xref: /dragonfly/sys/dev/netif/nge/if_nge.c (revision 71126e33)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <wpaul@bsdi.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/nge/if_nge.c,v 1.13.2.13 2003/02/05 22:03:57 mbr Exp $
34  * $DragonFly: src/sys/dev/netif/nge/if_nge.c,v 1.15 2004/09/15 00:06:16 joerg Exp $
35  *
36  * $FreeBSD: src/sys/dev/nge/if_nge.c,v 1.13.2.13 2003/02/05 22:03:57 mbr Exp $
37  */
38 
39 /*
40  * National Semiconductor DP83820/DP83821 gigabit ethernet driver
41  * for FreeBSD. Datasheets are available from:
42  *
43  * http://www.national.com/ds/DP/DP83820.pdf
44  * http://www.national.com/ds/DP/DP83821.pdf
45  *
46  * These chips are used on several low cost gigabit ethernet NICs
47  * sold by D-Link, Addtron, SMC and Asante. Both parts are
48  * virtually the same, except the 83820 is a 64-bit/32-bit part,
49  * while the 83821 is 32-bit only.
50  *
51  * Many cards also use National gigE transceivers, such as the
52  * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
53  * contains a full register description that applies to all of these
54  * components:
55  *
56  * http://www.national.com/ds/DP/DP83861.pdf
57  *
58  * Written by Bill Paul <wpaul@bsdi.com>
59  * BSDi Open Source Solutions
60  */
61 
62 /*
63  * The NatSemi DP83820 and 83821 controllers are enhanced versions
64  * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
65  * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
66  * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
67  * hardware checksum offload (IPv4 only), VLAN tagging and filtering,
68  * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
69  * matching buffers, one perfect address filter buffer and interrupt
70  * moderation. The 83820 supports both 64-bit and 32-bit addressing
71  * and data transfers: the 64-bit support can be toggled on or off
72  * via software. This affects the size of certain fields in the DMA
73  * descriptors.
74  *
75  * There are two bugs/misfeatures in the 83820/83821 that I have
76  * discovered so far:
77  *
78  * - Receive buffers must be aligned on 64-bit boundaries, which means
79  *   you must resort to copying data in order to fix up the payload
80  *   alignment.
81  *
82  * - In order to transmit jumbo frames larger than 8170 bytes, you have
83  *   to turn off transmit checksum offloading, because the chip can't
84  *   compute the checksum on an outgoing frame unless it fits entirely
85  *   within the TX FIFO, which is only 8192 bytes in size. If you have
86  *   TX checksum offload enabled and you transmit attempt to transmit a
87  *   frame larger than 8170 bytes, the transmitter will wedge.
88  *
89  * To work around the latter problem, TX checksum offload is disabled
90  * if the user selects an MTU larger than 8152 (8170 - 18).
91  */
92 
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/sockio.h>
96 #include <sys/mbuf.h>
97 #include <sys/malloc.h>
98 #include <sys/kernel.h>
99 #include <sys/socket.h>
100 
101 #include <net/if.h>
102 #include <net/if_arp.h>
103 #include <net/ethernet.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 #include <net/if_types.h>
107 #include <net/vlan/if_vlan_var.h>
108 
109 #include <net/bpf.h>
110 
111 #include <vm/vm.h>              /* for vtophys */
112 #include <vm/pmap.h>            /* for vtophys */
113 #include <machine/clock.h>      /* for DELAY */
114 #include <machine/bus_pio.h>
115 #include <machine/bus_memio.h>
116 #include <machine/bus.h>
117 #include <machine/resource.h>
118 #include <sys/bus.h>
119 #include <sys/rman.h>
120 
121 #include "../mii_layer/mii.h"
122 #include "../mii_layer/miivar.h"
123 
124 #include <bus/pci/pcireg.h>
125 #include <bus/pci/pcivar.h>
126 
127 #define NGE_USEIOSPACE
128 
129 #include "if_ngereg.h"
130 
131 
132 /* "controller miibus0" required.  See GENERIC if you get errors here. */
133 #include "miibus_if.h"
134 
135 #define NGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
136 
137 /*
138  * Various supported device vendors/types and their names.
139  */
140 static struct nge_type nge_devs[] = {
141 	{ NGE_VENDORID, NGE_DEVICEID,
142 	    "National Semiconductor Gigabit Ethernet" },
143 	{ 0, 0, NULL }
144 };
145 
146 static int nge_probe		(device_t);
147 static int nge_attach		(device_t);
148 static int nge_detach		(device_t);
149 
150 static int nge_alloc_jumbo_mem	(struct nge_softc *);
151 static void nge_free_jumbo_mem	(struct nge_softc *);
152 static void *nge_jalloc		(struct nge_softc *);
153 static void nge_jfree		(caddr_t, u_int);
154 static void nge_jref		(caddr_t, u_int);
155 
156 static int nge_newbuf		(struct nge_softc *,
157 					struct nge_desc *, struct mbuf *);
158 static int nge_encap		(struct nge_softc *,
159 					struct mbuf *, u_int32_t *);
160 static void nge_rxeof		(struct nge_softc *);
161 static void nge_txeof		(struct nge_softc *);
162 static void nge_intr		(void *);
163 static void nge_tick		(void *);
164 static void nge_start		(struct ifnet *);
165 static int nge_ioctl		(struct ifnet *, u_long, caddr_t,
166 					struct ucred *);
167 static void nge_init		(void *);
168 static void nge_stop		(struct nge_softc *);
169 static void nge_watchdog		(struct ifnet *);
170 static void nge_shutdown		(device_t);
171 static int nge_ifmedia_upd	(struct ifnet *);
172 static void nge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
173 
174 static void nge_delay		(struct nge_softc *);
175 static void nge_eeprom_idle	(struct nge_softc *);
176 static void nge_eeprom_putbyte	(struct nge_softc *, int);
177 static void nge_eeprom_getword	(struct nge_softc *, int, u_int16_t *);
178 static void nge_read_eeprom	(struct nge_softc *, caddr_t, int, int, int);
179 
180 static void nge_mii_sync	(struct nge_softc *);
181 static void nge_mii_send	(struct nge_softc *, u_int32_t, int);
182 static int nge_mii_readreg	(struct nge_softc *, struct nge_mii_frame *);
183 static int nge_mii_writereg	(struct nge_softc *, struct nge_mii_frame *);
184 
185 static int nge_miibus_readreg	(device_t, int, int);
186 static int nge_miibus_writereg	(device_t, int, int, int);
187 static void nge_miibus_statchg	(device_t);
188 
189 static void nge_setmulti	(struct nge_softc *);
190 static u_int32_t nge_crc	(struct nge_softc *, caddr_t);
191 static void nge_reset		(struct nge_softc *);
192 static int nge_list_rx_init	(struct nge_softc *);
193 static int nge_list_tx_init	(struct nge_softc *);
194 
195 #ifdef NGE_USEIOSPACE
196 #define NGE_RES			SYS_RES_IOPORT
197 #define NGE_RID			NGE_PCI_LOIO
198 #else
199 #define NGE_RES			SYS_RES_MEMORY
200 #define NGE_RID			NGE_PCI_LOMEM
201 #endif
202 
203 static device_method_t nge_methods[] = {
204 	/* Device interface */
205 	DEVMETHOD(device_probe,		nge_probe),
206 	DEVMETHOD(device_attach,	nge_attach),
207 	DEVMETHOD(device_detach,	nge_detach),
208 	DEVMETHOD(device_shutdown,	nge_shutdown),
209 
210 	/* bus interface */
211 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
212 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
213 
214 	/* MII interface */
215 	DEVMETHOD(miibus_readreg,	nge_miibus_readreg),
216 	DEVMETHOD(miibus_writereg,	nge_miibus_writereg),
217 	DEVMETHOD(miibus_statchg,	nge_miibus_statchg),
218 
219 	{ 0, 0 }
220 };
221 
222 static driver_t nge_driver = {
223 	"nge",
224 	nge_methods,
225 	sizeof(struct nge_softc)
226 };
227 
228 static devclass_t nge_devclass;
229 
230 DECLARE_DUMMY_MODULE(if_nge);
231 MODULE_DEPEND(if_nge, miibus, 1, 1, 1);
232 DRIVER_MODULE(if_nge, pci, nge_driver, nge_devclass, 0, 0);
233 DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
234 
235 #define NGE_SETBIT(sc, reg, x)				\
236 	CSR_WRITE_4(sc, reg,				\
237 		CSR_READ_4(sc, reg) | (x))
238 
239 #define NGE_CLRBIT(sc, reg, x)				\
240 	CSR_WRITE_4(sc, reg,				\
241 		CSR_READ_4(sc, reg) & ~(x))
242 
243 #define SIO_SET(x)					\
244 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | x)
245 
246 #define SIO_CLR(x)					\
247 	CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~x)
248 
249 static void nge_delay(sc)
250 	struct nge_softc	*sc;
251 {
252 	int			idx;
253 
254 	for (idx = (300 / 33) + 1; idx > 0; idx--)
255 		CSR_READ_4(sc, NGE_CSR);
256 
257 	return;
258 }
259 
260 static void nge_eeprom_idle(sc)
261 	struct nge_softc	*sc;
262 {
263 	int		i;
264 
265 	SIO_SET(NGE_MEAR_EE_CSEL);
266 	nge_delay(sc);
267 	SIO_SET(NGE_MEAR_EE_CLK);
268 	nge_delay(sc);
269 
270 	for (i = 0; i < 25; i++) {
271 		SIO_CLR(NGE_MEAR_EE_CLK);
272 		nge_delay(sc);
273 		SIO_SET(NGE_MEAR_EE_CLK);
274 		nge_delay(sc);
275 	}
276 
277 	SIO_CLR(NGE_MEAR_EE_CLK);
278 	nge_delay(sc);
279 	SIO_CLR(NGE_MEAR_EE_CSEL);
280 	nge_delay(sc);
281 	CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
282 
283 	return;
284 }
285 
286 /*
287  * Send a read command and address to the EEPROM, check for ACK.
288  */
289 static void nge_eeprom_putbyte(sc, addr)
290 	struct nge_softc	*sc;
291 	int			addr;
292 {
293 	int		d, i;
294 
295 	d = addr | NGE_EECMD_READ;
296 
297 	/*
298 	 * Feed in each bit and stobe the clock.
299 	 */
300 	for (i = 0x400; i; i >>= 1) {
301 		if (d & i) {
302 			SIO_SET(NGE_MEAR_EE_DIN);
303 		} else {
304 			SIO_CLR(NGE_MEAR_EE_DIN);
305 		}
306 		nge_delay(sc);
307 		SIO_SET(NGE_MEAR_EE_CLK);
308 		nge_delay(sc);
309 		SIO_CLR(NGE_MEAR_EE_CLK);
310 		nge_delay(sc);
311 	}
312 
313 	return;
314 }
315 
316 /*
317  * Read a word of data stored in the EEPROM at address 'addr.'
318  */
319 static void nge_eeprom_getword(sc, addr, dest)
320 	struct nge_softc	*sc;
321 	int			addr;
322 	u_int16_t		*dest;
323 {
324 	int		i;
325 	u_int16_t		word = 0;
326 
327 	/* Force EEPROM to idle state. */
328 	nge_eeprom_idle(sc);
329 
330 	/* Enter EEPROM access mode. */
331 	nge_delay(sc);
332 	SIO_CLR(NGE_MEAR_EE_CLK);
333 	nge_delay(sc);
334 	SIO_SET(NGE_MEAR_EE_CSEL);
335 	nge_delay(sc);
336 
337 	/*
338 	 * Send address of word we want to read.
339 	 */
340 	nge_eeprom_putbyte(sc, addr);
341 
342 	/*
343 	 * Start reading bits from EEPROM.
344 	 */
345 	for (i = 0x8000; i; i >>= 1) {
346 		SIO_SET(NGE_MEAR_EE_CLK);
347 		nge_delay(sc);
348 		if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
349 			word |= i;
350 		nge_delay(sc);
351 		SIO_CLR(NGE_MEAR_EE_CLK);
352 		nge_delay(sc);
353 	}
354 
355 	/* Turn off EEPROM access mode. */
356 	nge_eeprom_idle(sc);
357 
358 	*dest = word;
359 
360 	return;
361 }
362 
363 /*
364  * Read a sequence of words from the EEPROM.
365  */
366 static void nge_read_eeprom(sc, dest, off, cnt, swap)
367 	struct nge_softc	*sc;
368 	caddr_t			dest;
369 	int			off;
370 	int			cnt;
371 	int			swap;
372 {
373 	int			i;
374 	u_int16_t		word = 0, *ptr;
375 
376 	for (i = 0; i < cnt; i++) {
377 		nge_eeprom_getword(sc, off + i, &word);
378 		ptr = (u_int16_t *)(dest + (i * 2));
379 		if (swap)
380 			*ptr = ntohs(word);
381 		else
382 			*ptr = word;
383 	}
384 
385 	return;
386 }
387 
388 /*
389  * Sync the PHYs by setting data bit and strobing the clock 32 times.
390  */
391 static void nge_mii_sync(sc)
392 	struct nge_softc		*sc;
393 {
394 	int		i;
395 
396 	SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA);
397 
398 	for (i = 0; i < 32; i++) {
399 		SIO_SET(NGE_MEAR_MII_CLK);
400 		DELAY(1);
401 		SIO_CLR(NGE_MEAR_MII_CLK);
402 		DELAY(1);
403 	}
404 
405 	return;
406 }
407 
408 /*
409  * Clock a series of bits through the MII.
410  */
411 static void nge_mii_send(sc, bits, cnt)
412 	struct nge_softc		*sc;
413 	u_int32_t		bits;
414 	int			cnt;
415 {
416 	int			i;
417 
418 	SIO_CLR(NGE_MEAR_MII_CLK);
419 
420 	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
421                 if (bits & i) {
422 			SIO_SET(NGE_MEAR_MII_DATA);
423                 } else {
424 			SIO_CLR(NGE_MEAR_MII_DATA);
425                 }
426 		DELAY(1);
427 		SIO_CLR(NGE_MEAR_MII_CLK);
428 		DELAY(1);
429 		SIO_SET(NGE_MEAR_MII_CLK);
430 	}
431 }
432 
433 /*
434  * Read an PHY register through the MII.
435  */
436 static int nge_mii_readreg(sc, frame)
437 	struct nge_softc		*sc;
438 	struct nge_mii_frame	*frame;
439 
440 {
441 	int			i, ack, s;
442 
443 	s = splimp();
444 
445 	/*
446 	 * Set up frame for RX.
447 	 */
448 	frame->mii_stdelim = NGE_MII_STARTDELIM;
449 	frame->mii_opcode = NGE_MII_READOP;
450 	frame->mii_turnaround = 0;
451 	frame->mii_data = 0;
452 
453 	CSR_WRITE_4(sc, NGE_MEAR, 0);
454 
455 	/*
456  	 * Turn on data xmit.
457 	 */
458 	SIO_SET(NGE_MEAR_MII_DIR);
459 
460 	nge_mii_sync(sc);
461 
462 	/*
463 	 * Send command/address info.
464 	 */
465 	nge_mii_send(sc, frame->mii_stdelim, 2);
466 	nge_mii_send(sc, frame->mii_opcode, 2);
467 	nge_mii_send(sc, frame->mii_phyaddr, 5);
468 	nge_mii_send(sc, frame->mii_regaddr, 5);
469 
470 	/* Idle bit */
471 	SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA));
472 	DELAY(1);
473 	SIO_SET(NGE_MEAR_MII_CLK);
474 	DELAY(1);
475 
476 	/* Turn off xmit. */
477 	SIO_CLR(NGE_MEAR_MII_DIR);
478 	/* Check for ack */
479 	SIO_CLR(NGE_MEAR_MII_CLK);
480 	DELAY(1);
481 	ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA;
482 	SIO_SET(NGE_MEAR_MII_CLK);
483 	DELAY(1);
484 
485 	/*
486 	 * Now try reading data bits. If the ack failed, we still
487 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
488 	 */
489 	if (ack) {
490 		for(i = 0; i < 16; i++) {
491 			SIO_CLR(NGE_MEAR_MII_CLK);
492 			DELAY(1);
493 			SIO_SET(NGE_MEAR_MII_CLK);
494 			DELAY(1);
495 		}
496 		goto fail;
497 	}
498 
499 	for (i = 0x8000; i; i >>= 1) {
500 		SIO_CLR(NGE_MEAR_MII_CLK);
501 		DELAY(1);
502 		if (!ack) {
503 			if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA)
504 				frame->mii_data |= i;
505 			DELAY(1);
506 		}
507 		SIO_SET(NGE_MEAR_MII_CLK);
508 		DELAY(1);
509 	}
510 
511 fail:
512 
513 	SIO_CLR(NGE_MEAR_MII_CLK);
514 	DELAY(1);
515 	SIO_SET(NGE_MEAR_MII_CLK);
516 	DELAY(1);
517 
518 	splx(s);
519 
520 	if (ack)
521 		return(1);
522 	return(0);
523 }
524 
525 /*
526  * Write to a PHY register through the MII.
527  */
528 static int nge_mii_writereg(sc, frame)
529 	struct nge_softc		*sc;
530 	struct nge_mii_frame	*frame;
531 
532 {
533 	int			s;
534 
535 	s = splimp();
536 	/*
537 	 * Set up frame for TX.
538 	 */
539 
540 	frame->mii_stdelim = NGE_MII_STARTDELIM;
541 	frame->mii_opcode = NGE_MII_WRITEOP;
542 	frame->mii_turnaround = NGE_MII_TURNAROUND;
543 
544 	/*
545  	 * Turn on data output.
546 	 */
547 	SIO_SET(NGE_MEAR_MII_DIR);
548 
549 	nge_mii_sync(sc);
550 
551 	nge_mii_send(sc, frame->mii_stdelim, 2);
552 	nge_mii_send(sc, frame->mii_opcode, 2);
553 	nge_mii_send(sc, frame->mii_phyaddr, 5);
554 	nge_mii_send(sc, frame->mii_regaddr, 5);
555 	nge_mii_send(sc, frame->mii_turnaround, 2);
556 	nge_mii_send(sc, frame->mii_data, 16);
557 
558 	/* Idle bit. */
559 	SIO_SET(NGE_MEAR_MII_CLK);
560 	DELAY(1);
561 	SIO_CLR(NGE_MEAR_MII_CLK);
562 	DELAY(1);
563 
564 	/*
565 	 * Turn off xmit.
566 	 */
567 	SIO_CLR(NGE_MEAR_MII_DIR);
568 
569 	splx(s);
570 
571 	return(0);
572 }
573 
574 static int nge_miibus_readreg(dev, phy, reg)
575 	device_t		dev;
576 	int			phy, reg;
577 {
578 	struct nge_softc	*sc;
579 	struct nge_mii_frame	frame;
580 
581 	sc = device_get_softc(dev);
582 
583 	bzero((char *)&frame, sizeof(frame));
584 
585 	frame.mii_phyaddr = phy;
586 	frame.mii_regaddr = reg;
587 	nge_mii_readreg(sc, &frame);
588 
589 	return(frame.mii_data);
590 }
591 
592 static int nge_miibus_writereg(dev, phy, reg, data)
593 	device_t		dev;
594 	int			phy, reg, data;
595 {
596 	struct nge_softc	*sc;
597 	struct nge_mii_frame	frame;
598 
599 	sc = device_get_softc(dev);
600 
601 	bzero((char *)&frame, sizeof(frame));
602 
603 	frame.mii_phyaddr = phy;
604 	frame.mii_regaddr = reg;
605 	frame.mii_data = data;
606 	nge_mii_writereg(sc, &frame);
607 
608 	return(0);
609 }
610 
611 static void nge_miibus_statchg(dev)
612 	device_t		dev;
613 {
614 	int			status;
615 	struct nge_softc	*sc;
616 	struct mii_data		*mii;
617 
618 	sc = device_get_softc(dev);
619 	if (sc->nge_tbi) {
620 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
621 		    == IFM_AUTO) {
622 			status = CSR_READ_4(sc, NGE_TBI_ANLPAR);
623 			if (status == 0 || status & NGE_TBIANAR_FDX) {
624 				NGE_SETBIT(sc, NGE_TX_CFG,
625 				    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
626 				NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
627 			} else {
628 				NGE_CLRBIT(sc, NGE_TX_CFG,
629 				    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
630 				NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
631 			}
632 
633 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
634 			!= IFM_FDX) {
635 			NGE_CLRBIT(sc, NGE_TX_CFG,
636 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
637 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
638 		} else {
639 			NGE_SETBIT(sc, NGE_TX_CFG,
640 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
641 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
642 		}
643 	} else {
644 		mii = device_get_softc(sc->nge_miibus);
645 
646 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
647 		        NGE_SETBIT(sc, NGE_TX_CFG,
648 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
649 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
650 		} else {
651 			NGE_CLRBIT(sc, NGE_TX_CFG,
652 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
653 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
654 		}
655 
656 		/* If we have a 1000Mbps link, set the mode_1000 bit. */
657 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_TX ||
658 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
659 			NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
660 		} else {
661 			NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000);
662 		}
663 	}
664 	return;
665 }
666 
667 static u_int32_t nge_crc(sc, addr)
668 	struct nge_softc	*sc;
669 	caddr_t			addr;
670 {
671 	u_int32_t		crc, carry;
672 	int			i, j;
673 	u_int8_t		c;
674 
675 	/* Compute CRC for the address value. */
676 	crc = 0xFFFFFFFF; /* initial value */
677 
678 	for (i = 0; i < 6; i++) {
679 		c = *(addr + i);
680 		for (j = 0; j < 8; j++) {
681 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
682 			crc <<= 1;
683 			c >>= 1;
684 			if (carry)
685 				crc = (crc ^ 0x04c11db6) | carry;
686 		}
687 	}
688 
689 	/*
690 	 * return the filter bit position
691 	 */
692 
693 	return((crc >> 21) & 0x00000FFF);
694 }
695 
696 static void nge_setmulti(sc)
697 	struct nge_softc	*sc;
698 {
699 	struct ifnet		*ifp;
700 	struct ifmultiaddr	*ifma;
701 	u_int32_t		h = 0, i, filtsave;
702 	int			bit, index;
703 
704 	ifp = &sc->arpcom.ac_if;
705 
706 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
707 		NGE_CLRBIT(sc, NGE_RXFILT_CTL,
708 		    NGE_RXFILTCTL_MCHASH|NGE_RXFILTCTL_UCHASH);
709 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI);
710 		return;
711 	}
712 
713 	/*
714 	 * We have to explicitly enable the multicast hash table
715 	 * on the NatSemi chip if we want to use it, which we do.
716 	 * We also have to tell it that we don't want to use the
717 	 * hash table for matching unicast addresses.
718 	 */
719 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH);
720 	NGE_CLRBIT(sc, NGE_RXFILT_CTL,
721 	    NGE_RXFILTCTL_ALLMULTI|NGE_RXFILTCTL_UCHASH);
722 
723 	filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL);
724 
725 	/* first, zot all the existing hash bits */
726 	for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
727 		CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
728 		CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
729 	}
730 
731 	/*
732 	 * From the 11 bits returned by the crc routine, the top 7
733 	 * bits represent the 16-bit word in the mcast hash table
734 	 * that needs to be updated, and the lower 4 bits represent
735 	 * which bit within that byte needs to be set.
736 	 */
737 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
738 		if (ifma->ifma_addr->sa_family != AF_LINK)
739 			continue;
740 		h = nge_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
741 		index = (h >> 4) & 0x7F;
742 		bit = h & 0xF;
743 		CSR_WRITE_4(sc, NGE_RXFILT_CTL,
744 		    NGE_FILTADDR_MCAST_LO + (index * 2));
745 		NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
746 	}
747 
748 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave);
749 
750 	return;
751 }
752 
753 static void nge_reset(sc)
754 	struct nge_softc	*sc;
755 {
756 	int		i;
757 
758 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
759 
760 	for (i = 0; i < NGE_TIMEOUT; i++) {
761 		if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
762 			break;
763 	}
764 
765 	if (i == NGE_TIMEOUT)
766 		printf("nge%d: reset never completed\n", sc->nge_unit);
767 
768 	/* Wait a little while for the chip to get its brains in order. */
769 	DELAY(1000);
770 
771 	/*
772 	 * If this is a NetSemi chip, make sure to clear
773 	 * PME mode.
774 	 */
775 	CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
776 	CSR_WRITE_4(sc, NGE_CLKRUN, 0);
777 
778         return;
779 }
780 
781 /*
782  * Probe for an NatSemi chip. Check the PCI vendor and device
783  * IDs against our list and return a device name if we find a match.
784  */
785 static int nge_probe(dev)
786 	device_t		dev;
787 {
788 	struct nge_type		*t;
789 
790 	t = nge_devs;
791 
792 	while(t->nge_name != NULL) {
793 		if ((pci_get_vendor(dev) == t->nge_vid) &&
794 		    (pci_get_device(dev) == t->nge_did)) {
795 			device_set_desc(dev, t->nge_name);
796 			return(0);
797 		}
798 		t++;
799 	}
800 
801 	return(ENXIO);
802 }
803 
804 /*
805  * Attach the interface. Allocate softc structures, do ifmedia
806  * setup and ethernet/BPF attach.
807  */
808 static int nge_attach(dev)
809 	device_t		dev;
810 {
811 	int			s;
812 	u_char			eaddr[ETHER_ADDR_LEN];
813 	u_int32_t		command;
814 	struct nge_softc	*sc;
815 	struct ifnet		*ifp;
816 	int			unit, error = 0, rid;
817 	const char		*sep = "";
818 
819 	s = splimp();
820 
821 	sc = device_get_softc(dev);
822 	unit = device_get_unit(dev);
823 	bzero(sc, sizeof(struct nge_softc));
824 	callout_init(&sc->nge_stat_timer);
825 
826 	/*
827 	 * Handle power management nonsense.
828 	 */
829 
830 
831 	command = pci_read_config(dev, NGE_PCI_CAPID, 4) & 0x000000FF;
832 	if (command == 0x01) {
833 
834 		command = pci_read_config(dev, NGE_PCI_PWRMGMTCTRL, 4);
835 		if (command & NGE_PSTATE_MASK) {
836 			u_int32_t		iobase, membase, irq;
837 
838 			/* Save important PCI config data. */
839 			iobase = pci_read_config(dev, NGE_PCI_LOIO, 4);
840 			membase = pci_read_config(dev, NGE_PCI_LOMEM, 4);
841 			irq = pci_read_config(dev, NGE_PCI_INTLINE, 4);
842 
843 			/* Reset the power state. */
844 			printf("nge%d: chip is in D%d power mode "
845 			"-- setting to D0\n", unit, command & NGE_PSTATE_MASK);
846 			command &= 0xFFFFFFFC;
847 			pci_write_config(dev, NGE_PCI_PWRMGMTCTRL, command, 4);
848 
849 			/* Restore PCI config data. */
850 			pci_write_config(dev, NGE_PCI_LOIO, iobase, 4);
851 			pci_write_config(dev, NGE_PCI_LOMEM, membase, 4);
852 			pci_write_config(dev, NGE_PCI_INTLINE, irq, 4);
853 		}
854 	}
855 
856 	/*
857 	 * Map control/status registers.
858 	 */
859 	command = pci_read_config(dev, PCIR_COMMAND, 4);
860 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
861 	pci_write_config(dev, PCIR_COMMAND, command, 4);
862 	command = pci_read_config(dev, PCIR_COMMAND, 4);
863 
864 #ifdef NGE_USEIOSPACE
865 	if (!(command & PCIM_CMD_PORTEN)) {
866 		printf("nge%d: failed to enable I/O ports!\n", unit);
867 		error = ENXIO;;
868 		goto fail;
869 	}
870 #else
871 	if (!(command & PCIM_CMD_MEMEN)) {
872 		printf("nge%d: failed to enable memory mapping!\n", unit);
873 		error = ENXIO;;
874 		goto fail;
875 	}
876 #endif
877 
878 	rid = NGE_RID;
879 	sc->nge_res = bus_alloc_resource(dev, NGE_RES, &rid,
880 	    0, ~0, 1, RF_ACTIVE);
881 
882 	if (sc->nge_res == NULL) {
883 		printf("nge%d: couldn't map ports/memory\n", unit);
884 		error = ENXIO;
885 		goto fail;
886 	}
887 
888 	sc->nge_btag = rman_get_bustag(sc->nge_res);
889 	sc->nge_bhandle = rman_get_bushandle(sc->nge_res);
890 
891 	/* Allocate interrupt */
892 	rid = 0;
893 	sc->nge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
894 	    RF_SHAREABLE | RF_ACTIVE);
895 
896 	if (sc->nge_irq == NULL) {
897 		printf("nge%d: couldn't map interrupt\n", unit);
898 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
899 		error = ENXIO;
900 		goto fail;
901 	}
902 
903 	error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET,
904 	    nge_intr, sc, &sc->nge_intrhand);
905 
906 	if (error) {
907 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
908 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
909 		printf("nge%d: couldn't set up irq\n", unit);
910 		goto fail;
911 	}
912 
913 	/* Reset the adapter. */
914 	nge_reset(sc);
915 
916 	/*
917 	 * Get station address from the EEPROM.
918 	 */
919 	nge_read_eeprom(sc, (caddr_t)&eaddr[4], NGE_EE_NODEADDR, 1, 0);
920 	nge_read_eeprom(sc, (caddr_t)&eaddr[2], NGE_EE_NODEADDR + 1, 1, 0);
921 	nge_read_eeprom(sc, (caddr_t)&eaddr[0], NGE_EE_NODEADDR + 2, 1, 0);
922 
923 	sc->nge_unit = unit;
924 
925 	sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF,
926 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
927 
928 	if (sc->nge_ldata == NULL) {
929 		printf("nge%d: no memory for list buffers!\n", unit);
930 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
931 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
932 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
933 		error = ENXIO;
934 		goto fail;
935 	}
936 	bzero(sc->nge_ldata, sizeof(struct nge_list_data));
937 
938 	/* Try to allocate memory for jumbo buffers. */
939 	if (nge_alloc_jumbo_mem(sc)) {
940 		printf("nge%d: jumbo buffer allocation failed\n",
941                     sc->nge_unit);
942 		contigfree(sc->nge_ldata,
943 		    sizeof(struct nge_list_data), M_DEVBUF);
944 		bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
945 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
946 		bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
947 		error = ENXIO;
948 		goto fail;
949 	}
950 
951 	ifp = &sc->arpcom.ac_if;
952 	ifp->if_softc = sc;
953 	if_initname(ifp, "nge", unit);
954 	ifp->if_mtu = ETHERMTU;
955 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
956 	ifp->if_ioctl = nge_ioctl;
957 	ifp->if_start = nge_start;
958 	ifp->if_watchdog = nge_watchdog;
959 	ifp->if_init = nge_init;
960 	ifp->if_baudrate = 1000000000;
961 	ifp->if_snd.ifq_maxlen = NGE_TX_LIST_CNT - 1;
962 	ifp->if_hwassist = NGE_CSUM_FEATURES;
963 	ifp->if_capabilities = IFCAP_HWCSUM;
964 	ifp->if_capenable = ifp->if_capabilities;
965 
966 	/*
967 	 * Do MII setup.
968 	 */
969 	if (mii_phy_probe(dev, &sc->nge_miibus,
970 			  nge_ifmedia_upd, nge_ifmedia_sts)) {
971 		if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) {
972 			sc->nge_tbi = 1;
973 			device_printf(dev, "Using TBI\n");
974 
975 			sc->nge_miibus = dev;
976 
977 			ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_upd,
978 				nge_ifmedia_sts);
979 #define	ADD(m, c)	ifmedia_add(&sc->nge_ifmedia, (m), (c), NULL)
980 #define PRINT(s)	printf("%s%s", sep, s); sep = ", "
981 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_NONE, 0, 0), 0);
982 			device_printf(dev, " ");
983 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, 0, 0), 0);
984 			PRINT("1000baseSX");
985 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_1000_SX, IFM_FDX, 0),0);
986 			PRINT("1000baseSX-FDX");
987 			ADD(IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0), 0);
988 			PRINT("auto");
989 
990 			printf("\n");
991 #undef ADD
992 #undef PRINT
993 			ifmedia_set(&sc->nge_ifmedia,
994 				IFM_MAKEWORD(IFM_ETHER, IFM_AUTO, 0, 0));
995 
996 			CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
997 				| NGE_GPIO_GP4_OUT
998 				| NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
999 				| NGE_GPIO_GP3_OUTENB
1000 				| NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
1001 
1002 		} else {
1003 			printf("nge%d: MII without any PHY!\n", sc->nge_unit);
1004 			nge_free_jumbo_mem(sc);
1005 			bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
1006 			bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
1007 			bus_release_resource(dev, NGE_RES, NGE_RID,
1008 					 sc->nge_res);
1009 			error = ENXIO;
1010 			goto fail;
1011 		}
1012 	}
1013 
1014 	/*
1015 	 * Call MI attach routine.
1016 	 */
1017 	ether_ifattach(ifp, eaddr);
1018 
1019 fail:
1020 
1021 	splx(s);
1022 	return(error);
1023 }
1024 
1025 static int nge_detach(dev)
1026 	device_t		dev;
1027 {
1028 	struct nge_softc	*sc;
1029 	struct ifnet		*ifp;
1030 	int			s;
1031 
1032 	s = splimp();
1033 
1034 	sc = device_get_softc(dev);
1035 	ifp = &sc->arpcom.ac_if;
1036 
1037 	nge_reset(sc);
1038 	nge_stop(sc);
1039 	ether_ifdetach(ifp);
1040 
1041 	bus_generic_detach(dev);
1042 	if (!sc->nge_tbi) {
1043 		device_delete_child(dev, sc->nge_miibus);
1044 	}
1045 	bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
1046 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
1047 	bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res);
1048 
1049 	contigfree(sc->nge_ldata, sizeof(struct nge_list_data), M_DEVBUF);
1050 	nge_free_jumbo_mem(sc);
1051 
1052 	splx(s);
1053 
1054 	return(0);
1055 }
1056 
1057 /*
1058  * Initialize the transmit descriptors.
1059  */
1060 static int nge_list_tx_init(sc)
1061 	struct nge_softc	*sc;
1062 {
1063 	struct nge_list_data	*ld;
1064 	struct nge_ring_data	*cd;
1065 	int			i;
1066 
1067 	cd = &sc->nge_cdata;
1068 	ld = sc->nge_ldata;
1069 
1070 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
1071 		if (i == (NGE_TX_LIST_CNT - 1)) {
1072 			ld->nge_tx_list[i].nge_nextdesc =
1073 			    &ld->nge_tx_list[0];
1074 			ld->nge_tx_list[i].nge_next =
1075 			    vtophys(&ld->nge_tx_list[0]);
1076 		} else {
1077 			ld->nge_tx_list[i].nge_nextdesc =
1078 			    &ld->nge_tx_list[i + 1];
1079 			ld->nge_tx_list[i].nge_next =
1080 			    vtophys(&ld->nge_tx_list[i + 1]);
1081 		}
1082 		ld->nge_tx_list[i].nge_mbuf = NULL;
1083 		ld->nge_tx_list[i].nge_ptr = 0;
1084 		ld->nge_tx_list[i].nge_ctl = 0;
1085 	}
1086 
1087 	cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0;
1088 
1089 	return(0);
1090 }
1091 
1092 
1093 /*
1094  * Initialize the RX descriptors and allocate mbufs for them. Note that
1095  * we arrange the descriptors in a closed ring, so that the last descriptor
1096  * points back to the first.
1097  */
1098 static int nge_list_rx_init(sc)
1099 	struct nge_softc	*sc;
1100 {
1101 	struct nge_list_data	*ld;
1102 	struct nge_ring_data	*cd;
1103 	int			i;
1104 
1105 	ld = sc->nge_ldata;
1106 	cd = &sc->nge_cdata;
1107 
1108 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
1109 		if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS)
1110 			return(ENOBUFS);
1111 		if (i == (NGE_RX_LIST_CNT - 1)) {
1112 			ld->nge_rx_list[i].nge_nextdesc =
1113 			    &ld->nge_rx_list[0];
1114 			ld->nge_rx_list[i].nge_next =
1115 			    vtophys(&ld->nge_rx_list[0]);
1116 		} else {
1117 			ld->nge_rx_list[i].nge_nextdesc =
1118 			    &ld->nge_rx_list[i + 1];
1119 			ld->nge_rx_list[i].nge_next =
1120 			    vtophys(&ld->nge_rx_list[i + 1]);
1121 		}
1122 	}
1123 
1124 	cd->nge_rx_prod = 0;
1125 
1126 	return(0);
1127 }
1128 
1129 /*
1130  * Initialize an RX descriptor and attach an MBUF cluster.
1131  */
1132 static int nge_newbuf(sc, c, m)
1133 	struct nge_softc	*sc;
1134 	struct nge_desc		*c;
1135 	struct mbuf		*m;
1136 {
1137 	struct mbuf		*m_new = NULL;
1138 	caddr_t			*buf = NULL;
1139 
1140 	if (m == NULL) {
1141 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
1142 		if (m_new == NULL) {
1143 			printf("nge%d: no memory for rx list "
1144 			    "-- packet dropped!\n", sc->nge_unit);
1145 			return(ENOBUFS);
1146 		}
1147 
1148 		/* Allocate the jumbo buffer */
1149 		buf = nge_jalloc(sc);
1150 		if (buf == NULL) {
1151 #ifdef NGE_VERBOSE
1152 			printf("nge%d: jumbo allocation failed "
1153 			    "-- packet dropped!\n", sc->nge_unit);
1154 #endif
1155 			m_freem(m_new);
1156 			return(ENOBUFS);
1157 		}
1158 		/* Attach the buffer to the mbuf */
1159 		m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
1160 		m_new->m_flags |= M_EXT | M_EXT_OLD;
1161 		m_new->m_ext.ext_size = m_new->m_pkthdr.len =
1162 		    m_new->m_len = NGE_MCLBYTES;
1163 		m_new->m_ext.ext_nfree.old = nge_jfree;
1164 		m_new->m_ext.ext_nref.old = nge_jref;
1165 	} else {
1166 		m_new = m;
1167 		m_new->m_len = m_new->m_pkthdr.len = NGE_MCLBYTES;
1168 		m_new->m_data = m_new->m_ext.ext_buf;
1169 	}
1170 
1171 	m_adj(m_new, sizeof(u_int64_t));
1172 
1173 	c->nge_mbuf = m_new;
1174 	c->nge_ptr = vtophys(mtod(m_new, caddr_t));
1175 	c->nge_ctl = m_new->m_len;
1176 	c->nge_extsts = 0;
1177 
1178 	return(0);
1179 }
1180 
1181 static int nge_alloc_jumbo_mem(sc)
1182 	struct nge_softc	*sc;
1183 {
1184 	caddr_t			ptr;
1185 	int		i;
1186 	struct nge_jpool_entry   *entry;
1187 
1188 	/* Grab a big chunk o' storage. */
1189 	sc->nge_cdata.nge_jumbo_buf = contigmalloc(NGE_JMEM, M_DEVBUF,
1190 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1191 
1192 	if (sc->nge_cdata.nge_jumbo_buf == NULL) {
1193 		printf("nge%d: no memory for jumbo buffers!\n", sc->nge_unit);
1194 		return(ENOBUFS);
1195 	}
1196 
1197 	SLIST_INIT(&sc->nge_jfree_listhead);
1198 	SLIST_INIT(&sc->nge_jinuse_listhead);
1199 
1200 	/*
1201 	 * Now divide it up into 9K pieces and save the addresses
1202 	 * in an array.
1203 	 */
1204 	ptr = sc->nge_cdata.nge_jumbo_buf;
1205 	for (i = 0; i < NGE_JSLOTS; i++) {
1206 		u_int64_t		**aptr;
1207 		aptr = (u_int64_t **)ptr;
1208 		aptr[0] = (u_int64_t *)sc;
1209 		ptr += sizeof(u_int64_t);
1210 		sc->nge_cdata.nge_jslots[i].nge_buf = ptr;
1211 		sc->nge_cdata.nge_jslots[i].nge_inuse = 0;
1212 		ptr += NGE_MCLBYTES;
1213 		entry = malloc(sizeof(struct nge_jpool_entry),
1214 		    M_DEVBUF, M_WAITOK);
1215 		if (entry == NULL) {
1216 			printf("nge%d: no memory for jumbo "
1217 			    "buffer queue!\n", sc->nge_unit);
1218 			return(ENOBUFS);
1219 		}
1220 		entry->slot = i;
1221 		SLIST_INSERT_HEAD(&sc->nge_jfree_listhead,
1222 		    entry, jpool_entries);
1223 	}
1224 
1225 	return(0);
1226 }
1227 
1228 static void nge_free_jumbo_mem(sc)
1229 	struct nge_softc	*sc;
1230 {
1231 	int		i;
1232 	struct nge_jpool_entry   *entry;
1233 
1234 	for (i = 0; i < NGE_JSLOTS; i++) {
1235 		entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1236 		SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries);
1237 		free(entry, M_DEVBUF);
1238 	}
1239 
1240 	contigfree(sc->nge_cdata.nge_jumbo_buf, NGE_JMEM, M_DEVBUF);
1241 
1242 	return;
1243 }
1244 
1245 /*
1246  * Allocate a jumbo buffer.
1247  */
1248 static void *nge_jalloc(sc)
1249 	struct nge_softc	*sc;
1250 {
1251 	struct nge_jpool_entry   *entry;
1252 
1253 	entry = SLIST_FIRST(&sc->nge_jfree_listhead);
1254 
1255 	if (entry == NULL) {
1256 #ifdef NGE_VERBOSE
1257 		printf("nge%d: no free jumbo buffers\n", sc->nge_unit);
1258 #endif
1259 		return(NULL);
1260 	}
1261 
1262 	SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries);
1263 	SLIST_INSERT_HEAD(&sc->nge_jinuse_listhead, entry, jpool_entries);
1264 	sc->nge_cdata.nge_jslots[entry->slot].nge_inuse = 1;
1265 	return(sc->nge_cdata.nge_jslots[entry->slot].nge_buf);
1266 }
1267 
1268 /*
1269  * Adjust usage count on a jumbo buffer. In general this doesn't
1270  * get used much because our jumbo buffers don't get passed around
1271  * a lot, but it's implemented for correctness.
1272  */
1273 static void nge_jref(buf, size)
1274 	caddr_t			buf;
1275 	u_int			size;
1276 {
1277 	struct nge_softc	*sc;
1278 	u_int64_t		**aptr;
1279 	int		i;
1280 
1281 	/* Extract the softc struct pointer. */
1282 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
1283 	sc = (struct nge_softc *)(aptr[0]);
1284 
1285 	if (sc == NULL)
1286 		panic("nge_jref: can't find softc pointer!");
1287 
1288 	if (size != NGE_MCLBYTES)
1289 		panic("nge_jref: adjusting refcount of buf of wrong size!");
1290 
1291 	/* calculate the slot this buffer belongs to */
1292 
1293 	i = ((vm_offset_t)aptr
1294 	     - (vm_offset_t)sc->nge_cdata.nge_jumbo_buf) / NGE_JLEN;
1295 
1296 	if ((i < 0) || (i >= NGE_JSLOTS))
1297 		panic("nge_jref: asked to reference buffer "
1298 		    "that we don't manage!");
1299 	else if (sc->nge_cdata.nge_jslots[i].nge_inuse == 0)
1300 		panic("nge_jref: buffer already free!");
1301 	else
1302 		sc->nge_cdata.nge_jslots[i].nge_inuse++;
1303 
1304 	return;
1305 }
1306 
1307 /*
1308  * Release a jumbo buffer.
1309  */
1310 static void nge_jfree(buf, size)
1311 	caddr_t			buf;
1312 	u_int			size;
1313 {
1314 	struct nge_softc	*sc;
1315 	u_int64_t		**aptr;
1316 	int		        i;
1317 	struct nge_jpool_entry   *entry;
1318 
1319 	/* Extract the softc struct pointer. */
1320 	aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
1321 	sc = (struct nge_softc *)(aptr[0]);
1322 
1323 	if (sc == NULL)
1324 		panic("nge_jfree: can't find softc pointer!");
1325 
1326 	if (size != NGE_MCLBYTES)
1327 		panic("nge_jfree: freeing buffer of wrong size!");
1328 
1329 	/* calculate the slot this buffer belongs to */
1330 
1331 	i = ((vm_offset_t)aptr
1332 	     - (vm_offset_t)sc->nge_cdata.nge_jumbo_buf) / NGE_JLEN;
1333 
1334 	if ((i < 0) || (i >= NGE_JSLOTS))
1335 		panic("nge_jfree: asked to free buffer that we don't manage!");
1336 	else if (sc->nge_cdata.nge_jslots[i].nge_inuse == 0)
1337 		panic("nge_jfree: buffer already free!");
1338 	else {
1339 		sc->nge_cdata.nge_jslots[i].nge_inuse--;
1340 		if(sc->nge_cdata.nge_jslots[i].nge_inuse == 0) {
1341 			entry = SLIST_FIRST(&sc->nge_jinuse_listhead);
1342 			if (entry == NULL)
1343 				panic("nge_jfree: buffer not in use!");
1344 			entry->slot = i;
1345 			SLIST_REMOVE_HEAD(&sc->nge_jinuse_listhead,
1346 					  jpool_entries);
1347 			SLIST_INSERT_HEAD(&sc->nge_jfree_listhead,
1348 					  entry, jpool_entries);
1349 		}
1350 	}
1351 
1352 	return;
1353 }
1354 /*
1355  * A frame has been uploaded: pass the resulting mbuf chain up to
1356  * the higher level protocols.
1357  */
1358 static void nge_rxeof(sc)
1359 	struct nge_softc	*sc;
1360 {
1361         struct mbuf		*m;
1362         struct ifnet		*ifp;
1363 	struct nge_desc		*cur_rx;
1364 	int			i, total_len = 0;
1365 	u_int32_t		rxstat;
1366 
1367 	ifp = &sc->arpcom.ac_if;
1368 	i = sc->nge_cdata.nge_rx_prod;
1369 
1370 	while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) {
1371 		struct mbuf		*m0 = NULL;
1372 		u_int32_t		extsts;
1373 
1374 #ifdef DEVICE_POLLING
1375 		if (ifp->if_flags & IFF_POLLING) {
1376 			if (sc->rxcycles <= 0)
1377 				break;
1378 			sc->rxcycles--;
1379 		}
1380 #endif /* DEVICE_POLLING */
1381 
1382 		cur_rx = &sc->nge_ldata->nge_rx_list[i];
1383 		rxstat = cur_rx->nge_rxstat;
1384 		extsts = cur_rx->nge_extsts;
1385 		m = cur_rx->nge_mbuf;
1386 		cur_rx->nge_mbuf = NULL;
1387 		total_len = NGE_RXBYTES(cur_rx);
1388 		NGE_INC(i, NGE_RX_LIST_CNT);
1389 		/*
1390 		 * If an error occurs, update stats, clear the
1391 		 * status word and leave the mbuf cluster in place:
1392 		 * it should simply get re-used next time this descriptor
1393 	 	 * comes up in the ring.
1394 		 */
1395 		if (!(rxstat & NGE_CMDSTS_PKT_OK)) {
1396 			ifp->if_ierrors++;
1397 			nge_newbuf(sc, cur_rx, m);
1398 			continue;
1399 		}
1400 
1401 		/*
1402 		 * Ok. NatSemi really screwed up here. This is the
1403 		 * only gigE chip I know of with alignment constraints
1404 		 * on receive buffers. RX buffers must be 64-bit aligned.
1405 		 */
1406 #ifdef __i386__
1407 		/*
1408 		 * By popular demand, ignore the alignment problems
1409 		 * on the Intel x86 platform. The performance hit
1410 		 * incurred due to unaligned accesses is much smaller
1411 		 * than the hit produced by forcing buffer copies all
1412 		 * the time, especially with jumbo frames. We still
1413 		 * need to fix up the alignment everywhere else though.
1414 		 */
1415 		if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
1416 #endif
1417 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1418 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
1419 			nge_newbuf(sc, cur_rx, m);
1420 			if (m0 == NULL) {
1421 				printf("nge%d: no receive buffers "
1422 				    "available -- packet dropped!\n",
1423 				    sc->nge_unit);
1424 				ifp->if_ierrors++;
1425 				continue;
1426 			}
1427 			m_adj(m0, ETHER_ALIGN);
1428 			m = m0;
1429 #ifdef __i386__
1430 		} else {
1431 			m->m_pkthdr.rcvif = ifp;
1432 			m->m_pkthdr.len = m->m_len = total_len;
1433 		}
1434 #endif
1435 
1436 		ifp->if_ipackets++;
1437 
1438 		/* Do IP checksum checking. */
1439 		if (extsts & NGE_RXEXTSTS_IPPKT)
1440 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1441 		if (!(extsts & NGE_RXEXTSTS_IPCSUMERR))
1442 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1443 		if ((extsts & NGE_RXEXTSTS_TCPPKT &&
1444 		    !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
1445 		    (extsts & NGE_RXEXTSTS_UDPPKT &&
1446 		    !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
1447 			m->m_pkthdr.csum_flags |=
1448 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1449 			m->m_pkthdr.csum_data = 0xffff;
1450 		}
1451 
1452 		/*
1453 		 * If we received a packet with a vlan tag, pass it
1454 		 * to vlan_input() instead of ether_input().
1455 		 */
1456 		if (extsts & NGE_RXEXTSTS_VLANPKT)
1457 			VLAN_INPUT_TAG(m, extsts & NGE_RXEXTSTS_VTCI);
1458 		else
1459 			(*ifp->if_input)(ifp, m);
1460 	}
1461 
1462 	sc->nge_cdata.nge_rx_prod = i;
1463 
1464 	return;
1465 }
1466 
1467 /*
1468  * A frame was downloaded to the chip. It's safe for us to clean up
1469  * the list buffers.
1470  */
1471 
1472 static void nge_txeof(sc)
1473 	struct nge_softc	*sc;
1474 {
1475 	struct nge_desc		*cur_tx = NULL;
1476 	struct ifnet		*ifp;
1477 	u_int32_t		idx;
1478 
1479 	ifp = &sc->arpcom.ac_if;
1480 
1481 	/* Clear the timeout timer. */
1482 	ifp->if_timer = 0;
1483 
1484 	/*
1485 	 * Go through our tx list and free mbufs for those
1486 	 * frames that have been transmitted.
1487 	 */
1488 	idx = sc->nge_cdata.nge_tx_cons;
1489 	while (idx != sc->nge_cdata.nge_tx_prod) {
1490 		cur_tx = &sc->nge_ldata->nge_tx_list[idx];
1491 
1492 		if (NGE_OWNDESC(cur_tx))
1493 			break;
1494 
1495 		if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) {
1496 			sc->nge_cdata.nge_tx_cnt--;
1497 			NGE_INC(idx, NGE_TX_LIST_CNT);
1498 			continue;
1499 		}
1500 
1501 		if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) {
1502 			ifp->if_oerrors++;
1503 			if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS)
1504 				ifp->if_collisions++;
1505 			if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL)
1506 				ifp->if_collisions++;
1507 		}
1508 
1509 		ifp->if_collisions +=
1510 		    (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16;
1511 
1512 		ifp->if_opackets++;
1513 		if (cur_tx->nge_mbuf != NULL) {
1514 			m_freem(cur_tx->nge_mbuf);
1515 			cur_tx->nge_mbuf = NULL;
1516 		}
1517 
1518 		sc->nge_cdata.nge_tx_cnt--;
1519 		NGE_INC(idx, NGE_TX_LIST_CNT);
1520 		ifp->if_timer = 0;
1521 	}
1522 
1523 	sc->nge_cdata.nge_tx_cons = idx;
1524 
1525 	if (cur_tx != NULL)
1526 		ifp->if_flags &= ~IFF_OACTIVE;
1527 
1528 	return;
1529 }
1530 
1531 static void nge_tick(xsc)
1532 	void			*xsc;
1533 {
1534 	struct nge_softc	*sc;
1535 	struct mii_data		*mii;
1536 	struct ifnet		*ifp;
1537 	int			s;
1538 
1539 	s = splimp();
1540 
1541 	sc = xsc;
1542 	ifp = &sc->arpcom.ac_if;
1543 
1544 	if (sc->nge_tbi) {
1545 		if (!sc->nge_link) {
1546 			if (CSR_READ_4(sc, NGE_TBI_BMSR)
1547 			    & NGE_TBIBMSR_ANEG_DONE) {
1548 				printf("nge%d: gigabit link up\n",
1549 				    sc->nge_unit);
1550 				nge_miibus_statchg(sc->nge_miibus);
1551 				sc->nge_link++;
1552 				if (ifp->if_snd.ifq_head != NULL)
1553 					nge_start(ifp);
1554 			}
1555 		}
1556 	} else {
1557 		mii = device_get_softc(sc->nge_miibus);
1558 		mii_tick(mii);
1559 
1560 		if (!sc->nge_link) {
1561 			if (mii->mii_media_status & IFM_ACTIVE &&
1562 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1563 				sc->nge_link++;
1564 				if (IFM_SUBTYPE(mii->mii_media_active)
1565 				    == IFM_1000_TX)
1566 					printf("nge%d: gigabit link up\n",
1567 					    sc->nge_unit);
1568 				if (ifp->if_snd.ifq_head != NULL)
1569 					nge_start(ifp);
1570 			}
1571 		}
1572 	}
1573 	callout_reset(&sc->nge_stat_timer, hz, nge_tick, sc);
1574 
1575 	splx(s);
1576 
1577 	return;
1578 }
1579 
1580 #ifdef DEVICE_POLLING
1581 static poll_handler_t nge_poll;
1582 
1583 static void
1584 nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1585 {
1586 	struct  nge_softc *sc = ifp->if_softc;
1587 
1588 	if (cmd == POLL_DEREGISTER) {	/* final call, enable interrupts */
1589 		CSR_WRITE_4(sc, NGE_IER, 1);
1590 		return;
1591 	}
1592 
1593 	/*
1594 	 * On the nge, reading the status register also clears it.
1595 	 * So before returning to intr mode we must make sure that all
1596 	 * possible pending sources of interrupts have been served.
1597 	 * In practice this means run to completion the *eof routines,
1598 	 * and then call the interrupt routine
1599 	 */
1600 	sc->rxcycles = count;
1601 	nge_rxeof(sc);
1602 	nge_txeof(sc);
1603 	if (ifp->if_snd.ifq_head != NULL)
1604 		nge_start(ifp);
1605 
1606 	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1607 		u_int32_t	status;
1608 
1609 		/* Reading the ISR register clears all interrupts. */
1610 		status = CSR_READ_4(sc, NGE_ISR);
1611 
1612 		if (status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW))
1613 			nge_rxeof(sc);
1614 
1615 		if (status & (NGE_ISR_RX_IDLE))
1616 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1617 
1618 		if (status & NGE_ISR_SYSERR) {
1619 			nge_reset(sc);
1620 			nge_init(sc);
1621 		}
1622 	}
1623 }
1624 #endif /* DEVICE_POLLING */
1625 
1626 static void nge_intr(arg)
1627 	void			*arg;
1628 {
1629 	struct nge_softc	*sc;
1630 	struct ifnet		*ifp;
1631 	u_int32_t		status;
1632 
1633 	sc = arg;
1634 	ifp = &sc->arpcom.ac_if;
1635 
1636 #ifdef DEVICE_POLLING
1637 	if (ifp->if_flags & IFF_POLLING)
1638 		return;
1639 	if (ether_poll_register(nge_poll, ifp)) { /* ok, disable interrupts */
1640 		CSR_WRITE_4(sc, NGE_IER, 0);
1641 		nge_poll(ifp, 0, 1);
1642 		return;
1643 	}
1644 #endif /* DEVICE_POLLING */
1645 
1646 	/* Supress unwanted interrupts */
1647 	if (!(ifp->if_flags & IFF_UP)) {
1648 		nge_stop(sc);
1649 		return;
1650 	}
1651 
1652 	/* Disable interrupts. */
1653 	CSR_WRITE_4(sc, NGE_IER, 0);
1654 
1655 	/* Data LED on for TBI mode */
1656 	if(sc->nge_tbi)
1657 		 CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1658 			     | NGE_GPIO_GP3_OUT);
1659 
1660 	for (;;) {
1661 		/* Reading the ISR register clears all interrupts. */
1662 		status = CSR_READ_4(sc, NGE_ISR);
1663 
1664 		if ((status & NGE_INTRS) == 0)
1665 			break;
1666 
1667 		if ((status & NGE_ISR_TX_DESC_OK) ||
1668 		    (status & NGE_ISR_TX_ERR) ||
1669 		    (status & NGE_ISR_TX_OK) ||
1670 		    (status & NGE_ISR_TX_IDLE))
1671 			nge_txeof(sc);
1672 
1673 		if ((status & NGE_ISR_RX_DESC_OK) ||
1674 		    (status & NGE_ISR_RX_ERR) ||
1675 		    (status & NGE_ISR_RX_OFLOW) ||
1676 		    (status & NGE_ISR_RX_FIFO_OFLOW) ||
1677 		    (status & NGE_ISR_RX_IDLE) ||
1678 		    (status & NGE_ISR_RX_OK))
1679 			nge_rxeof(sc);
1680 
1681 		if ((status & NGE_ISR_RX_IDLE))
1682 			NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
1683 
1684 		if (status & NGE_ISR_SYSERR) {
1685 			nge_reset(sc);
1686 			ifp->if_flags &= ~IFF_RUNNING;
1687 			nge_init(sc);
1688 		}
1689 
1690 #ifdef notyet
1691 		/* mii_tick should only be called once per second */
1692 		if (status & NGE_ISR_PHY_INTR) {
1693 			sc->nge_link = 0;
1694 			nge_tick(sc);
1695 		}
1696 #endif
1697 	}
1698 
1699 	/* Re-enable interrupts. */
1700 	CSR_WRITE_4(sc, NGE_IER, 1);
1701 
1702 	if (ifp->if_snd.ifq_head != NULL)
1703 		nge_start(ifp);
1704 
1705 	/* Data LED off for TBI mode */
1706 
1707 	if(sc->nge_tbi)
1708 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
1709 			    & ~NGE_GPIO_GP3_OUT);
1710 
1711 	return;
1712 }
1713 
1714 /*
1715  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1716  * pointers to the fragment pointers.
1717  */
1718 static int nge_encap(sc, m_head, txidx)
1719 	struct nge_softc	*sc;
1720 	struct mbuf		*m_head;
1721 	u_int32_t		*txidx;
1722 {
1723 	struct nge_desc		*f = NULL;
1724 	struct mbuf		*m;
1725 	int			frag, cur, cnt = 0;
1726 	struct ifvlan		*ifv = NULL;
1727 
1728 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1729 	    m_head->m_pkthdr.rcvif != NULL &&
1730 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
1731 		ifv = m_head->m_pkthdr.rcvif->if_softc;
1732 
1733 	/*
1734  	 * Start packing the mbufs in this chain into
1735 	 * the fragment pointers. Stop when we run out
1736  	 * of fragments or hit the end of the mbuf chain.
1737 	 */
1738 	m = m_head;
1739 	cur = frag = *txidx;
1740 
1741 	for (m = m_head; m != NULL; m = m->m_next) {
1742 		if (m->m_len != 0) {
1743 			if ((NGE_TX_LIST_CNT -
1744 			    (sc->nge_cdata.nge_tx_cnt + cnt)) < 2)
1745 				return(ENOBUFS);
1746 			f = &sc->nge_ldata->nge_tx_list[frag];
1747 			f->nge_ctl = NGE_CMDSTS_MORE | m->m_len;
1748 			f->nge_ptr = vtophys(mtod(m, vm_offset_t));
1749 			if (cnt != 0)
1750 				f->nge_ctl |= NGE_CMDSTS_OWN;
1751 			cur = frag;
1752 			NGE_INC(frag, NGE_TX_LIST_CNT);
1753 			cnt++;
1754 		}
1755 	}
1756 
1757 	if (m != NULL)
1758 		return(ENOBUFS);
1759 
1760 	sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0;
1761 	if (m_head->m_pkthdr.csum_flags) {
1762 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1763 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1764 			    NGE_TXEXTSTS_IPCSUM;
1765 		if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1766 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1767 			    NGE_TXEXTSTS_TCPCSUM;
1768 		if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1769 			sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |=
1770 			    NGE_TXEXTSTS_UDPCSUM;
1771 	}
1772 
1773 	if (ifv != NULL) {
1774 		sc->nge_ldata->nge_tx_list[cur].nge_extsts |=
1775 			(NGE_TXEXTSTS_VLANPKT|ifv->ifv_tag);
1776 	}
1777 
1778 	sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head;
1779 	sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE;
1780 	sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN;
1781 	sc->nge_cdata.nge_tx_cnt += cnt;
1782 	*txidx = frag;
1783 
1784 	return(0);
1785 }
1786 
1787 /*
1788  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1789  * to the mbuf data regions directly in the transmit lists. We also save a
1790  * copy of the pointers since the transmit list fragment pointers are
1791  * physical addresses.
1792  */
1793 
1794 static void nge_start(ifp)
1795 	struct ifnet		*ifp;
1796 {
1797 	struct nge_softc	*sc;
1798 	struct mbuf		*m_head = NULL;
1799 	u_int32_t		idx;
1800 
1801 	sc = ifp->if_softc;
1802 
1803 	if (!sc->nge_link)
1804 		return;
1805 
1806 	idx = sc->nge_cdata.nge_tx_prod;
1807 
1808 	if (ifp->if_flags & IFF_OACTIVE)
1809 		return;
1810 
1811 	while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) {
1812 		IF_DEQUEUE(&ifp->if_snd, m_head);
1813 		if (m_head == NULL)
1814 			break;
1815 
1816 		if (nge_encap(sc, m_head, &idx)) {
1817 			IF_PREPEND(&ifp->if_snd, m_head);
1818 			ifp->if_flags |= IFF_OACTIVE;
1819 			break;
1820 		}
1821 
1822 		/*
1823 		 * If there's a BPF listener, bounce a copy of this frame
1824 		 * to him.
1825 		 */
1826 		if (ifp->if_bpf)
1827 			bpf_mtap(ifp, m_head);
1828 
1829 	}
1830 
1831 	/* Transmit */
1832 	sc->nge_cdata.nge_tx_prod = idx;
1833 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
1834 
1835 	/*
1836 	 * Set a timeout in case the chip goes out to lunch.
1837 	 */
1838 	ifp->if_timer = 5;
1839 
1840 	return;
1841 }
1842 
1843 static void nge_init(xsc)
1844 	void			*xsc;
1845 {
1846 	struct nge_softc	*sc = xsc;
1847 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1848 	struct mii_data		*mii;
1849 	int			s;
1850 
1851 	if (ifp->if_flags & IFF_RUNNING)
1852 		return;
1853 
1854 	s = splimp();
1855 
1856 	/*
1857 	 * Cancel pending I/O and free all RX/TX buffers.
1858 	 */
1859 	nge_stop(sc);
1860 	callout_reset(&sc->nge_stat_timer, hz, nge_tick, sc);
1861 
1862 	if (sc->nge_tbi) {
1863 		mii = NULL;
1864 	} else {
1865 		mii = device_get_softc(sc->nge_miibus);
1866 	}
1867 
1868 	/* Set MAC address */
1869 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
1870 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1871 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1872 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
1873 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1874 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1875 	CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
1876 	CSR_WRITE_4(sc, NGE_RXFILT_DATA,
1877 	    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1878 
1879 	/* Init circular RX list. */
1880 	if (nge_list_rx_init(sc) == ENOBUFS) {
1881 		printf("nge%d: initialization failed: no "
1882 			"memory for rx buffers\n", sc->nge_unit);
1883 		nge_stop(sc);
1884 		(void)splx(s);
1885 		return;
1886 	}
1887 
1888 	/*
1889 	 * Init tx descriptors.
1890 	 */
1891 	nge_list_tx_init(sc);
1892 
1893 	/*
1894 	 * For the NatSemi chip, we have to explicitly enable the
1895 	 * reception of ARP frames, as well as turn on the 'perfect
1896 	 * match' filter where we store the station address, otherwise
1897 	 * we won't receive unicasts meant for this host.
1898 	 */
1899 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP);
1900 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT);
1901 
1902 	 /* If we want promiscuous mode, set the allframes bit. */
1903 	if (ifp->if_flags & IFF_PROMISC) {
1904 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1905 	} else {
1906 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS);
1907 	}
1908 
1909 	/*
1910 	 * Set the capture broadcast bit to capture broadcast frames.
1911 	 */
1912 	if (ifp->if_flags & IFF_BROADCAST) {
1913 		NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1914 	} else {
1915 		NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD);
1916 	}
1917 
1918 	/*
1919 	 * Load the multicast filter.
1920 	 */
1921 	nge_setmulti(sc);
1922 
1923 	/* Turn the receive filter on */
1924 	NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE);
1925 
1926 	/*
1927 	 * Load the address of the RX and TX lists.
1928 	 */
1929 	CSR_WRITE_4(sc, NGE_RX_LISTPTR,
1930 	    vtophys(&sc->nge_ldata->nge_rx_list[0]));
1931 	CSR_WRITE_4(sc, NGE_TX_LISTPTR,
1932 	    vtophys(&sc->nge_ldata->nge_tx_list[0]));
1933 
1934 	/* Set RX configuration */
1935 	CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
1936 	/*
1937 	 * Enable hardware checksum validation for all IPv4
1938 	 * packets, do not reject packets with bad checksums.
1939 	 */
1940 	CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
1941 
1942 	/*
1943 	 * Tell the chip to detect and strip VLAN tag info from
1944 	 * received frames. The tag will be provided in the extsts
1945 	 * field in the RX descriptors.
1946 	 */
1947 	NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL,
1948 	    NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB);
1949 
1950 	/* Set TX configuration */
1951 	CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
1952 
1953 	/*
1954 	 * Enable TX IPv4 checksumming on a per-packet basis.
1955 	 */
1956 	CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
1957 
1958 	/*
1959 	 * Tell the chip to insert VLAN tags on a per-packet basis as
1960 	 * dictated by the code in the frame encapsulation routine.
1961 	 */
1962 	NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
1963 
1964 	/* Set full/half duplex mode. */
1965 	if (sc->nge_tbi) {
1966 		if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
1967 		    == IFM_FDX) {
1968 			NGE_SETBIT(sc, NGE_TX_CFG,
1969 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1970 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1971 		} else {
1972 			NGE_CLRBIT(sc, NGE_TX_CFG,
1973 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1974 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1975 		}
1976 	} else {
1977 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1978 			NGE_SETBIT(sc, NGE_TX_CFG,
1979 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1980 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1981 		} else {
1982 			NGE_CLRBIT(sc, NGE_TX_CFG,
1983 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
1984 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
1985 		}
1986 	}
1987 
1988 	/*
1989 	 * Enable the delivery of PHY interrupts based on
1990 	 * link/speed/duplex status changes. Also enable the
1991 	 * extsts field in the DMA descriptors (needed for
1992 	 * TCP/IP checksum offload on transmit).
1993 	 */
1994 	NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD|
1995 	    NGE_CFG_PHYINTR_LNK|NGE_CFG_PHYINTR_DUP|NGE_CFG_EXTSTS_ENB);
1996 
1997 	/*
1998 	 * Configure interrupt holdoff (moderation). We can
1999 	 * have the chip delay interrupt delivery for a certain
2000 	 * period. Units are in 100us, and the max setting
2001 	 * is 25500us (0xFF x 100us). Default is a 100us holdoff.
2002 	 */
2003 	CSR_WRITE_4(sc, NGE_IHR, 0x01);
2004 
2005 	/*
2006 	 * Enable interrupts.
2007 	 */
2008 	CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
2009 #ifdef DEVICE_POLLING
2010 	/*
2011 	 * ... only enable interrupts if we are not polling, make sure
2012 	 * they are off otherwise.
2013 	 */
2014 	if (ifp->if_flags & IFF_POLLING)
2015 		CSR_WRITE_4(sc, NGE_IER, 0);
2016 	else
2017 #endif /* DEVICE_POLLING */
2018 	CSR_WRITE_4(sc, NGE_IER, 1);
2019 
2020 	/* Enable receiver and transmitter. */
2021 	NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2022 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
2023 
2024 	nge_ifmedia_upd(ifp);
2025 
2026 	ifp->if_flags |= IFF_RUNNING;
2027 	ifp->if_flags &= ~IFF_OACTIVE;
2028 
2029 	(void)splx(s);
2030 
2031 	return;
2032 }
2033 
2034 /*
2035  * Set media options.
2036  */
2037 static int nge_ifmedia_upd(ifp)
2038 	struct ifnet		*ifp;
2039 {
2040 	struct nge_softc	*sc;
2041 	struct mii_data		*mii;
2042 
2043 	sc = ifp->if_softc;
2044 
2045 	if (sc->nge_tbi) {
2046 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
2047 		     == IFM_AUTO) {
2048 			CSR_WRITE_4(sc, NGE_TBI_ANAR,
2049 				CSR_READ_4(sc, NGE_TBI_ANAR)
2050 					| NGE_TBIANAR_HDX | NGE_TBIANAR_FDX
2051 					| NGE_TBIANAR_PS1 | NGE_TBIANAR_PS2);
2052 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG
2053 				| NGE_TBIBMCR_RESTART_ANEG);
2054 			CSR_WRITE_4(sc, NGE_TBI_BMCR, NGE_TBIBMCR_ENABLE_ANEG);
2055 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media
2056 			    & IFM_GMASK) == IFM_FDX) {
2057 			NGE_SETBIT(sc, NGE_TX_CFG,
2058 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
2059 			NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
2060 
2061 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
2062 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
2063 		} else {
2064 			NGE_CLRBIT(sc, NGE_TX_CFG,
2065 			    (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR));
2066 			NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
2067 
2068 			CSR_WRITE_4(sc, NGE_TBI_ANAR, 0);
2069 			CSR_WRITE_4(sc, NGE_TBI_BMCR, 0);
2070 		}
2071 
2072 		CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
2073 			    & ~NGE_GPIO_GP3_OUT);
2074 	} else {
2075 		mii = device_get_softc(sc->nge_miibus);
2076 		sc->nge_link = 0;
2077 		if (mii->mii_instance) {
2078 			struct mii_softc	*miisc;
2079 			for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
2080 			    miisc = LIST_NEXT(miisc, mii_list))
2081 				mii_phy_reset(miisc);
2082 		}
2083 		mii_mediachg(mii);
2084 	}
2085 
2086 	return(0);
2087 }
2088 
2089 /*
2090  * Report current media status.
2091  */
2092 static void nge_ifmedia_sts(ifp, ifmr)
2093 	struct ifnet		*ifp;
2094 	struct ifmediareq	*ifmr;
2095 {
2096 	struct nge_softc	*sc;
2097 	struct mii_data		*mii;
2098 
2099 	sc = ifp->if_softc;
2100 
2101 	if (sc->nge_tbi) {
2102 		ifmr->ifm_status = IFM_AVALID;
2103 		ifmr->ifm_active = IFM_ETHER;
2104 
2105 		if (CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
2106 			ifmr->ifm_status |= IFM_ACTIVE;
2107 		}
2108 		if (CSR_READ_4(sc, NGE_TBI_BMCR) & NGE_TBIBMCR_LOOPBACK)
2109 			ifmr->ifm_active |= IFM_LOOP;
2110 		if (!CSR_READ_4(sc, NGE_TBI_BMSR) & NGE_TBIBMSR_ANEG_DONE) {
2111 			ifmr->ifm_active |= IFM_NONE;
2112 			ifmr->ifm_status = 0;
2113 			return;
2114 		}
2115 		ifmr->ifm_active |= IFM_1000_SX;
2116 		if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media)
2117 		    == IFM_AUTO) {
2118 			ifmr->ifm_active |= IFM_AUTO;
2119 			if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
2120 			    & NGE_TBIANAR_FDX) {
2121 				ifmr->ifm_active |= IFM_FDX;
2122 			}else if (CSR_READ_4(sc, NGE_TBI_ANLPAR)
2123 				  & NGE_TBIANAR_HDX) {
2124 				ifmr->ifm_active |= IFM_HDX;
2125 			}
2126 		} else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK)
2127 			== IFM_FDX)
2128 			ifmr->ifm_active |= IFM_FDX;
2129 		else
2130 			ifmr->ifm_active |= IFM_HDX;
2131 
2132 	} else {
2133 		mii = device_get_softc(sc->nge_miibus);
2134 		mii_pollstat(mii);
2135 		ifmr->ifm_active = mii->mii_media_active;
2136 		ifmr->ifm_status = mii->mii_media_status;
2137 	}
2138 
2139 	return;
2140 }
2141 
2142 static int nge_ioctl(ifp, command, data, cr)
2143 	struct ifnet		*ifp;
2144 	u_long			command;
2145 	caddr_t			data;
2146 	struct ucred		*cr;
2147 {
2148 	struct nge_softc	*sc = ifp->if_softc;
2149 	struct ifreq		*ifr = (struct ifreq *) data;
2150 	struct mii_data		*mii;
2151 	int			s, error = 0;
2152 
2153 	s = splimp();
2154 
2155 	switch(command) {
2156 	case SIOCSIFADDR:
2157 	case SIOCGIFADDR:
2158 		error = ether_ioctl(ifp, command, data);
2159 		break;
2160 	case SIOCSIFMTU:
2161 		if (ifr->ifr_mtu > NGE_JUMBO_MTU)
2162 			error = EINVAL;
2163 		else {
2164 			ifp->if_mtu = ifr->ifr_mtu;
2165 			/*
2166 			 * Workaround: if the MTU is larger than
2167 			 * 8152 (TX FIFO size minus 64 minus 18), turn off
2168 			 * TX checksum offloading.
2169 			 */
2170 			if (ifr->ifr_mtu >= 8152)
2171 				ifp->if_hwassist = 0;
2172 			else
2173 				ifp->if_hwassist = NGE_CSUM_FEATURES;
2174 		}
2175 		break;
2176 	case SIOCSIFFLAGS:
2177 		if (ifp->if_flags & IFF_UP) {
2178 			if (ifp->if_flags & IFF_RUNNING &&
2179 			    ifp->if_flags & IFF_PROMISC &&
2180 			    !(sc->nge_if_flags & IFF_PROMISC)) {
2181 				NGE_SETBIT(sc, NGE_RXFILT_CTL,
2182 				    NGE_RXFILTCTL_ALLPHYS|
2183 				    NGE_RXFILTCTL_ALLMULTI);
2184 			} else if (ifp->if_flags & IFF_RUNNING &&
2185 			    !(ifp->if_flags & IFF_PROMISC) &&
2186 			    sc->nge_if_flags & IFF_PROMISC) {
2187 				NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2188 				    NGE_RXFILTCTL_ALLPHYS);
2189 				if (!(ifp->if_flags & IFF_ALLMULTI))
2190 					NGE_CLRBIT(sc, NGE_RXFILT_CTL,
2191 					    NGE_RXFILTCTL_ALLMULTI);
2192 			} else {
2193 				ifp->if_flags &= ~IFF_RUNNING;
2194 				nge_init(sc);
2195 			}
2196 		} else {
2197 			if (ifp->if_flags & IFF_RUNNING)
2198 				nge_stop(sc);
2199 		}
2200 		sc->nge_if_flags = ifp->if_flags;
2201 		error = 0;
2202 		break;
2203 	case SIOCADDMULTI:
2204 	case SIOCDELMULTI:
2205 		nge_setmulti(sc);
2206 		error = 0;
2207 		break;
2208 	case SIOCGIFMEDIA:
2209 	case SIOCSIFMEDIA:
2210 		if (sc->nge_tbi) {
2211 			error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia,
2212 					      command);
2213 		} else {
2214 			mii = device_get_softc(sc->nge_miibus);
2215 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
2216 					      command);
2217 		}
2218 		break;
2219 	default:
2220 		error = EINVAL;
2221 		break;
2222 	}
2223 
2224 	(void)splx(s);
2225 
2226 	return(error);
2227 }
2228 
2229 static void nge_watchdog(ifp)
2230 	struct ifnet		*ifp;
2231 {
2232 	struct nge_softc	*sc;
2233 
2234 	sc = ifp->if_softc;
2235 
2236 	ifp->if_oerrors++;
2237 	printf("nge%d: watchdog timeout\n", sc->nge_unit);
2238 
2239 	nge_stop(sc);
2240 	nge_reset(sc);
2241 	ifp->if_flags &= ~IFF_RUNNING;
2242 	nge_init(sc);
2243 
2244 	if (ifp->if_snd.ifq_head != NULL)
2245 		nge_start(ifp);
2246 
2247 	return;
2248 }
2249 
2250 /*
2251  * Stop the adapter and free any mbufs allocated to the
2252  * RX and TX lists.
2253  */
2254 static void nge_stop(sc)
2255 	struct nge_softc	*sc;
2256 {
2257 	int		i;
2258 	struct ifnet		*ifp;
2259 	struct ifmedia_entry	*ifm;
2260 	struct mii_data		*mii;
2261 	int			mtmp, itmp;
2262 
2263 	ifp = &sc->arpcom.ac_if;
2264 	ifp->if_timer = 0;
2265 	if (sc->nge_tbi) {
2266 		mii = NULL;
2267 	} else {
2268 		mii = device_get_softc(sc->nge_miibus);
2269 	}
2270 
2271 	callout_stop(&sc->nge_stat_timer);
2272 #ifdef DEVICE_POLLING
2273 	ether_poll_deregister(ifp);
2274 #endif
2275 	CSR_WRITE_4(sc, NGE_IER, 0);
2276 	CSR_WRITE_4(sc, NGE_IMR, 0);
2277 	NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE);
2278 	DELAY(1000);
2279 	CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0);
2280 	CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0);
2281 
2282 	/*
2283 	 * Isolate/power down the PHY, but leave the media selection
2284 	 * unchanged so that things will be put back to normal when
2285 	 * we bring the interface back up.
2286 	 */
2287 	itmp = ifp->if_flags;
2288 	ifp->if_flags |= IFF_UP;
2289 
2290 	if (sc->nge_tbi)
2291 		ifm = sc->nge_ifmedia.ifm_cur;
2292 	else
2293 		ifm = mii->mii_media.ifm_cur;
2294 
2295 	mtmp = ifm->ifm_media;
2296 	ifm->ifm_media = IFM_ETHER|IFM_NONE;
2297 
2298 	if (!sc->nge_tbi)
2299 		mii_mediachg(mii);
2300 	ifm->ifm_media = mtmp;
2301 	ifp->if_flags = itmp;
2302 
2303 	sc->nge_link = 0;
2304 
2305 	/*
2306 	 * Free data in the RX lists.
2307 	 */
2308 	for (i = 0; i < NGE_RX_LIST_CNT; i++) {
2309 		if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) {
2310 			m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf);
2311 			sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL;
2312 		}
2313 	}
2314 	bzero((char *)&sc->nge_ldata->nge_rx_list,
2315 		sizeof(sc->nge_ldata->nge_rx_list));
2316 
2317 	/*
2318 	 * Free the TX list buffers.
2319 	 */
2320 	for (i = 0; i < NGE_TX_LIST_CNT; i++) {
2321 		if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) {
2322 			m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf);
2323 			sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL;
2324 		}
2325 	}
2326 
2327 	bzero((char *)&sc->nge_ldata->nge_tx_list,
2328 		sizeof(sc->nge_ldata->nge_tx_list));
2329 
2330 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2331 
2332 	return;
2333 }
2334 
2335 /*
2336  * Stop all chip I/O so that the kernel's probe routines don't
2337  * get confused by errant DMAs when rebooting.
2338  */
2339 static void nge_shutdown(dev)
2340 	device_t		dev;
2341 {
2342 	struct nge_softc	*sc;
2343 
2344 	sc = device_get_softc(dev);
2345 
2346 	nge_reset(sc);
2347 	nge_stop(sc);
2348 
2349 	return;
2350 }
2351