xref: /dragonfly/sys/dev/netif/nge/if_nge.c (revision 267c04fd)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/nge/if_nge.c,v 1.13.2.13 2003/02/05 22:03:57 mbr Exp $
34  */
35 
36 /*
37  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
38  * for FreeBSD. Datasheets are available from:
39  *
40  * http://www.national.com/ds/DP/DP83820.pdf
41  * http://www.national.com/ds/DP/DP83821.pdf
42  *
43  * These chips are used on several low cost gigabit ethernet NICs
44  * sold by D-Link, Addtron, SMC and Asante. Both parts are
45  * virtually the same, except the 83820 is a 64-bit/32-bit part,
46  * while the 83821 is 32-bit only.
47  *
48  * Many cards also use National gigE transceivers, such as the
49  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
50  * contains a full register description that applies to all of these
51  * components:
52  *
53  * http://www.national.com/ds/DP/DP83861.pdf
54  *
55  * Written by Bill Paul <wpaul@bsdi.com>
56  * BSDi Open Source Solutions
57  */
58 
59 /*
60  * The NatSemi DP83820 and 83821 controllers are enhanced versions
61  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
62  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
63  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
64  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
65  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
66  * matching buffers, one perfect address filter buffer and interrupt
67  * moderation. The 83820 supports both 64-bit and 32-bit addressing
68  * and data transfers: the 64-bit support can be toggled on or off
69  * via software. This affects the size of certain fields in the DMA
70  * descriptors.
71  *
72  * There are two bugs/misfeatures in the 83820/83821 that I have
73  * discovered so far:
74  *
75  * - Receive buffers must be aligned on 64-bit boundaries, which means
76  *   you must resort to copying data in order to fix up the payload
77  *   alignment.
78  *
79  * - In order to transmit jumbo frames larger than 8170 bytes, you have
80  *   to turn off transmit checksum offloading, because the chip can't
81  *   compute the checksum on an outgoing frame unless it fits entirely
82  *   within the TX FIFO, which is only 8192 bytes in size. If you have
83  *   TX checksum offload enabled and you transmit attempt to transmit a
84  *   frame larger than 8170 bytes, the transmitter will wedge.
85  *
86  * To work around the latter problem, TX checksum offload is disabled
87  * if the user selects an MTU larger than 8152 (8170 - 18).
88  */
89 
90 #include "opt_ifpoll.h"
91 
92 #include <sys/param.h>
93 #include <sys/systm.h>
94 #include <sys/sockio.h>
95 #include <sys/mbuf.h>
96 #include <sys/malloc.h>
97 #include <sys/kernel.h>
98 #include <sys/interrupt.h>
99 #include <sys/socket.h>
100 #include <sys/serialize.h>
101 #include <sys/bus.h>
102 #include <sys/rman.h>
103 #include <sys/thread2.h>
104 
105 #include <net/if.h>
106 #include <net/ifq_var.h>
107 #include <net/if_arp.h>
108 #include <net/ethernet.h>
109 #include <net/if_dl.h>
110 #include <net/if_media.h>
111 #include <net/if_poll.h>
112 #include <net/if_types.h>
113 #include <net/vlan/if_vlan_var.h>
114 #include <net/vlan/if_vlan_ether.h>
115 
116 #include <net/bpf.h>
117 
118 #include <vm/vm.h>              /* for vtophys */
119 #include <vm/pmap.h>            /* for vtophys */
120 
121 #include <dev/netif/mii_layer/mii.h>
122 #include <dev/netif/mii_layer/miivar.h>
123 
124 #include "pcidevs.h"
125 #include <bus/pci/pcireg.h>
126 #include <bus/pci/pcivar.h>
127 
128 #define NGE_USEIOSPACE
129 
130 #include "if_ngereg.h"
131 
132 
133 /* "controller miibus0" required.  See GENERIC if you get errors here. */
134 #include "miibus_if.h"
135 
136 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
137 
138 /*
139  * Various supported device vendors/types and their names.
140  */
141 static struct nge_type nge_devs[] = {
142 	{ PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
143 	    "National Semiconductor Gigabit Ethernet" },
144 	{ 0, 0, NULL }
145 };
146 
147 static int	nge_probe(device_t);
148 static int	nge_attach(device_t);
149 static int	nge_detach(device_t);
150 
151 static int	nge_alloc_jumbo_mem(struct nge_softc *);
152 static struct nge_jslot
153 		*nge_jalloc(struct nge_softc *);
154 static void	nge_jfree(void *);
155 static void	nge_jref(void *);
156 
157 static int	nge_newbuf(struct nge_softc *, struct nge_desc *,
158 			   struct mbuf *);
159 static int	nge_encap(struct nge_softc *, struct mbuf *, uint32_t *);
160 static void	nge_rxeof(struct nge_softc *);
161 static void	nge_txeof(struct nge_softc *);
162 static void	nge_intr(void *);
163 static void	nge_tick(void *);
164 static void	nge_start(struct ifnet *, struct ifaltq_subque *);
165 static int	nge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
166 static void	nge_init(void *);
167 static void	nge_stop(struct nge_softc *);
168 static void	nge_watchdog(struct ifnet *);
169 static void	nge_shutdown(device_t);
170 static int	nge_ifmedia_upd(struct ifnet *);
171 static void	nge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
172 
173 static void	nge_delay(struct nge_softc *);
174 static void	nge_eeprom_idle(struct nge_softc *);
175 static void	nge_eeprom_putbyte(struct nge_softc *, int);
176 static void	nge_eeprom_getword(struct nge_softc *, int, uint16_t *);
177 static void	nge_read_eeprom(struct nge_softc *, void *, int, int);
178 
179 static void	nge_mii_sync(struct nge_softc *);
180 static void	nge_mii_send(struct nge_softc *, uint32_t, int);
181 static int	nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
182 static int	nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
183 
184 static int	nge_miibus_readreg(device_t, int, int);
185 static int	nge_miibus_writereg(device_t, int, int, int);
186 static void	nge_miibus_statchg(device_t);
187 
188 static void	nge_setmulti(struct nge_softc *);
189 static void	nge_reset(struct nge_softc *);
190 static int	nge_list_rx_init(struct nge_softc *);
191 static int	nge_list_tx_init(struct nge_softc *);
192 #ifdef IFPOLL_ENABLE
193 static void	nge_npoll(struct ifnet *, struct ifpoll_info *);
194 static void	nge_npoll_compat(struct ifnet *, void *, int);
195 #endif
196 
197 #ifdef NGE_USEIOSPACE
198 #define NGE_RES			SYS_RES_IOPORT
199 #define NGE_RID			NGE_PCI_LOIO
200 #else
201 #define NGE_RES			SYS_RES_MEMORY
202 #define NGE_RID			NGE_PCI_LOMEM
203 #endif
204 
205 static device_method_t nge_methods[] = {
206 	/* Device interface */
207 	DEVMETHOD(device_probe,		nge_probe),
208 	DEVMETHOD(device_attach,	nge_attach),
209 	DEVMETHOD(device_detach,	nge_detach),
210 	DEVMETHOD(device_shutdown,	nge_shutdown),
211 
212 	/* bus interface */
213 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
214 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
215 
216 	/* MII interface */
217 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
218 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
219 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
220 
221 	DEVMETHOD_END
222 };
223 
224 static DEFINE_CLASS_0(nge, nge_driver, nge_methods, sizeof(struct nge_softc));
225 static devclass_t nge_devclass;
226 
227 DECLARE_DUMMY_MODULE(if_nge);
228 MODULE_DEPEND(if_nge, miibus, 1, 1, 1);
229 DRIVER_MODULE(if_nge, pci, nge_driver, nge_devclass, NULL, NULL);
230 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, NULL, NULL);
231 
232 #define NGE_SETBIT(sc, reg, x)				\
233 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
234 
235 #define NGE_CLRBIT(sc, reg, x)				\
236 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
237 
238 #define SIO_SET(x)					\
239 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
240 
241 #define SIO_CLR(x)					\
242 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
243 
244 static void
245 nge_delay(struct nge_softc *sc)
246 {
247 	int idx;
248 
249 	for (idx = (300 / 33) + 1; idx > 0; idx--)
250 		CSR_READ_4(sc, NGE_CSR);
251 }
252 
253 static void
254 nge_eeprom_idle(struct nge_softc *sc)
255 {
256 	int i;
257 
258 	SIO_SET(NGE_MEAR_EE_CSEL);
259 	nge_delay(sc);
260 	SIO_SET(NGE_MEAR_EE_CLK);
261 	nge_delay(sc);
262 
263 	for (i = 0; i < 25; i++) {
264 		SIO_CLR(NGE_MEAR_EE_CLK);
265 		nge_delay(sc);
266 		SIO_SET(NGE_MEAR_EE_CLK);
267 		nge_delay(sc);
268 	}
269 
270 	SIO_CLR(NGE_MEAR_EE_CLK);
271 	nge_delay(sc);
272 	SIO_CLR(NGE_MEAR_EE_CSEL);
273 	nge_delay(sc);
274 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
275 }
276 
277 /*
278  * Send a read command and address to the EEPROM, check for ACK.
279  */
280 static void
281 nge_eeprom_putbyte(struct nge_softc *sc, int addr)
282 {
283 	int d, i;
284 
285 	d = addr | NGE_EECMD_READ;
286 
287 	/*
288 	 * Feed in each bit and stobe the clock.
289 	 */
290 	for (i = 0x400; i; i >>= 1) {
291 		if (d & i)
292 			SIO_SET(NGE_MEAR_EE_DIN);
293 		else
294 			SIO_CLR(NGE_MEAR_EE_DIN);
295 		nge_delay(sc);
296 		SIO_SET(NGE_MEAR_EE_CLK);
297 		nge_delay(sc);
298 		SIO_CLR(NGE_MEAR_EE_CLK);
299 		nge_delay(sc);
300 	}
301 }
302 
303 /*
304  * Read a word of data stored in the EEPROM at address 'addr.'
305  */
306 static void
307 nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest)
308 {
309 	int i;
310 	uint16_t word = 0;
311 
312 	/* Force EEPROM to idle state. */
313 	nge_eeprom_idle(sc);
314 
315 	/* Enter EEPROM access mode. */
316 	nge_delay(sc);
317 	SIO_CLR(NGE_MEAR_EE_CLK);
318 	nge_delay(sc);
319 	SIO_SET(NGE_MEAR_EE_CSEL);
320 	nge_delay(sc);
321 
322 	/*
323 	 * Send address of word we want to read.
324 	 */
325 	nge_eeprom_putbyte(sc, addr);
326 
327 	/*
328 	 * Start reading bits from EEPROM.
329 	 */
330 	for (i = 0x8000; i; i >>= 1) {
331 		SIO_SET(NGE_MEAR_EE_CLK);
332 		nge_delay(sc);
333 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
334 			word |= i;
335 		nge_delay(sc);
336 		SIO_CLR(NGE_MEAR_EE_CLK);
337 		nge_delay(sc);
338 	}
339 
340 	/* Turn off EEPROM access mode. */
341 	nge_eeprom_idle(sc);
342 
343 	*dest = word;
344 }
345 
346 /*
347  * Read a sequence of words from the EEPROM.
348  */
349 static void
350 nge_read_eeprom(struct nge_softc *sc, void *dest, int off, int cnt)
351 {
352 	int i;
353 	uint16_t word = 0, *ptr;
354 
355 	for (i = 0; i < cnt; i++) {
356 		nge_eeprom_getword(sc, off + i, &word);
357 		ptr = (uint16_t *)((uint8_t *)dest + (i * 2));
358 		*ptr = word;
359 	}
360 }
361 
362 /*
363  * Sync the PHYs by setting data bit and strobing the clock 32 times.
364  */
365 static void
366 nge_mii_sync(struct nge_softc *sc)
367 {
368 	int i;
369 
370 	SIO_SET(NGE_MEAR_MII_DIR | NGE_MEAR_MII_DATA);
371 
372 	for (i = 0; i < 32; i++) {
373 		SIO_SET(NGE_MEAR_MII_CLK);
374 		DELAY(1);
375 		SIO_CLR(NGE_MEAR_MII_CLK);
376 		DELAY(1);
377 	}
378 }
379 
380 /*
381  * Clock a series of bits through the MII.
382  */
383 static void
384 nge_mii_send(struct nge_softc *sc, uint32_t bits, int cnt)
385 {
386 	int i;
387 
388 	SIO_CLR(NGE_MEAR_MII_CLK);
389 
390 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
391                 if (bits & i)
392 			SIO_SET(NGE_MEAR_MII_DATA);
393                 else
394 			SIO_CLR(NGE_MEAR_MII_DATA);
395 		DELAY(1);
396 		SIO_CLR(NGE_MEAR_MII_CLK);
397 		DELAY(1);
398 		SIO_SET(NGE_MEAR_MII_CLK);
399 	}
400 }
401 
402 /*
403  * Read an PHY register through the MII.
404  */
405 static int
406 nge_mii_readreg(struct nge_softc *sc, struct nge_mii_frame *frame)
407 {
408 	int ack, i;
409 
410 	/*
411 	 * Set up frame for RX.
412 	 */
413 	frame->mii_stdelim = NGE_MII_STARTDELIM;
414 	frame->mii_opcode = NGE_MII_READOP;
415 	frame->mii_turnaround = 0;
416 	frame->mii_data = 0;
417 
418 	CSR_WRITE_4(sc, NGE_MEAR, 0);
419 
420 	/*
421  	 * Turn on data xmit.
422 	 */
423 	SIO_SET(NGE_MEAR_MII_DIR);
424 
425 	nge_mii_sync(sc);
426 
427 	/*
428 	 * Send command/address info.
429 	 */
430 	nge_mii_send(sc, frame->mii_stdelim, 2);
431 	nge_mii_send(sc, frame->mii_opcode, 2);
432 	nge_mii_send(sc, frame->mii_phyaddr, 5);
433 	nge_mii_send(sc, frame->mii_regaddr, 5);
434 
435 	/* Idle bit */
436 	SIO_CLR((NGE_MEAR_MII_CLK | NGE_MEAR_MII_DATA));
437 	DELAY(1);
438 	SIO_SET(NGE_MEAR_MII_CLK);
439 	DELAY(1);
440 
441 	/* Turn off xmit. */
442 	SIO_CLR(NGE_MEAR_MII_DIR);
443 	/* Check for ack */
444 	SIO_CLR(NGE_MEAR_MII_CLK);
445 	DELAY(1);
446 	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
447 	SIO_SET(NGE_MEAR_MII_CLK);
448 	DELAY(1);
449 
450 	/*
451 	 * Now try reading data bits. If the ack failed, we still
452 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
453 	 */
454 	if (ack) {
455 		for(i = 0; i < 16; i++) {
456 			SIO_CLR(NGE_MEAR_MII_CLK);
457 			DELAY(1);
458 			SIO_SET(NGE_MEAR_MII_CLK);
459 			DELAY(1);
460 		}
461 		goto fail;
462 	}
463 
464 	for (i = 0x8000; i; i >>= 1) {
465 		SIO_CLR(NGE_MEAR_MII_CLK);
466 		DELAY(1);
467 		if (!ack) {
468 			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
469 				frame->mii_data |= i;
470 			DELAY(1);
471 		}
472 		SIO_SET(NGE_MEAR_MII_CLK);
473 		DELAY(1);
474 	}
475 
476 fail:
477 	SIO_CLR(NGE_MEAR_MII_CLK);
478 	DELAY(1);
479 	SIO_SET(NGE_MEAR_MII_CLK);
480 	DELAY(1);
481 
482 	if (ack)
483 		return(1);
484 	return(0);
485 }
486 
487 /*
488  * Write to a PHY register through the MII.
489  */
490 static int
491 nge_mii_writereg(struct nge_softc *sc, struct nge_mii_frame *frame)
492 {
493 	/*
494 	 * Set up frame for TX.
495 	 */
496 
497 	frame->mii_stdelim = NGE_MII_STARTDELIM;
498 	frame->mii_opcode = NGE_MII_WRITEOP;
499 	frame->mii_turnaround = NGE_MII_TURNAROUND;
500 
501 	/*
502  	 * Turn on data output.
503 	 */
504 	SIO_SET(NGE_MEAR_MII_DIR);
505 
506 	nge_mii_sync(sc);
507 
508 	nge_mii_send(sc, frame->mii_stdelim, 2);
509 	nge_mii_send(sc, frame->mii_opcode, 2);
510 	nge_mii_send(sc, frame->mii_phyaddr, 5);
511 	nge_mii_send(sc, frame->mii_regaddr, 5);
512 	nge_mii_send(sc, frame->mii_turnaround, 2);
513 	nge_mii_send(sc, frame->mii_data, 16);
514 
515 	/* Idle bit. */
516 	SIO_SET(NGE_MEAR_MII_CLK);
517 	DELAY(1);
518 	SIO_CLR(NGE_MEAR_MII_CLK);
519 	DELAY(1);
520 
521 	/*
522 	 * Turn off xmit.
523 	 */
524 	SIO_CLR(NGE_MEAR_MII_DIR);
525 
526 	return(0);
527 }
528 
529 static int
530 nge_miibus_readreg(device_t dev, int phy, int reg)
531 {
532 	struct nge_softc *sc = device_get_softc(dev);
533 	struct nge_mii_frame frame;
534 
535 	bzero((char *)&frame, sizeof(frame));
536 
537 	frame.mii_phyaddr = phy;
538 	frame.mii_regaddr = reg;
539 	nge_mii_readreg(sc, &frame);
540 
541 	return(frame.mii_data);
542 }
543 
544 static int
545 nge_miibus_writereg(device_t dev, int phy, int reg, int data)
546 {
547 	struct nge_softc *sc = device_get_softc(dev);
548 	struct nge_mii_frame frame;
549 
550 	bzero((char *)&frame, sizeof(frame));
551 
552 	frame.mii_phyaddr = phy;
553 	frame.mii_regaddr = reg;
554 	frame.mii_data = data;
555 	nge_mii_writereg(sc, &frame);
556 
557 	return(0);
558 }
559 
560 static void
561 nge_miibus_statchg(device_t dev)
562 {
563 	struct nge_softc *sc = device_get_softc(dev);
564 	struct mii_data *mii;
565 	int status;
566 
567 	if (sc->nge_tbi) {
568 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
569 		    == IFM_AUTO) {
570 			status = CSR_READ_4(sc, NGE_TBI_ANLPAR);
571 			if (status == 0 || status & NGE_TBIANAR_FDX) {
572 				NGE_SETBIT(sc, NGE_TX_CFG,
573 				    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
574 				NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
575 			} else {
576 				NGE_CLRBIT(sc, NGE_TX_CFG,
577 				    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
578 				NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
579 			}
580 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
581 			!= IFM_FDX) {
582 			NGE_CLRBIT(sc, NGE_TX_CFG,
583 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
584 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
585 		} else {
586 			NGE_SETBIT(sc, NGE_TX_CFG,
587 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
588 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
589 		}
590 	} else {
591 		mii = device_get_softc(sc->nge_miibus);
592 
593 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
594 		        NGE_SETBIT(sc, NGE_TX_CFG,
595 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
596 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
597 		} else {
598 			NGE_CLRBIT(sc, NGE_TX_CFG,
599 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
600 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
601 		}
602 
603 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
604 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
605 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
606 			NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
607 		} else {
608 			NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
609 		}
610 	}
611 }
612 
613 static void
614 nge_setmulti(struct nge_softc *sc)
615 {
616 	struct ifnet *ifp = &sc->arpcom.ac_if;
617 	struct ifmultiaddr *ifma;
618 	uint32_t filtsave, h = 0, i;
619 	int bit, index;
620 
621 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
622 		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
623 		    NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH);
624 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
625 		return;
626 	}
627 
628 	/*
629 	 * We have to explicitly enable the multicast hash table
630 	 * on the NatSemi chip if we want to use it, which we do.
631 	 * We also have to tell it that we don't want to use the
632 	 * hash table for matching unicast addresses.
633 	 */
634 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
635 	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
636 	    NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_UCHASH);
637 
638 	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
639 
640 	/* first, zot all the existing hash bits */
641 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
642 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
643 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
644 	}
645 
646 	/*
647 	 * From the 11 bits returned by the crc routine, the top 7
648 	 * bits represent the 16-bit word in the mcast hash table
649 	 * that needs to be updated, and the lower 4 bits represent
650 	 * which bit within that byte needs to be set.
651 	 */
652 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
653 		if (ifma->ifma_addr->sa_family != AF_LINK)
654 			continue;
655 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
656 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 21;
657 		index = (h >> 4) & 0x7F;
658 		bit = h & 0xF;
659 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
660 		    NGE_FILTADDR_MCAST_LO + (index * 2));
661 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
662 	}
663 
664 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
665 }
666 
667 static void
668 nge_reset(struct nge_softc *sc)
669 {
670 	int i;
671 
672 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
673 
674 	for (i = 0; i < NGE_TIMEOUT; i++) {
675 		if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET) == 0)
676 			break;
677 	}
678 
679 	if (i == NGE_TIMEOUT)
680 		kprintf("nge%d: reset never completed\n", sc->nge_unit);
681 
682 	/* Wait a little while for the chip to get its brains in order. */
683 	DELAY(1000);
684 
685 	/*
686 	 * If this is a NetSemi chip, make sure to clear
687 	 * PME mode.
688 	 */
689 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
690 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
691 }
692 
693 /*
694  * Probe for an NatSemi chip. Check the PCI vendor and device
695  * IDs against our list and return a device name if we find a match.
696  */
697 static int
698 nge_probe(device_t dev)
699 {
700 	struct nge_type	*t;
701 	uint16_t vendor, product;
702 
703 	vendor = pci_get_vendor(dev);
704 	product = pci_get_device(dev);
705 
706 	for (t = nge_devs; t->nge_name != NULL; t++) {
707 		if (vendor == t->nge_vid && product == t->nge_did) {
708 			device_set_desc(dev, t->nge_name);
709 			return(0);
710 		}
711 	}
712 
713 	return(ENXIO);
714 }
715 
716 /*
717  * Attach the interface. Allocate softc structures, do ifmedia
718  * setup and ethernet/BPF attach.
719  */
720 static int
721 nge_attach(device_t dev)
722 {
723 	struct nge_softc *sc;
724 	struct ifnet *ifp;
725 	uint8_t eaddr[ETHER_ADDR_LEN];
726 	uint32_t		command;
727 	int error = 0, rid, unit;
728 	const char		*sep = "";
729 
730 	sc = device_get_softc(dev);
731 	unit = device_get_unit(dev);
732 	callout_init(&sc->nge_stat_timer);
733 	lwkt_serialize_init(&sc->nge_jslot_serializer);
734 
735 	/*
736 	 * Handle power management nonsense.
737 	 */
738 	command = pci_read_config(dev, NGE_PCI_CAPID, 4) & 0x000000FF;
739 	if (command == 0x01) {
740 		command = pci_read_config(dev, NGE_PCI_PWRMGMTCTRL, 4);
741 		if (command & NGE_PSTATE_MASK) {
742 			uint32_t		iobase, membase, irq;
743 
744 			/* Save important PCI config data. */
745 			iobase = pci_read_config(dev, NGE_PCI_LOIO, 4);
746 			membase = pci_read_config(dev, NGE_PCI_LOMEM, 4);
747 			irq = pci_read_config(dev, NGE_PCI_INTLINE, 4);
748 
749 			/* Reset the power state. */
750 			kprintf("nge%d: chip is in D%d power mode "
751 			"-- setting to D0\n", unit, command & NGE_PSTATE_MASK);
752 			command &= 0xFFFFFFFC;
753 			pci_write_config(dev, NGE_PCI_PWRMGMTCTRL, command, 4);
754 
755 			/* Restore PCI config data. */
756 			pci_write_config(dev, NGE_PCI_LOIO, iobase, 4);
757 			pci_write_config(dev, NGE_PCI_LOMEM, membase, 4);
758 			pci_write_config(dev, NGE_PCI_INTLINE, irq, 4);
759 		}
760 	}
761 
762 	/*
763 	 * Map control/status registers.
764 	 */
765 	command = pci_read_config(dev, PCIR_COMMAND, 4);
766 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
767 	pci_write_config(dev, PCIR_COMMAND, command, 4);
768 	command = pci_read_config(dev, PCIR_COMMAND, 4);
769 
770 #ifdef NGE_USEIOSPACE
771 	if (!(command & PCIM_CMD_PORTEN)) {
772 		kprintf("nge%d: failed to enable I/O ports!\n", unit);
773 		error = ENXIO;
774 		return(error);
775 	}
776 #else
777 	if (!(command & PCIM_CMD_MEMEN)) {
778 		kprintf("nge%d: failed to enable memory mapping!\n", unit);
779 		error = ENXIO;
780 		return(error);
781 	}
782 #endif
783 
784 	rid = NGE_RID;
785 	sc->nge_res = bus_alloc_resource_any(dev, NGE_RES, &rid, RF_ACTIVE);
786 
787 	if (sc->nge_res == NULL) {
788 		kprintf("nge%d: couldn't map ports/memory\n", unit);
789 		error = ENXIO;
790 		return(error);
791 	}
792 
793 	sc->nge_btag = rman_get_bustag(sc->nge_res);
794 	sc->nge_bhandle = rman_get_bushandle(sc->nge_res);
795 
796 	/* Allocate interrupt */
797 	rid = 0;
798 	sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
799 	    RF_SHAREABLE | RF_ACTIVE);
800 
801 	if (sc->nge_irq == NULL) {
802 		kprintf("nge%d: couldn't map interrupt\n", unit);
803 		error = ENXIO;
804 		goto fail;
805 	}
806 
807 	/* Reset the adapter. */
808 	nge_reset(sc);
809 
810 	/*
811 	 * Get station address from the EEPROM.
812 	 */
813 	nge_read_eeprom(sc, &eaddr[4], NGE_EE_NODEADDR, 1);
814 	nge_read_eeprom(sc, &eaddr[2], NGE_EE_NODEADDR + 1, 1);
815 	nge_read_eeprom(sc, &eaddr[0], NGE_EE_NODEADDR + 2, 1);
816 
817 	sc->nge_unit = unit;
818 
819 	sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF,
820 	    M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
821 
822 	if (sc->nge_ldata == NULL) {
823 		kprintf("nge%d: no memory for list buffers!\n", unit);
824 		error = ENXIO;
825 		goto fail;
826 	}
827 
828 	/* Try to allocate memory for jumbo buffers. */
829 	if (nge_alloc_jumbo_mem(sc)) {
830 		kprintf("nge%d: jumbo buffer allocation failed\n",
831                     sc->nge_unit);
832 		error = ENXIO;
833 		goto fail;
834 	}
835 
836 	ifp = &sc->arpcom.ac_if;
837 	ifp->if_softc = sc;
838 	if_initname(ifp, "nge", unit);
839 	ifp->if_mtu = ETHERMTU;
840 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
841 	ifp->if_ioctl = nge_ioctl;
842 	ifp->if_start = nge_start;
843 #ifdef IFPOLL_ENABLE
844 	ifp->if_npoll = nge_npoll;
845 #endif
846 	ifp->if_watchdog = nge_watchdog;
847 	ifp->if_init = nge_init;
848 	ifp->if_baudrate = 1000000000;
849 	ifq_set_maxlen(&ifp->if_snd, NGE_TX_LIST_CNT - 1);
850 	ifq_set_ready(&ifp->if_snd);
851 	ifp->if_hwassist = NGE_CSUM_FEATURES;
852 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING;
853 	ifp->if_capenable = ifp->if_capabilities;
854 
855 	/*
856 	 * Do MII setup.
857 	 */
858 	if (mii_phy_probe(dev, &sc->nge_miibus,
859 			  nge_ifmedia_upd, nge_ifmedia_sts)) {
860 		if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) {
861 			sc->nge_tbi = 1;
862 			device_printf(dev, "Using TBI\n");
863 
864 			sc->nge_miibus = dev;
865 
866 			ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_upd,
867 				nge_ifmedia_sts);
868 #define	ADD(m, c)	ifmedia_add(&sc->nge_ifmedia, (m), (c), NULL)
869 #define PRINT(s)	kprintf("%s%s", sep, s); sep = ", "
870 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_NONE, 0, 0), 0);
871 			device_printf(dev, " ");
872 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, 0, 0), 0);
873 			PRINT("1000baseSX");
874 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, 0),0);
875 			PRINT("1000baseSX-FDX");
876 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0);
877 			PRINT("auto");
878 
879 			kprintf("\n");
880 #undef ADD
881 #undef PRINT
882 			ifmedia_set(&sc->nge_ifmedia,
883 				IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0));
884 
885 			CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
886 				| NGE_GPIO_GP4_OUT
887 				| NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
888 				| NGE_GPIO_GP3_OUTENB
889 				| NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
890 
891 		} else {
892 			kprintf("nge%d: MII without any PHY!\n", sc->nge_unit);
893 			error = ENXIO;
894 			goto fail;
895 		}
896 	}
897 
898 	/*
899 	 * Call MI attach routine.
900 	 */
901 	ether_ifattach(ifp, eaddr, NULL);
902 
903 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->nge_irq));
904 
905 #ifdef IFPOLL_ENABLE
906 	ifpoll_compat_setup(&sc->nge_npoll, NULL, NULL, device_get_unit(dev),
907 	    ifp->if_serializer);
908 #endif
909 
910 	error = bus_setup_intr(dev, sc->nge_irq, INTR_MPSAFE,
911 			       nge_intr, sc, &sc->nge_intrhand,
912 			       ifp->if_serializer);
913 	if (error) {
914 		ether_ifdetach(ifp);
915 		device_printf(dev, "couldn't set up irq\n");
916 		goto fail;
917 	}
918 
919 	return(0);
920 fail:
921 	nge_detach(dev);
922 	return(error);
923 }
924 
925 static int
926 nge_detach(device_t dev)
927 {
928 	struct nge_softc *sc = device_get_softc(dev);
929 	struct ifnet *ifp = &sc->arpcom.ac_if;
930 
931 	if (device_is_attached(dev)) {
932 		lwkt_serialize_enter(ifp->if_serializer);
933 		nge_reset(sc);
934 		nge_stop(sc);
935 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
936 		lwkt_serialize_exit(ifp->if_serializer);
937 
938 		ether_ifdetach(ifp);
939 	}
940 
941 	if (sc->nge_miibus)
942 		device_delete_child(dev, sc->nge_miibus);
943 	bus_generic_detach(dev);
944 
945 	if (sc->nge_irq)
946 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
947 	if (sc->nge_res)
948 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
949 	if (sc->nge_ldata) {
950 		contigfree(sc->nge_ldata, sizeof(struct nge_list_data),
951 			   M_DEVBUF);
952 	}
953 	if (sc->nge_cdata.nge_jumbo_buf)
954 		contigfree(sc->nge_cdata.nge_jumbo_buf, NGE_JMEM, M_DEVBUF);
955 
956 	return(0);
957 }
958 
959 /*
960  * Initialize the transmit descriptors.
961  */
962 static int
963 nge_list_tx_init(struct nge_softc *sc)
964 {
965 	struct nge_list_data *ld;
966 	struct nge_ring_data *cd;
967 	int i;
968 
969 	cd = &sc->nge_cdata;
970 	ld = sc->nge_ldata;
971 
972 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
973 		if (i == (NGE_TX_LIST_CNT - 1)) {
974 			ld->nge_tx_list[i].nge_nextdesc =
975 			    &ld->nge_tx_list[0];
976 			ld->nge_tx_list[i].nge_next =
977 			    vtophys(&ld->nge_tx_list[0]);
978 		} else {
979 			ld->nge_tx_list[i].nge_nextdesc =
980 			    &ld->nge_tx_list[i + 1];
981 			ld->nge_tx_list[i].nge_next =
982 			    vtophys(&ld->nge_tx_list[i + 1]);
983 		}
984 		ld->nge_tx_list[i].nge_mbuf = NULL;
985 		ld->nge_tx_list[i].nge_ptr = 0;
986 		ld->nge_tx_list[i].nge_ctl = 0;
987 	}
988 
989 	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
990 
991 	return(0);
992 }
993 
994 
995 /*
996  * Initialize the RX descriptors and allocate mbufs for them. Note that
997  * we arrange the descriptors in a closed ring, so that the last descriptor
998  * points back to the first.
999  */
1000 static int
1001 nge_list_rx_init(struct nge_softc *sc)
1002 {
1003 	struct nge_list_data *ld;
1004 	struct nge_ring_data *cd;
1005 	int i;
1006 
1007 	ld = sc->nge_ldata;
1008 	cd = &sc->nge_cdata;
1009 
1010 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1011 		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
1012 			return(ENOBUFS);
1013 		if (i == (NGE_RX_LIST_CNT - 1)) {
1014 			ld->nge_rx_list[i].nge_nextdesc =
1015 			    &ld->nge_rx_list[0];
1016 			ld->nge_rx_list[i].nge_next =
1017 			    vtophys(&ld->nge_rx_list[0]);
1018 		} else {
1019 			ld->nge_rx_list[i].nge_nextdesc =
1020 			    &ld->nge_rx_list[i + 1];
1021 			ld->nge_rx_list[i].nge_next =
1022 			    vtophys(&ld->nge_rx_list[i + 1]);
1023 		}
1024 	}
1025 
1026 	cd->nge_rx_prod = 0;
1027 
1028 	return(0);
1029 }
1030 
1031 /*
1032  * Initialize an RX descriptor and attach an MBUF cluster.
1033  */
1034 static int
1035 nge_newbuf(struct nge_softc *sc, struct nge_desc *c, struct mbuf *m)
1036 {
1037 	struct mbuf *m_new = NULL;
1038 	struct nge_jslot *buf;
1039 
1040 	if (m == NULL) {
1041 		MGETHDR(m_new, M_NOWAIT, MT_DATA);
1042 		if (m_new == NULL) {
1043 			kprintf("nge%d: no memory for rx list "
1044 			    "-- packet dropped!\n", sc->nge_unit);
1045 			return(ENOBUFS);
1046 		}
1047 
1048 		/* Allocate the jumbo buffer */
1049 		buf = nge_jalloc(sc);
1050 		if (buf == NULL) {
1051 #ifdef NGE_VERBOSE
1052 			kprintf("nge%d: jumbo allocation failed "
1053 			    "-- packet dropped!\n", sc->nge_unit);
1054 #endif
1055 			m_freem(m_new);
1056 			return(ENOBUFS);
1057 		}
1058 		/* Attach the buffer to the mbuf */
1059 		m_new->m_ext.ext_arg = buf;
1060 		m_new->m_ext.ext_buf = buf->nge_buf;
1061 		m_new->m_ext.ext_free = nge_jfree;
1062 		m_new->m_ext.ext_ref = nge_jref;
1063 		m_new->m_ext.ext_size = NGE_JUMBO_FRAMELEN;
1064 
1065 		m_new->m_data = m_new->m_ext.ext_buf;
1066 		m_new->m_flags |= M_EXT;
1067 		m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1068 	} else {
1069 		m_new = m;
1070 		m_new->m_len = m_new->m_pkthdr.len = NGE_JLEN;
1071 		m_new->m_data = m_new->m_ext.ext_buf;
1072 	}
1073 
1074 	m_adj(m_new, sizeof(uint64_t));
1075 
1076 	c->nge_mbuf = m_new;
1077 	c->nge_ptr = vtophys(mtod(m_new, caddr_t));
1078 	c->nge_ctl = m_new->m_len;
1079 	c->nge_extsts = 0;
1080 
1081 	return(0);
1082 }
1083 
1084 static int
1085 nge_alloc_jumbo_mem(struct nge_softc *sc)
1086 {
1087 	caddr_t ptr;
1088 	int i;
1089 	struct nge_jslot *entry;
1090 
1091 	/* Grab a big chunk o' storage. */
1092 	sc->nge_cdata.nge_jumbo_buf = contigmalloc(NGE_JMEM, M_DEVBUF,
1093 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1094 
1095 	if (sc->nge_cdata.nge_jumbo_buf == NULL) {
1096 		kprintf("nge%d: no memory for jumbo buffers!\n", sc->nge_unit);
1097 		return(ENOBUFS);
1098 	}
1099 
1100 	SLIST_INIT(&sc->nge_jfree_listhead);
1101 
1102 	/*
1103 	 * Now divide it up into 9K pieces and save the addresses
1104 	 * in an array.
1105 	 */
1106 	ptr = sc->nge_cdata.nge_jumbo_buf;
1107 	for (i = 0; i < NGE_JSLOTS; i++) {
1108 		entry = &sc->nge_cdata.nge_jslots[i];
1109 		entry->nge_sc = sc;
1110 		entry->nge_buf = ptr;
1111 		entry->nge_inuse = 0;
1112 		entry->nge_slot = i;
1113 		SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jslot_link);
1114 		ptr += NGE_JLEN;
1115 	}
1116 
1117 	return(0);
1118 }
1119 
1120 
1121 /*
1122  * Allocate a jumbo buffer.
1123  */
1124 static struct nge_jslot *
1125 nge_jalloc(struct nge_softc *sc)
1126 {
1127 	struct nge_jslot *entry;
1128 
1129 	lwkt_serialize_enter(&sc->nge_jslot_serializer);
1130 	entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1131 	if (entry) {
1132 		SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jslot_link);
1133 		entry->nge_inuse = 1;
1134 	} else {
1135 #ifdef NGE_VERBOSE
1136 		kprintf("nge%d: no free jumbo buffers\n", sc->nge_unit);
1137 #endif
1138 	}
1139 	lwkt_serialize_exit(&sc->nge_jslot_serializer);
1140 	return(entry);
1141 }
1142 
1143 /*
1144  * Adjust usage count on a jumbo buffer. In general this doesn't
1145  * get used much because our jumbo buffers don't get passed around
1146  * a lot, but it's implemented for correctness.
1147  */
1148 static void
1149 nge_jref(void *arg)
1150 {
1151 	struct nge_jslot *entry = (struct nge_jslot *)arg;
1152 	struct nge_softc *sc = entry->nge_sc;
1153 
1154 	if (sc == NULL)
1155 		panic("nge_jref: can't find softc pointer!");
1156 
1157 	if (&sc->nge_cdata.nge_jslots[entry->nge_slot] != entry)
1158 		panic("nge_jref: asked to reference buffer "
1159 		    "that we don't manage!");
1160 	else if (entry->nge_inuse == 0)
1161 		panic("nge_jref: buffer already free!");
1162 	else
1163 		atomic_add_int(&entry->nge_inuse, 1);
1164 }
1165 
1166 /*
1167  * Release a jumbo buffer.
1168  */
1169 static void
1170 nge_jfree(void *arg)
1171 {
1172 	struct nge_jslot *entry = (struct nge_jslot *)arg;
1173 	struct nge_softc *sc = entry->nge_sc;
1174 
1175 	if (sc == NULL)
1176 		panic("nge_jref: can't find softc pointer!");
1177 
1178 	if (&sc->nge_cdata.nge_jslots[entry->nge_slot] != entry) {
1179 		panic("nge_jref: asked to reference buffer "
1180 		    "that we don't manage!");
1181 	} else if (entry->nge_inuse == 0) {
1182 		panic("nge_jref: buffer already free!");
1183 	} else {
1184 		lwkt_serialize_enter(&sc->nge_jslot_serializer);
1185 		atomic_subtract_int(&entry->nge_inuse, 1);
1186 		if (entry->nge_inuse == 0) {
1187 			SLIST_INSERT_HEAD(&sc->nge_jfree_listhead,
1188 					  entry, jslot_link);
1189 		}
1190 		lwkt_serialize_exit(&sc->nge_jslot_serializer);
1191 	}
1192 }
1193 /*
1194  * A frame has been uploaded: pass the resulting mbuf chain up to
1195  * the higher level protocols.
1196  */
1197 static void
1198 nge_rxeof(struct nge_softc *sc)
1199 {
1200         struct mbuf *m;
1201         struct ifnet *ifp = &sc->arpcom.ac_if;
1202 	struct nge_desc *cur_rx;
1203 	int i, total_len = 0;
1204 	uint32_t rxstat;
1205 
1206 	i = sc->nge_cdata.nge_rx_prod;
1207 
1208 	while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1209 		struct mbuf *m0 = NULL;
1210 		uint32_t extsts;
1211 
1212 #ifdef IFPOLL_ENABLE
1213 		if (ifp->if_flags & IFF_NPOLLING) {
1214 			if (sc->rxcycles <= 0)
1215 				break;
1216 			sc->rxcycles--;
1217 		}
1218 #endif /* IFPOLL_ENABLE */
1219 
1220 		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1221 		rxstat = cur_rx->nge_rxstat;
1222 		extsts = cur_rx->nge_extsts;
1223 		m = cur_rx->nge_mbuf;
1224 		cur_rx->nge_mbuf = NULL;
1225 		total_len = NGE_RXBYTES(cur_rx);
1226 		NGE_INC(i, NGE_RX_LIST_CNT);
1227 		/*
1228 		 * If an error occurs, update stats, clear the
1229 		 * status word and leave the mbuf cluster in place:
1230 		 * it should simply get re-used next time this descriptor
1231 	 	 * comes up in the ring.
1232 		 */
1233 		if ((rxstat & NGE_CMDSTS_PKT_OK) == 0) {
1234 			IFNET_STAT_INC(ifp, ierrors, 1);
1235 			nge_newbuf(sc, cur_rx, m);
1236 			continue;
1237 		}
1238 
1239 		/*
1240 		 * Ok. NatSemi really screwed up here. This is the
1241 		 * only gigE chip I know of with alignment constraints
1242 		 * on receive buffers. RX buffers must be 64-bit aligned.
1243 		 */
1244 #ifdef __i386__
1245 		/*
1246 		 * By popular demand, ignore the alignment problems
1247 		 * on the Intel x86 platform. The performance hit
1248 		 * incurred due to unaligned accesses is much smaller
1249 		 * than the hit produced by forcing buffer copies all
1250 		 * the time, especially with jumbo frames. We still
1251 		 * need to fix up the alignment everywhere else though.
1252 		 */
1253 		if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
1254 #endif
1255 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1256 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
1257 			nge_newbuf(sc, cur_rx, m);
1258 			if (m0 == NULL) {
1259 				kprintf("nge%d: no receive buffers "
1260 				    "available -- packet dropped!\n",
1261 				    sc->nge_unit);
1262 				IFNET_STAT_INC(ifp, ierrors, 1);
1263 				continue;
1264 			}
1265 			m_adj(m0, ETHER_ALIGN);
1266 			m = m0;
1267 #ifdef __i386__
1268 		} else {
1269 			m->m_pkthdr.rcvif = ifp;
1270 			m->m_pkthdr.len = m->m_len = total_len;
1271 		}
1272 #endif
1273 
1274 		IFNET_STAT_INC(ifp, ipackets, 1);
1275 
1276 		/* Do IP checksum checking. */
1277 		if (extsts & NGE_RXEXTSTS_IPPKT)
1278 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1279 		if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1280 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1281 		if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1282 		    (extsts & NGE_RXEXTSTS_TCPCSUMERR) == 0) ||
1283 		    (extsts & NGE_RXEXTSTS_UDPPKT &&
1284 		    (extsts & NGE_RXEXTSTS_UDPCSUMERR) == 0)) {
1285 			m->m_pkthdr.csum_flags |=
1286 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
1287 			    CSUM_FRAG_NOT_CHECKED;
1288 			m->m_pkthdr.csum_data = 0xffff;
1289 		}
1290 
1291 		/*
1292 		 * If we received a packet with a vlan tag, pass it
1293 		 * to vlan_input() instead of ether_input().
1294 		 */
1295 		if (extsts & NGE_RXEXTSTS_VLANPKT) {
1296 			m->m_flags |= M_VLANTAG;
1297 			m->m_pkthdr.ether_vlantag =
1298 				(extsts & NGE_RXEXTSTS_VTCI);
1299 		}
1300 		ifp->if_input(ifp, m, NULL, -1);
1301 	}
1302 
1303 	sc->nge_cdata.nge_rx_prod = i;
1304 }
1305 
1306 /*
1307  * A frame was downloaded to the chip. It's safe for us to clean up
1308  * the list buffers.
1309  */
1310 static void
1311 nge_txeof(struct nge_softc *sc)
1312 {
1313 	struct ifnet *ifp = &sc->arpcom.ac_if;
1314 	struct nge_desc *cur_tx = NULL;
1315 	uint32_t idx;
1316 
1317 	/* Clear the timeout timer. */
1318 	ifp->if_timer = 0;
1319 
1320 	/*
1321 	 * Go through our tx list and free mbufs for those
1322 	 * frames that have been transmitted.
1323 	 */
1324 	idx = sc->nge_cdata.nge_tx_cons;
1325 	while (idx != sc->nge_cdata.nge_tx_prod) {
1326 		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1327 
1328 		if (NGE_OWNDESC(cur_tx))
1329 			break;
1330 
1331 		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1332 			sc->nge_cdata.nge_tx_cnt--;
1333 			NGE_INC(idx, NGE_TX_LIST_CNT);
1334 			continue;
1335 		}
1336 
1337 		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1338 			IFNET_STAT_INC(ifp, oerrors, 1);
1339 			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1340 				IFNET_STAT_INC(ifp, collisions, 1);
1341 			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1342 				IFNET_STAT_INC(ifp, collisions, 1);
1343 		}
1344 
1345 		IFNET_STAT_INC(ifp, collisions,
1346 		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16);
1347 
1348 		IFNET_STAT_INC(ifp, opackets, 1);
1349 		if (cur_tx->nge_mbuf != NULL) {
1350 			m_freem(cur_tx->nge_mbuf);
1351 			cur_tx->nge_mbuf = NULL;
1352 		}
1353 
1354 		sc->nge_cdata.nge_tx_cnt--;
1355 		NGE_INC(idx, NGE_TX_LIST_CNT);
1356 		ifp->if_timer = 0;
1357 	}
1358 
1359 	sc->nge_cdata.nge_tx_cons = idx;
1360 
1361 	if (cur_tx != NULL)
1362 		ifq_clr_oactive(&ifp->if_snd);
1363 }
1364 
1365 static void
1366 nge_tick(void *xsc)
1367 {
1368 	struct nge_softc *sc = xsc;
1369 	struct ifnet *ifp = &sc->arpcom.ac_if;
1370 	struct mii_data *mii;
1371 
1372 	lwkt_serialize_enter(ifp->if_serializer);
1373 
1374 	if (sc->nge_tbi) {
1375 		if (sc->nge_link == 0) {
1376 			if (CSR_READ_4(sc, NGE_TBI_BMSR)
1377 			    & NGE_TBIBMSR_ANEG_DONE) {
1378 				kprintf("nge%d: gigabit link up\n",
1379 				    sc->nge_unit);
1380 				nge_miibus_statchg(sc->nge_miibus);
1381 				sc->nge_link++;
1382 				if (!ifq_is_empty(&ifp->if_snd))
1383 					if_devstart(ifp);
1384 			}
1385 		}
1386 	} else {
1387 		mii = device_get_softc(sc->nge_miibus);
1388 		mii_tick(mii);
1389 
1390 		if (sc->nge_link == 0) {
1391 			if (mii->mii_media_status & IFM_ACTIVE &&
1392 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1393 				sc->nge_link++;
1394 				if (IFM_SUBTYPE(mii->mii_media_active)
1395 				    == IFM_1000_T)
1396 					kprintf("nge%d: gigabit link up\n",
1397 					    sc->nge_unit);
1398 				if (!ifq_is_empty(&ifp->if_snd))
1399 					if_devstart(ifp);
1400 			}
1401 		}
1402 	}
1403 	callout_reset(&sc->nge_stat_timer, hz, nge_tick, sc);
1404 
1405 	lwkt_serialize_exit(ifp->if_serializer);
1406 }
1407 
1408 #ifdef IFPOLL_ENABLE
1409 
1410 static void
1411 nge_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1412 {
1413 	struct nge_softc *sc = ifp->if_softc;
1414 
1415 	ASSERT_SERIALIZED(ifp->if_serializer);
1416 
1417 	/*
1418 	 * On the nge, reading the status register also clears it.
1419 	 * So before returning to intr mode we must make sure that all
1420 	 * possible pending sources of interrupts have been served.
1421 	 * In practice this means run to completion the *eof routines,
1422 	 * and then call the interrupt routine
1423 	 */
1424 	sc->rxcycles = count;
1425 	nge_rxeof(sc);
1426 	nge_txeof(sc);
1427 	if (!ifq_is_empty(&ifp->if_snd))
1428 		if_devstart(ifp);
1429 
1430 	if (sc->nge_npoll.ifpc_stcount-- == 0) {
1431 		uint32_t status;
1432 
1433 		sc->nge_npoll.ifpc_stcount = sc->nge_npoll.ifpc_stfrac;
1434 
1435 		/* Reading the ISR register clears all interrupts. */
1436 		status = CSR_READ_4(sc, NGE_ISR);
1437 
1438 		if (status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW))
1439 			nge_rxeof(sc);
1440 
1441 		if (status & (NGE_ISR_RX_IDLE))
1442 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1443 
1444 		if (status & NGE_ISR_SYSERR) {
1445 			nge_reset(sc);
1446 			nge_init(sc);
1447 		}
1448 	}
1449 }
1450 
1451 static void
1452 nge_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1453 {
1454 	struct nge_softc *sc = ifp->if_softc;
1455 
1456 	ASSERT_SERIALIZED(ifp->if_serializer);
1457 
1458 	if (info != NULL) {
1459 		int cpuid = sc->nge_npoll.ifpc_cpuid;
1460 
1461 		info->ifpi_rx[cpuid].poll_func = nge_npoll_compat;
1462 		info->ifpi_rx[cpuid].arg = NULL;
1463 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1464 
1465 		if (ifp->if_flags & IFF_RUNNING) {
1466 			/* disable interrupts */
1467 			CSR_WRITE_4(sc, NGE_IER, 0);
1468 			sc->nge_npoll.ifpc_stcount = 0;
1469 		}
1470 		ifq_set_cpuid(&ifp->if_snd, cpuid);
1471 	} else {
1472 		if (ifp->if_flags & IFF_RUNNING) {
1473 			/* enable interrupts */
1474 			CSR_WRITE_4(sc, NGE_IER, 1);
1475 		}
1476 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->nge_irq));
1477 	}
1478 }
1479 
1480 #endif /* IFPOLL_ENABLE */
1481 
1482 static void
1483 nge_intr(void *arg)
1484 {
1485 	struct nge_softc *sc = arg;
1486 	struct ifnet *ifp = &sc->arpcom.ac_if;
1487 	uint32_t status;
1488 
1489 	/* Supress unwanted interrupts */
1490 	if (!(ifp->if_flags & IFF_UP)) {
1491 		nge_stop(sc);
1492 		return;
1493 	}
1494 
1495 	/* Disable interrupts. */
1496 	CSR_WRITE_4(sc, NGE_IER, 0);
1497 
1498 	/* Data LED on for TBI mode */
1499 	if(sc->nge_tbi)
1500 		 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1501 			     | NGE_GPIO_GP3_OUT);
1502 
1503 	for (;;) {
1504 		/* Reading the ISR register clears all interrupts. */
1505 		status = CSR_READ_4(sc, NGE_ISR);
1506 
1507 		if ((status & NGE_INTRS) == 0)
1508 			break;
1509 
1510 		if ((status & NGE_ISR_TX_DESC_OK) ||
1511 		    (status & NGE_ISR_TX_ERR) ||
1512 		    (status & NGE_ISR_TX_OK) ||
1513 		    (status & NGE_ISR_TX_IDLE))
1514 			nge_txeof(sc);
1515 
1516 		if ((status & NGE_ISR_RX_DESC_OK) ||
1517 		    (status & NGE_ISR_RX_ERR) ||
1518 		    (status & NGE_ISR_RX_OFLOW) ||
1519 		    (status & NGE_ISR_RX_FIFO_OFLOW) ||
1520 		    (status & NGE_ISR_RX_IDLE) ||
1521 		    (status & NGE_ISR_RX_OK))
1522 			nge_rxeof(sc);
1523 
1524 		if ((status & NGE_ISR_RX_IDLE))
1525 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1526 
1527 		if (status & NGE_ISR_SYSERR) {
1528 			nge_reset(sc);
1529 			ifp->if_flags &= ~IFF_RUNNING;
1530 			nge_init(sc);
1531 		}
1532 
1533 #ifdef notyet
1534 		/* mii_tick should only be called once per second */
1535 		if (status & NGE_ISR_PHY_INTR) {
1536 			sc->nge_link = 0;
1537 			nge_tick_serialized(sc);
1538 		}
1539 #endif
1540 	}
1541 
1542 	/* Re-enable interrupts. */
1543 	CSR_WRITE_4(sc, NGE_IER, 1);
1544 
1545 	if (!ifq_is_empty(&ifp->if_snd))
1546 		if_devstart(ifp);
1547 
1548 	/* Data LED off for TBI mode */
1549 
1550 	if(sc->nge_tbi)
1551 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1552 			    & ~NGE_GPIO_GP3_OUT);
1553 }
1554 
1555 /*
1556  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1557  * pointers to the fragment pointers.
1558  */
1559 static int
1560 nge_encap(struct nge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
1561 {
1562 	struct nge_desc *f = NULL;
1563 	struct mbuf *m;
1564 	int frag, cur, cnt = 0;
1565 
1566 	/*
1567  	 * Start packing the mbufs in this chain into
1568 	 * the fragment pointers. Stop when we run out
1569  	 * of fragments or hit the end of the mbuf chain.
1570 	 */
1571 	cur = frag = *txidx;
1572 
1573 	for (m = m_head; m != NULL; m = m->m_next) {
1574 		if (m->m_len != 0) {
1575 			if ((NGE_TX_LIST_CNT -
1576 			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1577 				break;
1578 			f = &sc->nge_ldata->nge_tx_list[frag];
1579 			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1580 			f->nge_ptr = vtophys(mtod(m, vm_offset_t));
1581 			if (cnt != 0)
1582 				f->nge_ctl |= NGE_CMDSTS_OWN;
1583 			cur = frag;
1584 			NGE_INC(frag, NGE_TX_LIST_CNT);
1585 			cnt++;
1586 		}
1587 	}
1588 	/* Caller should make sure that 'm_head' is not excessive fragmented */
1589 	KASSERT(m == NULL, ("too many fragments"));
1590 
1591 	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1592 	if (m_head->m_pkthdr.csum_flags) {
1593 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1594 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1595 			    NGE_TXEXTSTS_IPCSUM;
1596 		if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1597 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1598 			    NGE_TXEXTSTS_TCPCSUM;
1599 		if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1600 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1601 			    NGE_TXEXTSTS_UDPCSUM;
1602 	}
1603 
1604 	if (m_head->m_flags & M_VLANTAG) {
1605 		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1606 			(NGE_TXEXTSTS_VLANPKT|m_head->m_pkthdr.ether_vlantag);
1607 	}
1608 
1609 	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1610 	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1611 	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1612 	sc->nge_cdata.nge_tx_cnt += cnt;
1613 	*txidx = frag;
1614 
1615 	return(0);
1616 }
1617 
1618 /*
1619  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1620  * to the mbuf data regions directly in the transmit lists. We also save a
1621  * copy of the pointers since the transmit list fragment pointers are
1622  * physical addresses.
1623  */
1624 
1625 static void
1626 nge_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1627 {
1628 	struct nge_softc *sc = ifp->if_softc;
1629 	struct mbuf *m_head = NULL, *m_defragged;
1630 	uint32_t idx;
1631 	int need_trans;
1632 
1633 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1634 
1635 	if (!sc->nge_link) {
1636 		ifq_purge(&ifp->if_snd);
1637 		return;
1638 	}
1639 
1640 	idx = sc->nge_cdata.nge_tx_prod;
1641 
1642 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1643 		return;
1644 
1645 	need_trans = 0;
1646 	while (sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1647 		struct mbuf *m;
1648 		int cnt;
1649 
1650 		m_defragged = NULL;
1651 		m_head = ifq_dequeue(&ifp->if_snd);
1652 		if (m_head == NULL)
1653 			break;
1654 
1655 again:
1656 		cnt = 0;
1657 		for (m = m_head; m != NULL; m = m->m_next)
1658 			++cnt;
1659 		if ((NGE_TX_LIST_CNT -
1660 		    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2) {
1661 			if (m_defragged != NULL) {
1662 				/*
1663 				 * Even after defragmentation, there
1664 				 * are still too many fragments, so
1665 				 * drop this packet.
1666 				 */
1667 				m_freem(m_head);
1668 				ifq_set_oactive(&ifp->if_snd);
1669 				break;
1670 			}
1671 
1672 			m_defragged = m_defrag(m_head, M_NOWAIT);
1673 			if (m_defragged == NULL) {
1674 				m_freem(m_head);
1675 				continue;
1676 			}
1677 			m_head = m_defragged;
1678 
1679 			/* Recount # of fragments */
1680 			goto again;
1681 		}
1682 
1683 		nge_encap(sc, m_head, &idx);
1684 		need_trans = 1;
1685 
1686 		ETHER_BPF_MTAP(ifp, m_head);
1687 	}
1688 
1689 	if (!need_trans)
1690 		return;
1691 
1692 	/* Transmit */
1693 	sc->nge_cdata.nge_tx_prod = idx;
1694 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1695 
1696 	/*
1697 	 * Set a timeout in case the chip goes out to lunch.
1698 	 */
1699 	ifp->if_timer = 5;
1700 }
1701 
1702 static void
1703 nge_init(void *xsc)
1704 {
1705 	struct nge_softc *sc = xsc;
1706 	struct ifnet *ifp = &sc->arpcom.ac_if;
1707 	struct mii_data *mii;
1708 
1709 	if (ifp->if_flags & IFF_RUNNING) {
1710 		return;
1711 	}
1712 
1713 	/*
1714 	 * Cancel pending I/O and free all RX/TX buffers.
1715 	 */
1716 	nge_stop(sc);
1717 	callout_reset(&sc->nge_stat_timer, hz, nge_tick, sc);
1718 
1719 	if (sc->nge_tbi)
1720 		mii = NULL;
1721 	else
1722 		mii = device_get_softc(sc->nge_miibus);
1723 
1724 	/* Set MAC address */
1725 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1726 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1727 	    ((uint16_t *)sc->arpcom.ac_enaddr)[0]);
1728 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1729 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1730 	    ((uint16_t *)sc->arpcom.ac_enaddr)[1]);
1731 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1732 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1733 	    ((uint16_t *)sc->arpcom.ac_enaddr)[2]);
1734 
1735 	/* Init circular RX list. */
1736 	if (nge_list_rx_init(sc) == ENOBUFS) {
1737 		kprintf("nge%d: initialization failed: no "
1738 			"memory for rx buffers\n", sc->nge_unit);
1739 		nge_stop(sc);
1740 		return;
1741 	}
1742 
1743 	/*
1744 	 * Init tx descriptors.
1745 	 */
1746 	nge_list_tx_init(sc);
1747 
1748 	/*
1749 	 * For the NatSemi chip, we have to explicitly enable the
1750 	 * reception of ARP frames, as well as turn on the 'perfect
1751 	 * match' filter where we store the station address, otherwise
1752 	 * we won't receive unicasts meant for this host.
1753 	 */
1754 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1755 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1756 
1757 	 /* If we want promiscuous mode, set the allframes bit. */
1758 	if (ifp->if_flags & IFF_PROMISC)
1759 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1760 	else
1761 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1762 
1763 	/*
1764 	 * Set the capture broadcast bit to capture broadcast frames.
1765 	 */
1766 	if (ifp->if_flags & IFF_BROADCAST)
1767 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1768 	else
1769 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1770 
1771 	/*
1772 	 * Load the multicast filter.
1773 	 */
1774 	nge_setmulti(sc);
1775 
1776 	/* Turn the receive filter on */
1777 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1778 
1779 	/*
1780 	 * Load the address of the RX and TX lists.
1781 	 */
1782 	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1783 	    vtophys(&sc->nge_ldata->nge_rx_list[0]));
1784 	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1785 	    vtophys(&sc->nge_ldata->nge_tx_list[0]));
1786 
1787 	/* Set RX configuration */
1788 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1789 	/*
1790 	 * Enable hardware checksum validation for all IPv4
1791 	 * packets, do not reject packets with bad checksums.
1792 	 */
1793 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1794 
1795 	/*
1796 	 * Tell the chip to detect and strip VLAN tag info from
1797 	 * received frames. The tag will be provided in the extsts
1798 	 * field in the RX descriptors.
1799 	 */
1800 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1801 	    NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB);
1802 
1803 	/* Set TX configuration */
1804 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1805 
1806 	/*
1807 	 * Enable TX IPv4 checksumming on a per-packet basis.
1808 	 */
1809 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
1810 
1811 	/*
1812 	 * Tell the chip to insert VLAN tags on a per-packet basis as
1813 	 * dictated by the code in the frame encapsulation routine.
1814 	 */
1815 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1816 
1817 	/* Set full/half duplex mode. */
1818 	if (sc->nge_tbi) {
1819 		if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1820 		    == IFM_FDX) {
1821 			NGE_SETBIT(sc, NGE_TX_CFG,
1822 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1823 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1824 		} else {
1825 			NGE_CLRBIT(sc, NGE_TX_CFG,
1826 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1827 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1828 		}
1829 	} else {
1830 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1831 			NGE_SETBIT(sc, NGE_TX_CFG,
1832 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1833 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1834 		} else {
1835 			NGE_CLRBIT(sc, NGE_TX_CFG,
1836 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1837 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1838 		}
1839 	}
1840 
1841 	/*
1842 	 * Enable the delivery of PHY interrupts based on
1843 	 * link/speed/duplex status changes. Also enable the
1844 	 * extsts field in the DMA descriptors (needed for
1845 	 * TCP/IP checksum offload on transmit).
1846 	 */
1847 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD |
1848 	    NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB);
1849 
1850 	/*
1851 	 * Configure interrupt holdoff (moderation). We can
1852 	 * have the chip delay interrupt delivery for a certain
1853 	 * period. Units are in 100us, and the max setting
1854 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1855 	 */
1856 	CSR_WRITE_4(sc, NGE_IHR, 0x01);
1857 
1858 	/*
1859 	 * Enable interrupts.
1860 	 */
1861 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1862 #ifdef IFPOLL_ENABLE
1863 	/*
1864 	 * ... only enable interrupts if we are not polling, make sure
1865 	 * they are off otherwise.
1866 	 */
1867 	if (ifp->if_flags & IFF_NPOLLING) {
1868 		CSR_WRITE_4(sc, NGE_IER, 0);
1869 		sc->nge_npoll.ifpc_stcount = 0;
1870 	} else
1871 #endif /* IFPOLL_ENABLE */
1872 	CSR_WRITE_4(sc, NGE_IER, 1);
1873 
1874 	/* Enable receiver and transmitter. */
1875 	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE);
1876 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1877 
1878 	nge_ifmedia_upd(ifp);
1879 
1880 	ifp->if_flags |= IFF_RUNNING;
1881 	ifq_clr_oactive(&ifp->if_snd);
1882 }
1883 
1884 /*
1885  * Set media options.
1886  */
1887 static int
1888 nge_ifmedia_upd(struct ifnet *ifp)
1889 {
1890 	struct nge_softc *sc = ifp->if_softc;
1891 	struct mii_data *mii;
1892 
1893 	if (sc->nge_tbi) {
1894 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1895 		     == IFM_AUTO) {
1896 			CSR_WRITE_4(sc, NGE_TBI_ANAR,
1897 				CSR_READ_4(sc, NGE_TBI_ANAR)
1898 					| NGE_TBIANAR_HDX | NGE_TBIANAR_FDX
1899 					| NGE_TBIANAR_PS1 | NGE_TBIANAR_PS2);
1900 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG
1901 				| NGE_TBIBMCR_RESTART_ANEG);
1902 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG);
1903 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media
1904 			    & IFM_GMASK) == IFM_FDX) {
1905 			NGE_SETBIT(sc, NGE_TX_CFG,
1906 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1907 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1908 
1909 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1910 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1911 		} else {
1912 			NGE_CLRBIT(sc, NGE_TX_CFG,
1913 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1914 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1915 
1916 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1917 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1918 		}
1919 
1920 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1921 			    & ~NGE_GPIO_GP3_OUT);
1922 	} else {
1923 		mii = device_get_softc(sc->nge_miibus);
1924 		sc->nge_link = 0;
1925 		if (mii->mii_instance) {
1926 			struct mii_softc	*miisc;
1927 			for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1928 			    miisc = LIST_NEXT(miisc, mii_list))
1929 				mii_phy_reset(miisc);
1930 		}
1931 		mii_mediachg(mii);
1932 	}
1933 
1934 	return(0);
1935 }
1936 
1937 /*
1938  * Report current media status.
1939  */
1940 static void
1941 nge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1942 {
1943 	struct nge_softc *sc = ifp->if_softc;
1944 	struct mii_data *mii;
1945 
1946 	if (sc->nge_tbi) {
1947 		ifmr->ifm_status = IFM_AVALID;
1948 		ifmr->ifm_active = IFM_ETHER;
1949 
1950 		if (CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE)
1951 			ifmr->ifm_status |= IFM_ACTIVE;
1952 		if (CSR_READ_4(sc, NGE_TBI_BMCR) & NGE_TBIBMCR_LOOPBACK)
1953 			ifmr->ifm_active |= IFM_LOOP;
1954 		if (!(CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE)) {
1955 			ifmr->ifm_active |= IFM_NONE;
1956 			ifmr->ifm_status = 0;
1957 			return;
1958 		}
1959 		ifmr->ifm_active |= IFM_1000_SX;
1960 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1961 		    == IFM_AUTO) {
1962 			ifmr->ifm_active |= IFM_AUTO;
1963 			if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1964 			    & NGE_TBIANAR_FDX) {
1965 				ifmr->ifm_active |= IFM_FDX;
1966 			}else if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1967 				  & NGE_TBIANAR_HDX) {
1968 				ifmr->ifm_active |= IFM_HDX;
1969 			}
1970 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1971 			== IFM_FDX)
1972 			ifmr->ifm_active |= IFM_FDX;
1973 		else
1974 			ifmr->ifm_active |= IFM_HDX;
1975 
1976 	} else {
1977 		mii = device_get_softc(sc->nge_miibus);
1978 		mii_pollstat(mii);
1979 		ifmr->ifm_active = mii->mii_media_active;
1980 		ifmr->ifm_status = mii->mii_media_status;
1981 	}
1982 }
1983 
1984 static int
1985 nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1986 {
1987 	struct nge_softc *sc = ifp->if_softc;
1988 	struct ifreq *ifr = (struct ifreq *) data;
1989 	struct mii_data *mii;
1990 	int error = 0;
1991 
1992 	switch(command) {
1993 	case SIOCSIFMTU:
1994 		if (ifr->ifr_mtu > NGE_JUMBO_MTU) {
1995 			error = EINVAL;
1996 		} else {
1997 			ifp->if_mtu = ifr->ifr_mtu;
1998 			/*
1999 			 * Workaround: if the MTU is larger than
2000 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
2001 			 * TX checksum offloading.
2002 			 */
2003 			if (ifr->ifr_mtu >= 8152)
2004 				ifp->if_hwassist = 0;
2005 			else
2006 				ifp->if_hwassist = NGE_CSUM_FEATURES;
2007 		}
2008 		break;
2009 	case SIOCSIFFLAGS:
2010 		if (ifp->if_flags & IFF_UP) {
2011 			if (ifp->if_flags & IFF_RUNNING &&
2012 			    ifp->if_flags & IFF_PROMISC &&
2013 			    !(sc->nge_if_flags & IFF_PROMISC)) {
2014 				NGE_SETBIT(sc, NGE_RXFILT_CTL,
2015 				    NGE_RXFILTCTL_ALLPHYS|
2016 				    NGE_RXFILTCTL_ALLMULTI);
2017 			} else if (ifp->if_flags & IFF_RUNNING &&
2018 			    !(ifp->if_flags & IFF_PROMISC) &&
2019 			    sc->nge_if_flags & IFF_PROMISC) {
2020 				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2021 				    NGE_RXFILTCTL_ALLPHYS);
2022 				if (!(ifp->if_flags & IFF_ALLMULTI))
2023 					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2024 					    NGE_RXFILTCTL_ALLMULTI);
2025 			} else {
2026 				ifp->if_flags &= ~IFF_RUNNING;
2027 				nge_init(sc);
2028 			}
2029 		} else {
2030 			if (ifp->if_flags & IFF_RUNNING)
2031 				nge_stop(sc);
2032 		}
2033 		sc->nge_if_flags = ifp->if_flags;
2034 		error = 0;
2035 		break;
2036 	case SIOCADDMULTI:
2037 	case SIOCDELMULTI:
2038 		nge_setmulti(sc);
2039 		error = 0;
2040 		break;
2041 	case SIOCGIFMEDIA:
2042 	case SIOCSIFMEDIA:
2043 		if (sc->nge_tbi) {
2044 			error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia,
2045 					      command);
2046 		} else {
2047 			mii = device_get_softc(sc->nge_miibus);
2048 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
2049 					      command);
2050 		}
2051 		break;
2052 	default:
2053 		error = ether_ioctl(ifp, command, data);
2054 		break;
2055 	}
2056 	return(error);
2057 }
2058 
2059 static void
2060 nge_watchdog(struct ifnet *ifp)
2061 {
2062 	struct nge_softc *sc = ifp->if_softc;
2063 
2064 	IFNET_STAT_INC(ifp, oerrors, 1);
2065 	kprintf("nge%d: watchdog timeout\n", sc->nge_unit);
2066 
2067 	nge_stop(sc);
2068 	nge_reset(sc);
2069 	ifp->if_flags &= ~IFF_RUNNING;
2070 	nge_init(sc);
2071 
2072 	if (!ifq_is_empty(&ifp->if_snd))
2073 		if_devstart(ifp);
2074 }
2075 
2076 /*
2077  * Stop the adapter and free any mbufs allocated to the
2078  * RX and TX lists.
2079  */
2080 static void
2081 nge_stop(struct nge_softc *sc)
2082 {
2083 	struct ifnet *ifp = &sc->arpcom.ac_if;
2084 	struct ifmedia_entry *ifm;
2085 	struct mii_data *mii;
2086 	int i, itmp, mtmp, dtmp;
2087 
2088 	ifp->if_timer = 0;
2089 	if (sc->nge_tbi)
2090 		mii = NULL;
2091 	else
2092 		mii = device_get_softc(sc->nge_miibus);
2093 
2094 	callout_stop(&sc->nge_stat_timer);
2095 	CSR_WRITE_4(sc, NGE_IER, 0);
2096 	CSR_WRITE_4(sc, NGE_IMR, 0);
2097 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2098 	DELAY(1000);
2099 	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
2100 	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
2101 
2102 	/*
2103 	 * Isolate/power down the PHY, but leave the media selection
2104 	 * unchanged so that things will be put back to normal when
2105 	 * we bring the interface back up.
2106 	 */
2107 	itmp = ifp->if_flags;
2108 	ifp->if_flags |= IFF_UP;
2109 
2110 	if (sc->nge_tbi)
2111 		ifm = sc->nge_ifmedia.ifm_cur;
2112 	else
2113 		ifm = mii->mii_media.ifm_cur;
2114 
2115 	mtmp = ifm->ifm_media;
2116 	dtmp = ifm->ifm_data;
2117 	ifm->ifm_media = IFM_ETHER|IFM_NONE;
2118 	ifm->ifm_data = MII_MEDIA_NONE;
2119 
2120 	if (!sc->nge_tbi)
2121 		mii_mediachg(mii);
2122 	ifm->ifm_media = mtmp;
2123 	ifm->ifm_data = dtmp;
2124 	ifp->if_flags = itmp;
2125 
2126 	sc->nge_link = 0;
2127 
2128 	/*
2129 	 * Free data in the RX lists.
2130 	 */
2131 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2132 		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2133 			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2134 			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2135 		}
2136 	}
2137 	bzero(&sc->nge_ldata->nge_rx_list,
2138 		sizeof(sc->nge_ldata->nge_rx_list));
2139 
2140 	/*
2141 	 * Free the TX list buffers.
2142 	 */
2143 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2144 		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2145 			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2146 			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2147 		}
2148 	}
2149 
2150 	bzero(&sc->nge_ldata->nge_tx_list,
2151 		sizeof(sc->nge_ldata->nge_tx_list));
2152 
2153 	ifp->if_flags &= ~IFF_RUNNING;
2154 	ifq_clr_oactive(&ifp->if_snd);
2155 }
2156 
2157 /*
2158  * Stop all chip I/O so that the kernel's probe routines don't
2159  * get confused by errant DMAs when rebooting.
2160  */
2161 static void
2162 nge_shutdown(device_t dev)
2163 {
2164 	struct nge_softc *sc = device_get_softc(dev);
2165 	struct ifnet *ifp = &sc->arpcom.ac_if;
2166 
2167 	lwkt_serialize_enter(ifp->if_serializer);
2168 	nge_reset(sc);
2169 	nge_stop(sc);
2170 	lwkt_serialize_exit(ifp->if_serializer);
2171 }
2172 
2173