xref: /dragonfly/sys/dev/netif/ral/rt2560.c (revision 23265324)
1 /*
2  * Copyright (c) 2005, 2006
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *
5  * Permission to use, copy, modify, and distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD: src/sys/dev/ral/rt2560.c,v 1.3 2006/03/21 21:15:43 damien Exp $
18  * $DragonFly: src/sys/dev/netif/ral/rt2560.c,v 1.10 2007/02/06 12:38:30 sephe Exp $
19  */
20 
21 /*
22  * Ralink Technology RT2560 chipset driver
23  * http://www.ralinktech.com/
24  */
25 
26 #include <sys/param.h>
27 #include <sys/bus.h>
28 #include <sys/endian.h>
29 #include <sys/kernel.h>
30 #include <sys/malloc.h>
31 #include <sys/mbuf.h>
32 #include <sys/module.h>
33 #include <sys/rman.h>
34 #include <sys/socket.h>
35 #include <sys/sockio.h>
36 #include <sys/sysctl.h>
37 #include <sys/serialize.h>
38 
39 #include <net/bpf.h>
40 #include <net/if.h>
41 #include <net/if_arp.h>
42 #include <net/ethernet.h>
43 #include <net/if_dl.h>
44 #include <net/if_media.h>
45 #include <net/ifq_var.h>
46 
47 #include <netproto/802_11/ieee80211_var.h>
48 #include <netproto/802_11/ieee80211_radiotap.h>
49 
50 #include <dev/netif/ral/if_ralrate.h>
51 #include <dev/netif/ral/rt2560reg.h>
52 #include <dev/netif/ral/rt2560var.h>
53 
54 #define RT2560_RSSI(sc, rssi)					\
55 	((rssi) > (RT2560_NOISE_FLOOR + (sc)->rssi_corr) ?	\
56 	 ((rssi) - RT2560_NOISE_FLOOR - (sc)->rssi_corr) : 0)
57 
58 #ifdef RAL_DEBUG
59 #define DPRINTF(x)	do { if (ral_debug > 0) kprintf x; } while (0)
60 #define DPRINTFN(n, x)	do { if (ral_debug >= (n)) kprintf x; } while (0)
61 extern int ral_debug;
62 #else
63 #define DPRINTF(x)
64 #define DPRINTFN(n, x)
65 #endif
66 
67 static void		rt2560_dma_map_addr(void *, bus_dma_segment_t *, int,
68 			    int);
69 static void		rt2560_dma_map_mbuf(void *, bus_dma_segment_t *, int,
70 					    bus_size_t, int);
71 static int		rt2560_alloc_tx_ring(struct rt2560_softc *,
72 			    struct rt2560_tx_ring *, int);
73 static void		rt2560_reset_tx_ring(struct rt2560_softc *,
74 			    struct rt2560_tx_ring *);
75 static void		rt2560_free_tx_ring(struct rt2560_softc *,
76 			    struct rt2560_tx_ring *);
77 static int		rt2560_alloc_rx_ring(struct rt2560_softc *,
78 			    struct rt2560_rx_ring *, int);
79 static void		rt2560_reset_rx_ring(struct rt2560_softc *,
80 			    struct rt2560_rx_ring *);
81 static void		rt2560_free_rx_ring(struct rt2560_softc *,
82 			    struct rt2560_rx_ring *);
83 static struct		ieee80211_node *rt2560_node_alloc(
84 			    struct ieee80211_node_table *);
85 static int		rt2560_media_change(struct ifnet *);
86 static void		rt2560_next_scan(void *);
87 static void		rt2560_iter_func(void *, struct ieee80211_node *);
88 static void		rt2560_update_rssadapt(void *);
89 static int		rt2560_newstate(struct ieee80211com *,
90 			    enum ieee80211_state, int);
91 static uint16_t		rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
92 static void		rt2560_encryption_intr(struct rt2560_softc *);
93 static void		rt2560_tx_intr(struct rt2560_softc *);
94 static void		rt2560_prio_intr(struct rt2560_softc *);
95 static void		rt2560_decryption_intr(struct rt2560_softc *);
96 static void		rt2560_rx_intr(struct rt2560_softc *);
97 static void		rt2560_beacon_expire(struct rt2560_softc *);
98 static void		rt2560_wakeup_expire(struct rt2560_softc *);
99 static uint8_t		rt2560_rxrate(struct rt2560_rx_desc *);
100 static int		rt2560_ack_rate(struct ieee80211com *, int);
101 static uint16_t		rt2560_txtime(int, int, uint32_t);
102 static uint8_t		rt2560_plcp_signal(int);
103 static void		rt2560_setup_tx_desc(struct rt2560_softc *,
104 			    struct rt2560_tx_desc *, uint32_t, int, int, int,
105 			    bus_addr_t);
106 static int		rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
107 			    struct ieee80211_node *);
108 static int		rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
109 			    struct ieee80211_node *);
110 static struct		mbuf *rt2560_get_rts(struct rt2560_softc *,
111 			    struct ieee80211_frame *, uint16_t);
112 static int		rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
113 			    struct ieee80211_node *);
114 static void		rt2560_start(struct ifnet *);
115 static void		rt2560_watchdog(struct ifnet *);
116 static int		rt2560_reset(struct ifnet *);
117 static int		rt2560_ioctl(struct ifnet *, u_long, caddr_t,
118 				     struct ucred *);
119 static void		rt2560_bbp_write(struct rt2560_softc *, uint8_t,
120 			    uint8_t);
121 static uint8_t		rt2560_bbp_read(struct rt2560_softc *, uint8_t);
122 static void		rt2560_rf_write(struct rt2560_softc *, uint8_t,
123 			    uint32_t);
124 static void		rt2560_set_chan(struct rt2560_softc *,
125 			    struct ieee80211_channel *);
126 #if 0
127 static void		rt2560_disable_rf_tune(struct rt2560_softc *);
128 #endif
129 static void		rt2560_enable_tsf_sync(struct rt2560_softc *);
130 static void		rt2560_update_plcp(struct rt2560_softc *);
131 static void		rt2560_update_slot(struct ifnet *);
132 static void		rt2560_set_basicrates(struct rt2560_softc *);
133 static void		rt2560_update_led(struct rt2560_softc *, int, int);
134 static void		rt2560_set_bssid(struct rt2560_softc *, uint8_t *);
135 static void		rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
136 static void		rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
137 static void		rt2560_update_promisc(struct rt2560_softc *);
138 static const char	*rt2560_get_rf(int);
139 static void		rt2560_read_eeprom(struct rt2560_softc *);
140 static int		rt2560_bbp_init(struct rt2560_softc *);
141 static void		rt2560_set_txantenna(struct rt2560_softc *, int);
142 static void		rt2560_set_rxantenna(struct rt2560_softc *, int);
143 static void		rt2560_init(void *);
144 static void		rt2560_stop(void *);
145 static void		rt2560_intr(void *);
146 
147 /*
148  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
149  */
150 static const struct ieee80211_rateset rt2560_rateset_11a =
151 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
152 
153 static const struct ieee80211_rateset rt2560_rateset_11b =
154 	{ 4, { 2, 4, 11, 22 } };
155 
156 static const struct ieee80211_rateset rt2560_rateset_11g =
157 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
158 
159 static const struct {
160 	uint32_t	reg;
161 	uint32_t	val;
162 } rt2560_def_mac[] = {
163 	RT2560_DEF_MAC
164 };
165 
166 static const struct {
167 	uint8_t	reg;
168 	uint8_t	val;
169 } rt2560_def_bbp[] = {
170 	RT2560_DEF_BBP
171 };
172 
173 static const uint32_t rt2560_rf2522_r2[]    = RT2560_RF2522_R2;
174 static const uint32_t rt2560_rf2523_r2[]    = RT2560_RF2523_R2;
175 static const uint32_t rt2560_rf2524_r2[]    = RT2560_RF2524_R2;
176 static const uint32_t rt2560_rf2525_r2[]    = RT2560_RF2525_R2;
177 static const uint32_t rt2560_rf2525_hi_r2[] = RT2560_RF2525_HI_R2;
178 static const uint32_t rt2560_rf2525e_r2[]   = RT2560_RF2525E_R2;
179 static const uint32_t rt2560_rf2526_r2[]    = RT2560_RF2526_R2;
180 static const uint32_t rt2560_rf2526_hi_r2[] = RT2560_RF2526_HI_R2;
181 
182 static const struct {
183 	uint8_t		chan;
184 	uint32_t	r1, r2, r4;
185 } rt2560_rf5222[] = {
186 	RT2560_RF5222
187 };
188 
189 int
190 rt2560_attach(device_t dev, int id)
191 {
192 	struct rt2560_softc *sc = device_get_softc(dev);
193 	struct ieee80211com *ic = &sc->sc_ic;
194 	struct ifnet *ifp = &ic->ic_if;
195 	int error, i;
196 
197 	callout_init(&sc->scan_ch);
198 	callout_init(&sc->rssadapt_ch);
199 
200 	sc->sc_irq_rid = 0;
201 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->sc_irq_rid,
202 					    RF_ACTIVE | RF_SHAREABLE);
203 	if (sc->sc_irq == NULL) {
204 		device_printf(dev, "could not allocate interrupt resource\n");
205 		return ENXIO;
206 	}
207 
208 	/* retrieve RT2560 rev. no */
209 	sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
210 
211 	/* retrieve MAC address */
212 	rt2560_get_macaddr(sc, ic->ic_myaddr);
213 
214 	/* retrieve RF rev. no and various other things from EEPROM */
215 	rt2560_read_eeprom(sc);
216 
217 	device_printf(dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
218 	    sc->asic_rev, rt2560_get_rf(sc->rf_rev));
219 
220 	/*
221 	 * Allocate Tx and Rx rings.
222 	 */
223 	error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
224 	if (error != 0) {
225 		device_printf(sc->sc_dev, "could not allocate Tx ring\n");
226 		goto fail;
227 	}
228 
229 	error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
230 	if (error != 0) {
231 		device_printf(sc->sc_dev, "could not allocate ATIM ring\n");
232 		goto fail;
233 	}
234 
235 	error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
236 	if (error != 0) {
237 		device_printf(sc->sc_dev, "could not allocate Prio ring\n");
238 		goto fail;
239 	}
240 
241 	error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
242 	if (error != 0) {
243 		device_printf(sc->sc_dev, "could not allocate Beacon ring\n");
244 		goto fail;
245 	}
246 
247 	error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
248 	if (error != 0) {
249 		device_printf(sc->sc_dev, "could not allocate Rx ring\n");
250 		goto fail;
251 	}
252 
253 	sysctl_ctx_init(&sc->sysctl_ctx);
254 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
255 					  SYSCTL_STATIC_CHILDREN(_hw),
256 					  OID_AUTO,
257 					  device_get_nameunit(dev),
258 					  CTLFLAG_RD, 0, "");
259 	if (sc->sysctl_tree == NULL) {
260 		device_printf(dev, "could not add sysctl node\n");
261 		error = ENXIO;
262 		goto fail;
263 	}
264 
265 	ifp->if_softc = sc;
266 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
267 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
268 	ifp->if_init = rt2560_init;
269 	ifp->if_ioctl = rt2560_ioctl;
270 	ifp->if_start = rt2560_start;
271 	ifp->if_watchdog = rt2560_watchdog;
272 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
273 	ifq_set_ready(&ifp->if_snd);
274 
275 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
276 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
277 	ic->ic_state = IEEE80211_S_INIT;
278 
279 	/* set device capabilities */
280 	ic->ic_caps =
281 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
282 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
283 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
284 	    IEEE80211_C_TXPMGT |	/* tx power management */
285 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
286 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
287 	    IEEE80211_C_WEP |		/* WEP */
288 	    IEEE80211_C_WPA;		/* 802.11i */
289 
290 	if (sc->rf_rev == RT2560_RF_5222) {
291 		/* set supported .11a rates */
292 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2560_rateset_11a;
293 
294 		/* set supported .11a channels */
295 		for (i = 36; i <= 64; i += 4) {
296 			ic->ic_channels[i].ic_freq =
297 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
298 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
299 		}
300 		for (i = 100; i <= 140; i += 4) {
301 			ic->ic_channels[i].ic_freq =
302 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
303 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
304 		}
305 		for (i = 149; i <= 161; i += 4) {
306 			ic->ic_channels[i].ic_freq =
307 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
308 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
309 		}
310 	}
311 
312 	/* set supported .11b and .11g rates */
313 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2560_rateset_11b;
314 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2560_rateset_11g;
315 
316 	/* set supported .11b and .11g channels (1 through 14) */
317 	for (i = 1; i <= 14; i++) {
318 		ic->ic_channels[i].ic_freq =
319 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
320 		ic->ic_channels[i].ic_flags =
321 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
322 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
323 	}
324 
325 	ieee80211_ifattach(ic);
326 	ic->ic_node_alloc = rt2560_node_alloc;
327 	ic->ic_updateslot = rt2560_update_slot;
328 	ic->ic_reset = rt2560_reset;
329 	/* enable s/w bmiss handling in sta mode */
330 	ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
331 
332 	/* override state transition machine */
333 	sc->sc_newstate = ic->ic_newstate;
334 	ic->ic_newstate = rt2560_newstate;
335 	ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status);
336 
337 	bpfattach_dlt(ifp, DLT_IEEE802_11_RADIO,
338 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
339 
340 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
341 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
342 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
343 
344 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
345 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
346 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
347 
348 	/*
349 	 * Add a few sysctl knobs.
350 	 */
351 	sc->dwelltime = 200;
352 
353 	SYSCTL_ADD_INT(&sc->sysctl_ctx,
354 	    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
355 	    "txantenna", CTLFLAG_RW, &sc->tx_ant, 0, "tx antenna (0=auto)");
356 
357 	SYSCTL_ADD_INT(&sc->sysctl_ctx,
358 	    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
359 	    "rxantenna", CTLFLAG_RW, &sc->rx_ant, 0, "rx antenna (0=auto)");
360 
361 	SYSCTL_ADD_INT(&sc->sysctl_ctx,
362 	    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, "dwell",
363 	    CTLFLAG_RW, &sc->dwelltime, 0,
364 	    "channel dwell time (ms) for AP/station scanning");
365 
366 	error = bus_setup_intr(dev, sc->sc_irq, INTR_MPSAFE, rt2560_intr,
367 			       sc, &sc->sc_ih, ifp->if_serializer);
368 	if (error != 0) {
369 		device_printf(dev, "could not set up interrupt\n");
370 		bpfdetach(ifp);
371 		ieee80211_ifdetach(ic);
372 		goto fail;
373 	}
374 
375 	if (bootverbose)
376 		ieee80211_announce(ic);
377 	return 0;
378 fail:
379 	rt2560_detach(sc);
380 	return error;
381 }
382 
383 int
384 rt2560_detach(void *xsc)
385 {
386 	struct rt2560_softc *sc = xsc;
387 	struct ieee80211com *ic = &sc->sc_ic;
388 	struct ifnet *ifp = ic->ic_ifp;
389 
390 	if (device_is_attached(sc->sc_dev)) {
391 		lwkt_serialize_enter(ifp->if_serializer);
392 
393 		callout_stop(&sc->scan_ch);
394 		callout_stop(&sc->rssadapt_ch);
395 
396 		rt2560_stop(sc);
397 		bus_teardown_intr(sc->sc_dev, sc->sc_irq, sc->sc_ih);
398 
399 		lwkt_serialize_exit(ifp->if_serializer);
400 
401 		bpfdetach(ifp);
402 		ieee80211_ifdetach(ic);
403 	}
404 
405 	rt2560_free_tx_ring(sc, &sc->txq);
406 	rt2560_free_tx_ring(sc, &sc->atimq);
407 	rt2560_free_tx_ring(sc, &sc->prioq);
408 	rt2560_free_tx_ring(sc, &sc->bcnq);
409 	rt2560_free_rx_ring(sc, &sc->rxq);
410 
411 	if (sc->sc_irq != NULL) {
412 		bus_release_resource(sc->sc_dev, SYS_RES_IRQ, sc->sc_irq_rid,
413 				     sc->sc_irq);
414 	}
415 
416 	if (sc->sysctl_tree != NULL)
417 		sysctl_ctx_free(&sc->sysctl_ctx);
418 
419 	return 0;
420 }
421 
422 void
423 rt2560_shutdown(void *xsc)
424 {
425 	struct rt2560_softc *sc = xsc;
426 	struct ifnet *ifp = &sc->sc_ic.ic_if;
427 
428 	lwkt_serialize_enter(ifp->if_serializer);
429 	rt2560_stop(sc);
430 	lwkt_serialize_exit(ifp->if_serializer);
431 }
432 
433 void
434 rt2560_suspend(void *xsc)
435 {
436 	struct rt2560_softc *sc = xsc;
437 	struct ifnet *ifp = &sc->sc_ic.ic_if;
438 
439 	lwkt_serialize_enter(ifp->if_serializer);
440 	rt2560_stop(sc);
441 	lwkt_serialize_exit(ifp->if_serializer);
442 }
443 
444 void
445 rt2560_resume(void *xsc)
446 {
447 	struct rt2560_softc *sc = xsc;
448 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
449 
450 	lwkt_serialize_enter(ifp->if_serializer);
451 	if (ifp->if_flags & IFF_UP) {
452 		ifp->if_init(ifp->if_softc);
453 		if (ifp->if_flags & IFF_RUNNING)
454 			ifp->if_start(ifp);
455 	}
456 	lwkt_serialize_exit(ifp->if_serializer);
457 }
458 
459 static void
460 rt2560_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
461 {
462 	if (error != 0)
463 		return;
464 
465 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
466 
467 	*(bus_addr_t *)arg = segs[0].ds_addr;
468 }
469 
470 static int
471 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
472     int count)
473 {
474 	int i, error;
475 
476 	ring->count = count;
477 	ring->queued = 0;
478 	ring->cur = ring->next = 0;
479 	ring->cur_encrypt = ring->next_encrypt = 0;
480 
481 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
482 	    BUS_SPACE_MAXADDR, NULL, NULL, count * RT2560_TX_DESC_SIZE, 1,
483 	    count * RT2560_TX_DESC_SIZE, 0, &ring->desc_dmat);
484 	if (error != 0) {
485 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
486 		goto fail;
487 	}
488 
489 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
490 	    BUS_DMA_WAITOK | BUS_DMA_ZERO, &ring->desc_map);
491 	if (error != 0) {
492 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
493 		goto fail;
494 	}
495 
496 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
497 	    			count * RT2560_TX_DESC_SIZE,
498 				rt2560_dma_map_addr, &ring->physaddr, 0);
499 	if (error != 0) {
500 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
501 
502 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
503 		ring->desc = NULL;
504 		goto fail;
505 	}
506 
507 	ring->data = kmalloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
508 	    M_WAITOK | M_ZERO);
509 
510 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
511 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, RT2560_MAX_SCATTER,
512 	    MCLBYTES, 0, &ring->data_dmat);
513 	if (error != 0) {
514 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
515 		goto fail;
516 	}
517 
518 	for (i = 0; i < count; i++) {
519 		error = bus_dmamap_create(ring->data_dmat, 0,
520 		    &ring->data[i].map);
521 		if (error != 0) {
522 			device_printf(sc->sc_dev, "could not create DMA map\n");
523 			goto fail;
524 		}
525 	}
526 	return 0;
527 
528 fail:	rt2560_free_tx_ring(sc, ring);
529 	return error;
530 }
531 
532 static void
533 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
534 {
535 	struct rt2560_tx_desc *desc;
536 	struct rt2560_tx_data *data;
537 	int i;
538 
539 	for (i = 0; i < ring->count; i++) {
540 		desc = &ring->desc[i];
541 		data = &ring->data[i];
542 
543 		if (data->m != NULL) {
544 			bus_dmamap_sync(ring->data_dmat, data->map,
545 			    BUS_DMASYNC_POSTWRITE);
546 			bus_dmamap_unload(ring->data_dmat, data->map);
547 			m_freem(data->m);
548 			data->m = NULL;
549 		}
550 
551 		if (data->ni != NULL) {
552 			ieee80211_free_node(data->ni);
553 			data->ni = NULL;
554 		}
555 
556 		desc->flags = 0;
557 	}
558 
559 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
560 
561 	ring->queued = 0;
562 	ring->cur = ring->next = 0;
563 	ring->cur_encrypt = ring->next_encrypt = 0;
564 }
565 
566 static void
567 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
568 {
569 	struct rt2560_tx_data *data;
570 	int i;
571 
572 	if (ring->desc != NULL) {
573 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
574 		    BUS_DMASYNC_POSTWRITE);
575 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
576 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
577 		ring->desc = NULL;
578 	}
579 
580 	if (ring->desc_dmat != NULL) {
581 		bus_dma_tag_destroy(ring->desc_dmat);
582 		ring->desc_dmat = NULL;
583 	}
584 
585 	if (ring->data != NULL) {
586 		for (i = 0; i < ring->count; i++) {
587 			data = &ring->data[i];
588 
589 			if (data->m != NULL) {
590 				bus_dmamap_sync(ring->data_dmat, data->map,
591 				    BUS_DMASYNC_POSTWRITE);
592 				bus_dmamap_unload(ring->data_dmat, data->map);
593 				m_freem(data->m);
594 				data->m = NULL;
595 			}
596 
597 			if (data->ni != NULL) {
598 				ieee80211_free_node(data->ni);
599 				data->ni = NULL;
600 			}
601 
602 			if (data->map != NULL) {
603 				bus_dmamap_destroy(ring->data_dmat, data->map);
604 				data->map = NULL;
605 			}
606 		}
607 
608 		kfree(ring->data, M_DEVBUF);
609 		ring->data = NULL;
610 	}
611 
612 	if (ring->data_dmat != NULL) {
613 		bus_dma_tag_destroy(ring->data_dmat);
614 		ring->data_dmat = NULL;
615 	}
616 }
617 
618 static int
619 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
620     int count)
621 {
622 	struct rt2560_rx_desc *desc;
623 	struct rt2560_rx_data *data;
624 	bus_addr_t physaddr;
625 	int i, error;
626 
627 	ring->count = count;
628 	ring->cur = ring->next = 0;
629 	ring->cur_decrypt = 0;
630 
631 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
632 	    BUS_SPACE_MAXADDR, NULL, NULL, count * RT2560_RX_DESC_SIZE, 1,
633 	    count * RT2560_RX_DESC_SIZE, 0, &ring->desc_dmat);
634 	if (error != 0) {
635 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
636 		goto fail;
637 	}
638 
639 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
640 	    BUS_DMA_WAITOK | BUS_DMA_ZERO, &ring->desc_map);
641 	if (error != 0) {
642 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
643 		goto fail;
644 	}
645 
646 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
647 				count * RT2560_RX_DESC_SIZE,
648 				rt2560_dma_map_addr, &ring->physaddr, 0);
649 	if (error != 0) {
650 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
651 
652 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
653 		ring->desc = NULL;
654 		goto fail;
655 	}
656 
657 	ring->data = kmalloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
658 	    M_WAITOK | M_ZERO);
659 
660 	/*
661 	 * Pre-allocate Rx buffers and populate Rx ring.
662 	 */
663 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
664 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0,
665 	    &ring->data_dmat);
666 	if (error != 0) {
667 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
668 		goto fail;
669 	}
670 
671 	for (i = 0; i < count; i++) {
672 		desc = &sc->rxq.desc[i];
673 		data = &sc->rxq.data[i];
674 
675 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
676 		if (error != 0) {
677 			device_printf(sc->sc_dev, "could not create DMA map\n");
678 			goto fail;
679 		}
680 
681 		data->m = m_getcl(MB_WAIT, MT_DATA, M_PKTHDR);
682 		if (data->m == NULL) {
683 			device_printf(sc->sc_dev,
684 			    "could not allocate rx mbuf\n");
685 			error = ENOMEM;
686 			goto fail;
687 		}
688 
689 		error = bus_dmamap_load(ring->data_dmat, data->map,
690 		    mtod(data->m, void *), MCLBYTES, rt2560_dma_map_addr,
691 		    &physaddr, 0);
692 		if (error != 0) {
693 			device_printf(sc->sc_dev,
694 			    "could not load rx buf DMA map");
695 
696 			m_freem(data->m);
697 			data->m = NULL;
698 			goto fail;
699 		}
700 
701 		desc->flags = htole32(RT2560_RX_BUSY);
702 		desc->physaddr = htole32(physaddr);
703 	}
704 
705 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
706 
707 	return 0;
708 
709 fail:	rt2560_free_rx_ring(sc, ring);
710 	return error;
711 }
712 
713 static void
714 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
715 {
716 	int i;
717 
718 	for (i = 0; i < ring->count; i++) {
719 		ring->desc[i].flags = htole32(RT2560_RX_BUSY);
720 		ring->data[i].drop = 0;
721 	}
722 
723 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
724 
725 	ring->cur = ring->next = 0;
726 	ring->cur_decrypt = 0;
727 }
728 
729 static void
730 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
731 {
732 	struct rt2560_rx_data *data;
733 
734 	if (ring->desc != NULL) {
735 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
736 		    BUS_DMASYNC_POSTWRITE);
737 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
738 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
739 		ring->desc = NULL;
740 	}
741 
742 	if (ring->desc_dmat != NULL) {
743 		bus_dma_tag_destroy(ring->desc_dmat);
744 		ring->desc_dmat = NULL;
745 	}
746 
747 	if (ring->data != NULL) {
748 		int i;
749 
750 		for (i = 0; i < ring->count; i++) {
751 			data = &ring->data[i];
752 
753 			if (data->m != NULL) {
754 				bus_dmamap_sync(ring->data_dmat, data->map,
755 				    BUS_DMASYNC_POSTREAD);
756 				bus_dmamap_unload(ring->data_dmat, data->map);
757 				m_freem(data->m);
758 				data->m = NULL;
759 			}
760 
761 			if (data->map != NULL) {
762 				bus_dmamap_destroy(ring->data_dmat, data->map);
763 				data->map = NULL;
764 			}
765 		}
766 
767 		kfree(ring->data, M_DEVBUF);
768 		ring->data = NULL;
769 	}
770 
771 	if (ring->data_dmat != NULL) {
772 		bus_dma_tag_destroy(ring->data_dmat);
773 		ring->data_dmat = NULL;
774 	}
775 }
776 
777 static struct ieee80211_node *
778 rt2560_node_alloc(struct ieee80211_node_table *nt)
779 {
780 	struct rt2560_node *rn;
781 
782 	rn = kmalloc(sizeof(struct rt2560_node), M_80211_NODE,
783 	    M_NOWAIT | M_ZERO);
784 
785 	return (rn != NULL) ? &rn->ni : NULL;
786 }
787 
788 static int
789 rt2560_media_change(struct ifnet *ifp)
790 {
791 	struct rt2560_softc *sc = ifp->if_softc;
792 	int error;
793 
794 	error = ieee80211_media_change(ifp);
795 	if (error != ENETRESET)
796 		return error;
797 
798 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
799 		rt2560_init(sc);
800 	return 0;
801 }
802 
803 /*
804  * This function is called periodically (every 200ms) during scanning to
805  * switch from one channel to another.
806  */
807 static void
808 rt2560_next_scan(void *arg)
809 {
810 	struct rt2560_softc *sc = arg;
811 	struct ieee80211com *ic = &sc->sc_ic;
812 	struct ifnet *ifp = ic->ic_ifp;
813 
814 	lwkt_serialize_enter(ifp->if_serializer);
815 	if (ic->ic_state == IEEE80211_S_SCAN)
816 		ieee80211_next_scan(ic);
817 	lwkt_serialize_exit(ifp->if_serializer);
818 }
819 
820 /*
821  * This function is called for each node present in the node station table.
822  */
823 static void
824 rt2560_iter_func(void *arg, struct ieee80211_node *ni)
825 {
826 	struct rt2560_node *rn = (struct rt2560_node *)ni;
827 
828 	ral_rssadapt_updatestats(&rn->rssadapt);
829 }
830 
831 /*
832  * This function is called periodically (every 100ms) in RUN state to update
833  * the rate adaptation statistics.
834  */
835 static void
836 rt2560_update_rssadapt(void *arg)
837 {
838 	struct rt2560_softc *sc = arg;
839 	struct ieee80211com *ic = &sc->sc_ic;
840 	struct ifnet *ifp = ic->ic_ifp;
841 
842 	lwkt_serialize_enter(ifp->if_serializer);
843 
844 	ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg);
845 	callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc);
846 
847 	lwkt_serialize_exit(ifp->if_serializer);
848 }
849 
850 static int
851 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
852 {
853 	struct rt2560_softc *sc = ic->ic_ifp->if_softc;
854 	enum ieee80211_state ostate;
855 	struct ieee80211_node *ni;
856 	struct mbuf *m;
857 	int error = 0;
858 
859 	ostate = ic->ic_state;
860 	callout_stop(&sc->scan_ch);
861 
862 	switch (nstate) {
863 	case IEEE80211_S_INIT:
864 		callout_stop(&sc->rssadapt_ch);
865 
866 		if (ostate == IEEE80211_S_RUN) {
867 			/* abort TSF synchronization */
868 			RAL_WRITE(sc, RT2560_CSR14, 0);
869 
870 			/* turn association led off */
871 			rt2560_update_led(sc, 0, 0);
872 		}
873 		break;
874 
875 	case IEEE80211_S_SCAN:
876 		rt2560_set_chan(sc, ic->ic_curchan);
877 		callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000,
878 		    rt2560_next_scan, sc);
879 		break;
880 
881 	case IEEE80211_S_AUTH:
882 		rt2560_set_chan(sc, ic->ic_curchan);
883 		break;
884 
885 	case IEEE80211_S_ASSOC:
886 		rt2560_set_chan(sc, ic->ic_curchan);
887 		break;
888 
889 	case IEEE80211_S_RUN:
890 		rt2560_set_chan(sc, ic->ic_curchan);
891 
892 		ni = ic->ic_bss;
893 
894 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
895 			rt2560_update_plcp(sc);
896 			rt2560_set_basicrates(sc);
897 			rt2560_set_bssid(sc, ni->ni_bssid);
898 		}
899 
900 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
901 		    ic->ic_opmode == IEEE80211_M_IBSS) {
902 			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
903 			if (m == NULL) {
904 				device_printf(sc->sc_dev,
905 				    "could not allocate beacon\n");
906 				error = ENOBUFS;
907 				break;
908 			}
909 
910 			ieee80211_ref_node(ni);
911 			error = rt2560_tx_bcn(sc, m, ni);
912 			if (error != 0)
913 				break;
914 		}
915 
916 		/* turn assocation led on */
917 		rt2560_update_led(sc, 1, 0);
918 
919 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
920 			callout_reset(&sc->rssadapt_ch, hz / 10,
921 			    rt2560_update_rssadapt, sc);
922 
923 			rt2560_enable_tsf_sync(sc);
924 		}
925 		break;
926 	}
927 
928 	return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
929 }
930 
931 /*
932  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
933  * 93C66).
934  */
935 static uint16_t
936 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
937 {
938 	uint32_t tmp;
939 	uint16_t val;
940 	int n;
941 
942 	/* clock C once before the first command */
943 	RT2560_EEPROM_CTL(sc, 0);
944 
945 	RT2560_EEPROM_CTL(sc, RT2560_S);
946 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
947 	RT2560_EEPROM_CTL(sc, RT2560_S);
948 
949 	/* write start bit (1) */
950 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
951 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
952 
953 	/* write READ opcode (10) */
954 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
955 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
956 	RT2560_EEPROM_CTL(sc, RT2560_S);
957 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
958 
959 	/* write address (A5-A0 or A7-A0) */
960 	n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
961 	for (; n >= 0; n--) {
962 		RT2560_EEPROM_CTL(sc, RT2560_S |
963 		    (((addr >> n) & 1) << RT2560_SHIFT_D));
964 		RT2560_EEPROM_CTL(sc, RT2560_S |
965 		    (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
966 	}
967 
968 	RT2560_EEPROM_CTL(sc, RT2560_S);
969 
970 	/* read data Q15-Q0 */
971 	val = 0;
972 	for (n = 15; n >= 0; n--) {
973 		RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
974 		tmp = RAL_READ(sc, RT2560_CSR21);
975 		val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
976 		RT2560_EEPROM_CTL(sc, RT2560_S);
977 	}
978 
979 	RT2560_EEPROM_CTL(sc, 0);
980 
981 	/* clear Chip Select and clock C */
982 	RT2560_EEPROM_CTL(sc, RT2560_S);
983 	RT2560_EEPROM_CTL(sc, 0);
984 	RT2560_EEPROM_CTL(sc, RT2560_C);
985 
986 	return val;
987 }
988 
989 /*
990  * Some frames were processed by the hardware cipher engine and are ready for
991  * transmission.
992  */
993 static void
994 rt2560_encryption_intr(struct rt2560_softc *sc)
995 {
996 	struct rt2560_tx_desc *desc;
997 	int hw;
998 
999 	/* retrieve last descriptor index processed by cipher engine */
1000 	hw = RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr;
1001 	hw /= RT2560_TX_DESC_SIZE;
1002 
1003 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1004 	    BUS_DMASYNC_POSTREAD);
1005 
1006 	for (; sc->txq.next_encrypt != hw;) {
1007 		desc = &sc->txq.desc[sc->txq.next_encrypt];
1008 
1009 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1010 		    (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY))
1011 			break;
1012 
1013 		/* for TKIP, swap eiv field to fix a bug in ASIC */
1014 		if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) ==
1015 		    RT2560_TX_CIPHER_TKIP)
1016 			desc->eiv = bswap32(desc->eiv);
1017 
1018 		/* mark the frame ready for transmission */
1019 		desc->flags |= htole32(RT2560_TX_VALID);
1020 		desc->flags |= htole32(RT2560_TX_BUSY);
1021 
1022 		DPRINTFN(15, ("encryption done idx=%u\n",
1023 		    sc->txq.next_encrypt));
1024 
1025 		sc->txq.next_encrypt =
1026 		    (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
1027 	}
1028 
1029 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1030 	    BUS_DMASYNC_PREWRITE);
1031 
1032 	/* kick Tx */
1033 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
1034 }
1035 
1036 static void
1037 rt2560_tx_intr(struct rt2560_softc *sc)
1038 {
1039 	struct ieee80211com *ic = &sc->sc_ic;
1040 	struct ifnet *ifp = ic->ic_ifp;
1041 	struct rt2560_tx_desc *desc;
1042 	struct rt2560_tx_data *data;
1043 	struct rt2560_node *rn;
1044 
1045 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1046 	    BUS_DMASYNC_POSTREAD);
1047 
1048 	for (;;) {
1049 		desc = &sc->txq.desc[sc->txq.next];
1050 		data = &sc->txq.data[sc->txq.next];
1051 
1052 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1053 		    (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
1054 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
1055 			break;
1056 
1057 		rn = (struct rt2560_node *)data->ni;
1058 
1059 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1060 		case RT2560_TX_SUCCESS:
1061 			DPRINTFN(10, ("data frame sent successfully\n"));
1062 			if (data->id.id_node != NULL) {
1063 				ral_rssadapt_raise_rate(ic, &rn->rssadapt,
1064 				    &data->id);
1065 			}
1066 			ifp->if_opackets++;
1067 			break;
1068 
1069 		case RT2560_TX_SUCCESS_RETRY:
1070 			DPRINTFN(9, ("data frame sent after %u retries\n",
1071 			    (le32toh(desc->flags) >> 5) & 0x7));
1072 			ifp->if_opackets++;
1073 			break;
1074 
1075 		case RT2560_TX_FAIL_RETRY:
1076 			DPRINTFN(9, ("sending data frame failed (too much "
1077 			    "retries)\n"));
1078 			if (data->id.id_node != NULL) {
1079 				ral_rssadapt_lower_rate(ic, data->ni,
1080 				    &rn->rssadapt, &data->id);
1081 			}
1082 			ifp->if_oerrors++;
1083 			break;
1084 
1085 		case RT2560_TX_FAIL_INVALID:
1086 		case RT2560_TX_FAIL_OTHER:
1087 		default:
1088 			device_printf(sc->sc_dev, "sending data frame failed "
1089 			    "0x%08x\n", le32toh(desc->flags));
1090 			ifp->if_oerrors++;
1091 		}
1092 
1093 		bus_dmamap_sync(sc->txq.data_dmat, data->map,
1094 		    BUS_DMASYNC_POSTWRITE);
1095 		bus_dmamap_unload(sc->txq.data_dmat, data->map);
1096 		m_freem(data->m);
1097 		data->m = NULL;
1098 		ieee80211_free_node(data->ni);
1099 		data->ni = NULL;
1100 
1101 		/* descriptor is no longer valid */
1102 		desc->flags &= ~htole32(RT2560_TX_VALID);
1103 
1104 		DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
1105 
1106 		sc->txq.queued--;
1107 		sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
1108 	}
1109 
1110 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1111 	    BUS_DMASYNC_PREWRITE);
1112 
1113 	sc->sc_tx_timer = 0;
1114 	ifp->if_flags &= ~IFF_OACTIVE;
1115 	rt2560_start(ifp);
1116 }
1117 
1118 static void
1119 rt2560_prio_intr(struct rt2560_softc *sc)
1120 {
1121 	struct ieee80211com *ic = &sc->sc_ic;
1122 	struct ifnet *ifp = ic->ic_ifp;
1123 	struct rt2560_tx_desc *desc;
1124 	struct rt2560_tx_data *data;
1125 
1126 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1127 	    BUS_DMASYNC_POSTREAD);
1128 
1129 	for (;;) {
1130 		desc = &sc->prioq.desc[sc->prioq.next];
1131 		data = &sc->prioq.data[sc->prioq.next];
1132 
1133 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1134 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
1135 			break;
1136 
1137 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1138 		case RT2560_TX_SUCCESS:
1139 			DPRINTFN(10, ("mgt frame sent successfully\n"));
1140 			break;
1141 
1142 		case RT2560_TX_SUCCESS_RETRY:
1143 			DPRINTFN(9, ("mgt frame sent after %u retries\n",
1144 			    (le32toh(desc->flags) >> 5) & 0x7));
1145 			break;
1146 
1147 		case RT2560_TX_FAIL_RETRY:
1148 			DPRINTFN(9, ("sending mgt frame failed (too much "
1149 			    "retries)\n"));
1150 			break;
1151 
1152 		case RT2560_TX_FAIL_INVALID:
1153 		case RT2560_TX_FAIL_OTHER:
1154 		default:
1155 			device_printf(sc->sc_dev, "sending mgt frame failed "
1156 			    "0x%08x\n", le32toh(desc->flags));
1157 		}
1158 
1159 		bus_dmamap_sync(sc->prioq.data_dmat, data->map,
1160 		    BUS_DMASYNC_POSTWRITE);
1161 		bus_dmamap_unload(sc->prioq.data_dmat, data->map);
1162 		m_freem(data->m);
1163 		data->m = NULL;
1164 		ieee80211_free_node(data->ni);
1165 		data->ni = NULL;
1166 
1167 		/* descriptor is no longer valid */
1168 		desc->flags &= ~htole32(RT2560_TX_VALID);
1169 
1170 		DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
1171 
1172 		sc->prioq.queued--;
1173 		sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
1174 	}
1175 
1176 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1177 	    BUS_DMASYNC_PREWRITE);
1178 
1179 	sc->sc_tx_timer = 0;
1180 	ifp->if_flags &= ~IFF_OACTIVE;
1181 	rt2560_start(ifp);
1182 }
1183 
1184 /*
1185  * Some frames were processed by the hardware cipher engine and are ready for
1186  * transmission to the IEEE802.11 layer.
1187  */
1188 static void
1189 rt2560_decryption_intr(struct rt2560_softc *sc)
1190 {
1191 	struct ieee80211com *ic = &sc->sc_ic;
1192 	struct ifnet *ifp = ic->ic_ifp;
1193 	struct rt2560_rx_desc *desc;
1194 	struct rt2560_rx_data *data;
1195 	bus_addr_t physaddr;
1196 	struct ieee80211_frame *wh;
1197 	struct ieee80211_node *ni;
1198 	struct rt2560_node *rn;
1199 	struct mbuf *mnew, *m;
1200 	int hw, error;
1201 
1202 	/* retrieve last decriptor index processed by cipher engine */
1203 	hw = RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr;
1204 	hw /= RT2560_RX_DESC_SIZE;
1205 
1206 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1207 	    BUS_DMASYNC_POSTREAD);
1208 
1209 	for (; sc->rxq.cur_decrypt != hw;) {
1210 		desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
1211 		data = &sc->rxq.data[sc->rxq.cur_decrypt];
1212 
1213 		if ((le32toh(desc->flags) & RT2560_RX_BUSY) ||
1214 		    (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY))
1215 			break;
1216 
1217 		if (data->drop) {
1218 			ifp->if_ierrors++;
1219 			goto skip;
1220 		}
1221 
1222 		if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
1223 		    (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) {
1224 			ifp->if_ierrors++;
1225 			goto skip;
1226 		}
1227 
1228 		/*
1229 		 * Try to allocate a new mbuf for this ring element and load it
1230 		 * before processing the current mbuf. If the ring element
1231 		 * cannot be loaded, drop the received packet and reuse the old
1232 		 * mbuf. In the unlikely case that the old mbuf can't be
1233 		 * reloaded either, explicitly panic.
1234 		 */
1235 		mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1236 		if (mnew == NULL) {
1237 			ifp->if_ierrors++;
1238 			goto skip;
1239 		}
1240 
1241 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1242 		    BUS_DMASYNC_POSTREAD);
1243 		bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1244 
1245 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1246 		    mtod(mnew, void *), MCLBYTES, rt2560_dma_map_addr,
1247 		    &physaddr, 0);
1248 		if (error != 0) {
1249 			m_freem(mnew);
1250 
1251 			/* try to reload the old mbuf */
1252 			error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1253 			    mtod(data->m, void *), MCLBYTES,
1254 			    rt2560_dma_map_addr, &physaddr, 0);
1255 			if (error != 0) {
1256 				/* very unlikely that it will fail... */
1257 				panic("%s: could not load old rx mbuf",
1258 				    device_get_name(sc->sc_dev));
1259 			}
1260 			ifp->if_ierrors++;
1261 			goto skip;
1262 		}
1263 
1264 		/*
1265 	 	 * New mbuf successfully loaded, update Rx ring and continue
1266 		 * processing.
1267 		 */
1268 		m = data->m;
1269 		data->m = mnew;
1270 		desc->physaddr = htole32(physaddr);
1271 
1272 		/* finalize mbuf */
1273 		m->m_pkthdr.rcvif = ifp;
1274 		m->m_pkthdr.len = m->m_len =
1275 		    (le32toh(desc->flags) >> 16) & 0xfff;
1276 
1277 		if (sc->sc_drvbpf != NULL) {
1278 			struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
1279 			uint32_t tsf_lo, tsf_hi;
1280 
1281 			/* get timestamp (low and high 32 bits) */
1282 			tsf_hi = RAL_READ(sc, RT2560_CSR17);
1283 			tsf_lo = RAL_READ(sc, RT2560_CSR16);
1284 
1285 			tap->wr_tsf =
1286 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1287 			tap->wr_flags = 0;
1288 			tap->wr_rate = rt2560_rxrate(desc);
1289 			tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1290 			tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1291 			tap->wr_antenna = sc->rx_ant;
1292 			tap->wr_antsignal = RT2560_RSSI(sc, desc->rssi);
1293 
1294 			bpf_ptap(sc->sc_drvbpf, m, tap, sc->sc_rxtap_len);
1295 		}
1296 
1297 		wh = mtod(m, struct ieee80211_frame *);
1298 		ni = ieee80211_find_rxnode(ic,
1299 		    (struct ieee80211_frame_min *)wh);
1300 
1301 		/* send the frame to the 802.11 layer */
1302 		ieee80211_input(ic, m, ni, RT2560_RSSI(sc, desc->rssi), 0);
1303 
1304 		/* give rssi to the rate adatation algorithm */
1305 		rn = (struct rt2560_node *)ni;
1306 		ral_rssadapt_input(ic, ni, &rn->rssadapt,
1307 				   RT2560_RSSI(sc, desc->rssi));
1308 
1309 		/* node is no longer needed */
1310 		ieee80211_free_node(ni);
1311 
1312 skip:		desc->flags = htole32(RT2560_RX_BUSY);
1313 
1314 		DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
1315 
1316 		sc->rxq.cur_decrypt =
1317 		    (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
1318 	}
1319 
1320 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1321 	    BUS_DMASYNC_PREWRITE);
1322 }
1323 
1324 /*
1325  * Some frames were received. Pass them to the hardware cipher engine before
1326  * sending them to the 802.11 layer.
1327  */
1328 static void
1329 rt2560_rx_intr(struct rt2560_softc *sc)
1330 {
1331 	struct rt2560_rx_desc *desc;
1332 	struct rt2560_rx_data *data;
1333 
1334 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1335 	    BUS_DMASYNC_POSTREAD);
1336 
1337 	for (;;) {
1338 		desc = &sc->rxq.desc[sc->rxq.cur];
1339 		data = &sc->rxq.data[sc->rxq.cur];
1340 
1341 		if ((le32toh(desc->flags) & RT2560_RX_BUSY) ||
1342 		    (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY))
1343 			break;
1344 
1345 		data->drop = 0;
1346 
1347 		if ((le32toh(desc->flags) & RT2560_RX_PHY_ERROR) ||
1348 		    (le32toh(desc->flags) & RT2560_RX_CRC_ERROR)) {
1349 			/*
1350 			 * This should not happen since we did not request
1351 			 * to receive those frames when we filled RXCSR0.
1352 			 */
1353 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1354 			    le32toh(desc->flags)));
1355 			data->drop = 1;
1356 		}
1357 
1358 		if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
1359 			DPRINTFN(5, ("bad length\n"));
1360 			data->drop = 1;
1361 		}
1362 
1363 		/* mark the frame for decryption */
1364 		desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
1365 
1366 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1367 
1368 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
1369 	}
1370 
1371 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1372 	    BUS_DMASYNC_PREWRITE);
1373 
1374 	/* kick decrypt */
1375 	RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
1376 }
1377 
1378 /*
1379  * This function is called periodically in IBSS mode when a new beacon must be
1380  * sent out.
1381  */
1382 static void
1383 rt2560_beacon_expire(struct rt2560_softc *sc)
1384 {
1385 	struct ieee80211com *ic = &sc->sc_ic;
1386 	struct rt2560_tx_data *data;
1387 
1388 	if (ic->ic_opmode != IEEE80211_M_IBSS &&
1389 	    ic->ic_opmode != IEEE80211_M_HOSTAP)
1390 		return;
1391 
1392 	data = &sc->bcnq.data[sc->bcnq.next];
1393 
1394 	bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
1395 	bus_dmamap_unload(sc->bcnq.data_dmat, data->map);
1396 
1397 	ieee80211_beacon_update(ic, data->ni, &sc->sc_bo, data->m, 1);
1398 
1399 	if (ic->ic_rawbpf != NULL)
1400 		bpf_mtap(ic->ic_rawbpf, data->m);
1401 
1402 	rt2560_tx_bcn(sc, data->m, data->ni);
1403 
1404 	DPRINTFN(15, ("beacon expired\n"));
1405 
1406 	sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT;
1407 }
1408 
1409 /* ARGSUSED */
1410 static void
1411 rt2560_wakeup_expire(struct rt2560_softc *sc)
1412 {
1413 	DPRINTFN(2, ("wakeup expired\n"));
1414 }
1415 
1416 static void
1417 rt2560_intr(void *arg)
1418 {
1419 	struct rt2560_softc *sc = arg;
1420 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1421 	uint32_t r;
1422 
1423 	/* disable interrupts */
1424 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
1425 
1426 	/* don't re-enable interrupts if we're shutting down */
1427 	if (!(ifp->if_flags & IFF_RUNNING))
1428 		return;
1429 
1430 	r = RAL_READ(sc, RT2560_CSR7);
1431 	RAL_WRITE(sc, RT2560_CSR7, r);
1432 
1433 	if (r & RT2560_BEACON_EXPIRE)
1434 		rt2560_beacon_expire(sc);
1435 
1436 	if (r & RT2560_WAKEUP_EXPIRE)
1437 		rt2560_wakeup_expire(sc);
1438 
1439 	if (r & RT2560_PRIO_DONE)
1440 		rt2560_prio_intr(sc);
1441 
1442 	if (r & (RT2560_TX_DONE | RT2560_ENCRYPTION_DONE)) {
1443 		int i;
1444 
1445 		for (i = 0; i < 2; ++i) {
1446 			rt2560_tx_intr(sc);
1447 			rt2560_encryption_intr(sc);
1448 		}
1449 	}
1450 
1451 	if (r & (RT2560_DECRYPTION_DONE | RT2560_RX_DONE)) {
1452 		int i;
1453 
1454 		for (i = 0; i < 2; ++i) {
1455 			rt2560_decryption_intr(sc);
1456 			rt2560_rx_intr(sc);
1457 		}
1458 	}
1459 
1460 	/* re-enable interrupts */
1461 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
1462 }
1463 
1464 /* quickly determine if a given rate is CCK or OFDM */
1465 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1466 
1467 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1468 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1469 
1470 #define RAL_SIFS		10	/* us */
1471 
1472 #define RT2560_TXRX_TURNAROUND	10	/* us */
1473 
1474 /*
1475  * This function is only used by the Rx radiotap code.
1476  */
1477 static uint8_t
1478 rt2560_rxrate(struct rt2560_rx_desc *desc)
1479 {
1480 	if (le32toh(desc->flags) & RT2560_RX_OFDM) {
1481 		/* reverse function of rt2560_plcp_signal */
1482 		switch (desc->rate) {
1483 		case 0xb:	return 12;
1484 		case 0xf:	return 18;
1485 		case 0xa:	return 24;
1486 		case 0xe:	return 36;
1487 		case 0x9:	return 48;
1488 		case 0xd:	return 72;
1489 		case 0x8:	return 96;
1490 		case 0xc:	return 108;
1491 		}
1492 	} else {
1493 		if (desc->rate == 10)
1494 			return 2;
1495 		if (desc->rate == 20)
1496 			return 4;
1497 		if (desc->rate == 55)
1498 			return 11;
1499 		if (desc->rate == 110)
1500 			return 22;
1501 	}
1502 	return 2;	/* should not get there */
1503 }
1504 
1505 /*
1506  * Return the expected ack rate for a frame transmitted at rate `rate'.
1507  * XXX: this should depend on the destination node basic rate set.
1508  */
1509 static int
1510 rt2560_ack_rate(struct ieee80211com *ic, int rate)
1511 {
1512 	switch (rate) {
1513 	/* CCK rates */
1514 	case 2:
1515 		return 2;
1516 	case 4:
1517 	case 11:
1518 	case 22:
1519 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1520 
1521 	/* OFDM rates */
1522 	case 12:
1523 	case 18:
1524 		return 12;
1525 	case 24:
1526 	case 36:
1527 		return 24;
1528 	case 48:
1529 	case 72:
1530 	case 96:
1531 	case 108:
1532 		return 48;
1533 	}
1534 
1535 	/* default to 1Mbps */
1536 	return 2;
1537 }
1538 
1539 /*
1540  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1541  * The function automatically determines the operating mode depending on the
1542  * given rate. `flags' indicates whether short preamble is in use or not.
1543  */
1544 static uint16_t
1545 rt2560_txtime(int len, int rate, uint32_t flags)
1546 {
1547 	uint16_t txtime;
1548 
1549 	if (RAL_RATE_IS_OFDM(rate)) {
1550 		/* IEEE Std 802.11a-1999, pp. 37 */
1551 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1552 		txtime = 16 + 4 + 4 * txtime + 6;
1553 	} else {
1554 		/* IEEE Std 802.11b-1999, pp. 28 */
1555 		txtime = (16 * len + rate - 1) / rate;
1556 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1557 			txtime +=  72 + 24;
1558 		else
1559 			txtime += 144 + 48;
1560 	}
1561 
1562 	return txtime;
1563 }
1564 
1565 static uint8_t
1566 rt2560_plcp_signal(int rate)
1567 {
1568 	switch (rate) {
1569 	/* CCK rates (returned values are device-dependent) */
1570 	case 2:		return 0x0;
1571 	case 4:		return 0x1;
1572 	case 11:	return 0x2;
1573 	case 22:	return 0x3;
1574 
1575 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1576 	case 12:	return 0xb;
1577 	case 18:	return 0xf;
1578 	case 24:	return 0xa;
1579 	case 36:	return 0xe;
1580 	case 48:	return 0x9;
1581 	case 72:	return 0xd;
1582 	case 96:	return 0x8;
1583 	case 108:	return 0xc;
1584 
1585 	/* unsupported rates (should not get there) */
1586 	default:	return 0xff;
1587 	}
1588 }
1589 
1590 static void
1591 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
1592     uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
1593 {
1594 	struct ieee80211com *ic = &sc->sc_ic;
1595 	uint16_t plcp_length;
1596 	int remainder;
1597 
1598 	desc->flags = htole32(flags);
1599 	desc->flags |= htole32(len << 16);
1600 	if (!encrypt)
1601 		desc->flags |= htole32(RT2560_TX_VALID);
1602 
1603 	desc->physaddr = htole32(physaddr);
1604 	desc->wme = htole16(
1605 	    RT2560_AIFSN(2) |
1606 	    RT2560_LOGCWMIN(3) |
1607 	    RT2560_LOGCWMAX(8));
1608 
1609 	/* setup PLCP fields */
1610 	desc->plcp_signal  = rt2560_plcp_signal(rate);
1611 	desc->plcp_service = 4;
1612 
1613 	len += IEEE80211_CRC_LEN;
1614 	if (RAL_RATE_IS_OFDM(rate)) {
1615 		desc->flags |= htole32(RT2560_TX_OFDM);
1616 
1617 		plcp_length = len & 0xfff;
1618 		desc->plcp_length_hi = plcp_length >> 6;
1619 		desc->plcp_length_lo = plcp_length & 0x3f;
1620 	} else {
1621 		plcp_length = (16 * len + rate - 1) / rate;
1622 		if (rate == 22) {
1623 			remainder = (16 * len) % 22;
1624 			if (remainder != 0 && remainder < 7)
1625 				desc->plcp_service |= RT2560_PLCP_LENGEXT;
1626 		}
1627 		desc->plcp_length_hi = plcp_length >> 8;
1628 		desc->plcp_length_lo = plcp_length & 0xff;
1629 
1630 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1631 			desc->plcp_signal |= 0x08;
1632 	}
1633 
1634 	desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY)
1635 			       : htole32(RT2560_TX_BUSY);
1636 }
1637 
1638 static int
1639 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
1640     struct ieee80211_node *ni)
1641 {
1642 	struct ieee80211com *ic = &sc->sc_ic;
1643 	struct rt2560_tx_desc *desc;
1644 	struct rt2560_tx_data *data;
1645 	bus_addr_t paddr;
1646 	int rate, error;
1647 
1648 	desc = &sc->bcnq.desc[sc->bcnq.cur];
1649 	data = &sc->bcnq.data[sc->bcnq.cur];
1650 
1651 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1652 
1653 	error = bus_dmamap_load_mbuf(sc->bcnq.data_dmat, data->map, m0,
1654 				     rt2560_dma_map_mbuf, &paddr,
1655 				     BUS_DMA_NOWAIT);
1656 	if (error != 0) {
1657 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1658 		    error);
1659 		m_freem(m0);
1660 		return error;
1661 	}
1662 
1663 	if (sc->sc_drvbpf != NULL) {
1664 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1665 
1666 		tap->wt_flags = 0;
1667 		tap->wt_rate = rate;
1668 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1669 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1670 		tap->wt_antenna = sc->tx_ant;
1671 
1672 		bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len);
1673 	}
1674 
1675 	data->m = m0;
1676 	data->ni = ni;
1677 
1678 	rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
1679 	    RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0, paddr);
1680 
1681 	DPRINTFN(10, ("sending beacon frame len=%u idx=%u rate=%u\n",
1682 	    m0->m_pkthdr.len, sc->bcnq.cur, rate));
1683 
1684 	bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1685 	bus_dmamap_sync(sc->bcnq.desc_dmat, sc->bcnq.desc_map,
1686 	    BUS_DMASYNC_PREWRITE);
1687 
1688 	sc->bcnq.cur = (sc->bcnq.cur + 1) % RT2560_BEACON_RING_COUNT;
1689 
1690 	return 0;
1691 }
1692 
1693 static int
1694 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
1695     struct ieee80211_node *ni)
1696 {
1697 	struct ieee80211com *ic = &sc->sc_ic;
1698 	struct rt2560_tx_desc *desc;
1699 	struct rt2560_tx_data *data;
1700 	struct ieee80211_frame *wh;
1701 	bus_addr_t paddr;
1702 	uint16_t dur;
1703 	uint32_t flags = 0;
1704 	int rate, error;
1705 
1706 	desc = &sc->prioq.desc[sc->prioq.cur];
1707 	data = &sc->prioq.data[sc->prioq.cur];
1708 
1709 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1710 
1711 	error = bus_dmamap_load_mbuf(sc->prioq.data_dmat, data->map, m0,
1712 				     rt2560_dma_map_mbuf, &paddr, 0);
1713 	if (error != 0) {
1714 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1715 		    error);
1716 		m_freem(m0);
1717 		return error;
1718 	}
1719 
1720 	if (sc->sc_drvbpf != NULL) {
1721 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1722 
1723 		tap->wt_flags = 0;
1724 		tap->wt_rate = rate;
1725 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1726 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1727 		tap->wt_antenna = sc->tx_ant;
1728 
1729 		bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len);
1730 	}
1731 
1732 	data->m = m0;
1733 	data->ni = ni;
1734 
1735 	wh = mtod(m0, struct ieee80211_frame *);
1736 
1737 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1738 		flags |= RT2560_TX_ACK;
1739 
1740 		dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1741 		      RAL_SIFS;
1742 		*(uint16_t *)wh->i_dur = htole16(dur);
1743 
1744 		/* tell hardware to add timestamp for probe responses */
1745 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1746 		    IEEE80211_FC0_TYPE_MGT &&
1747 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1748 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1749 			flags |= RT2560_TX_TIMESTAMP;
1750 	}
1751 
1752 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0, paddr);
1753 
1754 	bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1755 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1756 	    BUS_DMASYNC_PREWRITE);
1757 
1758 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1759 	    m0->m_pkthdr.len, sc->prioq.cur, rate));
1760 
1761 	/* kick prio */
1762 	sc->prioq.queued++;
1763 	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1764 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1765 
1766 	return 0;
1767 }
1768 
1769 /*
1770  * Build a RTS control frame.
1771  */
1772 static struct mbuf *
1773 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh,
1774     uint16_t dur)
1775 {
1776 	struct ieee80211_frame_rts *rts;
1777 	struct mbuf *m;
1778 
1779 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1780 	if (m == NULL) {
1781 		sc->sc_ic.ic_stats.is_tx_nobuf++;
1782 		device_printf(sc->sc_dev, "could not allocate RTS frame\n");
1783 		return NULL;
1784 	}
1785 
1786 	rts = mtod(m, struct ieee80211_frame_rts *);
1787 
1788 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1789 	    IEEE80211_FC0_SUBTYPE_RTS;
1790 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1791 	*(uint16_t *)rts->i_dur = htole16(dur);
1792 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1793 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1794 
1795 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
1796 
1797 	return m;
1798 }
1799 
1800 static int
1801 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
1802     struct ieee80211_node *ni)
1803 {
1804 	struct ieee80211com *ic = &sc->sc_ic;
1805 	struct rt2560_tx_desc *desc;
1806 	struct rt2560_tx_data *data;
1807 	struct rt2560_node *rn;
1808 	struct ieee80211_rateset *rs;
1809 	struct ieee80211_frame *wh;
1810 	struct ieee80211_key *k;
1811 	struct mbuf *mnew;
1812 	bus_addr_t paddr;
1813 	uint16_t dur;
1814 	uint32_t flags = 0;
1815 	int rate, error;
1816 
1817 	wh = mtod(m0, struct ieee80211_frame *);
1818 
1819 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1820 		rs = &ic->ic_sup_rates[ic->ic_curmode];
1821 		rate = rs->rs_rates[ic->ic_fixed_rate];
1822 	} else {
1823 		rs = &ni->ni_rates;
1824 		rn = (struct rt2560_node *)ni;
1825 		ni->ni_txrate = ral_rssadapt_choose(&rn->rssadapt, rs, wh,
1826 		    m0->m_pkthdr.len, NULL, 0);
1827 		rate = rs->rs_rates[ni->ni_txrate];
1828 	}
1829 	rate &= IEEE80211_RATE_VAL;
1830 
1831 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1832 		k = ieee80211_crypto_encap(ic, ni, m0);
1833 		if (k == NULL) {
1834 			m_freem(m0);
1835 			return ENOBUFS;
1836 		}
1837 
1838 		/* packet header may have moved, reset our local pointer */
1839 		wh = mtod(m0, struct ieee80211_frame *);
1840 	}
1841 
1842 	/*
1843 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1844 	 * for directed frames only when the length of the MPDU is greater
1845 	 * than the length threshold indicated by [...]" ic_rtsthreshold.
1846 	 */
1847 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1848 	    m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1849 		struct mbuf *m;
1850 		uint16_t dur;
1851 		int rtsrate, ackrate;
1852 
1853 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1854 		ackrate = rt2560_ack_rate(ic, rate);
1855 
1856 		dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1857 		      rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1858 		      rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1859 		      3 * RAL_SIFS;
1860 
1861 		m = rt2560_get_rts(sc, wh, dur);
1862 
1863 		desc = &sc->txq.desc[sc->txq.cur_encrypt];
1864 		data = &sc->txq.data[sc->txq.cur_encrypt];
1865 
1866 		error = bus_dmamap_load_mbuf(sc->txq.data_dmat, data->map,
1867 					     m, rt2560_dma_map_mbuf, &paddr, 0);
1868 		if (error != 0) {
1869 			device_printf(sc->sc_dev,
1870 			    "could not map mbuf (error %d)\n", error);
1871 			m_freem(m);
1872 			m_freem(m0);
1873 			return error;
1874 		}
1875 
1876 		/* avoid multiple free() of the same node for each fragment */
1877 		ieee80211_ref_node(ni);
1878 
1879 		data->m = m;
1880 		data->ni = ni;
1881 
1882 		/* RTS frames are not taken into account for rssadapt */
1883 		data->id.id_node = NULL;
1884 
1885 		rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK |
1886 		    RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1, paddr);
1887 
1888 		bus_dmamap_sync(sc->txq.data_dmat, data->map,
1889 		    BUS_DMASYNC_PREWRITE);
1890 
1891 		sc->txq.queued++;
1892 		sc->txq.cur_encrypt =
1893 		    (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1894 
1895 		/*
1896 		 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1897 		 * asynchronous data frame shall be transmitted after the CTS
1898 		 * frame and a SIFS period.
1899 		 */
1900 		flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
1901 	}
1902 
1903 	data = &sc->txq.data[sc->txq.cur_encrypt];
1904 	desc = &sc->txq.desc[sc->txq.cur_encrypt];
1905 
1906 	error = bus_dmamap_load_mbuf(sc->txq.data_dmat, data->map, m0,
1907 				     rt2560_dma_map_mbuf, &paddr, 0);
1908 	if (error != 0 && error != EFBIG) {
1909 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1910 		    error);
1911 		m_freem(m0);
1912 		return error;
1913 	}
1914 	if (error != 0) {
1915 		mnew = m_defrag(m0, MB_DONTWAIT);
1916 		if (mnew == NULL) {
1917 			device_printf(sc->sc_dev,
1918 			    "could not defragment mbuf\n");
1919 			m_freem(m0);
1920 			return ENOBUFS;
1921 		}
1922 		m0 = mnew;
1923 
1924 		error = bus_dmamap_load_mbuf(sc->txq.data_dmat, data->map,
1925 					     m0, rt2560_dma_map_mbuf, &paddr,
1926 					     0);
1927 		if (error != 0) {
1928 			device_printf(sc->sc_dev,
1929 			    "could not map mbuf (error %d)\n", error);
1930 			m_freem(m0);
1931 			return error;
1932 		}
1933 
1934 		/* packet header may have moved, reset our local pointer */
1935 		wh = mtod(m0, struct ieee80211_frame *);
1936 	}
1937 
1938 	if (sc->sc_drvbpf != NULL) {
1939 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1940 
1941 		tap->wt_flags = 0;
1942 		tap->wt_rate = rate;
1943 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1944 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1945 		tap->wt_antenna = sc->tx_ant;
1946 
1947 		bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len);
1948 	}
1949 
1950 	data->m = m0;
1951 	data->ni = ni;
1952 
1953 	/* remember link conditions for rate adaptation algorithm */
1954 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1955 		data->id.id_len = m0->m_pkthdr.len;
1956 		data->id.id_rateidx = ni->ni_txrate;
1957 		data->id.id_node = ni;
1958 		data->id.id_rssi = ni->ni_rssi;
1959 	} else
1960 		data->id.id_node = NULL;
1961 
1962 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1963 		flags |= RT2560_TX_ACK;
1964 
1965 		dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
1966 		    ic->ic_flags) + RAL_SIFS;
1967 		*(uint16_t *)wh->i_dur = htole16(dur);
1968 	}
1969 
1970 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1, paddr);
1971 
1972 	bus_dmamap_sync(sc->txq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1973 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1974 	    BUS_DMASYNC_PREWRITE);
1975 
1976 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1977 	    m0->m_pkthdr.len, sc->txq.cur_encrypt, rate));
1978 
1979 	/* kick encrypt */
1980 	sc->txq.queued++;
1981 	sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1982 	RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
1983 
1984 	return 0;
1985 }
1986 
1987 static void
1988 rt2560_start(struct ifnet *ifp)
1989 {
1990 	struct rt2560_softc *sc = ifp->if_softc;
1991 	struct ieee80211com *ic = &sc->sc_ic;
1992 	struct mbuf *m0;
1993 	struct ether_header *eh;
1994 	struct ieee80211_node *ni;
1995 
1996 	/* prevent management frames from being sent if we're not ready */
1997 	if (!(ifp->if_flags & IFF_RUNNING))
1998 		return;
1999 
2000 	for (;;) {
2001 		IF_POLL(&ic->ic_mgtq, m0);
2002 		if (m0 != NULL) {
2003 			if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
2004 				ifp->if_flags |= IFF_OACTIVE;
2005 				break;
2006 			}
2007 			IF_DEQUEUE(&ic->ic_mgtq, m0);
2008 
2009 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2010 			m0->m_pkthdr.rcvif = NULL;
2011 
2012 			if (ic->ic_rawbpf != NULL)
2013 				bpf_mtap(ic->ic_rawbpf, m0);
2014 
2015 			if (rt2560_tx_mgt(sc, m0, ni) != 0)
2016 				break;
2017 
2018 		} else {
2019 			if (ic->ic_state != IEEE80211_S_RUN)
2020 				break;
2021 			m0 = ifq_poll(&ifp->if_snd);
2022 			if (m0 == NULL)
2023 				break;
2024 			if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
2025 				ifp->if_flags |= IFF_OACTIVE;
2026 				break;
2027 			}
2028 			m0 = ifq_dequeue(&ifp->if_snd, m0);
2029 
2030 			if (m0->m_len < sizeof (struct ether_header) &&
2031 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
2032 				continue;
2033 
2034 			eh = mtod(m0, struct ether_header *);
2035 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2036 			if (ni == NULL) {
2037 				m_freem(m0);
2038 				continue;
2039 			}
2040 			BPF_MTAP(ifp, m0);
2041 
2042 			m0 = ieee80211_encap(ic, m0, ni);
2043 			if (m0 == NULL) {
2044 				ieee80211_free_node(ni);
2045 				continue;
2046 			}
2047 
2048 			if (ic->ic_rawbpf != NULL)
2049 				bpf_mtap(ic->ic_rawbpf, m0);
2050 
2051 			if (rt2560_tx_data(sc, m0, ni) != 0) {
2052 				ieee80211_free_node(ni);
2053 				ifp->if_oerrors++;
2054 				break;
2055 			}
2056 		}
2057 
2058 		sc->sc_tx_timer = 5;
2059 		ifp->if_timer = 1;
2060 	}
2061 }
2062 
2063 static void
2064 rt2560_watchdog(struct ifnet *ifp)
2065 {
2066 	struct rt2560_softc *sc = ifp->if_softc;
2067 	struct ieee80211com *ic = &sc->sc_ic;
2068 
2069 	ifp->if_timer = 0;
2070 
2071 	if (sc->sc_tx_timer > 0) {
2072 		if (--sc->sc_tx_timer == 0) {
2073 			device_printf(sc->sc_dev, "device timeout\n");
2074 			rt2560_init(sc);
2075 			ifp->if_oerrors++;
2076 			return;
2077 		}
2078 		ifp->if_timer = 1;
2079 	}
2080 
2081 	ieee80211_watchdog(ic);
2082 }
2083 
2084 /*
2085  * This function allows for fast channel switching in monitor mode (used by
2086  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
2087  * generate a new beacon frame.
2088  */
2089 static int
2090 rt2560_reset(struct ifnet *ifp)
2091 {
2092 	struct rt2560_softc *sc = ifp->if_softc;
2093 	struct ieee80211com *ic = &sc->sc_ic;
2094 
2095 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
2096 		return ENETRESET;
2097 
2098 	rt2560_set_chan(sc, ic->ic_curchan);
2099 
2100 	return 0;
2101 }
2102 
2103 static int
2104 rt2560_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
2105 {
2106 	struct rt2560_softc *sc = ifp->if_softc;
2107 	struct ieee80211com *ic = &sc->sc_ic;
2108 	int error = 0;
2109 
2110 	switch (cmd) {
2111 	case SIOCSIFFLAGS:
2112 		if (ifp->if_flags & IFF_UP) {
2113 			if (ifp->if_flags & IFF_RUNNING)
2114 				rt2560_update_promisc(sc);
2115 			else
2116 				rt2560_init(sc);
2117 		} else {
2118 			if (ifp->if_flags & IFF_RUNNING)
2119 				rt2560_stop(sc);
2120 		}
2121 		break;
2122 
2123 	default:
2124 		error = ieee80211_ioctl(ic, cmd, data, cr);
2125 	}
2126 
2127 	if (error == ENETRESET) {
2128 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2129 		    (IFF_UP | IFF_RUNNING) &&
2130 		    (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2131 			rt2560_init(sc);
2132 		error = 0;
2133 	}
2134 
2135 	return error;
2136 }
2137 
2138 static void
2139 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
2140 {
2141 	uint32_t tmp;
2142 	int ntries;
2143 
2144 	for (ntries = 0; ntries < 100; ntries++) {
2145 		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2146 			break;
2147 		DELAY(1);
2148 	}
2149 	if (ntries == 100) {
2150 		device_printf(sc->sc_dev, "could not write to BBP\n");
2151 		return;
2152 	}
2153 
2154 	tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
2155 	RAL_WRITE(sc, RT2560_BBPCSR, tmp);
2156 
2157 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2158 }
2159 
2160 static uint8_t
2161 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
2162 {
2163 	uint32_t val;
2164 	int ntries;
2165 
2166 	val = RT2560_BBP_BUSY | reg << 8;
2167 	RAL_WRITE(sc, RT2560_BBPCSR, val);
2168 
2169 	for (ntries = 0; ntries < 100; ntries++) {
2170 		val = RAL_READ(sc, RT2560_BBPCSR);
2171 		if (!(val & RT2560_BBP_BUSY))
2172 			return val & 0xff;
2173 		DELAY(1);
2174 	}
2175 
2176 	device_printf(sc->sc_dev, "could not read from BBP\n");
2177 	return 0;
2178 }
2179 
2180 static void
2181 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
2182 {
2183 	uint32_t tmp;
2184 	int ntries;
2185 
2186 	for (ntries = 0; ntries < 100; ntries++) {
2187 		if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
2188 			break;
2189 		DELAY(1);
2190 	}
2191 	if (ntries == 100) {
2192 		device_printf(sc->sc_dev, "could not write to RF\n");
2193 		return;
2194 	}
2195 
2196 	tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
2197 	    (reg & 0x3);
2198 	RAL_WRITE(sc, RT2560_RFCSR, tmp);
2199 
2200 	/* remember last written value in sc */
2201 	sc->rf_regs[reg] = val;
2202 
2203 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
2204 }
2205 
2206 static void
2207 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
2208 {
2209 	struct ieee80211com *ic = &sc->sc_ic;
2210 	uint8_t power, tmp;
2211 	u_int i, chan;
2212 
2213 	chan = ieee80211_chan2ieee(ic, c);
2214 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2215 		return;
2216 
2217 	if (IEEE80211_IS_CHAN_2GHZ(c))
2218 		power = min(sc->txpow[chan - 1], 31);
2219 	else
2220 		power = 31;
2221 
2222 	/* adjust txpower using ifconfig settings */
2223 	power -= (100 - ic->ic_txpowlimit) / 8;
2224 
2225 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
2226 
2227 	switch (sc->rf_rev) {
2228 	case RT2560_RF_2522:
2229 		rt2560_rf_write(sc, RAL_RF1, 0x00814);
2230 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2522_r2[chan - 1]);
2231 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2232 		break;
2233 
2234 	case RT2560_RF_2523:
2235 		rt2560_rf_write(sc, RAL_RF1, 0x08804);
2236 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2523_r2[chan - 1]);
2237 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
2238 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2239 		break;
2240 
2241 	case RT2560_RF_2524:
2242 		rt2560_rf_write(sc, RAL_RF1, 0x0c808);
2243 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2524_r2[chan - 1]);
2244 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2245 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2246 		break;
2247 
2248 	case RT2560_RF_2525:
2249 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2250 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_hi_r2[chan - 1]);
2251 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2252 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2253 
2254 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2255 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_r2[chan - 1]);
2256 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2257 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2258 		break;
2259 
2260 	case RT2560_RF_2525E:
2261 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2262 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525e_r2[chan - 1]);
2263 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2264 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
2265 		break;
2266 
2267 	case RT2560_RF_2526:
2268 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_hi_r2[chan - 1]);
2269 		rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
2270 		rt2560_rf_write(sc, RAL_RF1, 0x08804);
2271 
2272 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_r2[chan - 1]);
2273 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2274 		rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
2275 		break;
2276 
2277 	/* dual-band RF */
2278 	case RT2560_RF_5222:
2279 		for (i = 0; rt2560_rf5222[i].chan != chan; i++);
2280 
2281 		rt2560_rf_write(sc, RAL_RF1, rt2560_rf5222[i].r1);
2282 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf5222[i].r2);
2283 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2284 		rt2560_rf_write(sc, RAL_RF4, rt2560_rf5222[i].r4);
2285 		break;
2286 	}
2287 
2288 	if (ic->ic_state != IEEE80211_S_SCAN) {
2289 		/* set Japan filter bit for channel 14 */
2290 		tmp = rt2560_bbp_read(sc, 70);
2291 
2292 		tmp &= ~RT2560_JAPAN_FILTER;
2293 		if (chan == 14)
2294 			tmp |= RT2560_JAPAN_FILTER;
2295 
2296 		rt2560_bbp_write(sc, 70, tmp);
2297 
2298 		/* clear CRC errors */
2299 		RAL_READ(sc, RT2560_CNT0);
2300 	}
2301 }
2302 
2303 #if 0
2304 /*
2305  * Disable RF auto-tuning.
2306  */
2307 static void
2308 rt2560_disable_rf_tune(struct rt2560_softc *sc)
2309 {
2310 	uint32_t tmp;
2311 
2312 	if (sc->rf_rev != RT2560_RF_2523) {
2313 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
2314 		rt2560_rf_write(sc, RAL_RF1, tmp);
2315 	}
2316 
2317 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
2318 	rt2560_rf_write(sc, RAL_RF3, tmp);
2319 
2320 	DPRINTFN(2, ("disabling RF autotune\n"));
2321 }
2322 #endif
2323 
2324 /*
2325  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
2326  * synchronization.
2327  */
2328 static void
2329 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
2330 {
2331 	struct ieee80211com *ic = &sc->sc_ic;
2332 	uint16_t logcwmin, preload;
2333 	uint32_t tmp;
2334 
2335 	/* first, disable TSF synchronization */
2336 	RAL_WRITE(sc, RT2560_CSR14, 0);
2337 
2338 	tmp = 16 * ic->ic_bss->ni_intval;
2339 	RAL_WRITE(sc, RT2560_CSR12, tmp);
2340 
2341 	RAL_WRITE(sc, RT2560_CSR13, 0);
2342 
2343 	logcwmin = 5;
2344 	preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
2345 	tmp = logcwmin << 16 | preload;
2346 	RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
2347 
2348 	/* finally, enable TSF synchronization */
2349 	tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
2350 	if (ic->ic_opmode == IEEE80211_M_STA)
2351 		tmp |= RT2560_ENABLE_TSF_SYNC(1);
2352 	else
2353 		tmp |= RT2560_ENABLE_TSF_SYNC(2) |
2354 		       RT2560_ENABLE_BEACON_GENERATOR;
2355 	RAL_WRITE(sc, RT2560_CSR14, tmp);
2356 
2357 	DPRINTF(("enabling TSF synchronization\n"));
2358 }
2359 
2360 static void
2361 rt2560_update_plcp(struct rt2560_softc *sc)
2362 {
2363 	struct ieee80211com *ic = &sc->sc_ic;
2364 
2365 	/* no short preamble for 1Mbps */
2366 	RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
2367 
2368 	if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
2369 		/* values taken from the reference driver */
2370 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380401);
2371 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
2372 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b8403);
2373 	} else {
2374 		/* same values as above or'ed 0x8 */
2375 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380409);
2376 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
2377 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b840b);
2378 	}
2379 
2380 	DPRINTF(("updating PLCP for %s preamble\n",
2381 	    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
2382 }
2383 
2384 /*
2385  * This function can be called by ieee80211_set_shortslottime(). Refer to
2386  * IEEE Std 802.11-1999 pp. 85 to know how these values are computed.
2387  */
2388 static void
2389 rt2560_update_slot(struct ifnet *ifp)
2390 {
2391 	struct rt2560_softc *sc = ifp->if_softc;
2392 	struct ieee80211com *ic = &sc->sc_ic;
2393 	uint8_t slottime;
2394 	uint16_t tx_sifs, tx_pifs, tx_difs, eifs;
2395 	uint32_t tmp;
2396 
2397 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2398 
2399 	/* update the MAC slot boundaries */
2400 	tx_sifs = RAL_SIFS - RT2560_TXRX_TURNAROUND;
2401 	tx_pifs = tx_sifs + slottime;
2402 	tx_difs = tx_sifs + 2 * slottime;
2403 	eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
2404 
2405 	tmp = RAL_READ(sc, RT2560_CSR11);
2406 	tmp = (tmp & ~0x1f00) | slottime << 8;
2407 	RAL_WRITE(sc, RT2560_CSR11, tmp);
2408 
2409 	tmp = tx_pifs << 16 | tx_sifs;
2410 	RAL_WRITE(sc, RT2560_CSR18, tmp);
2411 
2412 	tmp = eifs << 16 | tx_difs;
2413 	RAL_WRITE(sc, RT2560_CSR19, tmp);
2414 
2415 	DPRINTF(("setting slottime to %uus\n", slottime));
2416 }
2417 
2418 static void
2419 rt2560_set_basicrates(struct rt2560_softc *sc)
2420 {
2421 	struct ieee80211com *ic = &sc->sc_ic;
2422 
2423 	/* update basic rate set */
2424 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2425 		/* 11b basic rates: 1, 2Mbps */
2426 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
2427 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) {
2428 		/* 11a basic rates: 6, 12, 24Mbps */
2429 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
2430 	} else {
2431 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
2432 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
2433 	}
2434 }
2435 
2436 static void
2437 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
2438 {
2439 	uint32_t tmp;
2440 
2441 	/* set ON period to 70ms and OFF period to 30ms */
2442 	tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
2443 	RAL_WRITE(sc, RT2560_LEDCSR, tmp);
2444 }
2445 
2446 static void
2447 rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid)
2448 {
2449 	uint32_t tmp;
2450 
2451 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2452 	RAL_WRITE(sc, RT2560_CSR5, tmp);
2453 
2454 	tmp = bssid[4] | bssid[5] << 8;
2455 	RAL_WRITE(sc, RT2560_CSR6, tmp);
2456 
2457 	DPRINTF(("setting BSSID to %6D\n", bssid, ":"));
2458 }
2459 
2460 static void
2461 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2462 {
2463 	uint32_t tmp;
2464 
2465 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2466 	RAL_WRITE(sc, RT2560_CSR3, tmp);
2467 
2468 	tmp = addr[4] | addr[5] << 8;
2469 	RAL_WRITE(sc, RT2560_CSR4, tmp);
2470 
2471 	DPRINTF(("setting MAC address to %6D\n", addr, ":"));
2472 }
2473 
2474 static void
2475 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2476 {
2477 	uint32_t tmp;
2478 
2479 	tmp = RAL_READ(sc, RT2560_CSR3);
2480 	addr[0] = tmp & 0xff;
2481 	addr[1] = (tmp >>  8) & 0xff;
2482 	addr[2] = (tmp >> 16) & 0xff;
2483 	addr[3] = (tmp >> 24);
2484 
2485 	tmp = RAL_READ(sc, RT2560_CSR4);
2486 	addr[4] = tmp & 0xff;
2487 	addr[5] = (tmp >> 8) & 0xff;
2488 }
2489 
2490 static void
2491 rt2560_update_promisc(struct rt2560_softc *sc)
2492 {
2493 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2494 	uint32_t tmp;
2495 
2496 	tmp = RAL_READ(sc, RT2560_RXCSR0);
2497 
2498 	tmp &= ~RT2560_DROP_NOT_TO_ME;
2499 	if (!(ifp->if_flags & IFF_PROMISC))
2500 		tmp |= RT2560_DROP_NOT_TO_ME;
2501 
2502 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2503 
2504 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2505 	    "entering" : "leaving"));
2506 }
2507 
2508 static const char *
2509 rt2560_get_rf(int rev)
2510 {
2511 	switch (rev) {
2512 	case RT2560_RF_2522:	return "RT2522";
2513 	case RT2560_RF_2523:	return "RT2523";
2514 	case RT2560_RF_2524:	return "RT2524";
2515 	case RT2560_RF_2525:	return "RT2525";
2516 	case RT2560_RF_2525E:	return "RT2525e";
2517 	case RT2560_RF_2526:	return "RT2526";
2518 	case RT2560_RF_5222:	return "RT5222";
2519 	default:		return "unknown";
2520 	}
2521 }
2522 
2523 static void
2524 rt2560_read_eeprom(struct rt2560_softc *sc)
2525 {
2526 	uint16_t val;
2527 	int i;
2528 
2529 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
2530 	sc->rf_rev =   (val >> 11) & 0x7;
2531 	sc->hw_radio = (val >> 10) & 0x1;
2532 	sc->led_mode = (val >> 6)  & 0x7;
2533 	sc->rx_ant =   (val >> 4)  & 0x3;
2534 	sc->tx_ant =   (val >> 2)  & 0x3;
2535 	sc->nb_ant =   val & 0x3;
2536 
2537 	/* read default values for BBP registers */
2538 	for (i = 0; i < 16; i++) {
2539 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
2540 		sc->bbp_prom[i].reg = val >> 8;
2541 		sc->bbp_prom[i].val = val & 0xff;
2542 	}
2543 
2544 	/* read Tx power for all b/g channels */
2545 	for (i = 0; i < 14 / 2; i++) {
2546 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
2547 		sc->txpow[i * 2] = val >> 8;
2548 		sc->txpow[i * 2 + 1] = val & 0xff;
2549 	}
2550 
2551 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CALIBRATE);
2552 	if ((val & 0xff00) == 0xff00)
2553 		sc->rssi_corr = RT2560_DEFAULT_RSSI_CORR;
2554 	else
2555 		sc->rssi_corr = val >> 8;
2556 	DPRINTF(("rssi correction %d, calibrate 0x%02x\n",
2557 		 sc->rssi_corr, val));
2558 }
2559 
2560 static int
2561 rt2560_bbp_init(struct rt2560_softc *sc)
2562 {
2563 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2564 	int i, ntries;
2565 
2566 	/* wait for BBP to be ready */
2567 	for (ntries = 0; ntries < 100; ntries++) {
2568 		if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
2569 			break;
2570 		DELAY(1);
2571 	}
2572 	if (ntries == 100) {
2573 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2574 		return EIO;
2575 	}
2576 
2577 	rt2560_set_txantenna(sc, sc->tx_ant);
2578 	rt2560_set_rxantenna(sc, sc->rx_ant);
2579 
2580 	/* initialize BBP registers to default values */
2581 	for (i = 0; i < N(rt2560_def_bbp); i++) {
2582 		rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
2583 		    rt2560_def_bbp[i].val);
2584 	}
2585 #if 0
2586 	/* initialize BBP registers to values stored in EEPROM */
2587 	for (i = 0; i < 16; i++) {
2588 		if (sc->bbp_prom[i].reg == 0xff)
2589 			continue;
2590 		rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2591 	}
2592 #endif
2593 
2594 	return 0;
2595 #undef N
2596 }
2597 
2598 static void
2599 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
2600 {
2601 	uint32_t tmp;
2602 	uint8_t tx;
2603 
2604 	tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
2605 	if (antenna == 1)
2606 		tx |= RT2560_BBP_ANTA;
2607 	else if (antenna == 2)
2608 		tx |= RT2560_BBP_ANTB;
2609 	else
2610 		tx |= RT2560_BBP_DIVERSITY;
2611 
2612 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2613 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
2614 	    sc->rf_rev == RT2560_RF_5222)
2615 		tx |= RT2560_BBP_FLIPIQ;
2616 
2617 	rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
2618 
2619 	/* update values for CCK and OFDM in BBPCSR1 */
2620 	tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
2621 	tmp |= (tx & 0x7) << 16 | (tx & 0x7);
2622 	RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
2623 }
2624 
2625 static void
2626 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
2627 {
2628 	uint8_t rx;
2629 
2630 	rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
2631 	if (antenna == 1)
2632 		rx |= RT2560_BBP_ANTA;
2633 	else if (antenna == 2)
2634 		rx |= RT2560_BBP_ANTB;
2635 	else
2636 		rx |= RT2560_BBP_DIVERSITY;
2637 
2638 	/* need to force no I/Q flip for RF 2525e and 2526 */
2639 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
2640 		rx &= ~RT2560_BBP_FLIPIQ;
2641 
2642 	rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
2643 }
2644 
2645 static void
2646 rt2560_init(void *priv)
2647 {
2648 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2649 	struct rt2560_softc *sc = priv;
2650 	struct ieee80211com *ic = &sc->sc_ic;
2651 	struct ifnet *ifp = ic->ic_ifp;
2652 	uint32_t tmp;
2653 	int i;
2654 
2655 	rt2560_stop(sc);
2656 
2657 	/* setup tx rings */
2658 	tmp = RT2560_PRIO_RING_COUNT << 24 |
2659 	      RT2560_ATIM_RING_COUNT << 16 |
2660 	      RT2560_TX_RING_COUNT   <<  8 |
2661 	      RT2560_TX_DESC_SIZE;
2662 
2663 	/* rings must be initialized in this exact order */
2664 	RAL_WRITE(sc, RT2560_TXCSR2, tmp);
2665 	RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
2666 	RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
2667 	RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
2668 	RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
2669 
2670 	/* setup rx ring */
2671 	tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
2672 
2673 	RAL_WRITE(sc, RT2560_RXCSR1, tmp);
2674 	RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
2675 
2676 	/* initialize MAC registers to default values */
2677 	for (i = 0; i < N(rt2560_def_mac); i++)
2678 		RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
2679 
2680 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2681 	rt2560_set_macaddr(sc, ic->ic_myaddr);
2682 
2683 	/* set basic rate set (will be updated later) */
2684 	RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
2685 
2686 	rt2560_update_slot(ifp);
2687 	rt2560_update_plcp(sc);
2688 	rt2560_update_led(sc, 0, 0);
2689 
2690 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2691 	RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
2692 
2693 	if (rt2560_bbp_init(sc) != 0) {
2694 		rt2560_stop(sc);
2695 		return;
2696 	}
2697 
2698 	/* set default BSS channel */
2699 	rt2560_set_chan(sc, ic->ic_curchan);
2700 
2701 	/* kick Rx */
2702 	tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
2703 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2704 		tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
2705 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2706 			tmp |= RT2560_DROP_TODS;
2707 		if (!(ifp->if_flags & IFF_PROMISC))
2708 			tmp |= RT2560_DROP_NOT_TO_ME;
2709 	}
2710 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2711 
2712 	/* clear old FCS and Rx FIFO errors */
2713 	RAL_READ(sc, RT2560_CNT0);
2714 	RAL_READ(sc, RT2560_CNT4);
2715 
2716 	/* clear any pending interrupts */
2717 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2718 
2719 	/* enable interrupts */
2720 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2721 
2722 	ifp->if_flags &= ~IFF_OACTIVE;
2723 	ifp->if_flags |= IFF_RUNNING;
2724 
2725 	/* XXX */
2726 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
2727 		int i;
2728 
2729 		ic->ic_flags &= ~IEEE80211_F_DROPUNENC;
2730 		for (i = 0; i < IEEE80211_WEP_NKID; ++i) {
2731 			struct ieee80211_key *wk = &ic->ic_nw_keys[i];
2732 
2733 			if (wk->wk_keylen == 0)
2734 				continue;
2735 			if (wk->wk_flags & IEEE80211_KEY_XMIT)
2736 				wk->wk_flags |= IEEE80211_KEY_SWCRYPT;
2737 		}
2738 	}
2739 
2740 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2741 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2742 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2743 	} else
2744 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2745 #undef N
2746 }
2747 
2748 void
2749 rt2560_stop(void *priv)
2750 {
2751 	struct rt2560_softc *sc = priv;
2752 	struct ieee80211com *ic = &sc->sc_ic;
2753 	struct ifnet *ifp = ic->ic_ifp;
2754 
2755 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2756 
2757 	sc->sc_tx_timer = 0;
2758 	ifp->if_timer = 0;
2759 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2760 
2761 	/* abort Tx */
2762 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
2763 
2764 	/* disable Rx */
2765 	RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
2766 
2767 	/* reset ASIC (imply reset BBP) */
2768 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2769 	RAL_WRITE(sc, RT2560_CSR1, 0);
2770 
2771 	/* disable interrupts */
2772 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2773 
2774 	/* reset Tx and Rx rings */
2775 	rt2560_reset_tx_ring(sc, &sc->txq);
2776 	rt2560_reset_tx_ring(sc, &sc->atimq);
2777 	rt2560_reset_tx_ring(sc, &sc->prioq);
2778 	rt2560_reset_tx_ring(sc, &sc->bcnq);
2779 	rt2560_reset_rx_ring(sc, &sc->rxq);
2780 }
2781 
2782 static void
2783 rt2560_dma_map_mbuf(void *arg, bus_dma_segment_t *seg, int nseg,
2784 		    bus_size_t map_size __unused, int error)
2785 {
2786 	if (error)
2787 		return;
2788 
2789 	KASSERT(nseg == 1, ("too many dma segments\n"));
2790 	*((bus_addr_t *)arg) = seg->ds_addr;
2791 }
2792