xref: /dragonfly/sys/dev/netif/nfe/if_nfe.c (revision d9f85b33)
1 /*	$OpenBSD: if_nfe.c,v 1.63 2006/06/17 18:00:43 brad Exp $	*/
2 
3 /*
4  * Copyright (c) 2006 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Sepherosa Ziehau <sepherosa@gmail.com> and
8  * Matthew Dillon <dillon@apollo.backplane.com>
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in
18  *    the documentation and/or other materials provided with the
19  *    distribution.
20  * 3. Neither the name of The DragonFly Project nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific, prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
28  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
32  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
34  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 
38 /*
39  * Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr>
40  * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
41  *
42  * Permission to use, copy, modify, and distribute this software for any
43  * purpose with or without fee is hereby granted, provided that the above
44  * copyright notice and this permission notice appear in all copies.
45  *
46  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
47  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
48  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
49  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
50  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
51  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
52  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
53  */
54 
55 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
56 
57 #include "opt_ifpoll.h"
58 
59 #include <sys/param.h>
60 #include <sys/endian.h>
61 #include <sys/kernel.h>
62 #include <sys/bus.h>
63 #include <sys/interrupt.h>
64 #include <sys/proc.h>
65 #include <sys/rman.h>
66 #include <sys/serialize.h>
67 #include <sys/socket.h>
68 #include <sys/sockio.h>
69 #include <sys/sysctl.h>
70 
71 #include <net/ethernet.h>
72 #include <net/if.h>
73 #include <net/bpf.h>
74 #include <net/if_arp.h>
75 #include <net/if_dl.h>
76 #include <net/if_media.h>
77 #include <net/if_poll.h>
78 #include <net/ifq_var.h>
79 #include <net/if_types.h>
80 #include <net/if_var.h>
81 #include <net/vlan/if_vlan_var.h>
82 #include <net/vlan/if_vlan_ether.h>
83 
84 #include <bus/pci/pcireg.h>
85 #include <bus/pci/pcivar.h>
86 #include "pcidevs.h"
87 
88 #include <dev/netif/mii_layer/mii.h>
89 #include <dev/netif/mii_layer/miivar.h>
90 
91 #include "miibus_if.h"
92 
93 #include <dev/netif/nfe/if_nfereg.h>
94 #include <dev/netif/nfe/if_nfevar.h>
95 
96 #define NFE_CSUM
97 #define NFE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
98 
99 static int	nfe_probe(device_t);
100 static int	nfe_attach(device_t);
101 static int	nfe_detach(device_t);
102 static void	nfe_shutdown(device_t);
103 static int	nfe_resume(device_t);
104 static int	nfe_suspend(device_t);
105 
106 static int	nfe_miibus_readreg(device_t, int, int);
107 static void	nfe_miibus_writereg(device_t, int, int, int);
108 static void	nfe_miibus_statchg(device_t);
109 
110 #ifdef IFPOLL_ENABLE
111 static void	nfe_npoll(struct ifnet *, struct ifpoll_info *);
112 static void	nfe_npoll_compat(struct ifnet *, void *, int);
113 static void	nfe_disable_intrs(struct nfe_softc *);
114 #endif
115 static void	nfe_intr(void *);
116 static int	nfe_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
117 static int	nfe_rxeof(struct nfe_softc *);
118 static int	nfe_txeof(struct nfe_softc *, int);
119 static int	nfe_encap(struct nfe_softc *, struct nfe_tx_ring *,
120 			  struct mbuf *);
121 static void	nfe_start(struct ifnet *, struct ifaltq_subque *);
122 static void	nfe_watchdog(struct ifnet *);
123 static void	nfe_init(void *);
124 static void	nfe_stop(struct nfe_softc *);
125 static struct nfe_jbuf *nfe_jalloc(struct nfe_softc *);
126 static void	nfe_jfree(void *);
127 static void	nfe_jref(void *);
128 static int	nfe_jpool_alloc(struct nfe_softc *, struct nfe_rx_ring *);
129 static void	nfe_jpool_free(struct nfe_softc *, struct nfe_rx_ring *);
130 static int	nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
131 static void	nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
132 static int	nfe_init_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
133 static void	nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
134 static int	nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
135 static void	nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
136 static int	nfe_init_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
137 static void	nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
138 static int	nfe_ifmedia_upd(struct ifnet *);
139 static void	nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
140 static void	nfe_setmulti(struct nfe_softc *);
141 static void	nfe_get_macaddr(struct nfe_softc *, uint8_t *);
142 static void	nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
143 static void	nfe_powerup(device_t);
144 static void	nfe_mac_reset(struct nfe_softc *);
145 static void	nfe_tick(void *);
146 static void	nfe_set_paddr_rxdesc(struct nfe_softc *, struct nfe_rx_ring *,
147 				     int, bus_addr_t);
148 static void	nfe_set_ready_rxdesc(struct nfe_softc *, struct nfe_rx_ring *,
149 				     int);
150 static int	nfe_newbuf_std(struct nfe_softc *, struct nfe_rx_ring *, int,
151 			       int);
152 static int	nfe_newbuf_jumbo(struct nfe_softc *, struct nfe_rx_ring *, int,
153 				 int);
154 static void	nfe_enable_intrs(struct nfe_softc *);
155 
156 static int	nfe_sysctl_imtime(SYSCTL_HANDLER_ARGS);
157 
158 #define NFE_DEBUG
159 #ifdef NFE_DEBUG
160 
161 static int	nfe_debug = 0;
162 static int	nfe_rx_ring_count = NFE_RX_RING_DEF_COUNT;
163 static int	nfe_tx_ring_count = NFE_TX_RING_DEF_COUNT;
164 /*
165  * hw timer simulated interrupt moderation @4000Hz.  Negative values
166  * disable the timer when the discrete interrupt rate falls below
167  * the moderation rate.
168  *
169  * XXX 8000Hz might be better but if the interrupt is shared it can
170  *     blow out the cpu.
171  */
172 static int	nfe_imtime = -250;	/* uS */
173 
174 TUNABLE_INT("hw.nfe.rx_ring_count", &nfe_rx_ring_count);
175 TUNABLE_INT("hw.nfe.tx_ring_count", &nfe_tx_ring_count);
176 TUNABLE_INT("hw.nfe.imtimer", &nfe_imtime);
177 TUNABLE_INT("hw.nfe.debug", &nfe_debug);
178 
179 #define DPRINTF(sc, fmt, ...) do {		\
180 	if ((sc)->sc_debug) {			\
181 		if_printf(&(sc)->arpcom.ac_if,	\
182 			  fmt, __VA_ARGS__);	\
183 	}					\
184 } while (0)
185 
186 #define DPRINTFN(sc, lv, fmt, ...) do {		\
187 	if ((sc)->sc_debug >= (lv)) {		\
188 		if_printf(&(sc)->arpcom.ac_if,	\
189 			  fmt, __VA_ARGS__);	\
190 	}					\
191 } while (0)
192 
193 #else	/* !NFE_DEBUG */
194 
195 #define DPRINTF(sc, fmt, ...)
196 #define DPRINTFN(sc, lv, fmt, ...)
197 
198 #endif	/* NFE_DEBUG */
199 
200 static const struct nfe_dev {
201 	uint16_t	vid;
202 	uint16_t	did;
203 	const char	*desc;
204 } nfe_devices[] = {
205 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN,
206 	  "NVIDIA nForce Fast Ethernet" },
207 
208 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN,
209 	  "NVIDIA nForce2 Fast Ethernet" },
210 
211 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1,
212 	  "NVIDIA nForce3 Gigabit Ethernet" },
213 
214 	/* XXX TGEN the next chip can also be found in the nForce2 Ultra 400Gb
215 	   chipset, and possibly also the 400R; it might be both nForce2- and
216 	   nForce3-based boards can use the same MCPs (= southbridges) */
217 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2,
218 	  "NVIDIA nForce3 Gigabit Ethernet" },
219 
220 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3,
221 	  "NVIDIA nForce3 Gigabit Ethernet" },
222 
223 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4,
224 	  "NVIDIA nForce3 Gigabit Ethernet" },
225 
226 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5,
227 	  "NVIDIA nForce3 Gigabit Ethernet" },
228 
229 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1,
230 	  "NVIDIA CK804 Gigabit Ethernet" },
231 
232 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2,
233 	  "NVIDIA CK804 Gigabit Ethernet" },
234 
235 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1,
236 	  "NVIDIA MCP04 Gigabit Ethernet" },
237 
238 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2,
239 	  "NVIDIA MCP04 Gigabit Ethernet" },
240 
241 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1,
242 	  "NVIDIA MCP51 Gigabit Ethernet" },
243 
244 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2,
245 	  "NVIDIA MCP51 Gigabit Ethernet" },
246 
247 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1,
248 	  "NVIDIA MCP55 Gigabit Ethernet" },
249 
250 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2,
251 	  "NVIDIA MCP55 Gigabit Ethernet" },
252 
253 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1,
254 	  "NVIDIA MCP61 Gigabit Ethernet" },
255 
256 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2,
257 	  "NVIDIA MCP61 Gigabit Ethernet" },
258 
259 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3,
260 	  "NVIDIA MCP61 Gigabit Ethernet" },
261 
262 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4,
263 	  "NVIDIA MCP61 Gigabit Ethernet" },
264 
265 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1,
266 	  "NVIDIA MCP65 Gigabit Ethernet" },
267 
268 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2,
269 	  "NVIDIA MCP65 Gigabit Ethernet" },
270 
271 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3,
272 	  "NVIDIA MCP65 Gigabit Ethernet" },
273 
274 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4,
275 	  "NVIDIA MCP65 Gigabit Ethernet" },
276 
277 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1,
278 	  "NVIDIA MCP67 Gigabit Ethernet" },
279 
280 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2,
281 	  "NVIDIA MCP67 Gigabit Ethernet" },
282 
283 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3,
284 	  "NVIDIA MCP67 Gigabit Ethernet" },
285 
286 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4,
287 	  "NVIDIA MCP67 Gigabit Ethernet" },
288 
289 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1,
290 	  "NVIDIA MCP73 Gigabit Ethernet" },
291 
292 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2,
293 	  "NVIDIA MCP73 Gigabit Ethernet" },
294 
295 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3,
296 	  "NVIDIA MCP73 Gigabit Ethernet" },
297 
298 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4,
299 	  "NVIDIA MCP73 Gigabit Ethernet" },
300 
301 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1,
302 	  "NVIDIA MCP77 Gigabit Ethernet" },
303 
304 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2,
305 	  "NVIDIA MCP77 Gigabit Ethernet" },
306 
307 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3,
308 	  "NVIDIA MCP77 Gigabit Ethernet" },
309 
310 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4,
311 	  "NVIDIA MCP77 Gigabit Ethernet" },
312 
313 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1,
314 	  "NVIDIA MCP79 Gigabit Ethernet" },
315 
316 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2,
317 	  "NVIDIA MCP79 Gigabit Ethernet" },
318 
319 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3,
320 	  "NVIDIA MCP79 Gigabit Ethernet" },
321 
322 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4,
323 	  "NVIDIA MCP79 Gigabit Ethernet" },
324 
325 	{ 0, 0, NULL }
326 };
327 
328 static device_method_t nfe_methods[] = {
329 	/* Device interface */
330 	DEVMETHOD(device_probe,		nfe_probe),
331 	DEVMETHOD(device_attach,	nfe_attach),
332 	DEVMETHOD(device_detach,	nfe_detach),
333 	DEVMETHOD(device_suspend,	nfe_suspend),
334 	DEVMETHOD(device_resume,	nfe_resume),
335 	DEVMETHOD(device_shutdown,	nfe_shutdown),
336 
337 	/* Bus interface */
338 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
339 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
340 
341 	/* MII interface */
342 	DEVMETHOD(miibus_readreg,	nfe_miibus_readreg),
343 	DEVMETHOD(miibus_writereg,	nfe_miibus_writereg),
344 	DEVMETHOD(miibus_statchg,	nfe_miibus_statchg),
345 
346 	DEVMETHOD_END
347 };
348 
349 static driver_t nfe_driver = {
350 	"nfe",
351 	nfe_methods,
352 	sizeof(struct nfe_softc)
353 };
354 
355 static devclass_t	nfe_devclass;
356 
357 DECLARE_DUMMY_MODULE(if_nfe);
358 MODULE_DEPEND(if_nfe, miibus, 1, 1, 1);
359 DRIVER_MODULE(if_nfe, pci, nfe_driver, nfe_devclass, NULL, NULL);
360 DRIVER_MODULE(miibus, nfe, miibus_driver, miibus_devclass, NULL, NULL);
361 
362 /*
363  * NOTE: NFE_WORDALIGN support is guesswork right now.
364  */
365 static int
366 nfe_probe(device_t dev)
367 {
368 	const struct nfe_dev *n;
369 	uint16_t vid, did;
370 
371 	vid = pci_get_vendor(dev);
372 	did = pci_get_device(dev);
373 	for (n = nfe_devices; n->desc != NULL; ++n) {
374 		if (vid == n->vid && did == n->did) {
375 			struct nfe_softc *sc = device_get_softc(dev);
376 
377 			switch (did) {
378 			case PCI_PRODUCT_NVIDIA_NFORCE_LAN:
379 			case PCI_PRODUCT_NVIDIA_NFORCE2_LAN:
380 			case PCI_PRODUCT_NVIDIA_NFORCE3_LAN1:
381 				sc->sc_caps = NFE_NO_PWRCTL |
382 					      NFE_FIX_EADDR;
383 				break;
384 			case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
385 			case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
386 			case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
387 			case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
388 				sc->sc_caps = NFE_JUMBO_SUP |
389 					      NFE_HW_CSUM |
390 					      NFE_NO_PWRCTL |
391 					      NFE_FIX_EADDR;
392 				break;
393 			case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
394 			case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
395 				sc->sc_caps = NFE_FIX_EADDR;
396 				/* FALL THROUGH */
397 			case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
398 			case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
399 			case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
400 			case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
401 			case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
402 			case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
403 			case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
404 			case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
405 			case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
406 			case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
407 			case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
408 			case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
409 				sc->sc_caps |= NFE_40BIT_ADDR;
410 				break;
411 			case PCI_PRODUCT_NVIDIA_CK804_LAN1:
412 			case PCI_PRODUCT_NVIDIA_CK804_LAN2:
413 			case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
414 			case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
415 				sc->sc_caps = NFE_JUMBO_SUP |
416 					      NFE_40BIT_ADDR |
417 					      NFE_HW_CSUM |
418 					      NFE_NO_PWRCTL |
419 					      NFE_FIX_EADDR;
420 				break;
421 			case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
422 			case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
423 			case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
424 			case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
425 				sc->sc_caps = NFE_JUMBO_SUP |
426 					      NFE_40BIT_ADDR;
427 				break;
428 			case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
429 			case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
430 				sc->sc_caps = NFE_JUMBO_SUP |
431 					      NFE_40BIT_ADDR |
432 					      NFE_HW_CSUM |
433 					      NFE_HW_VLAN |
434 					      NFE_FIX_EADDR;
435 				break;
436 			case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
437 			case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
438 			case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
439 			case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
440 			case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
441 			case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
442 			case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
443 			case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
444 				sc->sc_caps = NFE_40BIT_ADDR |
445 					      NFE_HW_CSUM |
446 					      NFE_WORDALIGN;
447 				break;
448 			}
449 
450 			device_set_desc(dev, n->desc);
451 			device_set_async_attach(dev, TRUE);
452 			return 0;
453 		}
454 	}
455 	return ENXIO;
456 }
457 
458 static int
459 nfe_attach(device_t dev)
460 {
461 	struct nfe_softc *sc = device_get_softc(dev);
462 	struct ifnet *ifp = &sc->arpcom.ac_if;
463 	struct sysctl_ctx_list *ctx;
464 	struct sysctl_oid *tree;
465 	uint8_t eaddr[ETHER_ADDR_LEN];
466 	bus_addr_t lowaddr;
467 	int error;
468 
469 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
470 	lwkt_serialize_init(&sc->sc_jbuf_serializer);
471 
472 	/*
473 	 * Initialize sysctl variables
474 	 */
475 	sc->sc_rx_ring_count = nfe_rx_ring_count;
476 	sc->sc_tx_ring_count = nfe_tx_ring_count;
477 	sc->sc_debug = nfe_debug;
478 	if (nfe_imtime < 0) {
479 		sc->sc_flags |= NFE_F_DYN_IM;
480 		sc->sc_imtime = -nfe_imtime;
481 	} else {
482 		sc->sc_imtime = nfe_imtime;
483 	}
484 	sc->sc_irq_enable = NFE_IRQ_ENABLE(sc);
485 
486 	sc->sc_mem_rid = PCIR_BAR(0);
487 
488 	if (sc->sc_caps & NFE_40BIT_ADDR)
489 		sc->rxtxctl_desc = NFE_RXTX_DESC_V3;
490 	else if (sc->sc_caps & NFE_JUMBO_SUP)
491 		sc->rxtxctl_desc = NFE_RXTX_DESC_V2;
492 
493 #ifndef BURN_BRIDGES
494 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
495 		uint32_t mem, irq;
496 
497 		mem = pci_read_config(dev, sc->sc_mem_rid, 4);
498 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
499 
500 		device_printf(dev, "chip is in D%d power mode "
501 		    "-- setting to D0\n", pci_get_powerstate(dev));
502 
503 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
504 
505 		pci_write_config(dev, sc->sc_mem_rid, mem, 4);
506 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
507 	}
508 #endif	/* !BURN_BRIDGE */
509 
510 	/* Enable bus mastering */
511 	pci_enable_busmaster(dev);
512 
513 	/* Allocate IO memory */
514 	sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
515 						&sc->sc_mem_rid, RF_ACTIVE);
516 	if (sc->sc_mem_res == NULL) {
517 		device_printf(dev, "could not allocate io memory\n");
518 		return ENXIO;
519 	}
520 	sc->sc_memh = rman_get_bushandle(sc->sc_mem_res);
521 	sc->sc_memt = rman_get_bustag(sc->sc_mem_res);
522 
523 	/* Allocate IRQ */
524 	sc->sc_irq_rid = 0;
525 	sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
526 						&sc->sc_irq_rid,
527 						RF_SHAREABLE | RF_ACTIVE);
528 	if (sc->sc_irq_res == NULL) {
529 		device_printf(dev, "could not allocate irq\n");
530 		error = ENXIO;
531 		goto fail;
532 	}
533 
534 	/* Disable WOL */
535 	NFE_WRITE(sc, NFE_WOL_CTL, 0);
536 
537 	if ((sc->sc_caps & NFE_NO_PWRCTL) == 0)
538 		nfe_powerup(dev);
539 
540 	nfe_get_macaddr(sc, eaddr);
541 
542 	/*
543 	 * Allocate top level DMA tag
544 	 */
545 	if (sc->sc_caps & NFE_40BIT_ADDR)
546 		lowaddr = NFE_BUS_SPACE_MAXADDR;
547 	else
548 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
549 	error = bus_dma_tag_create(NULL,	/* parent */
550 			1, 0,			/* alignment, boundary */
551 			lowaddr,		/* lowaddr */
552 			BUS_SPACE_MAXADDR,	/* highaddr */
553 			NULL, NULL,		/* filter, filterarg */
554 			BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
555 			0,			/* nsegments */
556 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
557 			0,			/* flags */
558 			&sc->sc_dtag);
559 	if (error) {
560 		device_printf(dev, "could not allocate parent dma tag\n");
561 		goto fail;
562 	}
563 
564 	/*
565 	 * Allocate Tx and Rx rings.
566 	 */
567 	error = nfe_alloc_tx_ring(sc, &sc->txq);
568 	if (error) {
569 		device_printf(dev, "could not allocate Tx ring\n");
570 		goto fail;
571 	}
572 
573 	error = nfe_alloc_rx_ring(sc, &sc->rxq);
574 	if (error) {
575 		device_printf(dev, "could not allocate Rx ring\n");
576 		goto fail;
577 	}
578 
579 	/*
580 	 * Create sysctl tree
581 	 */
582 	ctx = device_get_sysctl_ctx(dev);
583 	tree = device_get_sysctl_tree(dev);
584 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
585 			OID_AUTO, "imtimer", CTLTYPE_INT | CTLFLAG_RW,
586 			sc, 0, nfe_sysctl_imtime, "I",
587 			"Interrupt moderation time (usec).  "
588 			"0 to disable interrupt moderation.");
589 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
590 		       "rx_ring_count", CTLFLAG_RD, &sc->sc_rx_ring_count,
591 		       0, "RX ring count");
592 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
593 		       "tx_ring_count", CTLFLAG_RD, &sc->sc_tx_ring_count,
594 		       0, "TX ring count");
595 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
596 		       "debug", CTLFLAG_RW, &sc->sc_debug,
597 		       0, "control debugging printfs");
598 
599 	error = mii_phy_probe(dev, &sc->sc_miibus, nfe_ifmedia_upd,
600 			      nfe_ifmedia_sts);
601 	if (error) {
602 		device_printf(dev, "MII without any phy\n");
603 		goto fail;
604 	}
605 
606 	ifp->if_softc = sc;
607 	ifp->if_mtu = ETHERMTU;
608 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
609 	ifp->if_ioctl = nfe_ioctl;
610 	ifp->if_start = nfe_start;
611 #ifdef IFPOLL_ENABLE
612 	ifp->if_npoll = nfe_npoll;
613 #endif
614 	ifp->if_watchdog = nfe_watchdog;
615 	ifp->if_init = nfe_init;
616 	ifp->if_nmbclusters = sc->sc_rx_ring_count;
617 	ifq_set_maxlen(&ifp->if_snd, sc->sc_tx_ring_count);
618 	ifq_set_ready(&ifp->if_snd);
619 
620 	ifp->if_capabilities = IFCAP_VLAN_MTU;
621 
622 	if (sc->sc_caps & NFE_HW_VLAN)
623 		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
624 
625 #ifdef NFE_CSUM
626 	if (sc->sc_caps & NFE_HW_CSUM) {
627 		ifp->if_capabilities |= IFCAP_HWCSUM;
628 		ifp->if_hwassist = NFE_CSUM_FEATURES;
629 	}
630 #else
631 	sc->sc_caps &= ~NFE_HW_CSUM;
632 #endif
633 	ifp->if_capenable = ifp->if_capabilities;
634 
635 	callout_init(&sc->sc_tick_ch);
636 
637 	ether_ifattach(ifp, eaddr, NULL);
638 
639 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->sc_irq_res));
640 
641 #ifdef IFPOLL_ENABLE
642 	ifpoll_compat_setup(&sc->sc_npoll, ctx, (struct sysctl_oid *)tree,
643 	    device_get_unit(dev), ifp->if_serializer);
644 #endif
645 
646 	error = bus_setup_intr(dev, sc->sc_irq_res, INTR_MPSAFE, nfe_intr, sc,
647 			       &sc->sc_ih, ifp->if_serializer);
648 	if (error) {
649 		device_printf(dev, "could not setup intr\n");
650 		ether_ifdetach(ifp);
651 		goto fail;
652 	}
653 
654 	return 0;
655 fail:
656 	nfe_detach(dev);
657 	return error;
658 }
659 
660 static int
661 nfe_detach(device_t dev)
662 {
663 	struct nfe_softc *sc = device_get_softc(dev);
664 
665 	if (device_is_attached(dev)) {
666 		struct ifnet *ifp = &sc->arpcom.ac_if;
667 
668 		lwkt_serialize_enter(ifp->if_serializer);
669 		nfe_stop(sc);
670 		bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_ih);
671 		lwkt_serialize_exit(ifp->if_serializer);
672 
673 		ether_ifdetach(ifp);
674 	}
675 
676 	if (sc->sc_miibus != NULL)
677 		device_delete_child(dev, sc->sc_miibus);
678 	bus_generic_detach(dev);
679 
680 	if (sc->sc_irq_res != NULL) {
681 		bus_release_resource(dev, SYS_RES_IRQ, sc->sc_irq_rid,
682 				     sc->sc_irq_res);
683 	}
684 
685 	if (sc->sc_mem_res != NULL) {
686 		bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_mem_rid,
687 				     sc->sc_mem_res);
688 	}
689 
690 	nfe_free_tx_ring(sc, &sc->txq);
691 	nfe_free_rx_ring(sc, &sc->rxq);
692 	if (sc->sc_dtag != NULL)
693 		bus_dma_tag_destroy(sc->sc_dtag);
694 
695 	return 0;
696 }
697 
698 static void
699 nfe_shutdown(device_t dev)
700 {
701 	struct nfe_softc *sc = device_get_softc(dev);
702 	struct ifnet *ifp = &sc->arpcom.ac_if;
703 
704 	lwkt_serialize_enter(ifp->if_serializer);
705 	nfe_stop(sc);
706 	lwkt_serialize_exit(ifp->if_serializer);
707 }
708 
709 static int
710 nfe_suspend(device_t dev)
711 {
712 	struct nfe_softc *sc = device_get_softc(dev);
713 	struct ifnet *ifp = &sc->arpcom.ac_if;
714 
715 	lwkt_serialize_enter(ifp->if_serializer);
716 	nfe_stop(sc);
717 	lwkt_serialize_exit(ifp->if_serializer);
718 
719 	return 0;
720 }
721 
722 static int
723 nfe_resume(device_t dev)
724 {
725 	struct nfe_softc *sc = device_get_softc(dev);
726 	struct ifnet *ifp = &sc->arpcom.ac_if;
727 
728 	lwkt_serialize_enter(ifp->if_serializer);
729 	if (ifp->if_flags & IFF_UP)
730 		nfe_init(sc);
731 	lwkt_serialize_exit(ifp->if_serializer);
732 
733 	return 0;
734 }
735 
736 static void
737 nfe_miibus_statchg(device_t dev)
738 {
739 	struct nfe_softc *sc = device_get_softc(dev);
740 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
741 	uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
742 
743 	ASSERT_SERIALIZED(sc->arpcom.ac_if.if_serializer);
744 
745 	phy = NFE_READ(sc, NFE_PHY_IFACE);
746 	phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
747 
748 	seed = NFE_READ(sc, NFE_RNDSEED);
749 	seed &= ~NFE_SEED_MASK;
750 
751 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
752 		phy  |= NFE_PHY_HDX;	/* half-duplex */
753 		misc |= NFE_MISC1_HDX;
754 	}
755 
756 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
757 	case IFM_1000_T:	/* full-duplex only */
758 		link |= NFE_MEDIA_1000T;
759 		seed |= NFE_SEED_1000T;
760 		phy  |= NFE_PHY_1000T;
761 		break;
762 	case IFM_100_TX:
763 		link |= NFE_MEDIA_100TX;
764 		seed |= NFE_SEED_100TX;
765 		phy  |= NFE_PHY_100TX;
766 		break;
767 	case IFM_10_T:
768 		link |= NFE_MEDIA_10T;
769 		seed |= NFE_SEED_10T;
770 		break;
771 	}
772 
773 	NFE_WRITE(sc, NFE_RNDSEED, seed);	/* XXX: gigabit NICs only? */
774 
775 	NFE_WRITE(sc, NFE_PHY_IFACE, phy);
776 	NFE_WRITE(sc, NFE_MISC1, misc);
777 	NFE_WRITE(sc, NFE_LINKSPEED, link);
778 }
779 
780 static int
781 nfe_miibus_readreg(device_t dev, int phy, int reg)
782 {
783 	struct nfe_softc *sc = device_get_softc(dev);
784 	uint32_t val;
785 	int ntries;
786 
787 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
788 
789 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
790 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
791 		DELAY(100);
792 	}
793 
794 	NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
795 
796 	for (ntries = 0; ntries < 1000; ntries++) {
797 		DELAY(100);
798 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
799 			break;
800 	}
801 	if (ntries == 1000) {
802 		DPRINTFN(sc, 2, "timeout waiting for PHY %s\n", "");
803 		return 0;
804 	}
805 
806 	if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
807 		DPRINTFN(sc, 2, "could not read PHY %s\n", "");
808 		return 0;
809 	}
810 
811 	val = NFE_READ(sc, NFE_PHY_DATA);
812 	if (val != 0xffffffff && val != 0)
813 		sc->mii_phyaddr = phy;
814 
815 	DPRINTFN(sc, 2, "mii read phy %d reg 0x%x ret 0x%x\n", phy, reg, val);
816 
817 	return val;
818 }
819 
820 static void
821 nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
822 {
823 	struct nfe_softc *sc = device_get_softc(dev);
824 	uint32_t ctl;
825 	int ntries;
826 
827 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
828 
829 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
830 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
831 		DELAY(100);
832 	}
833 
834 	NFE_WRITE(sc, NFE_PHY_DATA, val);
835 	ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
836 	NFE_WRITE(sc, NFE_PHY_CTL, ctl);
837 
838 	for (ntries = 0; ntries < 1000; ntries++) {
839 		DELAY(100);
840 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
841 			break;
842 	}
843 
844 #ifdef NFE_DEBUG
845 	if (ntries == 1000)
846 		DPRINTFN(sc, 2, "could not write to PHY %s\n", "");
847 #endif
848 }
849 
850 #ifdef IFPOLL_ENABLE
851 
852 static void
853 nfe_npoll_compat(struct ifnet *ifp, void *arg __unused, int count __unused)
854 {
855 	struct nfe_softc *sc = ifp->if_softc;
856 
857 	ASSERT_SERIALIZED(ifp->if_serializer);
858 
859 	nfe_rxeof(sc);
860 	nfe_txeof(sc, 1);
861 }
862 
863 static void
864 nfe_disable_intrs(struct nfe_softc *sc)
865 {
866 	/* Disable interrupts */
867 	NFE_WRITE(sc, NFE_IRQ_MASK, 0);
868 	sc->sc_flags &= ~NFE_F_IRQ_TIMER;
869 	sc->sc_npoll.ifpc_stcount = 0;
870 }
871 
872 static void
873 nfe_npoll(struct ifnet *ifp, struct ifpoll_info *info)
874 {
875 	struct nfe_softc *sc = ifp->if_softc;
876 
877 	ASSERT_SERIALIZED(ifp->if_serializer);
878 
879 	if (info != NULL) {
880 		int cpuid = sc->sc_npoll.ifpc_cpuid;
881 
882 		info->ifpi_rx[cpuid].poll_func = nfe_npoll_compat;
883 		info->ifpi_rx[cpuid].arg = NULL;
884 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
885 
886 		if (ifp->if_flags & IFF_RUNNING)
887 			nfe_disable_intrs(sc);
888 		ifq_set_cpuid(&ifp->if_snd, cpuid);
889 	} else {
890 		if (ifp->if_flags & IFF_RUNNING)
891 			nfe_enable_intrs(sc);
892 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->sc_irq_res));
893 	}
894 }
895 
896 #endif	/* IFPOLL_ENABLE */
897 
898 static void
899 nfe_intr(void *arg)
900 {
901 	struct nfe_softc *sc = arg;
902 	struct ifnet *ifp = &sc->arpcom.ac_if;
903 	uint32_t r;
904 
905 	r = NFE_READ(sc, NFE_IRQ_STATUS);
906 	if (r == 0)
907 		return;	/* not for us */
908 	NFE_WRITE(sc, NFE_IRQ_STATUS, r);
909 
910 	if (sc->sc_rate_second != time_uptime) {
911 		/*
912 		 * Calculate sc_rate_avg - interrupts per second.
913 		 */
914 		sc->sc_rate_second = time_uptime;
915 		if (sc->sc_rate_avg < sc->sc_rate_acc)
916 			sc->sc_rate_avg = sc->sc_rate_acc;
917 		else
918 			sc->sc_rate_avg = (sc->sc_rate_avg * 3 +
919 					   sc->sc_rate_acc) / 4;
920 		sc->sc_rate_acc = 0;
921 	} else if (sc->sc_rate_avg < sc->sc_rate_acc) {
922 		/*
923 		 * Don't wait for a tick to roll over if we are taking
924 		 * a lot of interrupts.
925 		 */
926 		sc->sc_rate_avg = sc->sc_rate_acc;
927 	}
928 
929 	DPRINTFN(sc, 5, "%s: interrupt register %x\n", __func__, r);
930 
931 	if (r & NFE_IRQ_LINK) {
932 		NFE_READ(sc, NFE_PHY_STATUS);
933 		NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
934 		DPRINTF(sc, "link state changed %s\n", "");
935 	}
936 
937 	if (ifp->if_flags & IFF_RUNNING) {
938 		int ret;
939 		int rate;
940 
941 		/* check Rx ring */
942 		ret = nfe_rxeof(sc);
943 
944 		/* check Tx ring */
945 		ret |= nfe_txeof(sc, 1);
946 
947 		/* update the rate accumulator */
948 		if (ret)
949 			++sc->sc_rate_acc;
950 
951 		if (sc->sc_flags & NFE_F_DYN_IM) {
952 			rate = 1000000 / sc->sc_imtime;
953 			if ((sc->sc_flags & NFE_F_IRQ_TIMER) == 0 &&
954 			    sc->sc_rate_avg > rate) {
955 				/*
956 				 * Use the hardware timer to reduce the
957 				 * interrupt rate if the discrete interrupt
958 				 * rate has exceeded our threshold.
959 				 */
960 				NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_IMTIMER);
961 				sc->sc_flags |= NFE_F_IRQ_TIMER;
962 			} else if ((sc->sc_flags & NFE_F_IRQ_TIMER) &&
963 				   sc->sc_rate_avg <= rate) {
964 				/*
965 				 * Use discrete TX/RX interrupts if the rate
966 				 * has fallen below our threshold.
967 				 */
968 				NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_NOIMTIMER);
969 				sc->sc_flags &= ~NFE_F_IRQ_TIMER;
970 
971 				/*
972 				 * Recollect, mainly to avoid the possible race
973 				 * introduced by changing interrupt masks.
974 				 */
975 				nfe_rxeof(sc);
976 				nfe_txeof(sc, 1);
977 			}
978 		}
979 	}
980 }
981 
982 static int
983 nfe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
984 {
985 	struct nfe_softc *sc = ifp->if_softc;
986 	struct ifreq *ifr = (struct ifreq *)data;
987 	struct mii_data *mii;
988 	int error = 0, mask, jumbo_cap;
989 
990 	ASSERT_SERIALIZED(ifp->if_serializer);
991 
992 	switch (cmd) {
993 	case SIOCSIFMTU:
994 		if ((sc->sc_caps & NFE_JUMBO_SUP) && sc->rxq.jbuf != NULL)
995 			jumbo_cap = 1;
996 		else
997 			jumbo_cap = 0;
998 
999 		if ((jumbo_cap && ifr->ifr_mtu > NFE_JUMBO_MTU) ||
1000 		    (!jumbo_cap && ifr->ifr_mtu > ETHERMTU)) {
1001 			return EINVAL;
1002 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
1003 			ifp->if_mtu = ifr->ifr_mtu;
1004 			if (ifp->if_flags & IFF_RUNNING)
1005 				nfe_init(sc);
1006 		}
1007 		break;
1008 	case SIOCSIFFLAGS:
1009 		if (ifp->if_flags & IFF_UP) {
1010 			/*
1011 			 * If only the PROMISC or ALLMULTI flag changes, then
1012 			 * don't do a full re-init of the chip, just update
1013 			 * the Rx filter.
1014 			 */
1015 			if ((ifp->if_flags & IFF_RUNNING) &&
1016 			    ((ifp->if_flags ^ sc->sc_if_flags) &
1017 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1018 				nfe_setmulti(sc);
1019 			} else {
1020 				if (!(ifp->if_flags & IFF_RUNNING))
1021 					nfe_init(sc);
1022 			}
1023 		} else {
1024 			if (ifp->if_flags & IFF_RUNNING)
1025 				nfe_stop(sc);
1026 		}
1027 		sc->sc_if_flags = ifp->if_flags;
1028 		break;
1029 	case SIOCADDMULTI:
1030 	case SIOCDELMULTI:
1031 		if (ifp->if_flags & IFF_RUNNING)
1032 			nfe_setmulti(sc);
1033 		break;
1034 	case SIOCSIFMEDIA:
1035 	case SIOCGIFMEDIA:
1036 		mii = device_get_softc(sc->sc_miibus);
1037 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1038 		break;
1039         case SIOCSIFCAP:
1040 		mask = (ifr->ifr_reqcap ^ ifp->if_capenable) & IFCAP_HWCSUM;
1041 		if (mask && (ifp->if_capabilities & IFCAP_HWCSUM)) {
1042 			ifp->if_capenable ^= mask;
1043 			if (IFCAP_TXCSUM & ifp->if_capenable)
1044 				ifp->if_hwassist = NFE_CSUM_FEATURES;
1045 			else
1046 				ifp->if_hwassist = 0;
1047 
1048 			if (ifp->if_flags & IFF_RUNNING)
1049 				nfe_init(sc);
1050 		}
1051 		break;
1052 	default:
1053 		error = ether_ioctl(ifp, cmd, data);
1054 		break;
1055 	}
1056 	return error;
1057 }
1058 
1059 static int
1060 nfe_rxeof(struct nfe_softc *sc)
1061 {
1062 	struct ifnet *ifp = &sc->arpcom.ac_if;
1063 	struct nfe_rx_ring *ring = &sc->rxq;
1064 	int reap;
1065 
1066 	reap = 0;
1067 	for (;;) {
1068 		struct nfe_rx_data *data = &ring->data[ring->cur];
1069 		struct mbuf *m;
1070 		uint16_t flags;
1071 		int len, error;
1072 
1073 		if (sc->sc_caps & NFE_40BIT_ADDR) {
1074 			struct nfe_desc64 *desc64 = &ring->desc64[ring->cur];
1075 
1076 			flags = le16toh(desc64->flags);
1077 			len = le16toh(desc64->length) & 0x3fff;
1078 		} else {
1079 			struct nfe_desc32 *desc32 = &ring->desc32[ring->cur];
1080 
1081 			flags = le16toh(desc32->flags);
1082 			len = le16toh(desc32->length) & 0x3fff;
1083 		}
1084 
1085 		if (flags & NFE_RX_READY)
1086 			break;
1087 
1088 		reap = 1;
1089 
1090 		if ((sc->sc_caps & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
1091 			if (!(flags & NFE_RX_VALID_V1))
1092 				goto skip;
1093 
1094 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
1095 				flags &= ~NFE_RX_ERROR;
1096 				len--;	/* fix buffer length */
1097 			}
1098 		} else {
1099 			if (!(flags & NFE_RX_VALID_V2))
1100 				goto skip;
1101 
1102 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
1103 				flags &= ~NFE_RX_ERROR;
1104 				len--;	/* fix buffer length */
1105 			}
1106 		}
1107 
1108 		if (flags & NFE_RX_ERROR) {
1109 			IFNET_STAT_INC(ifp, ierrors, 1);
1110 			goto skip;
1111 		}
1112 
1113 		m = data->m;
1114 
1115 		if (sc->sc_flags & NFE_F_USE_JUMBO)
1116 			error = nfe_newbuf_jumbo(sc, ring, ring->cur, 0);
1117 		else
1118 			error = nfe_newbuf_std(sc, ring, ring->cur, 0);
1119 		if (error) {
1120 			IFNET_STAT_INC(ifp, ierrors, 1);
1121 			goto skip;
1122 		}
1123 
1124 		/* finalize mbuf */
1125 		m->m_pkthdr.len = m->m_len = len;
1126 		m->m_pkthdr.rcvif = ifp;
1127 
1128 		if ((ifp->if_capenable & IFCAP_RXCSUM) &&
1129 		    (flags & NFE_RX_CSUMOK)) {
1130 			if (flags & NFE_RX_IP_CSUMOK_V2) {
1131 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
1132 							  CSUM_IP_VALID;
1133 			}
1134 
1135 			if (flags &
1136 			    (NFE_RX_UDP_CSUMOK_V2 | NFE_RX_TCP_CSUMOK_V2)) {
1137 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
1138 							  CSUM_PSEUDO_HDR |
1139 							  CSUM_FRAG_NOT_CHECKED;
1140 				m->m_pkthdr.csum_data = 0xffff;
1141 			}
1142 		}
1143 
1144 		IFNET_STAT_INC(ifp, ipackets, 1);
1145 		ifp->if_input(ifp, m, NULL, -1);
1146 skip:
1147 		nfe_set_ready_rxdesc(sc, ring, ring->cur);
1148 		sc->rxq.cur = (sc->rxq.cur + 1) % sc->sc_rx_ring_count;
1149 	}
1150 	return reap;
1151 }
1152 
1153 static int
1154 nfe_txeof(struct nfe_softc *sc, int start)
1155 {
1156 	struct ifnet *ifp = &sc->arpcom.ac_if;
1157 	struct nfe_tx_ring *ring = &sc->txq;
1158 	struct nfe_tx_data *data = NULL;
1159 
1160 	while (ring->next != ring->cur) {
1161 		uint16_t flags;
1162 
1163 		if (sc->sc_caps & NFE_40BIT_ADDR)
1164 			flags = le16toh(ring->desc64[ring->next].flags);
1165 		else
1166 			flags = le16toh(ring->desc32[ring->next].flags);
1167 
1168 		if (flags & NFE_TX_VALID)
1169 			break;
1170 
1171 		data = &ring->data[ring->next];
1172 
1173 		if ((sc->sc_caps & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
1174 			if (!(flags & NFE_TX_LASTFRAG_V1) && data->m == NULL)
1175 				goto skip;
1176 
1177 			if ((flags & NFE_TX_ERROR_V1) != 0) {
1178 				if_printf(ifp, "tx v1 error 0x%4b\n", flags,
1179 					  NFE_V1_TXERR);
1180 				IFNET_STAT_INC(ifp, oerrors, 1);
1181 			} else {
1182 				IFNET_STAT_INC(ifp, opackets, 1);
1183 			}
1184 		} else {
1185 			if (!(flags & NFE_TX_LASTFRAG_V2) && data->m == NULL)
1186 				goto skip;
1187 
1188 			if ((flags & NFE_TX_ERROR_V2) != 0) {
1189 				if_printf(ifp, "tx v2 error 0x%4b\n", flags,
1190 					  NFE_V2_TXERR);
1191 				IFNET_STAT_INC(ifp, oerrors, 1);
1192 			} else {
1193 				IFNET_STAT_INC(ifp, opackets, 1);
1194 			}
1195 		}
1196 
1197 		if (data->m == NULL) {	/* should not get there */
1198 			if_printf(ifp,
1199 				  "last fragment bit w/o associated mbuf!\n");
1200 			goto skip;
1201 		}
1202 
1203 		/* last fragment of the mbuf chain transmitted */
1204 		bus_dmamap_unload(ring->data_tag, data->map);
1205 		m_freem(data->m);
1206 		data->m = NULL;
1207 skip:
1208 		ring->queued--;
1209 		KKASSERT(ring->queued >= 0);
1210 		ring->next = (ring->next + 1) % sc->sc_tx_ring_count;
1211 	}
1212 
1213 	if (sc->sc_tx_ring_count - ring->queued >=
1214 	    sc->sc_tx_spare + NFE_NSEG_RSVD)
1215 		ifq_clr_oactive(&ifp->if_snd);
1216 
1217 	if (ring->queued == 0)
1218 		ifp->if_timer = 0;
1219 
1220 	if (start && !ifq_is_empty(&ifp->if_snd))
1221 		if_devstart(ifp);
1222 
1223 	if (data != NULL)
1224 		return 1;
1225 	else
1226 		return 0;
1227 }
1228 
1229 static int
1230 nfe_encap(struct nfe_softc *sc, struct nfe_tx_ring *ring, struct mbuf *m0)
1231 {
1232 	bus_dma_segment_t segs[NFE_MAX_SCATTER];
1233 	struct nfe_tx_data *data, *data_map;
1234 	bus_dmamap_t map;
1235 	struct nfe_desc64 *desc64 = NULL;
1236 	struct nfe_desc32 *desc32 = NULL;
1237 	uint16_t flags = 0;
1238 	uint32_t vtag = 0;
1239 	int error, i, j, maxsegs, nsegs;
1240 
1241 	data = &ring->data[ring->cur];
1242 	map = data->map;
1243 	data_map = data;	/* Remember who owns the DMA map */
1244 
1245 	maxsegs = (sc->sc_tx_ring_count - ring->queued) - NFE_NSEG_RSVD;
1246 	if (maxsegs > NFE_MAX_SCATTER)
1247 		maxsegs = NFE_MAX_SCATTER;
1248 	KASSERT(maxsegs >= sc->sc_tx_spare,
1249 		("not enough segments %d,%d", maxsegs, sc->sc_tx_spare));
1250 
1251 	error = bus_dmamap_load_mbuf_defrag(ring->data_tag, map, &m0,
1252 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1253 	if (error)
1254 		goto back;
1255 	bus_dmamap_sync(ring->data_tag, map, BUS_DMASYNC_PREWRITE);
1256 
1257 	error = 0;
1258 
1259 	/* setup h/w VLAN tagging */
1260 	if (m0->m_flags & M_VLANTAG)
1261 		vtag = m0->m_pkthdr.ether_vlantag;
1262 
1263 	if (sc->arpcom.ac_if.if_capenable & IFCAP_TXCSUM) {
1264 		if (m0->m_pkthdr.csum_flags & CSUM_IP)
1265 			flags |= NFE_TX_IP_CSUM;
1266 		if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
1267 			flags |= NFE_TX_TCP_CSUM;
1268 	}
1269 
1270 	/*
1271 	 * XXX urm. somebody is unaware of how hardware works.  You
1272 	 * absolutely CANNOT set NFE_TX_VALID on the next descriptor in
1273 	 * the ring until the entire chain is actually *VALID*.  Otherwise
1274 	 * the hardware may encounter a partially initialized chain that
1275 	 * is marked as being ready to go when it in fact is not ready to
1276 	 * go.
1277 	 */
1278 
1279 	for (i = 0; i < nsegs; i++) {
1280 		j = (ring->cur + i) % sc->sc_tx_ring_count;
1281 		data = &ring->data[j];
1282 
1283 		if (sc->sc_caps & NFE_40BIT_ADDR) {
1284 			desc64 = &ring->desc64[j];
1285 			desc64->physaddr[0] =
1286 			    htole32(NFE_ADDR_HI(segs[i].ds_addr));
1287 			desc64->physaddr[1] =
1288 			    htole32(NFE_ADDR_LO(segs[i].ds_addr));
1289 			desc64->length = htole16(segs[i].ds_len - 1);
1290 			desc64->vtag = htole32(vtag);
1291 			desc64->flags = htole16(flags);
1292 		} else {
1293 			desc32 = &ring->desc32[j];
1294 			desc32->physaddr = htole32(segs[i].ds_addr);
1295 			desc32->length = htole16(segs[i].ds_len - 1);
1296 			desc32->flags = htole16(flags);
1297 		}
1298 
1299 		/* csum flags and vtag belong to the first fragment only */
1300 		flags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_CSUM);
1301 		vtag = 0;
1302 
1303 		ring->queued++;
1304 		KKASSERT(ring->queued <= sc->sc_tx_ring_count);
1305 	}
1306 
1307 	/* the whole mbuf chain has been DMA mapped, fix last descriptor */
1308 	if (sc->sc_caps & NFE_40BIT_ADDR) {
1309 		desc64->flags |= htole16(NFE_TX_LASTFRAG_V2);
1310 	} else {
1311 		if (sc->sc_caps & NFE_JUMBO_SUP)
1312 			flags = NFE_TX_LASTFRAG_V2;
1313 		else
1314 			flags = NFE_TX_LASTFRAG_V1;
1315 		desc32->flags |= htole16(flags);
1316 	}
1317 
1318 	/*
1319 	 * Set NFE_TX_VALID backwards so the hardware doesn't see the
1320 	 * whole mess until the first descriptor in the map is flagged.
1321 	 */
1322 	for (i = nsegs - 1; i >= 0; --i) {
1323 		j = (ring->cur + i) % sc->sc_tx_ring_count;
1324 		if (sc->sc_caps & NFE_40BIT_ADDR) {
1325 			desc64 = &ring->desc64[j];
1326 			desc64->flags |= htole16(NFE_TX_VALID);
1327 		} else {
1328 			desc32 = &ring->desc32[j];
1329 			desc32->flags |= htole16(NFE_TX_VALID);
1330 		}
1331 	}
1332 	ring->cur = (ring->cur + nsegs) % sc->sc_tx_ring_count;
1333 
1334 	/* Exchange DMA map */
1335 	data_map->map = data->map;
1336 	data->map = map;
1337 	data->m = m0;
1338 back:
1339 	if (error)
1340 		m_freem(m0);
1341 	return error;
1342 }
1343 
1344 static void
1345 nfe_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1346 {
1347 	struct nfe_softc *sc = ifp->if_softc;
1348 	struct nfe_tx_ring *ring = &sc->txq;
1349 	int count = 0, oactive = 0;
1350 	struct mbuf *m0;
1351 
1352 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1353 	ASSERT_SERIALIZED(ifp->if_serializer);
1354 
1355 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1356 		return;
1357 
1358 	for (;;) {
1359 		int error;
1360 
1361 		if (sc->sc_tx_ring_count - ring->queued <
1362 		    sc->sc_tx_spare + NFE_NSEG_RSVD) {
1363 			if (oactive) {
1364 				ifq_set_oactive(&ifp->if_snd);
1365 				break;
1366 			}
1367 
1368 			nfe_txeof(sc, 0);
1369 			oactive = 1;
1370 			continue;
1371 		}
1372 
1373 		m0 = ifq_dequeue(&ifp->if_snd);
1374 		if (m0 == NULL)
1375 			break;
1376 
1377 		ETHER_BPF_MTAP(ifp, m0);
1378 
1379 		error = nfe_encap(sc, ring, m0);
1380 		if (error) {
1381 			IFNET_STAT_INC(ifp, oerrors, 1);
1382 			if (error == EFBIG) {
1383 				if (oactive) {
1384 					ifq_set_oactive(&ifp->if_snd);
1385 					break;
1386 				}
1387 				nfe_txeof(sc, 0);
1388 				oactive = 1;
1389 			}
1390 			continue;
1391 		} else {
1392 			oactive = 0;
1393 		}
1394 		++count;
1395 
1396 		/*
1397 		 * NOTE:
1398 		 * `m0' may be freed in nfe_encap(), so
1399 		 * it should not be touched any more.
1400 		 */
1401 	}
1402 
1403 	if (count == 0)	/* nothing sent */
1404 		return;
1405 
1406 	/* Kick Tx */
1407 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1408 
1409 	/*
1410 	 * Set a timeout in case the chip goes out to lunch.
1411 	 */
1412 	ifp->if_timer = 5;
1413 }
1414 
1415 static void
1416 nfe_watchdog(struct ifnet *ifp)
1417 {
1418 	struct nfe_softc *sc = ifp->if_softc;
1419 
1420 	ASSERT_SERIALIZED(ifp->if_serializer);
1421 
1422 	if (ifp->if_flags & IFF_RUNNING) {
1423 		if_printf(ifp, "watchdog timeout - lost interrupt recovered\n");
1424 		nfe_txeof(sc, 1);
1425 		return;
1426 	}
1427 
1428 	if_printf(ifp, "watchdog timeout\n");
1429 
1430 	nfe_init(ifp->if_softc);
1431 
1432 	IFNET_STAT_INC(ifp, oerrors, 1);
1433 }
1434 
1435 static void
1436 nfe_init(void *xsc)
1437 {
1438 	struct nfe_softc *sc = xsc;
1439 	struct ifnet *ifp = &sc->arpcom.ac_if;
1440 	uint32_t tmp;
1441 	int error;
1442 
1443 	ASSERT_SERIALIZED(ifp->if_serializer);
1444 
1445 	nfe_stop(sc);
1446 
1447 	if ((sc->sc_caps & NFE_NO_PWRCTL) == 0)
1448 		nfe_mac_reset(sc);
1449 
1450 	/*
1451 	 * NOTE:
1452 	 * Switching between jumbo frames and normal frames should
1453 	 * be done _after_ nfe_stop() but _before_ nfe_init_rx_ring().
1454 	 */
1455 	if (ifp->if_mtu > ETHERMTU) {
1456 		sc->sc_flags |= NFE_F_USE_JUMBO;
1457 		sc->rxq.bufsz = NFE_JBYTES;
1458 		sc->sc_tx_spare = NFE_NSEG_SPARE_JUMBO;
1459 		if (bootverbose)
1460 			if_printf(ifp, "use jumbo frames\n");
1461 	} else {
1462 		sc->sc_flags &= ~NFE_F_USE_JUMBO;
1463 		sc->rxq.bufsz = MCLBYTES;
1464 		sc->sc_tx_spare = NFE_NSEG_SPARE;
1465 		if (bootverbose)
1466 			if_printf(ifp, "use non-jumbo frames\n");
1467 	}
1468 
1469 	error = nfe_init_tx_ring(sc, &sc->txq);
1470 	if (error) {
1471 		nfe_stop(sc);
1472 		return;
1473 	}
1474 
1475 	error = nfe_init_rx_ring(sc, &sc->rxq);
1476 	if (error) {
1477 		nfe_stop(sc);
1478 		return;
1479 	}
1480 
1481 	NFE_WRITE(sc, NFE_TX_POLL, 0);
1482 	NFE_WRITE(sc, NFE_STATUS, 0);
1483 
1484 	sc->rxtxctl = NFE_RXTX_BIT2 | sc->rxtxctl_desc;
1485 
1486 	if (ifp->if_capenable & IFCAP_RXCSUM)
1487 		sc->rxtxctl |= NFE_RXTX_RXCSUM;
1488 
1489 	/*
1490 	 * Although the adapter is capable of stripping VLAN tags from received
1491 	 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1492 	 * purpose.  This will be done in software by our network stack.
1493 	 */
1494 	if (sc->sc_caps & NFE_HW_VLAN)
1495 		sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1496 
1497 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1498 	DELAY(10);
1499 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1500 
1501 	if (sc->sc_caps & NFE_HW_VLAN)
1502 		NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1503 
1504 	NFE_WRITE(sc, NFE_SETUP_R6, 0);
1505 
1506 	/* set MAC address */
1507 	nfe_set_macaddr(sc, sc->arpcom.ac_enaddr);
1508 
1509 	/* tell MAC where rings are in memory */
1510 	if (sc->sc_caps & NFE_40BIT_ADDR) {
1511 		NFE_WRITE(sc, NFE_RX_RING_ADDR_HI,
1512 			  NFE_ADDR_HI(sc->rxq.physaddr));
1513 	}
1514 	NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, NFE_ADDR_LO(sc->rxq.physaddr));
1515 
1516 	if (sc->sc_caps & NFE_40BIT_ADDR) {
1517 		NFE_WRITE(sc, NFE_TX_RING_ADDR_HI,
1518 			  NFE_ADDR_HI(sc->txq.physaddr));
1519 	}
1520 	NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, NFE_ADDR_LO(sc->txq.physaddr));
1521 
1522 	NFE_WRITE(sc, NFE_RING_SIZE,
1523 	    (sc->sc_rx_ring_count - 1) << 16 |
1524 	    (sc->sc_tx_ring_count - 1));
1525 
1526 	NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1527 
1528 	/* force MAC to wakeup */
1529 	tmp = NFE_READ(sc, NFE_PWR_STATE);
1530 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1531 	DELAY(10);
1532 	tmp = NFE_READ(sc, NFE_PWR_STATE);
1533 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1534 
1535 	NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1536 	NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1537 	NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1538 
1539 	/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1540 	NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1541 
1542 	NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1543 
1544 	sc->rxtxctl &= ~NFE_RXTX_BIT2;
1545 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1546 	DELAY(10);
1547 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1548 
1549 	/* set Rx filter */
1550 	nfe_setmulti(sc);
1551 
1552 	nfe_ifmedia_upd(ifp);
1553 
1554 	/* enable Rx */
1555 	NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1556 
1557 	/* enable Tx */
1558 	NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1559 
1560 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1561 
1562 #ifdef IFPOLL_ENABLE
1563 	if (ifp->if_flags & IFF_NPOLLING)
1564 		nfe_disable_intrs(sc);
1565 	else
1566 #endif
1567 	nfe_enable_intrs(sc);
1568 
1569 	callout_reset(&sc->sc_tick_ch, hz, nfe_tick, sc);
1570 
1571 	ifp->if_flags |= IFF_RUNNING;
1572 	ifq_clr_oactive(&ifp->if_snd);
1573 
1574 	/*
1575 	 * If we had stuff in the tx ring before its all cleaned out now
1576 	 * so we are not going to get an interrupt, jump-start any pending
1577 	 * output.
1578 	 */
1579 	if (!ifq_is_empty(&ifp->if_snd))
1580 		if_devstart(ifp);
1581 }
1582 
1583 static void
1584 nfe_stop(struct nfe_softc *sc)
1585 {
1586 	struct ifnet *ifp = &sc->arpcom.ac_if;
1587 	uint32_t rxtxctl = sc->rxtxctl_desc | NFE_RXTX_BIT2;
1588 	int i;
1589 
1590 	ASSERT_SERIALIZED(ifp->if_serializer);
1591 
1592 	callout_stop(&sc->sc_tick_ch);
1593 
1594 	ifp->if_timer = 0;
1595 	ifp->if_flags &= ~IFF_RUNNING;
1596 	ifq_clr_oactive(&ifp->if_snd);
1597 	sc->sc_flags &= ~NFE_F_IRQ_TIMER;
1598 
1599 #define WAITMAX	50000
1600 
1601 	/*
1602 	 * Abort Tx
1603 	 */
1604 	NFE_WRITE(sc, NFE_TX_CTL, 0);
1605 	for (i = 0; i < WAITMAX; ++i) {
1606 		DELAY(100);
1607 		if ((NFE_READ(sc, NFE_TX_STATUS) & NFE_TX_STATUS_BUSY) == 0)
1608 			break;
1609 	}
1610 	if (i == WAITMAX)
1611 		if_printf(ifp, "can't stop TX\n");
1612 	DELAY(100);
1613 
1614 	/*
1615 	 * Disable Rx
1616 	 */
1617 	NFE_WRITE(sc, NFE_RX_CTL, 0);
1618 	for (i = 0; i < WAITMAX; ++i) {
1619 		DELAY(100);
1620 		if ((NFE_READ(sc, NFE_RX_STATUS) & NFE_RX_STATUS_BUSY) == 0)
1621 			break;
1622 	}
1623 	if (i == WAITMAX)
1624 		if_printf(ifp, "can't stop RX\n");
1625 	DELAY(100);
1626 
1627 #undef WAITMAX
1628 
1629 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | rxtxctl);
1630 	DELAY(10);
1631 	NFE_WRITE(sc, NFE_RXTX_CTL, rxtxctl);
1632 
1633 	/* Disable interrupts */
1634 	NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1635 
1636 	/* Reset Tx and Rx rings */
1637 	nfe_reset_tx_ring(sc, &sc->txq);
1638 	nfe_reset_rx_ring(sc, &sc->rxq);
1639 }
1640 
1641 static int
1642 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1643 {
1644 	int i, j, error, descsize;
1645 	bus_dmamem_t dmem;
1646 	void **desc;
1647 
1648 	if (sc->sc_caps & NFE_40BIT_ADDR) {
1649 		desc = (void *)&ring->desc64;
1650 		descsize = sizeof(struct nfe_desc64);
1651 	} else {
1652 		desc = (void *)&ring->desc32;
1653 		descsize = sizeof(struct nfe_desc32);
1654 	}
1655 
1656 	ring->bufsz = MCLBYTES;
1657 	ring->cur = ring->next = 0;
1658 
1659 	error = bus_dmamem_coherent(sc->sc_dtag, PAGE_SIZE, 0,
1660 				    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1661 				    sc->sc_rx_ring_count * descsize,
1662 				    BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
1663 	if (error) {
1664 		if_printf(&sc->arpcom.ac_if,
1665 			  "could not create RX desc ring\n");
1666 		return error;
1667 	}
1668 	ring->tag = dmem.dmem_tag;
1669 	ring->map = dmem.dmem_map;
1670 	*desc = dmem.dmem_addr;
1671 	ring->physaddr = dmem.dmem_busaddr;
1672 
1673 	if (sc->sc_caps & NFE_JUMBO_SUP) {
1674 		ring->jbuf =
1675 		kmalloc(sizeof(struct nfe_jbuf) * NFE_JPOOL_COUNT(sc),
1676 			M_DEVBUF, M_WAITOK | M_ZERO);
1677 
1678 		error = nfe_jpool_alloc(sc, ring);
1679 		if (error) {
1680 			if_printf(&sc->arpcom.ac_if,
1681 				  "could not allocate jumbo frames\n");
1682 			kfree(ring->jbuf, M_DEVBUF);
1683 			ring->jbuf = NULL;
1684 			/* Allow jumbo frame allocation to fail */
1685 		}
1686 	}
1687 
1688 	ring->data = kmalloc(sizeof(struct nfe_rx_data) * sc->sc_rx_ring_count,
1689 			     M_DEVBUF, M_WAITOK | M_ZERO);
1690 
1691 	error = bus_dma_tag_create(sc->sc_dtag, 1, 0,
1692 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1693 				   NULL, NULL,
1694 				   MCLBYTES, 1, MCLBYTES,
1695 				   BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
1696 				   &ring->data_tag);
1697 	if (error) {
1698 		if_printf(&sc->arpcom.ac_if,
1699 			  "could not create RX mbuf DMA tag\n");
1700 		return error;
1701 	}
1702 
1703 	/* Create a spare RX mbuf DMA map */
1704 	error = bus_dmamap_create(ring->data_tag, BUS_DMA_WAITOK,
1705 				  &ring->data_tmpmap);
1706 	if (error) {
1707 		if_printf(&sc->arpcom.ac_if,
1708 			  "could not create spare RX mbuf DMA map\n");
1709 		bus_dma_tag_destroy(ring->data_tag);
1710 		ring->data_tag = NULL;
1711 		return error;
1712 	}
1713 
1714 	for (i = 0; i < sc->sc_rx_ring_count; i++) {
1715 		error = bus_dmamap_create(ring->data_tag, BUS_DMA_WAITOK,
1716 					  &ring->data[i].map);
1717 		if (error) {
1718 			if_printf(&sc->arpcom.ac_if,
1719 				  "could not create %dth RX mbuf DMA mapn", i);
1720 			goto fail;
1721 		}
1722 	}
1723 	return 0;
1724 fail:
1725 	for (j = 0; j < i; ++j)
1726 		bus_dmamap_destroy(ring->data_tag, ring->data[i].map);
1727 	bus_dmamap_destroy(ring->data_tag, ring->data_tmpmap);
1728 	bus_dma_tag_destroy(ring->data_tag);
1729 	ring->data_tag = NULL;
1730 	return error;
1731 }
1732 
1733 static void
1734 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1735 {
1736 	int i;
1737 
1738 	for (i = 0; i < sc->sc_rx_ring_count; i++) {
1739 		struct nfe_rx_data *data = &ring->data[i];
1740 
1741 		if (data->m != NULL) {
1742 			if ((sc->sc_flags & NFE_F_USE_JUMBO) == 0)
1743 				bus_dmamap_unload(ring->data_tag, data->map);
1744 			m_freem(data->m);
1745 			data->m = NULL;
1746 		}
1747 	}
1748 
1749 	ring->cur = ring->next = 0;
1750 }
1751 
1752 static int
1753 nfe_init_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1754 {
1755 	int i;
1756 
1757 	for (i = 0; i < sc->sc_rx_ring_count; ++i) {
1758 		int error;
1759 
1760 		/* XXX should use a function pointer */
1761 		if (sc->sc_flags & NFE_F_USE_JUMBO)
1762 			error = nfe_newbuf_jumbo(sc, ring, i, 1);
1763 		else
1764 			error = nfe_newbuf_std(sc, ring, i, 1);
1765 		if (error) {
1766 			if_printf(&sc->arpcom.ac_if,
1767 				  "could not allocate RX buffer\n");
1768 			return error;
1769 		}
1770 		nfe_set_ready_rxdesc(sc, ring, i);
1771 	}
1772 	return 0;
1773 }
1774 
1775 static void
1776 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1777 {
1778 	if (ring->data_tag != NULL) {
1779 		struct nfe_rx_data *data;
1780 		int i;
1781 
1782 		for (i = 0; i < sc->sc_rx_ring_count; i++) {
1783 			data = &ring->data[i];
1784 
1785 			if (data->m != NULL) {
1786 				bus_dmamap_unload(ring->data_tag, data->map);
1787 				m_freem(data->m);
1788 			}
1789 			bus_dmamap_destroy(ring->data_tag, data->map);
1790 		}
1791 		bus_dmamap_destroy(ring->data_tag, ring->data_tmpmap);
1792 		bus_dma_tag_destroy(ring->data_tag);
1793 	}
1794 
1795 	nfe_jpool_free(sc, ring);
1796 
1797 	if (ring->jbuf != NULL)
1798 		kfree(ring->jbuf, M_DEVBUF);
1799 	if (ring->data != NULL)
1800 		kfree(ring->data, M_DEVBUF);
1801 
1802 	if (ring->tag != NULL) {
1803 		void *desc;
1804 
1805 		if (sc->sc_caps & NFE_40BIT_ADDR)
1806 			desc = ring->desc64;
1807 		else
1808 			desc = ring->desc32;
1809 
1810 		bus_dmamap_unload(ring->tag, ring->map);
1811 		bus_dmamem_free(ring->tag, desc, ring->map);
1812 		bus_dma_tag_destroy(ring->tag);
1813 	}
1814 }
1815 
1816 static struct nfe_jbuf *
1817 nfe_jalloc(struct nfe_softc *sc)
1818 {
1819 	struct ifnet *ifp = &sc->arpcom.ac_if;
1820 	struct nfe_jbuf *jbuf;
1821 
1822 	lwkt_serialize_enter(&sc->sc_jbuf_serializer);
1823 
1824 	jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1825 	if (jbuf != NULL) {
1826 		SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1827 		jbuf->inuse = 1;
1828 	} else {
1829 		if_printf(ifp, "no free jumbo buffer\n");
1830 	}
1831 
1832 	lwkt_serialize_exit(&sc->sc_jbuf_serializer);
1833 
1834 	return jbuf;
1835 }
1836 
1837 static void
1838 nfe_jfree(void *arg)
1839 {
1840 	struct nfe_jbuf *jbuf = arg;
1841 	struct nfe_softc *sc = jbuf->sc;
1842 	struct nfe_rx_ring *ring = jbuf->ring;
1843 
1844 	if (&ring->jbuf[jbuf->slot] != jbuf)
1845 		panic("%s: free wrong jumbo buffer", __func__);
1846 	else if (jbuf->inuse == 0)
1847 		panic("%s: jumbo buffer already freed", __func__);
1848 
1849 	lwkt_serialize_enter(&sc->sc_jbuf_serializer);
1850 	atomic_subtract_int(&jbuf->inuse, 1);
1851 	if (jbuf->inuse == 0)
1852 		SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1853 	lwkt_serialize_exit(&sc->sc_jbuf_serializer);
1854 }
1855 
1856 static void
1857 nfe_jref(void *arg)
1858 {
1859 	struct nfe_jbuf *jbuf = arg;
1860 	struct nfe_rx_ring *ring = jbuf->ring;
1861 
1862 	if (&ring->jbuf[jbuf->slot] != jbuf)
1863 		panic("%s: ref wrong jumbo buffer", __func__);
1864 	else if (jbuf->inuse == 0)
1865 		panic("%s: jumbo buffer already freed", __func__);
1866 
1867 	atomic_add_int(&jbuf->inuse, 1);
1868 }
1869 
1870 static int
1871 nfe_jpool_alloc(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1872 {
1873 	struct nfe_jbuf *jbuf;
1874 	bus_dmamem_t dmem;
1875 	bus_addr_t physaddr;
1876 	caddr_t buf;
1877 	int i, error;
1878 
1879 	/*
1880 	 * Allocate a big chunk of DMA'able memory.
1881 	 */
1882 	error = bus_dmamem_coherent(sc->sc_dtag, PAGE_SIZE, 0,
1883 				    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1884 				    NFE_JPOOL_SIZE(sc),
1885 				    BUS_DMA_WAITOK, &dmem);
1886 	if (error) {
1887 		if_printf(&sc->arpcom.ac_if,
1888 			  "could not create jumbo buffer\n");
1889 		return error;
1890 	}
1891 	ring->jtag = dmem.dmem_tag;
1892 	ring->jmap = dmem.dmem_map;
1893 	ring->jpool = dmem.dmem_addr;
1894 	physaddr = dmem.dmem_busaddr;
1895 
1896 	/* ..and split it into 9KB chunks */
1897 	SLIST_INIT(&ring->jfreelist);
1898 
1899 	buf = ring->jpool;
1900 	for (i = 0; i < NFE_JPOOL_COUNT(sc); i++) {
1901 		jbuf = &ring->jbuf[i];
1902 
1903 		jbuf->sc = sc;
1904 		jbuf->ring = ring;
1905 		jbuf->inuse = 0;
1906 		jbuf->slot = i;
1907 		jbuf->buf = buf;
1908 		jbuf->physaddr = physaddr;
1909 
1910 		SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1911 
1912 		buf += NFE_JBYTES;
1913 		physaddr += NFE_JBYTES;
1914 	}
1915 
1916 	return 0;
1917 }
1918 
1919 static void
1920 nfe_jpool_free(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1921 {
1922 	if (ring->jtag != NULL) {
1923 		bus_dmamap_unload(ring->jtag, ring->jmap);
1924 		bus_dmamem_free(ring->jtag, ring->jpool, ring->jmap);
1925 		bus_dma_tag_destroy(ring->jtag);
1926 	}
1927 }
1928 
1929 static int
1930 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1931 {
1932 	int i, j, error, descsize;
1933 	bus_dmamem_t dmem;
1934 	void **desc;
1935 
1936 	if (sc->sc_caps & NFE_40BIT_ADDR) {
1937 		desc = (void *)&ring->desc64;
1938 		descsize = sizeof(struct nfe_desc64);
1939 	} else {
1940 		desc = (void *)&ring->desc32;
1941 		descsize = sizeof(struct nfe_desc32);
1942 	}
1943 
1944 	ring->queued = 0;
1945 	ring->cur = ring->next = 0;
1946 
1947 	error = bus_dmamem_coherent(sc->sc_dtag, PAGE_SIZE, 0,
1948 				    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1949 				    sc->sc_tx_ring_count * descsize,
1950 				    BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
1951 	if (error) {
1952 		if_printf(&sc->arpcom.ac_if,
1953 			  "could not create TX desc ring\n");
1954 		return error;
1955 	}
1956 	ring->tag = dmem.dmem_tag;
1957 	ring->map = dmem.dmem_map;
1958 	*desc = dmem.dmem_addr;
1959 	ring->physaddr = dmem.dmem_busaddr;
1960 
1961 	ring->data = kmalloc(sizeof(struct nfe_tx_data) * sc->sc_tx_ring_count,
1962 			     M_DEVBUF, M_WAITOK | M_ZERO);
1963 
1964 	error = bus_dma_tag_create(sc->sc_dtag, 1, 0,
1965 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1966 			NULL, NULL,
1967 			NFE_JBYTES, NFE_MAX_SCATTER, MCLBYTES,
1968 			BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1969 			&ring->data_tag);
1970 	if (error) {
1971 		if_printf(&sc->arpcom.ac_if,
1972 			  "could not create TX buf DMA tag\n");
1973 		return error;
1974 	}
1975 
1976 	for (i = 0; i < sc->sc_tx_ring_count; i++) {
1977 		error = bus_dmamap_create(ring->data_tag,
1978 				BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1979 				&ring->data[i].map);
1980 		if (error) {
1981 			if_printf(&sc->arpcom.ac_if,
1982 				  "could not create %dth TX buf DMA map\n", i);
1983 			goto fail;
1984 		}
1985 	}
1986 
1987 	return 0;
1988 fail:
1989 	for (j = 0; j < i; ++j)
1990 		bus_dmamap_destroy(ring->data_tag, ring->data[i].map);
1991 	bus_dma_tag_destroy(ring->data_tag);
1992 	ring->data_tag = NULL;
1993 	return error;
1994 }
1995 
1996 static void
1997 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1998 {
1999 	int i;
2000 
2001 	for (i = 0; i < sc->sc_tx_ring_count; i++) {
2002 		struct nfe_tx_data *data = &ring->data[i];
2003 
2004 		if (sc->sc_caps & NFE_40BIT_ADDR)
2005 			ring->desc64[i].flags = 0;
2006 		else
2007 			ring->desc32[i].flags = 0;
2008 
2009 		if (data->m != NULL) {
2010 			bus_dmamap_unload(ring->data_tag, data->map);
2011 			m_freem(data->m);
2012 			data->m = NULL;
2013 		}
2014 	}
2015 
2016 	ring->queued = 0;
2017 	ring->cur = ring->next = 0;
2018 }
2019 
2020 static int
2021 nfe_init_tx_ring(struct nfe_softc *sc __unused,
2022 		 struct nfe_tx_ring *ring __unused)
2023 {
2024 	return 0;
2025 }
2026 
2027 static void
2028 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
2029 {
2030 	if (ring->data_tag != NULL) {
2031 		struct nfe_tx_data *data;
2032 		int i;
2033 
2034 		for (i = 0; i < sc->sc_tx_ring_count; ++i) {
2035 			data = &ring->data[i];
2036 
2037 			if (data->m != NULL) {
2038 				bus_dmamap_unload(ring->data_tag, data->map);
2039 				m_freem(data->m);
2040 			}
2041 			bus_dmamap_destroy(ring->data_tag, data->map);
2042 		}
2043 
2044 		bus_dma_tag_destroy(ring->data_tag);
2045 	}
2046 
2047 	if (ring->data != NULL)
2048 		kfree(ring->data, M_DEVBUF);
2049 
2050 	if (ring->tag != NULL) {
2051 		void *desc;
2052 
2053 		if (sc->sc_caps & NFE_40BIT_ADDR)
2054 			desc = ring->desc64;
2055 		else
2056 			desc = ring->desc32;
2057 
2058 		bus_dmamap_unload(ring->tag, ring->map);
2059 		bus_dmamem_free(ring->tag, desc, ring->map);
2060 		bus_dma_tag_destroy(ring->tag);
2061 	}
2062 }
2063 
2064 static int
2065 nfe_ifmedia_upd(struct ifnet *ifp)
2066 {
2067 	struct nfe_softc *sc = ifp->if_softc;
2068 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
2069 
2070 	ASSERT_SERIALIZED(ifp->if_serializer);
2071 
2072 	if (mii->mii_instance != 0) {
2073 		struct mii_softc *miisc;
2074 
2075 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2076 			mii_phy_reset(miisc);
2077 	}
2078 	mii_mediachg(mii);
2079 
2080 	return 0;
2081 }
2082 
2083 static void
2084 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2085 {
2086 	struct nfe_softc *sc = ifp->if_softc;
2087 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
2088 
2089 	ASSERT_SERIALIZED(ifp->if_serializer);
2090 
2091 	mii_pollstat(mii);
2092 	ifmr->ifm_status = mii->mii_media_status;
2093 	ifmr->ifm_active = mii->mii_media_active;
2094 }
2095 
2096 static void
2097 nfe_setmulti(struct nfe_softc *sc)
2098 {
2099 	struct ifnet *ifp = &sc->arpcom.ac_if;
2100 	struct ifmultiaddr *ifma;
2101 	uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
2102 	uint32_t filter = NFE_RXFILTER_MAGIC;
2103 	int i;
2104 
2105 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
2106 		bzero(addr, ETHER_ADDR_LEN);
2107 		bzero(mask, ETHER_ADDR_LEN);
2108 		goto done;
2109 	}
2110 
2111 	bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
2112 	bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
2113 
2114 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2115 		caddr_t maddr;
2116 
2117 		if (ifma->ifma_addr->sa_family != AF_LINK)
2118 			continue;
2119 
2120 		maddr = LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
2121 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
2122 			addr[i] &= maddr[i];
2123 			mask[i] &= ~maddr[i];
2124 		}
2125 	}
2126 
2127 	for (i = 0; i < ETHER_ADDR_LEN; i++)
2128 		mask[i] |= addr[i];
2129 
2130 done:
2131 	addr[0] |= 0x01;	/* make sure multicast bit is set */
2132 
2133 	NFE_WRITE(sc, NFE_MULTIADDR_HI,
2134 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
2135 	NFE_WRITE(sc, NFE_MULTIADDR_LO,
2136 	    addr[5] <<  8 | addr[4]);
2137 	NFE_WRITE(sc, NFE_MULTIMASK_HI,
2138 	    mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
2139 	NFE_WRITE(sc, NFE_MULTIMASK_LO,
2140 	    mask[5] <<  8 | mask[4]);
2141 
2142 	filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
2143 	NFE_WRITE(sc, NFE_RXFILTER, filter);
2144 }
2145 
2146 static void
2147 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
2148 {
2149 	uint32_t lo, hi;
2150 
2151 	lo = NFE_READ(sc, NFE_MACADDR_LO);
2152 	hi = NFE_READ(sc, NFE_MACADDR_HI);
2153 	if (sc->sc_caps & NFE_FIX_EADDR) {
2154 		addr[0] = (lo >> 8) & 0xff;
2155 		addr[1] = (lo & 0xff);
2156 
2157 		addr[2] = (hi >> 24) & 0xff;
2158 		addr[3] = (hi >> 16) & 0xff;
2159 		addr[4] = (hi >>  8) & 0xff;
2160 		addr[5] = (hi & 0xff);
2161 	} else {
2162 		addr[0] = (hi & 0xff);
2163 		addr[1] = (hi >>  8) & 0xff;
2164 		addr[2] = (hi >> 16) & 0xff;
2165 		addr[3] = (hi >> 24) & 0xff;
2166 
2167 		addr[4] = (lo & 0xff);
2168 		addr[5] = (lo >>  8) & 0xff;
2169 	}
2170 }
2171 
2172 static void
2173 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
2174 {
2175 	NFE_WRITE(sc, NFE_MACADDR_LO,
2176 	    addr[5] <<  8 | addr[4]);
2177 	NFE_WRITE(sc, NFE_MACADDR_HI,
2178 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
2179 }
2180 
2181 static void
2182 nfe_tick(void *arg)
2183 {
2184 	struct nfe_softc *sc = arg;
2185 	struct ifnet *ifp = &sc->arpcom.ac_if;
2186 	struct mii_data *mii = device_get_softc(sc->sc_miibus);
2187 
2188 	lwkt_serialize_enter(ifp->if_serializer);
2189 
2190 	mii_tick(mii);
2191 	callout_reset(&sc->sc_tick_ch, hz, nfe_tick, sc);
2192 
2193 	lwkt_serialize_exit(ifp->if_serializer);
2194 }
2195 
2196 static int
2197 nfe_newbuf_std(struct nfe_softc *sc, struct nfe_rx_ring *ring, int idx,
2198 	       int wait)
2199 {
2200 	struct nfe_rx_data *data = &ring->data[idx];
2201 	bus_dma_segment_t seg;
2202 	bus_dmamap_t map;
2203 	struct mbuf *m;
2204 	int nsegs, error;
2205 
2206 	m = m_getcl(wait ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
2207 	if (m == NULL)
2208 		return ENOBUFS;
2209 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2210 
2211 	/*
2212 	 * Aligning the payload improves access times.
2213 	 */
2214 	if (sc->sc_caps & NFE_WORDALIGN)
2215 		m_adj(m, ETHER_ALIGN);
2216 
2217 	error = bus_dmamap_load_mbuf_segment(ring->data_tag, ring->data_tmpmap,
2218 			m, &seg, 1, &nsegs, BUS_DMA_NOWAIT);
2219 	if (error) {
2220 		m_freem(m);
2221 		if (wait) {
2222 			if_printf(&sc->arpcom.ac_if,
2223 				  "could map RX mbuf %d\n", error);
2224 		}
2225 		return error;
2226 	}
2227 
2228 	if (data->m != NULL) {
2229 		/* Sync and unload originally mapped mbuf */
2230 		bus_dmamap_sync(ring->data_tag, data->map,
2231 				BUS_DMASYNC_POSTREAD);
2232 		bus_dmamap_unload(ring->data_tag, data->map);
2233 	}
2234 
2235 	/* Swap this DMA map with tmp DMA map */
2236 	map = data->map;
2237 	data->map = ring->data_tmpmap;
2238 	ring->data_tmpmap = map;
2239 
2240 	/* Caller is assumed to have collected the old mbuf */
2241 	data->m = m;
2242 
2243 	nfe_set_paddr_rxdesc(sc, ring, idx, seg.ds_addr);
2244 	return 0;
2245 }
2246 
2247 static int
2248 nfe_newbuf_jumbo(struct nfe_softc *sc, struct nfe_rx_ring *ring, int idx,
2249 		 int wait)
2250 {
2251 	struct nfe_rx_data *data = &ring->data[idx];
2252 	struct nfe_jbuf *jbuf;
2253 	struct mbuf *m;
2254 
2255 	MGETHDR(m, wait ? M_WAITOK : M_NOWAIT, MT_DATA);
2256 	if (m == NULL)
2257 		return ENOBUFS;
2258 
2259 	jbuf = nfe_jalloc(sc);
2260 	if (jbuf == NULL) {
2261 		m_freem(m);
2262 		if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
2263 		    "-- packet dropped!\n");
2264 		return ENOBUFS;
2265 	}
2266 
2267 	m->m_ext.ext_arg = jbuf;
2268 	m->m_ext.ext_buf = jbuf->buf;
2269 	m->m_ext.ext_free = nfe_jfree;
2270 	m->m_ext.ext_ref = nfe_jref;
2271 	m->m_ext.ext_size = NFE_JBYTES;
2272 
2273 	m->m_data = m->m_ext.ext_buf;
2274 	m->m_flags |= M_EXT;
2275 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2276 
2277 	/*
2278 	 * Aligning the payload improves access times.
2279 	 */
2280 	if (sc->sc_caps & NFE_WORDALIGN)
2281 		m_adj(m, ETHER_ALIGN);
2282 
2283 	/* Caller is assumed to have collected the old mbuf */
2284 	data->m = m;
2285 
2286 	nfe_set_paddr_rxdesc(sc, ring, idx, jbuf->physaddr);
2287 	return 0;
2288 }
2289 
2290 static void
2291 nfe_set_paddr_rxdesc(struct nfe_softc *sc, struct nfe_rx_ring *ring, int idx,
2292 		     bus_addr_t physaddr)
2293 {
2294 	if (sc->sc_caps & NFE_40BIT_ADDR) {
2295 		struct nfe_desc64 *desc64 = &ring->desc64[idx];
2296 
2297 		desc64->physaddr[0] = htole32(NFE_ADDR_HI(physaddr));
2298 		desc64->physaddr[1] = htole32(NFE_ADDR_LO(physaddr));
2299 	} else {
2300 		struct nfe_desc32 *desc32 = &ring->desc32[idx];
2301 
2302 		desc32->physaddr = htole32(physaddr);
2303 	}
2304 }
2305 
2306 static void
2307 nfe_set_ready_rxdesc(struct nfe_softc *sc, struct nfe_rx_ring *ring, int idx)
2308 {
2309 	if (sc->sc_caps & NFE_40BIT_ADDR) {
2310 		struct nfe_desc64 *desc64 = &ring->desc64[idx];
2311 
2312 		desc64->length = htole16(ring->bufsz);
2313 		desc64->flags = htole16(NFE_RX_READY);
2314 	} else {
2315 		struct nfe_desc32 *desc32 = &ring->desc32[idx];
2316 
2317 		desc32->length = htole16(ring->bufsz);
2318 		desc32->flags = htole16(NFE_RX_READY);
2319 	}
2320 }
2321 
2322 static int
2323 nfe_sysctl_imtime(SYSCTL_HANDLER_ARGS)
2324 {
2325 	struct nfe_softc *sc = arg1;
2326 	struct ifnet *ifp = &sc->arpcom.ac_if;
2327 	uint32_t flags;
2328 	int error, v;
2329 
2330 	lwkt_serialize_enter(ifp->if_serializer);
2331 
2332 	flags = sc->sc_flags & ~NFE_F_DYN_IM;
2333 	v = sc->sc_imtime;
2334 	if (sc->sc_flags & NFE_F_DYN_IM)
2335 		v = -v;
2336 
2337 	error = sysctl_handle_int(oidp, &v, 0, req);
2338 	if (error || req->newptr == NULL)
2339 		goto back;
2340 
2341 	if (v < 0) {
2342 		flags |= NFE_F_DYN_IM;
2343 		v = -v;
2344 	}
2345 
2346 	if (v != sc->sc_imtime || (flags ^ sc->sc_flags)) {
2347 		if (NFE_IMTIME(v) == 0)
2348 			v = 0;
2349 		sc->sc_imtime = v;
2350 		sc->sc_flags = flags;
2351 		sc->sc_irq_enable = NFE_IRQ_ENABLE(sc);
2352 
2353 		if ((ifp->if_flags & (IFF_NPOLLING | IFF_RUNNING))
2354 		    == IFF_RUNNING) {
2355 			nfe_enable_intrs(sc);
2356 		}
2357 	}
2358 back:
2359 	lwkt_serialize_exit(ifp->if_serializer);
2360 	return error;
2361 }
2362 
2363 static void
2364 nfe_powerup(device_t dev)
2365 {
2366 	struct nfe_softc *sc = device_get_softc(dev);
2367 	uint32_t pwr_state;
2368 	uint16_t did;
2369 
2370 	/*
2371 	 * Bring MAC and PHY out of low power state
2372 	 */
2373 
2374 	pwr_state = NFE_READ(sc, NFE_PWR_STATE2) & ~NFE_PWRUP_MASK;
2375 
2376 	did = pci_get_device(dev);
2377 	if ((did == PCI_PRODUCT_NVIDIA_MCP51_LAN1 ||
2378 	     did == PCI_PRODUCT_NVIDIA_MCP51_LAN2) &&
2379 	    pci_get_revid(dev) >= 0xa3)
2380 		pwr_state |= NFE_PWRUP_REV_A3;
2381 
2382 	NFE_WRITE(sc, NFE_PWR_STATE2, pwr_state);
2383 }
2384 
2385 static void
2386 nfe_mac_reset(struct nfe_softc *sc)
2387 {
2388 	uint32_t rxtxctl = sc->rxtxctl_desc | NFE_RXTX_BIT2;
2389 	uint32_t macaddr_hi, macaddr_lo, tx_poll;
2390 
2391 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | rxtxctl);
2392 
2393 	/* Save several registers for later restoration */
2394 	macaddr_hi = NFE_READ(sc, NFE_MACADDR_HI);
2395 	macaddr_lo = NFE_READ(sc, NFE_MACADDR_LO);
2396 	tx_poll = NFE_READ(sc, NFE_TX_POLL);
2397 
2398 	NFE_WRITE(sc, NFE_MAC_RESET, NFE_RESET_ASSERT);
2399 	DELAY(100);
2400 
2401 	NFE_WRITE(sc, NFE_MAC_RESET, 0);
2402 	DELAY(100);
2403 
2404 	/* Restore saved registers */
2405 	NFE_WRITE(sc, NFE_MACADDR_HI, macaddr_hi);
2406 	NFE_WRITE(sc, NFE_MACADDR_LO, macaddr_lo);
2407 	NFE_WRITE(sc, NFE_TX_POLL, tx_poll);
2408 
2409 	NFE_WRITE(sc, NFE_RXTX_CTL, rxtxctl);
2410 }
2411 
2412 static void
2413 nfe_enable_intrs(struct nfe_softc *sc)
2414 {
2415 	/*
2416 	 * NFE_IMTIMER generates a periodic interrupt via NFE_IRQ_TIMER.
2417 	 * It is unclear how wide the timer is.  Base programming does
2418 	 * not seem to effect NFE_IRQ_TX_DONE or NFE_IRQ_RX_DONE so
2419 	 * we don't get any interrupt moderation.  TX moderation is
2420 	 * possible by using the timer interrupt instead of TX_DONE.
2421 	 *
2422 	 * It is unclear whether there are other bits that can be
2423 	 * set to make the NFE device actually do interrupt moderation
2424 	 * on the RX side.
2425 	 *
2426 	 * For now set a 128uS interval as a placemark, but don't use
2427 	 * the timer.
2428 	 */
2429 	if (sc->sc_imtime == 0)
2430 		NFE_WRITE(sc, NFE_IMTIMER, NFE_IMTIME_DEFAULT);
2431 	else
2432 		NFE_WRITE(sc, NFE_IMTIMER, NFE_IMTIME(sc->sc_imtime));
2433 
2434 	/* Enable interrupts */
2435 	NFE_WRITE(sc, NFE_IRQ_MASK, sc->sc_irq_enable);
2436 
2437 	if (sc->sc_irq_enable & NFE_IRQ_TIMER)
2438 		sc->sc_flags |= NFE_F_IRQ_TIMER;
2439 	else
2440 		sc->sc_flags &= ~NFE_F_IRQ_TIMER;
2441 }
2442