xref: /dragonfly/sys/dev/netif/nge/if_nge.c (revision 2e3ed54d)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/nge/if_nge.c,v 1.13.2.13 2003/02/05 22:03:57 mbr Exp $
34  * $DragonFly: src/sys/dev/netif/nge/if_nge.c,v 1.33 2005/11/22 00:24:33 dillon Exp $
35  */
36 
37 /*
38  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39  * for FreeBSD. Datasheets are available from:
40  *
41  * http://www.national.com/ds/DP/DP83820.pdf
42  * http://www.national.com/ds/DP/DP83821.pdf
43  *
44  * These chips are used on several low cost gigabit ethernet NICs
45  * sold by D-Link, Addtron, SMC and Asante. Both parts are
46  * virtually the same, except the 83820 is a 64-bit/32-bit part,
47  * while the 83821 is 32-bit only.
48  *
49  * Many cards also use National gigE transceivers, such as the
50  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51  * contains a full register description that applies to all of these
52  * components:
53  *
54  * http://www.national.com/ds/DP/DP83861.pdf
55  *
56  * Written by Bill Paul <wpaul@bsdi.com>
57  * BSDi Open Source Solutions
58  */
59 
60 /*
61  * The NatSemi DP83820 and 83821 controllers are enhanced versions
62  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67  * matching buffers, one perfect address filter buffer and interrupt
68  * moderation. The 83820 supports both 64-bit and 32-bit addressing
69  * and data transfers: the 64-bit support can be toggled on or off
70  * via software. This affects the size of certain fields in the DMA
71  * descriptors.
72  *
73  * There are two bugs/misfeatures in the 83820/83821 that I have
74  * discovered so far:
75  *
76  * - Receive buffers must be aligned on 64-bit boundaries, which means
77  *   you must resort to copying data in order to fix up the payload
78  *   alignment.
79  *
80  * - In order to transmit jumbo frames larger than 8170 bytes, you have
81  *   to turn off transmit checksum offloading, because the chip can't
82  *   compute the checksum on an outgoing frame unless it fits entirely
83  *   within the TX FIFO, which is only 8192 bytes in size. If you have
84  *   TX checksum offload enabled and you transmit attempt to transmit a
85  *   frame larger than 8170 bytes, the transmitter will wedge.
86  *
87  * To work around the latter problem, TX checksum offload is disabled
88  * if the user selects an MTU larger than 8152 (8170 - 18).
89  */
90 
91 #include "opt_polling.h"
92 
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/sockio.h>
96 #include <sys/mbuf.h>
97 #include <sys/malloc.h>
98 #include <sys/kernel.h>
99 #include <sys/socket.h>
100 #include <sys/thread2.h>
101 
102 #include <net/if.h>
103 #include <net/ifq_var.h>
104 #include <net/if_arp.h>
105 #include <net/ethernet.h>
106 #include <net/if_dl.h>
107 #include <net/if_media.h>
108 #include <net/if_types.h>
109 #include <net/vlan/if_vlan_var.h>
110 
111 #include <net/bpf.h>
112 
113 #include <vm/vm.h>              /* for vtophys */
114 #include <vm/pmap.h>            /* for vtophys */
115 #include <machine/bus.h>
116 #include <machine/resource.h>
117 #include <sys/bus.h>
118 #include <sys/rman.h>
119 
120 #include <dev/netif/mii_layer/mii.h>
121 #include <dev/netif/mii_layer/miivar.h>
122 
123 #include <bus/pci/pcireg.h>
124 #include <bus/pci/pcivar.h>
125 
126 #define NGE_USEIOSPACE
127 
128 #include "if_ngereg.h"
129 
130 
131 /* "controller miibus0" required.  See GENERIC if you get errors here. */
132 #include "miibus_if.h"
133 
134 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
135 
136 /*
137  * Various supported device vendors/types and their names.
138  */
139 static struct nge_type nge_devs[] = {
140 	{ NGE_VENDORID, NGE_DEVICEID,
141 	    "National Semiconductor Gigabit Ethernet" },
142 	{ 0, 0, NULL }
143 };
144 
145 static int	nge_probe(device_t);
146 static int	nge_attach(device_t);
147 static int	nge_detach(device_t);
148 
149 static int	nge_alloc_jumbo_mem(struct nge_softc *);
150 static struct nge_jslot
151 		*nge_jalloc(struct nge_softc *);
152 static void	nge_jfree(void *);
153 static void	nge_jref(void *);
154 
155 static int	nge_newbuf(struct nge_softc *, struct nge_desc *,
156 			   struct mbuf *);
157 static int	nge_encap(struct nge_softc *, struct mbuf *, uint32_t *);
158 static void	nge_rxeof(struct nge_softc *);
159 static void	nge_txeof(struct nge_softc *);
160 static void	nge_intr(void *);
161 static void	nge_tick(void *);
162 static void	nge_start(struct ifnet *);
163 static int	nge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
164 static void	nge_init(void *);
165 static void	nge_stop(struct nge_softc *);
166 static void	nge_watchdog(struct ifnet *);
167 static void	nge_shutdown(device_t);
168 static int	nge_ifmedia_upd(struct ifnet *);
169 static void	nge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
170 
171 static void	nge_delay(struct nge_softc *);
172 static void	nge_eeprom_idle(struct nge_softc *);
173 static void	nge_eeprom_putbyte(struct nge_softc *, int);
174 static void	nge_eeprom_getword(struct nge_softc *, int, uint16_t *);
175 static void	nge_read_eeprom(struct nge_softc *, void *, int, int);
176 
177 static void	nge_mii_sync(struct nge_softc *);
178 static void	nge_mii_send(struct nge_softc *, uint32_t, int);
179 static int	nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
180 static int	nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
181 
182 static int	nge_miibus_readreg(device_t, int, int);
183 static int	nge_miibus_writereg(device_t, int, int, int);
184 static void	nge_miibus_statchg(device_t);
185 
186 static void	nge_setmulti(struct nge_softc *);
187 static void	nge_reset(struct nge_softc *);
188 static int	nge_list_rx_init(struct nge_softc *);
189 static int	nge_list_tx_init(struct nge_softc *);
190 #ifdef DEVICE_POLLING
191 static void	nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
192 #endif
193 
194 #ifdef NGE_USEIOSPACE
195 #define NGE_RES			SYS_RES_IOPORT
196 #define NGE_RID			NGE_PCI_LOIO
197 #else
198 #define NGE_RES			SYS_RES_MEMORY
199 #define NGE_RID			NGE_PCI_LOMEM
200 #endif
201 
202 static device_method_t nge_methods[] = {
203 	/* Device interface */
204 	DEVMETHOD(device_probe,		nge_probe),
205 	DEVMETHOD(device_attach,	nge_attach),
206 	DEVMETHOD(device_detach,	nge_detach),
207 	DEVMETHOD(device_shutdown,	nge_shutdown),
208 
209 	/* bus interface */
210 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
211 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
212 
213 	/* MII interface */
214 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
215 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
216 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
217 
218 	{ 0, 0 }
219 };
220 
221 static DEFINE_CLASS_0(nge, nge_driver, nge_methods, sizeof(struct nge_softc));
222 static devclass_t nge_devclass;
223 
224 DECLARE_DUMMY_MODULE(if_nge);
225 MODULE_DEPEND(if_nge, miibus, 1, 1, 1);
226 DRIVER_MODULE(if_nge, pci, nge_driver, nge_devclass, 0, 0);
227 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
228 
229 #define NGE_SETBIT(sc, reg, x)				\
230 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
231 
232 #define NGE_CLRBIT(sc, reg, x)				\
233 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
234 
235 #define SIO_SET(x)					\
236 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
237 
238 #define SIO_CLR(x)					\
239 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
240 
241 static void
242 nge_delay(struct nge_softc *sc)
243 {
244 	int idx;
245 
246 	for (idx = (300 / 33) + 1; idx > 0; idx--)
247 		CSR_READ_4(sc, NGE_CSR);
248 }
249 
250 static void
251 nge_eeprom_idle(struct nge_softc *sc)
252 {
253 	int i;
254 
255 	SIO_SET(NGE_MEAR_EE_CSEL);
256 	nge_delay(sc);
257 	SIO_SET(NGE_MEAR_EE_CLK);
258 	nge_delay(sc);
259 
260 	for (i = 0; i < 25; i++) {
261 		SIO_CLR(NGE_MEAR_EE_CLK);
262 		nge_delay(sc);
263 		SIO_SET(NGE_MEAR_EE_CLK);
264 		nge_delay(sc);
265 	}
266 
267 	SIO_CLR(NGE_MEAR_EE_CLK);
268 	nge_delay(sc);
269 	SIO_CLR(NGE_MEAR_EE_CSEL);
270 	nge_delay(sc);
271 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
272 }
273 
274 /*
275  * Send a read command and address to the EEPROM, check for ACK.
276  */
277 static void
278 nge_eeprom_putbyte(struct nge_softc *sc, int addr)
279 {
280 	int d, i;
281 
282 	d = addr | NGE_EECMD_READ;
283 
284 	/*
285 	 * Feed in each bit and stobe the clock.
286 	 */
287 	for (i = 0x400; i; i >>= 1) {
288 		if (d & i)
289 			SIO_SET(NGE_MEAR_EE_DIN);
290 		else
291 			SIO_CLR(NGE_MEAR_EE_DIN);
292 		nge_delay(sc);
293 		SIO_SET(NGE_MEAR_EE_CLK);
294 		nge_delay(sc);
295 		SIO_CLR(NGE_MEAR_EE_CLK);
296 		nge_delay(sc);
297 	}
298 }
299 
300 /*
301  * Read a word of data stored in the EEPROM at address 'addr.'
302  */
303 static void
304 nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest)
305 {
306 	int i;
307 	uint16_t word = 0;
308 
309 	/* Force EEPROM to idle state. */
310 	nge_eeprom_idle(sc);
311 
312 	/* Enter EEPROM access mode. */
313 	nge_delay(sc);
314 	SIO_CLR(NGE_MEAR_EE_CLK);
315 	nge_delay(sc);
316 	SIO_SET(NGE_MEAR_EE_CSEL);
317 	nge_delay(sc);
318 
319 	/*
320 	 * Send address of word we want to read.
321 	 */
322 	nge_eeprom_putbyte(sc, addr);
323 
324 	/*
325 	 * Start reading bits from EEPROM.
326 	 */
327 	for (i = 0x8000; i; i >>= 1) {
328 		SIO_SET(NGE_MEAR_EE_CLK);
329 		nge_delay(sc);
330 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
331 			word |= i;
332 		nge_delay(sc);
333 		SIO_CLR(NGE_MEAR_EE_CLK);
334 		nge_delay(sc);
335 	}
336 
337 	/* Turn off EEPROM access mode. */
338 	nge_eeprom_idle(sc);
339 
340 	*dest = word;
341 }
342 
343 /*
344  * Read a sequence of words from the EEPROM.
345  */
346 static void
347 nge_read_eeprom(struct nge_softc *sc, void *dest, int off, int cnt)
348 {
349 	int i;
350 	uint16_t word = 0, *ptr;
351 
352 	for (i = 0; i < cnt; i++) {
353 		nge_eeprom_getword(sc, off + i, &word);
354 		ptr = (uint16_t *)((uint8_t *)dest + (i * 2));
355 		*ptr = word;
356 	}
357 }
358 
359 /*
360  * Sync the PHYs by setting data bit and strobing the clock 32 times.
361  */
362 static void
363 nge_mii_sync(struct nge_softc *sc)
364 {
365 	int i;
366 
367 	SIO_SET(NGE_MEAR_MII_DIR | NGE_MEAR_MII_DATA);
368 
369 	for (i = 0; i < 32; i++) {
370 		SIO_SET(NGE_MEAR_MII_CLK);
371 		DELAY(1);
372 		SIO_CLR(NGE_MEAR_MII_CLK);
373 		DELAY(1);
374 	}
375 }
376 
377 /*
378  * Clock a series of bits through the MII.
379  */
380 static void
381 nge_mii_send(struct nge_softc *sc, uint32_t bits, int cnt)
382 {
383 	int i;
384 
385 	SIO_CLR(NGE_MEAR_MII_CLK);
386 
387 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
388                 if (bits & i)
389 			SIO_SET(NGE_MEAR_MII_DATA);
390                 else
391 			SIO_CLR(NGE_MEAR_MII_DATA);
392 		DELAY(1);
393 		SIO_CLR(NGE_MEAR_MII_CLK);
394 		DELAY(1);
395 		SIO_SET(NGE_MEAR_MII_CLK);
396 	}
397 }
398 
399 /*
400  * Read an PHY register through the MII.
401  */
402 static int
403 nge_mii_readreg(struct nge_softc *sc, struct nge_mii_frame *frame)
404 {
405 	int ack, i;
406 
407 	crit_enter();
408 
409 	/*
410 	 * Set up frame for RX.
411 	 */
412 	frame->mii_stdelim = NGE_MII_STARTDELIM;
413 	frame->mii_opcode = NGE_MII_READOP;
414 	frame->mii_turnaround = 0;
415 	frame->mii_data = 0;
416 
417 	CSR_WRITE_4(sc, NGE_MEAR, 0);
418 
419 	/*
420  	 * Turn on data xmit.
421 	 */
422 	SIO_SET(NGE_MEAR_MII_DIR);
423 
424 	nge_mii_sync(sc);
425 
426 	/*
427 	 * Send command/address info.
428 	 */
429 	nge_mii_send(sc, frame->mii_stdelim, 2);
430 	nge_mii_send(sc, frame->mii_opcode, 2);
431 	nge_mii_send(sc, frame->mii_phyaddr, 5);
432 	nge_mii_send(sc, frame->mii_regaddr, 5);
433 
434 	/* Idle bit */
435 	SIO_CLR((NGE_MEAR_MII_CLK | NGE_MEAR_MII_DATA));
436 	DELAY(1);
437 	SIO_SET(NGE_MEAR_MII_CLK);
438 	DELAY(1);
439 
440 	/* Turn off xmit. */
441 	SIO_CLR(NGE_MEAR_MII_DIR);
442 	/* Check for ack */
443 	SIO_CLR(NGE_MEAR_MII_CLK);
444 	DELAY(1);
445 	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
446 	SIO_SET(NGE_MEAR_MII_CLK);
447 	DELAY(1);
448 
449 	/*
450 	 * Now try reading data bits. If the ack failed, we still
451 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
452 	 */
453 	if (ack) {
454 		for(i = 0; i < 16; i++) {
455 			SIO_CLR(NGE_MEAR_MII_CLK);
456 			DELAY(1);
457 			SIO_SET(NGE_MEAR_MII_CLK);
458 			DELAY(1);
459 		}
460 		goto fail;
461 	}
462 
463 	for (i = 0x8000; i; i >>= 1) {
464 		SIO_CLR(NGE_MEAR_MII_CLK);
465 		DELAY(1);
466 		if (!ack) {
467 			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
468 				frame->mii_data |= i;
469 			DELAY(1);
470 		}
471 		SIO_SET(NGE_MEAR_MII_CLK);
472 		DELAY(1);
473 	}
474 
475 fail:
476 	SIO_CLR(NGE_MEAR_MII_CLK);
477 	DELAY(1);
478 	SIO_SET(NGE_MEAR_MII_CLK);
479 	DELAY(1);
480 
481 	crit_exit();
482 
483 	if (ack)
484 		return(1);
485 	return(0);
486 }
487 
488 /*
489  * Write to a PHY register through the MII.
490  */
491 static int
492 nge_mii_writereg(struct nge_softc *sc, struct nge_mii_frame *frame)
493 {
494 	crit_enter();
495 
496 	/*
497 	 * Set up frame for TX.
498 	 */
499 
500 	frame->mii_stdelim = NGE_MII_STARTDELIM;
501 	frame->mii_opcode = NGE_MII_WRITEOP;
502 	frame->mii_turnaround = NGE_MII_TURNAROUND;
503 
504 	/*
505  	 * Turn on data output.
506 	 */
507 	SIO_SET(NGE_MEAR_MII_DIR);
508 
509 	nge_mii_sync(sc);
510 
511 	nge_mii_send(sc, frame->mii_stdelim, 2);
512 	nge_mii_send(sc, frame->mii_opcode, 2);
513 	nge_mii_send(sc, frame->mii_phyaddr, 5);
514 	nge_mii_send(sc, frame->mii_regaddr, 5);
515 	nge_mii_send(sc, frame->mii_turnaround, 2);
516 	nge_mii_send(sc, frame->mii_data, 16);
517 
518 	/* Idle bit. */
519 	SIO_SET(NGE_MEAR_MII_CLK);
520 	DELAY(1);
521 	SIO_CLR(NGE_MEAR_MII_CLK);
522 	DELAY(1);
523 
524 	/*
525 	 * Turn off xmit.
526 	 */
527 	SIO_CLR(NGE_MEAR_MII_DIR);
528 
529 	crit_exit();
530 
531 	return(0);
532 }
533 
534 static int
535 nge_miibus_readreg(device_t dev, int phy, int reg)
536 {
537 	struct nge_softc *sc = device_get_softc(dev);
538 	struct nge_mii_frame frame;
539 
540 	bzero((char *)&frame, sizeof(frame));
541 
542 	frame.mii_phyaddr = phy;
543 	frame.mii_regaddr = reg;
544 	nge_mii_readreg(sc, &frame);
545 
546 	return(frame.mii_data);
547 }
548 
549 static int
550 nge_miibus_writereg(device_t dev, int phy, int reg, int data)
551 {
552 	struct nge_softc *sc = device_get_softc(dev);
553 	struct nge_mii_frame frame;
554 
555 	bzero((char *)&frame, sizeof(frame));
556 
557 	frame.mii_phyaddr = phy;
558 	frame.mii_regaddr = reg;
559 	frame.mii_data = data;
560 	nge_mii_writereg(sc, &frame);
561 
562 	return(0);
563 }
564 
565 static void
566 nge_miibus_statchg(device_t dev)
567 {
568 	struct nge_softc *sc = device_get_softc(dev);
569 	struct mii_data *mii;
570 	int status;
571 
572 	if (sc->nge_tbi) {
573 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
574 		    == IFM_AUTO) {
575 			status = CSR_READ_4(sc, NGE_TBI_ANLPAR);
576 			if (status == 0 || status & NGE_TBIANAR_FDX) {
577 				NGE_SETBIT(sc, NGE_TX_CFG,
578 				    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
579 				NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
580 			} else {
581 				NGE_CLRBIT(sc, NGE_TX_CFG,
582 				    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
583 				NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
584 			}
585 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
586 			!= IFM_FDX) {
587 			NGE_CLRBIT(sc, NGE_TX_CFG,
588 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
589 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
590 		} else {
591 			NGE_SETBIT(sc, NGE_TX_CFG,
592 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
593 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
594 		}
595 	} else {
596 		mii = device_get_softc(sc->nge_miibus);
597 
598 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
599 		        NGE_SETBIT(sc, NGE_TX_CFG,
600 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
601 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
602 		} else {
603 			NGE_CLRBIT(sc, NGE_TX_CFG,
604 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
605 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
606 		}
607 
608 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
609 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
610 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
611 			NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
612 		} else {
613 			NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
614 		}
615 	}
616 }
617 
618 static void
619 nge_setmulti(struct nge_softc *sc)
620 {
621 	struct ifnet *ifp = &sc->arpcom.ac_if;
622 	struct ifmultiaddr *ifma;
623 	uint32_t filtsave, h = 0, i;
624 	int bit, index;
625 
626 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
627 		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
628 		    NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH);
629 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
630 		return;
631 	}
632 
633 	/*
634 	 * We have to explicitly enable the multicast hash table
635 	 * on the NatSemi chip if we want to use it, which we do.
636 	 * We also have to tell it that we don't want to use the
637 	 * hash table for matching unicast addresses.
638 	 */
639 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
640 	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
641 	    NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_UCHASH);
642 
643 	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
644 
645 	/* first, zot all the existing hash bits */
646 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
647 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
648 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
649 	}
650 
651 	/*
652 	 * From the 11 bits returned by the crc routine, the top 7
653 	 * bits represent the 16-bit word in the mcast hash table
654 	 * that needs to be updated, and the lower 4 bits represent
655 	 * which bit within that byte needs to be set.
656 	 */
657 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
658 		if (ifma->ifma_addr->sa_family != AF_LINK)
659 			continue;
660 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
661 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 21;
662 		index = (h >> 4) & 0x7F;
663 		bit = h & 0xF;
664 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
665 		    NGE_FILTADDR_MCAST_LO + (index * 2));
666 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
667 	}
668 
669 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
670 }
671 
672 static void
673 nge_reset(struct nge_softc *sc)
674 {
675 	int i;
676 
677 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
678 
679 	for (i = 0; i < NGE_TIMEOUT; i++) {
680 		if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET) == 0)
681 			break;
682 	}
683 
684 	if (i == NGE_TIMEOUT)
685 		printf("nge%d: reset never completed\n", sc->nge_unit);
686 
687 	/* Wait a little while for the chip to get its brains in order. */
688 	DELAY(1000);
689 
690 	/*
691 	 * If this is a NetSemi chip, make sure to clear
692 	 * PME mode.
693 	 */
694 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
695 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
696 }
697 
698 /*
699  * Probe for an NatSemi chip. Check the PCI vendor and device
700  * IDs against our list and return a device name if we find a match.
701  */
702 static int
703 nge_probe(device_t dev)
704 {
705 	struct nge_type	*t;
706 	uint16_t vendor, product;
707 
708 	vendor = pci_get_vendor(dev);
709 	product = pci_get_device(dev);
710 
711 	for (t = nge_devs; t->nge_name != NULL; t++) {
712 		if (vendor == t->nge_vid && product == t->nge_did) {
713 			device_set_desc(dev, t->nge_name);
714 			return(0);
715 		}
716 	}
717 
718 	return(ENXIO);
719 }
720 
721 /*
722  * Attach the interface. Allocate softc structures, do ifmedia
723  * setup and ethernet/BPF attach.
724  */
725 static int
726 nge_attach(device_t dev)
727 {
728 	struct nge_softc *sc;
729 	struct ifnet *ifp;
730 	uint8_t eaddr[ETHER_ADDR_LEN];
731 	uint32_t		command;
732 	int error = 0, rid, unit;
733 	const char		*sep = "";
734 
735 	sc = device_get_softc(dev);
736 	unit = device_get_unit(dev);
737 	callout_init(&sc->nge_stat_timer);
738 
739 	/*
740 	 * Handle power management nonsense.
741 	 */
742 	command = pci_read_config(dev, NGE_PCI_CAPID, 4) & 0x000000FF;
743 	if (command == 0x01) {
744 		command = pci_read_config(dev, NGE_PCI_PWRMGMTCTRL, 4);
745 		if (command & NGE_PSTATE_MASK) {
746 			uint32_t		iobase, membase, irq;
747 
748 			/* Save important PCI config data. */
749 			iobase = pci_read_config(dev, NGE_PCI_LOIO, 4);
750 			membase = pci_read_config(dev, NGE_PCI_LOMEM, 4);
751 			irq = pci_read_config(dev, NGE_PCI_INTLINE, 4);
752 
753 			/* Reset the power state. */
754 			printf("nge%d: chip is in D%d power mode "
755 			"-- setting to D0\n", unit, command & NGE_PSTATE_MASK);
756 			command &= 0xFFFFFFFC;
757 			pci_write_config(dev, NGE_PCI_PWRMGMTCTRL, command, 4);
758 
759 			/* Restore PCI config data. */
760 			pci_write_config(dev, NGE_PCI_LOIO, iobase, 4);
761 			pci_write_config(dev, NGE_PCI_LOMEM, membase, 4);
762 			pci_write_config(dev, NGE_PCI_INTLINE, irq, 4);
763 		}
764 	}
765 
766 	/*
767 	 * Map control/status registers.
768 	 */
769 	command = pci_read_config(dev, PCIR_COMMAND, 4);
770 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
771 	pci_write_config(dev, PCIR_COMMAND, command, 4);
772 	command = pci_read_config(dev, PCIR_COMMAND, 4);
773 
774 #ifdef NGE_USEIOSPACE
775 	if (!(command & PCIM_CMD_PORTEN)) {
776 		printf("nge%d: failed to enable I/O ports!\n", unit);
777 		error = ENXIO;
778 		return(error);
779 	}
780 #else
781 	if (!(command & PCIM_CMD_MEMEN)) {
782 		printf("nge%d: failed to enable memory mapping!\n", unit);
783 		error = ENXIO;
784 		return(error);
785 	}
786 #endif
787 
788 	rid = NGE_RID;
789 	sc->nge_res = bus_alloc_resource_any(dev, NGE_RES, &rid, RF_ACTIVE);
790 
791 	if (sc->nge_res == NULL) {
792 		printf("nge%d: couldn't map ports/memory\n", unit);
793 		error = ENXIO;
794 		return(error);
795 	}
796 
797 	sc->nge_btag = rman_get_bustag(sc->nge_res);
798 	sc->nge_bhandle = rman_get_bushandle(sc->nge_res);
799 
800 	/* Allocate interrupt */
801 	rid = 0;
802 	sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
803 	    RF_SHAREABLE | RF_ACTIVE);
804 
805 	if (sc->nge_irq == NULL) {
806 		printf("nge%d: couldn't map interrupt\n", unit);
807 		error = ENXIO;
808 		goto fail;
809 	}
810 
811 	/* Reset the adapter. */
812 	nge_reset(sc);
813 
814 	/*
815 	 * Get station address from the EEPROM.
816 	 */
817 	nge_read_eeprom(sc, &eaddr[4], NGE_EE_NODEADDR, 1);
818 	nge_read_eeprom(sc, &eaddr[2], NGE_EE_NODEADDR + 1, 1);
819 	nge_read_eeprom(sc, &eaddr[0], NGE_EE_NODEADDR + 2, 1);
820 
821 	sc->nge_unit = unit;
822 
823 	sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF,
824 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
825 
826 	if (sc->nge_ldata == NULL) {
827 		printf("nge%d: no memory for list buffers!\n", unit);
828 		error = ENXIO;
829 		goto fail;
830 	}
831 	bzero(sc->nge_ldata, sizeof(struct nge_list_data));
832 
833 	/* Try to allocate memory for jumbo buffers. */
834 	if (nge_alloc_jumbo_mem(sc)) {
835 		printf("nge%d: jumbo buffer allocation failed\n",
836                     sc->nge_unit);
837 		error = ENXIO;
838 		goto fail;
839 	}
840 
841 	ifp = &sc->arpcom.ac_if;
842 	ifp->if_softc = sc;
843 	if_initname(ifp, "nge", unit);
844 	ifp->if_mtu = ETHERMTU;
845 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
846 	ifp->if_ioctl = nge_ioctl;
847 	ifp->if_start = nge_start;
848 #ifdef DEVICE_POLLING
849 	ifp->if_poll = nge_poll;
850 #endif
851 	ifp->if_watchdog = nge_watchdog;
852 	ifp->if_init = nge_init;
853 	ifp->if_baudrate = 1000000000;
854 	ifq_set_maxlen(&ifp->if_snd, NGE_TX_LIST_CNT - 1);
855 	ifq_set_ready(&ifp->if_snd);
856 	ifp->if_hwassist = NGE_CSUM_FEATURES;
857 	ifp->if_capabilities = IFCAP_HWCSUM;
858 	ifp->if_capenable = ifp->if_capabilities;
859 
860 	/*
861 	 * Do MII setup.
862 	 */
863 	if (mii_phy_probe(dev, &sc->nge_miibus,
864 			  nge_ifmedia_upd, nge_ifmedia_sts)) {
865 		if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) {
866 			sc->nge_tbi = 1;
867 			device_printf(dev, "Using TBI\n");
868 
869 			sc->nge_miibus = dev;
870 
871 			ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_upd,
872 				nge_ifmedia_sts);
873 #define	ADD(m, c)	ifmedia_add(&sc->nge_ifmedia, (m), (c), NULL)
874 #define PRINT(s)	printf("%s%s", sep, s); sep = ", "
875 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_NONE, 0, 0), 0);
876 			device_printf(dev, " ");
877 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, 0, 0), 0);
878 			PRINT("1000baseSX");
879 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, 0),0);
880 			PRINT("1000baseSX-FDX");
881 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0);
882 			PRINT("auto");
883 
884 			printf("\n");
885 #undef ADD
886 #undef PRINT
887 			ifmedia_set(&sc->nge_ifmedia,
888 				IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0));
889 
890 			CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
891 				| NGE_GPIO_GP4_OUT
892 				| NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
893 				| NGE_GPIO_GP3_OUTENB
894 				| NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
895 
896 		} else {
897 			printf("nge%d: MII without any PHY!\n", sc->nge_unit);
898 			error = ENXIO;
899 			goto fail;
900 		}
901 	}
902 
903 	/*
904 	 * Call MI attach routine.
905 	 */
906 	ether_ifattach(ifp, eaddr);
907 
908 	error = bus_setup_intr(dev, sc->nge_irq, 0,
909 			       nge_intr, sc, &sc->nge_intrhand, NULL);
910 	if (error) {
911 		ether_ifdetach(ifp);
912 		device_printf(dev, "couldn't set up irq\n");
913 		goto fail;
914 	}
915 
916 	return(0);
917 fail:
918 	nge_detach(dev);
919 	return(error);
920 }
921 
922 static int
923 nge_detach(device_t dev)
924 {
925 	struct nge_softc *sc = device_get_softc(dev);
926 	struct ifnet *ifp = &sc->arpcom.ac_if;
927 
928 	crit_enter();
929 
930 	if (device_is_attached(dev)) {
931 		nge_reset(sc);
932 		nge_stop(sc);
933 		ether_ifdetach(ifp);
934 	}
935 
936 	if (sc->nge_miibus)
937 		device_delete_child(dev, sc->nge_miibus);
938 	bus_generic_detach(dev);
939 
940 	if (sc->nge_intrhand)
941 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
942 
943 	crit_exit();
944 
945 	if (sc->nge_irq)
946 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
947 	if (sc->nge_res)
948 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
949 	if (sc->nge_ldata) {
950 		contigfree(sc->nge_ldata, sizeof(struct nge_list_data),
951 			   M_DEVBUF);
952 	}
953 	if (sc->nge_cdata.nge_jumbo_buf)
954 		contigfree(sc->nge_cdata.nge_jumbo_buf, NGE_JMEM, M_DEVBUF);
955 
956 	return(0);
957 }
958 
959 /*
960  * Initialize the transmit descriptors.
961  */
962 static int
963 nge_list_tx_init(struct nge_softc *sc)
964 {
965 	struct nge_list_data *ld;
966 	struct nge_ring_data *cd;
967 	int i;
968 
969 	cd = &sc->nge_cdata;
970 	ld = sc->nge_ldata;
971 
972 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
973 		if (i == (NGE_TX_LIST_CNT - 1)) {
974 			ld->nge_tx_list[i].nge_nextdesc =
975 			    &ld->nge_tx_list[0];
976 			ld->nge_tx_list[i].nge_next =
977 			    vtophys(&ld->nge_tx_list[0]);
978 		} else {
979 			ld->nge_tx_list[i].nge_nextdesc =
980 			    &ld->nge_tx_list[i + 1];
981 			ld->nge_tx_list[i].nge_next =
982 			    vtophys(&ld->nge_tx_list[i + 1]);
983 		}
984 		ld->nge_tx_list[i].nge_mbuf = NULL;
985 		ld->nge_tx_list[i].nge_ptr = 0;
986 		ld->nge_tx_list[i].nge_ctl = 0;
987 	}
988 
989 	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
990 
991 	return(0);
992 }
993 
994 
995 /*
996  * Initialize the RX descriptors and allocate mbufs for them. Note that
997  * we arrange the descriptors in a closed ring, so that the last descriptor
998  * points back to the first.
999  */
1000 static int
1001 nge_list_rx_init(struct nge_softc *sc)
1002 {
1003 	struct nge_list_data *ld;
1004 	struct nge_ring_data *cd;
1005 	int i;
1006 
1007 	ld = sc->nge_ldata;
1008 	cd = &sc->nge_cdata;
1009 
1010 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1011 		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
1012 			return(ENOBUFS);
1013 		if (i == (NGE_RX_LIST_CNT - 1)) {
1014 			ld->nge_rx_list[i].nge_nextdesc =
1015 			    &ld->nge_rx_list[0];
1016 			ld->nge_rx_list[i].nge_next =
1017 			    vtophys(&ld->nge_rx_list[0]);
1018 		} else {
1019 			ld->nge_rx_list[i].nge_nextdesc =
1020 			    &ld->nge_rx_list[i + 1];
1021 			ld->nge_rx_list[i].nge_next =
1022 			    vtophys(&ld->nge_rx_list[i + 1]);
1023 		}
1024 	}
1025 
1026 	cd->nge_rx_prod = 0;
1027 
1028 	return(0);
1029 }
1030 
1031 /*
1032  * Initialize an RX descriptor and attach an MBUF cluster.
1033  */
1034 static int
1035 nge_newbuf(struct nge_softc *sc, struct nge_desc *c, struct mbuf *m)
1036 {
1037 	struct mbuf *m_new = NULL;
1038 	struct nge_jslot *buf;
1039 
1040 	if (m == NULL) {
1041 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1042 		if (m_new == NULL) {
1043 			printf("nge%d: no memory for rx list "
1044 			    "-- packet dropped!\n", sc->nge_unit);
1045 			return(ENOBUFS);
1046 		}
1047 
1048 		/* Allocate the jumbo buffer */
1049 		buf = nge_jalloc(sc);
1050 		if (buf == NULL) {
1051 #ifdef NGE_VERBOSE
1052 			printf("nge%d: jumbo allocation failed "
1053 			    "-- packet dropped!\n", sc->nge_unit);
1054 #endif
1055 			m_freem(m_new);
1056 			return(ENOBUFS);
1057 		}
1058 		/* Attach the buffer to the mbuf */
1059 		m_new->m_ext.ext_arg = buf;
1060 		m_new->m_ext.ext_buf = buf->nge_buf;
1061 		m_new->m_ext.ext_free = nge_jfree;
1062 		m_new->m_ext.ext_ref = nge_jref;
1063 		m_new->m_ext.ext_size = NGE_JUMBO_FRAMELEN;
1064 
1065 		m_new->m_data = m_new->m_ext.ext_buf;
1066 		m_new->m_flags |= M_EXT;
1067 		m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1068 	} else {
1069 		m_new = m;
1070 		m_new->m_len = m_new->m_pkthdr.len = NGE_JLEN;
1071 		m_new->m_data = m_new->m_ext.ext_buf;
1072 	}
1073 
1074 	m_adj(m_new, sizeof(uint64_t));
1075 
1076 	c->nge_mbuf = m_new;
1077 	c->nge_ptr = vtophys(mtod(m_new, caddr_t));
1078 	c->nge_ctl = m_new->m_len;
1079 	c->nge_extsts = 0;
1080 
1081 	return(0);
1082 }
1083 
1084 static int
1085 nge_alloc_jumbo_mem(struct nge_softc *sc)
1086 {
1087 	caddr_t ptr;
1088 	int i;
1089 	struct nge_jslot *entry;
1090 
1091 	/* Grab a big chunk o' storage. */
1092 	sc->nge_cdata.nge_jumbo_buf = contigmalloc(NGE_JMEM, M_DEVBUF,
1093 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1094 
1095 	if (sc->nge_cdata.nge_jumbo_buf == NULL) {
1096 		printf("nge%d: no memory for jumbo buffers!\n", sc->nge_unit);
1097 		return(ENOBUFS);
1098 	}
1099 
1100 	SLIST_INIT(&sc->nge_jfree_listhead);
1101 
1102 	/*
1103 	 * Now divide it up into 9K pieces and save the addresses
1104 	 * in an array.
1105 	 */
1106 	ptr = sc->nge_cdata.nge_jumbo_buf;
1107 	for (i = 0; i < NGE_JSLOTS; i++) {
1108 		entry = &sc->nge_cdata.nge_jslots[i];
1109 		entry->nge_sc = sc;
1110 		entry->nge_buf = ptr;
1111 		entry->nge_inuse = 0;
1112 		entry->nge_slot = i;
1113 		SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jslot_link);
1114 		ptr += NGE_JLEN;
1115 	}
1116 
1117 	return(0);
1118 }
1119 
1120 
1121 /*
1122  * Allocate a jumbo buffer.
1123  */
1124 static struct nge_jslot *
1125 nge_jalloc(struct nge_softc *sc)
1126 {
1127 	struct nge_jslot *entry;
1128 
1129 	entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1130 
1131 	if (entry == NULL) {
1132 #ifdef NGE_VERBOSE
1133 		printf("nge%d: no free jumbo buffers\n", sc->nge_unit);
1134 #endif
1135 		return(NULL);
1136 	}
1137 
1138 	SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jslot_link);
1139 	entry->nge_inuse = 1;
1140 
1141 	return(entry);
1142 }
1143 
1144 /*
1145  * Adjust usage count on a jumbo buffer. In general this doesn't
1146  * get used much because our jumbo buffers don't get passed around
1147  * a lot, but it's implemented for correctness.
1148  */
1149 static void
1150 nge_jref(void *arg)
1151 {
1152 	struct nge_jslot *entry = (struct nge_jslot *)arg;
1153 	struct nge_softc *sc = entry->nge_sc;
1154 
1155 	if (sc == NULL)
1156 		panic("nge_jref: can't find softc pointer!");
1157 
1158 	if (&sc->nge_cdata.nge_jslots[entry->nge_slot] != entry)
1159 		panic("nge_jref: asked to reference buffer "
1160 		    "that we don't manage!");
1161 	else if (entry->nge_inuse == 0)
1162 		panic("nge_jref: buffer already free!");
1163 	else
1164 		entry->nge_inuse++;
1165 }
1166 
1167 /*
1168  * Release a jumbo buffer.
1169  */
1170 static void
1171 nge_jfree(void *arg)
1172 {
1173 	struct nge_jslot *entry = (struct nge_jslot *)arg;
1174 	struct nge_softc *sc = entry->nge_sc;
1175 
1176 	if (sc == NULL)
1177 		panic("nge_jref: can't find softc pointer!");
1178 
1179 	if (&sc->nge_cdata.nge_jslots[entry->nge_slot] != entry)
1180 		panic("nge_jref: asked to reference buffer "
1181 		    "that we don't manage!");
1182 	else if (entry->nge_inuse == 0)
1183 		panic("nge_jref: buffer already free!");
1184 	else if (--entry->nge_inuse == 0)
1185 		SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jslot_link);
1186 }
1187 /*
1188  * A frame has been uploaded: pass the resulting mbuf chain up to
1189  * the higher level protocols.
1190  */
1191 static void
1192 nge_rxeof(struct nge_softc *sc)
1193 {
1194         struct mbuf *m;
1195         struct ifnet *ifp = &sc->arpcom.ac_if;
1196 	struct nge_desc *cur_rx;
1197 	int i, total_len = 0;
1198 	uint32_t rxstat;
1199 
1200 	i = sc->nge_cdata.nge_rx_prod;
1201 
1202 	while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1203 		struct mbuf *m0 = NULL;
1204 		uint32_t extsts;
1205 
1206 #ifdef DEVICE_POLLING
1207 		if (ifp->if_flags & IFF_POLLING) {
1208 			if (sc->rxcycles <= 0)
1209 				break;
1210 			sc->rxcycles--;
1211 		}
1212 #endif /* DEVICE_POLLING */
1213 
1214 		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1215 		rxstat = cur_rx->nge_rxstat;
1216 		extsts = cur_rx->nge_extsts;
1217 		m = cur_rx->nge_mbuf;
1218 		cur_rx->nge_mbuf = NULL;
1219 		total_len = NGE_RXBYTES(cur_rx);
1220 		NGE_INC(i, NGE_RX_LIST_CNT);
1221 		/*
1222 		 * If an error occurs, update stats, clear the
1223 		 * status word and leave the mbuf cluster in place:
1224 		 * it should simply get re-used next time this descriptor
1225 	 	 * comes up in the ring.
1226 		 */
1227 		if ((rxstat & NGE_CMDSTS_PKT_OK) == 0) {
1228 			ifp->if_ierrors++;
1229 			nge_newbuf(sc, cur_rx, m);
1230 			continue;
1231 		}
1232 
1233 		/*
1234 		 * Ok. NatSemi really screwed up here. This is the
1235 		 * only gigE chip I know of with alignment constraints
1236 		 * on receive buffers. RX buffers must be 64-bit aligned.
1237 		 */
1238 #ifdef __i386__
1239 		/*
1240 		 * By popular demand, ignore the alignment problems
1241 		 * on the Intel x86 platform. The performance hit
1242 		 * incurred due to unaligned accesses is much smaller
1243 		 * than the hit produced by forcing buffer copies all
1244 		 * the time, especially with jumbo frames. We still
1245 		 * need to fix up the alignment everywhere else though.
1246 		 */
1247 		if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
1248 #endif
1249 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1250 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
1251 			nge_newbuf(sc, cur_rx, m);
1252 			if (m0 == NULL) {
1253 				printf("nge%d: no receive buffers "
1254 				    "available -- packet dropped!\n",
1255 				    sc->nge_unit);
1256 				ifp->if_ierrors++;
1257 				continue;
1258 			}
1259 			m_adj(m0, ETHER_ALIGN);
1260 			m = m0;
1261 #ifdef __i386__
1262 		} else {
1263 			m->m_pkthdr.rcvif = ifp;
1264 			m->m_pkthdr.len = m->m_len = total_len;
1265 		}
1266 #endif
1267 
1268 		ifp->if_ipackets++;
1269 
1270 		/* Do IP checksum checking. */
1271 		if (extsts & NGE_RXEXTSTS_IPPKT)
1272 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1273 		if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1274 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1275 		if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1276 		    (extsts & NGE_RXEXTSTS_TCPCSUMERR) == 0) ||
1277 		    (extsts & NGE_RXEXTSTS_UDPPKT &&
1278 		    (extsts & NGE_RXEXTSTS_UDPCSUMERR) == 0)) {
1279 			m->m_pkthdr.csum_flags |=
1280 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1281 			m->m_pkthdr.csum_data = 0xffff;
1282 		}
1283 
1284 		/*
1285 		 * If we received a packet with a vlan tag, pass it
1286 		 * to vlan_input() instead of ether_input().
1287 		 */
1288 		if (extsts & NGE_RXEXTSTS_VLANPKT)
1289 			VLAN_INPUT_TAG(m, extsts & NGE_RXEXTSTS_VTCI);
1290 		else
1291 			(*ifp->if_input)(ifp, m);
1292 	}
1293 
1294 	sc->nge_cdata.nge_rx_prod = i;
1295 }
1296 
1297 /*
1298  * A frame was downloaded to the chip. It's safe for us to clean up
1299  * the list buffers.
1300  */
1301 static void
1302 nge_txeof(struct nge_softc *sc)
1303 {
1304 	struct ifnet *ifp = &sc->arpcom.ac_if;
1305 	struct nge_desc *cur_tx = NULL;
1306 	uint32_t idx;
1307 
1308 	/* Clear the timeout timer. */
1309 	ifp->if_timer = 0;
1310 
1311 	/*
1312 	 * Go through our tx list and free mbufs for those
1313 	 * frames that have been transmitted.
1314 	 */
1315 	idx = sc->nge_cdata.nge_tx_cons;
1316 	while (idx != sc->nge_cdata.nge_tx_prod) {
1317 		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1318 
1319 		if (NGE_OWNDESC(cur_tx))
1320 			break;
1321 
1322 		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1323 			sc->nge_cdata.nge_tx_cnt--;
1324 			NGE_INC(idx, NGE_TX_LIST_CNT);
1325 			continue;
1326 		}
1327 
1328 		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1329 			ifp->if_oerrors++;
1330 			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1331 				ifp->if_collisions++;
1332 			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1333 				ifp->if_collisions++;
1334 		}
1335 
1336 		ifp->if_collisions +=
1337 		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1338 
1339 		ifp->if_opackets++;
1340 		if (cur_tx->nge_mbuf != NULL) {
1341 			m_freem(cur_tx->nge_mbuf);
1342 			cur_tx->nge_mbuf = NULL;
1343 		}
1344 
1345 		sc->nge_cdata.nge_tx_cnt--;
1346 		NGE_INC(idx, NGE_TX_LIST_CNT);
1347 		ifp->if_timer = 0;
1348 	}
1349 
1350 	sc->nge_cdata.nge_tx_cons = idx;
1351 
1352 	if (cur_tx != NULL)
1353 		ifp->if_flags &= ~IFF_OACTIVE;
1354 }
1355 
1356 static void
1357 nge_tick(void *xsc)
1358 {
1359 	struct nge_softc *sc = xsc;
1360 	struct ifnet *ifp = &sc->arpcom.ac_if;
1361 	struct mii_data *mii;
1362 
1363 	crit_enter();
1364 
1365 	if (sc->nge_tbi) {
1366 		if (sc->nge_link == 0) {
1367 			if (CSR_READ_4(sc, NGE_TBI_BMSR)
1368 			    & NGE_TBIBMSR_ANEG_DONE) {
1369 				printf("nge%d: gigabit link up\n",
1370 				    sc->nge_unit);
1371 				nge_miibus_statchg(sc->nge_miibus);
1372 				sc->nge_link++;
1373 				if (!ifq_is_empty(&ifp->if_snd))
1374 					nge_start(ifp);
1375 			}
1376 		}
1377 	} else {
1378 		mii = device_get_softc(sc->nge_miibus);
1379 		mii_tick(mii);
1380 
1381 		if (sc->nge_link == 0) {
1382 			if (mii->mii_media_status & IFM_ACTIVE &&
1383 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1384 				sc->nge_link++;
1385 				if (IFM_SUBTYPE(mii->mii_media_active)
1386 				    == IFM_1000_T)
1387 					printf("nge%d: gigabit link up\n",
1388 					    sc->nge_unit);
1389 				if (!ifq_is_empty(&ifp->if_snd))
1390 					nge_start(ifp);
1391 			}
1392 		}
1393 	}
1394 	callout_reset(&sc->nge_stat_timer, hz, nge_tick, sc);
1395 
1396 	crit_exit();
1397 }
1398 
1399 #ifdef DEVICE_POLLING
1400 
1401 static void
1402 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1403 {
1404 	struct nge_softc *sc = ifp->if_softc;
1405 
1406 	switch(cmd) {
1407 	case POLL_REGISTER:
1408 		/* disable interrupts */
1409 		CSR_WRITE_4(sc, NGE_IER, 0);
1410 		break;
1411 	case POLL_DEREGISTER:
1412 		/* enable interrupts */
1413 		CSR_WRITE_4(sc, NGE_IER, 1);
1414 		break;
1415 	default:
1416 		/*
1417 		 * On the nge, reading the status register also clears it.
1418 		 * So before returning to intr mode we must make sure that all
1419 		 * possible pending sources of interrupts have been served.
1420 		 * In practice this means run to completion the *eof routines,
1421 		 * and then call the interrupt routine
1422 		 */
1423 		sc->rxcycles = count;
1424 		nge_rxeof(sc);
1425 		nge_txeof(sc);
1426 		if (!ifq_is_empty(&ifp->if_snd))
1427 			nge_start(ifp);
1428 
1429 		if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1430 			uint32_t status;
1431 
1432 			/* Reading the ISR register clears all interrupts. */
1433 			status = CSR_READ_4(sc, NGE_ISR);
1434 
1435 			if (status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW))
1436 				nge_rxeof(sc);
1437 
1438 			if (status & (NGE_ISR_RX_IDLE))
1439 				NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1440 
1441 			if (status & NGE_ISR_SYSERR) {
1442 				nge_reset(sc);
1443 				nge_init(sc);
1444 			}
1445 		}
1446 		break;
1447 	}
1448 }
1449 
1450 #endif /* DEVICE_POLLING */
1451 
1452 static void
1453 nge_intr(void *arg)
1454 {
1455 	struct nge_softc *sc = arg;
1456 	struct ifnet *ifp = &sc->arpcom.ac_if;
1457 	uint32_t status;
1458 
1459 	/* Supress unwanted interrupts */
1460 	if (!(ifp->if_flags & IFF_UP)) {
1461 		nge_stop(sc);
1462 		return;
1463 	}
1464 
1465 	/* Disable interrupts. */
1466 	CSR_WRITE_4(sc, NGE_IER, 0);
1467 
1468 	/* Data LED on for TBI mode */
1469 	if(sc->nge_tbi)
1470 		 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1471 			     | NGE_GPIO_GP3_OUT);
1472 
1473 	for (;;) {
1474 		/* Reading the ISR register clears all interrupts. */
1475 		status = CSR_READ_4(sc, NGE_ISR);
1476 
1477 		if ((status & NGE_INTRS) == 0)
1478 			break;
1479 
1480 		if ((status & NGE_ISR_TX_DESC_OK) ||
1481 		    (status & NGE_ISR_TX_ERR) ||
1482 		    (status & NGE_ISR_TX_OK) ||
1483 		    (status & NGE_ISR_TX_IDLE))
1484 			nge_txeof(sc);
1485 
1486 		if ((status & NGE_ISR_RX_DESC_OK) ||
1487 		    (status & NGE_ISR_RX_ERR) ||
1488 		    (status & NGE_ISR_RX_OFLOW) ||
1489 		    (status & NGE_ISR_RX_FIFO_OFLOW) ||
1490 		    (status & NGE_ISR_RX_IDLE) ||
1491 		    (status & NGE_ISR_RX_OK))
1492 			nge_rxeof(sc);
1493 
1494 		if ((status & NGE_ISR_RX_IDLE))
1495 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1496 
1497 		if (status & NGE_ISR_SYSERR) {
1498 			nge_reset(sc);
1499 			ifp->if_flags &= ~IFF_RUNNING;
1500 			nge_init(sc);
1501 		}
1502 
1503 #ifdef notyet
1504 		/* mii_tick should only be called once per second */
1505 		if (status & NGE_ISR_PHY_INTR) {
1506 			sc->nge_link = 0;
1507 			nge_tick(sc);
1508 		}
1509 #endif
1510 	}
1511 
1512 	/* Re-enable interrupts. */
1513 	CSR_WRITE_4(sc, NGE_IER, 1);
1514 
1515 	if (!ifq_is_empty(&ifp->if_snd))
1516 		nge_start(ifp);
1517 
1518 	/* Data LED off for TBI mode */
1519 
1520 	if(sc->nge_tbi)
1521 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1522 			    & ~NGE_GPIO_GP3_OUT);
1523 }
1524 
1525 /*
1526  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1527  * pointers to the fragment pointers.
1528  */
1529 static int
1530 nge_encap(struct nge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
1531 {
1532 	struct nge_desc *f = NULL;
1533 	struct mbuf *m;
1534 	int frag, cur, cnt = 0;
1535 	struct ifvlan *ifv = NULL;
1536 
1537 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1538 	    m_head->m_pkthdr.rcvif != NULL &&
1539 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
1540 		ifv = m_head->m_pkthdr.rcvif->if_softc;
1541 
1542 	/*
1543  	 * Start packing the mbufs in this chain into
1544 	 * the fragment pointers. Stop when we run out
1545  	 * of fragments or hit the end of the mbuf chain.
1546 	 */
1547 	m = m_head;
1548 	cur = frag = *txidx;
1549 
1550 	for (m = m_head; m != NULL; m = m->m_next) {
1551 		if (m->m_len != 0) {
1552 			if ((NGE_TX_LIST_CNT -
1553 			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1554 				return(ENOBUFS);
1555 			f = &sc->nge_ldata->nge_tx_list[frag];
1556 			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1557 			f->nge_ptr = vtophys(mtod(m, vm_offset_t));
1558 			if (cnt != 0)
1559 				f->nge_ctl |= NGE_CMDSTS_OWN;
1560 			cur = frag;
1561 			NGE_INC(frag, NGE_TX_LIST_CNT);
1562 			cnt++;
1563 		}
1564 	}
1565 
1566 	if (m != NULL)
1567 		return(ENOBUFS);
1568 
1569 	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1570 	if (m_head->m_pkthdr.csum_flags) {
1571 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1572 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1573 			    NGE_TXEXTSTS_IPCSUM;
1574 		if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1575 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1576 			    NGE_TXEXTSTS_TCPCSUM;
1577 		if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1578 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1579 			    NGE_TXEXTSTS_UDPCSUM;
1580 	}
1581 
1582 	if (ifv != NULL) {
1583 		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1584 			(NGE_TXEXTSTS_VLANPKT|ifv->ifv_tag);
1585 	}
1586 
1587 	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1588 	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1589 	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1590 	sc->nge_cdata.nge_tx_cnt += cnt;
1591 	*txidx = frag;
1592 
1593 	return(0);
1594 }
1595 
1596 /*
1597  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1598  * to the mbuf data regions directly in the transmit lists. We also save a
1599  * copy of the pointers since the transmit list fragment pointers are
1600  * physical addresses.
1601  */
1602 
1603 static void
1604 nge_start(struct ifnet *ifp)
1605 {
1606 	struct nge_softc *sc = ifp->if_softc;
1607 	struct mbuf *m_head = NULL;
1608 	uint32_t idx;
1609 	int need_trans;
1610 
1611 	if (!sc->nge_link)
1612 		return;
1613 
1614 	idx = sc->nge_cdata.nge_tx_prod;
1615 
1616 	if (ifp->if_flags & IFF_OACTIVE)
1617 		return;
1618 
1619 	need_trans = 0;
1620 	while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1621 		m_head = ifq_poll(&ifp->if_snd);
1622 		if (m_head == NULL)
1623 			break;
1624 
1625 		if (nge_encap(sc, m_head, &idx)) {
1626 			ifp->if_flags |= IFF_OACTIVE;
1627 			break;
1628 		}
1629 		ifq_dequeue(&ifp->if_snd, m_head);
1630 		need_trans = 1;
1631 
1632 		BPF_MTAP(ifp, m_head);
1633 	}
1634 
1635 	if (!need_trans)
1636 		return;
1637 
1638 	/* Transmit */
1639 	sc->nge_cdata.nge_tx_prod = idx;
1640 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1641 
1642 	/*
1643 	 * Set a timeout in case the chip goes out to lunch.
1644 	 */
1645 	ifp->if_timer = 5;
1646 }
1647 
1648 static void
1649 nge_init(void *xsc)
1650 {
1651 	struct nge_softc *sc = xsc;
1652 	struct ifnet *ifp = &sc->arpcom.ac_if;
1653 	struct mii_data *mii;
1654 
1655 	crit_enter();
1656 
1657 	if (ifp->if_flags & IFF_RUNNING) {
1658 		crit_exit();
1659 		return;
1660 	}
1661 
1662 	/*
1663 	 * Cancel pending I/O and free all RX/TX buffers.
1664 	 */
1665 	nge_stop(sc);
1666 	callout_reset(&sc->nge_stat_timer, hz, nge_tick, sc);
1667 
1668 	if (sc->nge_tbi)
1669 		mii = NULL;
1670 	else
1671 		mii = device_get_softc(sc->nge_miibus);
1672 
1673 	/* Set MAC address */
1674 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1675 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1676 	    ((uint16_t *)sc->arpcom.ac_enaddr)[0]);
1677 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1678 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1679 	    ((uint16_t *)sc->arpcom.ac_enaddr)[1]);
1680 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1681 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1682 	    ((uint16_t *)sc->arpcom.ac_enaddr)[2]);
1683 
1684 	/* Init circular RX list. */
1685 	if (nge_list_rx_init(sc) == ENOBUFS) {
1686 		printf("nge%d: initialization failed: no "
1687 			"memory for rx buffers\n", sc->nge_unit);
1688 		nge_stop(sc);
1689 		crit_exit();
1690 		return;
1691 	}
1692 
1693 	/*
1694 	 * Init tx descriptors.
1695 	 */
1696 	nge_list_tx_init(sc);
1697 
1698 	/*
1699 	 * For the NatSemi chip, we have to explicitly enable the
1700 	 * reception of ARP frames, as well as turn on the 'perfect
1701 	 * match' filter where we store the station address, otherwise
1702 	 * we won't receive unicasts meant for this host.
1703 	 */
1704 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1705 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1706 
1707 	 /* If we want promiscuous mode, set the allframes bit. */
1708 	if (ifp->if_flags & IFF_PROMISC)
1709 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1710 	else
1711 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1712 
1713 	/*
1714 	 * Set the capture broadcast bit to capture broadcast frames.
1715 	 */
1716 	if (ifp->if_flags & IFF_BROADCAST)
1717 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1718 	else
1719 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1720 
1721 	/*
1722 	 * Load the multicast filter.
1723 	 */
1724 	nge_setmulti(sc);
1725 
1726 	/* Turn the receive filter on */
1727 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1728 
1729 	/*
1730 	 * Load the address of the RX and TX lists.
1731 	 */
1732 	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1733 	    vtophys(&sc->nge_ldata->nge_rx_list[0]));
1734 	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1735 	    vtophys(&sc->nge_ldata->nge_tx_list[0]));
1736 
1737 	/* Set RX configuration */
1738 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1739 	/*
1740 	 * Enable hardware checksum validation for all IPv4
1741 	 * packets, do not reject packets with bad checksums.
1742 	 */
1743 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1744 
1745 	/*
1746 	 * Tell the chip to detect and strip VLAN tag info from
1747 	 * received frames. The tag will be provided in the extsts
1748 	 * field in the RX descriptors.
1749 	 */
1750 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1751 	    NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB);
1752 
1753 	/* Set TX configuration */
1754 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1755 
1756 	/*
1757 	 * Enable TX IPv4 checksumming on a per-packet basis.
1758 	 */
1759 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
1760 
1761 	/*
1762 	 * Tell the chip to insert VLAN tags on a per-packet basis as
1763 	 * dictated by the code in the frame encapsulation routine.
1764 	 */
1765 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1766 
1767 	/* Set full/half duplex mode. */
1768 	if (sc->nge_tbi) {
1769 		if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1770 		    == IFM_FDX) {
1771 			NGE_SETBIT(sc, NGE_TX_CFG,
1772 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1773 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1774 		} else {
1775 			NGE_CLRBIT(sc, NGE_TX_CFG,
1776 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1777 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1778 		}
1779 	} else {
1780 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1781 			NGE_SETBIT(sc, NGE_TX_CFG,
1782 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1783 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1784 		} else {
1785 			NGE_CLRBIT(sc, NGE_TX_CFG,
1786 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1787 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1788 		}
1789 	}
1790 
1791 	/*
1792 	 * Enable the delivery of PHY interrupts based on
1793 	 * link/speed/duplex status changes. Also enable the
1794 	 * extsts field in the DMA descriptors (needed for
1795 	 * TCP/IP checksum offload on transmit).
1796 	 */
1797 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD |
1798 	    NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB);
1799 
1800 	/*
1801 	 * Configure interrupt holdoff (moderation). We can
1802 	 * have the chip delay interrupt delivery for a certain
1803 	 * period. Units are in 100us, and the max setting
1804 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1805 	 */
1806 	CSR_WRITE_4(sc, NGE_IHR, 0x01);
1807 
1808 	/*
1809 	 * Enable interrupts.
1810 	 */
1811 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1812 #ifdef DEVICE_POLLING
1813 	/*
1814 	 * ... only enable interrupts if we are not polling, make sure
1815 	 * they are off otherwise.
1816 	 */
1817 	if (ifp->if_flags & IFF_POLLING)
1818 		CSR_WRITE_4(sc, NGE_IER, 0);
1819 	else
1820 #endif /* DEVICE_POLLING */
1821 	CSR_WRITE_4(sc, NGE_IER, 1);
1822 
1823 	/* Enable receiver and transmitter. */
1824 	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE);
1825 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1826 
1827 	nge_ifmedia_upd(ifp);
1828 
1829 	ifp->if_flags |= IFF_RUNNING;
1830 	ifp->if_flags &= ~IFF_OACTIVE;
1831 
1832 	crit_exit();
1833 }
1834 
1835 /*
1836  * Set media options.
1837  */
1838 static int
1839 nge_ifmedia_upd(struct ifnet *ifp)
1840 {
1841 	struct nge_softc *sc = ifp->if_softc;
1842 	struct mii_data *mii;
1843 
1844 	if (sc->nge_tbi) {
1845 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1846 		     == IFM_AUTO) {
1847 			CSR_WRITE_4(sc, NGE_TBI_ANAR,
1848 				CSR_READ_4(sc, NGE_TBI_ANAR)
1849 					| NGE_TBIANAR_HDX | NGE_TBIANAR_FDX
1850 					| NGE_TBIANAR_PS1 | NGE_TBIANAR_PS2);
1851 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG
1852 				| NGE_TBIBMCR_RESTART_ANEG);
1853 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG);
1854 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media
1855 			    & IFM_GMASK) == IFM_FDX) {
1856 			NGE_SETBIT(sc, NGE_TX_CFG,
1857 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1858 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1859 
1860 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1861 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1862 		} else {
1863 			NGE_CLRBIT(sc, NGE_TX_CFG,
1864 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1865 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1866 
1867 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1868 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1869 		}
1870 
1871 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1872 			    & ~NGE_GPIO_GP3_OUT);
1873 	} else {
1874 		mii = device_get_softc(sc->nge_miibus);
1875 		sc->nge_link = 0;
1876 		if (mii->mii_instance) {
1877 			struct mii_softc	*miisc;
1878 			for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1879 			    miisc = LIST_NEXT(miisc, mii_list))
1880 				mii_phy_reset(miisc);
1881 		}
1882 		mii_mediachg(mii);
1883 	}
1884 
1885 	return(0);
1886 }
1887 
1888 /*
1889  * Report current media status.
1890  */
1891 static void
1892 nge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1893 {
1894 	struct nge_softc *sc = ifp->if_softc;
1895 	struct mii_data *mii;
1896 
1897 	if (sc->nge_tbi) {
1898 		ifmr->ifm_status = IFM_AVALID;
1899 		ifmr->ifm_active = IFM_ETHER;
1900 
1901 		if (CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE)
1902 			ifmr->ifm_status |= IFM_ACTIVE;
1903 		if (CSR_READ_4(sc, NGE_TBI_BMCR) & NGE_TBIBMCR_LOOPBACK)
1904 			ifmr->ifm_active |= IFM_LOOP;
1905 		if (!CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
1906 			ifmr->ifm_active |= IFM_NONE;
1907 			ifmr->ifm_status = 0;
1908 			return;
1909 		}
1910 		ifmr->ifm_active |= IFM_1000_SX;
1911 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1912 		    == IFM_AUTO) {
1913 			ifmr->ifm_active |= IFM_AUTO;
1914 			if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1915 			    & NGE_TBIANAR_FDX) {
1916 				ifmr->ifm_active |= IFM_FDX;
1917 			}else if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1918 				  & NGE_TBIANAR_HDX) {
1919 				ifmr->ifm_active |= IFM_HDX;
1920 			}
1921 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1922 			== IFM_FDX)
1923 			ifmr->ifm_active |= IFM_FDX;
1924 		else
1925 			ifmr->ifm_active |= IFM_HDX;
1926 
1927 	} else {
1928 		mii = device_get_softc(sc->nge_miibus);
1929 		mii_pollstat(mii);
1930 		ifmr->ifm_active = mii->mii_media_active;
1931 		ifmr->ifm_status = mii->mii_media_status;
1932 	}
1933 }
1934 
1935 static int
1936 nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1937 {
1938 	struct nge_softc *sc = ifp->if_softc;
1939 	struct ifreq *ifr = (struct ifreq *) data;
1940 	struct mii_data *mii;
1941 	int error = 0;
1942 
1943 	crit_enter();
1944 
1945 	switch(command) {
1946 	case SIOCSIFMTU:
1947 		if (ifr->ifr_mtu > NGE_JUMBO_MTU) {
1948 			error = EINVAL;
1949 		} else {
1950 			ifp->if_mtu = ifr->ifr_mtu;
1951 			/*
1952 			 * Workaround: if the MTU is larger than
1953 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
1954 			 * TX checksum offloading.
1955 			 */
1956 			if (ifr->ifr_mtu >= 8152)
1957 				ifp->if_hwassist = 0;
1958 			else
1959 				ifp->if_hwassist = NGE_CSUM_FEATURES;
1960 		}
1961 		break;
1962 	case SIOCSIFFLAGS:
1963 		if (ifp->if_flags & IFF_UP) {
1964 			if (ifp->if_flags & IFF_RUNNING &&
1965 			    ifp->if_flags & IFF_PROMISC &&
1966 			    !(sc->nge_if_flags & IFF_PROMISC)) {
1967 				NGE_SETBIT(sc, NGE_RXFILT_CTL,
1968 				    NGE_RXFILTCTL_ALLPHYS|
1969 				    NGE_RXFILTCTL_ALLMULTI);
1970 			} else if (ifp->if_flags & IFF_RUNNING &&
1971 			    !(ifp->if_flags & IFF_PROMISC) &&
1972 			    sc->nge_if_flags & IFF_PROMISC) {
1973 				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1974 				    NGE_RXFILTCTL_ALLPHYS);
1975 				if (!(ifp->if_flags & IFF_ALLMULTI))
1976 					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1977 					    NGE_RXFILTCTL_ALLMULTI);
1978 			} else {
1979 				ifp->if_flags &= ~IFF_RUNNING;
1980 				nge_init(sc);
1981 			}
1982 		} else {
1983 			if (ifp->if_flags & IFF_RUNNING)
1984 				nge_stop(sc);
1985 		}
1986 		sc->nge_if_flags = ifp->if_flags;
1987 		error = 0;
1988 		break;
1989 	case SIOCADDMULTI:
1990 	case SIOCDELMULTI:
1991 		nge_setmulti(sc);
1992 		error = 0;
1993 		break;
1994 	case SIOCGIFMEDIA:
1995 	case SIOCSIFMEDIA:
1996 		if (sc->nge_tbi) {
1997 			error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia,
1998 					      command);
1999 		} else {
2000 			mii = device_get_softc(sc->nge_miibus);
2001 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
2002 					      command);
2003 		}
2004 		break;
2005 	default:
2006 		error = ether_ioctl(ifp, command, data);
2007 		break;
2008 	}
2009 
2010 	crit_exit();
2011 
2012 	return(error);
2013 }
2014 
2015 static void
2016 nge_watchdog(struct ifnet *ifp)
2017 {
2018 	struct nge_softc *sc = ifp->if_softc;
2019 
2020 	ifp->if_oerrors++;
2021 	printf("nge%d: watchdog timeout\n", sc->nge_unit);
2022 
2023 	nge_stop(sc);
2024 	nge_reset(sc);
2025 	ifp->if_flags &= ~IFF_RUNNING;
2026 	nge_init(sc);
2027 
2028 	if (!ifq_is_empty(&ifp->if_snd))
2029 		nge_start(ifp);
2030 }
2031 
2032 /*
2033  * Stop the adapter and free any mbufs allocated to the
2034  * RX and TX lists.
2035  */
2036 static void
2037 nge_stop(struct nge_softc *sc)
2038 {
2039 	struct ifnet *ifp = &sc->arpcom.ac_if;
2040 	struct ifmedia_entry *ifm;
2041 	struct mii_data *mii;
2042 	int i, itmp, mtmp;
2043 
2044 	ifp->if_timer = 0;
2045 	if (sc->nge_tbi)
2046 		mii = NULL;
2047 	else
2048 		mii = device_get_softc(sc->nge_miibus);
2049 
2050 	callout_stop(&sc->nge_stat_timer);
2051 	CSR_WRITE_4(sc, NGE_IER, 0);
2052 	CSR_WRITE_4(sc, NGE_IMR, 0);
2053 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2054 	DELAY(1000);
2055 	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
2056 	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
2057 
2058 	/*
2059 	 * Isolate/power down the PHY, but leave the media selection
2060 	 * unchanged so that things will be put back to normal when
2061 	 * we bring the interface back up.
2062 	 */
2063 	itmp = ifp->if_flags;
2064 	ifp->if_flags |= IFF_UP;
2065 
2066 	if (sc->nge_tbi)
2067 		ifm = sc->nge_ifmedia.ifm_cur;
2068 	else
2069 		ifm = mii->mii_media.ifm_cur;
2070 
2071 	mtmp = ifm->ifm_media;
2072 	ifm->ifm_media = IFM_ETHER|IFM_NONE;
2073 
2074 	if (!sc->nge_tbi)
2075 		mii_mediachg(mii);
2076 	ifm->ifm_media = mtmp;
2077 	ifp->if_flags = itmp;
2078 
2079 	sc->nge_link = 0;
2080 
2081 	/*
2082 	 * Free data in the RX lists.
2083 	 */
2084 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2085 		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2086 			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2087 			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2088 		}
2089 	}
2090 	bzero(&sc->nge_ldata->nge_rx_list,
2091 		sizeof(sc->nge_ldata->nge_rx_list));
2092 
2093 	/*
2094 	 * Free the TX list buffers.
2095 	 */
2096 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2097 		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2098 			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2099 			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2100 		}
2101 	}
2102 
2103 	bzero(&sc->nge_ldata->nge_tx_list,
2104 		sizeof(sc->nge_ldata->nge_tx_list));
2105 
2106 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2107 }
2108 
2109 /*
2110  * Stop all chip I/O so that the kernel's probe routines don't
2111  * get confused by errant DMAs when rebooting.
2112  */
2113 static void
2114 nge_shutdown(device_t dev)
2115 {
2116 	struct nge_softc *sc = device_get_softc(dev);
2117 
2118 	nge_reset(sc);
2119 	nge_stop(sc);
2120 }
2121