xref: /dragonfly/sys/dev/netif/nfe/if_nfe.c (revision 7383c38b)
1 /*	$OpenBSD: if_nfe.c,v 1.63 2006/06/17 18:00:43 brad Exp $	*/
2 /*	$DragonFly: src/sys/dev/netif/nfe/if_nfe.c,v 1.46 2008/10/28 07:30:49 sephe Exp $	*/
3 
4 /*
5  * Copyright (c) 2006 The DragonFly Project.  All rights reserved.
6  *
7  * This code is derived from software contributed to The DragonFly Project
8  * by Sepherosa Ziehau <sepherosa@gmail.com> and
9  * Matthew Dillon <dillon@apollo.backplane.com>
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  *
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in
19  *    the documentation and/or other materials provided with the
20  *    distribution.
21  * 3. Neither the name of The DragonFly Project nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific, prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
29  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 /*
40  * Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr>
41  * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
42  *
43  * Permission to use, copy, modify, and distribute this software for any
44  * purpose with or without fee is hereby granted, provided that the above
45  * copyright notice and this permission notice appear in all copies.
46  *
47  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
48  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
49  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
50  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
51  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
52  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
53  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
54  */
55 
56 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
57 
58 #include "opt_polling.h"
59 
60 #include <sys/param.h>
61 #include <sys/endian.h>
62 #include <sys/kernel.h>
63 #include <sys/bus.h>
64 #include <sys/interrupt.h>
65 #include <sys/proc.h>
66 #include <sys/rman.h>
67 #include <sys/serialize.h>
68 #include <sys/socket.h>
69 #include <sys/sockio.h>
70 #include <sys/sysctl.h>
71 
72 #include <net/ethernet.h>
73 #include <net/if.h>
74 #include <net/bpf.h>
75 #include <net/if_arp.h>
76 #include <net/if_dl.h>
77 #include <net/if_media.h>
78 #include <net/ifq_var.h>
79 #include <net/if_types.h>
80 #include <net/if_var.h>
81 #include <net/vlan/if_vlan_var.h>
82 #include <net/vlan/if_vlan_ether.h>
83 
84 #include <bus/pci/pcireg.h>
85 #include <bus/pci/pcivar.h>
86 #include <bus/pci/pcidevs.h>
87 
88 #include <dev/netif/mii_layer/mii.h>
89 #include <dev/netif/mii_layer/miivar.h>
90 
91 #include "miibus_if.h"
92 
93 #include <dev/netif/nfe/if_nfereg.h>
94 #include <dev/netif/nfe/if_nfevar.h>
95 
96 #define NFE_CSUM
97 #define NFE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
98 
99 static int	nfe_probe(device_t);
100 static int	nfe_attach(device_t);
101 static int	nfe_detach(device_t);
102 static void	nfe_shutdown(device_t);
103 static int	nfe_resume(device_t);
104 static int	nfe_suspend(device_t);
105 
106 static int	nfe_miibus_readreg(device_t, int, int);
107 static void	nfe_miibus_writereg(device_t, int, int, int);
108 static void	nfe_miibus_statchg(device_t);
109 
110 #ifdef DEVICE_POLLING
111 static void	nfe_poll(struct ifnet *, enum poll_cmd, int);
112 #endif
113 static void	nfe_intr(void *);
114 static int	nfe_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
115 static int	nfe_rxeof(struct nfe_softc *);
116 static int	nfe_txeof(struct nfe_softc *, int);
117 static int	nfe_encap(struct nfe_softc *, struct nfe_tx_ring *,
118 			  struct mbuf *);
119 static void	nfe_start(struct ifnet *);
120 static void	nfe_watchdog(struct ifnet *);
121 static void	nfe_init(void *);
122 static void	nfe_stop(struct nfe_softc *);
123 static struct nfe_jbuf *nfe_jalloc(struct nfe_softc *);
124 static void	nfe_jfree(void *);
125 static void	nfe_jref(void *);
126 static int	nfe_jpool_alloc(struct nfe_softc *, struct nfe_rx_ring *);
127 static void	nfe_jpool_free(struct nfe_softc *, struct nfe_rx_ring *);
128 static int	nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
129 static void	nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
130 static int	nfe_init_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
131 static void	nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
132 static int	nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
133 static void	nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
134 static int	nfe_init_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
135 static void	nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
136 static int	nfe_ifmedia_upd(struct ifnet *);
137 static void	nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
138 static void	nfe_setmulti(struct nfe_softc *);
139 static void	nfe_get_macaddr(struct nfe_softc *, uint8_t *);
140 static void	nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
141 static void	nfe_powerup(device_t);
142 static void	nfe_mac_reset(struct nfe_softc *);
143 static void	nfe_tick(void *);
144 static void	nfe_ring_dma_addr(void *, bus_dma_segment_t *, int, int);
145 static void	nfe_buf_dma_addr(void *, bus_dma_segment_t *, int, bus_size_t,
146 				 int);
147 static void	nfe_set_paddr_rxdesc(struct nfe_softc *, struct nfe_rx_ring *,
148 				     int, bus_addr_t);
149 static void	nfe_set_ready_rxdesc(struct nfe_softc *, struct nfe_rx_ring *,
150 				     int);
151 static int	nfe_newbuf_std(struct nfe_softc *, struct nfe_rx_ring *, int,
152 			       int);
153 static int	nfe_newbuf_jumbo(struct nfe_softc *, struct nfe_rx_ring *, int,
154 				 int);
155 static void	nfe_enable_intrs(struct nfe_softc *);
156 static void	nfe_disable_intrs(struct nfe_softc *);
157 
158 static int	nfe_sysctl_imtime(SYSCTL_HANDLER_ARGS);
159 
160 #define NFE_DEBUG
161 #ifdef NFE_DEBUG
162 
163 static int	nfe_debug = 0;
164 static int	nfe_rx_ring_count = NFE_RX_RING_DEF_COUNT;
165 static int	nfe_tx_ring_count = NFE_TX_RING_DEF_COUNT;
166 /* hw timer simulated interrupt moderation @8000Hz */
167 static int	nfe_imtime = -125;
168 
169 TUNABLE_INT("hw.nfe.rx_ring_count", &nfe_rx_ring_count);
170 TUNABLE_INT("hw.nfe.tx_ring_count", &nfe_tx_ring_count);
171 TUNABLE_INT("hw.nfe.imtimer", &nfe_imtime);
172 TUNABLE_INT("hw.nfe.debug", &nfe_debug);
173 
174 #define DPRINTF(sc, fmt, ...) do {		\
175 	if ((sc)->sc_debug) {			\
176 		if_printf(&(sc)->arpcom.ac_if,	\
177 			  fmt, __VA_ARGS__);	\
178 	}					\
179 } while (0)
180 
181 #define DPRINTFN(sc, lv, fmt, ...) do {		\
182 	if ((sc)->sc_debug >= (lv)) {		\
183 		if_printf(&(sc)->arpcom.ac_if,	\
184 			  fmt, __VA_ARGS__);	\
185 	}					\
186 } while (0)
187 
188 #else	/* !NFE_DEBUG */
189 
190 #define DPRINTF(sc, fmt, ...)
191 #define DPRINTFN(sc, lv, fmt, ...)
192 
193 #endif	/* NFE_DEBUG */
194 
195 struct nfe_dma_ctx {
196 	int			nsegs;
197 	bus_dma_segment_t	*segs;
198 };
199 
200 static const struct nfe_dev {
201 	uint16_t	vid;
202 	uint16_t	did;
203 	const char	*desc;
204 } nfe_devices[] = {
205 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN,
206 	  "NVIDIA nForce Fast Ethernet" },
207 
208 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN,
209 	  "NVIDIA nForce2 Fast Ethernet" },
210 
211 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1,
212 	  "NVIDIA nForce3 Gigabit Ethernet" },
213 
214 	/* XXX TGEN the next chip can also be found in the nForce2 Ultra 400Gb
215 	   chipset, and possibly also the 400R; it might be both nForce2- and
216 	   nForce3-based boards can use the same MCPs (= southbridges) */
217 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2,
218 	  "NVIDIA nForce3 Gigabit Ethernet" },
219 
220 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3,
221 	  "NVIDIA nForce3 Gigabit Ethernet" },
222 
223 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4,
224 	  "NVIDIA nForce3 Gigabit Ethernet" },
225 
226 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5,
227 	  "NVIDIA nForce3 Gigabit Ethernet" },
228 
229 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1,
230 	  "NVIDIA CK804 Gigabit Ethernet" },
231 
232 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2,
233 	  "NVIDIA CK804 Gigabit Ethernet" },
234 
235 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1,
236 	  "NVIDIA MCP04 Gigabit Ethernet" },
237 
238 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2,
239 	  "NVIDIA MCP04 Gigabit Ethernet" },
240 
241 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1,
242 	  "NVIDIA MCP51 Gigabit Ethernet" },
243 
244 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2,
245 	  "NVIDIA MCP51 Gigabit Ethernet" },
246 
247 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1,
248 	  "NVIDIA MCP55 Gigabit Ethernet" },
249 
250 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2,
251 	  "NVIDIA MCP55 Gigabit Ethernet" },
252 
253 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1,
254 	  "NVIDIA MCP61 Gigabit Ethernet" },
255 
256 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2,
257 	  "NVIDIA MCP61 Gigabit Ethernet" },
258 
259 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3,
260 	  "NVIDIA MCP61 Gigabit Ethernet" },
261 
262 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4,
263 	  "NVIDIA MCP61 Gigabit Ethernet" },
264 
265 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1,
266 	  "NVIDIA MCP65 Gigabit Ethernet" },
267 
268 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2,
269 	  "NVIDIA MCP65 Gigabit Ethernet" },
270 
271 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3,
272 	  "NVIDIA MCP65 Gigabit Ethernet" },
273 
274 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4,
275 	  "NVIDIA MCP65 Gigabit Ethernet" },
276 
277 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1,
278 	  "NVIDIA MCP67 Gigabit Ethernet" },
279 
280 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2,
281 	  "NVIDIA MCP67 Gigabit Ethernet" },
282 
283 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3,
284 	  "NVIDIA MCP67 Gigabit Ethernet" },
285 
286 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4,
287 	  "NVIDIA MCP67 Gigabit Ethernet" },
288 
289 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1,
290 	  "NVIDIA MCP73 Gigabit Ethernet" },
291 
292 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2,
293 	  "NVIDIA MCP73 Gigabit Ethernet" },
294 
295 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3,
296 	  "NVIDIA MCP73 Gigabit Ethernet" },
297 
298 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4,
299 	  "NVIDIA MCP73 Gigabit Ethernet" },
300 
301 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1,
302 	  "NVIDIA MCP77 Gigabit Ethernet" },
303 
304 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2,
305 	  "NVIDIA MCP77 Gigabit Ethernet" },
306 
307 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3,
308 	  "NVIDIA MCP77 Gigabit Ethernet" },
309 
310 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4,
311 	  "NVIDIA MCP77 Gigabit Ethernet" },
312 
313 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1,
314 	  "NVIDIA MCP79 Gigabit Ethernet" },
315 
316 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2,
317 	  "NVIDIA MCP79 Gigabit Ethernet" },
318 
319 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3,
320 	  "NVIDIA MCP79 Gigabit Ethernet" },
321 
322 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4,
323 	  "NVIDIA MCP79 Gigabit Ethernet" },
324 
325 	{ 0, 0, NULL }
326 };
327 
328 static device_method_t nfe_methods[] = {
329 	/* Device interface */
330 	DEVMETHOD(device_probe,		nfe_probe),
331 	DEVMETHOD(device_attach,	nfe_attach),
332 	DEVMETHOD(device_detach,	nfe_detach),
333 	DEVMETHOD(device_suspend,	nfe_suspend),
334 	DEVMETHOD(device_resume,	nfe_resume),
335 	DEVMETHOD(device_shutdown,	nfe_shutdown),
336 
337 	/* Bus interface */
338 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
339 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
340 
341 	/* MII interface */
342 	DEVMETHOD(miibus_readreg,	nfe_miibus_readreg),
343 	DEVMETHOD(miibus_writereg,	nfe_miibus_writereg),
344 	DEVMETHOD(miibus_statchg,	nfe_miibus_statchg),
345 
346 	{ 0, 0 }
347 };
348 
349 static driver_t nfe_driver = {
350 	"nfe",
351 	nfe_methods,
352 	sizeof(struct nfe_softc)
353 };
354 
355 static devclass_t	nfe_devclass;
356 
357 DECLARE_DUMMY_MODULE(if_nfe);
358 MODULE_DEPEND(if_nfe, miibus, 1, 1, 1);
359 DRIVER_MODULE(if_nfe, pci, nfe_driver, nfe_devclass, 0, 0);
360 DRIVER_MODULE(miibus, nfe, miibus_driver, miibus_devclass, 0, 0);
361 
362 static int
363 nfe_probe(device_t dev)
364 {
365 	const struct nfe_dev *n;
366 	uint16_t vid, did;
367 
368 	vid = pci_get_vendor(dev);
369 	did = pci_get_device(dev);
370 	for (n = nfe_devices; n->desc != NULL; ++n) {
371 		if (vid == n->vid && did == n->did) {
372 			struct nfe_softc *sc = device_get_softc(dev);
373 
374 			switch (did) {
375 			case PCI_PRODUCT_NVIDIA_NFORCE_LAN:
376 			case PCI_PRODUCT_NVIDIA_NFORCE2_LAN:
377 			case PCI_PRODUCT_NVIDIA_NFORCE3_LAN1:
378 				sc->sc_caps = NFE_NO_PWRCTL |
379 					      NFE_FIX_EADDR;
380 				break;
381 			case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
382 			case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
383 			case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
384 			case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
385 				sc->sc_caps = NFE_JUMBO_SUP |
386 					      NFE_HW_CSUM |
387 					      NFE_NO_PWRCTL |
388 					      NFE_FIX_EADDR;
389 				break;
390 			case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
391 			case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
392 				sc->sc_caps = NFE_FIX_EADDR;
393 				/* FALL THROUGH */
394 			case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
395 			case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
396 			case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
397 			case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
398 			case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
399 			case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
400 			case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
401 			case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
402 			case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
403 			case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
404 			case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
405 			case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
406 				sc->sc_caps |= NFE_40BIT_ADDR;
407 				break;
408 			case PCI_PRODUCT_NVIDIA_CK804_LAN1:
409 			case PCI_PRODUCT_NVIDIA_CK804_LAN2:
410 			case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
411 			case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
412 				sc->sc_caps = NFE_JUMBO_SUP |
413 					      NFE_40BIT_ADDR |
414 					      NFE_HW_CSUM |
415 					      NFE_NO_PWRCTL |
416 					      NFE_FIX_EADDR;
417 				break;
418 			case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
419 			case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
420 			case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
421 			case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
422 				sc->sc_caps = NFE_JUMBO_SUP |
423 					      NFE_40BIT_ADDR;
424 				break;
425 			case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
426 			case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
427 				sc->sc_caps = NFE_JUMBO_SUP |
428 					      NFE_40BIT_ADDR |
429 					      NFE_HW_CSUM |
430 					      NFE_HW_VLAN |
431 					      NFE_FIX_EADDR;
432 				break;
433 			case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
434 			case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
435 			case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
436 			case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
437 			case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
438 			case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
439 			case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
440 			case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
441 				sc->sc_caps = NFE_40BIT_ADDR |
442 					      NFE_HW_CSUM;
443 				break;
444 			}
445 
446 			device_set_desc(dev, n->desc);
447 			device_set_async_attach(dev, TRUE);
448 			return 0;
449 		}
450 	}
451 	return ENXIO;
452 }
453 
454 static int
455 nfe_attach(device_t dev)
456 {
457 	struct nfe_softc *sc = device_get_softc(dev);
458 	struct ifnet *ifp = &sc->arpcom.ac_if;
459 	uint8_t eaddr[ETHER_ADDR_LEN];
460 	int error;
461 
462 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
463 	lwkt_serialize_init(&sc->sc_jbuf_serializer);
464 
465 	/*
466 	 * Initialize sysctl variables
467 	 */
468 	sc->sc_rx_ring_count = nfe_rx_ring_count;
469 	sc->sc_tx_ring_count = nfe_tx_ring_count;
470 	sc->sc_debug = nfe_debug;
471 	if (nfe_imtime < 0) {
472 		sc->sc_flags |= NFE_F_DYN_IM;
473 		sc->sc_imtime = -nfe_imtime;
474 	} else {
475 		sc->sc_imtime = nfe_imtime;
476 	}
477 	sc->sc_irq_enable = NFE_IRQ_ENABLE(sc);
478 
479 	sc->sc_mem_rid = PCIR_BAR(0);
480 
481 	if (sc->sc_caps & NFE_40BIT_ADDR)
482 		sc->rxtxctl_desc = NFE_RXTX_DESC_V3;
483 	else if (sc->sc_caps & NFE_JUMBO_SUP)
484 		sc->rxtxctl_desc = NFE_RXTX_DESC_V2;
485 
486 #ifndef BURN_BRIDGES
487 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
488 		uint32_t mem, irq;
489 
490 		mem = pci_read_config(dev, sc->sc_mem_rid, 4);
491 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
492 
493 		device_printf(dev, "chip is in D%d power mode "
494 		    "-- setting to D0\n", pci_get_powerstate(dev));
495 
496 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
497 
498 		pci_write_config(dev, sc->sc_mem_rid, mem, 4);
499 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
500 	}
501 #endif	/* !BURN_BRIDGE */
502 
503 	/* Enable bus mastering */
504 	pci_enable_busmaster(dev);
505 
506 	/* Allocate IO memory */
507 	sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
508 						&sc->sc_mem_rid, RF_ACTIVE);
509 	if (sc->sc_mem_res == NULL) {
510 		device_printf(dev, "cound not allocate io memory\n");
511 		return ENXIO;
512 	}
513 	sc->sc_memh = rman_get_bushandle(sc->sc_mem_res);
514 	sc->sc_memt = rman_get_bustag(sc->sc_mem_res);
515 
516 	/* Allocate IRQ */
517 	sc->sc_irq_rid = 0;
518 	sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
519 						&sc->sc_irq_rid,
520 						RF_SHAREABLE | RF_ACTIVE);
521 	if (sc->sc_irq_res == NULL) {
522 		device_printf(dev, "could not allocate irq\n");
523 		error = ENXIO;
524 		goto fail;
525 	}
526 
527 	/* Disable WOL */
528 	NFE_WRITE(sc, NFE_WOL_CTL, 0);
529 
530 	if ((sc->sc_caps & NFE_NO_PWRCTL) == 0)
531 		nfe_powerup(dev);
532 
533 	nfe_get_macaddr(sc, eaddr);
534 
535 	/*
536 	 * Allocate Tx and Rx rings.
537 	 */
538 	error = nfe_alloc_tx_ring(sc, &sc->txq);
539 	if (error) {
540 		device_printf(dev, "could not allocate Tx ring\n");
541 		goto fail;
542 	}
543 
544 	error = nfe_alloc_rx_ring(sc, &sc->rxq);
545 	if (error) {
546 		device_printf(dev, "could not allocate Rx ring\n");
547 		goto fail;
548 	}
549 
550 	/*
551 	 * Create sysctl tree
552 	 */
553 	sysctl_ctx_init(&sc->sc_sysctl_ctx);
554 	sc->sc_sysctl_tree = SYSCTL_ADD_NODE(&sc->sc_sysctl_ctx,
555 					     SYSCTL_STATIC_CHILDREN(_hw),
556 					     OID_AUTO,
557 					     device_get_nameunit(dev),
558 					     CTLFLAG_RD, 0, "");
559 	if (sc->sc_sysctl_tree == NULL) {
560 		device_printf(dev, "can't add sysctl node\n");
561 		error = ENXIO;
562 		goto fail;
563 	}
564 	SYSCTL_ADD_PROC(&sc->sc_sysctl_ctx,
565 			SYSCTL_CHILDREN(sc->sc_sysctl_tree),
566 			OID_AUTO, "imtimer", CTLTYPE_INT | CTLFLAG_RW,
567 			sc, 0, nfe_sysctl_imtime, "I",
568 			"Interrupt moderation time (usec).  "
569 			"0 to disable interrupt moderation.");
570 	SYSCTL_ADD_INT(&sc->sc_sysctl_ctx,
571 		       SYSCTL_CHILDREN(sc->sc_sysctl_tree), OID_AUTO,
572 		       "rx_ring_count", CTLFLAG_RD, &sc->sc_rx_ring_count,
573 		       0, "RX ring count");
574 	SYSCTL_ADD_INT(&sc->sc_sysctl_ctx,
575 		       SYSCTL_CHILDREN(sc->sc_sysctl_tree), OID_AUTO,
576 		       "tx_ring_count", CTLFLAG_RD, &sc->sc_tx_ring_count,
577 		       0, "TX ring count");
578 	SYSCTL_ADD_INT(&sc->sc_sysctl_ctx,
579 		       SYSCTL_CHILDREN(sc->sc_sysctl_tree), OID_AUTO,
580 		       "debug", CTLFLAG_RW, &sc->sc_debug,
581 		       0, "control debugging printfs");
582 
583 	error = mii_phy_probe(dev, &sc->sc_miibus, nfe_ifmedia_upd,
584 			      nfe_ifmedia_sts);
585 	if (error) {
586 		device_printf(dev, "MII without any phy\n");
587 		goto fail;
588 	}
589 
590 	ifp->if_softc = sc;
591 	ifp->if_mtu = ETHERMTU;
592 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
593 	ifp->if_ioctl = nfe_ioctl;
594 	ifp->if_start = nfe_start;
595 #ifdef DEVICE_POLLING
596 	ifp->if_poll = nfe_poll;
597 #endif
598 	ifp->if_watchdog = nfe_watchdog;
599 	ifp->if_init = nfe_init;
600 	ifq_set_maxlen(&ifp->if_snd, sc->sc_tx_ring_count);
601 	ifq_set_ready(&ifp->if_snd);
602 
603 	ifp->if_capabilities = IFCAP_VLAN_MTU;
604 
605 	if (sc->sc_caps & NFE_HW_VLAN)
606 		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
607 
608 #ifdef NFE_CSUM
609 	if (sc->sc_caps & NFE_HW_CSUM) {
610 		ifp->if_capabilities |= IFCAP_HWCSUM;
611 		ifp->if_hwassist = NFE_CSUM_FEATURES;
612 	}
613 #else
614 	sc->sc_caps &= ~NFE_HW_CSUM;
615 #endif
616 	ifp->if_capenable = ifp->if_capabilities;
617 
618 	callout_init(&sc->sc_tick_ch);
619 
620 	ether_ifattach(ifp, eaddr, NULL);
621 
622 	error = bus_setup_intr(dev, sc->sc_irq_res, INTR_MPSAFE, nfe_intr, sc,
623 			       &sc->sc_ih, ifp->if_serializer);
624 	if (error) {
625 		device_printf(dev, "could not setup intr\n");
626 		ether_ifdetach(ifp);
627 		goto fail;
628 	}
629 
630 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->sc_irq_res));
631 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
632 
633 	return 0;
634 fail:
635 	nfe_detach(dev);
636 	return error;
637 }
638 
639 static int
640 nfe_detach(device_t dev)
641 {
642 	struct nfe_softc *sc = device_get_softc(dev);
643 
644 	if (device_is_attached(dev)) {
645 		struct ifnet *ifp = &sc->arpcom.ac_if;
646 
647 		lwkt_serialize_enter(ifp->if_serializer);
648 		nfe_stop(sc);
649 		bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_ih);
650 		lwkt_serialize_exit(ifp->if_serializer);
651 
652 		ether_ifdetach(ifp);
653 	}
654 
655 	if (sc->sc_miibus != NULL)
656 		device_delete_child(dev, sc->sc_miibus);
657 	bus_generic_detach(dev);
658 
659 	if (sc->sc_sysctl_tree != NULL)
660 		sysctl_ctx_free(&sc->sc_sysctl_ctx);
661 
662 	if (sc->sc_irq_res != NULL) {
663 		bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irq_rid,
664 				     sc->sc_irq_res);
665 	}
666 
667 	if (sc->sc_mem_res != NULL) {
668 		bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_mem_rid,
669 				     sc->sc_mem_res);
670 	}
671 
672 	nfe_free_tx_ring(sc, &sc->txq);
673 	nfe_free_rx_ring(sc, &sc->rxq);
674 
675 	return 0;
676 }
677 
678 static void
679 nfe_shutdown(device_t dev)
680 {
681 	struct nfe_softc *sc = device_get_softc(dev);
682 	struct ifnet *ifp = &sc->arpcom.ac_if;
683 
684 	lwkt_serialize_enter(ifp->if_serializer);
685 	nfe_stop(sc);
686 	lwkt_serialize_exit(ifp->if_serializer);
687 }
688 
689 static int
690 nfe_suspend(device_t dev)
691 {
692 	struct nfe_softc *sc = device_get_softc(dev);
693 	struct ifnet *ifp = &sc->arpcom.ac_if;
694 
695 	lwkt_serialize_enter(ifp->if_serializer);
696 	nfe_stop(sc);
697 	lwkt_serialize_exit(ifp->if_serializer);
698 
699 	return 0;
700 }
701 
702 static int
703 nfe_resume(device_t dev)
704 {
705 	struct nfe_softc *sc = device_get_softc(dev);
706 	struct ifnet *ifp = &sc->arpcom.ac_if;
707 
708 	lwkt_serialize_enter(ifp->if_serializer);
709 	if (ifp->if_flags & IFF_UP)
710 		nfe_init(sc);
711 	lwkt_serialize_exit(ifp->if_serializer);
712 
713 	return 0;
714 }
715 
716 static void
717 nfe_miibus_statchg(device_t dev)
718 {
719 	struct nfe_softc *sc = device_get_softc(dev);
720 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
721 	uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
722 
723 	ASSERT_SERIALIZED(sc->arpcom.ac_if.if_serializer);
724 
725 	phy = NFE_READ(sc, NFE_PHY_IFACE);
726 	phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
727 
728 	seed = NFE_READ(sc, NFE_RNDSEED);
729 	seed &= ~NFE_SEED_MASK;
730 
731 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
732 		phy  |= NFE_PHY_HDX;	/* half-duplex */
733 		misc |= NFE_MISC1_HDX;
734 	}
735 
736 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
737 	case IFM_1000_T:	/* full-duplex only */
738 		link |= NFE_MEDIA_1000T;
739 		seed |= NFE_SEED_1000T;
740 		phy  |= NFE_PHY_1000T;
741 		break;
742 	case IFM_100_TX:
743 		link |= NFE_MEDIA_100TX;
744 		seed |= NFE_SEED_100TX;
745 		phy  |= NFE_PHY_100TX;
746 		break;
747 	case IFM_10_T:
748 		link |= NFE_MEDIA_10T;
749 		seed |= NFE_SEED_10T;
750 		break;
751 	}
752 
753 	NFE_WRITE(sc, NFE_RNDSEED, seed);	/* XXX: gigabit NICs only? */
754 
755 	NFE_WRITE(sc, NFE_PHY_IFACE, phy);
756 	NFE_WRITE(sc, NFE_MISC1, misc);
757 	NFE_WRITE(sc, NFE_LINKSPEED, link);
758 }
759 
760 static int
761 nfe_miibus_readreg(device_t dev, int phy, int reg)
762 {
763 	struct nfe_softc *sc = device_get_softc(dev);
764 	uint32_t val;
765 	int ntries;
766 
767 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
768 
769 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
770 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
771 		DELAY(100);
772 	}
773 
774 	NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
775 
776 	for (ntries = 0; ntries < 1000; ntries++) {
777 		DELAY(100);
778 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
779 			break;
780 	}
781 	if (ntries == 1000) {
782 		DPRINTFN(sc, 2, "timeout waiting for PHY %s\n", "");
783 		return 0;
784 	}
785 
786 	if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
787 		DPRINTFN(sc, 2, "could not read PHY %s\n", "");
788 		return 0;
789 	}
790 
791 	val = NFE_READ(sc, NFE_PHY_DATA);
792 	if (val != 0xffffffff && val != 0)
793 		sc->mii_phyaddr = phy;
794 
795 	DPRINTFN(sc, 2, "mii read phy %d reg 0x%x ret 0x%x\n", phy, reg, val);
796 
797 	return val;
798 }
799 
800 static void
801 nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
802 {
803 	struct nfe_softc *sc = device_get_softc(dev);
804 	uint32_t ctl;
805 	int ntries;
806 
807 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
808 
809 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
810 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
811 		DELAY(100);
812 	}
813 
814 	NFE_WRITE(sc, NFE_PHY_DATA, val);
815 	ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
816 	NFE_WRITE(sc, NFE_PHY_CTL, ctl);
817 
818 	for (ntries = 0; ntries < 1000; ntries++) {
819 		DELAY(100);
820 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
821 			break;
822 	}
823 
824 #ifdef NFE_DEBUG
825 	if (ntries == 1000)
826 		DPRINTFN(sc, 2, "could not write to PHY %s\n", "");
827 #endif
828 }
829 
830 #ifdef DEVICE_POLLING
831 
832 static void
833 nfe_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
834 {
835 	struct nfe_softc *sc = ifp->if_softc;
836 
837 	ASSERT_SERIALIZED(ifp->if_serializer);
838 
839 	switch(cmd) {
840 	case POLL_REGISTER:
841 		nfe_disable_intrs(sc);
842 		break;
843 
844 	case POLL_DEREGISTER:
845 		nfe_enable_intrs(sc);
846 		break;
847 
848 	case POLL_AND_CHECK_STATUS:
849 		/* fall through */
850 	case POLL_ONLY:
851 		if (ifp->if_flags & IFF_RUNNING) {
852 			nfe_rxeof(sc);
853 			nfe_txeof(sc, 1);
854 		}
855 		break;
856 	}
857 }
858 
859 #endif
860 
861 static void
862 nfe_intr(void *arg)
863 {
864 	struct nfe_softc *sc = arg;
865 	struct ifnet *ifp = &sc->arpcom.ac_if;
866 	uint32_t r;
867 
868 	r = NFE_READ(sc, NFE_IRQ_STATUS);
869 	if (r == 0)
870 		return;	/* not for us */
871 	NFE_WRITE(sc, NFE_IRQ_STATUS, r);
872 
873 	DPRINTFN(sc, 5, "%s: interrupt register %x\n", __func__, r);
874 
875 	if (r & NFE_IRQ_LINK) {
876 		NFE_READ(sc, NFE_PHY_STATUS);
877 		NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
878 		DPRINTF(sc, "link state changed %s\n", "");
879 	}
880 
881 	if (ifp->if_flags & IFF_RUNNING) {
882 		int ret;
883 
884 		/* check Rx ring */
885 		ret = nfe_rxeof(sc);
886 
887 		/* check Tx ring */
888 		ret |= nfe_txeof(sc, 1);
889 
890 		if (sc->sc_flags & NFE_F_DYN_IM) {
891 			if (ret && (sc->sc_flags & NFE_F_IRQ_TIMER) == 0) {
892 				/*
893 				 * Assume that using hardware timer could reduce
894 				 * the interrupt rate.
895 				 */
896 				NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_IMTIMER);
897 				sc->sc_flags |= NFE_F_IRQ_TIMER;
898 			} else if (!ret && (sc->sc_flags & NFE_F_IRQ_TIMER)) {
899 				/*
900 				 * Nothing needs to be processed, fall back to
901 				 * use TX/RX interrupts.
902 				 */
903 				NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_NOIMTIMER);
904 				sc->sc_flags &= ~NFE_F_IRQ_TIMER;
905 
906 				/*
907 				 * Recollect, mainly to avoid the possible race
908 				 * introduced by changing interrupt masks.
909 				 */
910 				nfe_rxeof(sc);
911 				nfe_txeof(sc, 1);
912 			}
913 		}
914 	}
915 }
916 
917 static int
918 nfe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
919 {
920 	struct nfe_softc *sc = ifp->if_softc;
921 	struct ifreq *ifr = (struct ifreq *)data;
922 	struct mii_data *mii;
923 	int error = 0, mask, jumbo_cap;
924 
925 	ASSERT_SERIALIZED(ifp->if_serializer);
926 
927 	switch (cmd) {
928 	case SIOCSIFMTU:
929 		if ((sc->sc_caps & NFE_JUMBO_SUP) && sc->rxq.jbuf != NULL)
930 			jumbo_cap = 1;
931 		else
932 			jumbo_cap = 0;
933 
934 		if ((jumbo_cap && ifr->ifr_mtu > NFE_JUMBO_MTU) ||
935 		    (!jumbo_cap && ifr->ifr_mtu > ETHERMTU)) {
936 			return EINVAL;
937 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
938 			ifp->if_mtu = ifr->ifr_mtu;
939 			if (ifp->if_flags & IFF_RUNNING)
940 				nfe_init(sc);
941 		}
942 		break;
943 	case SIOCSIFFLAGS:
944 		if (ifp->if_flags & IFF_UP) {
945 			/*
946 			 * If only the PROMISC or ALLMULTI flag changes, then
947 			 * don't do a full re-init of the chip, just update
948 			 * the Rx filter.
949 			 */
950 			if ((ifp->if_flags & IFF_RUNNING) &&
951 			    ((ifp->if_flags ^ sc->sc_if_flags) &
952 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
953 				nfe_setmulti(sc);
954 			} else {
955 				if (!(ifp->if_flags & IFF_RUNNING))
956 					nfe_init(sc);
957 			}
958 		} else {
959 			if (ifp->if_flags & IFF_RUNNING)
960 				nfe_stop(sc);
961 		}
962 		sc->sc_if_flags = ifp->if_flags;
963 		break;
964 	case SIOCADDMULTI:
965 	case SIOCDELMULTI:
966 		if (ifp->if_flags & IFF_RUNNING)
967 			nfe_setmulti(sc);
968 		break;
969 	case SIOCSIFMEDIA:
970 	case SIOCGIFMEDIA:
971 		mii = device_get_softc(sc->sc_miibus);
972 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
973 		break;
974         case SIOCSIFCAP:
975 		mask = (ifr->ifr_reqcap ^ ifp->if_capenable) & IFCAP_HWCSUM;
976 		if (mask && (ifp->if_capabilities & IFCAP_HWCSUM)) {
977 			ifp->if_capenable ^= mask;
978 			if (IFCAP_TXCSUM & ifp->if_capenable)
979 				ifp->if_hwassist = NFE_CSUM_FEATURES;
980 			else
981 				ifp->if_hwassist = 0;
982 
983 			if (ifp->if_flags & IFF_RUNNING)
984 				nfe_init(sc);
985 		}
986 		break;
987 	default:
988 		error = ether_ioctl(ifp, cmd, data);
989 		break;
990 	}
991 	return error;
992 }
993 
994 static int
995 nfe_rxeof(struct nfe_softc *sc)
996 {
997 	struct ifnet *ifp = &sc->arpcom.ac_if;
998 	struct nfe_rx_ring *ring = &sc->rxq;
999 	int reap;
1000 	struct mbuf_chain chain[MAXCPU];
1001 
1002 	reap = 0;
1003 	bus_dmamap_sync(ring->tag, ring->map, BUS_DMASYNC_POSTREAD);
1004 
1005 	ether_input_chain_init(chain);
1006 
1007 	for (;;) {
1008 		struct nfe_rx_data *data = &ring->data[ring->cur];
1009 		struct mbuf *m;
1010 		uint16_t flags;
1011 		int len, error;
1012 
1013 		if (sc->sc_caps & NFE_40BIT_ADDR) {
1014 			struct nfe_desc64 *desc64 = &ring->desc64[ring->cur];
1015 
1016 			flags = le16toh(desc64->flags);
1017 			len = le16toh(desc64->length) & 0x3fff;
1018 		} else {
1019 			struct nfe_desc32 *desc32 = &ring->desc32[ring->cur];
1020 
1021 			flags = le16toh(desc32->flags);
1022 			len = le16toh(desc32->length) & 0x3fff;
1023 		}
1024 
1025 		if (flags & NFE_RX_READY)
1026 			break;
1027 
1028 		reap = 1;
1029 
1030 		if ((sc->sc_caps & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
1031 			if (!(flags & NFE_RX_VALID_V1))
1032 				goto skip;
1033 
1034 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
1035 				flags &= ~NFE_RX_ERROR;
1036 				len--;	/* fix buffer length */
1037 			}
1038 		} else {
1039 			if (!(flags & NFE_RX_VALID_V2))
1040 				goto skip;
1041 
1042 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
1043 				flags &= ~NFE_RX_ERROR;
1044 				len--;	/* fix buffer length */
1045 			}
1046 		}
1047 
1048 		if (flags & NFE_RX_ERROR) {
1049 			ifp->if_ierrors++;
1050 			goto skip;
1051 		}
1052 
1053 		m = data->m;
1054 
1055 		if (sc->sc_flags & NFE_F_USE_JUMBO)
1056 			error = nfe_newbuf_jumbo(sc, ring, ring->cur, 0);
1057 		else
1058 			error = nfe_newbuf_std(sc, ring, ring->cur, 0);
1059 		if (error) {
1060 			ifp->if_ierrors++;
1061 			goto skip;
1062 		}
1063 
1064 		/* finalize mbuf */
1065 		m->m_pkthdr.len = m->m_len = len;
1066 		m->m_pkthdr.rcvif = ifp;
1067 
1068 		if ((ifp->if_capenable & IFCAP_RXCSUM) &&
1069 		    (flags & NFE_RX_CSUMOK)) {
1070 			if (flags & NFE_RX_IP_CSUMOK_V2) {
1071 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
1072 							  CSUM_IP_VALID;
1073 			}
1074 
1075 			if (flags &
1076 			    (NFE_RX_UDP_CSUMOK_V2 | NFE_RX_TCP_CSUMOK_V2)) {
1077 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1078 							  CSUM_PSEUDO_HDR |
1079 							  CSUM_FRAG_NOT_CHECKED;
1080 				m->m_pkthdr.csum_data = 0xffff;
1081 			}
1082 		}
1083 
1084 		ifp->if_ipackets++;
1085 		ether_input_chain(ifp, m, chain);
1086 skip:
1087 		nfe_set_ready_rxdesc(sc, ring, ring->cur);
1088 		sc->rxq.cur = (sc->rxq.cur + 1) % sc->sc_rx_ring_count;
1089 	}
1090 
1091 	if (reap) {
1092 		bus_dmamap_sync(ring->tag, ring->map, BUS_DMASYNC_PREWRITE);
1093 		ether_input_dispatch(chain);
1094 	}
1095 	return reap;
1096 }
1097 
1098 static int
1099 nfe_txeof(struct nfe_softc *sc, int start)
1100 {
1101 	struct ifnet *ifp = &sc->arpcom.ac_if;
1102 	struct nfe_tx_ring *ring = &sc->txq;
1103 	struct nfe_tx_data *data = NULL;
1104 
1105 	bus_dmamap_sync(ring->tag, ring->map, BUS_DMASYNC_POSTREAD);
1106 	while (ring->next != ring->cur) {
1107 		uint16_t flags;
1108 
1109 		if (sc->sc_caps & NFE_40BIT_ADDR)
1110 			flags = le16toh(ring->desc64[ring->next].flags);
1111 		else
1112 			flags = le16toh(ring->desc32[ring->next].flags);
1113 
1114 		if (flags & NFE_TX_VALID)
1115 			break;
1116 
1117 		data = &ring->data[ring->next];
1118 
1119 		if ((sc->sc_caps & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
1120 			if (!(flags & NFE_TX_LASTFRAG_V1) && data->m == NULL)
1121 				goto skip;
1122 
1123 			if ((flags & NFE_TX_ERROR_V1) != 0) {
1124 				if_printf(ifp, "tx v1 error 0x%4b\n", flags,
1125 					  NFE_V1_TXERR);
1126 				ifp->if_oerrors++;
1127 			} else {
1128 				ifp->if_opackets++;
1129 			}
1130 		} else {
1131 			if (!(flags & NFE_TX_LASTFRAG_V2) && data->m == NULL)
1132 				goto skip;
1133 
1134 			if ((flags & NFE_TX_ERROR_V2) != 0) {
1135 				if_printf(ifp, "tx v2 error 0x%4b\n", flags,
1136 					  NFE_V2_TXERR);
1137 				ifp->if_oerrors++;
1138 			} else {
1139 				ifp->if_opackets++;
1140 			}
1141 		}
1142 
1143 		if (data->m == NULL) {	/* should not get there */
1144 			if_printf(ifp,
1145 				  "last fragment bit w/o associated mbuf!\n");
1146 			goto skip;
1147 		}
1148 
1149 		/* last fragment of the mbuf chain transmitted */
1150 		bus_dmamap_sync(ring->data_tag, data->map,
1151 				BUS_DMASYNC_POSTWRITE);
1152 		bus_dmamap_unload(ring->data_tag, data->map);
1153 		m_freem(data->m);
1154 		data->m = NULL;
1155 skip:
1156 		ring->queued--;
1157 		KKASSERT(ring->queued >= 0);
1158 		ring->next = (ring->next + 1) % sc->sc_tx_ring_count;
1159 	}
1160 
1161 	if (sc->sc_tx_ring_count - ring->queued >=
1162 	    sc->sc_tx_spare + NFE_NSEG_RSVD)
1163 		ifp->if_flags &= ~IFF_OACTIVE;
1164 
1165 	if (ring->queued == 0)
1166 		ifp->if_timer = 0;
1167 
1168 	if (start && !ifq_is_empty(&ifp->if_snd))
1169 		if_devstart(ifp);
1170 
1171 	if (data != NULL)
1172 		return 1;
1173 	else
1174 		return 0;
1175 }
1176 
1177 static int
1178 nfe_encap(struct nfe_softc *sc, struct nfe_tx_ring *ring, struct mbuf *m0)
1179 {
1180 	struct nfe_dma_ctx ctx;
1181 	bus_dma_segment_t segs[NFE_MAX_SCATTER];
1182 	struct nfe_tx_data *data, *data_map;
1183 	bus_dmamap_t map;
1184 	struct nfe_desc64 *desc64 = NULL;
1185 	struct nfe_desc32 *desc32 = NULL;
1186 	uint16_t flags = 0;
1187 	uint32_t vtag = 0;
1188 	int error, i, j, maxsegs;
1189 
1190 	data = &ring->data[ring->cur];
1191 	map = data->map;
1192 	data_map = data;	/* Remember who owns the DMA map */
1193 
1194 	maxsegs = (sc->sc_tx_ring_count - ring->queued) - NFE_NSEG_RSVD;
1195 	if (maxsegs > NFE_MAX_SCATTER)
1196 		maxsegs = NFE_MAX_SCATTER;
1197 	KASSERT(maxsegs >= sc->sc_tx_spare,
1198 		("no enough segments %d,%d\n", maxsegs, sc->sc_tx_spare));
1199 
1200 	ctx.nsegs = maxsegs;
1201 	ctx.segs = segs;
1202 	error = bus_dmamap_load_mbuf(ring->data_tag, map, m0,
1203 				     nfe_buf_dma_addr, &ctx, BUS_DMA_NOWAIT);
1204 	if (!error && ctx.nsegs == 0) {
1205 		bus_dmamap_unload(ring->data_tag, map);
1206 		error = EFBIG;
1207 	}
1208 	if (error && error != EFBIG) {
1209 		if_printf(&sc->arpcom.ac_if, "could not map TX mbuf\n");
1210 		goto back;
1211 	}
1212 	if (error) {	/* error == EFBIG */
1213 		struct mbuf *m_new;
1214 
1215 		m_new = m_defrag(m0, MB_DONTWAIT);
1216 		if (m_new == NULL) {
1217 			if_printf(&sc->arpcom.ac_if,
1218 				  "could not defrag TX mbuf\n");
1219 			error = ENOBUFS;
1220 			goto back;
1221 		} else {
1222 			m0 = m_new;
1223 		}
1224 
1225 		ctx.nsegs = maxsegs;
1226 		ctx.segs = segs;
1227 		error = bus_dmamap_load_mbuf(ring->data_tag, map, m0,
1228 					     nfe_buf_dma_addr, &ctx,
1229 					     BUS_DMA_NOWAIT);
1230 		if (error || ctx.nsegs == 0) {
1231 			if (!error) {
1232 				bus_dmamap_unload(ring->data_tag, map);
1233 				error = EFBIG;
1234 			}
1235 			if_printf(&sc->arpcom.ac_if,
1236 				  "could not map defraged TX mbuf\n");
1237 			goto back;
1238 		}
1239 	}
1240 
1241 	error = 0;
1242 
1243 	/* setup h/w VLAN tagging */
1244 	if (m0->m_flags & M_VLANTAG)
1245 		vtag = m0->m_pkthdr.ether_vlantag;
1246 
1247 	if (sc->arpcom.ac_if.if_capenable & IFCAP_TXCSUM) {
1248 		if (m0->m_pkthdr.csum_flags & CSUM_IP)
1249 			flags |= NFE_TX_IP_CSUM;
1250 		if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
1251 			flags |= NFE_TX_TCP_CSUM;
1252 	}
1253 
1254 	/*
1255 	 * XXX urm. somebody is unaware of how hardware works.  You
1256 	 * absolutely CANNOT set NFE_TX_VALID on the next descriptor in
1257 	 * the ring until the entire chain is actually *VALID*.  Otherwise
1258 	 * the hardware may encounter a partially initialized chain that
1259 	 * is marked as being ready to go when it in fact is not ready to
1260 	 * go.
1261 	 */
1262 
1263 	for (i = 0; i < ctx.nsegs; i++) {
1264 		j = (ring->cur + i) % sc->sc_tx_ring_count;
1265 		data = &ring->data[j];
1266 
1267 		if (sc->sc_caps & NFE_40BIT_ADDR) {
1268 			desc64 = &ring->desc64[j];
1269 #if defined(__LP64__)
1270 			desc64->physaddr[0] =
1271 			    htole32(segs[i].ds_addr >> 32);
1272 #endif
1273 			desc64->physaddr[1] =
1274 			    htole32(segs[i].ds_addr & 0xffffffff);
1275 			desc64->length = htole16(segs[i].ds_len - 1);
1276 			desc64->vtag = htole32(vtag);
1277 			desc64->flags = htole16(flags);
1278 		} else {
1279 			desc32 = &ring->desc32[j];
1280 			desc32->physaddr = htole32(segs[i].ds_addr);
1281 			desc32->length = htole16(segs[i].ds_len - 1);
1282 			desc32->flags = htole16(flags);
1283 		}
1284 
1285 		/* csum flags and vtag belong to the first fragment only */
1286 		flags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_CSUM);
1287 		vtag = 0;
1288 
1289 		ring->queued++;
1290 		KKASSERT(ring->queued <= sc->sc_tx_ring_count);
1291 	}
1292 
1293 	/* the whole mbuf chain has been DMA mapped, fix last descriptor */
1294 	if (sc->sc_caps & NFE_40BIT_ADDR) {
1295 		desc64->flags |= htole16(NFE_TX_LASTFRAG_V2);
1296 	} else {
1297 		if (sc->sc_caps & NFE_JUMBO_SUP)
1298 			flags = NFE_TX_LASTFRAG_V2;
1299 		else
1300 			flags = NFE_TX_LASTFRAG_V1;
1301 		desc32->flags |= htole16(flags);
1302 	}
1303 
1304 	/*
1305 	 * Set NFE_TX_VALID backwards so the hardware doesn't see the
1306 	 * whole mess until the first descriptor in the map is flagged.
1307 	 */
1308 	for (i = ctx.nsegs - 1; i >= 0; --i) {
1309 		j = (ring->cur + i) % sc->sc_tx_ring_count;
1310 		if (sc->sc_caps & NFE_40BIT_ADDR) {
1311 			desc64 = &ring->desc64[j];
1312 			desc64->flags |= htole16(NFE_TX_VALID);
1313 		} else {
1314 			desc32 = &ring->desc32[j];
1315 			desc32->flags |= htole16(NFE_TX_VALID);
1316 		}
1317 	}
1318 	ring->cur = (ring->cur + ctx.nsegs) % sc->sc_tx_ring_count;
1319 
1320 	/* Exchange DMA map */
1321 	data_map->map = data->map;
1322 	data->map = map;
1323 	data->m = m0;
1324 
1325 	bus_dmamap_sync(ring->data_tag, map, BUS_DMASYNC_PREWRITE);
1326 back:
1327 	if (error)
1328 		m_freem(m0);
1329 	return error;
1330 }
1331 
1332 static void
1333 nfe_start(struct ifnet *ifp)
1334 {
1335 	struct nfe_softc *sc = ifp->if_softc;
1336 	struct nfe_tx_ring *ring = &sc->txq;
1337 	int count = 0, oactive = 0;
1338 	struct mbuf *m0;
1339 
1340 	ASSERT_SERIALIZED(ifp->if_serializer);
1341 
1342 	if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
1343 		return;
1344 
1345 	for (;;) {
1346 		int error;
1347 
1348 		if (sc->sc_tx_ring_count - ring->queued <
1349 		    sc->sc_tx_spare + NFE_NSEG_RSVD) {
1350 			if (oactive) {
1351 				ifp->if_flags |= IFF_OACTIVE;
1352 				break;
1353 			}
1354 
1355 			nfe_txeof(sc, 0);
1356 			oactive = 1;
1357 			continue;
1358 		}
1359 
1360 		m0 = ifq_dequeue(&ifp->if_snd, NULL);
1361 		if (m0 == NULL)
1362 			break;
1363 
1364 		ETHER_BPF_MTAP(ifp, m0);
1365 
1366 		error = nfe_encap(sc, ring, m0);
1367 		if (error) {
1368 			ifp->if_oerrors++;
1369 			if (error == EFBIG) {
1370 				if (oactive) {
1371 					ifp->if_flags |= IFF_OACTIVE;
1372 					break;
1373 				}
1374 				nfe_txeof(sc, 0);
1375 				oactive = 1;
1376 			}
1377 			continue;
1378 		} else {
1379 			oactive = 0;
1380 		}
1381 		++count;
1382 
1383 		/*
1384 		 * NOTE:
1385 		 * `m0' may be freed in nfe_encap(), so
1386 		 * it should not be touched any more.
1387 		 */
1388 	}
1389 	if (count == 0)	/* nothing sent */
1390 		return;
1391 
1392 	/* Sync TX descriptor ring */
1393 	bus_dmamap_sync(ring->tag, ring->map, BUS_DMASYNC_PREWRITE);
1394 
1395 	/* Kick Tx */
1396 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1397 
1398 	/*
1399 	 * Set a timeout in case the chip goes out to lunch.
1400 	 */
1401 	ifp->if_timer = 5;
1402 }
1403 
1404 static void
1405 nfe_watchdog(struct ifnet *ifp)
1406 {
1407 	struct nfe_softc *sc = ifp->if_softc;
1408 
1409 	ASSERT_SERIALIZED(ifp->if_serializer);
1410 
1411 	if (ifp->if_flags & IFF_RUNNING) {
1412 		if_printf(ifp, "watchdog timeout - lost interrupt recovered\n");
1413 		nfe_txeof(sc, 1);
1414 		return;
1415 	}
1416 
1417 	if_printf(ifp, "watchdog timeout\n");
1418 
1419 	nfe_init(ifp->if_softc);
1420 
1421 	ifp->if_oerrors++;
1422 }
1423 
1424 static void
1425 nfe_init(void *xsc)
1426 {
1427 	struct nfe_softc *sc = xsc;
1428 	struct ifnet *ifp = &sc->arpcom.ac_if;
1429 	uint32_t tmp;
1430 	int error;
1431 
1432 	ASSERT_SERIALIZED(ifp->if_serializer);
1433 
1434 	nfe_stop(sc);
1435 
1436 	if ((sc->sc_caps & NFE_NO_PWRCTL) == 0)
1437 		nfe_mac_reset(sc);
1438 
1439 	/*
1440 	 * NOTE:
1441 	 * Switching between jumbo frames and normal frames should
1442 	 * be done _after_ nfe_stop() but _before_ nfe_init_rx_ring().
1443 	 */
1444 	if (ifp->if_mtu > ETHERMTU) {
1445 		sc->sc_flags |= NFE_F_USE_JUMBO;
1446 		sc->rxq.bufsz = NFE_JBYTES;
1447 		sc->sc_tx_spare = NFE_NSEG_SPARE_JUMBO;
1448 		if (bootverbose)
1449 			if_printf(ifp, "use jumbo frames\n");
1450 	} else {
1451 		sc->sc_flags &= ~NFE_F_USE_JUMBO;
1452 		sc->rxq.bufsz = MCLBYTES;
1453 		sc->sc_tx_spare = NFE_NSEG_SPARE;
1454 		if (bootverbose)
1455 			if_printf(ifp, "use non-jumbo frames\n");
1456 	}
1457 
1458 	error = nfe_init_tx_ring(sc, &sc->txq);
1459 	if (error) {
1460 		nfe_stop(sc);
1461 		return;
1462 	}
1463 
1464 	error = nfe_init_rx_ring(sc, &sc->rxq);
1465 	if (error) {
1466 		nfe_stop(sc);
1467 		return;
1468 	}
1469 
1470 	NFE_WRITE(sc, NFE_TX_POLL, 0);
1471 	NFE_WRITE(sc, NFE_STATUS, 0);
1472 
1473 	sc->rxtxctl = NFE_RXTX_BIT2 | sc->rxtxctl_desc;
1474 
1475 	if (ifp->if_capenable & IFCAP_RXCSUM)
1476 		sc->rxtxctl |= NFE_RXTX_RXCSUM;
1477 
1478 	/*
1479 	 * Although the adapter is capable of stripping VLAN tags from received
1480 	 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1481 	 * purpose.  This will be done in software by our network stack.
1482 	 */
1483 	if (sc->sc_caps & NFE_HW_VLAN)
1484 		sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1485 
1486 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1487 	DELAY(10);
1488 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1489 
1490 	if (sc->sc_caps & NFE_HW_VLAN)
1491 		NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1492 
1493 	NFE_WRITE(sc, NFE_SETUP_R6, 0);
1494 
1495 	/* set MAC address */
1496 	nfe_set_macaddr(sc, sc->arpcom.ac_enaddr);
1497 
1498 	/* tell MAC where rings are in memory */
1499 #ifdef __LP64__
1500 	NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1501 #endif
1502 	NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1503 #ifdef __LP64__
1504 	NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1505 #endif
1506 	NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1507 
1508 	NFE_WRITE(sc, NFE_RING_SIZE,
1509 	    (sc->sc_rx_ring_count - 1) << 16 |
1510 	    (sc->sc_tx_ring_count - 1));
1511 
1512 	NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1513 
1514 	/* force MAC to wakeup */
1515 	tmp = NFE_READ(sc, NFE_PWR_STATE);
1516 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1517 	DELAY(10);
1518 	tmp = NFE_READ(sc, NFE_PWR_STATE);
1519 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1520 
1521 	NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1522 	NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1523 	NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1524 
1525 	/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1526 	NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1527 
1528 	NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1529 
1530 	sc->rxtxctl &= ~NFE_RXTX_BIT2;
1531 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1532 	DELAY(10);
1533 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1534 
1535 	/* set Rx filter */
1536 	nfe_setmulti(sc);
1537 
1538 	nfe_ifmedia_upd(ifp);
1539 
1540 	/* enable Rx */
1541 	NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1542 
1543 	/* enable Tx */
1544 	NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1545 
1546 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1547 
1548 #ifdef DEVICE_POLLING
1549 	if ((ifp->if_flags & IFF_POLLING))
1550 		nfe_disable_intrs(sc);
1551 	else
1552 #endif
1553 	nfe_enable_intrs(sc);
1554 
1555 	callout_reset(&sc->sc_tick_ch, hz, nfe_tick, sc);
1556 
1557 	ifp->if_flags |= IFF_RUNNING;
1558 	ifp->if_flags &= ~IFF_OACTIVE;
1559 
1560 	/*
1561 	 * If we had stuff in the tx ring before its all cleaned out now
1562 	 * so we are not going to get an interrupt, jump-start any pending
1563 	 * output.
1564 	 */
1565 	if (!ifq_is_empty(&ifp->if_snd))
1566 		if_devstart(ifp);
1567 }
1568 
1569 static void
1570 nfe_stop(struct nfe_softc *sc)
1571 {
1572 	struct ifnet *ifp = &sc->arpcom.ac_if;
1573 	uint32_t rxtxctl = sc->rxtxctl_desc | NFE_RXTX_BIT2;
1574 	int i;
1575 
1576 	ASSERT_SERIALIZED(ifp->if_serializer);
1577 
1578 	callout_stop(&sc->sc_tick_ch);
1579 
1580 	ifp->if_timer = 0;
1581 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1582 	sc->sc_flags &= ~NFE_F_IRQ_TIMER;
1583 
1584 #define WAITMAX	50000
1585 
1586 	/*
1587 	 * Abort Tx
1588 	 */
1589 	NFE_WRITE(sc, NFE_TX_CTL, 0);
1590 	for (i = 0; i < WAITMAX; ++i) {
1591 		DELAY(100);
1592 		if ((NFE_READ(sc, NFE_TX_STATUS) & NFE_TX_STATUS_BUSY) == 0)
1593 			break;
1594 	}
1595 	if (i == WAITMAX)
1596 		if_printf(ifp, "can't stop TX\n");
1597 	DELAY(100);
1598 
1599 	/*
1600 	 * Disable Rx
1601 	 */
1602 	NFE_WRITE(sc, NFE_RX_CTL, 0);
1603 	for (i = 0; i < WAITMAX; ++i) {
1604 		DELAY(100);
1605 		if ((NFE_READ(sc, NFE_RX_STATUS) & NFE_RX_STATUS_BUSY) == 0)
1606 			break;
1607 	}
1608 	if (i == WAITMAX)
1609 		if_printf(ifp, "can't stop RX\n");
1610 	DELAY(100);
1611 
1612 #undef WAITMAX
1613 
1614 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | rxtxctl);
1615 	DELAY(10);
1616 	NFE_WRITE(sc, NFE_RXTX_CTL, rxtxctl);
1617 
1618 	/* Disable interrupts */
1619 	NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1620 
1621 	/* Reset Tx and Rx rings */
1622 	nfe_reset_tx_ring(sc, &sc->txq);
1623 	nfe_reset_rx_ring(sc, &sc->rxq);
1624 }
1625 
1626 static int
1627 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1628 {
1629 	int i, j, error, descsize;
1630 	void **desc;
1631 
1632 	if (sc->sc_caps & NFE_40BIT_ADDR) {
1633 		desc = (void **)&ring->desc64;
1634 		descsize = sizeof(struct nfe_desc64);
1635 	} else {
1636 		desc = (void **)&ring->desc32;
1637 		descsize = sizeof(struct nfe_desc32);
1638 	}
1639 
1640 	ring->bufsz = MCLBYTES;
1641 	ring->cur = ring->next = 0;
1642 
1643 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0,
1644 				   BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1645 				   NULL, NULL,
1646 				   sc->sc_rx_ring_count * descsize, 1,
1647 				   BUS_SPACE_MAXSIZE_32BIT,
1648 				   0, &ring->tag);
1649 	if (error) {
1650 		if_printf(&sc->arpcom.ac_if,
1651 			  "could not create desc RX DMA tag\n");
1652 		return error;
1653 	}
1654 
1655 	error = bus_dmamem_alloc(ring->tag, desc, BUS_DMA_WAITOK | BUS_DMA_ZERO,
1656 				 &ring->map);
1657 	if (error) {
1658 		if_printf(&sc->arpcom.ac_if,
1659 			  "could not allocate RX desc DMA memory\n");
1660 		bus_dma_tag_destroy(ring->tag);
1661 		ring->tag = NULL;
1662 		return error;
1663 	}
1664 
1665 	error = bus_dmamap_load(ring->tag, ring->map, *desc,
1666 				sc->sc_rx_ring_count * descsize,
1667 				nfe_ring_dma_addr, &ring->physaddr,
1668 				BUS_DMA_WAITOK);
1669 	if (error) {
1670 		if_printf(&sc->arpcom.ac_if,
1671 			  "could not load RX desc DMA map\n");
1672 		bus_dmamem_free(ring->tag, *desc, ring->map);
1673 		bus_dma_tag_destroy(ring->tag);
1674 		ring->tag = NULL;
1675 		return error;
1676 	}
1677 
1678 	if (sc->sc_caps & NFE_JUMBO_SUP) {
1679 		ring->jbuf =
1680 		kmalloc(sizeof(struct nfe_jbuf) * NFE_JPOOL_COUNT(sc),
1681 			M_DEVBUF, M_WAITOK | M_ZERO);
1682 
1683 		error = nfe_jpool_alloc(sc, ring);
1684 		if (error) {
1685 			if_printf(&sc->arpcom.ac_if,
1686 				  "could not allocate jumbo frames\n");
1687 			kfree(ring->jbuf, M_DEVBUF);
1688 			ring->jbuf = NULL;
1689 			/* Allow jumbo frame allocation to fail */
1690 		}
1691 	}
1692 
1693 	ring->data = kmalloc(sizeof(struct nfe_rx_data) * sc->sc_rx_ring_count,
1694 			     M_DEVBUF, M_WAITOK | M_ZERO);
1695 
1696 	error = bus_dma_tag_create(NULL, 1, 0,
1697 				   BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1698 				   NULL, NULL,
1699 				   MCLBYTES, 1, BUS_SPACE_MAXSIZE_32BIT,
1700 				   BUS_DMA_ALLOCNOW, &ring->data_tag);
1701 	if (error) {
1702 		if_printf(&sc->arpcom.ac_if,
1703 			  "could not create RX mbuf DMA tag\n");
1704 		return error;
1705 	}
1706 
1707 	/* Create a spare RX mbuf DMA map */
1708 	error = bus_dmamap_create(ring->data_tag, 0, &ring->data_tmpmap);
1709 	if (error) {
1710 		if_printf(&sc->arpcom.ac_if,
1711 			  "could not create spare RX mbuf DMA map\n");
1712 		bus_dma_tag_destroy(ring->data_tag);
1713 		ring->data_tag = NULL;
1714 		return error;
1715 	}
1716 
1717 	for (i = 0; i < sc->sc_rx_ring_count; i++) {
1718 		error = bus_dmamap_create(ring->data_tag, 0,
1719 					  &ring->data[i].map);
1720 		if (error) {
1721 			if_printf(&sc->arpcom.ac_if,
1722 				  "could not create %dth RX mbuf DMA mapn", i);
1723 			goto fail;
1724 		}
1725 	}
1726 	return 0;
1727 fail:
1728 	for (j = 0; j < i; ++j)
1729 		bus_dmamap_destroy(ring->data_tag, ring->data[i].map);
1730 	bus_dmamap_destroy(ring->data_tag, ring->data_tmpmap);
1731 	bus_dma_tag_destroy(ring->data_tag);
1732 	ring->data_tag = NULL;
1733 	return error;
1734 }
1735 
1736 static void
1737 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1738 {
1739 	int i;
1740 
1741 	for (i = 0; i < sc->sc_rx_ring_count; i++) {
1742 		struct nfe_rx_data *data = &ring->data[i];
1743 
1744 		if (data->m != NULL) {
1745 			if ((sc->sc_flags & NFE_F_USE_JUMBO) == 0)
1746 				bus_dmamap_unload(ring->data_tag, data->map);
1747 			m_freem(data->m);
1748 			data->m = NULL;
1749 		}
1750 	}
1751 	bus_dmamap_sync(ring->tag, ring->map, BUS_DMASYNC_PREWRITE);
1752 
1753 	ring->cur = ring->next = 0;
1754 }
1755 
1756 static int
1757 nfe_init_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1758 {
1759 	int i;
1760 
1761 	for (i = 0; i < sc->sc_rx_ring_count; ++i) {
1762 		int error;
1763 
1764 		/* XXX should use a function pointer */
1765 		if (sc->sc_flags & NFE_F_USE_JUMBO)
1766 			error = nfe_newbuf_jumbo(sc, ring, i, 1);
1767 		else
1768 			error = nfe_newbuf_std(sc, ring, i, 1);
1769 		if (error) {
1770 			if_printf(&sc->arpcom.ac_if,
1771 				  "could not allocate RX buffer\n");
1772 			return error;
1773 		}
1774 
1775 		nfe_set_ready_rxdesc(sc, ring, i);
1776 	}
1777 	bus_dmamap_sync(ring->tag, ring->map, BUS_DMASYNC_PREWRITE);
1778 
1779 	return 0;
1780 }
1781 
1782 static void
1783 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1784 {
1785 	if (ring->data_tag != NULL) {
1786 		struct nfe_rx_data *data;
1787 		int i;
1788 
1789 		for (i = 0; i < sc->sc_rx_ring_count; i++) {
1790 			data = &ring->data[i];
1791 
1792 			if (data->m != NULL) {
1793 				bus_dmamap_unload(ring->data_tag, data->map);
1794 				m_freem(data->m);
1795 			}
1796 			bus_dmamap_destroy(ring->data_tag, data->map);
1797 		}
1798 		bus_dmamap_destroy(ring->data_tag, ring->data_tmpmap);
1799 		bus_dma_tag_destroy(ring->data_tag);
1800 	}
1801 
1802 	nfe_jpool_free(sc, ring);
1803 
1804 	if (ring->jbuf != NULL)
1805 		kfree(ring->jbuf, M_DEVBUF);
1806 	if (ring->data != NULL)
1807 		kfree(ring->data, M_DEVBUF);
1808 
1809 	if (ring->tag != NULL) {
1810 		void *desc;
1811 
1812 		if (sc->sc_caps & NFE_40BIT_ADDR)
1813 			desc = ring->desc64;
1814 		else
1815 			desc = ring->desc32;
1816 
1817 		bus_dmamap_unload(ring->tag, ring->map);
1818 		bus_dmamem_free(ring->tag, desc, ring->map);
1819 		bus_dma_tag_destroy(ring->tag);
1820 	}
1821 }
1822 
1823 static struct nfe_jbuf *
1824 nfe_jalloc(struct nfe_softc *sc)
1825 {
1826 	struct ifnet *ifp = &sc->arpcom.ac_if;
1827 	struct nfe_jbuf *jbuf;
1828 
1829 	lwkt_serialize_enter(&sc->sc_jbuf_serializer);
1830 
1831 	jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1832 	if (jbuf != NULL) {
1833 		SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1834 		jbuf->inuse = 1;
1835 	} else {
1836 		if_printf(ifp, "no free jumbo buffer\n");
1837 	}
1838 
1839 	lwkt_serialize_exit(&sc->sc_jbuf_serializer);
1840 
1841 	return jbuf;
1842 }
1843 
1844 static void
1845 nfe_jfree(void *arg)
1846 {
1847 	struct nfe_jbuf *jbuf = arg;
1848 	struct nfe_softc *sc = jbuf->sc;
1849 	struct nfe_rx_ring *ring = jbuf->ring;
1850 
1851 	if (&ring->jbuf[jbuf->slot] != jbuf)
1852 		panic("%s: free wrong jumbo buffer\n", __func__);
1853 	else if (jbuf->inuse == 0)
1854 		panic("%s: jumbo buffer already freed\n", __func__);
1855 
1856 	lwkt_serialize_enter(&sc->sc_jbuf_serializer);
1857 	atomic_subtract_int(&jbuf->inuse, 1);
1858 	if (jbuf->inuse == 0)
1859 		SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1860 	lwkt_serialize_exit(&sc->sc_jbuf_serializer);
1861 }
1862 
1863 static void
1864 nfe_jref(void *arg)
1865 {
1866 	struct nfe_jbuf *jbuf = arg;
1867 	struct nfe_rx_ring *ring = jbuf->ring;
1868 
1869 	if (&ring->jbuf[jbuf->slot] != jbuf)
1870 		panic("%s: ref wrong jumbo buffer\n", __func__);
1871 	else if (jbuf->inuse == 0)
1872 		panic("%s: jumbo buffer already freed\n", __func__);
1873 
1874 	atomic_add_int(&jbuf->inuse, 1);
1875 }
1876 
1877 static int
1878 nfe_jpool_alloc(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1879 {
1880 	struct nfe_jbuf *jbuf;
1881 	bus_addr_t physaddr;
1882 	caddr_t buf;
1883 	int i, error;
1884 
1885 	/*
1886 	 * Allocate a big chunk of DMA'able memory.
1887 	 */
1888 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0,
1889 				   BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1890 				   NULL, NULL,
1891 				   NFE_JPOOL_SIZE(sc), 1,
1892 				   BUS_SPACE_MAXSIZE_32BIT,
1893 				   0, &ring->jtag);
1894 	if (error) {
1895 		if_printf(&sc->arpcom.ac_if,
1896 			  "could not create jumbo DMA tag\n");
1897 		return error;
1898 	}
1899 
1900 	error = bus_dmamem_alloc(ring->jtag, (void **)&ring->jpool,
1901 				 BUS_DMA_WAITOK, &ring->jmap);
1902 	if (error) {
1903 		if_printf(&sc->arpcom.ac_if,
1904 			  "could not allocate jumbo DMA memory\n");
1905 		bus_dma_tag_destroy(ring->jtag);
1906 		ring->jtag = NULL;
1907 		return error;
1908 	}
1909 
1910 	error = bus_dmamap_load(ring->jtag, ring->jmap, ring->jpool,
1911 				NFE_JPOOL_SIZE(sc),
1912 				nfe_ring_dma_addr, &physaddr, BUS_DMA_WAITOK);
1913 	if (error) {
1914 		if_printf(&sc->arpcom.ac_if,
1915 			  "could not load jumbo DMA map\n");
1916 		bus_dmamem_free(ring->jtag, ring->jpool, ring->jmap);
1917 		bus_dma_tag_destroy(ring->jtag);
1918 		ring->jtag = NULL;
1919 		return error;
1920 	}
1921 
1922 	/* ..and split it into 9KB chunks */
1923 	SLIST_INIT(&ring->jfreelist);
1924 
1925 	buf = ring->jpool;
1926 	for (i = 0; i < NFE_JPOOL_COUNT(sc); i++) {
1927 		jbuf = &ring->jbuf[i];
1928 
1929 		jbuf->sc = sc;
1930 		jbuf->ring = ring;
1931 		jbuf->inuse = 0;
1932 		jbuf->slot = i;
1933 		jbuf->buf = buf;
1934 		jbuf->physaddr = physaddr;
1935 
1936 		SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1937 
1938 		buf += NFE_JBYTES;
1939 		physaddr += NFE_JBYTES;
1940 	}
1941 
1942 	return 0;
1943 }
1944 
1945 static void
1946 nfe_jpool_free(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1947 {
1948 	if (ring->jtag != NULL) {
1949 		bus_dmamap_unload(ring->jtag, ring->jmap);
1950 		bus_dmamem_free(ring->jtag, ring->jpool, ring->jmap);
1951 		bus_dma_tag_destroy(ring->jtag);
1952 	}
1953 }
1954 
1955 static int
1956 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1957 {
1958 	int i, j, error, descsize;
1959 	void **desc;
1960 
1961 	if (sc->sc_caps & NFE_40BIT_ADDR) {
1962 		desc = (void **)&ring->desc64;
1963 		descsize = sizeof(struct nfe_desc64);
1964 	} else {
1965 		desc = (void **)&ring->desc32;
1966 		descsize = sizeof(struct nfe_desc32);
1967 	}
1968 
1969 	ring->queued = 0;
1970 	ring->cur = ring->next = 0;
1971 
1972 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0,
1973 				   BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1974 				   NULL, NULL,
1975 				   sc->sc_tx_ring_count * descsize, 1,
1976 				   BUS_SPACE_MAXSIZE_32BIT,
1977 				   0, &ring->tag);
1978 	if (error) {
1979 		if_printf(&sc->arpcom.ac_if,
1980 			  "could not create TX desc DMA map\n");
1981 		return error;
1982 	}
1983 
1984 	error = bus_dmamem_alloc(ring->tag, desc, BUS_DMA_WAITOK | BUS_DMA_ZERO,
1985 				 &ring->map);
1986 	if (error) {
1987 		if_printf(&sc->arpcom.ac_if,
1988 			  "could not allocate TX desc DMA memory\n");
1989 		bus_dma_tag_destroy(ring->tag);
1990 		ring->tag = NULL;
1991 		return error;
1992 	}
1993 
1994 	error = bus_dmamap_load(ring->tag, ring->map, *desc,
1995 				sc->sc_tx_ring_count * descsize,
1996 				nfe_ring_dma_addr, &ring->physaddr,
1997 				BUS_DMA_WAITOK);
1998 	if (error) {
1999 		if_printf(&sc->arpcom.ac_if,
2000 			  "could not load TX desc DMA map\n");
2001 		bus_dmamem_free(ring->tag, *desc, ring->map);
2002 		bus_dma_tag_destroy(ring->tag);
2003 		ring->tag = NULL;
2004 		return error;
2005 	}
2006 
2007 	ring->data = kmalloc(sizeof(struct nfe_tx_data) * sc->sc_tx_ring_count,
2008 			     M_DEVBUF, M_WAITOK | M_ZERO);
2009 
2010 	error = bus_dma_tag_create(NULL, PAGE_SIZE, 0,
2011 				   BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
2012 				   NULL, NULL,
2013 				   NFE_JBYTES, NFE_MAX_SCATTER,
2014 				   BUS_SPACE_MAXSIZE_32BIT,
2015 				   BUS_DMA_ALLOCNOW, &ring->data_tag);
2016 	if (error) {
2017 		if_printf(&sc->arpcom.ac_if,
2018 			  "could not create TX buf DMA tag\n");
2019 		return error;
2020 	}
2021 
2022 	for (i = 0; i < sc->sc_tx_ring_count; i++) {
2023 		error = bus_dmamap_create(ring->data_tag, 0,
2024 					  &ring->data[i].map);
2025 		if (error) {
2026 			if_printf(&sc->arpcom.ac_if,
2027 				  "could not create %dth TX buf DMA map\n", i);
2028 			goto fail;
2029 		}
2030 	}
2031 
2032 	return 0;
2033 fail:
2034 	for (j = 0; j < i; ++j)
2035 		bus_dmamap_destroy(ring->data_tag, ring->data[i].map);
2036 	bus_dma_tag_destroy(ring->data_tag);
2037 	ring->data_tag = NULL;
2038 	return error;
2039 }
2040 
2041 static void
2042 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
2043 {
2044 	int i;
2045 
2046 	for (i = 0; i < sc->sc_tx_ring_count; i++) {
2047 		struct nfe_tx_data *data = &ring->data[i];
2048 
2049 		if (sc->sc_caps & NFE_40BIT_ADDR)
2050 			ring->desc64[i].flags = 0;
2051 		else
2052 			ring->desc32[i].flags = 0;
2053 
2054 		if (data->m != NULL) {
2055 			bus_dmamap_sync(ring->data_tag, data->map,
2056 					BUS_DMASYNC_POSTWRITE);
2057 			bus_dmamap_unload(ring->data_tag, data->map);
2058 			m_freem(data->m);
2059 			data->m = NULL;
2060 		}
2061 	}
2062 	bus_dmamap_sync(ring->tag, ring->map, BUS_DMASYNC_PREWRITE);
2063 
2064 	ring->queued = 0;
2065 	ring->cur = ring->next = 0;
2066 }
2067 
2068 static int
2069 nfe_init_tx_ring(struct nfe_softc *sc __unused,
2070 		 struct nfe_tx_ring *ring __unused)
2071 {
2072 	return 0;
2073 }
2074 
2075 static void
2076 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
2077 {
2078 	if (ring->data_tag != NULL) {
2079 		struct nfe_tx_data *data;
2080 		int i;
2081 
2082 		for (i = 0; i < sc->sc_tx_ring_count; ++i) {
2083 			data = &ring->data[i];
2084 
2085 			if (data->m != NULL) {
2086 				bus_dmamap_unload(ring->data_tag, data->map);
2087 				m_freem(data->m);
2088 			}
2089 			bus_dmamap_destroy(ring->data_tag, data->map);
2090 		}
2091 
2092 		bus_dma_tag_destroy(ring->data_tag);
2093 	}
2094 
2095 	if (ring->data != NULL)
2096 		kfree(ring->data, M_DEVBUF);
2097 
2098 	if (ring->tag != NULL) {
2099 		void *desc;
2100 
2101 		if (sc->sc_caps & NFE_40BIT_ADDR)
2102 			desc = ring->desc64;
2103 		else
2104 			desc = ring->desc32;
2105 
2106 		bus_dmamap_unload(ring->tag, ring->map);
2107 		bus_dmamem_free(ring->tag, desc, ring->map);
2108 		bus_dma_tag_destroy(ring->tag);
2109 	}
2110 }
2111 
2112 static int
2113 nfe_ifmedia_upd(struct ifnet *ifp)
2114 {
2115 	struct nfe_softc *sc = ifp->if_softc;
2116 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
2117 
2118 	ASSERT_SERIALIZED(ifp->if_serializer);
2119 
2120 	if (mii->mii_instance != 0) {
2121 		struct mii_softc *miisc;
2122 
2123 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2124 			mii_phy_reset(miisc);
2125 	}
2126 	mii_mediachg(mii);
2127 
2128 	return 0;
2129 }
2130 
2131 static void
2132 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2133 {
2134 	struct nfe_softc *sc = ifp->if_softc;
2135 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
2136 
2137 	ASSERT_SERIALIZED(ifp->if_serializer);
2138 
2139 	mii_pollstat(mii);
2140 	ifmr->ifm_status = mii->mii_media_status;
2141 	ifmr->ifm_active = mii->mii_media_active;
2142 }
2143 
2144 static void
2145 nfe_setmulti(struct nfe_softc *sc)
2146 {
2147 	struct ifnet *ifp = &sc->arpcom.ac_if;
2148 	struct ifmultiaddr *ifma;
2149 	uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
2150 	uint32_t filter = NFE_RXFILTER_MAGIC;
2151 	int i;
2152 
2153 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
2154 		bzero(addr, ETHER_ADDR_LEN);
2155 		bzero(mask, ETHER_ADDR_LEN);
2156 		goto done;
2157 	}
2158 
2159 	bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
2160 	bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
2161 
2162 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2163 		caddr_t maddr;
2164 
2165 		if (ifma->ifma_addr->sa_family != AF_LINK)
2166 			continue;
2167 
2168 		maddr = LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
2169 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
2170 			addr[i] &= maddr[i];
2171 			mask[i] &= ~maddr[i];
2172 		}
2173 	}
2174 
2175 	for (i = 0; i < ETHER_ADDR_LEN; i++)
2176 		mask[i] |= addr[i];
2177 
2178 done:
2179 	addr[0] |= 0x01;	/* make sure multicast bit is set */
2180 
2181 	NFE_WRITE(sc, NFE_MULTIADDR_HI,
2182 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
2183 	NFE_WRITE(sc, NFE_MULTIADDR_LO,
2184 	    addr[5] <<  8 | addr[4]);
2185 	NFE_WRITE(sc, NFE_MULTIMASK_HI,
2186 	    mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
2187 	NFE_WRITE(sc, NFE_MULTIMASK_LO,
2188 	    mask[5] <<  8 | mask[4]);
2189 
2190 	filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
2191 	NFE_WRITE(sc, NFE_RXFILTER, filter);
2192 }
2193 
2194 static void
2195 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
2196 {
2197 	uint32_t lo, hi;
2198 
2199 	lo = NFE_READ(sc, NFE_MACADDR_LO);
2200 	hi = NFE_READ(sc, NFE_MACADDR_HI);
2201 	if (sc->sc_caps & NFE_FIX_EADDR) {
2202 		addr[0] = (lo >> 8) & 0xff;
2203 		addr[1] = (lo & 0xff);
2204 
2205 		addr[2] = (hi >> 24) & 0xff;
2206 		addr[3] = (hi >> 16) & 0xff;
2207 		addr[4] = (hi >>  8) & 0xff;
2208 		addr[5] = (hi & 0xff);
2209 	} else {
2210 		addr[0] = (hi & 0xff);
2211 		addr[1] = (hi >>  8) & 0xff;
2212 		addr[2] = (hi >> 16) & 0xff;
2213 		addr[3] = (hi >> 24) & 0xff;
2214 
2215 		addr[4] = (lo & 0xff);
2216 		addr[5] = (lo >>  8) & 0xff;
2217 	}
2218 }
2219 
2220 static void
2221 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
2222 {
2223 	NFE_WRITE(sc, NFE_MACADDR_LO,
2224 	    addr[5] <<  8 | addr[4]);
2225 	NFE_WRITE(sc, NFE_MACADDR_HI,
2226 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
2227 }
2228 
2229 static void
2230 nfe_tick(void *arg)
2231 {
2232 	struct nfe_softc *sc = arg;
2233 	struct ifnet *ifp = &sc->arpcom.ac_if;
2234 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
2235 
2236 	lwkt_serialize_enter(ifp->if_serializer);
2237 
2238 	mii_tick(mii);
2239 	callout_reset(&sc->sc_tick_ch, hz, nfe_tick, sc);
2240 
2241 	lwkt_serialize_exit(ifp->if_serializer);
2242 }
2243 
2244 static void
2245 nfe_ring_dma_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
2246 {
2247 	if (error)
2248 		return;
2249 
2250 	KASSERT(nseg == 1, ("too many segments, should be 1\n"));
2251 
2252 	*((uint32_t *)arg) = seg->ds_addr;
2253 }
2254 
2255 static void
2256 nfe_buf_dma_addr(void *arg, bus_dma_segment_t *segs, int nsegs,
2257 		 bus_size_t mapsz __unused, int error)
2258 {
2259 	struct nfe_dma_ctx *ctx = arg;
2260 	int i;
2261 
2262 	if (error)
2263 		return;
2264 
2265 	if (nsegs > ctx->nsegs) {
2266 		ctx->nsegs = 0;
2267 		return;
2268 	}
2269 
2270 	ctx->nsegs = nsegs;
2271 	for (i = 0; i < nsegs; ++i)
2272 		ctx->segs[i] = segs[i];
2273 }
2274 
2275 static int
2276 nfe_newbuf_std(struct nfe_softc *sc, struct nfe_rx_ring *ring, int idx,
2277 	       int wait)
2278 {
2279 	struct nfe_rx_data *data = &ring->data[idx];
2280 	struct nfe_dma_ctx ctx;
2281 	bus_dma_segment_t seg;
2282 	bus_dmamap_t map;
2283 	struct mbuf *m;
2284 	int error;
2285 
2286 	m = m_getcl(wait ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2287 	if (m == NULL)
2288 		return ENOBUFS;
2289 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2290 
2291 	ctx.nsegs = 1;
2292 	ctx.segs = &seg;
2293 	error = bus_dmamap_load_mbuf(ring->data_tag, ring->data_tmpmap,
2294 				     m, nfe_buf_dma_addr, &ctx,
2295 				     wait ? BUS_DMA_WAITOK : BUS_DMA_NOWAIT);
2296 	if (error || ctx.nsegs == 0) {
2297 		if (!error) {
2298 			bus_dmamap_unload(ring->data_tag, ring->data_tmpmap);
2299 			error = EFBIG;
2300 			if_printf(&sc->arpcom.ac_if, "too many segments?!\n");
2301 		}
2302 		m_freem(m);
2303 
2304 		if (wait) {
2305 			if_printf(&sc->arpcom.ac_if,
2306 				  "could map RX mbuf %d\n", error);
2307 		}
2308 		return error;
2309 	}
2310 
2311 	/* Unload originally mapped mbuf */
2312 	bus_dmamap_unload(ring->data_tag, data->map);
2313 
2314 	/* Swap this DMA map with tmp DMA map */
2315 	map = data->map;
2316 	data->map = ring->data_tmpmap;
2317 	ring->data_tmpmap = map;
2318 
2319 	/* Caller is assumed to have collected the old mbuf */
2320 	data->m = m;
2321 
2322 	nfe_set_paddr_rxdesc(sc, ring, idx, seg.ds_addr);
2323 
2324 	bus_dmamap_sync(ring->data_tag, data->map, BUS_DMASYNC_PREREAD);
2325 	return 0;
2326 }
2327 
2328 static int
2329 nfe_newbuf_jumbo(struct nfe_softc *sc, struct nfe_rx_ring *ring, int idx,
2330 		 int wait)
2331 {
2332 	struct nfe_rx_data *data = &ring->data[idx];
2333 	struct nfe_jbuf *jbuf;
2334 	struct mbuf *m;
2335 
2336 	MGETHDR(m, wait ? MB_WAIT : MB_DONTWAIT, MT_DATA);
2337 	if (m == NULL)
2338 		return ENOBUFS;
2339 
2340 	jbuf = nfe_jalloc(sc);
2341 	if (jbuf == NULL) {
2342 		m_freem(m);
2343 		if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
2344 		    "-- packet dropped!\n");
2345 		return ENOBUFS;
2346 	}
2347 
2348 	m->m_ext.ext_arg = jbuf;
2349 	m->m_ext.ext_buf = jbuf->buf;
2350 	m->m_ext.ext_free = nfe_jfree;
2351 	m->m_ext.ext_ref = nfe_jref;
2352 	m->m_ext.ext_size = NFE_JBYTES;
2353 
2354 	m->m_data = m->m_ext.ext_buf;
2355 	m->m_flags |= M_EXT;
2356 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2357 
2358 	/* Caller is assumed to have collected the old mbuf */
2359 	data->m = m;
2360 
2361 	nfe_set_paddr_rxdesc(sc, ring, idx, jbuf->physaddr);
2362 
2363 	bus_dmamap_sync(ring->jtag, ring->jmap, BUS_DMASYNC_PREREAD);
2364 	return 0;
2365 }
2366 
2367 static void
2368 nfe_set_paddr_rxdesc(struct nfe_softc *sc, struct nfe_rx_ring *ring, int idx,
2369 		     bus_addr_t physaddr)
2370 {
2371 	if (sc->sc_caps & NFE_40BIT_ADDR) {
2372 		struct nfe_desc64 *desc64 = &ring->desc64[idx];
2373 
2374 #if defined(__LP64__)
2375 		desc64->physaddr[0] = htole32(physaddr >> 32);
2376 #endif
2377 		desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
2378 	} else {
2379 		struct nfe_desc32 *desc32 = &ring->desc32[idx];
2380 
2381 		desc32->physaddr = htole32(physaddr);
2382 	}
2383 }
2384 
2385 static void
2386 nfe_set_ready_rxdesc(struct nfe_softc *sc, struct nfe_rx_ring *ring, int idx)
2387 {
2388 	if (sc->sc_caps & NFE_40BIT_ADDR) {
2389 		struct nfe_desc64 *desc64 = &ring->desc64[idx];
2390 
2391 		desc64->length = htole16(ring->bufsz);
2392 		desc64->flags = htole16(NFE_RX_READY);
2393 	} else {
2394 		struct nfe_desc32 *desc32 = &ring->desc32[idx];
2395 
2396 		desc32->length = htole16(ring->bufsz);
2397 		desc32->flags = htole16(NFE_RX_READY);
2398 	}
2399 }
2400 
2401 static int
2402 nfe_sysctl_imtime(SYSCTL_HANDLER_ARGS)
2403 {
2404 	struct nfe_softc *sc = arg1;
2405 	struct ifnet *ifp = &sc->arpcom.ac_if;
2406 	uint32_t flags;
2407 	int error, v;
2408 
2409 	lwkt_serialize_enter(ifp->if_serializer);
2410 
2411 	flags = sc->sc_flags & ~NFE_F_DYN_IM;
2412 	v = sc->sc_imtime;
2413 	if (sc->sc_flags & NFE_F_DYN_IM)
2414 		v = -v;
2415 
2416 	error = sysctl_handle_int(oidp, &v, 0, req);
2417 	if (error || req->newptr == NULL)
2418 		goto back;
2419 
2420 	if (v < 0) {
2421 		flags |= NFE_F_DYN_IM;
2422 		v = -v;
2423 	}
2424 
2425 	if (v != sc->sc_imtime || (flags ^ sc->sc_flags)) {
2426 		int old_imtime = sc->sc_imtime;
2427 		uint32_t old_flags = sc->sc_flags;
2428 
2429 		sc->sc_imtime = v;
2430 		sc->sc_flags = flags;
2431 		sc->sc_irq_enable = NFE_IRQ_ENABLE(sc);
2432 
2433 		if ((ifp->if_flags & (IFF_POLLING | IFF_RUNNING))
2434 		    == IFF_RUNNING) {
2435 			if (old_imtime * sc->sc_imtime == 0 ||
2436 			    (old_flags ^ sc->sc_flags)) {
2437 				ifp->if_init(sc);
2438 			} else {
2439 				NFE_WRITE(sc, NFE_IMTIMER,
2440 					  NFE_IMTIME(sc->sc_imtime));
2441 			}
2442 		}
2443 	}
2444 back:
2445 	lwkt_serialize_exit(ifp->if_serializer);
2446 	return error;
2447 }
2448 
2449 static void
2450 nfe_powerup(device_t dev)
2451 {
2452 	struct nfe_softc *sc = device_get_softc(dev);
2453 	uint32_t pwr_state;
2454 	uint16_t did;
2455 
2456 	/*
2457 	 * Bring MAC and PHY out of low power state
2458 	 */
2459 
2460 	pwr_state = NFE_READ(sc, NFE_PWR_STATE2) & ~NFE_PWRUP_MASK;
2461 
2462 	did = pci_get_device(dev);
2463 	if ((did == PCI_PRODUCT_NVIDIA_MCP51_LAN1 ||
2464 	     did == PCI_PRODUCT_NVIDIA_MCP51_LAN2) &&
2465 	    pci_get_revid(dev) >= 0xa3)
2466 		pwr_state |= NFE_PWRUP_REV_A3;
2467 
2468 	NFE_WRITE(sc, NFE_PWR_STATE2, pwr_state);
2469 }
2470 
2471 static void
2472 nfe_mac_reset(struct nfe_softc *sc)
2473 {
2474 	uint32_t rxtxctl = sc->rxtxctl_desc | NFE_RXTX_BIT2;
2475 	uint32_t macaddr_hi, macaddr_lo, tx_poll;
2476 
2477 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | rxtxctl);
2478 
2479 	/* Save several registers for later restoration */
2480 	macaddr_hi = NFE_READ(sc, NFE_MACADDR_HI);
2481 	macaddr_lo = NFE_READ(sc, NFE_MACADDR_LO);
2482 	tx_poll = NFE_READ(sc, NFE_TX_POLL);
2483 
2484 	NFE_WRITE(sc, NFE_MAC_RESET, NFE_RESET_ASSERT);
2485 	DELAY(100);
2486 
2487 	NFE_WRITE(sc, NFE_MAC_RESET, 0);
2488 	DELAY(100);
2489 
2490 	/* Restore saved registers */
2491 	NFE_WRITE(sc, NFE_MACADDR_HI, macaddr_hi);
2492 	NFE_WRITE(sc, NFE_MACADDR_LO, macaddr_lo);
2493 	NFE_WRITE(sc, NFE_TX_POLL, tx_poll);
2494 
2495 	NFE_WRITE(sc, NFE_RXTX_CTL, rxtxctl);
2496 }
2497 
2498 static void
2499 nfe_enable_intrs(struct nfe_softc *sc)
2500 {
2501 	/*
2502 	 * NFE_IMTIMER generates a periodic interrupt via NFE_IRQ_TIMER.
2503 	 * It is unclear how wide the timer is.  Base programming does
2504 	 * not seem to effect NFE_IRQ_TX_DONE or NFE_IRQ_RX_DONE so
2505 	 * we don't get any interrupt moderation.  TX moderation is
2506 	 * possible by using the timer interrupt instead of TX_DONE.
2507 	 *
2508 	 * It is unclear whether there are other bits that can be
2509 	 * set to make the NFE device actually do interrupt moderation
2510 	 * on the RX side.
2511 	 *
2512 	 * For now set a 128uS interval as a placemark, but don't use
2513 	 * the timer.
2514 	 */
2515 	if (sc->sc_imtime == 0)
2516 		NFE_WRITE(sc, NFE_IMTIMER, NFE_IMTIME_DEFAULT);
2517 	else
2518 		NFE_WRITE(sc, NFE_IMTIMER, NFE_IMTIME(sc->sc_imtime));
2519 
2520 	/* Enable interrupts */
2521 	NFE_WRITE(sc, NFE_IRQ_MASK, sc->sc_irq_enable);
2522 
2523 	if (sc->sc_irq_enable & NFE_IRQ_TIMER)
2524 		sc->sc_flags |= NFE_F_IRQ_TIMER;
2525 	else
2526 		sc->sc_flags &= ~NFE_F_IRQ_TIMER;
2527 }
2528 
2529 static void
2530 nfe_disable_intrs(struct nfe_softc *sc)
2531 {
2532 	/* Disable interrupts */
2533 	NFE_WRITE(sc, NFE_IRQ_MASK, 0);
2534 	sc->sc_flags &= ~NFE_F_IRQ_TIMER;
2535 }
2536