xref: /dragonfly/sys/dev/netif/nge/if_nge.c (revision 685c703c)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/nge/if_nge.c,v 1.13.2.13 2003/02/05 22:03:57 mbr Exp $
34  * $DragonFly: src/sys/dev/netif/nge/if_nge.c,v 1.38 2006/08/01 18:05:43 swildner Exp $
35  */
36 
37 /*
38  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
39  * for FreeBSD. Datasheets are available from:
40  *
41  * http://www.national.com/ds/DP/DP83820.pdf
42  * http://www.national.com/ds/DP/DP83821.pdf
43  *
44  * These chips are used on several low cost gigabit ethernet NICs
45  * sold by D-Link, Addtron, SMC and Asante. Both parts are
46  * virtually the same, except the 83820 is a 64-bit/32-bit part,
47  * while the 83821 is 32-bit only.
48  *
49  * Many cards also use National gigE transceivers, such as the
50  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
51  * contains a full register description that applies to all of these
52  * components:
53  *
54  * http://www.national.com/ds/DP/DP83861.pdf
55  *
56  * Written by Bill Paul <wpaul@bsdi.com>
57  * BSDi Open Source Solutions
58  */
59 
60 /*
61  * The NatSemi DP83820 and 83821 controllers are enhanced versions
62  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
63  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
64  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
65  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
66  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
67  * matching buffers, one perfect address filter buffer and interrupt
68  * moderation. The 83820 supports both 64-bit and 32-bit addressing
69  * and data transfers: the 64-bit support can be toggled on or off
70  * via software. This affects the size of certain fields in the DMA
71  * descriptors.
72  *
73  * There are two bugs/misfeatures in the 83820/83821 that I have
74  * discovered so far:
75  *
76  * - Receive buffers must be aligned on 64-bit boundaries, which means
77  *   you must resort to copying data in order to fix up the payload
78  *   alignment.
79  *
80  * - In order to transmit jumbo frames larger than 8170 bytes, you have
81  *   to turn off transmit checksum offloading, because the chip can't
82  *   compute the checksum on an outgoing frame unless it fits entirely
83  *   within the TX FIFO, which is only 8192 bytes in size. If you have
84  *   TX checksum offload enabled and you transmit attempt to transmit a
85  *   frame larger than 8170 bytes, the transmitter will wedge.
86  *
87  * To work around the latter problem, TX checksum offload is disabled
88  * if the user selects an MTU larger than 8152 (8170 - 18).
89  */
90 
91 #include "opt_polling.h"
92 
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/sockio.h>
96 #include <sys/mbuf.h>
97 #include <sys/malloc.h>
98 #include <sys/kernel.h>
99 #include <sys/socket.h>
100 #include <sys/serialize.h>
101 
102 #include <sys/thread2.h>
103 
104 #include <net/if.h>
105 #include <net/ifq_var.h>
106 #include <net/if_arp.h>
107 #include <net/ethernet.h>
108 #include <net/if_dl.h>
109 #include <net/if_media.h>
110 #include <net/if_types.h>
111 #include <net/vlan/if_vlan_var.h>
112 
113 #include <net/bpf.h>
114 
115 #include <vm/vm.h>              /* for vtophys */
116 #include <vm/pmap.h>            /* for vtophys */
117 #include <machine/bus.h>
118 #include <machine/resource.h>
119 #include <sys/bus.h>
120 #include <sys/rman.h>
121 
122 #include <dev/netif/mii_layer/mii.h>
123 #include <dev/netif/mii_layer/miivar.h>
124 
125 #include <bus/pci/pcidevs.h>
126 #include <bus/pci/pcireg.h>
127 #include <bus/pci/pcivar.h>
128 
129 #define NGE_USEIOSPACE
130 
131 #include "if_ngereg.h"
132 
133 
134 /* "controller miibus0" required.  See GENERIC if you get errors here. */
135 #include "miibus_if.h"
136 
137 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
138 
139 /*
140  * Various supported device vendors/types and their names.
141  */
142 static struct nge_type nge_devs[] = {
143 	{ PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
144 	    "National Semiconductor Gigabit Ethernet" },
145 	{ 0, 0, NULL }
146 };
147 
148 static int	nge_probe(device_t);
149 static int	nge_attach(device_t);
150 static int	nge_detach(device_t);
151 
152 static int	nge_alloc_jumbo_mem(struct nge_softc *);
153 static struct nge_jslot
154 		*nge_jalloc(struct nge_softc *);
155 static void	nge_jfree(void *);
156 static void	nge_jref(void *);
157 
158 static int	nge_newbuf(struct nge_softc *, struct nge_desc *,
159 			   struct mbuf *);
160 static int	nge_encap(struct nge_softc *, struct mbuf *, uint32_t *);
161 static void	nge_rxeof(struct nge_softc *);
162 static void	nge_txeof(struct nge_softc *);
163 static void	nge_intr(void *);
164 static void	nge_tick(void *);
165 static void	nge_start(struct ifnet *);
166 static int	nge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
167 static void	nge_init(void *);
168 static void	nge_stop(struct nge_softc *);
169 static void	nge_watchdog(struct ifnet *);
170 static void	nge_shutdown(device_t);
171 static int	nge_ifmedia_upd(struct ifnet *);
172 static void	nge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
173 
174 static void	nge_delay(struct nge_softc *);
175 static void	nge_eeprom_idle(struct nge_softc *);
176 static void	nge_eeprom_putbyte(struct nge_softc *, int);
177 static void	nge_eeprom_getword(struct nge_softc *, int, uint16_t *);
178 static void	nge_read_eeprom(struct nge_softc *, void *, int, int);
179 
180 static void	nge_mii_sync(struct nge_softc *);
181 static void	nge_mii_send(struct nge_softc *, uint32_t, int);
182 static int	nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *);
183 static int	nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *);
184 
185 static int	nge_miibus_readreg(device_t, int, int);
186 static int	nge_miibus_writereg(device_t, int, int, int);
187 static void	nge_miibus_statchg(device_t);
188 
189 static void	nge_setmulti(struct nge_softc *);
190 static void	nge_reset(struct nge_softc *);
191 static int	nge_list_rx_init(struct nge_softc *);
192 static int	nge_list_tx_init(struct nge_softc *);
193 #ifdef DEVICE_POLLING
194 static void	nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
195 #endif
196 
197 #ifdef NGE_USEIOSPACE
198 #define NGE_RES			SYS_RES_IOPORT
199 #define NGE_RID			NGE_PCI_LOIO
200 #else
201 #define NGE_RES			SYS_RES_MEMORY
202 #define NGE_RID			NGE_PCI_LOMEM
203 #endif
204 
205 static device_method_t nge_methods[] = {
206 	/* Device interface */
207 	DEVMETHOD(device_probe,		nge_probe),
208 	DEVMETHOD(device_attach,	nge_attach),
209 	DEVMETHOD(device_detach,	nge_detach),
210 	DEVMETHOD(device_shutdown,	nge_shutdown),
211 
212 	/* bus interface */
213 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
214 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
215 
216 	/* MII interface */
217 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
218 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
219 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
220 
221 	{ 0, 0 }
222 };
223 
224 static DEFINE_CLASS_0(nge, nge_driver, nge_methods, sizeof(struct nge_softc));
225 static devclass_t nge_devclass;
226 
227 DECLARE_DUMMY_MODULE(if_nge);
228 MODULE_DEPEND(if_nge, miibus, 1, 1, 1);
229 DRIVER_MODULE(if_nge, pci, nge_driver, nge_devclass, 0, 0);
230 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
231 
232 #define NGE_SETBIT(sc, reg, x)				\
233 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
234 
235 #define NGE_CLRBIT(sc, reg, x)				\
236 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
237 
238 #define SIO_SET(x)					\
239 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
240 
241 #define SIO_CLR(x)					\
242 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
243 
244 static void
245 nge_delay(struct nge_softc *sc)
246 {
247 	int idx;
248 
249 	for (idx = (300 / 33) + 1; idx > 0; idx--)
250 		CSR_READ_4(sc, NGE_CSR);
251 }
252 
253 static void
254 nge_eeprom_idle(struct nge_softc *sc)
255 {
256 	int i;
257 
258 	SIO_SET(NGE_MEAR_EE_CSEL);
259 	nge_delay(sc);
260 	SIO_SET(NGE_MEAR_EE_CLK);
261 	nge_delay(sc);
262 
263 	for (i = 0; i < 25; i++) {
264 		SIO_CLR(NGE_MEAR_EE_CLK);
265 		nge_delay(sc);
266 		SIO_SET(NGE_MEAR_EE_CLK);
267 		nge_delay(sc);
268 	}
269 
270 	SIO_CLR(NGE_MEAR_EE_CLK);
271 	nge_delay(sc);
272 	SIO_CLR(NGE_MEAR_EE_CSEL);
273 	nge_delay(sc);
274 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
275 }
276 
277 /*
278  * Send a read command and address to the EEPROM, check for ACK.
279  */
280 static void
281 nge_eeprom_putbyte(struct nge_softc *sc, int addr)
282 {
283 	int d, i;
284 
285 	d = addr | NGE_EECMD_READ;
286 
287 	/*
288 	 * Feed in each bit and stobe the clock.
289 	 */
290 	for (i = 0x400; i; i >>= 1) {
291 		if (d & i)
292 			SIO_SET(NGE_MEAR_EE_DIN);
293 		else
294 			SIO_CLR(NGE_MEAR_EE_DIN);
295 		nge_delay(sc);
296 		SIO_SET(NGE_MEAR_EE_CLK);
297 		nge_delay(sc);
298 		SIO_CLR(NGE_MEAR_EE_CLK);
299 		nge_delay(sc);
300 	}
301 }
302 
303 /*
304  * Read a word of data stored in the EEPROM at address 'addr.'
305  */
306 static void
307 nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest)
308 {
309 	int i;
310 	uint16_t word = 0;
311 
312 	/* Force EEPROM to idle state. */
313 	nge_eeprom_idle(sc);
314 
315 	/* Enter EEPROM access mode. */
316 	nge_delay(sc);
317 	SIO_CLR(NGE_MEAR_EE_CLK);
318 	nge_delay(sc);
319 	SIO_SET(NGE_MEAR_EE_CSEL);
320 	nge_delay(sc);
321 
322 	/*
323 	 * Send address of word we want to read.
324 	 */
325 	nge_eeprom_putbyte(sc, addr);
326 
327 	/*
328 	 * Start reading bits from EEPROM.
329 	 */
330 	for (i = 0x8000; i; i >>= 1) {
331 		SIO_SET(NGE_MEAR_EE_CLK);
332 		nge_delay(sc);
333 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
334 			word |= i;
335 		nge_delay(sc);
336 		SIO_CLR(NGE_MEAR_EE_CLK);
337 		nge_delay(sc);
338 	}
339 
340 	/* Turn off EEPROM access mode. */
341 	nge_eeprom_idle(sc);
342 
343 	*dest = word;
344 }
345 
346 /*
347  * Read a sequence of words from the EEPROM.
348  */
349 static void
350 nge_read_eeprom(struct nge_softc *sc, void *dest, int off, int cnt)
351 {
352 	int i;
353 	uint16_t word = 0, *ptr;
354 
355 	for (i = 0; i < cnt; i++) {
356 		nge_eeprom_getword(sc, off + i, &word);
357 		ptr = (uint16_t *)((uint8_t *)dest + (i * 2));
358 		*ptr = word;
359 	}
360 }
361 
362 /*
363  * Sync the PHYs by setting data bit and strobing the clock 32 times.
364  */
365 static void
366 nge_mii_sync(struct nge_softc *sc)
367 {
368 	int i;
369 
370 	SIO_SET(NGE_MEAR_MII_DIR | NGE_MEAR_MII_DATA);
371 
372 	for (i = 0; i < 32; i++) {
373 		SIO_SET(NGE_MEAR_MII_CLK);
374 		DELAY(1);
375 		SIO_CLR(NGE_MEAR_MII_CLK);
376 		DELAY(1);
377 	}
378 }
379 
380 /*
381  * Clock a series of bits through the MII.
382  */
383 static void
384 nge_mii_send(struct nge_softc *sc, uint32_t bits, int cnt)
385 {
386 	int i;
387 
388 	SIO_CLR(NGE_MEAR_MII_CLK);
389 
390 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
391                 if (bits & i)
392 			SIO_SET(NGE_MEAR_MII_DATA);
393                 else
394 			SIO_CLR(NGE_MEAR_MII_DATA);
395 		DELAY(1);
396 		SIO_CLR(NGE_MEAR_MII_CLK);
397 		DELAY(1);
398 		SIO_SET(NGE_MEAR_MII_CLK);
399 	}
400 }
401 
402 /*
403  * Read an PHY register through the MII.
404  */
405 static int
406 nge_mii_readreg(struct nge_softc *sc, struct nge_mii_frame *frame)
407 {
408 	int ack, i;
409 
410 	/*
411 	 * Set up frame for RX.
412 	 */
413 	frame->mii_stdelim = NGE_MII_STARTDELIM;
414 	frame->mii_opcode = NGE_MII_READOP;
415 	frame->mii_turnaround = 0;
416 	frame->mii_data = 0;
417 
418 	CSR_WRITE_4(sc, NGE_MEAR, 0);
419 
420 	/*
421  	 * Turn on data xmit.
422 	 */
423 	SIO_SET(NGE_MEAR_MII_DIR);
424 
425 	nge_mii_sync(sc);
426 
427 	/*
428 	 * Send command/address info.
429 	 */
430 	nge_mii_send(sc, frame->mii_stdelim, 2);
431 	nge_mii_send(sc, frame->mii_opcode, 2);
432 	nge_mii_send(sc, frame->mii_phyaddr, 5);
433 	nge_mii_send(sc, frame->mii_regaddr, 5);
434 
435 	/* Idle bit */
436 	SIO_CLR((NGE_MEAR_MII_CLK | NGE_MEAR_MII_DATA));
437 	DELAY(1);
438 	SIO_SET(NGE_MEAR_MII_CLK);
439 	DELAY(1);
440 
441 	/* Turn off xmit. */
442 	SIO_CLR(NGE_MEAR_MII_DIR);
443 	/* Check for ack */
444 	SIO_CLR(NGE_MEAR_MII_CLK);
445 	DELAY(1);
446 	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
447 	SIO_SET(NGE_MEAR_MII_CLK);
448 	DELAY(1);
449 
450 	/*
451 	 * Now try reading data bits. If the ack failed, we still
452 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
453 	 */
454 	if (ack) {
455 		for(i = 0; i < 16; i++) {
456 			SIO_CLR(NGE_MEAR_MII_CLK);
457 			DELAY(1);
458 			SIO_SET(NGE_MEAR_MII_CLK);
459 			DELAY(1);
460 		}
461 		goto fail;
462 	}
463 
464 	for (i = 0x8000; i; i >>= 1) {
465 		SIO_CLR(NGE_MEAR_MII_CLK);
466 		DELAY(1);
467 		if (!ack) {
468 			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
469 				frame->mii_data |= i;
470 			DELAY(1);
471 		}
472 		SIO_SET(NGE_MEAR_MII_CLK);
473 		DELAY(1);
474 	}
475 
476 fail:
477 	SIO_CLR(NGE_MEAR_MII_CLK);
478 	DELAY(1);
479 	SIO_SET(NGE_MEAR_MII_CLK);
480 	DELAY(1);
481 
482 	if (ack)
483 		return(1);
484 	return(0);
485 }
486 
487 /*
488  * Write to a PHY register through the MII.
489  */
490 static int
491 nge_mii_writereg(struct nge_softc *sc, struct nge_mii_frame *frame)
492 {
493 	/*
494 	 * Set up frame for TX.
495 	 */
496 
497 	frame->mii_stdelim = NGE_MII_STARTDELIM;
498 	frame->mii_opcode = NGE_MII_WRITEOP;
499 	frame->mii_turnaround = NGE_MII_TURNAROUND;
500 
501 	/*
502  	 * Turn on data output.
503 	 */
504 	SIO_SET(NGE_MEAR_MII_DIR);
505 
506 	nge_mii_sync(sc);
507 
508 	nge_mii_send(sc, frame->mii_stdelim, 2);
509 	nge_mii_send(sc, frame->mii_opcode, 2);
510 	nge_mii_send(sc, frame->mii_phyaddr, 5);
511 	nge_mii_send(sc, frame->mii_regaddr, 5);
512 	nge_mii_send(sc, frame->mii_turnaround, 2);
513 	nge_mii_send(sc, frame->mii_data, 16);
514 
515 	/* Idle bit. */
516 	SIO_SET(NGE_MEAR_MII_CLK);
517 	DELAY(1);
518 	SIO_CLR(NGE_MEAR_MII_CLK);
519 	DELAY(1);
520 
521 	/*
522 	 * Turn off xmit.
523 	 */
524 	SIO_CLR(NGE_MEAR_MII_DIR);
525 
526 	return(0);
527 }
528 
529 static int
530 nge_miibus_readreg(device_t dev, int phy, int reg)
531 {
532 	struct nge_softc *sc = device_get_softc(dev);
533 	struct nge_mii_frame frame;
534 
535 	bzero((char *)&frame, sizeof(frame));
536 
537 	frame.mii_phyaddr = phy;
538 	frame.mii_regaddr = reg;
539 	nge_mii_readreg(sc, &frame);
540 
541 	return(frame.mii_data);
542 }
543 
544 static int
545 nge_miibus_writereg(device_t dev, int phy, int reg, int data)
546 {
547 	struct nge_softc *sc = device_get_softc(dev);
548 	struct nge_mii_frame frame;
549 
550 	bzero((char *)&frame, sizeof(frame));
551 
552 	frame.mii_phyaddr = phy;
553 	frame.mii_regaddr = reg;
554 	frame.mii_data = data;
555 	nge_mii_writereg(sc, &frame);
556 
557 	return(0);
558 }
559 
560 static void
561 nge_miibus_statchg(device_t dev)
562 {
563 	struct nge_softc *sc = device_get_softc(dev);
564 	struct mii_data *mii;
565 	int status;
566 
567 	if (sc->nge_tbi) {
568 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
569 		    == IFM_AUTO) {
570 			status = CSR_READ_4(sc, NGE_TBI_ANLPAR);
571 			if (status == 0 || status & NGE_TBIANAR_FDX) {
572 				NGE_SETBIT(sc, NGE_TX_CFG,
573 				    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
574 				NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
575 			} else {
576 				NGE_CLRBIT(sc, NGE_TX_CFG,
577 				    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
578 				NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
579 			}
580 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
581 			!= IFM_FDX) {
582 			NGE_CLRBIT(sc, NGE_TX_CFG,
583 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
584 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
585 		} else {
586 			NGE_SETBIT(sc, NGE_TX_CFG,
587 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
588 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
589 		}
590 	} else {
591 		mii = device_get_softc(sc->nge_miibus);
592 
593 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
594 		        NGE_SETBIT(sc, NGE_TX_CFG,
595 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
596 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
597 		} else {
598 			NGE_CLRBIT(sc, NGE_TX_CFG,
599 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
600 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
601 		}
602 
603 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
604 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
605 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
606 			NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
607 		} else {
608 			NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
609 		}
610 	}
611 }
612 
613 static void
614 nge_setmulti(struct nge_softc *sc)
615 {
616 	struct ifnet *ifp = &sc->arpcom.ac_if;
617 	struct ifmultiaddr *ifma;
618 	uint32_t filtsave, h = 0, i;
619 	int bit, index;
620 
621 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
622 		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
623 		    NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH);
624 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
625 		return;
626 	}
627 
628 	/*
629 	 * We have to explicitly enable the multicast hash table
630 	 * on the NatSemi chip if we want to use it, which we do.
631 	 * We also have to tell it that we don't want to use the
632 	 * hash table for matching unicast addresses.
633 	 */
634 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
635 	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
636 	    NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_UCHASH);
637 
638 	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
639 
640 	/* first, zot all the existing hash bits */
641 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
642 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
643 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
644 	}
645 
646 	/*
647 	 * From the 11 bits returned by the crc routine, the top 7
648 	 * bits represent the 16-bit word in the mcast hash table
649 	 * that needs to be updated, and the lower 4 bits represent
650 	 * which bit within that byte needs to be set.
651 	 */
652 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
653 		if (ifma->ifma_addr->sa_family != AF_LINK)
654 			continue;
655 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
656 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 21;
657 		index = (h >> 4) & 0x7F;
658 		bit = h & 0xF;
659 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
660 		    NGE_FILTADDR_MCAST_LO + (index * 2));
661 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
662 	}
663 
664 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
665 }
666 
667 static void
668 nge_reset(struct nge_softc *sc)
669 {
670 	int i;
671 
672 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
673 
674 	for (i = 0; i < NGE_TIMEOUT; i++) {
675 		if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET) == 0)
676 			break;
677 	}
678 
679 	if (i == NGE_TIMEOUT)
680 		printf("nge%d: reset never completed\n", sc->nge_unit);
681 
682 	/* Wait a little while for the chip to get its brains in order. */
683 	DELAY(1000);
684 
685 	/*
686 	 * If this is a NetSemi chip, make sure to clear
687 	 * PME mode.
688 	 */
689 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
690 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
691 }
692 
693 /*
694  * Probe for an NatSemi chip. Check the PCI vendor and device
695  * IDs against our list and return a device name if we find a match.
696  */
697 static int
698 nge_probe(device_t dev)
699 {
700 	struct nge_type	*t;
701 	uint16_t vendor, product;
702 
703 	vendor = pci_get_vendor(dev);
704 	product = pci_get_device(dev);
705 
706 	for (t = nge_devs; t->nge_name != NULL; t++) {
707 		if (vendor == t->nge_vid && product == t->nge_did) {
708 			device_set_desc(dev, t->nge_name);
709 			return(0);
710 		}
711 	}
712 
713 	return(ENXIO);
714 }
715 
716 /*
717  * Attach the interface. Allocate softc structures, do ifmedia
718  * setup and ethernet/BPF attach.
719  */
720 static int
721 nge_attach(device_t dev)
722 {
723 	struct nge_softc *sc;
724 	struct ifnet *ifp;
725 	uint8_t eaddr[ETHER_ADDR_LEN];
726 	uint32_t		command;
727 	int error = 0, rid, unit;
728 	const char		*sep = "";
729 
730 	sc = device_get_softc(dev);
731 	unit = device_get_unit(dev);
732 	callout_init(&sc->nge_stat_timer);
733 	lwkt_serialize_init(&sc->nge_jslot_serializer);
734 
735 	/*
736 	 * Handle power management nonsense.
737 	 */
738 	command = pci_read_config(dev, NGE_PCI_CAPID, 4) & 0x000000FF;
739 	if (command == 0x01) {
740 		command = pci_read_config(dev, NGE_PCI_PWRMGMTCTRL, 4);
741 		if (command & NGE_PSTATE_MASK) {
742 			uint32_t		iobase, membase, irq;
743 
744 			/* Save important PCI config data. */
745 			iobase = pci_read_config(dev, NGE_PCI_LOIO, 4);
746 			membase = pci_read_config(dev, NGE_PCI_LOMEM, 4);
747 			irq = pci_read_config(dev, NGE_PCI_INTLINE, 4);
748 
749 			/* Reset the power state. */
750 			printf("nge%d: chip is in D%d power mode "
751 			"-- setting to D0\n", unit, command & NGE_PSTATE_MASK);
752 			command &= 0xFFFFFFFC;
753 			pci_write_config(dev, NGE_PCI_PWRMGMTCTRL, command, 4);
754 
755 			/* Restore PCI config data. */
756 			pci_write_config(dev, NGE_PCI_LOIO, iobase, 4);
757 			pci_write_config(dev, NGE_PCI_LOMEM, membase, 4);
758 			pci_write_config(dev, NGE_PCI_INTLINE, irq, 4);
759 		}
760 	}
761 
762 	/*
763 	 * Map control/status registers.
764 	 */
765 	command = pci_read_config(dev, PCIR_COMMAND, 4);
766 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
767 	pci_write_config(dev, PCIR_COMMAND, command, 4);
768 	command = pci_read_config(dev, PCIR_COMMAND, 4);
769 
770 #ifdef NGE_USEIOSPACE
771 	if (!(command & PCIM_CMD_PORTEN)) {
772 		printf("nge%d: failed to enable I/O ports!\n", unit);
773 		error = ENXIO;
774 		return(error);
775 	}
776 #else
777 	if (!(command & PCIM_CMD_MEMEN)) {
778 		printf("nge%d: failed to enable memory mapping!\n", unit);
779 		error = ENXIO;
780 		return(error);
781 	}
782 #endif
783 
784 	rid = NGE_RID;
785 	sc->nge_res = bus_alloc_resource_any(dev, NGE_RES, &rid, RF_ACTIVE);
786 
787 	if (sc->nge_res == NULL) {
788 		printf("nge%d: couldn't map ports/memory\n", unit);
789 		error = ENXIO;
790 		return(error);
791 	}
792 
793 	sc->nge_btag = rman_get_bustag(sc->nge_res);
794 	sc->nge_bhandle = rman_get_bushandle(sc->nge_res);
795 
796 	/* Allocate interrupt */
797 	rid = 0;
798 	sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
799 	    RF_SHAREABLE | RF_ACTIVE);
800 
801 	if (sc->nge_irq == NULL) {
802 		printf("nge%d: couldn't map interrupt\n", unit);
803 		error = ENXIO;
804 		goto fail;
805 	}
806 
807 	/* Reset the adapter. */
808 	nge_reset(sc);
809 
810 	/*
811 	 * Get station address from the EEPROM.
812 	 */
813 	nge_read_eeprom(sc, &eaddr[4], NGE_EE_NODEADDR, 1);
814 	nge_read_eeprom(sc, &eaddr[2], NGE_EE_NODEADDR + 1, 1);
815 	nge_read_eeprom(sc, &eaddr[0], NGE_EE_NODEADDR + 2, 1);
816 
817 	sc->nge_unit = unit;
818 
819 	sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF,
820 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
821 
822 	if (sc->nge_ldata == NULL) {
823 		printf("nge%d: no memory for list buffers!\n", unit);
824 		error = ENXIO;
825 		goto fail;
826 	}
827 	bzero(sc->nge_ldata, sizeof(struct nge_list_data));
828 
829 	/* Try to allocate memory for jumbo buffers. */
830 	if (nge_alloc_jumbo_mem(sc)) {
831 		printf("nge%d: jumbo buffer allocation failed\n",
832                     sc->nge_unit);
833 		error = ENXIO;
834 		goto fail;
835 	}
836 
837 	ifp = &sc->arpcom.ac_if;
838 	ifp->if_softc = sc;
839 	if_initname(ifp, "nge", unit);
840 	ifp->if_mtu = ETHERMTU;
841 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
842 	ifp->if_ioctl = nge_ioctl;
843 	ifp->if_start = nge_start;
844 #ifdef DEVICE_POLLING
845 	ifp->if_poll = nge_poll;
846 #endif
847 	ifp->if_watchdog = nge_watchdog;
848 	ifp->if_init = nge_init;
849 	ifp->if_baudrate = 1000000000;
850 	ifq_set_maxlen(&ifp->if_snd, NGE_TX_LIST_CNT - 1);
851 	ifq_set_ready(&ifp->if_snd);
852 	ifp->if_hwassist = NGE_CSUM_FEATURES;
853 	ifp->if_capabilities = IFCAP_HWCSUM;
854 	ifp->if_capenable = ifp->if_capabilities;
855 
856 	/*
857 	 * Do MII setup.
858 	 */
859 	if (mii_phy_probe(dev, &sc->nge_miibus,
860 			  nge_ifmedia_upd, nge_ifmedia_sts)) {
861 		if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) {
862 			sc->nge_tbi = 1;
863 			device_printf(dev, "Using TBI\n");
864 
865 			sc->nge_miibus = dev;
866 
867 			ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_upd,
868 				nge_ifmedia_sts);
869 #define	ADD(m, c)	ifmedia_add(&sc->nge_ifmedia, (m), (c), NULL)
870 #define PRINT(s)	printf("%s%s", sep, s); sep = ", "
871 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_NONE, 0, 0), 0);
872 			device_printf(dev, " ");
873 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, 0, 0), 0);
874 			PRINT("1000baseSX");
875 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, 0),0);
876 			PRINT("1000baseSX-FDX");
877 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0);
878 			PRINT("auto");
879 
880 			printf("\n");
881 #undef ADD
882 #undef PRINT
883 			ifmedia_set(&sc->nge_ifmedia,
884 				IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0));
885 
886 			CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
887 				| NGE_GPIO_GP4_OUT
888 				| NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
889 				| NGE_GPIO_GP3_OUTENB
890 				| NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
891 
892 		} else {
893 			printf("nge%d: MII without any PHY!\n", sc->nge_unit);
894 			error = ENXIO;
895 			goto fail;
896 		}
897 	}
898 
899 	/*
900 	 * Call MI attach routine.
901 	 */
902 	ether_ifattach(ifp, eaddr, NULL);
903 
904 	error = bus_setup_intr(dev, sc->nge_irq, INTR_NETSAFE,
905 			       nge_intr, sc, &sc->nge_intrhand,
906 			       ifp->if_serializer);
907 	if (error) {
908 		ether_ifdetach(ifp);
909 		device_printf(dev, "couldn't set up irq\n");
910 		goto fail;
911 	}
912 
913 	return(0);
914 fail:
915 	nge_detach(dev);
916 	return(error);
917 }
918 
919 static int
920 nge_detach(device_t dev)
921 {
922 	struct nge_softc *sc = device_get_softc(dev);
923 	struct ifnet *ifp = &sc->arpcom.ac_if;
924 
925 	if (device_is_attached(dev)) {
926 		lwkt_serialize_enter(ifp->if_serializer);
927 		nge_reset(sc);
928 		nge_stop(sc);
929 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
930 		lwkt_serialize_exit(ifp->if_serializer);
931 
932 		ether_ifdetach(ifp);
933 	}
934 
935 	if (sc->nge_miibus)
936 		device_delete_child(dev, sc->nge_miibus);
937 	bus_generic_detach(dev);
938 
939 	if (sc->nge_irq)
940 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
941 	if (sc->nge_res)
942 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
943 	if (sc->nge_ldata) {
944 		contigfree(sc->nge_ldata, sizeof(struct nge_list_data),
945 			   M_DEVBUF);
946 	}
947 	if (sc->nge_cdata.nge_jumbo_buf)
948 		contigfree(sc->nge_cdata.nge_jumbo_buf, NGE_JMEM, M_DEVBUF);
949 
950 	return(0);
951 }
952 
953 /*
954  * Initialize the transmit descriptors.
955  */
956 static int
957 nge_list_tx_init(struct nge_softc *sc)
958 {
959 	struct nge_list_data *ld;
960 	struct nge_ring_data *cd;
961 	int i;
962 
963 	cd = &sc->nge_cdata;
964 	ld = sc->nge_ldata;
965 
966 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
967 		if (i == (NGE_TX_LIST_CNT - 1)) {
968 			ld->nge_tx_list[i].nge_nextdesc =
969 			    &ld->nge_tx_list[0];
970 			ld->nge_tx_list[i].nge_next =
971 			    vtophys(&ld->nge_tx_list[0]);
972 		} else {
973 			ld->nge_tx_list[i].nge_nextdesc =
974 			    &ld->nge_tx_list[i + 1];
975 			ld->nge_tx_list[i].nge_next =
976 			    vtophys(&ld->nge_tx_list[i + 1]);
977 		}
978 		ld->nge_tx_list[i].nge_mbuf = NULL;
979 		ld->nge_tx_list[i].nge_ptr = 0;
980 		ld->nge_tx_list[i].nge_ctl = 0;
981 	}
982 
983 	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
984 
985 	return(0);
986 }
987 
988 
989 /*
990  * Initialize the RX descriptors and allocate mbufs for them. Note that
991  * we arrange the descriptors in a closed ring, so that the last descriptor
992  * points back to the first.
993  */
994 static int
995 nge_list_rx_init(struct nge_softc *sc)
996 {
997 	struct nge_list_data *ld;
998 	struct nge_ring_data *cd;
999 	int i;
1000 
1001 	ld = sc->nge_ldata;
1002 	cd = &sc->nge_cdata;
1003 
1004 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1005 		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
1006 			return(ENOBUFS);
1007 		if (i == (NGE_RX_LIST_CNT - 1)) {
1008 			ld->nge_rx_list[i].nge_nextdesc =
1009 			    &ld->nge_rx_list[0];
1010 			ld->nge_rx_list[i].nge_next =
1011 			    vtophys(&ld->nge_rx_list[0]);
1012 		} else {
1013 			ld->nge_rx_list[i].nge_nextdesc =
1014 			    &ld->nge_rx_list[i + 1];
1015 			ld->nge_rx_list[i].nge_next =
1016 			    vtophys(&ld->nge_rx_list[i + 1]);
1017 		}
1018 	}
1019 
1020 	cd->nge_rx_prod = 0;
1021 
1022 	return(0);
1023 }
1024 
1025 /*
1026  * Initialize an RX descriptor and attach an MBUF cluster.
1027  */
1028 static int
1029 nge_newbuf(struct nge_softc *sc, struct nge_desc *c, struct mbuf *m)
1030 {
1031 	struct mbuf *m_new = NULL;
1032 	struct nge_jslot *buf;
1033 
1034 	if (m == NULL) {
1035 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1036 		if (m_new == NULL) {
1037 			printf("nge%d: no memory for rx list "
1038 			    "-- packet dropped!\n", sc->nge_unit);
1039 			return(ENOBUFS);
1040 		}
1041 
1042 		/* Allocate the jumbo buffer */
1043 		buf = nge_jalloc(sc);
1044 		if (buf == NULL) {
1045 #ifdef NGE_VERBOSE
1046 			printf("nge%d: jumbo allocation failed "
1047 			    "-- packet dropped!\n", sc->nge_unit);
1048 #endif
1049 			m_freem(m_new);
1050 			return(ENOBUFS);
1051 		}
1052 		/* Attach the buffer to the mbuf */
1053 		m_new->m_ext.ext_arg = buf;
1054 		m_new->m_ext.ext_buf = buf->nge_buf;
1055 		m_new->m_ext.ext_free = nge_jfree;
1056 		m_new->m_ext.ext_ref = nge_jref;
1057 		m_new->m_ext.ext_size = NGE_JUMBO_FRAMELEN;
1058 
1059 		m_new->m_data = m_new->m_ext.ext_buf;
1060 		m_new->m_flags |= M_EXT;
1061 		m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1062 	} else {
1063 		m_new = m;
1064 		m_new->m_len = m_new->m_pkthdr.len = NGE_JLEN;
1065 		m_new->m_data = m_new->m_ext.ext_buf;
1066 	}
1067 
1068 	m_adj(m_new, sizeof(uint64_t));
1069 
1070 	c->nge_mbuf = m_new;
1071 	c->nge_ptr = vtophys(mtod(m_new, caddr_t));
1072 	c->nge_ctl = m_new->m_len;
1073 	c->nge_extsts = 0;
1074 
1075 	return(0);
1076 }
1077 
1078 static int
1079 nge_alloc_jumbo_mem(struct nge_softc *sc)
1080 {
1081 	caddr_t ptr;
1082 	int i;
1083 	struct nge_jslot *entry;
1084 
1085 	/* Grab a big chunk o' storage. */
1086 	sc->nge_cdata.nge_jumbo_buf = contigmalloc(NGE_JMEM, M_DEVBUF,
1087 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1088 
1089 	if (sc->nge_cdata.nge_jumbo_buf == NULL) {
1090 		printf("nge%d: no memory for jumbo buffers!\n", sc->nge_unit);
1091 		return(ENOBUFS);
1092 	}
1093 
1094 	SLIST_INIT(&sc->nge_jfree_listhead);
1095 
1096 	/*
1097 	 * Now divide it up into 9K pieces and save the addresses
1098 	 * in an array.
1099 	 */
1100 	ptr = sc->nge_cdata.nge_jumbo_buf;
1101 	for (i = 0; i < NGE_JSLOTS; i++) {
1102 		entry = &sc->nge_cdata.nge_jslots[i];
1103 		entry->nge_sc = sc;
1104 		entry->nge_buf = ptr;
1105 		entry->nge_inuse = 0;
1106 		entry->nge_slot = i;
1107 		SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jslot_link);
1108 		ptr += NGE_JLEN;
1109 	}
1110 
1111 	return(0);
1112 }
1113 
1114 
1115 /*
1116  * Allocate a jumbo buffer.
1117  */
1118 static struct nge_jslot *
1119 nge_jalloc(struct nge_softc *sc)
1120 {
1121 	struct nge_jslot *entry;
1122 
1123 	lwkt_serialize_enter(&sc->nge_jslot_serializer);
1124 	entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1125 	if (entry) {
1126 		SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jslot_link);
1127 		entry->nge_inuse = 1;
1128 	} else {
1129 #ifdef NGE_VERBOSE
1130 		printf("nge%d: no free jumbo buffers\n", sc->nge_unit);
1131 #endif
1132 	}
1133 	lwkt_serialize_exit(&sc->nge_jslot_serializer);
1134 	return(entry);
1135 }
1136 
1137 /*
1138  * Adjust usage count on a jumbo buffer. In general this doesn't
1139  * get used much because our jumbo buffers don't get passed around
1140  * a lot, but it's implemented for correctness.
1141  */
1142 static void
1143 nge_jref(void *arg)
1144 {
1145 	struct nge_jslot *entry = (struct nge_jslot *)arg;
1146 	struct nge_softc *sc = entry->nge_sc;
1147 
1148 	if (sc == NULL)
1149 		panic("nge_jref: can't find softc pointer!");
1150 
1151 	if (&sc->nge_cdata.nge_jslots[entry->nge_slot] != entry)
1152 		panic("nge_jref: asked to reference buffer "
1153 		    "that we don't manage!");
1154 	else if (entry->nge_inuse == 0)
1155 		panic("nge_jref: buffer already free!");
1156 	else
1157 		atomic_add_int(&entry->nge_inuse, 1);
1158 }
1159 
1160 /*
1161  * Release a jumbo buffer.
1162  */
1163 static void
1164 nge_jfree(void *arg)
1165 {
1166 	struct nge_jslot *entry = (struct nge_jslot *)arg;
1167 	struct nge_softc *sc = entry->nge_sc;
1168 
1169 	if (sc == NULL)
1170 		panic("nge_jref: can't find softc pointer!");
1171 
1172 	if (&sc->nge_cdata.nge_jslots[entry->nge_slot] != entry) {
1173 		panic("nge_jref: asked to reference buffer "
1174 		    "that we don't manage!");
1175 	} else if (entry->nge_inuse == 0) {
1176 		panic("nge_jref: buffer already free!");
1177 	} else {
1178 		lwkt_serialize_enter(&sc->nge_jslot_serializer);
1179 		atomic_subtract_int(&entry->nge_inuse, 1);
1180 		if (entry->nge_inuse == 0) {
1181 			SLIST_INSERT_HEAD(&sc->nge_jfree_listhead,
1182 					  entry, jslot_link);
1183 		}
1184 		lwkt_serialize_exit(&sc->nge_jslot_serializer);
1185 	}
1186 }
1187 /*
1188  * A frame has been uploaded: pass the resulting mbuf chain up to
1189  * the higher level protocols.
1190  */
1191 static void
1192 nge_rxeof(struct nge_softc *sc)
1193 {
1194         struct mbuf *m;
1195         struct ifnet *ifp = &sc->arpcom.ac_if;
1196 	struct nge_desc *cur_rx;
1197 	int i, total_len = 0;
1198 	uint32_t rxstat;
1199 
1200 	i = sc->nge_cdata.nge_rx_prod;
1201 
1202 	while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1203 		struct mbuf *m0 = NULL;
1204 		uint32_t extsts;
1205 
1206 #ifdef DEVICE_POLLING
1207 		if (ifp->if_flags & IFF_POLLING) {
1208 			if (sc->rxcycles <= 0)
1209 				break;
1210 			sc->rxcycles--;
1211 		}
1212 #endif /* DEVICE_POLLING */
1213 
1214 		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1215 		rxstat = cur_rx->nge_rxstat;
1216 		extsts = cur_rx->nge_extsts;
1217 		m = cur_rx->nge_mbuf;
1218 		cur_rx->nge_mbuf = NULL;
1219 		total_len = NGE_RXBYTES(cur_rx);
1220 		NGE_INC(i, NGE_RX_LIST_CNT);
1221 		/*
1222 		 * If an error occurs, update stats, clear the
1223 		 * status word and leave the mbuf cluster in place:
1224 		 * it should simply get re-used next time this descriptor
1225 	 	 * comes up in the ring.
1226 		 */
1227 		if ((rxstat & NGE_CMDSTS_PKT_OK) == 0) {
1228 			ifp->if_ierrors++;
1229 			nge_newbuf(sc, cur_rx, m);
1230 			continue;
1231 		}
1232 
1233 		/*
1234 		 * Ok. NatSemi really screwed up here. This is the
1235 		 * only gigE chip I know of with alignment constraints
1236 		 * on receive buffers. RX buffers must be 64-bit aligned.
1237 		 */
1238 #ifdef __i386__
1239 		/*
1240 		 * By popular demand, ignore the alignment problems
1241 		 * on the Intel x86 platform. The performance hit
1242 		 * incurred due to unaligned accesses is much smaller
1243 		 * than the hit produced by forcing buffer copies all
1244 		 * the time, especially with jumbo frames. We still
1245 		 * need to fix up the alignment everywhere else though.
1246 		 */
1247 		if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
1248 #endif
1249 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1250 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
1251 			nge_newbuf(sc, cur_rx, m);
1252 			if (m0 == NULL) {
1253 				printf("nge%d: no receive buffers "
1254 				    "available -- packet dropped!\n",
1255 				    sc->nge_unit);
1256 				ifp->if_ierrors++;
1257 				continue;
1258 			}
1259 			m_adj(m0, ETHER_ALIGN);
1260 			m = m0;
1261 #ifdef __i386__
1262 		} else {
1263 			m->m_pkthdr.rcvif = ifp;
1264 			m->m_pkthdr.len = m->m_len = total_len;
1265 		}
1266 #endif
1267 
1268 		ifp->if_ipackets++;
1269 
1270 		/* Do IP checksum checking. */
1271 		if (extsts & NGE_RXEXTSTS_IPPKT)
1272 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1273 		if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1274 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1275 		if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1276 		    (extsts & NGE_RXEXTSTS_TCPCSUMERR) == 0) ||
1277 		    (extsts & NGE_RXEXTSTS_UDPPKT &&
1278 		    (extsts & NGE_RXEXTSTS_UDPCSUMERR) == 0)) {
1279 			m->m_pkthdr.csum_flags |=
1280 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1281 			m->m_pkthdr.csum_data = 0xffff;
1282 		}
1283 
1284 		/*
1285 		 * If we received a packet with a vlan tag, pass it
1286 		 * to vlan_input() instead of ether_input().
1287 		 */
1288 		if (extsts & NGE_RXEXTSTS_VLANPKT)
1289 			VLAN_INPUT_TAG(m, extsts & NGE_RXEXTSTS_VTCI);
1290 		else
1291 			ifp->if_input(ifp, m);
1292 	}
1293 
1294 	sc->nge_cdata.nge_rx_prod = i;
1295 }
1296 
1297 /*
1298  * A frame was downloaded to the chip. It's safe for us to clean up
1299  * the list buffers.
1300  */
1301 static void
1302 nge_txeof(struct nge_softc *sc)
1303 {
1304 	struct ifnet *ifp = &sc->arpcom.ac_if;
1305 	struct nge_desc *cur_tx = NULL;
1306 	uint32_t idx;
1307 
1308 	/* Clear the timeout timer. */
1309 	ifp->if_timer = 0;
1310 
1311 	/*
1312 	 * Go through our tx list and free mbufs for those
1313 	 * frames that have been transmitted.
1314 	 */
1315 	idx = sc->nge_cdata.nge_tx_cons;
1316 	while (idx != sc->nge_cdata.nge_tx_prod) {
1317 		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1318 
1319 		if (NGE_OWNDESC(cur_tx))
1320 			break;
1321 
1322 		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1323 			sc->nge_cdata.nge_tx_cnt--;
1324 			NGE_INC(idx, NGE_TX_LIST_CNT);
1325 			continue;
1326 		}
1327 
1328 		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1329 			ifp->if_oerrors++;
1330 			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1331 				ifp->if_collisions++;
1332 			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1333 				ifp->if_collisions++;
1334 		}
1335 
1336 		ifp->if_collisions +=
1337 		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1338 
1339 		ifp->if_opackets++;
1340 		if (cur_tx->nge_mbuf != NULL) {
1341 			m_freem(cur_tx->nge_mbuf);
1342 			cur_tx->nge_mbuf = NULL;
1343 		}
1344 
1345 		sc->nge_cdata.nge_tx_cnt--;
1346 		NGE_INC(idx, NGE_TX_LIST_CNT);
1347 		ifp->if_timer = 0;
1348 	}
1349 
1350 	sc->nge_cdata.nge_tx_cons = idx;
1351 
1352 	if (cur_tx != NULL)
1353 		ifp->if_flags &= ~IFF_OACTIVE;
1354 }
1355 
1356 static void
1357 nge_tick(void *xsc)
1358 {
1359 	struct nge_softc *sc = xsc;
1360 	struct ifnet *ifp = &sc->arpcom.ac_if;
1361 	struct mii_data *mii;
1362 
1363 	lwkt_serialize_enter(ifp->if_serializer);
1364 
1365 	if (sc->nge_tbi) {
1366 		if (sc->nge_link == 0) {
1367 			if (CSR_READ_4(sc, NGE_TBI_BMSR)
1368 			    & NGE_TBIBMSR_ANEG_DONE) {
1369 				printf("nge%d: gigabit link up\n",
1370 				    sc->nge_unit);
1371 				nge_miibus_statchg(sc->nge_miibus);
1372 				sc->nge_link++;
1373 				if (!ifq_is_empty(&ifp->if_snd))
1374 					nge_start(ifp);
1375 			}
1376 		}
1377 	} else {
1378 		mii = device_get_softc(sc->nge_miibus);
1379 		mii_tick(mii);
1380 
1381 		if (sc->nge_link == 0) {
1382 			if (mii->mii_media_status & IFM_ACTIVE &&
1383 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1384 				sc->nge_link++;
1385 				if (IFM_SUBTYPE(mii->mii_media_active)
1386 				    == IFM_1000_T)
1387 					printf("nge%d: gigabit link up\n",
1388 					    sc->nge_unit);
1389 				if (!ifq_is_empty(&ifp->if_snd))
1390 					nge_start(ifp);
1391 			}
1392 		}
1393 	}
1394 	callout_reset(&sc->nge_stat_timer, hz, nge_tick, sc);
1395 
1396 	lwkt_serialize_exit(ifp->if_serializer);
1397 }
1398 
1399 #ifdef DEVICE_POLLING
1400 
1401 static void
1402 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1403 {
1404 	struct nge_softc *sc = ifp->if_softc;
1405 
1406 	switch(cmd) {
1407 	case POLL_REGISTER:
1408 		/* disable interrupts */
1409 		CSR_WRITE_4(sc, NGE_IER, 0);
1410 		break;
1411 	case POLL_DEREGISTER:
1412 		/* enable interrupts */
1413 		CSR_WRITE_4(sc, NGE_IER, 1);
1414 		break;
1415 	default:
1416 		/*
1417 		 * On the nge, reading the status register also clears it.
1418 		 * So before returning to intr mode we must make sure that all
1419 		 * possible pending sources of interrupts have been served.
1420 		 * In practice this means run to completion the *eof routines,
1421 		 * and then call the interrupt routine
1422 		 */
1423 		sc->rxcycles = count;
1424 		nge_rxeof(sc);
1425 		nge_txeof(sc);
1426 		if (!ifq_is_empty(&ifp->if_snd))
1427 			nge_start(ifp);
1428 
1429 		if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1430 			uint32_t status;
1431 
1432 			/* Reading the ISR register clears all interrupts. */
1433 			status = CSR_READ_4(sc, NGE_ISR);
1434 
1435 			if (status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW))
1436 				nge_rxeof(sc);
1437 
1438 			if (status & (NGE_ISR_RX_IDLE))
1439 				NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1440 
1441 			if (status & NGE_ISR_SYSERR) {
1442 				nge_reset(sc);
1443 				nge_init(sc);
1444 			}
1445 		}
1446 		break;
1447 	}
1448 }
1449 
1450 #endif /* DEVICE_POLLING */
1451 
1452 static void
1453 nge_intr(void *arg)
1454 {
1455 	struct nge_softc *sc = arg;
1456 	struct ifnet *ifp = &sc->arpcom.ac_if;
1457 	uint32_t status;
1458 
1459 	/* Supress unwanted interrupts */
1460 	if (!(ifp->if_flags & IFF_UP)) {
1461 		nge_stop(sc);
1462 		return;
1463 	}
1464 
1465 	/* Disable interrupts. */
1466 	CSR_WRITE_4(sc, NGE_IER, 0);
1467 
1468 	/* Data LED on for TBI mode */
1469 	if(sc->nge_tbi)
1470 		 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1471 			     | NGE_GPIO_GP3_OUT);
1472 
1473 	for (;;) {
1474 		/* Reading the ISR register clears all interrupts. */
1475 		status = CSR_READ_4(sc, NGE_ISR);
1476 
1477 		if ((status & NGE_INTRS) == 0)
1478 			break;
1479 
1480 		if ((status & NGE_ISR_TX_DESC_OK) ||
1481 		    (status & NGE_ISR_TX_ERR) ||
1482 		    (status & NGE_ISR_TX_OK) ||
1483 		    (status & NGE_ISR_TX_IDLE))
1484 			nge_txeof(sc);
1485 
1486 		if ((status & NGE_ISR_RX_DESC_OK) ||
1487 		    (status & NGE_ISR_RX_ERR) ||
1488 		    (status & NGE_ISR_RX_OFLOW) ||
1489 		    (status & NGE_ISR_RX_FIFO_OFLOW) ||
1490 		    (status & NGE_ISR_RX_IDLE) ||
1491 		    (status & NGE_ISR_RX_OK))
1492 			nge_rxeof(sc);
1493 
1494 		if ((status & NGE_ISR_RX_IDLE))
1495 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1496 
1497 		if (status & NGE_ISR_SYSERR) {
1498 			nge_reset(sc);
1499 			ifp->if_flags &= ~IFF_RUNNING;
1500 			nge_init(sc);
1501 		}
1502 
1503 #ifdef notyet
1504 		/* mii_tick should only be called once per second */
1505 		if (status & NGE_ISR_PHY_INTR) {
1506 			sc->nge_link = 0;
1507 			nge_tick_serialized(sc);
1508 		}
1509 #endif
1510 	}
1511 
1512 	/* Re-enable interrupts. */
1513 	CSR_WRITE_4(sc, NGE_IER, 1);
1514 
1515 	if (!ifq_is_empty(&ifp->if_snd))
1516 		nge_start(ifp);
1517 
1518 	/* Data LED off for TBI mode */
1519 
1520 	if(sc->nge_tbi)
1521 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1522 			    & ~NGE_GPIO_GP3_OUT);
1523 }
1524 
1525 /*
1526  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1527  * pointers to the fragment pointers.
1528  */
1529 static int
1530 nge_encap(struct nge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
1531 {
1532 	struct nge_desc *f = NULL;
1533 	struct mbuf *m;
1534 	int frag, cur, cnt = 0;
1535 	struct ifvlan *ifv = NULL;
1536 
1537 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1538 	    m_head->m_pkthdr.rcvif != NULL &&
1539 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
1540 		ifv = m_head->m_pkthdr.rcvif->if_softc;
1541 
1542 	/*
1543  	 * Start packing the mbufs in this chain into
1544 	 * the fragment pointers. Stop when we run out
1545  	 * of fragments or hit the end of the mbuf chain.
1546 	 */
1547 	m = m_head;
1548 	cur = frag = *txidx;
1549 
1550 	for (m = m_head; m != NULL; m = m->m_next) {
1551 		if (m->m_len != 0) {
1552 			if ((NGE_TX_LIST_CNT -
1553 			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1554 				return(ENOBUFS);
1555 			f = &sc->nge_ldata->nge_tx_list[frag];
1556 			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1557 			f->nge_ptr = vtophys(mtod(m, vm_offset_t));
1558 			if (cnt != 0)
1559 				f->nge_ctl |= NGE_CMDSTS_OWN;
1560 			cur = frag;
1561 			NGE_INC(frag, NGE_TX_LIST_CNT);
1562 			cnt++;
1563 		}
1564 	}
1565 
1566 	if (m != NULL)
1567 		return(ENOBUFS);
1568 
1569 	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1570 	if (m_head->m_pkthdr.csum_flags) {
1571 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1572 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1573 			    NGE_TXEXTSTS_IPCSUM;
1574 		if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1575 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1576 			    NGE_TXEXTSTS_TCPCSUM;
1577 		if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1578 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1579 			    NGE_TXEXTSTS_UDPCSUM;
1580 	}
1581 
1582 	if (ifv != NULL) {
1583 		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1584 			(NGE_TXEXTSTS_VLANPKT|ifv->ifv_tag);
1585 	}
1586 
1587 	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1588 	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1589 	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1590 	sc->nge_cdata.nge_tx_cnt += cnt;
1591 	*txidx = frag;
1592 
1593 	return(0);
1594 }
1595 
1596 /*
1597  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1598  * to the mbuf data regions directly in the transmit lists. We also save a
1599  * copy of the pointers since the transmit list fragment pointers are
1600  * physical addresses.
1601  */
1602 
1603 static void
1604 nge_start(struct ifnet *ifp)
1605 {
1606 	struct nge_softc *sc = ifp->if_softc;
1607 	struct mbuf *m_head = NULL;
1608 	uint32_t idx;
1609 	int need_trans;
1610 
1611 	if (!sc->nge_link)
1612 		return;
1613 
1614 	idx = sc->nge_cdata.nge_tx_prod;
1615 
1616 	if (ifp->if_flags & IFF_OACTIVE)
1617 		return;
1618 
1619 	need_trans = 0;
1620 	while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1621 		m_head = ifq_poll(&ifp->if_snd);
1622 		if (m_head == NULL)
1623 			break;
1624 
1625 		if (nge_encap(sc, m_head, &idx)) {
1626 			ifp->if_flags |= IFF_OACTIVE;
1627 			break;
1628 		}
1629 		ifq_dequeue(&ifp->if_snd, m_head);
1630 		need_trans = 1;
1631 
1632 		BPF_MTAP(ifp, m_head);
1633 	}
1634 
1635 	if (!need_trans)
1636 		return;
1637 
1638 	/* Transmit */
1639 	sc->nge_cdata.nge_tx_prod = idx;
1640 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1641 
1642 	/*
1643 	 * Set a timeout in case the chip goes out to lunch.
1644 	 */
1645 	ifp->if_timer = 5;
1646 }
1647 
1648 static void
1649 nge_init(void *xsc)
1650 {
1651 	struct nge_softc *sc = xsc;
1652 	struct ifnet *ifp = &sc->arpcom.ac_if;
1653 	struct mii_data *mii;
1654 
1655 	if (ifp->if_flags & IFF_RUNNING) {
1656 		return;
1657 	}
1658 
1659 	/*
1660 	 * Cancel pending I/O and free all RX/TX buffers.
1661 	 */
1662 	nge_stop(sc);
1663 	callout_reset(&sc->nge_stat_timer, hz, nge_tick, sc);
1664 
1665 	if (sc->nge_tbi)
1666 		mii = NULL;
1667 	else
1668 		mii = device_get_softc(sc->nge_miibus);
1669 
1670 	/* Set MAC address */
1671 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1672 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1673 	    ((uint16_t *)sc->arpcom.ac_enaddr)[0]);
1674 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1675 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1676 	    ((uint16_t *)sc->arpcom.ac_enaddr)[1]);
1677 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1678 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1679 	    ((uint16_t *)sc->arpcom.ac_enaddr)[2]);
1680 
1681 	/* Init circular RX list. */
1682 	if (nge_list_rx_init(sc) == ENOBUFS) {
1683 		printf("nge%d: initialization failed: no "
1684 			"memory for rx buffers\n", sc->nge_unit);
1685 		nge_stop(sc);
1686 		return;
1687 	}
1688 
1689 	/*
1690 	 * Init tx descriptors.
1691 	 */
1692 	nge_list_tx_init(sc);
1693 
1694 	/*
1695 	 * For the NatSemi chip, we have to explicitly enable the
1696 	 * reception of ARP frames, as well as turn on the 'perfect
1697 	 * match' filter where we store the station address, otherwise
1698 	 * we won't receive unicasts meant for this host.
1699 	 */
1700 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1701 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1702 
1703 	 /* If we want promiscuous mode, set the allframes bit. */
1704 	if (ifp->if_flags & IFF_PROMISC)
1705 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1706 	else
1707 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1708 
1709 	/*
1710 	 * Set the capture broadcast bit to capture broadcast frames.
1711 	 */
1712 	if (ifp->if_flags & IFF_BROADCAST)
1713 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1714 	else
1715 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1716 
1717 	/*
1718 	 * Load the multicast filter.
1719 	 */
1720 	nge_setmulti(sc);
1721 
1722 	/* Turn the receive filter on */
1723 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1724 
1725 	/*
1726 	 * Load the address of the RX and TX lists.
1727 	 */
1728 	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1729 	    vtophys(&sc->nge_ldata->nge_rx_list[0]));
1730 	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1731 	    vtophys(&sc->nge_ldata->nge_tx_list[0]));
1732 
1733 	/* Set RX configuration */
1734 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1735 	/*
1736 	 * Enable hardware checksum validation for all IPv4
1737 	 * packets, do not reject packets with bad checksums.
1738 	 */
1739 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1740 
1741 	/*
1742 	 * Tell the chip to detect and strip VLAN tag info from
1743 	 * received frames. The tag will be provided in the extsts
1744 	 * field in the RX descriptors.
1745 	 */
1746 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1747 	    NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB);
1748 
1749 	/* Set TX configuration */
1750 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1751 
1752 	/*
1753 	 * Enable TX IPv4 checksumming on a per-packet basis.
1754 	 */
1755 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
1756 
1757 	/*
1758 	 * Tell the chip to insert VLAN tags on a per-packet basis as
1759 	 * dictated by the code in the frame encapsulation routine.
1760 	 */
1761 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1762 
1763 	/* Set full/half duplex mode. */
1764 	if (sc->nge_tbi) {
1765 		if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1766 		    == IFM_FDX) {
1767 			NGE_SETBIT(sc, NGE_TX_CFG,
1768 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1769 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1770 		} else {
1771 			NGE_CLRBIT(sc, NGE_TX_CFG,
1772 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1773 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1774 		}
1775 	} else {
1776 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1777 			NGE_SETBIT(sc, NGE_TX_CFG,
1778 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1779 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1780 		} else {
1781 			NGE_CLRBIT(sc, NGE_TX_CFG,
1782 			    (NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
1783 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1784 		}
1785 	}
1786 
1787 	/*
1788 	 * Enable the delivery of PHY interrupts based on
1789 	 * link/speed/duplex status changes. Also enable the
1790 	 * extsts field in the DMA descriptors (needed for
1791 	 * TCP/IP checksum offload on transmit).
1792 	 */
1793 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD |
1794 	    NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB);
1795 
1796 	/*
1797 	 * Configure interrupt holdoff (moderation). We can
1798 	 * have the chip delay interrupt delivery for a certain
1799 	 * period. Units are in 100us, and the max setting
1800 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
1801 	 */
1802 	CSR_WRITE_4(sc, NGE_IHR, 0x01);
1803 
1804 	/*
1805 	 * Enable interrupts.
1806 	 */
1807 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
1808 #ifdef DEVICE_POLLING
1809 	/*
1810 	 * ... only enable interrupts if we are not polling, make sure
1811 	 * they are off otherwise.
1812 	 */
1813 	if (ifp->if_flags & IFF_POLLING)
1814 		CSR_WRITE_4(sc, NGE_IER, 0);
1815 	else
1816 #endif /* DEVICE_POLLING */
1817 	CSR_WRITE_4(sc, NGE_IER, 1);
1818 
1819 	/* Enable receiver and transmitter. */
1820 	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE);
1821 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1822 
1823 	nge_ifmedia_upd(ifp);
1824 
1825 	ifp->if_flags |= IFF_RUNNING;
1826 	ifp->if_flags &= ~IFF_OACTIVE;
1827 }
1828 
1829 /*
1830  * Set media options.
1831  */
1832 static int
1833 nge_ifmedia_upd(struct ifnet *ifp)
1834 {
1835 	struct nge_softc *sc = ifp->if_softc;
1836 	struct mii_data *mii;
1837 
1838 	if (sc->nge_tbi) {
1839 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1840 		     == IFM_AUTO) {
1841 			CSR_WRITE_4(sc, NGE_TBI_ANAR,
1842 				CSR_READ_4(sc, NGE_TBI_ANAR)
1843 					| NGE_TBIANAR_HDX | NGE_TBIANAR_FDX
1844 					| NGE_TBIANAR_PS1 | NGE_TBIANAR_PS2);
1845 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG
1846 				| NGE_TBIBMCR_RESTART_ANEG);
1847 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG);
1848 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media
1849 			    & IFM_GMASK) == IFM_FDX) {
1850 			NGE_SETBIT(sc, NGE_TX_CFG,
1851 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1852 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1853 
1854 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1855 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1856 		} else {
1857 			NGE_CLRBIT(sc, NGE_TX_CFG,
1858 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1859 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1860 
1861 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
1862 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
1863 		}
1864 
1865 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1866 			    & ~NGE_GPIO_GP3_OUT);
1867 	} else {
1868 		mii = device_get_softc(sc->nge_miibus);
1869 		sc->nge_link = 0;
1870 		if (mii->mii_instance) {
1871 			struct mii_softc	*miisc;
1872 			for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1873 			    miisc = LIST_NEXT(miisc, mii_list))
1874 				mii_phy_reset(miisc);
1875 		}
1876 		mii_mediachg(mii);
1877 	}
1878 
1879 	return(0);
1880 }
1881 
1882 /*
1883  * Report current media status.
1884  */
1885 static void
1886 nge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1887 {
1888 	struct nge_softc *sc = ifp->if_softc;
1889 	struct mii_data *mii;
1890 
1891 	if (sc->nge_tbi) {
1892 		ifmr->ifm_status = IFM_AVALID;
1893 		ifmr->ifm_active = IFM_ETHER;
1894 
1895 		if (CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE)
1896 			ifmr->ifm_status |= IFM_ACTIVE;
1897 		if (CSR_READ_4(sc, NGE_TBI_BMCR) & NGE_TBIBMCR_LOOPBACK)
1898 			ifmr->ifm_active |= IFM_LOOP;
1899 		if (!CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
1900 			ifmr->ifm_active |= IFM_NONE;
1901 			ifmr->ifm_status = 0;
1902 			return;
1903 		}
1904 		ifmr->ifm_active |= IFM_1000_SX;
1905 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
1906 		    == IFM_AUTO) {
1907 			ifmr->ifm_active |= IFM_AUTO;
1908 			if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1909 			    & NGE_TBIANAR_FDX) {
1910 				ifmr->ifm_active |= IFM_FDX;
1911 			}else if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
1912 				  & NGE_TBIANAR_HDX) {
1913 				ifmr->ifm_active |= IFM_HDX;
1914 			}
1915 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1916 			== IFM_FDX)
1917 			ifmr->ifm_active |= IFM_FDX;
1918 		else
1919 			ifmr->ifm_active |= IFM_HDX;
1920 
1921 	} else {
1922 		mii = device_get_softc(sc->nge_miibus);
1923 		mii_pollstat(mii);
1924 		ifmr->ifm_active = mii->mii_media_active;
1925 		ifmr->ifm_status = mii->mii_media_status;
1926 	}
1927 }
1928 
1929 static int
1930 nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1931 {
1932 	struct nge_softc *sc = ifp->if_softc;
1933 	struct ifreq *ifr = (struct ifreq *) data;
1934 	struct mii_data *mii;
1935 	int error = 0;
1936 
1937 	switch(command) {
1938 	case SIOCSIFMTU:
1939 		if (ifr->ifr_mtu > NGE_JUMBO_MTU) {
1940 			error = EINVAL;
1941 		} else {
1942 			ifp->if_mtu = ifr->ifr_mtu;
1943 			/*
1944 			 * Workaround: if the MTU is larger than
1945 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
1946 			 * TX checksum offloading.
1947 			 */
1948 			if (ifr->ifr_mtu >= 8152)
1949 				ifp->if_hwassist = 0;
1950 			else
1951 				ifp->if_hwassist = NGE_CSUM_FEATURES;
1952 		}
1953 		break;
1954 	case SIOCSIFFLAGS:
1955 		if (ifp->if_flags & IFF_UP) {
1956 			if (ifp->if_flags & IFF_RUNNING &&
1957 			    ifp->if_flags & IFF_PROMISC &&
1958 			    !(sc->nge_if_flags & IFF_PROMISC)) {
1959 				NGE_SETBIT(sc, NGE_RXFILT_CTL,
1960 				    NGE_RXFILTCTL_ALLPHYS|
1961 				    NGE_RXFILTCTL_ALLMULTI);
1962 			} else if (ifp->if_flags & IFF_RUNNING &&
1963 			    !(ifp->if_flags & IFF_PROMISC) &&
1964 			    sc->nge_if_flags & IFF_PROMISC) {
1965 				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1966 				    NGE_RXFILTCTL_ALLPHYS);
1967 				if (!(ifp->if_flags & IFF_ALLMULTI))
1968 					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
1969 					    NGE_RXFILTCTL_ALLMULTI);
1970 			} else {
1971 				ifp->if_flags &= ~IFF_RUNNING;
1972 				nge_init(sc);
1973 			}
1974 		} else {
1975 			if (ifp->if_flags & IFF_RUNNING)
1976 				nge_stop(sc);
1977 		}
1978 		sc->nge_if_flags = ifp->if_flags;
1979 		error = 0;
1980 		break;
1981 	case SIOCADDMULTI:
1982 	case SIOCDELMULTI:
1983 		nge_setmulti(sc);
1984 		error = 0;
1985 		break;
1986 	case SIOCGIFMEDIA:
1987 	case SIOCSIFMEDIA:
1988 		if (sc->nge_tbi) {
1989 			error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia,
1990 					      command);
1991 		} else {
1992 			mii = device_get_softc(sc->nge_miibus);
1993 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
1994 					      command);
1995 		}
1996 		break;
1997 	default:
1998 		error = ether_ioctl(ifp, command, data);
1999 		break;
2000 	}
2001 	return(error);
2002 }
2003 
2004 static void
2005 nge_watchdog(struct ifnet *ifp)
2006 {
2007 	struct nge_softc *sc = ifp->if_softc;
2008 
2009 	ifp->if_oerrors++;
2010 	printf("nge%d: watchdog timeout\n", sc->nge_unit);
2011 
2012 	nge_stop(sc);
2013 	nge_reset(sc);
2014 	ifp->if_flags &= ~IFF_RUNNING;
2015 	nge_init(sc);
2016 
2017 	if (!ifq_is_empty(&ifp->if_snd))
2018 		nge_start(ifp);
2019 }
2020 
2021 /*
2022  * Stop the adapter and free any mbufs allocated to the
2023  * RX and TX lists.
2024  */
2025 static void
2026 nge_stop(struct nge_softc *sc)
2027 {
2028 	struct ifnet *ifp = &sc->arpcom.ac_if;
2029 	struct ifmedia_entry *ifm;
2030 	struct mii_data *mii;
2031 	int i, itmp, mtmp;
2032 
2033 	ifp->if_timer = 0;
2034 	if (sc->nge_tbi)
2035 		mii = NULL;
2036 	else
2037 		mii = device_get_softc(sc->nge_miibus);
2038 
2039 	callout_stop(&sc->nge_stat_timer);
2040 	CSR_WRITE_4(sc, NGE_IER, 0);
2041 	CSR_WRITE_4(sc, NGE_IMR, 0);
2042 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2043 	DELAY(1000);
2044 	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
2045 	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
2046 
2047 	/*
2048 	 * Isolate/power down the PHY, but leave the media selection
2049 	 * unchanged so that things will be put back to normal when
2050 	 * we bring the interface back up.
2051 	 */
2052 	itmp = ifp->if_flags;
2053 	ifp->if_flags |= IFF_UP;
2054 
2055 	if (sc->nge_tbi)
2056 		ifm = sc->nge_ifmedia.ifm_cur;
2057 	else
2058 		ifm = mii->mii_media.ifm_cur;
2059 
2060 	mtmp = ifm->ifm_media;
2061 	ifm->ifm_media = IFM_ETHER|IFM_NONE;
2062 
2063 	if (!sc->nge_tbi)
2064 		mii_mediachg(mii);
2065 	ifm->ifm_media = mtmp;
2066 	ifp->if_flags = itmp;
2067 
2068 	sc->nge_link = 0;
2069 
2070 	/*
2071 	 * Free data in the RX lists.
2072 	 */
2073 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2074 		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2075 			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2076 			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2077 		}
2078 	}
2079 	bzero(&sc->nge_ldata->nge_rx_list,
2080 		sizeof(sc->nge_ldata->nge_rx_list));
2081 
2082 	/*
2083 	 * Free the TX list buffers.
2084 	 */
2085 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2086 		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2087 			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2088 			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2089 		}
2090 	}
2091 
2092 	bzero(&sc->nge_ldata->nge_tx_list,
2093 		sizeof(sc->nge_ldata->nge_tx_list));
2094 
2095 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2096 }
2097 
2098 /*
2099  * Stop all chip I/O so that the kernel's probe routines don't
2100  * get confused by errant DMAs when rebooting.
2101  */
2102 static void
2103 nge_shutdown(device_t dev)
2104 {
2105 	struct nge_softc *sc = device_get_softc(dev);
2106 	struct ifnet *ifp = &sc->arpcom.ac_if;
2107 
2108 	lwkt_serialize_enter(ifp->if_serializer);
2109 	nge_reset(sc);
2110 	nge_stop(sc);
2111 	lwkt_serialize_exit(ifp->if_serializer);
2112 }
2113 
2114