCP73 Gigabit Ethernet" },
289 
290 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4,
291 	  "NVIDIA MCP73 Gigabit Ethernet" },
292 
293 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1,
294 	  "NVIDIA MCP77 Gigabit Ethernet" },
295 
296 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2,
297 	  "NVIDIA MCP77 Gigabit Ethernet" },
298 
299 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3,
300 	  "NVIDIA MCP77 Gigabit Ethernet" },
301 
302 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4,
303 	  "NVIDIA MCP77 Gigabit Ethernet" },
304 
305 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1,
306 	  "NVIDIA MCP79 Gigabit Ethernet" },
307 
308 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2,
309 	  "NVIDIA MCP79 Gigabit Ethernet" },
310 
311 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3,
312 	  "NVIDIA MCP79 Gigabit Ethernet" },
313 
314 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4,
315 	  "NVIDIA MCP79 Gigabit Ethernet" },
316 
317 	{ 0, 0, NULL }
318 };
319 
320 static device_method_t nfe_methods[] = {
321 	/* Device interface */
322 	DEVMETHOD(device_probe,		nfe_probe),
323 	DEVMETHOD(device_attach,	nfe_attach),
324 	DEVMETHOD(device_detach,	nfe_detach),
325 	DEVMETHOD(device_suspend,	nfe_suspend),
326 	DEVMETHOD(device_resume,	nfe_resume),
327 	DEVMETHOD(device_shutdown,	nfe_shutdown),
328 
329 	/* Bus interface */
330 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
331 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
332 
333 	/* MII interface */
334 	DEVMETHOD(miibus_readreg,	nfe_miibus_readreg),
335 	DEVMETHOD(miibus_writereg,	nfe_miibus_writereg),
336 	DEVMETHOD(miibus_statchg,	nfe_miibus_statchg),
337 
338 	{ 0, 0 }
339 };
340 
341 static driver_t nfe_driver = {
342 	"nfe",
343 	nfe_methods,
344 	sizeof(struct nfe_softc)
345 };
346 
347 static devclass_t	nfe_devclass;
348 
349 DECLARE_DUMMY_MODULE(if_nfe);
350 MODULE_DEPEND(if_nfe, miibus, 1, 1, 1);
351 DRIVER_MODULE(if_nfe, pci, nfe_driver, nfe_devclass, 0, 0);
352 DRIVER_MODULE(miibus, nfe, miibus_driver, miibus_devclass, 0, 0);
353 
354 static int
355 nfe_probe(device_t dev)
356 {
357 	const struct nfe_dev *n;
358 	uint16_t vid, did;
359 
360 	vid = pci_get_vendor(dev);
361 	did = pci_get_device(dev);
362 	for (n = nfe_devices; n->desc != NULL; ++n) {
363 		if (vid == n->vid && did == n->did) {
364 			struct nfe_softc *sc = device_get_softc(dev);
365 
366 			switch (did) {
367 			case PCI_PRODUCT_NVIDIA_NFORCE_LAN:
368 			case PCI_PRODUCT_NVIDIA_NFORCE2_LAN:
369 			case PCI_PRODUCT_NVIDIA_NFORCE3_LAN1:
370 				sc->sc_caps = NFE_NO_PWRCTL |
371 					      NFE_FIX_EADDR;
372 				break;
373 			case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
374 			case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
375 			case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
376 			case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
377 				sc->sc_caps = NFE_JUMBO_SUP |
378 					      NFE_HW_CSUM |
379 					      NFE_NO_PWRCTL |
380 					      NFE_FIX_EADDR;
381 				break;
382 			case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
383 			case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
384 				sc->sc_caps = NFE_FIX_EADDR;
385 				/* FALL THROUGH */
386 			case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
387 			case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
388 			case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
389 			case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
390 			case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
391 			case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
392 			case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
393 			case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
394 			case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
395 			case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
396 			case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
397 			case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
398 				sc->sc_caps |= NFE_40BIT_ADDR;
399 				break;
400 			case PCI_PRODUCT_NVIDIA_CK804_LAN1:
401 			case PCI_PRODUCT_NVIDIA_CK804_LAN2:
402 			case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
403 			case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
404 				sc->sc_caps = NFE_JUMBO_SUP |
405 					      NFE_40BIT_ADDR |
406 					      NFE_HW_CSUM |
407 					      NFE_NO_PWRCTL |
408 					      NFE_FIX_EADDR;
409 				break;
410 			case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
411 			case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
412 			case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
413 			case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
414 				sc->sc_caps = NFE_JUMBO_SUP |
415 					      NFE_40BIT_ADDR;
416 				break;
417 			case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
418 			case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
419 				sc->sc_caps = NFE_JUMBO_SUP |
420 					      NFE_40BIT_ADDR |
421 					      NFE_HW_CSUM |
422 					      NFE_HW_VLAN |
423 					      NFE_FIX_EADDR;
424 				break;
425 			case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
426 			case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
427 			case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
428 			case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
429 			case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
430 			case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
431 			case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
432 			case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
433 				sc->sc_caps = NFE_40BIT_ADDR |
434 					      NFE_HW_CSUM;
435 				break;
436 			}
437 
438 			device_set_desc(dev, n->desc);
439 			device_set_async_attach(dev, TRUE);
440 			return 0;
441 		}
442 	}
443 	return ENXIO;
444 }
445 
446 static int
447 nfe_attach(device_t dev)
448 {
449 	struct nfe_softc *sc = device_get_softc(dev);
450 	struct ifnet *ifp = &sc->arpcom.ac_if;
451 	uint8_t eaddr[ETHER_ADDR_LEN];
452 	bus_addr_t lowaddr;
453 	int error;
454 
455 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
456 	lwkt_serialize_init(&sc->sc_jbuf_serializer);
457 
458 	/*
459 	 * Initialize sysctl variables
460 	 */
461 	sc->sc_rx_ring_count = nfe_rx_ring_count;
462 	sc->sc_tx_ring_count = nfe_tx_ring_count;
463 	sc->sc_debug = nfe_debug;
464 	if (nfe_imtime < 0) {
465 		sc->sc_flags |= NFE_F_DYN_IM;
466 		sc->sc_imtime = -nfe_imtime;
467 	} else {
468 		sc->sc_imtime = nfe_imtime;
469 	}
470 	sc->sc_irq_enable = NFE_IRQ_ENABLE(sc);
471 
472 	sc->sc_mem_rid = PCIR_BAR(0);
473 
474 	if (sc->sc_caps & NFE_40BIT_ADDR)
475 		sc->rxtxctl_desc = NFE_RXTX_DESC_V3;
476 	else if (sc->sc_caps & NFE_JUMBO_SUP)
477 		sc->rxtxctl_desc = NFE_RXTX_DESC_V2;
478 
479 #ifndef BURN_BRIDGES
480 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
481 		uint32_t mem, irq;
482 
483 		mem = pci_read_config(dev, sc->sc_mem_rid, 4);
484 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
485 
486 		device_printf(dev, "chip is in D%d power mode "
487 		    "-- setting to D0\n", pci_get_powerstate(dev));
488 
489 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
490 
491 		pci_write_config(dev, sc->sc_mem_rid, mem, 4);
492 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
493 	}
494 #endif	/* !BURN_BRIDGE */
495 
496 	/* Enable bus mastering */
497 	pci_enable_busmaster(dev);
498 
499 	/* Allocate IO memory */
500 	sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
501 						&sc->sc_mem_rid, RF_ACTIVE);
502 	if (sc->sc_mem_res == NULL) {
503 		device_printf(dev, "cound not allocate io memory\n");
504 		return ENXIO;
505 	}
506 	sc->sc_memh = rman_get_bushandle(sc->sc_mem_res);
507 	sc->sc_memt = rman_get_bustag(sc->sc_mem_res);
508 
509 	/* Allocate IRQ */
510 	sc->sc_irq_rid = 0;
511 	sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
512 						&sc->sc_irq_rid,
513 						RF_SHAREABLE | RF_ACTIVE);
514 	if (sc->sc_irq_res == NULL) {
515 		device_printf(dev, "could not allocate irq\n");
516 		error = ENXIO;
517 		goto fail;
518 	}
519 
520 	/* Disable WOL */
521 	NFE_WRITE(sc, NFE_WOL_CTL, 0);
522 
523 	if ((sc->sc_caps & NFE_NO_PWRCTL) == 0)
524 		nfe_powerup(dev);
525 
526 	nfe_get_macaddr(sc, eaddr);
527 
528 	/*
529 	 * Allocate top level DMA tag
530 	 */
531 	if (sc->sc_caps & NFE_40BIT_ADDR)
532 		lowaddr = NFE_BUS_SPACE_MAXADDR;
533 	else
534 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
535 	error = bus_dma_tag_create(NULL,	/* parent */
536 			1, 0,			/* alignment, boundary */
537 			lowaddr,		/* lowaddr */
538 			BUS_SPACE_MAXADDR,	/* highaddr */
539 			NULL, NULL,		/* filter, filterarg */
540 			BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
541 			0,			/* nsegments */
542 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
543 			0,			/* flags */
544 			&sc->sc_dtag);
545 	if (error) {
546 		device_printf(dev, "could not allocate parent dma tag\n");
547 		goto fail;
548 	}
549 
550 	/*
551 	 * Allocate Tx and Rx rings.
552 	 */
553 	error = nfe_alloc_tx_ring(sc, &sc->txq);
554 	if (error) {
555 		device_printf(dev, "could not allocate Tx ring\n");
556 		goto fail;
557 	}
558 
559 	error = nfe_alloc_rx_ring(sc, &sc->rxq);
560 	if (error) {
561 		device_printf(dev, "could not allocate Rx ring\n");
562 		goto fail;
563 	}
564 
565 	/*
566 	 * Create sysctl tree
567 	 */
568 	sysctl_ctx_init(&sc->sc_sysctl_ctx);
569 	sc->sc_sysctl_tree = SYSCTL_ADD_NODE(&sc->sc_sysctl_ctx,
570 					     SYSCTL_STATIC_CHILDREN(_hw),
571 					     OID_AUTO,
572 					     device_get_nameunit(dev),
573 					     CTLFLAG_RD, 0, "");
574 	if (sc->sc_sysctl_tree == NULL) {
575 		device_printf(dev, "can't add sysctl node\n");
576 		error = ENXIO;
577 		goto fail;
578 	}
579 	SYSCTL_ADD_PROC(&sc->sc_sysctl_ctx,
580 			SYSCTL_CHILDREN(sc->sc_sysctl_tree),
581 			OID_AUTO, "imtimer", CTLTYPE_INT | CTLFLAG_RW,
582 			sc, 0, nfe_sysctl_imtime, "I",
583 			"Interrupt moderation time (usec).  "
584 			"0 to disable interrupt moderation.");
585 	SYSCTL_ADD_INT(&sc->sc_sysctl_ctx,
586 		       SYSCTL_CHILDREN(sc->sc_sysctl_tree), OID_AUTO,
587 		       "rx_ring_count", CTLFLAG_RD, &sc->sc_rx_ring_count,
588 		       0, "RX ring count");
589 	SYSCTL_ADD_INT(&sc->sc_sysctl_ctx,
590 		       SYSCTL_CHILDREN(sc->sc_sysctl_tree), OID_AUTO,
591 		       "tx_ring_count", CTLFLAG_RD, &sc->sc_tx_ring_count,
592 		       0, "TX ring count");
593 	SYSCTL_ADD_INT(&sc->sc_sysctl_ctx,
594 		       SYSCTL_CHILDREN(sc->sc_sysctl_tree), OID_AUTO,
595 		       "debug", CTLFLAG_RW, &sc->sc_debug,
596 		       0, "control debugging printfs");
597 
598 	error = mii_phy_probe(dev, &sc->sc_miibus, nfe_ifmedia_upd,
599 			      nfe_ifmedia_sts);
600 	if (error) {
601 		device_printf(dev, "MII without any phy\n");
602 		goto fail;
603 	}
604 
605 	ifp->if_softc = sc;
606 	ifp->if_mtu = ETHERMTU;
607 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
608 	ifp->if_ioctl = nfe_ioctl;
609 	ifp->if_start = nfe_start;
610 #ifdef DEVICE_POLLING
611 	ifp->if_poll = nfe_poll;
612 #endif
613 	ifp->if_watchdog = nfe_watchdog;
614 	ifp->if_init = nfe_init;
615 	ifq_set_maxlen(&ifp->if_snd, sc->sc_tx_ring_count);
616 	ifq_set_ready(&ifp->if_snd);
617 
618 	ifp->if_capabilities = IFCAP_VLAN_MTU;
619 
620 	if (sc->sc_caps & NFE_HW_VLAN)
621 		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
622 
623 #ifdef NFE_CSUM
624 	if (sc->sc_caps & NFE_HW_CSUM) {
625 		ifp->if_capabilities |= IFCAP_HWCSUM;
626 		ifp->if_hwassist = NFE_CSUM_FEATURES;
627 	}
628 #else
629 	sc->sc_caps &= ~NFE_HW_CSUM;
630 #endif
631 	ifp->if_capenable = ifp->if_capabilities;
632 
633 	callout_init(&sc->sc_tick_ch);
634 
635 	ether_ifattach(ifp, eaddr, NULL);
636 
637 	error = bus_setup_intr(dev, sc->sc_irq_res, INTR_MPSAFE, nfe_intr, sc,
638 			       &sc->sc_ih, ifp->if_serializer);
639 	if (error) {
640 		device_printf(dev, "could not setup intr\n");
641 		ether_ifdetach(ifp);
642 		goto fail;
643 	}
644 
645 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->sc_irq_res));
646 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
647 
648 	return 0;
649 fail:
650 	nfe_detach(dev);
651 	return error;
652 }
653 
654 static int
655 nfe_detach(device_t dev)
656 {
657 	struct nfe_softc *sc = device_get_softc(dev);
658 
659 	if (device_is_attached(dev)) {
660 		struct ifnet *ifp = &sc->arpcom.ac_if;
661 
662 		lwkt_serialize_enter(ifp->if_serializer);
663 		nfe_stop(sc);
664 		bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_ih);
665 		lwkt_serialize_exit(ifp->if_serializer);
666 
667 		ether_ifdetach(ifp);
668 	}
669 
670 	if (sc->sc_miibus != NULL)
671 		device_delete_child(dev, sc->sc_miibus);
672 	bus_generic_detach(dev);
673 
674 	if (sc->sc_sysctl_tree != NULL)
675 		sysctl_ctx_free(&sc->sc_sysctl_ctx);
676 
677 	if (sc->sc_irq_res != NULL) {
678 		bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irq_rid,
679 				     sc->sc_irq_res);
680 	}
681 
682 	if (sc->sc_mem_res != NULL) {
683 		bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_mem_rid,
684 				     sc->sc_mem_res);
685 	}
686 
687 	nfe_free_tx_ring(sc, &sc->txq);
688 	nfe_free_rx_ring(sc, &sc->rxq);
689 	if (sc->sc_dtag != NULL)
690 		bus_dma_tag_destroy(sc->sc_dtag);
691 
692 	return 0;
693 }
694 
695 static void
696 nfe_shutdown(device_t dev)
697 {
698 	struct nfe_softc *sc = device_get_softc(dev);
699 	struct ifnet *ifp = &sc->arpcom.ac_if;
700 
701 	lwkt_serialize_enter(ifp->if_serializer);
702 	nfe_stop(sc);
703 	lwkt_serialize_exit(ifp->if_serializer);
704 }
705 
706 static int
707 nfe_suspend(device_t dev)
708 {
709 	struct nfe_softc *sc = device_get_softc(dev);
710 	struct ifnet *ifp = &sc->arpcom.ac_if;
711 
712 	lwkt_serialize_enter(ifp->if_serializer);
713 	nfe_stop(sc);
714 	lwkt_serialize_exit(ifp->if_serializer);
715 
716 	return 0;
717 }
718 
719 static int
720 nfe_resume(device_t dev)
721 {
722 	struct nfe_softc *sc = device_get_softc(dev);
723 	struct ifnet *ifp = &sc->arpcom.ac_if;
724 
725 	lwkt_serialize_enter(ifp->if_serializer);
726 	if (ifp->if_flags & IFF_UP)
727 		nfe_init(sc);
728 	lwkt_serialize_exit(ifp->if_serializer);
729 
730 	return 0;
731 }
732 
733 static void
734 nfe_miibus_statchg(device_t dev)
735 {
736 	struct nfe_softc *sc = device_get_softc(dev);
737 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
738 	uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
739 
740 	ASSERT_SERIALIZED(sc->arpcom.ac_if.if_serializer);
741 
742 	phy = NFE_READ(sc, NFE_PHY_IFACE);
743 	phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
744 
745 	seed = NFE_READ(sc, NFE_RNDSEED);
746 	seed &= ~NFE_SEED_MASK;
747 
748 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
749 		phy  |= NFE_PHY_HDX;	/* half-duplex */
750 		misc |= NFE_MISC1_HDX;
751 	}
752 
753 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
754 	case IFM_1000_T:	/* full-duplex only */
755 		link |= NFE_MEDIA_1000T;
756 		seed |= NFE_SEED_1000T;
757 		phy  |= NFE_PHY_1000T;
758 		break;
759 	case IFM_100_TX:
760 		link |= NFE_MEDIA_100TX;
761 		seed |= NFE_SEED_100TX;
762 		phy  |= NFE_PHY_100TX;
763 		break;
764 	case IFM_10_T:
765 		link |= NFE_MEDIA_10T;
766 		seed |= NFE_SEED_10T;
767 		break;
768 	}
769 
770 	NFE_WRITE(sc, NFE_RNDSEED, seed);	/* XXX: gigabit NICs only? */
771 
772 	NFE_WRITE(sc, NFE_PHY_IFACE, phy);
773 	NFE_WRITE(sc, NFE_MISC1, misc);
774 	NFE_WRITE(sc, NFE_LINKSPEED, link);
775 }
776 
777 static int
778 nfe_miibus_readreg(device_t dev, int phy, int reg)
779 {
780 	struct nfe_softc *sc = device_get_softc(dev);
781 	uint32_t val;
782 	int ntries;
783 
784 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
785 
786 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
787 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
788 		DELAY(100);
789 	}
790 
791 	NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
792 
793 	for (ntries = 0; ntries < 1000; ntries++) {
794 		DELAY(100);
795 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
796 			break;
797 	}
798 	if (ntries == 1000) {
799 		DPRINTFN(sc, 2, "timeout waiting for PHY %s\n", "");
800 		return 0;
801 	}
802 
803 	if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
804 		DPRINTFN(sc, 2, "could not read PHY %s\n", "");
805 		return 0;
806 	}
807 
808 	val = NFE_READ(sc, NFE_PHY_DATA);
809 	if (val != 0xffffffff && val != 0)
810 		sc->mii_phyaddr = phy;
811 
812 	DPRINTFN(sc, 2, "mii read phy %d reg 0x%x ret 0x%x\n", phy, reg, val);
813 
814 	return val;
815 }
816 
817 static void
818 nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
819 {
820 	struct nfe_softc *sc = device_get_softc(dev);
821 	uint32_t ctl;
822 	int ntries;
823 
824 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
825 
826 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
827 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
828 		DELAY(100);
829 	}
830 
831 	NFE_WRITE(sc, NFE_PHY_DATA, val);
832 	ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
833 	NFE_WRITE(sc, NFE_PHY_CTL, ctl);
834 
835 	for (ntries = 0; ntries < 1000; ntries++) {
836 		DELAY(100);
837 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
838 			break;
839 	}
840 
841 #ifdef NFE_DEBUG
842 	if (ntries == 1000)
843 		DPRINTFN(sc, 2, "could not write to PHY %s\n", "");
844 #endif
845 }
846 
847 #ifdef DEVICE_POLLING
848 
849 static void
850 nfe_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
851 {
852 	struct nfe_softc *sc = ifp->if_softc;
853 
854 	ASSERT_SERIALIZED(ifp->if_serializer);
855 
856 	switch(cmd) {
857 	case POLL_REGISTER:
858 		nfe_disable_intrs(sc);
859 		break;
860 
861 	case POLL_DEREGISTER:
862 		nfe_enable_intrs(sc);
863 		break;
864 
865 	case POLL_AND_CHECK_STATUS:
866 		/* fall through */
867 	case POLL_ONLY:
868 		if (ifp->if_flags & IFF_RUNNING) {
869 			nfe_rxeof(sc);
870 			nfe_txeof(sc, 1);
871 		}
872 		break;
873 	}
874 }
875 
876 #endif
877 
878 static void
879 nfe_intr(void *arg)
880 {
881 	struct nfe_softc *sc = arg;
882 	struct ifnet *ifp = &sc->arpcom.ac_if;
883 	uint32_t r;
884 
885 	r = NFE_READ(sc, NFE_IRQ_STATUS);
886 	if (r == 0)
887 		return;	/* not for us */
888 	NFE_WRITE(sc, NFE_IRQ_STATUS, r);
889 
890 	DPRINTFN(sc, 5, "%s: interrupt register %x\n", __func__, r);
891 
892 	if (r & NFE_IRQ_LINK) {
893 		NFE_READ(sc, NFE_PHY_STATUS);
894 		NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
895 		DPRINTF(sc, "link state changed %s\n", "");
896 	}
897 
898 	if (ifp->if_flags & IFF_RUNNING) {
899 		int ret;
900 
901 		/* check Rx ring */
902 		ret = nfe_rxeof(sc);
903 
904 		/* check Tx ring */
905 		ret |= nfe_txeof(sc, 1);
906 
907 		if (sc->sc_flags & NFE_F_DYN_IM) {
908 			if (ret && (sc->sc_flags & NFE_F_IRQ_TIMER) == 0) {
909 				/*
910 				 * Assume that using hardware timer could reduce
911 				 * the interrupt rate.
912 				 */
913 				NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_IMTIMER);
914 				sc->sc_flags |= NFE_F_IRQ_TIMER;
915 			} else if (!ret && (sc->sc_flags & NFE_F_IRQ_TIMER)) {
916 				/*
917 				 * Nothing needs to be processed, fall back to
918 				 * use TX/RX interrupts.
919 				 */
920 				NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_NOIMTIMER);
921 				sc->sc_flags &= ~NFE_F_IRQ_TIMER;
922 
923 				/*
924 				 * Recollect, mainly to avoid the possible race
925 				 * introduced by changing interrupt masks.
926 				 */
927 				nfe_rxeof(sc);
928 				nfe_txeof(sc, 1);
929 			}
930 		}
931 	}
932 }
933 
934 static int
935 nfe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
936 {
937 	struct nfe_softc *sc = ifp->if_softc;
938 	struct ifreq *ifr = (struct ifreq *)data;
939 	struct mii_data *mii;
940 	int error = 0, mask, jumbo_cap;
941 
942 	ASSERT_SERIALIZED(ifp->if_serializer);
943 
944 	switch (cmd) {
945 	case SIOCSIFMTU:
946 		if ((sc->sc_caps & NFE_JUMBO_SUP) && sc->rxq.jbuf != NULL)
947 			jumbo_cap = 1;
948 		else
949 			jumbo_cap = 0;
950 
951 		if ((jumbo_cap && ifr->ifr_mtu > NFE_JUMBO_MTU) ||
952 		    (!jumbo_cap && ifr->ifr_mtu > ETHERMTU)) {
953 			return EINVAL;
954 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
955 			ifp->if_mtu = ifr->ifr_mtu;
956 			if (ifp->if_flags & IFF_RUNNING)
957 				nfe_init(sc);
958 		}
959 		break;
960 	case SIOCSIFFLAGS:
961 		if (ifp->if_flags & IFF_UP) {
962 			/*
963 			 * If only the PROMISC or ALLMULTI flag changes, then
964 			 * don't do a full re-init of the chip, just update
965 			 * the Rx filter.
966 			 */
967 			if ((ifp->if_flags & IFF_RUNNING) &&
968 			    ((ifp->if_flags ^ sc->sc_if_flags) &
969 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
970 				nfe_setmulti(sc);
971 			} else {
972 				if (!(ifp->if_flags & IFF_RUNNING))
973 					nfe_init(sc);
974 			}
975 		} else {
976 			if (ifp->if_flags & IFF_RUNNING)
977 				nfe_stop(sc);
978 		}
979 		sc->sc_if_flags = ifp->if_flags;
980 		break;
981 	case SIOCADDMULTI:
982 	case SIOCDELMULTI:
983 		if (ifp->if_flags & IFF_RUNNING)
984 			nfe_setmulti(sc);
985 		break;
986 	case SIOCSIFMEDIA:
987 	case SIOCGIFMEDIA:
988 		mii = device_get_softc(sc->sc_miibus);
989 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
990 		break;
991         case SIOCSIFCAP:
992 		mask = (ifr->ifr_reqcap ^ ifp->if_capenable) & IFCAP_HWCSUM;
993 		if (mask && (ifp->if_capabilities & IFCAP_HWCSUM)) {
994 			ifp->if_capenable ^= mask;
995 			if (IFCAP_TXCSUM & ifp->if_capenable)
996 				ifp->if_hwassist = NFE_CSUM_FEATURES;
997 			else
998 				ifp->if_hwassist = 0;
999 
1000 			if (ifp->if_flags & IFF_RUNNING)
1001 				nfe_init(sc);
1002 		}
1003 		break;
1004 	default:
1005 		error = ether_ioctl(ifp, cmd, data);
1006 		break;
1007 	}
1008 	return error;
1009 }
1010 
1011 static int
1012 nfe_rxeof(struct nfe_softc *sc)
1013 {
1014 	struct ifnet *ifp = &sc->arpcom.ac_if;
1015 	struct nfe_rx_ring *ring = &sc->rxq;
1016 	int reap;
1017 	struct mbuf_chain chain[MAXCPU];
1018 
1019 	reap = 0;
1020 	ether_input_chain_init(chain);
1021 
1022 	for (;;) {
1023 		struct nfe_rx_data *data = &ring->data[ring->cur];
1024 		struct mbuf *m;
1025 		uint16_t flags;
1026 		int len, error;
1027 
1028 		if (sc->sc_caps & NFE_40BIT_ADDR) {
1029 			struct nfe_desc64 *desc64 = &ring->desc64[ring->cur];
1030 
1031 			flags = le16toh(desc64->flags);
1032 			len = le16toh(desc64->length) & 0x3fff;
1033 		} else {
1034 			struct nfe_desc32 *desc32 = &ring->desc32[ring->cur];
1035 
1036 			flags = le16toh(desc32->flags);
1037 			len = le16toh(desc32->length) & 0x3fff;
1038 		}
1039 
1040 		if (flags & NFE_RX_READY)
1041 			break;
1042 
1043 		reap = 1;
1044 
1045 		if ((sc->sc_caps & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
1046 			if (!(flags & NFE_RX_VALID_V1))
1047 				goto skip;
1048 
1049 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
1050 				flags &= ~NFE_RX_ERROR;
1051 				len--;	/* fix buffer length */
1052 			}
1053 		} else {
1054 			if (!(flags & NFE_RX_VALID_V2))
1055 				goto skip;
1056 
1057 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
1058 				flags &= ~NFE_RX_ERROR;
1059 				len--;	/* fix buffer length */
1060 			}
1061 		}
1062 
1063 		if (flags & NFE_RX_ERROR) {
1064 			ifp->if_ierrors++;
1065 			goto skip;
1066 		}
1067 
1068 		m = data->m;
1069 
1070 		if (sc->sc_flags & NFE_F_USE_JUMBO)
1071 			error = nfe_newbuf_jumbo(sc, ring, ring->cur, 0);
1072 		else
1073 			error = nfe_newbuf_std(sc, ring, ring->cur, 0);
1074 		if (error) {
1075 			ifp->if_ierrors++;
1076 			goto skip;
1077 		}
1078 
1079 		/* finalize mbuf */
1080 		m->m_pkthdr.len = m->m_len = len;
1081 		m->m_pkthdr.rcvif = ifp;
1082 
1083 		if ((ifp->if_capenable & IFCAP_RXCSUM) &&
1084 		    (flags & NFE_RX_CSUMOK)) {
1085 			if (flags & NFE_RX_IP_CSUMOK_V2) {
1086 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
1087 							  CSUM_IP_VALID;
1088 			}
1089 
1090 			if (flags &
1091 			    (NFE_RX_UDP_CSUMOK_V2 | NFE_RX_TCP_CSUMOK_V2)) {
1092 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1093 							  CSUM_PSEUDO_HDR |
1094 							  CSUM_FRAG_NOT_CHECKED;
1095 				m->m_pkthdr.csum_data = 0xffff;
1096 			}
1097 		}
1098 
1099 		ifp->if_ipackets++;
1100 		ether_input_chain(ifp, m, chain);
1101 skip:
1102 		nfe_set_ready_rxdesc(sc, ring, ring->cur);
1103 		sc->rxq.cur = (sc->rxq.cur + 1) % sc->sc_rx_ring_count;
1104 	}
1105 
1106 	if (reap)
1107 		ether_input_dispatch(chain);
1108 	return reap;
1109 }
1110 
1111 static int
1112 nfe_txeof(struct nfe_softc *sc, int start)
1113 {
1114 	struct ifnet *ifp = &sc->arpcom.ac_if;
1115 	struct nfe_tx_ring *ring = &sc->txq;
1116 	struct nfe_tx_data *data = NULL;
1117 
1118 	while (ring->next != ring->cur) {
1119 		uint16_t flags;
1120 
1121 		if (sc->sc_caps & NFE_40BIT_ADDR)
1122 			flags = le16toh(ring->desc64[ring->next].flags);
1123 		else
1124 			flags = le16toh(ring->desc32[ring->next].flags);
1125 
1126 		if (flags & NFE_TX_VALID)
1127 			break;
1128 
1129 		data = &ring->data[ring->next];
1130 
1131 		if ((sc->sc_caps & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
1132 			if (!(flags & NFE_TX_LASTFRAG_V1) && data->m == NULL)
1133 				goto skip;
1134 
1135 			if ((flags & NFE_TX_ERROR_V1) != 0) {
1136 				if_printf(ifp, "tx v1 error 0x%4b\n", flags,
1137 					  NFE_V1_TXERR);
1138 				ifp->if_oerrors++;
1139 			} else {
1140 				ifp->if_opackets++;
1141 			}
1142 		} else {
1143 			if (!(flags & NFE_TX_LASTFRAG_V2) && data->m == NULL)
1144 				goto skip;
1145 
1146 			if ((flags & NFE_TX_ERROR_V2) != 0) {
1147 				if_printf(ifp, "tx v2 error 0x%4b\n", flags,
1148 					  NFE_V2_TXERR);
1149 				ifp->if_oerrors++;
1150 			} else {
1151 				ifp->if_opackets++;
1152 			}
1153 		}
1154 
1155 		if (data->m == NULL) {	/* should not get there */
1156 			if_printf(ifp,
1157 				  "last fragment bit w/o associated mbuf!\n");
1158 			goto skip;
1159 		}
1160 
1161 		/* last fragment of the mbuf chain transmitted */
1162 		bus_dmamap_unload(ring->data_tag, data->map);
1163 		m_freem(data->m);
1164 		data->m = NULL;
1165 skip:
1166 		ring->queued--;
1167 		KKASSERT(ring->queued >= 0);
1168 		ring->next = (ring->next + 1) % sc->sc_tx_ring_count;
1169 	}
1170 
1171 	if (sc->sc_tx_ring_count - ring->queued >=
1172 	    sc->sc_tx_spare + NFE_NSEG_RSVD)
1173 		ifp->if_flags &= ~IFF_OACTIVE;
1174 
1175 	if (ring->queued == 0)
1176 		ifp->if_timer = 0;
1177 
1178 	if (start && !ifq_is_empty(&ifp->if_snd))
1179 		if_devstart(ifp);
1180 
1181 	if (data != NULL)
1182 		return 1;
1183 	else
1184 		return 0;
1185 }
1186 
1187 static int
1188 nfe_encap(struct nfe_softc *sc, struct nfe_tx_ring *ring, struct mbuf *m0)
1189 {
1190 	bus_dma_segment_t segs[NFE_MAX_SCATTER];
1191 	struct nfe_tx_data *data, *data_map;
1192 	bus_dmamap_t map;
1193 	struct nfe_desc64 *desc64 = NULL;
1194 	struct nfe_desc32 *desc32 = NULL;
1195 	uint16_t flags = 0;
1196 	uint32_t vtag = 0;
1197 	int error, i, j, maxsegs, nsegs;
1198 
1199 	data = &ring->data[ring->cur];
1200 	map = data->map;
1201 	data_map = data;	/* Remember who owns the DMA map */
1202 
1203 	maxsegs = (sc->sc_tx_ring_count - ring->queued) - NFE_NSEG_RSVD;
1204 	if (maxsegs > NFE_MAX_SCATTER)
1205 		maxsegs = NFE_MAX_SCATTER;
1206 	KASSERT(maxsegs >= sc->sc_tx_spare,
1207 		("no enough segments %d,%d\n", maxsegs, sc->sc_tx_spare));
1208 
1209 	error = bus_dmamap_load_mbuf_defrag(ring->data_tag, map, &m0,
1210 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1211 	if (error)
1212 		goto back;
1213 	bus_dmamap_sync(ring->data_tag, map, BUS_DMASYNC_PREWRITE);
1214 
1215 	error = 0;
1216 
1217 	/* setup h/w VLAN tagging */
1218 	if (m0->m_flags & M_VLANTAG)
1219 		vtag = m0->m_pkthdr.ether_vlantag;
1220 
1221 	if (sc->arpcom.ac_if.if_capenable & IFCAP_TXCSUM) {
1222 		if (m0->m_pkthdr.csum_flags & CSUM_IP)
1223 			flags |= NFE_TX_IP_CSUM;
1224 		if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
1225 			flags |= NFE_TX_TCP_CSUM;
1226 	}
1227 
1228 	/*
1229 	 * XXX urm. somebody is unaware of how hardware works.  You
1230 	 * absolutely CANNOT set NFE_TX_VALID on the next descriptor in
1231 	 * the ring until the entire chain is actually *VALID*.  Otherwise
1232 	 * the hardware may encounter a partially initialized chain that
1233 	 * is marked as being ready to go when it in fact is not ready to
1234 	 * go.
1235 	 */
1236 
1237 	for (i = 0; i < nsegs; i++) {
1238 		j = (ring->cur + i) % sc->sc_tx_ring_count;
1239 		data = &ring->data[j];
1240 
1241 		if (sc->sc_caps & NFE_40BIT_ADDR) {
1242 			desc64 = &ring->desc64[j];
1243 			desc64->physaddr[0] =
1244 			    htole32(NFE_ADDR_HI(segs[i].ds_addr));
1245 			desc64->physaddr[1] =
1246 			    htole32(NFE_ADDR_LO(segs[i].ds_addr));
1247 			desc64->length = htole16(segs[i].ds_len - 1);
1248 			desc64->vtag = htole32(vtag);
1249 			desc64->flags = htole16(flags);
1250 		} else {
1251 			desc32 = &ring->desc32[j];
1252 			desc32->physaddr = htole32(segs[i].ds_addr);
1253 			desc32->length = htole16(segs[i].ds_len - 1);
1254 			desc32->flags = htole16(flags);
1255 		}
1256 
1257 		/* csum flags and vtag belong to the first fragment only */
1258 		flags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_CSUM);
1259 		vtag = 0;
1260 
1261 		ring->queued++;
1262 		KKASSERT(ring->queued <= sc->sc_tx_ring_count);
1263 	}
1264 
1265 	/* the whole mbuf chain has been DMA mapped, fix last descriptor */
1266 	if (sc->sc_caps & NFE_40BIT_ADDR) {
1267 		desc64->flags |= htole16(NFE_TX_LASTFRAG_V2);
1268 	} else {
1269 		if (sc->sc_caps & NFE_JUMBO_SUP)
1270 			flags = NFE_TX_LASTFRAG_V2;
1271 		else
1272 			flags = NFE_TX_LASTFRAG_V1;
1273 		desc32->flags |= htole16(flags);
1274 	}
1275 
1276 	/*
1277 	 * Set NFE_TX_VALID backwards so the hardware doesn't see the
1278 	 * whole mess until the first descriptor in the map is flagged.
1279 	 */
1280 	for (i = nsegs - 1; i >= 0; --i) {
1281 		j = (ring->cur + i) % sc->sc_tx_ring_count;
1282 		if (sc->sc_caps & NFE_40BIT_ADDR) {
1283 			desc64 = &ring->desc64[j];
1284 			desc64->flags |= htole16(NFE_TX_VALID);
1285 		} else {
1286 			desc32 = &ring->desc32[j];
1287 			desc32->flags |= htole16(NFE_TX_VALID);
1288 		}
1289 	}
1290 	ring->cur = (ring->cur + nsegs) % sc->sc_tx_ring_count;
1291 
1292 	/* Exchange DMA map */
1293 	data_map->map = data->map;
1294 	data->map = map;
1295 	data->m = m0;
1296 back:
1297 	if (error)
1298 		m_freem(m0);
1299 	return error;
1300 }
1301 
1302 static void
1303 nfe_start(struct ifnet *ifp)
1304 {
1305 	struct nfe_softc *sc = ifp->if_softc;
1306 	struct nfe_tx_ring *ring = &sc->txq;
1307 	int count = 0, oactive = 0;
1308 	struct mbuf *m0;
1309 
1310 	ASSERT_SERIALIZED(ifp->if_serializer);
1311 
1312 	if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
1313 		return;
1314 
1315 	for (;;) {
1316 		int error;
1317 
1318 		if (sc->sc_tx_ring_count - ring->queued <
1319 		    sc->sc_tx_spare + NFE_NSEG_RSVD) {
1320 			if (oactive) {
1321 				ifp->if_flags |= IFF_OACTIVE;
1322 				break;
1323 			}
1324 
1325 			nfe_txeof(sc, 0);
1326 			oactive = 1;
1327 			continue;
1328 		}
1329 
1330 		m0 = ifq_dequeue(&ifp->if_snd, NULL);
1331 		if (m0 == NULL)
1332 			break;
1333 
1334 		ETHER_BPF_MTAP(ifp, m0);
1335 
1336 		error = nfe_encap(sc, ring, m0);
1337 		if (error) {
1338 			ifp->if_oerrors++;
1339 			if (error == EFBIG) {
1340 				if (oactive) {
1341 					ifp->if_flags |= IFF_OACTIVE;
1342 					break;
1343 				}
1344 				nfe_txeof(sc, 0);
1345 				oactive = 1;
1346 			}
1347 			continue;
1348 		} else {
1349 			oactive = 0;
1350 		}
1351 		++count;
1352 
1353 		/*
1354 		 * NOTE:
1355 		 * `m0' may be freed in nfe_encap(), so
1356 		 * it should not be touched any more.
1357 		 */
1358 	}
1359 
1360 	if (count == 0)	/* nothing sent */
1361 		return;
1362 
1363 	/* Kick Tx */
1364 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1365 
1366 	/*
1367 	 * Set a timeout in case the chip goes out to lunch.
1368 	 */
1369 	ifp->if_timer = 5;
1370 }
1371 
1372 static void
1373 nfe_watchdog(struct ifnet *ifp)
1374 {
1375 	struct nfe_softc *sc = ifp->if_softc;
1376 
1377 	ASSERT_SERIALIZED(ifp->if_serializer);
1378 
1379 	if (ifp->if_flags & IFF_RUNNING) {
1380 		if_printf(ifp, "watchdog timeout - lost interrupt recovered\n");
1381 		nfe_txeof(sc, 1);
1382 		return;
1383 	}
1384 
1385 	if_printf(ifp, "watchdog timeout\n");
1386 
1387 	nfe_init(ifp->if_softc);
1388 
1389 	ifp->if_oerrors++;
1390 }
1391 
1392 static void
1393 nfe_init(void *xsc)
1394 {
1395 	struct nfe_softc *sc = xsc;
1396 	struct ifnet *ifp = &sc->arpcom.ac_if;
1397 	uint32_t tmp;
1398 	int error;
1399 
1400 	ASSERT_SERIALIZED(ifp->if_serializer);
1401 
1402 	nfe_stop(sc);
1403 
1404 	if ((sc->sc_caps & NFE_NO_PWRCTL) == 0)
1405 		nfe_mac_reset(sc);
1406 
1407 	/*
1408 	 * NOTE:
1409 	 * Switching between jumbo frames and normal frames should
1410 	 * be done _after_ nfe_stop() but _before_ nfe_init_rx_ring().
1411 	 */
1412 	if (ifp->if_mtu > ETHERMTU) {
1413 		sc->sc_flags |= NFE_F_USE_JUMBO;
1414 		sc->rxq.bufsz = NFE_JBYTES;
1415 		sc->sc_tx_spare = NFE_NSEG_SPARE_JUMBO;
1416 		if (bootverbose)
1417 			if_printf(ifp, "use jumbo frames\n");
1418 	} else {
1419 		sc->sc_flags &= ~NFE_F_USE_JUMBO;
1420 		sc->rxq.bufsz = MCLBYTES;
1421 		sc->sc_tx_spare = NFE_NSEG_SPARE;
1422 		if (bootverbose)
1423 			if_printf(ifp, "use non-jumbo frames\n");
1424 	}
1425 
1426 	error = nfe_init_tx_ring(sc, &sc->txq);
1427 	if (error) {
1428 		nfe_stop(sc);
1429 		return;
1430 	}
1431 
1432 	error = nfe_init_rx_ring(sc, &sc->rxq);
1433 	if (error) {
1434 		nfe_stop(sc);
1435 		return;
1436 	}
1437 
1438 	NFE_WRITE(sc, NFE_TX_POLL, 0);
1439 	NFE_WRITE(sc, NFE_STATUS, 0);
1440 
1441 	sc->rxtxctl = NFE_RXTX_BIT2 | sc->rxtxctl_desc;
1442 
1443 	if (ifp->if_capenable & IFCAP_RXCSUM)
1444 		sc->rxtxctl |= NFE_RXTX_RXCSUM;
1445 
1446 	/*
1447 	 * Although the adapter is capable of stripping VLAN tags from received
1448 	 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1449 	 * purpose.  This will be done in software by our network stack.
1450 	 */
1451 	if (sc->sc_caps & NFE_HW_VLAN)
1452 		sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1453 
1454 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1455 	DELAY(10);
1456 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1457 
1458 	if (sc->sc_caps & NFE_HW_VLAN)
1459 		NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1460 
1461 	NFE_WRITE(sc, NFE_SETUP_R6, 0);
1462 
1463 	/* set MAC address */
1464 	nfe_set_macaddr(sc, sc->arpcom.ac_enaddr);
1465 
1466 	/* tell MAC where rings are in memory */
1467 	if (sc->sc_caps & NFE_40BIT_ADDR) {
1468 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
1469 			  NFE_ADDR_HI(sc->rxq.physaddr));
1470 	}
1471 	NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, NFE_ADDR_LO(sc->rxq.physaddr));
1472 
1473 	if (sc->sc_caps & NFE_40BIT_ADDR) {
1474 		NFE_WRITE(sc, NFE_TX_RING_ADDR_HI,
1475 			  NFE_ADDR_HI(sc->txq.physaddr));
1476 	}
1477 	NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, NFE_ADDR_LO(sc->txq.physaddr));
1478 
1479 	NFE_WRITE(sc, NFE_RING_SIZE,
1480 	    (sc->sc_rx_ring_count - 1) << 16 |
1481 	    (sc->sc_tx_ring_count - 1));
1482 
1483 	NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1484 
1485 	/* force MAC to wakeup */
1486 	tmp = NFE_READ(sc, NFE_PWR_STATE);
1487 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1488 	DELAY(10);
1489 	tmp = NFE_READ(sc, NFE_PWR_STATE);
1490 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1491 
1492 	NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1493 	NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1494 	NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1495 
1496 	/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1497 	NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1498 
1499 	NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1500 
1501 	sc->rxtxctl &= ~NFE_RXTX_BIT2;
1502 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1503 	DELAY(10);
1504 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1505 
1506 	/* set Rx filter */
1507 	nfe_setmulti(sc);
1508 
1509 	nfe_ifmedia_upd(ifp);
1510 
1511 	/* enable Rx */
1512 	NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1513 
1514 	/* enable Tx */
1515 	NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1516 
1517 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1518 
1519 #ifdef DEVICE_POLLING
1520 	if ((ifp->if_flags & IFF_POLLING))
1521 		nfe_disable_intrs(sc);
1522 	else
1523 #endif
1524 	nfe_enable_intrs(sc);
1525 
1526 	callout_reset(&sc->sc_tick_ch, hz, nfe_tick, sc);
1527 
1528 	ifp->if_flags |= IFF_RUNNING;
1529 	ifp->if_flags &= ~IFF_OACTIVE;
1530 
1531 	/*
1532 	 * If we had stuff in the tx ring before its all cleaned out now
1533 	 * so we are not going to get an interrupt, jump-start any pending
1534 	 * output.
1535 	 */
1536 	if (!ifq_is_empty(&ifp->if_snd))
1537 		if_devstart(ifp);
1538 }
1539 
1540 static void
1541 nfe_stop(struct nfe_softc *sc)
1542 {
1543 	struct ifnet *ifp = &sc->arpcom.ac_if;
1544 	uint32_t rxtxctl = sc->rxtxctl_desc | NFE_RXTX_BIT2;
1545 	int i;
1546 
1547 	ASSERT_SERIALIZED(ifp->if_serializer);
1548 
1549 	callout_stop(&sc->sc_tick_ch);
1550 
1551 	ifp->if_timer = 0;
1552 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1553 	sc->sc_flags &= ~NFE_F_IRQ_TIMER;
1554 
1555 #define WAITMAX	50000
1556 
1557 	/*
1558 	 * Abort Tx
1559 	 */
1560 	NFE_WRITE(sc, NFE_TX_CTL, 0);
1561 	for (i = 0; i < WAITMAX; ++i) {
1562 		DELAY(100);
1563 		if ((NFE_READ(sc, NFE_TX_STATUS) & NFE_TX_STATUS_BUSY) == 0)
1564 			break;
1565 	}
1566 	if (i == WAITMAX)
1567 		if_printf(ifp, "can't stop TX\n");
1568 	DELAY(100);
1569 
1570 	/*
1571 	 * Disable Rx
1572 	 */
1573 	NFE_WRITE(sc, NFE_RX_CTL, 0);
1574 	for (i = 0; i < WAITMAX; ++i) {
1575 		DELAY(100);
1576 		if ((NFE_READ(sc, NFE_RX_STATUS) & NFE_RX_STATUS_BUSY) == 0)
1577 			break;
1578 	}
1579 	if (i == WAITMAX)
1580 		if_printf(ifp, "can't stop RX\n");
1581 	DELAY(100);
1582 
1583 #undef WAITMAX
1584 
1585 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | rxtxctl);
1586 	DELAY(10);
1587 	NFE_WRITE(sc, NFE_RXTX_CTL, rxtxctl);
1588 
1589 	/* Disable interrupts */
1590 	NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1591 
1592 	/* Reset Tx and Rx rings */
1593 	nfe_reset_tx_ring(sc, &sc->txq);
1594 	nfe_reset_rx_ring(sc, &sc->rxq);
1595 }
1596 
1597 static int
1598 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1599 {
1600 	int i, j, error, descsize;
1601 	bus_dmamem_t dmem;
1602 	void **desc;
1603 
1604 	if (sc->sc_caps & NFE_40BIT_ADDR) {
1605 		desc = (void **)&ring->desc64;
1606 		descsize = sizeof(struct nfe_desc64);
1607 	} else {
1608 		desc = (void **)&ring->desc32;
1609 		descsize = sizeof(struct nfe_desc32);
1610 	}
1611 
1612 	ring->bufsz = MCLBYTES;
1613 	ring->cur = ring->next = 0;
1614 
1615 	error = bus_dmamem_coherent(sc->sc_dtag, PAGE_SIZE, 0,
1616 				    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1617 				    sc->sc_rx_ring_count * descsize,
1618 				    BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
1619 	if (error) {
1620 		if_printf(&sc->arpcom.ac_if,
1621 			  "could not create RX desc ring\n");
1622 		return error;
1623 	}
1624 	ring->tag = dmem.dmem_tag;
1625 	ring->map = dmem.dmem_map;
1626 	*desc = dmem.dmem_addr;
1627 	ring->physaddr = dmem.dmem_busaddr;
1628 
1629 	if (sc->sc_caps & NFE_JUMBO_SUP) {
1630 		ring->jbuf =
1631 		kmalloc(sizeof(struct nfe_jbuf) * NFE_JPOOL_COUNT(sc),
1632 			M_DEVBUF, M_WAITOK | M_ZERO);
1633 
1634 		error = nfe_jpool_alloc(sc, ring);
1635 		if (error) {
1636 			if_printf(&sc->arpcom.ac_if,
1637 				  "could not allocate jumbo frames\n");
1638 			kfree(ring->jbuf, M_DEVBUF);
1639 			ring->jbuf = NULL;
1640 			/* Allow jumbo frame allocation to fail */
1641 		}
1642 	}
1643 
1644 	ring->data = kmalloc(sizeof(struct nfe_rx_data) * sc->sc_rx_ring_count,
1645 			     M_DEVBUF, M_WAITOK | M_ZERO);
1646 
1647 	error = bus_dma_tag_create(sc->sc_dtag, 1, 0,
1648 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1649 				   NULL, NULL,
1650 				   MCLBYTES, 1, MCLBYTES,
1651 				   BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
1652 				   &ring->data_tag);
1653 	if (error) {
1654 		if_printf(&sc->arpcom.ac_if,
1655 			  "could not create RX mbuf DMA tag\n");
1656 		return error;
1657 	}
1658 
1659 	/* Create a spare RX mbuf DMA map */
1660 	error = bus_dmamap_create(ring->data_tag, BUS_DMA_WAITOK,
1661 				  &ring->data_tmpmap);
1662 	if (error) {
1663 		if_printf(&sc->arpcom.ac_if,
1664 			  "could not create spare RX mbuf DMA map\n");
1665 		bus_dma_tag_destroy(ring->data_tag);
1666 		ring->data_tag = NULL;
1667 		return error;
1668 	}
1669 
1670 	for (i = 0; i < sc->sc_rx_ring_count; i++) {
1671 		error = bus_dmamap_create(ring->data_tag, BUS_DMA_WAITOK,
1672 					  &ring->data[i].map);
1673 		if (error) {
1674 			if_printf(&sc->arpcom.ac_if,
1675 				  "could not create %dth RX mbuf DMA mapn", i);
1676 			goto fail;
1677 		}
1678 	}
1679 	return 0;
1680 fail:
1681 	for (j = 0; j < i; ++j)
1682 		bus_dmamap_destroy(ring->data_tag, ring->data[i].map);
1683 	bus_dmamap_destroy(ring->data_tag, ring->data_tmpmap);
1684 	bus_dma_tag_destroy(ring->data_tag);
1685 	ring->data_tag = NULL;
1686 	return error;
1687 }
1688 
1689 static void
1690 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1691 {
1692 	int i;
1693 
1694 	for (i = 0; i < sc->sc_rx_ring_count; i++) {
1695 		struct nfe_rx_data *data = &ring->data[i];
1696 
1697 		if (data->m != NULL) {
1698 			if ((sc->sc_flags & NFE_F_USE_JUMBO) == 0)
1699 				bus_dmamap_unload(ring->data_tag, data->map);
1700 			m_freem(data->m);
1701 			data->m = NULL;
1702 		}
1703 	}
1704 
1705 	ring->cur = ring->next = 0;
1706 }
1707 
1708 static int
1709 nfe_init_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1710 {
1711 	int i;
1712 
1713 	for (i = 0; i < sc->sc_rx_ring_count; ++i) {
1714 		int error;
1715 
1716 		/* XXX should use a function pointer */
1717 		if (sc->sc_flags & NFE_F_USE_JUMBO)
1718 			error = nfe_newbuf_jumbo(sc, ring, i, 1);
1719 		else
1720 			error = nfe_newbuf_std(sc, ring, i, 1);
1721 		if (error) {
1722 			if_printf(&sc->arpcom.ac_if,
1723 				  "could not allocate RX buffer\n");
1724 			return error;
1725 		}
1726 		nfe_set_ready_rxdesc(sc, ring, i);
1727 	}
1728 	return 0;
1729 }
1730 
1731 static void
1732 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1733 {
1734 	if (ring->data_tag != NULL) {
1735 		struct nfe_rx_data *data;
1736 		int i;
1737 
1738 		for (i = 0; i < sc->sc_rx_ring_count; i++) {
1739 			data = &ring->data[i];
1740 
1741 			if (data->m != NULL) {
1742 				bus_dmamap_unload(ring->data_tag, data->map);
1743 				m_freem(data->m);
1744 			}
1745 			bus_dmamap_destroy(ring->data_tag, data->map);
1746 		}
1747 		bus_dmamap_destroy(ring->data_tag, ring->data_tmpmap);
1748 		bus_dma_tag_destroy(ring->data_tag);
1749 	}
1750 
1751 	nfe_jpool_free(sc, ring);
1752 
1753 	if (ring->jbuf != NULL)
1754 		kfree(ring->jbuf, M_DEVBUF);
1755 	if (ring->data != NULL)
1756 		kfree(ring->data, M_DEVBUF);
1757 
1758 	if (ring->tag != NULL) {
1759 		void *desc;
1760 
1761 		if (sc->sc_caps & NFE_40BIT_ADDR)
1762 			desc = ring->desc64;
1763 		else
1764 			desc = ring->desc32;
1765 
1766 		bus_dmamap_unload(ring->tag, ring->map);
1767 		bus_dmamem_free(ring->tag, desc, ring->map);
1768 		bus_dma_tag_destroy(ring->tag);
1769 	}
1770 }
1771 
1772 static struct nfe_jbuf *
1773 nfe_jalloc(struct nfe_softc *sc)
1774 {
1775 	struct ifnet *ifp = &sc->arpcom.ac_if;
1776 	struct nfe_jbuf *jbuf;
1777 
1778 	lwkt_serialize_enter(&sc->sc_jbuf_serializer);
1779 
1780 	jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1781 	if (jbuf != NULL) {
1782 		SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1783 		jbuf->inuse = 1;
1784 	} else {
1785 		if_printf(ifp, "no free jumbo buffer\n");
1786 	}
1787 
1788 	lwkt_serialize_exit(&sc->sc_jbuf_serializer);
1789 
1790 	return jbuf;
1791 }
1792 
1793 static void
1794 nfe_jfree(void *arg)
1795 {
1796 	struct nfe_jbuf *jbuf = arg;
1797 	struct nfe_softc *sc = jbuf->sc;
1798 	struct nfe_rx_ring *ring = jbuf->ring;
1799 
1800 	if (&ring->jbuf[jbuf->slot] != jbuf)
1801 		panic("%s: free wrong jumbo buffer\n", __func__);
1802 	else if (jbuf->inuse == 0)
1803 		panic("%s: jumbo buffer already freed\n", __func__);
1804 
1805 	lwkt_serialize_enter(&sc->sc_jbuf_serializer);
1806 	atomic_subtract_int(&jbuf->inuse, 1);
1807 	if (jbuf->inuse == 0)
1808 		SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1809 	lwkt_serialize_exit(&sc->sc_jbuf_serializer);
1810 }
1811 
1812 static void
1813 nfe_jref(void *arg)
1814 {
1815 	struct nfe_jbuf *jbuf = arg;
1816 	struct nfe_rx_ring *ring = jbuf->ring;
1817 
1818 	if (&ring->jbuf[jbuf->slot] != jbuf)
1819 		panic("%s: ref wrong jumbo buffer\n", __func__);
1820 	else if (jbuf->inuse == 0)
1821 		panic("%s: jumbo buffer already freed\n", __func__);
1822 
1823 	atomic_add_int(&jbuf->inuse, 1);
1824 }
1825 
1826 static int
1827 nfe_jpool_alloc(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1828 {
1829 	struct nfe_jbuf *jbuf;
1830 	bus_dmamem_t dmem;
1831 	bus_addr_t physaddr;
1832 	caddr_t buf;
1833 	int i, error;
1834 
1835 	/*
1836 	 * Allocate a big chunk of DMA'able memory.
1837 	 */
1838 	error = bus_dmamem_coherent(sc->sc_dtag, PAGE_SIZE, 0,
1839 				    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1840 				    NFE_JPOOL_SIZE(sc),
1841 				    BUS_DMA_WAITOK, &dmem);
1842 	if (error) {
1843 		if_printf(&sc->arpcom.ac_if,
1844 			  "could not create jumbo buffer\n");
1845 		return error;
1846 	}
1847 	ring->jtag = dmem.dmem_tag;
1848 	ring->jmap = dmem.dmem_map;
1849 	ring->jpool = dmem.dmem_addr;
1850 	physaddr = dmem.dmem_busaddr;
1851 
1852 	/* ..and split it into 9KB chunks */
1853 	SLIST_INIT(&ring->jfreelist);
1854 
1855 	buf = ring->jpool;
1856 	for (i = 0; i < NFE_JPOOL_COUNT(sc); i++) {
1857 		jbuf = &ring->jbuf[i];
1858 
1859 		jbuf->sc = sc;
1860 		jbuf->ring = ring;
1861 		jbuf->inuse = 0;
1862 		jbuf->slot = i;
1863 		jbuf->buf = buf;
1864 		jbuf->physaddr = physaddr;
1865 
1866 		SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1867 
1868 		buf += NFE_JBYTES;
1869 		physaddr += NFE_JBYTES;
1870 	}
1871 
1872 	return 0;
1873 }
1874 
1875 static void
1876 nfe_jpool_free(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1877 {
1878 	if (ring->jtag != NULL) {
1879 		bus_dmamap_unload(ring->jtag, ring->jmap);
1880 		bus_dmamem_free(ring->jtag, ring->jpool, ring->jmap);
1881 		bus_dma_tag_destroy(ring->jtag);
1882 	}
1883 }
1884 
1885 static int
1886 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1887 {
1888 	int i, j, error, descsize;
1889 	bus_dmamem_t dmem;
1890 	void **desc;
1891 
1892 	if (sc->sc_caps & NFE_40BIT_ADDR) {
1893 		desc = (void **)&ring->desc64;
1894 		descsize = sizeof(struct nfe_desc64);
1895 	} else {
1896 		desc = (void **)&ring->desc32;
1897 		descsize = sizeof(struct nfe_desc32);
1898 	}
1899 
1900 	ring->queued = 0;
1901 	ring->cur = ring->next = 0;
1902 
1903 	error = bus_dmamem_coherent(sc->sc_dtag, PAGE_SIZE, 0,
1904 				    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1905 				    sc->sc_tx_ring_count * descsize,
1906 				    BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
1907 	if (error) {
1908 		if_printf(&sc->arpcom.ac_if,
1909 			  "could not create TX desc ring\n");
1910 		return error;
1911 	}
1912 	ring->tag = dmem.dmem_tag;
1913 	ring->map = dmem.dmem_map;
1914 	*desc = dmem.dmem_addr;
1915 	ring->physaddr = dmem.dmem_busaddr;
1916 
1917 	ring->data = kmalloc(sizeof(struct nfe_tx_data) * sc->sc_tx_ring_count,
1918 			     M_DEVBUF, M_WAITOK | M_ZERO);
1919 
1920 	error = bus_dma_tag_create(sc->sc_dtag, 1, 0,
1921 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1922 			NULL, NULL,
1923 			NFE_JBYTES, NFE_MAX_SCATTER, MCLBYTES,
1924 			BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1925 			&ring->data_tag);
1926 	if (error) {
1927 		if_printf(&sc->arpcom.ac_if,
1928 			  "could not create TX buf DMA tag\n");
1929 		return error;
1930 	}
1931 
1932 	for (i = 0; i < sc->sc_tx_ring_count; i++) {
1933 		error = bus_dmamap_create(ring->data_tag,
1934 				BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1935 				&ring->data[i].map);
1936 		if (error) {
1937 			if_printf(&sc->arpcom.ac_if,
1938 				  "could not create %dth TX buf DMA map\n", i);
1939 			goto fail;
1940 		}
1941 	}
1942 
1943 	return 0;
1944 fail:
1945 	for (j = 0; j < i; ++j)
1946 		bus_dmamap_destroy(ring->data_tag, ring->data[i].map);
1947 	bus_dma_tag_destroy(ring->data_tag);
1948 	ring->data_tag = NULL;
1949 	return error;
1950 }
1951 
1952 static void
1953 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1954 {
1955 	int i;
1956 
1957 	for (i = 0; i < sc->sc_tx_ring_count; i++) {
1958 		struct nfe_tx_data *data = &ring->data[i];
1959 
1960 		if (sc->sc_caps & NFE_40BIT_ADDR)
1961 			ring->desc64[i].flags = 0;
1962 		else
1963 			ring->desc32[i].flags = 0;
1964 
1965 		if (data->m != NULL) {
1966 			bus_dmamap_unload(ring->data_tag, data->map);
1967 			m_freem(data->m);
1968 			data->m = NULL;
1969 		}
1970 	}
1971 
1972 	ring->queued = 0;
1973 	ring->cur = ring->next = 0;
1974 }
1975 
1976 static int
1977 nfe_init_tx_ring(struct nfe_softc *sc __unused,
1978 		 struct nfe_tx_ring *ring __unused)
1979 {
1980 	return 0;
1981 }
1982 
1983 static void
1984 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1985 {
1986 	if (ring->data_tag != NULL) {
1987 		struct nfe_tx_data *data;
1988 		int i;
1989 
1990 		for (i = 0; i < sc->sc_tx_ring_count; ++i) {
1991 			data = &ring->data[i];
1992 
1993 			if (data->m != NULL) {
1994 				bus_dmamap_unload(ring->data_tag, data->map);
1995 				m_freem(data->m);
1996 			}
1997 			bus_dmamap_destroy(ring->data_tag, data->map);
1998 		}
1999 
2000 		bus_dma_tag_destroy(ring->data_tag);
2001 	}
2002 
2003 	if (ring->data != NULL)
2004 		kfree(ring->data, M_DEVBUF);
2005 
2006 	if (ring->tag != NULL) {
2007 		void *desc;
2008 
2009 		if (sc->sc_caps & NFE_40BIT_ADDR)
2010 			desc = ring->desc64;
2011 		else
2012 			desc = ring->desc32;
2013 
2014 		bus_dmamap_unload(ring->tag, ring->map);
2015 		bus_dmamem_free(ring->tag, desc, ring->map);
2016 		bus_dma_tag_destroy(ring->tag);
2017 	}
2018 }
2019 
2020 static int
2021 nfe_ifmedia_upd(struct ifnet *ifp)
2022 {
2023 	struct nfe_softc *sc = ifp->if_softc;
2024 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
2025 
2026 	ASSERT_SERIALIZED(ifp->if_serializer);
2027 
2028 	if (mii->mii_instance != 0) {
2029 		struct mii_softc *miisc;
2030 
2031 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2032 			mii_phy_reset(miisc);
2033 	}
2034 	mii_mediachg(mii);
2035 
2036 	return 0;
2037 }
2038 
2039 static void
2040 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2041 {
2042 	struct nfe_softc *sc = ifp->if_softc;
2043 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
2044 
2045 	ASSERT_SERIALIZED(ifp->if_serializer);
2046 
2047 	mii_pollstat(mii);
2048 	ifmr->ifm_status = mii->mii_media_status;
2049 	ifmr->ifm_active = mii->mii_media_active;
2050 }
2051 
2052 static void
2053 nfe_setmulti(struct nfe_softc *sc)
2054 {
2055 	struct ifnet *ifp = &sc->arpcom.ac_if;
2056 	struct ifmultiaddr *ifma;
2057 	uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
2058 	uint32_t filter = NFE_RXFILTER_MAGIC;
2059 	int i;
2060 
2061 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
2062 		bzero(addr, ETHER_ADDR_LEN);
2063 		bzero(mask, ETHER_ADDR_LEN);
2064 		goto done;
2065 	}
2066 
2067 	bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
2068 	bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
2069 
2070 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2071 		caddr_t maddr;
2072 
2073 		if (ifma->ifma_addr->sa_family != AF_LINK)
2074 			continue;
2075 
2076 		maddr = LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
2077 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
2078 			addr[i] &= maddr[i];
2079 			mask[i] &= ~maddr[i];
2080 		}
2081 	}
2082 
2083 	for (i = 0; i < ETHER_ADDR_LEN; i++)
2084 		mask[i] |= addr[i];
2085 
2086 done:
2087 	addr[0] |= 0x01;	/* make sure multicast bit is set */
2088 
2089 	NFE_WRITE(sc, NFE_MULTIADDR_HI,
2090 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
2091 	NFE_WRITE(sc, NFE_MULTIADDR_LO,
2092 	    addr[5] <<  8 | addr[4]);
2093 	NFE_WRITE(sc, NFE_MULTIMASK_HI,
2094 	    mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
2095 	NFE_WRITE(sc, NFE_MULTIMASK_LO,
2096 	    mask[5] <<  8 | mask[4]);
2097 
2098 	filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
2099 	NFE_WRITE(sc, NFE_RXFILTER, filter);
2100 }
2101 
2102 static void
2103 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
2104 {
2105 	uint32_t lo, hi;
2106 
2107 	lo = NFE_READ(sc, NFE_MACADDR_LO);
2108 	hi = NFE_READ(sc, NFE_MACADDR_HI);
2109 	if (sc->sc_caps & NFE_FIX_EADDR) {
2110 		addr[0] = (lo >> 8) & 0xff;
2111 		addr[1] = (lo & 0xff);
2112 
2113 		addr[2] = (hi >> 24) & 0xff;
2114 		addr[3] = (hi >> 16) & 0xff;
2115 		addr[4] = (hi >>  8) & 0xff;
2116 		addr[5] = (hi & 0xff);
2117 	} else {
2118 		addr[0] = (hi & 0xff);
2119 		addr[1] = (hi >>  8) & 0xff;
2120 		addr[2] = (hi >> 16) & 0xff;
2121 		addr[3] = (hi >> 24) & 0xff;
2122 
2123 		addr[4] = (lo & 0xff);
2124 		addr[5] = (lo >>  8) & 0xff;
2125 	}
2126 }
2127 
2128 static void
2129 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
2130 {
2131 	NFE_WRITE(sc, NFE_MACADDR_LO,
2132 	    addr[5] <<  8 | addr[4]);
2133 	NFE_WRITE(sc, NFE_MACADDR_HI,
2134 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
2135 }
2136 
2137 static void
2138 nfe_tick(void *arg)
2139 {
2140 	struct nfe_softc *sc = arg;
2141 	struct ifnet *ifp = &sc->arpcom.ac_if;
2142 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
2143 
2144 	lwkt_serialize_enter(ifp->if_serializer);
2145 
2146 	mii_tick(mii);
2147 	callout_reset(&sc->sc_tick_ch, hz, nfe_tick, sc);
2148 
2149 	lwkt_serialize_exit(ifp->if_serializer);
2150 }
2151 
2152 static int
2153 nfe_newbuf_std(struct nfe_softc *sc, struct nfe_rx_ring *ring, int idx,
2154 	       int wait)
2155 {
2156 	struct nfe_rx_data *data = &ring->data[idx];
2157 	bus_dma_segment_t seg;
2158 	bus_dmamap_t map;
2159 	struct mbuf *m;
2160 	int nsegs, error;
2161 
2162 	m = m_getcl(wait ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2163 	if (m == NULL)
2164 		return ENOBUFS;
2165 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2166 
2167 	error = bus_dmamap_load_mbuf_segment(ring->data_tag, ring->data_tmpmap,
2168 			m, &seg, 1, &nsegs, BUS_DMA_NOWAIT);
2169 	if (error) {
2170 		m_freem(m);
2171 		if (wait) {
2172 			if_printf(&sc->arpcom.ac_if,
2173 				  "could map RX mbuf %d\n", error);
2174 		}
2175 		return error;
2176 	}
2177 
2178 	if (data->m != NULL) {
2179 		/* Sync and unload originally mapped mbuf */
2180 		bus_dmamap_sync(ring->data_tag, data->map,
2181 				BUS_DMASYNC_POSTREAD);
2182 		bus_dmamap_unload(ring->data_tag, data->map);
2183 	}
2184 
2185 	/* Swap this DMA map with tmp DMA map */
2186 	map = data->map;
2187 	data->map = ring->data_tmpmap;
2188 	ring->data_tmpmap = map;
2189 
2190 	/* Caller is assumed to have collected the old mbuf */
2191 	data->m = m;
2192 
2193 	nfe_set_paddr_rxdesc(sc, ring, idx, seg.ds_addr);
2194 	return 0;
2195 }
2196 
2197 static int
2198 nfe_newbuf_jumbo(struct nfe_softc *sc, struct nfe_rx_ring *ring, int idx,
2199 		 int wait)
2200 {
2201 	struct nfe_rx_data *data = &ring->data[idx];
2202 	struct nfe_jbuf *jbuf;
2203 	struct mbuf *m;
2204 
2205 	MGETHDR(m, wait ? MB_WAIT : MB_DONTWAIT, MT_DATA);
2206 	if (m == NULL)
2207 		return ENOBUFS;
2208 
2209 	jbuf = nfe_jalloc(sc);
2210 	if (jbuf == NULL) {
2211 		m_freem(m);
2212 		if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
2213 		    "-- packet dropped!\n");
2214 		return ENOBUFS;
2215 	}
2216 
2217 	m->m_ext.ext_arg = jbuf;
2218 	m->m_ext.ext_buf = jbuf->buf;
2219 	m->m_ext.ext_free = nfe_jfree;
2220 	m->m_ext.ext_ref = nfe_jref;
2221 	m->m_ext.ext_size = NFE_JBYTES;
2222 
2223 	m->m_data = m->m_ext.ext_buf;
2224 	m->m_flags |= M_EXT;
2225 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2226 
2227 	/* Caller is assumed to have collected the old mbuf */
2228 	data->m = m;
2229 
2230 	nfe_set_paddr_rxdesc(sc, ring, idx, jbuf->physaddr);
2231 	return 0;
2232 }
2233 
2234 static void
2235 nfe_set_paddr_rxdesc(struct nfe_softc *sc, struct nfe_rx_ring *ring, int idx,
2236 		     bus_addr_t physaddr)
2237 {
2238 	if (sc->sc_caps & NFE_40BIT_ADDR) {
2239 		struct nfe_desc64 *desc64 = &ring->desc64[idx];
2240 
2241 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(physaddr));
2242 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(physaddr));
2243 	} else {
2244 		struct nfe_desc32 *desc32 = &ring->desc32[idx];
2245 
2246 		desc32->physaddr = htole32(physaddr);
2247 	}
2248 }
2249 
2250 static void
2251 nfe_set_ready_rxdesc(struct nfe_softc *sc, struct nfe_rx_ring *ring, int idx)
2252 {
2253 	if (sc->sc_caps & NFE_40BIT_ADDR) {
2254 		struct nfe_desc64 *desc64 = &ring->desc64[idx];
2255 
2256 		desc64->length = htole16(ring->bufsz);
2257 		desc64->flags = htole16(NFE_RX_READY);
2258 	} else {
2259 		struct nfe_desc32 *desc32 = &ring->desc32[idx];
2260 
2261 		desc32->length = htole16(ring->bufsz);
2262 		desc32->flags = htole16(NFE_RX_READY);
2263 	}
2264 }
2265 
2266 static int
2267 nfe_sysctl_imtime(SYSCTL_HANDLER_ARGS)
2268 {
2269 	struct nfe_softc *sc = arg1;
2270 	struct ifnet *ifp = &sc->arpcom.ac_if;
2271 	uint32_t flags;
2272 	int error, v;
2273 
2274 	lwkt_serialize_enter(ifp->if_serializer);
2275 
2276 	flags = sc->sc_flags & ~NFE_F_DYN_IM;
2277 	v = sc->sc_imtime;
2278 	if (sc->sc_flags & NFE_F_DYN_IM)
2279 		v = -v;
2280 
2281 	error = sysctl_handle_int(oidp, &v, 0, req);
2282 	if (error || req->newptr == NULL)
2283 		goto back;
2284 
2285 	if (v < 0) {
2286 		flags |= NFE_F_DYN_IM;
2287 		v = -v;
2288 	}
2289 
2290 	if (v != sc->sc_imtime || (flags ^ sc->sc_flags)) {
2291 		int old_imtime = sc->sc_imtime;
2292 		uint32_t old_flags = sc->sc_flags;
2293 
2294 		sc->sc_imtime = v;
2295 		sc->sc_flags = flags;
2296 		sc->sc_irq_enable = NFE_IRQ_ENABLE(sc);
2297 
2298 		if ((ifp->if_flags & (IFF_POLLING | IFF_RUNNING))
2299 		    == IFF_RUNNING) {
2300 			if (old_imtime * sc->sc_imtime == 0 ||
2301 			    (old_flags ^ sc->sc_flags)) {
2302 				ifp->if_init(sc);
2303 			} else {
2304 				NFE_WRITE(sc, NFE_IMTIMER,
2305 					  NFE_IMTIME(sc->sc_imtime));
2306 			}
2307 		}
2308 	}
2309 back:
2310 	lwkt_serialize_exit(ifp->if_serializer);
2311 	return error;
2312 }
2313 
2314 static void
2315 nfe_powerup(device_t dev)
2316 {
2317 	struct nfe_softc *sc = device_get_softc(dev);
2318 	uint32_t pwr_state;
2319 	uint16_t did;
2320 
2321 	/*
2322 	 * Bring MAC and PHY out of low power state
2323 	 */
2324 
2325 	pwr_state = NFE_READ(sc, NFE_PWR_STATE2) & ~NFE_PWRUP_MASK;
2326 
2327 	did = pci_get_device(dev);
2328 	if ((did == PCI_PRODUCT_NVIDIA_MCP51_LAN1 ||
2329 	     did == PCI_PRODUCT_NVIDIA_MCP51_LAN2) &&
2330 	    pci_get_revid(dev) >= 0xa3)
2331 		pwr_state |= NFE_PWRUP_REV_A3;
2332 
2333 	NFE_WRITE(sc, NFE_PWR_STATE2, pwr_state);
2334 }
2335 
2336 static void
2337 nfe_mac_reset(struct nfe_softc *sc)
2338 {
2339 	uint32_t rxtxctl = sc->rxtxctl_desc | NFE_RXTX_BIT2;
2340 	uint32_t macaddr_hi, macaddr_lo, tx_poll;
2341 
2342 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | rxtxctl);
2343 
2344 	/* Save several registers for later restoration */
2345 	macaddr_hi = NFE_READ(sc, NFE_MACADDR_HI);
2346 	macaddr_lo = NFE_READ(sc, NFE_MACADDR_LO);
2347 	tx_poll = NFE_READ(sc, NFE_TX_POLL);
2348 
2349 	NFE_WRITE(sc, NFE_MAC_RESET, NFE_RESET_ASSERT);
2350 	DELAY(100);
2351 
2352 	NFE_WRITE(sc, NFE_MAC_RESET, 0);
2353 	DELAY(100);
2354 
2355 	/* Restore saved registers */
2356 	NFE_WRITE(sc, NFE_MACADDR_HI, macaddr_hi);
2357 	NFE_WRITE(sc, NFE_MACADDR_LO, macaddr_lo);
2358 	NFE_WRITE(sc, NFE_TX_POLL, tx_poll);
2359 
2360 	NFE_WRITE(sc, NFE_RXTX_CTL, rxtxctl);
2361 }
2362 
2363 static void
2364 nfe_enable_intrs(struct nfe_softc *sc)
2365 {
2366 	/*
2367 	 * NFE_IMTIMER generates a periodic interrupt via NFE_IRQ_TIMER.
2368 	 * It is unclear how wide the timer is.  Base programming does
2369 	 * not seem to effect NFE_IRQ_TX_DONE or NFE_IRQ_RX_DONE so
2370 	 * we don't get any interrupt moderation.  TX moderation is
2371 	 * possible by using the timer interrupt instead of TX_DONE.
2372 	 *
2373 	 * It is unclear whether there are other bits that can be
2374 	 * set to make the NFE device actually do interrupt moderation
2375 	 * on the RX side.
2376 	 *
2377 	 * For now set a 128uS interval as a placemark, but don't use
2378 	 * the timer.
2379 	 */
2380 	if (sc->sc_imtime == 0)
2381 		NFE_WRITE(sc, NFE_IMTIMER, NFE_IMTIME_DEFAULT);
2382 	else
2383 		NFE_WRITE(sc, NFE_IMTIMER, NFE_IMTIME(sc->sc_imtime));
2384 
2385 	/* Enable interrupts */
2386 	NFE_WRITE(sc, NFE_IRQ_MASK, sc->sc_irq_enable);
2387 
2388 	if (sc->sc_irq_enable & NFE_IRQ_TIMER)
2389 		sc->sc_flags |= NFE_F_IRQ_TIMER;
2390 	else
2391 		sc->sc_flags &= ~NFE_F_IRQ_TIMER;
2392 }
2393 
2394 static void
2395 nfe_disable_intrs(struct nfe_softc *sc)
2396 {
2397 	/* Disable interrupts */
2398 	NFE_WRITE(sc, NFE_IRQ_MASK, 0);
2399 	sc->sc_flags &= ~NFE_F_IRQ_TIMER;
2400 }
2401