xref: /dragonfly/sys/dev/netif/nge/if_nge.c (revision 3f625015)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/nge/if_nge.c,v 1.13.2.13 2003/02/05 22:03:57 mbr Exp $
34  * $DragonFly: src/sys/dev/netif/nge/if_nge.c,v 1.42 2007/03/26 12:13:58 sephe Exp $
35  */
36 
37 /*
38  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39  * for FreeBSD. Datasheets are available from:
40  *
41  * http://www.national.com/ds/DP/DP83820.pdf
42  * http://www.national.com/ds/DP/DP83821.pdf
43  *
44  * These chips are used on several low cost gigabit ethernet NICs
45  * sold by D-Link, Addtron, SMC and Asante. Both parts are
46  * virtually the same, except the 83820 is a 64-bit/32-bit part,
47  * while the 83821 is 32-bit only.
48  *
49  * Many cards also use National gigE transceivers, such as the
50  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51  * contains a full register description that applies to all of these
52  * components:
53  *
54  * http://www.national.com/ds/DP/DP83861.pdf
55  *
56  * Written by Bill Paul <wpaul@bsdi.com>
57  * BSDi Open Source Solutions
58  */
59 
60 /*
61  * The NatSemi DP83820 and 83821 controllers are enhanced versions
62  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67  * matching buffers, one perfect address filter buffer and interrupt
68  * moderation. The 83820 supports both 64-bit and 32-bit addressing
69  * and data transfers: the 64-bit support can be toggled on or off
70  * via software. This affects the size of certain fields in the DMA
71  * descriptors.
72  *
73  * There are two bugs/misfeatures in the 83820/83821 that I have
74  * discovered so far:
75  *
76  * - Receive buffers must be aligned on 64-bit boundaries, which means
77  *   you must resort to copying data in order to fix up the payload
78  *   alignment.
79  *
80  * - In order to transmit jumbo frames larger than 8170 bytes, you have
81  *   to turn off transmit checksum offloading, because the chip can't
82  *   compute the checksum on an outgoing frame unless it fits entirely
83  *   within the TX FIFO, which is only 8192 bytes in size. If you have
84  *   TX checksum offload enabled and you transmit attempt to transmit a
85  *   frame larger than 8170 bytes, the transmitter will wedge.
86  *
87  * To work around the latter problem, TX checksum offload is disabled
88  * if the user selects an MTU larger than 8152 (8170 - 18).
89  */
90 
91 #include "opt_polling.h"
92 
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/sockio.h>
96 #include <sys/mbuf.h>
97 #include <sys/malloc.h>
98 #include <sys/kernel.h>
99 #include <sys/socket.h>
100 #include <sys/serialize.h>
101 #include <sys/bus.h>
102 #include <sys/rman.h>
103 #include <sys/thread2.h>
104 
105 #include <net/if.h>
106 #include <net/ifq_var.h>
107 #include <net/if_arp.h>
108 #include <net/ethernet.h>
109 #include <net/if_dl.h>
110 #include <net/if_media.h>
111 #include <net/if_types.h>
112 #include <net/vlan/if_vlan_var.h>
113 
114 #include <net/bpf.h>
115 
116 #include <vm/vm.h>              /* for vtophys */
117 #include <vm/pmap.h>            /* for vtophys */
118 
119 #include <dev/netif/mii_layer/mii.h>
120 #include <dev/netif/mii_layer/miivar.h>
121 
122 #include <bus/pci/pcidevs.h>
123 #include <bus/pci/pcireg.h>
124 #include <bus/pci/pcivar.h>
125 
126 #define NGE_USEIOSPACE
127 
128 #include "if_ngereg.h"
129 
130 
131 /* "controller miibus0" required.  See GENERIC if you get errors here. */
132 #include "miibus_if.h"
133 
134 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
135 
136 /*
137  * Various supported device vendors/types and their names.
138  */
139 static struct nge_type nge_devs[] = {
140 	{ PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
141 	    "National Semiconductor Gigabit Ethernet" },
142 	{ 0, 0, NULL }
143 };
144 
145 static int	nge_probe(device_t);
146 static int	nge_attach(device_t);
147 static int	nge_detach(device_t);
148 
149 static int	nge_alloc_jumbo_mem(struct nge_softc *);
150 static struct nge_jslot
151 		*nge_jalloc(struct nge_softc *);
152 static void	nge_jfree(void *);
153 static void	nge_jref(void *);
154 
155 static int	nge_newbuf(struct nge_softc *, struct nge_desc *,
156 			   struct mbuf *);
157 static int	nge_encap(struct nge_softc *, struct mbuf *, uint32_t *);
158 static void	nge_rxeof(struct nge_softc *);
159 static void	nge_txeof(struct nge_softc *);
160 static void	nge_intr(void *);
161 static void	nge_tick(void *);
162 static void	nge_start(struct ifnet *);
163 static int	nge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
164 static void	nge_init(void *);
165 static void	nge_stop(struct nge_softc *);
166 static void	nge_watchdog(struct ifnet *);
167 static void	nge_shutdown(device_t);
168 static int	nge_ifmedia_upd(struct ifnet *);
169 static void	nge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
170 
171 static void	nge_delay(struct nge_softc *);
172 static void	nge_eeprom_idle(struct nge_softc *);
173 static void	nge_eeprom_putbyte(struct nge_softc *, int);
174 static void	nge_eeprom_getword(struct nge_softc *, int, uint16_t *);
175 static void	nge_read_eeprom(struct nge_softc *, void *, int, int);
176 
177 static void	nge_mii_sync(struct nge_softc *);
178 static void	nge_mii_send(struct nge_softc *, uint32_t, int);
179 static int	nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
180 static int	nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
181 
182 static int	nge_miibus_readreg(device_t, int, int);
183 static int	nge_miibus_writereg(device_t, int, int, int);
184 static void	nge_miibus_statchg(device_t);
185 
186 static void	nge_setmulti(struct nge_softc *);
187 static void	nge_reset(struct nge_softc *);
188 static int	nge_list_rx_init(struct nge_softc *);
189 static int	nge_list_tx_init(struct nge_softc *);
190 #ifdef DEVICE_POLLING
191 static void	nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
192 #endif
193 
194 #ifdef NGE_USEIOSPACE
195 #define NGE_RES			SYS_RES_IOPORT
196 #define NGE_RID			NGE_PCI_LOIO
197 #else
198 #define NGE_RES			SYS_RES_MEMORY
199 #define NGE_RID			NGE_PCI_LOMEM
200 #endif
201 
202 static device_method_t nge_methods[] = {
203 	/* Device interface */
204 	DEVMETHOD(device_probe,		nge_probe),
205 	DEVMETHOD(device_attach,	nge_attach),
206 	DEVMETHOD(device_detach,	nge_detach),
207 	DEVMETHOD(device_shutdown,	nge_shutdown),
208 
209 	/* bus interface */
210 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
211 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
212 
213 	/* MII interface */
214 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
215 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
216 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
217 
218 	{ 0, 0 }
219 };
220 
221 static DEFINE_CLASS_0(nge, nge_driver, nge_methods, sizeof(struct nge_softc));
222 static devclass_t nge_devclass;
223 
224 DECLARE_DUMMY_MODULE(if_nge);
225 MODULE_DEPEND(if_nge, miibus, 1, 1, 1);
226 DRIVER_MODULE(if_nge, pci, nge_driver, nge_devclass, 0, 0);
227 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
228 
229 #define NGE_SETBIT(sc, reg, x)				\
230 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
231 
232 #define NGE_CLRBIT(sc, reg, x)				\
233 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
234 
235 #define SIO_SET(x)					\
236 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
237 
238 #define SIO_CLR(x)					\
239 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
240 
241 static void
242 nge_delay(struct nge_softc *sc)
243 {
244 	int idx;
245 
246 	for (idx = (300 / 33) + 1; idx > 0; idx--)
247 		CSR_READ_4(sc, NGE_CSR);
248 }
249 
250 static void
251 nge_eeprom_idle(struct nge_softc *sc)
252 {
253 	int i;
254 
255 	SIO_SET(NGE_MEAR_EE_CSEL);
256 	nge_delay(sc);
257 	SIO_SET(NGE_MEAR_EE_CLK);
258 	nge_delay(sc);
259 
260 	for (i = 0; i < 25; i++) {
261 		SIO_CLR(NGE_MEAR_EE_CLK);
262 		nge_delay(sc);
263 		SIO_SET(NGE_MEAR_EE_CLK);
264 		nge_delay(sc);
265 	}
266 
267 	SIO_CLR(NGE_MEAR_EE_CLK);
268 	nge_delay(sc);
269 	SIO_CLR(NGE_MEAR_EE_CSEL);
270 	nge_delay(sc);
271 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
272 }
273 
274 /*
275  * Send a read command and address to the EEPROM, check for ACK.
276  */
277 static void
278 nge_eeprom_putbyte(struct nge_softc *sc, int addr)
279 {
280 	int d, i;
281 
282 	d = addr | NGE_EECMD_READ;
283 
284 	/*
285 	 * Feed in each bit and stobe the clock.
286 	 */
287 	for (i = 0x400; i; i >>= 1) {
288 		if (d & i)
289 			SIO_SET(NGE_MEAR_EE_DIN);
290 		else
291 			SIO_CLR(NGE_MEAR_EE_DIN);
292 		nge_delay(sc);
293 		SIO_SET(NGE_MEAR_EE_CLK);
294 		nge_delay(sc);
295 		SIO_CLR(NGE_MEAR_EE_CLK);
296 		nge_delay(sc);
297 	}
298 }
299 
300 /*
301  * Read a word of data stored in the EEPROM at address 'addr.'
302  */
303 static void
304 nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest)
305 {
306 	int i;
307 	uint16_t word = 0;
308 
309 	/* Force EEPROM to idle state. */
310 	nge_eeprom_idle(sc);
311 
312 	/* Enter EEPROM access mode. */
313 	nge_delay(sc);
314 	SIO_CLR(NGE_MEAR_EE_CLK);
315 	nge_delay(sc);
316 	SIO_SET(NGE_MEAR_EE_CSEL);
317 	nge_delay(sc);
318 
319 	/*
320 	 * Send address of word we want to read.
321 	 */
322 	nge_eeprom_putbyte(sc, addr);
323 
324 	/*
325 	 * Start reading bits from EEPROM.
326 	 */
327 	for (i = 0x8000; i; i >>= 1) {
328 		SIO_SET(NGE_MEAR_EE_CLK);
329 		nge_delay(sc);
330 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
331 			word |= i;
332 		nge_delay(sc);
333 		SIO_CLR(NGE_MEAR_EE_CLK);
334 		nge_delay(sc);
335 	}
336 
337 	/* Turn off EEPROM access mode. */
338 	nge_eeprom_idle(sc);
339 
340 	*dest = word;
341 }
342 
343 /*
344  * Read a sequence of words from the EEPROM.
345  */
346 static void
347 nge_read_eeprom(struct nge_softc *sc, void *dest, int off, int cnt)
348 {
349 	int i;
350 	uint16_t word = 0, *ptr;
351 
352 	for (i = 0; i < cnt; i++) {
353 		nge_eeprom_getword(sc, off + i, &word);
354 		ptr = (uint16_t *)((uint8_t *)dest + (i * 2));
355 		*ptr = word;
356 	}
357 }
358 
359 /*
360  * Sync the PHYs by setting data bit and strobing the clock 32 times.
361  */
362 static void
363 nge_mii_sync(struct nge_softc *sc)
364 {
365 	int i;
366 
367 	SIO_SET(NGE_MEAR_MII_DIR | NGE_MEAR_MII_DATA);
368 
369 	for (i = 0; i < 32; i++) {
370 		SIO_SET(NGE_MEAR_MII_CLK);
371 		DELAY(1);
372 		SIO_CLR(NGE_MEAR_MII_CLK);
373 		DELAY(1);
374 	}
375 }
376 
377 /*
378  * Clock a series of bits through the MII.
379  */
380 static void
381 nge_mii_send(struct nge_softc *sc, uint32_t bits, int cnt)
382 {
383 	int i;
384 
385 	SIO_CLR(NGE_MEAR_MII_CLK);
386 
387 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
388                 if (bits & i)
389 			SIO_SET(NGE_MEAR_MII_DATA);
390                 else
391 			SIO_CLR(NGE_MEAR_MII_DATA);
392 		DELAY(1);
393 		SIO_CLR(NGE_MEAR_MII_CLK);
394 		DELAY(1);
395 		SIO_SET(NGE_MEAR_MII_CLK);
396 	}
397 }
398 
399 /*
400  * Read an PHY register through the MII.
401  */
402 static int
403 nge_mii_readreg(struct nge_softc *sc, struct nge_mii_frame *frame)
404 {
405 	int ack, i;
406 
407 	/*
408 	 * Set up frame for RX.
409 	 */
410 	frame->mii_stdelim = NGE_MII_STARTDELIM;
411 	frame->mii_opcode = NGE_MII_READOP;
412 	frame->mii_turnaround = 0;
413 	frame->mii_data = 0;
414 
415 	CSR_WRITE_4(sc, NGE_MEAR, 0);
416 
417 	/*
418  	 * Turn on data xmit.
419 	 */
420 	SIO_SET(NGE_MEAR_MII_DIR);
421 
422 	nge_mii_sync(sc);
423 
424 	/*
425 	 * Send command/address info.
426 	 */
427 	nge_mii_send(sc, frame->mii_stdelim, 2);
428 	nge_mii_send(sc, frame->mii_opcode, 2);
429 	nge_mii_send(sc, frame->mii_phyaddr, 5);
430 	nge_mii_send(sc, frame->mii_regaddr, 5);
431 
432 	/* Idle bit */
433 	SIO_CLR((NGE_MEAR_MII_CLK | NGE_MEAR_MII_DATA));
434 	DELAY(1);
435 	SIO_SET(NGE_MEAR_MII_CLK);
436 	DELAY(1);
437 
438 	/* Turn off xmit. */
439 	SIO_CLR(NGE_MEAR_MII_DIR);
440 	/* Check for ack */
441 	SIO_CLR(NGE_MEAR_MII_CLK);
442 	DELAY(1);
443 	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
444 	SIO_SET(NGE_MEAR_MII_CLK);
445 	DELAY(1);
446 
447 	/*
448 	 * Now try reading data bits. If the ack failed, we still
449 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
450 	 */
451 	if (ack) {
452 		for(i = 0; i < 16; i++) {
453 			SIO_CLR(NGE_MEAR_MII_CLK);
454 			DELAY(1);
455 			SIO_SET(NGE_MEAR_MII_CLK);
456 			DELAY(1);
457 		}
458 		goto fail;
459 	}
460 
461 	for (i = 0x8000; i; i >>= 1) {
462 		SIO_CLR(NGE_MEAR_MII_CLK);
463 		DELAY(1);
464 		if (!ack) {
465 			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
466 				frame->mii_data |= i;
467 			DELAY(1);
468 		}
469 		SIO_SET(NGE_MEAR_MII_CLK);
470 		DELAY(1);
471 	}
472 
473 fail:
474 	SIO_CLR(NGE_MEAR_MII_CLK);
475 	DELAY(1);
476 	SIO_SET(NGE_MEAR_MII_CLK);
477 	DELAY(1);
478 
479 	if (ack)
480 		return(1);
481 	return(0);
482 }
483 
484 /*
485  * Write to a PHY register through the MII.
486  */
487 static int
488 nge_mii_writereg(struct nge_softc *sc, struct nge_mii_frame *frame)
489 {
490 	/*
491 	 * Set up frame for TX.
492 	 */
493 
494 	frame->mii_stdelim = NGE_MII_STARTDELIM;
495 	frame->mii_opcode = NGE_MII_WRITEOP;
496 	frame->mii_turnaround = NGE_MII_TURNAROUND;
497 
498 	/*
499  	 * Turn on data output.
500 	 */
501 	SIO_SET(NGE_MEAR_MII_DIR);
502 
503 	nge_mii_sync(sc);
504 
505 	nge_mii_send(sc, frame->mii_stdelim, 2);
506 	nge_mii_send(sc, frame->mii_opcode, 2);
507 	nge_mii_send(sc, frame->mii_phyaddr, 5);
508 	nge_mii_send(sc, frame->mii_regaddr, 5);
509 	nge_mii_send(sc, frame->mii_turnaround, 2);
510 	nge_mii_send(sc, frame->mii_data, 16);
511 
512 	/* Idle bit. */
513 	SIO_SET(NGE_MEAR_MII_CLK);
514 	DELAY(1);
515 	SIO_CLR(NGE_MEAR_MII_CLK);
516 	DELAY(1);
517 
518 	/*
519 	 * Turn off xmit.
520 	 */
521 	SIO_CLR(NGE_MEAR_MII_DIR);
522 
523 	return(0);
524 }
525 
526 static int
527 nge_miibus_readreg(device_t dev, int phy, int reg)
528 {
529 	struct nge_softc *sc = device_get_softc(dev);
530 	struct nge_mii_frame frame;
531 
532 	bzero((char *)&frame, sizeof(frame));
533 
534 	frame.mii_phyaddr = phy;
535 	frame.mii_regaddr = reg;
536 	nge_mii_readreg(sc, &frame);
537 
538 	return(frame.mii_data);
539 }
540 
541 static int
542 nge_miibus_writereg(device_t dev, int phy, int reg, int data)
543 {
544 	struct nge_softc *sc = device_get_softc(dev);
545 	struct nge_mii_frame frame;
546 
547 	bzero((char *)&frame, sizeof(frame));
548 
549 	frame.mii_phyaddr = phy;
550 	frame.mii_regaddr = reg;
551 	frame.mii_data = data;
552 	nge_mii_writereg(sc, &frame);
553 
554 	return(0);
555 }
556 
557 static void
558 nge_miibus_statchg(device_t dev)
559 {
560 	struct nge_softc *sc = device_get_softc(dev);
561 	struct mii_data *mii;
562 	int status;
563 
564 	if (sc->nge_tbi) {
565 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
566 		    == IFM_AUTO) {
567 			status = CSR_READ_4(sc, NGE_TBI_ANLPAR);
568 			if (status == 0 || status & NGE_TBIANAR_FDX) {
569 				NGE_SETBIT(sc, NGE_TX_CFG,
570 				    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
571 				NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
572 			} else {
573 				NGE_CLRBIT(sc, NGE_TX_CFG,
574 				    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
575 				NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
576 			}
577 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
578 			!= IFM_FDX) {
579 			NGE_CLRBIT(sc, NGE_TX_CFG,
580 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
581 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
582 		} else {
583 			NGE_SETBIT(sc, NGE_TX_CFG,
584 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
585 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
586 		}
587 	} else {
588 		mii = device_get_softc(sc->nge_miibus);
589 
590 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
591 		        NGE_SETBIT(sc, NGE_TX_CFG,
592 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
593 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
594 		} else {
595 			NGE_CLRBIT(sc, NGE_TX_CFG,
596 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
597 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
598 		}
599 
600 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
601 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
602 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
603 			NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
604 		} else {
605 			NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
606 		}
607 	}
608 }
609 
610 static void
611 nge_setmulti(struct nge_softc *sc)
612 {
613 	struct ifnet *ifp = &sc->arpcom.ac_if;
614 	struct ifmultiaddr *ifma;
615 	uint32_t filtsave, h = 0, i;
616 	int bit, index;
617 
618 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
619 		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
620 		    NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH);
621 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
622 		return;
623 	}
624 
625 	/*
626 	 * We have to explicitly enable the multicast hash table
627 	 * on the NatSemi chip if we want to use it, which we do.
628 	 * We also have to tell it that we don't want to use the
629 	 * hash table for matching unicast addresses.
630 	 */
631 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
632 	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
633 	    NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_UCHASH);
634 
635 	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
636 
637 	/* first, zot all the existing hash bits */
638 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
639 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
640 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
641 	}
642 
643 	/*
644 	 * From the 11 bits returned by the crc routine, the top 7
645 	 * bits represent the 16-bit word in the mcast hash table
646 	 * that needs to be updated, and the lower 4 bits represent
647 	 * which bit within that byte needs to be set.
648 	 */
649 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
650 		if (ifma->ifma_addr->sa_family != AF_LINK)
651 			continue;
652 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
653 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 21;
654 		index = (h >> 4) & 0x7F;
655 		bit = h & 0xF;
656 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
657 		    NGE_FILTADDR_MCAST_LO + (index * 2));
658 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
659 	}
660 
661 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
662 }
663 
664 static void
665 nge_reset(struct nge_softc *sc)
666 {
667 	int i;
668 
669 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
670 
671 	for (i = 0; i < NGE_TIMEOUT; i++) {
672 		if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET) == 0)
673 			break;
674 	}
675 
676 	if (i == NGE_TIMEOUT)
677 		kprintf("nge%d: reset never completed\n", sc->nge_unit);
678 
679 	/* Wait a little while for the chip to get its brains in order. */
680 	DELAY(1000);
681 
682 	/*
683 	 * If this is a NetSemi chip, make sure to clear
684 	 * PME mode.
685 	 */
686 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
687 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
688 }
689 
690 /*
691  * Probe for an NatSemi chip. Check the PCI vendor and device
692  * IDs against our list and return a device name if we find a match.
693  */
694 static int
695 nge_probe(device_t dev)
696 {
697 	struct nge_type	*t;
698 	uint16_t vendor, product;
699 
700 	vendor = pci_get_vendor(dev);
701 	product = pci_get_device(dev);
702 
703 	for (t = nge_devs; t->nge_name != NULL; t++) {
704 		if (vendor == t->nge_vid && product == t->nge_did) {
705 			device_set_desc(dev, t->nge_name);
706 			return(0);
707 		}
708 	}
709 
710 	return(ENXIO);
711 }
712 
713 /*
714  * Attach the interface. Allocate softc structures, do ifmedia
715  * setup and ethernet/BPF attach.
716  */
717 static int
718 nge_attach(device_t dev)
719 {
720 	struct nge_softc *sc;
721 	struct ifnet *ifp;
722 	uint8_t eaddr[ETHER_ADDR_LEN];
723 	uint32_t		command;
724 	int error = 0, rid, unit;
725 	const char		*sep = "";
726 
727 	sc = device_get_softc(dev);
728 	unit = device_get_unit(dev);
729 	callout_init(&sc->nge_stat_timer);
730 	lwkt_serialize_init(&sc->nge_jslot_serializer);
731 
732 	/*
733 	 * Handle power management nonsense.
734 	 */
735 	command = pci_read_config(dev, NGE_PCI_CAPID, 4) & 0x000000FF;
736 	if (command == 0x01) {
737 		command = pci_read_config(dev, NGE_PCI_PWRMGMTCTRL, 4);
738 		if (command & NGE_PSTATE_MASK) {
739 			uint32_t		iobase, membase, irq;
740 
741 			/* Save important PCI config data. */
742 			iobase = pci_read_config(dev, NGE_PCI_LOIO, 4);
743 			membase = pci_read_config(dev, NGE_PCI_LOMEM, 4);
744 			irq = pci_read_config(dev, NGE_PCI_INTLINE, 4);
745 
746 			/* Reset the power state. */
747 			kprintf("nge%d: chip is in D%d power mode "
748 			"-- setting to D0\n", unit, command & NGE_PSTATE_MASK);
749 			command &= 0xFFFFFFFC;
750 			pci_write_config(dev, NGE_PCI_PWRMGMTCTRL, command, 4);
751 
752 			/* Restore PCI config data. */
753 			pci_write_config(dev, NGE_PCI_LOIO, iobase, 4);
754 			pci_write_config(dev, NGE_PCI_LOMEM, membase, 4);
755 			pci_write_config(dev, NGE_PCI_INTLINE, irq, 4);
756 		}
757 	}
758 
759 	/*
760 	 * Map control/status registers.
761 	 */
762 	command = pci_read_config(dev, PCIR_COMMAND, 4);
763 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
764 	pci_write_config(dev, PCIR_COMMAND, command, 4);
765 	command = pci_read_config(dev, PCIR_COMMAND, 4);
766 
767 #ifdef NGE_USEIOSPACE
768 	if (!(command & PCIM_CMD_PORTEN)) {
769 		kprintf("nge%d: failed to enable I/O ports!\n", unit);
770 		error = ENXIO;
771 		return(error);
772 	}
773 #else
774 	if (!(command & PCIM_CMD_MEMEN)) {
775 		kprintf("nge%d: failed to enable memory mapping!\n", unit);
776 		error = ENXIO;
777 		return(error);
778 	}
779 #endif
780 
781 	rid = NGE_RID;
782 	sc->nge_res = bus_alloc_resource_any(dev, NGE_RES, &rid, RF_ACTIVE);
783 
784 	if (sc->nge_res == NULL) {
785 		kprintf("nge%d: couldn't map ports/memory\n", unit);
786 		error = ENXIO;
787 		return(error);
788 	}
789 
790 	sc->nge_btag = rman_get_bustag(sc->nge_res);
791 	sc->nge_bhandle = rman_get_bushandle(sc->nge_res);
792 
793 	/* Allocate interrupt */
794 	rid = 0;
795 	sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
796 	    RF_SHAREABLE | RF_ACTIVE);
797 
798 	if (sc->nge_irq == NULL) {
799 		kprintf("nge%d: couldn't map interrupt\n", unit);
800 		error = ENXIO;
801 		goto fail;
802 	}
803 
804 	/* Reset the adapter. */
805 	nge_reset(sc);
806 
807 	/*
808 	 * Get station address from the EEPROM.
809 	 */
810 	nge_read_eeprom(sc, &eaddr[4], NGE_EE_NODEADDR, 1);
811 	nge_read_eeprom(sc, &eaddr[2], NGE_EE_NODEADDR + 1, 1);
812 	nge_read_eeprom(sc, &eaddr[0], NGE_EE_NODEADDR + 2, 1);
813 
814 	sc->nge_unit = unit;
815 
816 	sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF,
817 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
818 
819 	if (sc->nge_ldata == NULL) {
820 		kprintf("nge%d: no memory for list buffers!\n", unit);
821 		error = ENXIO;
822 		goto fail;
823 	}
824 	bzero(sc->nge_ldata, sizeof(struct nge_list_data));
825 
826 	/* Try to allocate memory for jumbo buffers. */
827 	if (nge_alloc_jumbo_mem(sc)) {
828 		kprintf("nge%d: jumbo buffer allocation failed\n",
829                     sc->nge_unit);
830 		error = ENXIO;
831 		goto fail;
832 	}
833 
834 	ifp = &sc->arpcom.ac_if;
835 	ifp->if_softc = sc;
836 	if_initname(ifp, "nge", unit);
837 	ifp->if_mtu = ETHERMTU;
838 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
839 	ifp->if_ioctl = nge_ioctl;
840 	ifp->if_start = nge_start;
841 #ifdef DEVICE_POLLING
842 	ifp->if_poll = nge_poll;
843 #endif
844 	ifp->if_watchdog = nge_watchdog;
845 	ifp->if_init = nge_init;
846 	ifp->if_baudrate = 1000000000;
847 	ifq_set_maxlen(&ifp->if_snd, NGE_TX_LIST_CNT - 1);
848 	ifq_set_ready(&ifp->if_snd);
849 	ifp->if_hwassist = NGE_CSUM_FEATURES;
850 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING;
851 	ifp->if_capenable = ifp->if_capabilities;
852 
853 	/*
854 	 * Do MII setup.
855 	 */
856 	if (mii_phy_probe(dev, &sc->nge_miibus,
857 			  nge_ifmedia_upd, nge_ifmedia_sts)) {
858 		if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) {
859 			sc->nge_tbi = 1;
860 			device_printf(dev, "Using TBI\n");
861 
862 			sc->nge_miibus = dev;
863 
864 			ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_upd,
865 				nge_ifmedia_sts);
866 #define	ADD(m, c)	ifmedia_add(&sc->nge_ifmedia, (m), (c), NULL)
867 #define PRINT(s)	kprintf("%s%s", sep, s); sep = ", "
868 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_NONE, 0, 0), 0);
869 			device_printf(dev, " ");
870 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, 0, 0), 0);
871 			PRINT("1000baseSX");
872 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, 0),0);
873 			PRINT("1000baseSX-FDX");
874 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0);
875 			PRINT("auto");
876 
877 			kprintf("\n");
878 #undef ADD
879 #undef PRINT
880 			ifmedia_set(&sc->nge_ifmedia,
881 				IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0));
882 
883 			CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
884 				| NGE_GPIO_GP4_OUT
885 				| NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
886 				| NGE_GPIO_GP3_OUTENB
887 				| NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
888 
889 		} else {
890 			kprintf("nge%d: MII without any PHY!\n", sc->nge_unit);
891 			error = ENXIO;
892 			goto fail;
893 		}
894 	}
895 
896 	/*
897 	 * Call MI attach routine.
898 	 */
899 	ether_ifattach(ifp, eaddr, NULL);
900 
901 	error = bus_setup_intr(dev, sc->nge_irq, INTR_NETSAFE,
902 			       nge_intr, sc, &sc->nge_intrhand,
903 			       ifp->if_serializer);
904 	if (error) {
905 		ether_ifdetach(ifp);
906 		device_printf(dev, "couldn't set up irq\n");
907 		goto fail;
908 	}
909 
910 	return(0);
911 fail:
912 	nge_detach(dev);
913 	return(error);
914 }
915 
916 static int
917 nge_detach(device_t dev)
918 {
919 	struct nge_softc *sc = device_get_softc(dev);
920 	struct ifnet *ifp = &sc->arpcom.ac_if;
921 
922 	if (device_is_attached(dev)) {
923 		lwkt_serialize_enter(ifp->if_serializer);
924 		nge_reset(sc);
925 		nge_stop(sc);
926 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
927 		lwkt_serialize_exit(ifp->if_serializer);
928 
929 		ether_ifdetach(ifp);
930 	}
931 
932 	if (sc->nge_miibus)
933 		device_delete_child(dev, sc->nge_miibus);
934 	bus_generic_detach(dev);
935 
936 	if (sc->nge_irq)
937 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
938 	if (sc->nge_res)
939 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
940 	if (sc->nge_ldata) {
941 		contigfree(sc->nge_ldata, sizeof(struct nge_list_data),
942 			   M_DEVBUF);
943 	}
944 	if (sc->nge_cdata.nge_jumbo_buf)
945 		contigfree(sc->nge_cdata.nge_jumbo_buf, NGE_JMEM, M_DEVBUF);
946 
947 	return(0);
948 }
949 
950 /*
951  * Initialize the transmit descriptors.
952  */
953 static int
954 nge_list_tx_init(struct nge_softc *sc)
955 {
956 	struct nge_list_data *ld;
957 	struct nge_ring_data *cd;
958 	int i;
959 
960 	cd = &sc->nge_cdata;
961 	ld = sc->nge_ldata;
962 
963 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
964 		if (i == (NGE_TX_LIST_CNT - 1)) {
965 			ld->nge_tx_list[i].nge_nextdesc =
966 			    &ld->nge_tx_list[0];
967 			ld->nge_tx_list[i].nge_next =
968 			    vtophys(&ld->nge_tx_list[0]);
969 		} else {
970 			ld->nge_tx_list[i].nge_nextdesc =
971 			    &ld->nge_tx_list[i + 1];
972 			ld->nge_tx_list[i].nge_next =
973 			    vtophys(&ld->nge_tx_list[i + 1]);
974 		}
975 		ld->nge_tx_list[i].nge_mbuf = NULL;
976 		ld->nge_tx_list[i].nge_ptr = 0;
977 		ld->nge_tx_list[i].nge_ctl = 0;
978 	}
979 
980 	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
981 
982 	return(0);
983 }
984 
985 
986 /*
987  * Initialize the RX descriptors and allocate mbufs for them. Note that
988  * we arrange the descriptors in a closed ring, so that the last descriptor
989  * points back to the first.
990  */
991 static int
992 nge_list_rx_init(struct nge_softc *sc)
993 {
994 	struct nge_list_data *ld;
995 	struct nge_ring_data *cd;
996 	int i;
997 
998 	ld = sc->nge_ldata;
999 	cd = &sc->nge_cdata;
1000 
1001 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1002 		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
1003 			return(ENOBUFS);
1004 		if (i == (NGE_RX_LIST_CNT - 1)) {
1005 			ld->nge_rx_list[i].nge_nextdesc =
1006 			    &ld->nge_rx_list[0];
1007 			ld->nge_rx_list[i].nge_next =
1008 			    vtophys(&ld->nge_rx_list[0]);
1009 		} else {
1010 			ld->nge_rx_list[i].nge_nextdesc =
1011 			    &ld->nge_rx_list[i + 1];
1012 			ld->nge_rx_list[i].nge_next =
1013 			    vtophys(&ld->nge_rx_list[i + 1]);
1014 		}
1015 	}
1016 
1017 	cd->nge_rx_prod = 0;
1018 
1019 	return(0);
1020 }
1021 
1022 /*
1023  * Initialize an RX descriptor and attach an MBUF cluster.
1024  */
1025 static int
1026 nge_newbuf(struct nge_softc *sc, struct nge_desc *c, struct mbuf *m)
1027 {
1028 	struct mbuf *m_new = NULL;
1029 	struct nge_jslot *buf;
1030 
1031 	if (m == NULL) {
1032 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1033 		if (m_new == NULL) {
1034 			kprintf("nge%d: no memory for rx list "
1035 			    "-- packet dropped!\n", sc->nge_unit);
1036 			return(ENOBUFS);
1037 		}
1038 
1039 		/* Allocate the jumbo buffer */
1040 		buf = nge_jalloc(sc);
1041 		if (buf == NULL) {
1042 #ifdef NGE_VERBOSE
1043 			kprintf("nge%d: jumbo allocation failed "
1044 			    "-- packet dropped!\n", sc->nge_unit);
1045 #endif
1046 			m_freem(m_new);
1047 			return(ENOBUFS);
1048 		}
1049 		/* Attach the buffer to the mbuf */
1050 		m_new->m_ext.ext_arg = buf;
1051 		m_new->m_ext.ext_buf = buf->nge_buf;
1052 		m_new->m_ext.ext_free = nge_jfree;
1053 		m_new->m_ext.ext_ref = nge_jref;
1054 		m_new->m_ext.ext_size = NGE_JUMBO_FRAMELEN;
1055 
1056 		m_new->m_data = m_new->m_ext.ext_buf;
1057 		m_new->m_flags |= M_EXT;
1058 		m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1059 	} else {
1060 		m_new = m;
1061 		m_new->m_len = m_new->m_pkthdr.len = NGE_JLEN;
1062 		m_new->m_data = m_new->m_ext.ext_buf;
1063 	}
1064 
1065 	m_adj(m_new, sizeof(uint64_t));
1066 
1067 	c->nge_mbuf = m_new;
1068 	c->nge_ptr = vtophys(mtod(m_new, caddr_t));
1069 	c->nge_ctl = m_new->m_len;
1070 	c->nge_extsts = 0;
1071 
1072 	return(0);
1073 }
1074 
1075 static int
1076 nge_alloc_jumbo_mem(struct nge_softc *sc)
1077 {
1078 	caddr_t ptr;
1079 	int i;
1080 	struct nge_jslot *entry;
1081 
1082 	/* Grab a big chunk o' storage. */
1083 	sc->nge_cdata.nge_jumbo_buf = contigmalloc(NGE_JMEM, M_DEVBUF,
1084 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1085 
1086 	if (sc->nge_cdata.nge_jumbo_buf == NULL) {
1087 		kprintf("nge%d: no memory for jumbo buffers!\n", sc->nge_unit);
1088 		return(ENOBUFS);
1089 	}
1090 
1091 	SLIST_INIT(&sc->nge_jfree_listhead);
1092 
1093 	/*
1094 	 * Now divide it up into 9K pieces and save the addresses
1095 	 * in an array.
1096 	 */
1097 	ptr = sc->nge_cdata.nge_jumbo_buf;
1098 	for (i = 0; i < NGE_JSLOTS; i++) {
1099 		entry = &sc->nge_cdata.nge_jslots[i];
1100 		entry->nge_sc = sc;
1101 		entry->nge_buf = ptr;
1102 		entry->nge_inuse = 0;
1103 		entry->nge_slot = i;
1104 		SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jslot_link);
1105 		ptr += NGE_JLEN;
1106 	}
1107 
1108 	return(0);
1109 }
1110 
1111 
1112 /*
1113  * Allocate a jumbo buffer.
1114  */
1115 static struct nge_jslot *
1116 nge_jalloc(struct nge_softc *sc)
1117 {
1118 	struct nge_jslot *entry;
1119 
1120 	lwkt_serialize_enter(&sc->nge_jslot_serializer);
1121 	entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1122 	if (entry) {
1123 		SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jslot_link);
1124 		entry->nge_inuse = 1;
1125 	} else {
1126 #ifdef NGE_VERBOSE
1127 		kprintf("nge%d: no free jumbo buffers\n", sc->nge_unit);
1128 #endif
1129 	}
1130 	lwkt_serialize_exit(&sc->nge_jslot_serializer);
1131 	return(entry);
1132 }
1133 
1134 /*
1135  * Adjust usage count on a jumbo buffer. In general this doesn't
1136  * get used much because our jumbo buffers don't get passed around
1137  * a lot, but it's implemented for correctness.
1138  */
1139 static void
1140 nge_jref(void *arg)
1141 {
1142 	struct nge_jslot *entry = (struct nge_jslot *)arg;
1143 	struct nge_softc *sc = entry->nge_sc;
1144 
1145 	if (sc == NULL)
1146 		panic("nge_jref: can't find softc pointer!");
1147 
1148 	if (&sc->nge_cdata.nge_jslots[entry->nge_slot] != entry)
1149 		panic("nge_jref: asked to reference buffer "
1150 		    "that we don't manage!");
1151 	else if (entry->nge_inuse == 0)
1152 		panic("nge_jref: buffer already free!");
1153 	else
1154 		atomic_add_int(&entry->nge_inuse, 1);
1155 }
1156 
1157 /*
1158  * Release a jumbo buffer.
1159  */
1160 static void
1161 nge_jfree(void *arg)
1162 {
1163 	struct nge_jslot *entry = (struct nge_jslot *)arg;
1164 	struct nge_softc *sc = entry->nge_sc;
1165 
1166 	if (sc == NULL)
1167 		panic("nge_jref: can't find softc pointer!");
1168 
1169 	if (&sc->nge_cdata.nge_jslots[entry->nge_slot] != entry) {
1170 		panic("nge_jref: asked to reference buffer "
1171 		    "that we don't manage!");
1172 	} else if (entry->nge_inuse == 0) {
1173 		panic("nge_jref: buffer already free!");
1174 	} else {
1175 		lwkt_serialize_enter(&sc->nge_jslot_serializer);
1176 		atomic_subtract_int(&entry->nge_inuse, 1);
1177 		if (entry->nge_inuse == 0) {
1178 			SLIST_INSERT_HEAD(&sc->nge_jfree_listhead,
1179 					  entry, jslot_link);
1180 		}
1181 		lwkt_serialize_exit(&sc->nge_jslot_serializer);
1182 	}
1183 }
1184 /*
1185  * A frame has been uploaded: pass the resulting mbuf chain up to
1186  * the higher level protocols.
1187  */
1188 static void
1189 nge_rxeof(struct nge_softc *sc)
1190 {
1191         struct mbuf *m;
1192         struct ifnet *ifp = &sc->arpcom.ac_if;
1193 	struct nge_desc *cur_rx;
1194 	int i, total_len = 0;
1195 	uint32_t rxstat;
1196 
1197 	i = sc->nge_cdata.nge_rx_prod;
1198 
1199 	while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1200 		struct mbuf *m0 = NULL;
1201 		uint32_t extsts;
1202 
1203 #ifdef DEVICE_POLLING
1204 		if (ifp->if_flags & IFF_POLLING) {
1205 			if (sc->rxcycles <= 0)
1206 				break;
1207 			sc->rxcycles--;
1208 		}
1209 #endif /* DEVICE_POLLING */
1210 
1211 		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1212 		rxstat = cur_rx->nge_rxstat;
1213 		extsts = cur_rx->nge_extsts;
1214 		m = cur_rx->nge_mbuf;
1215 		cur_rx->nge_mbuf = NULL;
1216 		total_len = NGE_RXBYTES(cur_rx);
1217 		NGE_INC(i, NGE_RX_LIST_CNT);
1218 		/*
1219 		 * If an error occurs, update stats, clear the
1220 		 * status word and leave the mbuf cluster in place:
1221 		 * it should simply get re-used next time this descriptor
1222 	 	 * comes up in the ring.
1223 		 */
1224 		if ((rxstat & NGE_CMDSTS_PKT_OK) == 0) {
1225 			ifp->if_ierrors++;
1226 			nge_newbuf(sc, cur_rx, m);
1227 			continue;
1228 		}
1229 
1230 		/*
1231 		 * Ok. NatSemi really screwed up here. This is the
1232 		 * only gigE chip I know of with alignment constraints
1233 		 * on receive buffers. RX buffers must be 64-bit aligned.
1234 		 */
1235 #ifdef __i386__
1236 		/*
1237 		 * By popular demand, ignore the alignment problems
1238 		 * on the Intel x86 platform. The performance hit
1239 		 * incurred due to unaligned accesses is much smaller
1240 		 * than the hit produced by forcing buffer copies all
1241 		 * the time, especially with jumbo frames. We still
1242 		 * need to fix up the alignment everywhere else though.
1243 		 */
1244 		if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
1245 #endif
1246 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1247 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
1248 			nge_newbuf(sc, cur_rx, m);
1249 			if (m0 == NULL) {
1250 				kprintf("nge%d: no receive buffers "
1251 				    "available -- packet dropped!\n",
1252 				    sc->nge_unit);
1253 				ifp->if_ierrors++;
1254 				continue;
1255 			}
1256 			m_adj(m0, ETHER_ALIGN);
1257 			m = m0;
1258 #ifdef __i386__
1259 		} else {
1260 			m->m_pkthdr.rcvif = ifp;
1261 			m->m_pkthdr.len = m->m_len = total_len;
1262 		}
1263 #endif
1264 
1265 		ifp->if_ipackets++;
1266 
1267 		/* Do IP checksum checking. */
1268 		if (extsts & NGE_RXEXTSTS_IPPKT)
1269 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1270 		if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1271 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1272 		if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1273 		    (extsts & NGE_RXEXTSTS_TCPCSUMERR) == 0) ||
1274 		    (extsts & NGE_RXEXTSTS_UDPPKT &&
1275 		    (extsts & NGE_RXEXTSTS_UDPCSUMERR) == 0)) {
1276 			m->m_pkthdr.csum_flags |=
1277 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1278 			m->m_pkthdr.csum_data = 0xffff;
1279 		}
1280 
1281 		/*
1282 		 * If we received a packet with a vlan tag, pass it
1283 		 * to vlan_input() instead of ether_input().
1284 		 */
1285 		if (extsts & NGE_RXEXTSTS_VLANPKT)
1286 			VLAN_INPUT_TAG(m, extsts & NGE_RXEXTSTS_VTCI);
1287 		else
1288 			ifp->if_input(ifp, m);
1289 	}
1290 
1291 	sc->nge_cdata.nge_rx_prod = i;
1292 }
1293 
1294 /*
1295  * A frame was downloaded to the chip. It's safe for us to clean up
1296  * the list buffers.
1297  */
1298 static void
1299 nge_txeof(struct nge_softc *sc)
1300 {
1301 	struct ifnet *ifp = &sc->arpcom.ac_if;
1302 	struct nge_desc *cur_tx = NULL;
1303 	uint32_t idx;
1304 
1305 	/* Clear the timeout timer. */
1306 	ifp->if_timer = 0;
1307 
1308 	/*
1309 	 * Go through our tx list and free mbufs for those
1310 	 * frames that have been transmitted.
1311 	 */
1312 	idx = sc->nge_cdata.nge_tx_cons;
1313 	while (idx != sc->nge_cdata.nge_tx_prod) {
1314 		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1315 
1316 		if (NGE_OWNDESC(cur_tx))
1317 			break;
1318 
1319 		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1320 			sc->nge_cdata.nge_tx_cnt--;
1321 			NGE_INC(idx, NGE_TX_LIST_CNT);
1322 			continue;
1323 		}
1324 
1325 		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1326 			ifp->if_oerrors++;
1327 			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1328 				ifp->if_collisions++;
1329 			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1330 				ifp->if_collisions++;
1331 		}
1332 
1333 		ifp->if_collisions +=
1334 		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1335 
1336 		ifp->if_opackets++;
1337 		if (cur_tx->nge_mbuf != NULL) {
1338 			m_freem(cur_tx->nge_mbuf);
1339 			cur_tx->nge_mbuf = NULL;
1340 		}
1341 
1342 		sc->nge_cdata.nge_tx_cnt--;
1343 		NGE_INC(idx, NGE_TX_LIST_CNT);
1344 		ifp->if_timer = 0;
1345 	}
1346 
1347 	sc->nge_cdata.nge_tx_cons = idx;
1348 
1349 	if (cur_tx != NULL)
1350 		ifp->if_flags &= ~IFF_OACTIVE;
1351 }
1352 
1353 static void
1354 nge_tick(void *xsc)
1355 {
1356 	struct nge_softc *sc = xsc;
1357 	struct ifnet *ifp = &sc->arpcom.ac_if;
1358 	struct mii_data *mii;
1359 
1360 	lwkt_serialize_enter(ifp->if_serializer);
1361 
1362 	if (sc->nge_tbi) {
1363 		if (sc->nge_link == 0) {
1364 			if (CSR_READ_4(sc, NGE_TBI_BMSR)
1365 			    & NGE_TBIBMSR_ANEG_DONE) {
1366 				kprintf("nge%d: gigabit link up\n",
1367 				    sc->nge_unit);
1368 				nge_miibus_statchg(sc->nge_miibus);
1369 				sc->nge_link++;
1370 				if (!ifq_is_empty(&ifp->if_snd))
1371 					nge_start(ifp);
1372 			}
1373 		}
1374 	} else {
1375 		mii = device_get_softc(sc->nge_miibus);
1376 		mii_tick(mii);
1377 
1378 		if (sc->nge_link == 0) {
1379 			if (mii->mii_media_status & IFM_ACTIVE &&
1380 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1381 				sc->nge_link++;
1382 				if (IFM_SUBTYPE(mii->mii_media_active)
1383 				    == IFM_1000_T)
1384 					kprintf("nge%d: gigabit link up\n",
1385 					    sc->nge_unit);
1386 				if (!ifq_is_empty(&ifp->if_snd))
1387 					nge_start(ifp);
1388 			}
1389 		}
1390 	}
1391 	callout_reset(&sc->nge_stat_timer, hz, nge_tick, sc);
1392 
1393 	lwkt_serialize_exit(ifp->if_serializer);
1394 }
1395 
1396 #ifdef DEVICE_POLLING
1397 
1398 static void
1399 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1400 {
1401 	struct nge_softc *sc = ifp->if_softc;
1402 
1403 	switch(cmd) {
1404 	case POLL_REGISTER:
1405 		/* disable interrupts */
1406 		CSR_WRITE_4(sc, NGE_IER, 0);
1407 		break;
1408 	case POLL_DEREGISTER:
1409 		/* enable interrupts */
1410 		CSR_WRITE_4(sc, NGE_IER, 1);
1411 		break;
1412 	default:
1413 		/*
1414 		 * On the nge, reading the status register also clears it.
1415 		 * So before returning to intr mode we must make sure that all
1416 		 * possible pending sources of interrupts have been served.
1417 		 * In practice this means run to completion the *eof routines,
1418 		 * and then call the interrupt routine
1419 		 */
1420 		sc->rxcycles = count;
1421 		nge_rxeof(sc);
1422 		nge_txeof(sc);
1423 		if (!ifq_is_empty(&ifp->if_snd))
1424 			nge_start(ifp);
1425 
1426 		if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1427 			uint32_t status;
1428 
1429 			/* Reading the ISR register clears all interrupts. */
1430 			status = CSR_READ_4(sc, NGE_ISR);
1431 
1432 			if (status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW))
1433 				nge_rxeof(sc);
1434 
1435 			if (status & (NGE_ISR_RX_IDLE))
1436 				NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1437 
1438 			if (status & NGE_ISR_SYSERR) {
1439 				nge_reset(sc);
1440 				nge_init(sc);
1441 			}
1442 		}
1443 		break;
1444 	}
1445 }
1446 
1447 #endif /* DEVICE_POLLING */
1448 
1449 static void
1450 nge_intr(void *arg)
1451 {
1452 	struct nge_softc *sc = arg;
1453 	struct ifnet *ifp = &sc->arpcom.ac_if;
1454 	uint32_t status;
1455 
1456 	/* Supress unwanted interrupts */
1457 	if (!(ifp->if_flags & IFF_UP)) {
1458 		nge_stop(sc);
1459 		return;
1460 	}
1461 
1462 	/* Disable interrupts. */
1463 	CSR_WRITE_4(sc, NGE_IER, 0);
1464 
1465 	/* Data LED on for TBI mode */
1466 	if(sc->nge_tbi)
1467 		 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1468 			     | NGE_GPIO_GP3_OUT);
1469 
1470 	for (;;) {
1471 		/* Reading the ISR register clears all interrupts. */
1472 		status = CSR_READ_4(sc, NGE_ISR);
1473 
1474 		if ((status & NGE_INTRS) == 0)
1475 			break;
1476 
1477 		if ((status & NGE_ISR_TX_DESC_OK) ||
1478 		    (status & NGE_ISR_TX_ERR) ||
1479 		    (status & NGE_ISR_TX_OK) ||
1480 		    (status & NGE_ISR_TX_IDLE))
1481 			nge_txeof(sc);
1482 
1483 		if ((status & NGE_ISR_RX_DESC_OK) ||
1484 		    (status & NGE_ISR_RX_ERR) ||
1485 		    (status & NGE_ISR_RX_OFLOW) ||
1486 		    (status & NGE_ISR_RX_FIFO_OFLOW) ||
1487 		    (status & NGE_ISR_RX_IDLE) ||
1488 		    (status & NGE_ISR_RX_OK))
1489 			nge_rxeof(sc);
1490 
1491 		if ((status & NGE_ISR_RX_IDLE))
1492 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1493 
1494 		if (status & NGE_ISR_SYSERR) {
1495 			nge_reset(sc);
1496 			ifp->if_flags &= ~IFF_RUNNING;
1497 			nge_init(sc);
1498 		}
1499 
1500 #ifdef notyet
1501 		/* mii_tick should only be called once per second */
1502 		if (status & NGE_ISR_PHY_INTR) {
1503 			sc->nge_link = 0;
1504 			nge_tick_serialized(sc);
1505 		}
1506 #endif
1507 	}
1508 
1509 	/* Re-enable interrupts. */
1510 	CSR_WRITE_4(sc, NGE_IER, 1);
1511 
1512 	if (!ifq_is_empty(&ifp->if_snd))
1513 		nge_start(ifp);
1514 
1515 	/* Data LED off for TBI mode */
1516 
1517 	if(sc->nge_tbi)
1518 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1519 			    & ~NGE_GPIO_GP3_OUT);
1520 }
1521 
1522 /*
1523  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1524  * pointers to the fragment pointers.
1525  */
1526 static int
1527 nge_encap(struct nge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
1528 {
1529 	struct nge_desc *f = NULL;
1530 	struct mbuf *m;
1531 	int frag, cur, cnt = 0;
1532 	struct ifvlan *ifv = NULL;
1533 
1534 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1535 	    m_head->m_pkthdr.rcvif != NULL &&
1536 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
1537 		ifv = m_head->m_pkthdr.rcvif->if_softc;
1538 
1539 	/*
1540  	 * Start packing the mbufs in this chain into
1541 	 * the fragment pointers. Stop when we run out
1542  	 * of fragments or hit the end of the mbuf chain.
1543 	 */
1544 	m = m_head;
1545 	cur = frag = *txidx;
1546 
1547 	for (m = m_head; m != NULL; m = m->m_next) {
1548 		if (m->m_len != 0) {
1549 			if ((NGE_TX_LIST_CNT -
1550 			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1551 				return(ENOBUFS);
1552 			f = &sc->nge_ldata->nge_tx_list[frag];
1553 			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1554 			f->nge_ptr = vtophys(mtod(m, vm_offset_t));
1555 			if (cnt != 0)
1556 				f->nge_ctl |= NGE_CMDSTS_OWN;
1557 			cur = frag;
1558 			NGE_INC(frag, NGE_TX_LIST_CNT);
1559 			cnt++;
1560 		}
1561 	}
1562 
1563 	if (m != NULL)
1564 		return(ENOBUFS);
1565 
1566 	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1567 	if (m_head->m_pkthdr.csum_flags) {
1568 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1569 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1570 			    NGE_TXEXTSTS_IPCSUM;
1571 		if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1572 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1573 			    NGE_TXEXTSTS_TCPCSUM;
1574 		if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1575 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1576 			    NGE_TXEXTSTS_UDPCSUM;
1577 	}
1578 
1579 	if (ifv != NULL) {
1580 		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1581 			(NGE_TXEXTSTS_VLANPKT|ifv->ifv_tag);
1582 	}
1583 
1584 	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1585 	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1586 	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1587 	sc->nge_cdata.nge_tx_cnt += cnt;
1588 	*txidx = frag;
1589 
1590 	return(0);
1591 }
1592 
1593 /*
1594  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1595  * to the mbuf data regions directly in the transmit lists. We also save a
1596  * copy of the pointers since the transmit list fragment pointers are
1597  * physical addresses.
1598  */
1599 
1600 static void
1601 nge_start(struct ifnet *ifp)
1602 {
1603 	struct nge_softc *sc = ifp->if_softc;
1604 	struct mbuf *m_head = NULL;
1605 	uint32_t idx;
1606 	int need_trans;
1607 
1608 	if (!sc->nge_link)
1609 		return;
1610 
1611 	idx = sc->nge_cdata.nge_tx_prod;
1612 
1613 	if (ifp->if_flags & IFF_OACTIVE)
1614 		return;
1615 
1616 	need_trans = 0;
1617 	while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1618 		m_head = ifq_poll(&ifp->if_snd);
1619 		if (m_head == NULL)
1620 			break;
1621 
1622 		if (nge_encap(sc, m_head, &idx)) {
1623 			ifp->if_flags |= IFF_OACTIVE;
1624 			break;
1625 		}
1626 		ifq_dequeue(&ifp->if_snd, m_head);
1627 		need_trans = 1;
1628 
1629 		BPF_MTAP(ifp, m_head);
1630 	}
1631 
1632 	if (!need_trans)
1633 		return;
1634 
1635 	/* Transmit */
1636 	sc->nge_cdata.nge_tx_prod = idx;
1637 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1638 
1639 	/*
1640 	 * Set a timeout in case the chip goes out to lunch.
1641 	 */
1642 	ifp->if_timer = 5;
1643 }
1644 
1645 static void
1646 nge_init(void *xsc)
1647 {
1648 	struct nge_softc *sc = xsc;
1649 	struct ifnet *ifp = &sc->arpcom.ac_if;
1650 	struct mii_data *mii;
1651 
1652 	if (ifp->if_flags & IFF_RUNNING) {
1653 		return;
1654 	}
1655 
1656 	/*
1657 	 * Cancel pending I/O and free all RX/TX buffers.
1658 	 */
1659 	nge_stop(sc);
1660 	callout_reset(&sc->nge_stat_timer, hz, nge_tick, sc);
1661 
1662 	if (sc->nge_tbi)
1663 		mii = NULL;
1664 	else
1665 		mii = device_get_softc(sc->nge_miibus);
1666 
1667 	/* Set MAC address */
1668 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1669 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1670 	    ((uint16_t *)sc->arpcom.ac_enaddr)[0]);
1671 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1672 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1673 	    ((uint16_t *)sc->arpcom.ac_enaddr)[1]);
1674 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1675 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1676 	    ((uint16_t *)sc->arpcom.ac_enaddr)[2]);
1677 
1678 	/* Init circular RX list. */
1679 	if (nge_list_rx_init(sc) == ENOBUFS) {
1680 		kprintf("nge%d: initialization failed: no "
1681 			"memory for rx buffers\n", sc->nge_unit);
1682 		nge_stop(sc);
1683 		return;
1684 	}
1685 
1686 	/*
1687 	 * Init tx descriptors.
1688 	 */
1689 	nge_list_tx_init(sc);
1690 
1691 	/*
1692 	 * For the NatSemi chip, we have to explicitly enable the
1693 	 * reception of ARP frames, as well as turn on the 'perfect
1694 	 * match' filter where we store the station address, otherwise
1695 	 * we won't receive unicasts meant for this host.
1696 	 */
1697 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1698 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1699 
1700 	 /* If we want promiscuous mode, set the allframes bit. */
1701 	if (ifp->if_flags & IFF_PROMISC)
1702 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1703 	else
1704 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1705 
1706 	/*
1707 	 * Set the capture broadcast bit to capture broadcast frames.
1708 	 */
1709 	if (ifp->if_flags & IFF_BROADCAST)
1710 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1711 	else
1712 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1713 
1714 	/*
1715 	 * Load the multicast filter.
1716 	 */
1717 	nge_setmulti(sc);
1718 
1719 	/* Turn the receive filter on */
1720 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1721 
1722 	/*
1723 	 * Load the address of the RX and TX lists.
1724 	 */
1725 	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1726 	    vtophys(&sc->nge_ldata->nge_rx_list[0]));
1727 	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1728 	    vtophys(&sc->nge_ldata->nge_tx_list[0]));
1729 
1730 	/* Set RX configuration */
1731 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1732 	/*
1733 	 * Enable hardware checksum validation for all IPv4
1734 	 * packets, do not reject packets with bad checksums.
1735 	 */
1736 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1737 
1738 	/*
1739 	 * Tell the chip to detect and strip VLAN tag info from
1740 	 * received frames. The tag will be provided in the extsts
1741 	 * field in the RX descriptors.
1742 	 */
1743 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1744 	    NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB);
1745 
1746 	/* Set TX configuration */
1747 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1748 
1749 	/*
1750 	 * Enable TX IPv4 checksumming on a per-packet basis.
1751 	 */
1752 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
1753 
1754 	/*
1755 	 * Tell the chip to insert VLAN tags on a per-packet basis as
1756 	 * dictated by the code in the frame encapsulation routine.
1757 	 */
1758 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1759 
1760 	/* Set full/half duplex mode. */
1761 	if (sc->nge_tbi) {
1762 		if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1763 		    == IFM_FDX) {
1764 			NGE_SETBIT(sc, NGE_TX_CFG,
1765 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1766 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1767 		} else {
1768 			NGE_CLRBIT(sc, NGE_TX_CFG,
1769 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1770 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1771 		}
1772 	} else {
1773 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1774 			NGE_SETBIT(sc, NGE_TX_CFG,
1775 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1776 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1777 		} else {
1778 			NGE_CLRBIT(sc, NGE_TX_CFG,
1779 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1780 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1781 		}
1782 	}
1783 
1784 	/*
1785 	 * Enable the delivery of PHY interrupts based on
1786 	 * link/speed/duplex status changes. Also enable the
1787 	 * extsts field in the DMA descriptors (needed for
1788 	 * TCP/IP checksum offload on transmit).
1789 	 */
1790 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD |
1791 	    NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB);
1792 
1793 	/*
1794 	 * Configure interrupt holdoff (moderation). We can
1795 	 * have the chip delay interrupt delivery for a certain
1796 	 * period. Units are in 100us, and the max setting
1797 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1798 	 */
1799 	CSR_WRITE_4(sc, NGE_IHR, 0x01);
1800 
1801 	/*
1802 	 * Enable interrupts.
1803 	 */
1804 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1805 #ifdef DEVICE_POLLING
1806 	/*
1807 	 * ... only enable interrupts if we are not polling, make sure
1808 	 * they are off otherwise.
1809 	 */
1810 	if (ifp->if_flags & IFF_POLLING)
1811 		CSR_WRITE_4(sc, NGE_IER, 0);
1812 	else
1813 #endif /* DEVICE_POLLING */
1814 	CSR_WRITE_4(sc, NGE_IER, 1);
1815 
1816 	/* Enable receiver and transmitter. */
1817 	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE);
1818 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1819 
1820 	nge_ifmedia_upd(ifp);
1821 
1822 	ifp->if_flags |= IFF_RUNNING;
1823 	ifp->if_flags &= ~IFF_OACTIVE;
1824 }
1825 
1826 /*
1827  * Set media options.
1828  */
1829 static int
1830 nge_ifmedia_upd(struct ifnet *ifp)
1831 {
1832 	struct nge_softc *sc = ifp->if_softc;
1833 	struct mii_data *mii;
1834 
1835 	if (sc->nge_tbi) {
1836 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1837 		     == IFM_AUTO) {
1838 			CSR_WRITE_4(sc, NGE_TBI_ANAR,
1839 				CSR_READ_4(sc, NGE_TBI_ANAR)
1840 					| NGE_TBIANAR_HDX | NGE_TBIANAR_FDX
1841 					| NGE_TBIANAR_PS1 | NGE_TBIANAR_PS2);
1842 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG
1843 				| NGE_TBIBMCR_RESTART_ANEG);
1844 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG);
1845 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media
1846 			    & IFM_GMASK) == IFM_FDX) {
1847 			NGE_SETBIT(sc, NGE_TX_CFG,
1848 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1849 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1850 
1851 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1852 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1853 		} else {
1854 			NGE_CLRBIT(sc, NGE_TX_CFG,
1855 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1856 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1857 
1858 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1859 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1860 		}
1861 
1862 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1863 			    & ~NGE_GPIO_GP3_OUT);
1864 	} else {
1865 		mii = device_get_softc(sc->nge_miibus);
1866 		sc->nge_link = 0;
1867 		if (mii->mii_instance) {
1868 			struct mii_softc	*miisc;
1869 			for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1870 			    miisc = LIST_NEXT(miisc, mii_list))
1871 				mii_phy_reset(miisc);
1872 		}
1873 		mii_mediachg(mii);
1874 	}
1875 
1876 	return(0);
1877 }
1878 
1879 /*
1880  * Report current media status.
1881  */
1882 static void
1883 nge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1884 {
1885 	struct nge_softc *sc = ifp->if_softc;
1886 	struct mii_data *mii;
1887 
1888 	if (sc->nge_tbi) {
1889 		ifmr->ifm_status = IFM_AVALID;
1890 		ifmr->ifm_active = IFM_ETHER;
1891 
1892 		if (CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE)
1893 			ifmr->ifm_status |= IFM_ACTIVE;
1894 		if (CSR_READ_4(sc, NGE_TBI_BMCR) & NGE_TBIBMCR_LOOPBACK)
1895 			ifmr->ifm_active |= IFM_LOOP;
1896 		if (!CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
1897 			ifmr->ifm_active |= IFM_NONE;
1898 			ifmr->ifm_status = 0;
1899 			return;
1900 		}
1901 		ifmr->ifm_active |= IFM_1000_SX;
1902 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1903 		    == IFM_AUTO) {
1904 			ifmr->ifm_active |= IFM_AUTO;
1905 			if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1906 			    & NGE_TBIANAR_FDX) {
1907 				ifmr->ifm_active |= IFM_FDX;
1908 			}else if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1909 				  & NGE_TBIANAR_HDX) {
1910 				ifmr->ifm_active |= IFM_HDX;
1911 			}
1912 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1913 			== IFM_FDX)
1914 			ifmr->ifm_active |= IFM_FDX;
1915 		else
1916 			ifmr->ifm_active |= IFM_HDX;
1917 
1918 	} else {
1919 		mii = device_get_softc(sc->nge_miibus);
1920 		mii_pollstat(mii);
1921 		ifmr->ifm_active = mii->mii_media_active;
1922 		ifmr->ifm_status = mii->mii_media_status;
1923 	}
1924 }
1925 
1926 static int
1927 nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1928 {
1929 	struct nge_softc *sc = ifp->if_softc;
1930 	struct ifreq *ifr = (struct ifreq *) data;
1931 	struct mii_data *mii;
1932 	int error = 0;
1933 
1934 	switch(command) {
1935 	case SIOCSIFMTU:
1936 		if (ifr->ifr_mtu > NGE_JUMBO_MTU) {
1937 			error = EINVAL;
1938 		} else {
1939 			ifp->if_mtu = ifr->ifr_mtu;
1940 			/*
1941 			 * Workaround: if the MTU is larger than
1942 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
1943 			 * TX checksum offloading.
1944 			 */
1945 			if (ifr->ifr_mtu >= 8152)
1946 				ifp->if_hwassist = 0;
1947 			else
1948 				ifp->if_hwassist = NGE_CSUM_FEATURES;
1949 		}
1950 		break;
1951 	case SIOCSIFFLAGS:
1952 		if (ifp->if_flags & IFF_UP) {
1953 			if (ifp->if_flags & IFF_RUNNING &&
1954 			    ifp->if_flags & IFF_PROMISC &&
1955 			    !(sc->nge_if_flags & IFF_PROMISC)) {
1956 				NGE_SETBIT(sc, NGE_RXFILT_CTL,
1957 				    NGE_RXFILTCTL_ALLPHYS|
1958 				    NGE_RXFILTCTL_ALLMULTI);
1959 			} else if (ifp->if_flags & IFF_RUNNING &&
1960 			    !(ifp->if_flags & IFF_PROMISC) &&
1961 			    sc->nge_if_flags & IFF_PROMISC) {
1962 				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1963 				    NGE_RXFILTCTL_ALLPHYS);
1964 				if (!(ifp->if_flags & IFF_ALLMULTI))
1965 					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1966 					    NGE_RXFILTCTL_ALLMULTI);
1967 			} else {
1968 				ifp->if_flags &= ~IFF_RUNNING;
1969 				nge_init(sc);
1970 			}
1971 		} else {
1972 			if (ifp->if_flags & IFF_RUNNING)
1973 				nge_stop(sc);
1974 		}
1975 		sc->nge_if_flags = ifp->if_flags;
1976 		error = 0;
1977 		break;
1978 	case SIOCADDMULTI:
1979 	case SIOCDELMULTI:
1980 		nge_setmulti(sc);
1981 		error = 0;
1982 		break;
1983 	case SIOCGIFMEDIA:
1984 	case SIOCSIFMEDIA:
1985 		if (sc->nge_tbi) {
1986 			error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia,
1987 					      command);
1988 		} else {
1989 			mii = device_get_softc(sc->nge_miibus);
1990 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
1991 					      command);
1992 		}
1993 		break;
1994 	default:
1995 		error = ether_ioctl(ifp, command, data);
1996 		break;
1997 	}
1998 	return(error);
1999 }
2000 
2001 static void
2002 nge_watchdog(struct ifnet *ifp)
2003 {
2004 	struct nge_softc *sc = ifp->if_softc;
2005 
2006 	ifp->if_oerrors++;
2007 	kprintf("nge%d: watchdog timeout\n", sc->nge_unit);
2008 
2009 	nge_stop(sc);
2010 	nge_reset(sc);
2011 	ifp->if_flags &= ~IFF_RUNNING;
2012 	nge_init(sc);
2013 
2014 	if (!ifq_is_empty(&ifp->if_snd))
2015 		nge_start(ifp);
2016 }
2017 
2018 /*
2019  * Stop the adapter and free any mbufs allocated to the
2020  * RX and TX lists.
2021  */
2022 static void
2023 nge_stop(struct nge_softc *sc)
2024 {
2025 	struct ifnet *ifp = &sc->arpcom.ac_if;
2026 	struct ifmedia_entry *ifm;
2027 	struct mii_data *mii;
2028 	int i, itmp, mtmp, dtmp;
2029 
2030 	ifp->if_timer = 0;
2031 	if (sc->nge_tbi)
2032 		mii = NULL;
2033 	else
2034 		mii = device_get_softc(sc->nge_miibus);
2035 
2036 	callout_stop(&sc->nge_stat_timer);
2037 	CSR_WRITE_4(sc, NGE_IER, 0);
2038 	CSR_WRITE_4(sc, NGE_IMR, 0);
2039 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2040 	DELAY(1000);
2041 	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
2042 	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
2043 
2044 	/*
2045 	 * Isolate/power down the PHY, but leave the media selection
2046 	 * unchanged so that things will be put back to normal when
2047 	 * we bring the interface back up.
2048 	 */
2049 	itmp = ifp->if_flags;
2050 	ifp->if_flags |= IFF_UP;
2051 
2052 	if (sc->nge_tbi)
2053 		ifm = sc->nge_ifmedia.ifm_cur;
2054 	else
2055 		ifm = mii->mii_media.ifm_cur;
2056 
2057 	mtmp = ifm->ifm_media;
2058 	dtmp = ifm->ifm_data;
2059 	ifm->ifm_media = IFM_ETHER|IFM_NONE;
2060 	ifm->ifm_data = MII_MEDIA_NONE;
2061 
2062 	if (!sc->nge_tbi)
2063 		mii_mediachg(mii);
2064 	ifm->ifm_media = mtmp;
2065 	ifm->ifm_data = dtmp;
2066 	ifp->if_flags = itmp;
2067 
2068 	sc->nge_link = 0;
2069 
2070 	/*
2071 	 * Free data in the RX lists.
2072 	 */
2073 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2074 		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2075 			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2076 			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2077 		}
2078 	}
2079 	bzero(&sc->nge_ldata->nge_rx_list,
2080 		sizeof(sc->nge_ldata->nge_rx_list));
2081 
2082 	/*
2083 	 * Free the TX list buffers.
2084 	 */
2085 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2086 		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2087 			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2088 			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2089 		}
2090 	}
2091 
2092 	bzero(&sc->nge_ldata->nge_tx_list,
2093 		sizeof(sc->nge_ldata->nge_tx_list));
2094 
2095 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2096 }
2097 
2098 /*
2099  * Stop all chip I/O so that the kernel's probe routines don't
2100  * get confused by errant DMAs when rebooting.
2101  */
2102 static void
2103 nge_shutdown(device_t dev)
2104 {
2105 	struct nge_softc *sc = device_get_softc(dev);
2106 	struct ifnet *ifp = &sc->arpcom.ac_if;
2107 
2108 	lwkt_serialize_enter(ifp->if_serializer);
2109 	nge_reset(sc);
2110 	nge_stop(sc);
2111 	lwkt_serialize_exit(ifp->if_serializer);
2112 }
2113 
2114