xref: /dragonfly/sys/dev/netif/ral/rt2661.c (revision 9b5a9965)
1 /*
2  * Copyright (c) 2006
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *
5  * Permission to use, copy, modify, and distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD: src/sys/dev/ral/rt2661.c,v 1.4 2006/03/21 21:15:43 damien Exp $
18  * $DragonFly: src/sys/dev/netif/ral/rt2661.c,v 1.21 2007/05/07 14:14:21 sephe Exp $
19  */
20 
21 /*
22  * Ralink Technology RT2561, RT2561S and RT2661 chipset driver
23  * http://www.ralinktech.com/
24  */
25 
26 #include <sys/param.h>
27 #include <sys/bus.h>
28 #include <sys/endian.h>
29 #include <sys/kernel.h>
30 #include <sys/malloc.h>
31 #include <sys/mbuf.h>
32 #include <sys/module.h>
33 #include <sys/queue.h>
34 #include <sys/rman.h>
35 #include <sys/socket.h>
36 #include <sys/sockio.h>
37 #include <sys/sysctl.h>
38 #include <sys/serialize.h>
39 
40 #include <net/bpf.h>
41 #include <net/if.h>
42 #include <net/if_arp.h>
43 #include <net/ethernet.h>
44 #include <net/if_dl.h>
45 #include <net/if_media.h>
46 #include <net/ifq_var.h>
47 
48 #include <netproto/802_11/ieee80211_var.h>
49 #include <netproto/802_11/ieee80211_radiotap.h>
50 
51 #include <dev/netif/ral/rt2661reg.h>
52 #include <dev/netif/ral/rt2661var.h>
53 #include <dev/netif/ral/rt2661_ucode.h>
54 
55 #ifdef RAL_DEBUG
56 #define DPRINTF(x)	do { if (ral_debug > 0) kprintf x; } while (0)
57 #define DPRINTFN(n, x)	do { if (ral_debug >= (n)) kprintf x; } while (0)
58 int ral_debug = 1;
59 SYSCTL_INT(_debug, OID_AUTO, ral, CTLFLAG_RW, &ral_debug, 0, "ral debug level");
60 #else
61 #define DPRINTF(x)
62 #define DPRINTFN(n, x)
63 #endif
64 
65 MALLOC_DEFINE(M_RT2661, "rt2661_ratectl", "rt2661 rate control data");
66 
67 static void		rt2661_dma_map_addr(void *, bus_dma_segment_t *, int,
68 			    int);
69 static void		rt2661_dma_map_mbuf(void *, bus_dma_segment_t *, int,
70 					    bus_size_t, int);
71 static int		rt2661_alloc_tx_ring(struct rt2661_softc *,
72 			    struct rt2661_tx_ring *, int);
73 static void		rt2661_reset_tx_ring(struct rt2661_softc *,
74 			    struct rt2661_tx_ring *);
75 static void		rt2661_free_tx_ring(struct rt2661_softc *,
76 			    struct rt2661_tx_ring *);
77 static int		rt2661_alloc_rx_ring(struct rt2661_softc *,
78 			    struct rt2661_rx_ring *, int);
79 static void		rt2661_reset_rx_ring(struct rt2661_softc *,
80 			    struct rt2661_rx_ring *);
81 static void		rt2661_free_rx_ring(struct rt2661_softc *,
82 			    struct rt2661_rx_ring *);
83 static int		rt2661_media_change(struct ifnet *);
84 static void		rt2661_next_scan(void *);
85 static int		rt2661_newstate(struct ieee80211com *,
86 			    enum ieee80211_state, int);
87 static uint16_t		rt2661_eeprom_read(struct rt2661_softc *, uint8_t);
88 static void		rt2661_rx_intr(struct rt2661_softc *);
89 static void		rt2661_tx_intr(struct rt2661_softc *);
90 static void		rt2661_tx_dma_intr(struct rt2661_softc *,
91 			    struct rt2661_tx_ring *);
92 static void		rt2661_mcu_beacon_expire(struct rt2661_softc *);
93 static void		rt2661_mcu_wakeup(struct rt2661_softc *);
94 static void		rt2661_mcu_cmd_intr(struct rt2661_softc *);
95 static uint8_t		rt2661_rxrate(struct rt2661_rx_desc *);
96 static uint8_t		rt2661_plcp_signal(int);
97 static void		rt2661_setup_tx_desc(struct rt2661_softc *,
98 			    struct rt2661_tx_desc *, uint32_t, uint16_t, int,
99 			    int, const bus_dma_segment_t *, int, int, int,
100 			    const struct ieee80211_key *, void *,
101 			    const struct ieee80211_crypto_iv *);
102 static struct mbuf *	rt2661_get_rts(struct rt2661_softc *,
103 			    struct ieee80211_frame *, uint16_t);
104 static int		rt2661_tx_data(struct rt2661_softc *, struct mbuf *,
105 			    struct ieee80211_node *, int);
106 static int		rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *,
107 			    struct ieee80211_node *);
108 static void		rt2661_start(struct ifnet *);
109 static void		rt2661_watchdog(struct ifnet *);
110 static int		rt2661_reset(struct ifnet *);
111 static int		rt2661_ioctl(struct ifnet *, u_long, caddr_t,
112 				     struct ucred *);
113 static void		rt2661_bbp_write(struct rt2661_softc *, uint8_t,
114 			    uint8_t);
115 static uint8_t		rt2661_bbp_read(struct rt2661_softc *, uint8_t);
116 static void		rt2661_rf_write(struct rt2661_softc *, uint8_t,
117 			    uint32_t);
118 static int		rt2661_tx_cmd(struct rt2661_softc *, uint8_t,
119 			    uint16_t);
120 static void		rt2661_select_antenna(struct rt2661_softc *);
121 static void		rt2661_enable_mrr(struct rt2661_softc *);
122 static void		rt2661_set_txpreamble(struct rt2661_softc *);
123 static void		rt2661_set_ackrates(struct rt2661_softc *,
124 			    const struct ieee80211_rateset *);
125 static void		rt2661_select_band(struct rt2661_softc *,
126 			    struct ieee80211_channel *);
127 static void		rt2661_set_chan(struct rt2661_softc *,
128 			    struct ieee80211_channel *);
129 static void		rt2661_set_bssid(struct rt2661_softc *,
130 			    const uint8_t *);
131 static void		rt2661_set_macaddr(struct rt2661_softc *,
132 			   const uint8_t *);
133 static void		rt2661_update_promisc(struct rt2661_softc *);
134 static int		rt2661_wme_update(struct ieee80211com *) __unused;
135 static void		rt2661_update_slot(struct ifnet *);
136 static const char	*rt2661_get_rf(int);
137 static void		rt2661_read_config(struct rt2661_softc *);
138 static void		rt2661_read_txpower_config(struct rt2661_softc *,
139 						   uint8_t, int, int *);
140 static int		rt2661_bbp_init(struct rt2661_softc *);
141 static void		rt2661_init(void *);
142 static void		rt2661_stop(void *);
143 static void		rt2661_intr(void *);
144 static int		rt2661_load_microcode(struct rt2661_softc *,
145 			    const uint8_t *, int);
146 #ifdef notyet
147 static void		rt2661_rx_tune(struct rt2661_softc *);
148 static void		rt2661_radar_start(struct rt2661_softc *);
149 static int		rt2661_radar_stop(struct rt2661_softc *);
150 #endif
151 static int		rt2661_prepare_beacon(struct rt2661_softc *);
152 static void		rt2661_enable_tsf_sync(struct rt2661_softc *);
153 static int		rt2661_get_rssi(struct rt2661_softc *, uint8_t);
154 static void		rt2661_led_newstate(struct rt2661_softc *,
155 					    enum ieee80211_state);
156 static int		rt2661_key_alloc(struct ieee80211com *,
157 					 const struct ieee80211_key *,
158 					 ieee80211_keyix *, ieee80211_keyix *);
159 static int		rt2661_key_delete(struct ieee80211com *,
160 					  const struct ieee80211_key *);
161 static int		rt2661_key_set(struct ieee80211com *,
162 				       const struct ieee80211_key *,
163 				       const uint8_t mac[IEEE80211_ADDR_LEN]);
164 
165 /*
166  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
167  */
168 static const struct ieee80211_rateset rt2661_rateset_11a =
169 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
170 
171 static const struct ieee80211_rateset rt2661_rateset_11b =
172 	{ 4, { 2, 4, 11, 22 } };
173 
174 static const struct ieee80211_rateset rt2661_rateset_11g =
175 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
176 
177 static const struct {
178 	uint32_t	reg;
179 	uint32_t	val;
180 } rt2661_def_mac[] = {
181 	RT2661_DEF_MAC
182 };
183 
184 static const struct {
185 	uint8_t	reg;
186 	uint8_t	val;
187 } rt2661_def_bbp[] = {
188 	RT2661_DEF_BBP
189 };
190 
191 static const struct rfprog {
192 	uint8_t		chan;
193 	uint32_t	r1, r2, r3, r4;
194 }  rt2661_rf5225_1[] = {
195 	RT2661_RF5225_1
196 }, rt2661_rf5225_2[] = {
197 	RT2661_RF5225_2
198 };
199 
200 #define LED_EE2MCU(bit)	{ \
201 	.ee_bit		= RT2661_EE_LED_##bit, \
202 	.mcu_bit	= RT2661_MCU_LED_##bit \
203 }
204 static const struct {
205 	uint16_t	ee_bit;
206 	uint16_t	mcu_bit;
207 } led_ee2mcu[] = {
208 	LED_EE2MCU(RDYG),
209 	LED_EE2MCU(RDYA),
210 	LED_EE2MCU(ACT),
211 	LED_EE2MCU(GPIO0),
212 	LED_EE2MCU(GPIO1),
213 	LED_EE2MCU(GPIO2),
214 	LED_EE2MCU(GPIO3),
215 	LED_EE2MCU(GPIO4)
216 };
217 #undef LED_EE2MCU
218 
219 struct rt2661_dmamap {
220 	bus_dma_segment_t	segs[RT2661_MAX_SCATTER];
221 	int			nseg;
222 };
223 
224 static __inline int
225 rt2661_cipher(const struct ieee80211_key *k)
226 {
227 	switch (k->wk_cipher->ic_cipher) {
228 	case IEEE80211_CIPHER_WEP:
229 		if (k->wk_keylen == (40 / NBBY))
230 			return RT2661_CIPHER_WEP40;
231 		else
232 			return RT2661_CIPHER_WEP104;
233 	case IEEE80211_CIPHER_TKIP:
234 		return RT2661_CIPHER_TKIP;
235 	case IEEE80211_CIPHER_AES_CCM:
236 		return RT2661_CIPHER_AES;
237 	default:
238 		return RT2661_CIPHER_NONE;
239 	}
240 }
241 
242 int
243 rt2661_attach(device_t dev, int id)
244 {
245 	struct rt2661_softc *sc = device_get_softc(dev);
246 	struct ieee80211com *ic = &sc->sc_ic;
247 	struct ifnet *ifp = &ic->ic_if;
248 	uint32_t val, bbp_type;
249 	const uint8_t *ucode = NULL;
250 	int error, i, ac, ntries, size = 0;
251 
252 	callout_init(&sc->scan_ch);
253 
254 	sc->sc_irq_rid = 0;
255 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->sc_irq_rid,
256 					    RF_ACTIVE | RF_SHAREABLE);
257 	if (sc->sc_irq == NULL) {
258 		device_printf(dev, "could not allocate interrupt resource\n");
259 		return ENXIO;
260 	}
261 
262 	/* wait for NIC to initialize */
263 	for (ntries = 0; ntries < 1000; ntries++) {
264 		if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0)
265 			break;
266 		DELAY(1000);
267 	}
268 	if (ntries == 1000) {
269 		device_printf(sc->sc_dev,
270 		    "timeout waiting for NIC to initialize\n");
271 		error = EIO;
272 		goto fail;
273 	}
274 	bbp_type = val;
275 
276 	/* retrieve RF rev. no and various other things from EEPROM */
277 	rt2661_read_config(sc);
278 
279 	device_printf(dev, "MAC/BBP RT%X, RF %s\n", bbp_type,
280 	    rt2661_get_rf(sc->rf_rev));
281 
282 	/*
283 	 * Load 8051 microcode into NIC.
284 	 */
285 	switch (id) {
286 	case 0x0301:
287 		ucode = rt2561s_ucode;
288 		size = sizeof rt2561s_ucode;
289 		break;
290 	case 0x0302:
291 		ucode = rt2561_ucode;
292 		size = sizeof rt2561_ucode;
293 		break;
294 	case 0x0401:
295 		ucode = rt2661_ucode;
296 		size = sizeof rt2661_ucode;
297 		break;
298 	}
299 
300 	error = rt2661_load_microcode(sc, ucode, size);
301 	if (error != 0) {
302 		device_printf(sc->sc_dev, "could not load 8051 microcode\n");
303 		goto fail;
304 	}
305 
306 	/*
307 	 * Allocate Tx and Rx rings.
308 	 */
309 	for (ac = 0; ac < 4; ac++) {
310 		error = rt2661_alloc_tx_ring(sc, &sc->txq[ac],
311 		    RT2661_TX_RING_COUNT);
312 		if (error != 0) {
313 			device_printf(sc->sc_dev,
314 			    "could not allocate Tx ring %d\n", ac);
315 			goto fail;
316 		}
317 	}
318 
319 	error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT);
320 	if (error != 0) {
321 		device_printf(sc->sc_dev, "could not allocate Mgt ring\n");
322 		goto fail;
323 	}
324 
325 	error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT);
326 	if (error != 0) {
327 		device_printf(sc->sc_dev, "could not allocate Rx ring\n");
328 		goto fail;
329 	}
330 
331 	STAILQ_INIT(&sc->tx_ratectl);
332 
333 	sysctl_ctx_init(&sc->sysctl_ctx);
334 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
335 					  SYSCTL_STATIC_CHILDREN(_hw),
336 					  OID_AUTO,
337 					  device_get_nameunit(dev),
338 					  CTLFLAG_RD, 0, "");
339 	if (sc->sysctl_tree == NULL) {
340 		device_printf(dev, "could not add sysctl node\n");
341 		error = ENXIO;
342 		goto fail;
343 	}
344 
345 	ifp->if_softc = sc;
346 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
347 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
348 	ifp->if_init = rt2661_init;
349 	ifp->if_ioctl = rt2661_ioctl;
350 	ifp->if_start = rt2661_start;
351 	ifp->if_watchdog = rt2661_watchdog;
352 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
353 	ifq_set_ready(&ifp->if_snd);
354 
355 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
356 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
357 	ic->ic_state = IEEE80211_S_INIT;
358 	rt2661_led_newstate(sc, IEEE80211_S_INIT);
359 
360 	ic->ic_ratectl.rc_st_ratectl_cap = IEEE80211_RATECTL_CAP_ONOE;
361 	if (bbp_type == RT2661_BBP_2661D) {
362 		ic->ic_ratectl.rc_st_ratectl = IEEE80211_RATECTL_ONOE;
363 	} else {
364 		ic->ic_ratectl.rc_st_ratectl_cap |=
365 			IEEE80211_RATECTL_CAP_SAMPLE;
366 		ic->ic_ratectl.rc_st_ratectl = IEEE80211_RATECTL_SAMPLE;
367 	}
368 
369 	/* set device capabilities */
370 	ic->ic_caps =
371 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
372 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
373 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
374 	    IEEE80211_C_TXPMGT |	/* tx power management */
375 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
376 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
377 #ifdef notyet
378 	    IEEE80211_C_WME |		/* 802.11e */
379 #endif
380 	    IEEE80211_C_WPA;		/* 802.11i */
381 
382 	/* Set hardware crypto capabilities. */
383 	ic->ic_caps |= IEEE80211_C_WEP |
384 		       IEEE80211_C_TKIP |
385 		       IEEE80211_C_TKIPMIC |
386 		       IEEE80211_C_AES_CCM;
387 
388 	ic->ic_caps_ext = IEEE80211_CEXT_CRYPTO_HDR |
389 			  IEEE80211_CEXT_STRIP_MIC;
390 
391 	if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) {
392 		/* set supported .11a rates */
393 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2661_rateset_11a;
394 
395 		/* set supported .11a channels */
396 		for (i = 36; i <= 64; i += 4) {
397 			ic->ic_channels[i].ic_freq =
398 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
399 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
400 		}
401 		for (i = 100; i <= 140; i += 4) {
402 			ic->ic_channels[i].ic_freq =
403 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
404 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
405 		}
406 		for (i = 149; i <= 165; i += 4) {
407 			ic->ic_channels[i].ic_freq =
408 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
409 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
410 		}
411 	}
412 
413 	/* set supported .11b and .11g rates */
414 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2661_rateset_11b;
415 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2661_rateset_11g;
416 
417 	/* set supported .11b and .11g channels (1 through 14) */
418 	for (i = 1; i <= 14; i++) {
419 		ic->ic_channels[i].ic_freq =
420 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
421 		ic->ic_channels[i].ic_flags =
422 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
423 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
424 	}
425 
426 	sc->sc_sifs = IEEE80211_DUR_SIFS;	/* Default SIFS */
427 
428 	ieee80211_ifattach(ic);
429 /*	ic->ic_wme.wme_update = rt2661_wme_update;*/
430 	ic->ic_updateslot = rt2661_update_slot;
431 	ic->ic_reset = rt2661_reset;
432 	/* enable s/w bmiss handling in sta mode */
433 	ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
434 
435 	sc->sc_key_alloc = ic->ic_crypto.cs_key_alloc;
436 	sc->sc_key_delete = ic->ic_crypto.cs_key_delete;
437 	sc->sc_key_set = ic->ic_crypto.cs_key_set;
438 
439 	ic->ic_crypto.cs_max_keyix = RT2661_KEY_MAX;
440 	ic->ic_crypto.cs_key_alloc = rt2661_key_alloc;
441 	ic->ic_crypto.cs_key_delete = rt2661_key_delete;
442 	ic->ic_crypto.cs_key_set = rt2661_key_set;
443 
444 	/* override state transition machine */
445 	sc->sc_newstate = ic->ic_newstate;
446 	ic->ic_newstate = rt2661_newstate;
447 	ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status);
448 
449 	bpfattach_dlt(ifp, DLT_IEEE802_11_RADIO,
450 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
451 
452 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
453 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
454 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT);
455 
456 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
457 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
458 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT);
459 
460 	/*
461 	 * Add a few sysctl knobs.
462 	 */
463 	sc->dwelltime = 200;
464 
465 	SYSCTL_ADD_INT(&sc->sysctl_ctx,
466 	    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, "dwell",
467 	    CTLFLAG_RW, &sc->dwelltime, 0,
468 	    "channel dwell time (ms) for AP/station scanning");
469 
470 	error = bus_setup_intr(dev, sc->sc_irq, INTR_MPSAFE, rt2661_intr,
471 			       sc, &sc->sc_ih, ifp->if_serializer);
472 	if (error != 0) {
473 		device_printf(dev, "could not set up interrupt\n");
474 		bpfdetach(ifp);
475 		ieee80211_ifdetach(ic);
476 		goto fail;
477 	}
478 
479 	if (bootverbose)
480 		ieee80211_announce(ic);
481 	return 0;
482 fail:
483 	rt2661_detach(sc);
484 	return error;
485 }
486 
487 int
488 rt2661_detach(void *xsc)
489 {
490 	struct rt2661_softc *sc = xsc;
491 	struct ieee80211com *ic = &sc->sc_ic;
492 	struct ifnet *ifp = &ic->ic_if;
493 
494 	if (device_is_attached(sc->sc_dev)) {
495 		lwkt_serialize_enter(ifp->if_serializer);
496 
497 		callout_stop(&sc->scan_ch);
498 		rt2661_stop(sc);
499 		bus_teardown_intr(sc->sc_dev, sc->sc_irq, sc->sc_ih);
500 
501 		lwkt_serialize_exit(ifp->if_serializer);
502 
503 		bpfdetach(ifp);
504 		ieee80211_ifdetach(ic);
505 	}
506 
507 	rt2661_free_tx_ring(sc, &sc->txq[0]);
508 	rt2661_free_tx_ring(sc, &sc->txq[1]);
509 	rt2661_free_tx_ring(sc, &sc->txq[2]);
510 	rt2661_free_tx_ring(sc, &sc->txq[3]);
511 	rt2661_free_tx_ring(sc, &sc->mgtq);
512 	rt2661_free_rx_ring(sc, &sc->rxq);
513 
514 	if (sc->sc_irq != NULL) {
515 		bus_release_resource(sc->sc_dev, SYS_RES_IRQ, sc->sc_irq_rid,
516 				     sc->sc_irq);
517 	}
518 
519 	if (sc->sysctl_tree != NULL)
520 		sysctl_ctx_free(&sc->sysctl_ctx);
521 
522 	return 0;
523 }
524 
525 void
526 rt2661_shutdown(void *xsc)
527 {
528 	struct rt2661_softc *sc = xsc;
529 	struct ifnet *ifp = &sc->sc_ic.ic_if;
530 
531 	lwkt_serialize_enter(ifp->if_serializer);
532 	rt2661_stop(sc);
533 	lwkt_serialize_exit(ifp->if_serializer);
534 }
535 
536 void
537 rt2661_suspend(void *xsc)
538 {
539 	struct rt2661_softc *sc = xsc;
540 	struct ifnet *ifp = &sc->sc_ic.ic_if;
541 
542 	lwkt_serialize_enter(ifp->if_serializer);
543 	rt2661_stop(sc);
544 	lwkt_serialize_exit(ifp->if_serializer);
545 }
546 
547 void
548 rt2661_resume(void *xsc)
549 {
550 	struct rt2661_softc *sc = xsc;
551 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
552 
553 	lwkt_serialize_enter(ifp->if_serializer);
554 	if (ifp->if_flags & IFF_UP) {
555 		ifp->if_init(ifp->if_softc);
556 		if (ifp->if_flags & IFF_RUNNING)
557 			ifp->if_start(ifp);
558 	}
559 	lwkt_serialize_exit(ifp->if_serializer);
560 }
561 
562 static void
563 rt2661_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
564 {
565 	if (error != 0)
566 		return;
567 
568 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
569 
570 	*(bus_addr_t *)arg = segs[0].ds_addr;
571 }
572 
573 static int
574 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring,
575     int count)
576 {
577 	int i, error;
578 
579 	ring->count = count;
580 	ring->queued = 0;
581 	ring->cur = ring->next = 0;
582 
583 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
584 	    BUS_SPACE_MAXADDR, NULL, NULL, count * RT2661_TX_DESC_SIZE, 1,
585 	    count * RT2661_TX_DESC_SIZE, 0, &ring->desc_dmat);
586 	if (error != 0) {
587 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
588 		goto fail;
589 	}
590 
591 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
592 	    BUS_DMA_WAITOK | BUS_DMA_ZERO, &ring->desc_map);
593 	if (error != 0) {
594 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
595 		goto fail;
596 	}
597 
598 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
599 	    count * RT2661_TX_DESC_SIZE, rt2661_dma_map_addr, &ring->physaddr,
600 	    0);
601 	if (error != 0) {
602 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
603 
604 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
605 		ring->desc = NULL;
606 		goto fail;
607 	}
608 
609 	ring->data = kmalloc(count * sizeof (struct rt2661_data), M_DEVBUF,
610 	    M_WAITOK | M_ZERO);
611 
612 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
613 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * RT2661_MAX_SCATTER,
614 	    RT2661_MAX_SCATTER, MCLBYTES, 0, &ring->data_dmat);
615 	if (error != 0) {
616 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
617 		goto fail;
618 	}
619 
620 	for (i = 0; i < count; i++) {
621 		error = bus_dmamap_create(ring->data_dmat, 0,
622 		    &ring->data[i].map);
623 		if (error != 0) {
624 			device_printf(sc->sc_dev, "could not create DMA map\n");
625 			goto fail;
626 		}
627 	}
628 	return 0;
629 
630 fail:	rt2661_free_tx_ring(sc, ring);
631 	return error;
632 }
633 
634 static void
635 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
636 {
637 	struct rt2661_tx_desc *desc;
638 	struct rt2661_data *data;
639 	int i;
640 
641 	for (i = 0; i < ring->count; i++) {
642 		desc = &ring->desc[i];
643 		data = &ring->data[i];
644 
645 		if (data->m != NULL) {
646 			bus_dmamap_sync(ring->data_dmat, data->map,
647 			    BUS_DMASYNC_POSTWRITE);
648 			bus_dmamap_unload(ring->data_dmat, data->map);
649 			m_freem(data->m);
650 			data->m = NULL;
651 		}
652 
653 		desc->flags = 0;
654 	}
655 
656 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
657 
658 	ring->queued = 0;
659 	ring->cur = ring->next = 0;
660 }
661 
662 static void
663 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
664 {
665 	struct rt2661_data *data;
666 	int i;
667 
668 	if (ring->desc != NULL) {
669 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
670 		    BUS_DMASYNC_POSTWRITE);
671 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
672 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
673 		ring->desc = NULL;
674 	}
675 
676 	if (ring->desc_dmat != NULL) {
677 		bus_dma_tag_destroy(ring->desc_dmat);
678 		ring->desc_dmat = NULL;
679 	}
680 
681 	if (ring->data != NULL) {
682 		for (i = 0; i < ring->count; i++) {
683 			data = &ring->data[i];
684 
685 			if (data->m != NULL) {
686 				bus_dmamap_sync(ring->data_dmat, data->map,
687 				    BUS_DMASYNC_POSTWRITE);
688 				bus_dmamap_unload(ring->data_dmat, data->map);
689 				m_freem(data->m);
690 				data->m = NULL;
691 			}
692 
693 			if (data->map != NULL) {
694 				bus_dmamap_destroy(ring->data_dmat, data->map);
695 				data->map = NULL;
696 			}
697 		}
698 
699 		kfree(ring->data, M_DEVBUF);
700 		ring->data = NULL;
701 	}
702 
703 	if (ring->data_dmat != NULL) {
704 		bus_dma_tag_destroy(ring->data_dmat);
705 		ring->data_dmat = NULL;
706 	}
707 }
708 
709 static int
710 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring,
711     int count)
712 {
713 	struct rt2661_rx_desc *desc;
714 	struct rt2661_data *data;
715 	bus_addr_t physaddr;
716 	int i, error;
717 
718 	ring->count = count;
719 	ring->cur = ring->next = 0;
720 
721 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
722 	    BUS_SPACE_MAXADDR, NULL, NULL, count * RT2661_RX_DESC_SIZE, 1,
723 	    count * RT2661_RX_DESC_SIZE, 0, &ring->desc_dmat);
724 	if (error != 0) {
725 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
726 		goto fail;
727 	}
728 
729 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
730 	    BUS_DMA_WAITOK | BUS_DMA_ZERO, &ring->desc_map);
731 	if (error != 0) {
732 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
733 		goto fail;
734 	}
735 
736 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
737 	    count * RT2661_RX_DESC_SIZE, rt2661_dma_map_addr, &ring->physaddr,
738 	    0);
739 	if (error != 0) {
740 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
741 
742 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
743 		ring->desc = NULL;
744 		goto fail;
745 	}
746 
747 	ring->data = kmalloc(count * sizeof (struct rt2661_data), M_DEVBUF,
748 	    M_WAITOK | M_ZERO);
749 
750 	/*
751 	 * Pre-allocate Rx buffers and populate Rx ring.
752 	 */
753 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
754 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0,
755 	    &ring->data_dmat);
756 	if (error != 0) {
757 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
758 		goto fail;
759 	}
760 
761 	for (i = 0; i < count; i++) {
762 		desc = &sc->rxq.desc[i];
763 		data = &sc->rxq.data[i];
764 
765 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
766 		if (error != 0) {
767 			device_printf(sc->sc_dev, "could not create DMA map\n");
768 			goto fail;
769 		}
770 
771 		data->m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
772 		if (data->m == NULL) {
773 			device_printf(sc->sc_dev,
774 			    "could not allocate rx mbuf\n");
775 			error = ENOMEM;
776 			goto fail;
777 		}
778 
779 		error = bus_dmamap_load(ring->data_dmat, data->map,
780 		    mtod(data->m, void *), MCLBYTES, rt2661_dma_map_addr,
781 		    &physaddr, 0);
782 		if (error != 0) {
783 			device_printf(sc->sc_dev,
784 			    "could not load rx buf DMA map");
785 
786 			m_freem(data->m);
787 			data->m = NULL;
788 			goto fail;
789 		}
790 
791 		desc->flags = htole32(RT2661_RX_BUSY);
792 		desc->physaddr = htole32(physaddr);
793 	}
794 
795 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
796 
797 	return 0;
798 
799 fail:	rt2661_free_rx_ring(sc, ring);
800 	return error;
801 }
802 
803 static void
804 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
805 {
806 	int i;
807 
808 	for (i = 0; i < ring->count; i++)
809 		ring->desc[i].flags = htole32(RT2661_RX_BUSY);
810 
811 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
812 
813 	ring->cur = ring->next = 0;
814 }
815 
816 static void
817 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
818 {
819 	struct rt2661_data *data;
820 	int i;
821 
822 	if (ring->desc != NULL) {
823 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
824 		    BUS_DMASYNC_POSTWRITE);
825 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
826 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
827 		ring->desc = NULL;
828 	}
829 
830 	if (ring->desc_dmat != NULL) {
831 		bus_dma_tag_destroy(ring->desc_dmat);
832 		ring->desc_dmat = NULL;
833 	}
834 
835 	if (ring->data != NULL) {
836 		for (i = 0; i < ring->count; i++) {
837 			data = &ring->data[i];
838 
839 			if (data->m != NULL) {
840 				bus_dmamap_sync(ring->data_dmat, data->map,
841 				    BUS_DMASYNC_POSTREAD);
842 				bus_dmamap_unload(ring->data_dmat, data->map);
843 				m_freem(data->m);
844 				data->m = NULL;
845 			}
846 
847 			if (data->map != NULL) {
848 				bus_dmamap_destroy(ring->data_dmat, data->map);
849 				data->map = NULL;
850 			}
851 		}
852 
853 		kfree(ring->data, M_DEVBUF);
854 		ring->data = NULL;
855 	}
856 
857 	if (ring->data_dmat != NULL) {
858 		bus_dma_tag_destroy(ring->data_dmat);
859 		ring->data_dmat = NULL;
860 	}
861 }
862 
863 static int
864 rt2661_media_change(struct ifnet *ifp)
865 {
866 	struct rt2661_softc *sc = ifp->if_softc;
867 	int error;
868 
869 	error = ieee80211_media_change(ifp);
870 	if (error != ENETRESET)
871 		return error;
872 
873 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
874 		rt2661_init(sc);
875 	return 0;
876 }
877 
878 /*
879  * This function is called periodically (every 200ms) during scanning to
880  * switch from one channel to another.
881  */
882 static void
883 rt2661_next_scan(void *arg)
884 {
885 	struct rt2661_softc *sc = arg;
886 	struct ieee80211com *ic = &sc->sc_ic;
887 	struct ifnet *ifp = &ic->ic_if;
888 
889 	lwkt_serialize_enter(ifp->if_serializer);
890 	if (ic->ic_state == IEEE80211_S_SCAN)
891 		ieee80211_next_scan(ic);
892 	lwkt_serialize_exit(ifp->if_serializer);
893 }
894 
895 static int
896 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
897 {
898 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
899 	enum ieee80211_state ostate;
900 	struct ieee80211_node *ni;
901 	uint32_t tmp;
902 	int error = 0;
903 
904 	ostate = ic->ic_state;
905 	callout_stop(&sc->scan_ch);
906 
907 	if (ostate != nstate)
908 		rt2661_led_newstate(sc, nstate);
909 
910 	ieee80211_ratectl_newstate(ic, nstate);
911 
912 	switch (nstate) {
913 	case IEEE80211_S_INIT:
914 		if (ostate == IEEE80211_S_RUN) {
915 			/* abort TSF synchronization */
916 			tmp = RAL_READ(sc, RT2661_TXRX_CSR9);
917 			RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff);
918 		}
919 		break;
920 
921 	case IEEE80211_S_SCAN:
922 		rt2661_set_chan(sc, ic->ic_curchan);
923 		callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000,
924 		    rt2661_next_scan, sc);
925 		break;
926 
927 	case IEEE80211_S_AUTH:
928 	case IEEE80211_S_ASSOC:
929 		rt2661_set_chan(sc, ic->ic_curchan);
930 		break;
931 
932 	case IEEE80211_S_RUN:
933 		rt2661_set_chan(sc, ic->ic_curchan);
934 
935 		ni = ic->ic_bss;
936 
937 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
938 			rt2661_enable_mrr(sc);
939 			rt2661_set_txpreamble(sc);
940 			rt2661_set_ackrates(sc, &ni->ni_rates);
941 			rt2661_set_bssid(sc, ni->ni_bssid);
942 		}
943 
944 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
945 		    ic->ic_opmode == IEEE80211_M_IBSS) {
946 			if ((error = rt2661_prepare_beacon(sc)) != 0)
947 				break;
948 		}
949 
950 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
951 			rt2661_enable_tsf_sync(sc);
952 		break;
953 	}
954 
955 	return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
956 }
957 
958 /*
959  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
960  * 93C66).
961  */
962 static uint16_t
963 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr)
964 {
965 	uint32_t tmp;
966 	uint16_t val;
967 	int n;
968 
969 	/* clock C once before the first command */
970 	RT2661_EEPROM_CTL(sc, 0);
971 
972 	RT2661_EEPROM_CTL(sc, RT2661_S);
973 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
974 	RT2661_EEPROM_CTL(sc, RT2661_S);
975 
976 	/* write start bit (1) */
977 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
978 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
979 
980 	/* write READ opcode (10) */
981 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
982 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
983 	RT2661_EEPROM_CTL(sc, RT2661_S);
984 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
985 
986 	/* write address (A5-A0 or A7-A0) */
987 	n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7;
988 	for (; n >= 0; n--) {
989 		RT2661_EEPROM_CTL(sc, RT2661_S |
990 		    (((addr >> n) & 1) << RT2661_SHIFT_D));
991 		RT2661_EEPROM_CTL(sc, RT2661_S |
992 		    (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C);
993 	}
994 
995 	RT2661_EEPROM_CTL(sc, RT2661_S);
996 
997 	/* read data Q15-Q0 */
998 	val = 0;
999 	for (n = 15; n >= 0; n--) {
1000 		RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
1001 		tmp = RAL_READ(sc, RT2661_E2PROM_CSR);
1002 		val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n;
1003 		RT2661_EEPROM_CTL(sc, RT2661_S);
1004 	}
1005 
1006 	RT2661_EEPROM_CTL(sc, 0);
1007 
1008 	/* clear Chip Select and clock C */
1009 	RT2661_EEPROM_CTL(sc, RT2661_S);
1010 	RT2661_EEPROM_CTL(sc, 0);
1011 	RT2661_EEPROM_CTL(sc, RT2661_C);
1012 
1013 	return val;
1014 }
1015 
1016 static void
1017 rt2661_tx_intr(struct rt2661_softc *sc)
1018 {
1019 	struct ieee80211com *ic = &sc->sc_ic;
1020 	struct ifnet *ifp = ic->ic_ifp;
1021 	struct rt2661_tx_ratectl *rctl;
1022 	uint32_t val, result;
1023 	int retrycnt;
1024 
1025 	for (;;) {
1026 		struct ieee80211_ratectl_res res;
1027 
1028 		val = RAL_READ(sc, RT2661_STA_CSR4);
1029 		if (!(val & RT2661_TX_STAT_VALID))
1030 			break;
1031 
1032 		/* Gather statistics */
1033 		result = RT2661_TX_RESULT(val);
1034 		if (result == RT2661_TX_SUCCESS)
1035 			ifp->if_opackets++;
1036 		else
1037 			ifp->if_oerrors++;
1038 
1039 		/* No rate control */
1040 		if (RT2661_TX_QID(val) == 0)
1041 			continue;
1042 
1043 		/* retrieve rate control algorithm context */
1044 		rctl = STAILQ_FIRST(&sc->tx_ratectl);
1045 		if (rctl == NULL) {
1046 			/*
1047 			 * XXX
1048 			 * This really should not happen.  Maybe we should
1049 			 * use assertion here?  But why should we rely on
1050 			 * hardware to do the correct things?  Even the
1051 			 * reference driver (RT61?) provided by Ralink does
1052 			 * not provide enough clue that this kind of interrupt
1053 			 * is promised to be generated for each packet.  So
1054 			 * just print a message and keep going ...
1055 			 */
1056 			if_printf(ifp, "WARNING: no rate control information\n");
1057 			continue;
1058 		}
1059 		STAILQ_REMOVE_HEAD(&sc->tx_ratectl, link);
1060 
1061 		retrycnt = 7;
1062 		switch (result) {
1063 		case RT2661_TX_SUCCESS:
1064 			retrycnt = RT2661_TX_RETRYCNT(val);
1065 			DPRINTFN(10, ("data frame sent successfully after "
1066 			    "%d retries\n", retrycnt));
1067 			break;
1068 
1069 		case RT2661_TX_RETRY_FAIL:
1070 			DPRINTFN(9, ("sending data frame failed (too much "
1071 			    "retries)\n"));
1072 			break;
1073 
1074 		default:
1075 			/* other failure */
1076 			device_printf(sc->sc_dev,
1077 			    "sending data frame failed 0x%08x\n", val);
1078 			break;
1079 		}
1080 
1081 		res.rc_res_rateidx = rctl->rateidx;
1082 		res.rc_res_tries = retrycnt + 1;
1083 		ieee80211_ratectl_tx_complete(rctl->ni, rctl->len, &res, 1,
1084 			retrycnt, 0, result != RT2661_TX_SUCCESS);
1085 
1086 		ieee80211_free_node(rctl->ni);
1087 		rctl->ni = NULL;
1088 		kfree(rctl, M_RT2661);
1089 	}
1090 }
1091 
1092 static void
1093 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq)
1094 {
1095 	struct rt2661_tx_desc *desc;
1096 	struct rt2661_data *data;
1097 
1098 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_POSTREAD);
1099 
1100 	for (;;) {
1101 		desc = &txq->desc[txq->next];
1102 		data = &txq->data[txq->next];
1103 
1104 		if ((le32toh(desc->flags) & RT2661_TX_BUSY) ||
1105 		    !(le32toh(desc->flags) & RT2661_TX_VALID))
1106 			break;
1107 
1108 		bus_dmamap_sync(txq->data_dmat, data->map,
1109 		    BUS_DMASYNC_POSTWRITE);
1110 		bus_dmamap_unload(txq->data_dmat, data->map);
1111 		m_freem(data->m);
1112 		data->m = NULL;
1113 
1114 		/* descriptor is no longer valid */
1115 		desc->flags &= ~htole32(RT2661_TX_VALID);
1116 
1117 		DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next));
1118 
1119 		txq->queued--;
1120 		if (++txq->next >= txq->count)	/* faster than % count */
1121 			txq->next = 0;
1122 	}
1123 
1124 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1125 
1126 	if (txq->queued < txq->count) {
1127 		struct ifnet *ifp = &sc->sc_ic.ic_if;
1128 
1129 		sc->sc_tx_timer = 0;
1130 		ifp->if_flags &= ~IFF_OACTIVE;
1131 		rt2661_start(ifp);
1132 	}
1133 }
1134 
1135 static void
1136 rt2661_rx_intr(struct rt2661_softc *sc)
1137 {
1138 	struct ieee80211com *ic = &sc->sc_ic;
1139 	struct ifnet *ifp = ic->ic_ifp;
1140 	struct rt2661_rx_desc *desc;
1141 	struct rt2661_data *data;
1142 	bus_addr_t physaddr;
1143 	struct ieee80211_frame_min *wh;
1144 	struct ieee80211_node *ni;
1145 	struct mbuf *mnew, *m;
1146 	int error;
1147 
1148 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1149 	    BUS_DMASYNC_POSTREAD);
1150 
1151 	for (;;) {
1152 		uint32_t flags;
1153 		int rssi;
1154 
1155 		desc = &sc->rxq.desc[sc->rxq.cur];
1156 		data = &sc->rxq.data[sc->rxq.cur];
1157 		flags = le32toh(desc->flags);
1158 
1159 		if (flags & RT2661_RX_BUSY)
1160 			break;
1161 
1162 		if (flags & RT2661_RX_CRC_ERROR) {
1163 			/*
1164 			 * This should not happen since we did not request
1165 			 * to receive those frames when we filled TXRX_CSR0.
1166 			 */
1167 			DPRINTFN(5, ("CRC error flags 0x%08x\n", flags));
1168 			ifp->if_ierrors++;
1169 			goto skip;
1170 		}
1171 
1172 		if (flags & RT2661_RX_CIPHER_MASK) {
1173 			DPRINTFN(5, ("cipher error 0x%08x\n", flags));
1174 			ifp->if_ierrors++;
1175 			goto skip;
1176 		}
1177 
1178 		/*
1179 		 * Try to allocate a new mbuf for this ring element and load it
1180 		 * before processing the current mbuf. If the ring element
1181 		 * cannot be loaded, drop the received packet and reuse the old
1182 		 * mbuf. In the unlikely case that the old mbuf can't be
1183 		 * reloaded either, explicitly panic.
1184 		 */
1185 		mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1186 		if (mnew == NULL) {
1187 			ifp->if_ierrors++;
1188 			goto skip;
1189 		}
1190 
1191 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1192 		    BUS_DMASYNC_POSTREAD);
1193 		bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1194 
1195 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1196 		    mtod(mnew, void *), MCLBYTES, rt2661_dma_map_addr,
1197 		    &physaddr, 0);
1198 		if (error != 0) {
1199 			m_freem(mnew);
1200 
1201 			/* try to reload the old mbuf */
1202 			error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1203 			    mtod(data->m, void *), MCLBYTES,
1204 			    rt2661_dma_map_addr, &physaddr, 0);
1205 			if (error != 0) {
1206 				/* very unlikely that it will fail... */
1207 				panic("%s: could not load old rx mbuf",
1208 				    device_get_name(sc->sc_dev));
1209 			}
1210 			ifp->if_ierrors++;
1211 			goto skip;
1212 		}
1213 
1214 		/*
1215 	 	 * New mbuf successfully loaded, update Rx ring and continue
1216 		 * processing.
1217 		 */
1218 		m = data->m;
1219 		data->m = mnew;
1220 		desc->physaddr = htole32(physaddr);
1221 
1222 		/* finalize mbuf */
1223 		m->m_pkthdr.rcvif = ifp;
1224 		m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;
1225 
1226 		rssi = rt2661_get_rssi(sc, desc->rssi);
1227 
1228 		wh = mtod(m, struct ieee80211_frame_min *);
1229 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1230 			DPRINTFN(5, ("keyix %d\n", RT2661_RX_KEYIX(flags)));
1231 
1232 		ni = ieee80211_find_rxnode(ic, wh);
1233 
1234 		/* Error happened during RSSI conversion. */
1235 		if (rssi < 0)
1236 			rssi = ni->ni_rssi;
1237 
1238 		if (sc->sc_drvbpf != NULL) {
1239 			struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap;
1240 			uint32_t tsf_lo, tsf_hi;
1241 
1242 			/* get timestamp (low and high 32 bits) */
1243 			tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13);
1244 			tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12);
1245 
1246 			tap->wr_tsf =
1247 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1248 			tap->wr_flags = 0;
1249 			tap->wr_rate = rt2661_rxrate(desc);
1250 			tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1251 			tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1252 			tap->wr_antsignal = rssi;
1253 
1254 			bpf_ptap(sc->sc_drvbpf, m, tap, sc->sc_rxtap_len);
1255 		}
1256 
1257 		/* send the frame to the 802.11 layer */
1258 		if (RT2661_RX_CIPHER(flags) != RT2661_CIPHER_NONE) {
1259 			struct ieee80211_crypto_iv iv;
1260 
1261 			memcpy(iv.ic_iv, desc->iv, sizeof(iv.ic_iv));
1262 			memcpy(iv.ic_eiv, desc->eiv, sizeof(iv.ic_eiv));
1263 			ieee80211_input_withiv(ic, m, ni, rssi, 0, &iv);
1264 		} else {
1265 			ieee80211_input(ic, m, ni, rssi, 0);
1266 		}
1267 
1268 		/* node is no longer needed */
1269 		ieee80211_free_node(ni);
1270 
1271 skip:		desc->flags |= htole32(RT2661_RX_BUSY);
1272 
1273 		DPRINTFN(15, ("rx intr idx=%u\n", sc->rxq.cur));
1274 
1275 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT;
1276 	}
1277 
1278 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1279 	    BUS_DMASYNC_PREWRITE);
1280 }
1281 
1282 /* ARGSUSED */
1283 static void
1284 rt2661_mcu_beacon_expire(struct rt2661_softc *sc)
1285 {
1286 	/* do nothing */
1287 }
1288 
1289 static void
1290 rt2661_mcu_wakeup(struct rt2661_softc *sc)
1291 {
1292 	RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16);
1293 
1294 	RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7);
1295 	RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18);
1296 	RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20);
1297 
1298 	/* send wakeup command to MCU */
1299 	rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0);
1300 }
1301 
1302 static void
1303 rt2661_mcu_cmd_intr(struct rt2661_softc *sc)
1304 {
1305 	RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR);
1306 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
1307 }
1308 
1309 static void
1310 rt2661_intr(void *arg)
1311 {
1312 	struct rt2661_softc *sc = arg;
1313 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1314 	uint32_t r1, r2;
1315 
1316 	/* disable MAC and MCU interrupts */
1317 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
1318 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
1319 
1320 	/* don't re-enable interrupts if we're shutting down */
1321 	if (!(ifp->if_flags & IFF_RUNNING))
1322 		return;
1323 
1324 	r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
1325 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1);
1326 
1327 	r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
1328 	RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2);
1329 
1330 	if (r1 & RT2661_MGT_DONE)
1331 		rt2661_tx_dma_intr(sc, &sc->mgtq);
1332 
1333 	if (r1 & RT2661_RX_DONE)
1334 		rt2661_rx_intr(sc);
1335 
1336 	if (r1 & RT2661_TX0_DMA_DONE)
1337 		rt2661_tx_dma_intr(sc, &sc->txq[0]);
1338 
1339 	if (r1 & RT2661_TX1_DMA_DONE)
1340 		rt2661_tx_dma_intr(sc, &sc->txq[1]);
1341 
1342 	if (r1 & RT2661_TX2_DMA_DONE)
1343 		rt2661_tx_dma_intr(sc, &sc->txq[2]);
1344 
1345 	if (r1 & RT2661_TX3_DMA_DONE)
1346 		rt2661_tx_dma_intr(sc, &sc->txq[3]);
1347 
1348 	if (r1 & RT2661_TX_DONE)
1349 		rt2661_tx_intr(sc);
1350 
1351 	if (r2 & RT2661_MCU_CMD_DONE)
1352 		rt2661_mcu_cmd_intr(sc);
1353 
1354 	if (r2 & RT2661_MCU_BEACON_EXPIRE)
1355 		rt2661_mcu_beacon_expire(sc);
1356 
1357 	if (r2 & RT2661_MCU_WAKEUP)
1358 		rt2661_mcu_wakeup(sc);
1359 
1360 	/* re-enable MAC and MCU interrupts */
1361 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
1362 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
1363 }
1364 
1365 /* quickly determine if a given rate is CCK or OFDM */
1366 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1367 
1368 #define RAL_ACK_SIZE	(sizeof(struct ieee80211_frame_ack) + IEEE80211_FCS_LEN)
1369 #define RAL_CTS_SIZE	(sizeof(struct ieee80211_frame_cts) + IEEE80211_FCS_LEN)
1370 
1371 /*
1372  * This function is only used by the Rx radiotap code. It returns the rate at
1373  * which a given frame was received.
1374  */
1375 static uint8_t
1376 rt2661_rxrate(struct rt2661_rx_desc *desc)
1377 {
1378 	if (le32toh(desc->flags) & RT2661_RX_OFDM) {
1379 		/* reverse function of rt2661_plcp_signal */
1380 		switch (desc->rate & 0xf) {
1381 		case 0xb:	return 12;
1382 		case 0xf:	return 18;
1383 		case 0xa:	return 24;
1384 		case 0xe:	return 36;
1385 		case 0x9:	return 48;
1386 		case 0xd:	return 72;
1387 		case 0x8:	return 96;
1388 		case 0xc:	return 108;
1389 		}
1390 	} else {
1391 		if (desc->rate == 10)
1392 			return 2;
1393 		if (desc->rate == 20)
1394 			return 4;
1395 		if (desc->rate == 55)
1396 			return 11;
1397 		if (desc->rate == 110)
1398 			return 22;
1399 	}
1400 	return 2;	/* should not get there */
1401 }
1402 
1403 static uint8_t
1404 rt2661_plcp_signal(int rate)
1405 {
1406 	switch (rate) {
1407 	/* CCK rates (returned values are device-dependent) */
1408 	case 2:		return 0x0;
1409 	case 4:		return 0x1;
1410 	case 11:	return 0x2;
1411 	case 22:	return 0x3;
1412 
1413 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1414 	case 12:	return 0xb;
1415 	case 18:	return 0xf;
1416 	case 24:	return 0xa;
1417 	case 36:	return 0xe;
1418 	case 48:	return 0x9;
1419 	case 72:	return 0xd;
1420 	case 96:	return 0x8;
1421 	case 108:	return 0xc;
1422 
1423 	/* unsupported rates (should not get there) */
1424 	default:	return 0xff;
1425 	}
1426 }
1427 
1428 static void
1429 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc,
1430     uint32_t flags, uint16_t xflags, int len, int rate,
1431     const bus_dma_segment_t *segs, int nsegs, int ac, int ratectl,
1432     const struct ieee80211_key *key, void *buf,
1433     const struct ieee80211_crypto_iv *iv)
1434 {
1435 	const struct ieee80211_cipher *cip = NULL;
1436 	struct ieee80211com *ic = &sc->sc_ic;
1437 	uint16_t plcp_length;
1438 	int i, remainder;
1439 
1440 	if (key != NULL)
1441 		cip = key->wk_cipher;
1442 
1443 	desc->flags = htole32(flags);
1444 	desc->flags |= htole32(len << 16);
1445 	desc->flags |= htole32(RT2661_TX_VALID);
1446 	if (key != NULL) {
1447 		int cipher = rt2661_cipher(key);
1448 
1449 		desc->flags |= htole32(cipher << 29);
1450 		desc->flags |= htole32(key->wk_keyix << 10);
1451 		if (key->wk_keyix >= IEEE80211_WEP_NKID)
1452 			desc->flags |= htole32(RT2661_TX_PAIRWISE_KEY);
1453 
1454 		/* XXX fragmentation */
1455 		desc->flags |= htole32(RT2661_TX_HWMIC);
1456 	}
1457 
1458 	desc->xflags = htole16(xflags);
1459 	desc->xflags |= htole16(nsegs << 13);
1460 	if (key != NULL) {
1461 		int hdrsize;
1462 
1463 		hdrsize = ieee80211_hdrspace(ic, buf);
1464 		desc->xflags |= htole16(hdrsize);
1465 	}
1466 
1467 	desc->wme = htole16(
1468 	    RT2661_QID(ac) |
1469 	    RT2661_AIFSN(2) |
1470 	    RT2661_LOGCWMIN(4) |
1471 	    RT2661_LOGCWMAX(10));
1472 
1473 	if (key != NULL && iv != NULL) {
1474 		memcpy(desc->iv, iv->ic_iv, sizeof(desc->iv));
1475 		memcpy(desc->eiv, iv->ic_eiv, sizeof(desc->eiv));
1476 	}
1477 
1478 	/*
1479 	 * Remember whether TX rate control information should be gathered.
1480 	 * This field is driver private data only.  It will be made available
1481 	 * by the NIC in STA_CSR4 on Tx done interrupts.
1482 	 */
1483 	desc->qid = ratectl;
1484 
1485 	/* setup PLCP fields */
1486 	desc->plcp_signal  = rt2661_plcp_signal(rate);
1487 	desc->plcp_service = 4;
1488 
1489 	len += IEEE80211_CRC_LEN;
1490 	if (cip != NULL) {
1491 		len += cip->ic_header + cip->ic_trailer;
1492 
1493 		/* XXX fragmentation */
1494 		len += cip->ic_miclen;
1495 	}
1496 
1497 	if (RAL_RATE_IS_OFDM(rate)) {
1498 		desc->flags |= htole32(RT2661_TX_OFDM);
1499 
1500 		plcp_length = len & 0xfff;
1501 		desc->plcp_length_hi = plcp_length >> 6;
1502 		desc->plcp_length_lo = plcp_length & 0x3f;
1503 	} else {
1504 		plcp_length = (16 * len + rate - 1) / rate;
1505 		if (rate == 22) {
1506 			remainder = (16 * len) % 22;
1507 			if (remainder != 0 && remainder < 7)
1508 				desc->plcp_service |= RT2661_PLCP_LENGEXT;
1509 		}
1510 		desc->plcp_length_hi = plcp_length >> 8;
1511 		desc->plcp_length_lo = plcp_length & 0xff;
1512 
1513 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1514 			desc->plcp_signal |= 0x08;
1515 	}
1516 
1517 	/* RT2x61 supports scatter with up to 5 segments */
1518 	for (i = 0; i < nsegs; i++) {
1519 		desc->addr[i] = htole32(segs[i].ds_addr);
1520 		desc->len [i] = htole16(segs[i].ds_len);
1521 	}
1522 
1523 	desc->flags |= htole32(RT2661_TX_BUSY);
1524 }
1525 
1526 static int
1527 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0,
1528     struct ieee80211_node *ni)
1529 {
1530 	struct ieee80211com *ic = &sc->sc_ic;
1531 	struct rt2661_tx_desc *desc;
1532 	struct rt2661_data *data;
1533 	struct ieee80211_frame *wh;
1534 	struct rt2661_dmamap map;
1535 	uint16_t dur;
1536 	uint32_t flags = 0;	/* XXX HWSEQ */
1537 	int rate, error;
1538 
1539 	desc = &sc->mgtq.desc[sc->mgtq.cur];
1540 	data = &sc->mgtq.data[sc->mgtq.cur];
1541 
1542 	/* send mgt frames at the lowest available rate */
1543 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1544 
1545 	error = bus_dmamap_load_mbuf(sc->mgtq.data_dmat, data->map, m0,
1546 				     rt2661_dma_map_mbuf, &map, 0);
1547 	if (error != 0) {
1548 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1549 		    error);
1550 		ieee80211_free_node(ni);
1551 		m_freem(m0);
1552 		return error;
1553 	}
1554 
1555 	if (sc->sc_drvbpf != NULL) {
1556 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1557 
1558 		tap->wt_flags = 0;
1559 		tap->wt_rate = rate;
1560 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1561 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1562 
1563 		bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len);
1564 	}
1565 
1566 	data->m = m0;
1567 
1568 	wh = mtod(m0, struct ieee80211_frame *);
1569 
1570 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1571 		flags |= RT2661_TX_NEED_ACK;
1572 
1573 		dur = ieee80211_txtime(ni, RAL_ACK_SIZE, rate, ic->ic_flags) +
1574 		      sc->sc_sifs;
1575 		*(uint16_t *)wh->i_dur = htole16(dur);
1576 
1577 		/* tell hardware to add timestamp in probe responses */
1578 		if ((wh->i_fc[0] &
1579 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1580 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1581 			flags |= RT2661_TX_TIMESTAMP;
1582 	}
1583 
1584 	rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */,
1585 	    m0->m_pkthdr.len, rate, map.segs, map.nseg, RT2661_QID_MGT, 0, NULL, NULL, NULL);
1586 
1587 	bus_dmamap_sync(sc->mgtq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1588 	bus_dmamap_sync(sc->mgtq.desc_dmat, sc->mgtq.desc_map,
1589 	    BUS_DMASYNC_PREWRITE);
1590 
1591 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1592 	    m0->m_pkthdr.len, sc->mgtq.cur, rate));
1593 
1594 	/* kick mgt */
1595 	sc->mgtq.queued++;
1596 	sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT;
1597 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT);
1598 
1599 	ieee80211_free_node(ni);
1600 
1601 	return 0;
1602 }
1603 
1604 /*
1605  * Build a RTS control frame.
1606  */
1607 static struct mbuf *
1608 rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh,
1609     uint16_t dur)
1610 {
1611 	struct ieee80211_frame_rts *rts;
1612 	struct mbuf *m;
1613 
1614 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1615 	if (m == NULL) {
1616 		sc->sc_ic.ic_stats.is_tx_nobuf++;
1617 		device_printf(sc->sc_dev, "could not allocate RTS frame\n");
1618 		return NULL;
1619 	}
1620 
1621 	rts = mtod(m, struct ieee80211_frame_rts *);
1622 
1623 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1624 	    IEEE80211_FC0_SUBTYPE_RTS;
1625 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1626 	*(uint16_t *)rts->i_dur = htole16(dur);
1627 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1628 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1629 
1630 	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1631 
1632 	return m;
1633 }
1634 
1635 static int
1636 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0,
1637     struct ieee80211_node *ni, int ac)
1638 {
1639 	struct ieee80211com *ic = &sc->sc_ic;
1640 	struct rt2661_tx_ring *txq = &sc->txq[ac];
1641 	struct rt2661_tx_desc *desc;
1642 	struct rt2661_data *data;
1643 	struct rt2661_tx_ratectl *rctl;
1644 	struct ieee80211_frame *wh;
1645 	struct ieee80211_key *k = NULL;
1646 	const struct chanAccParams *cap;
1647 	struct mbuf *mnew;
1648 	struct rt2661_dmamap map;
1649 	uint16_t dur;
1650 	uint32_t flags = 0;
1651 	int error, rate, ackrate, noack = 0, rateidx;
1652 	struct ieee80211_crypto_iv iv, *ivp = NULL;
1653 
1654 	wh = mtod(m0, struct ieee80211_frame *);
1655 	if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
1656 		cap = &ic->ic_wme.wme_chanParams;
1657 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1658 	}
1659 
1660 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1661 		k = ieee80211_crypto_findkey(ic, ni, m0);
1662 		if (k == NULL) {
1663 			m_freem(m0);
1664 			return ENOBUFS;
1665 		}
1666 
1667 		if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1668 			k = ieee80211_crypto_encap_withkey(ic, m0, k);
1669 		} else {
1670 			k = ieee80211_crypto_getiv(ic, &iv, k);
1671 			ivp = &iv;
1672 		}
1673 		if (k == NULL) {
1674 			m_freem(m0);
1675 			return ENOBUFS;
1676 		}
1677 
1678 		if (ivp == NULL)
1679 			k = NULL;
1680 
1681 		/* packet header may have moved, reset our local pointer */
1682 		wh = mtod(m0, struct ieee80211_frame *);
1683 	}
1684 
1685 	ieee80211_ratectl_findrate(ni, m0->m_pkthdr.len, &rateidx, 1);
1686 	rate = IEEE80211_RS_RATE(&ni->ni_rates, rateidx);
1687 
1688 	ackrate = ieee80211_ack_rate(ni, rate);
1689 
1690 	/*
1691 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1692 	 * for directed frames only when the length of the MPDU is greater
1693 	 * than the length threshold indicated by [...]" ic_rtsthreshold.
1694 	 */
1695 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1696 	    m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1697 		struct mbuf *m;
1698 		uint16_t dur;
1699 		int rtsrate;
1700 
1701 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1702 
1703 		/* XXX: noack (QoS)? */
1704 		dur = ieee80211_txtime(ni, m0->m_pkthdr.len + IEEE80211_FCS_LEN,
1705 				       rate, ic->ic_flags) +
1706 		      ieee80211_txtime(ni, RAL_CTS_SIZE, rtsrate, ic->ic_flags)+
1707 		      ieee80211_txtime(ni, RAL_ACK_SIZE, ackrate, ic->ic_flags)+
1708 		      3 * sc->sc_sifs;
1709 
1710 		m = rt2661_get_rts(sc, wh, dur);
1711 
1712 		desc = &txq->desc[txq->cur];
1713 		data = &txq->data[txq->cur];
1714 
1715 		error = bus_dmamap_load_mbuf(txq->data_dmat, data->map, m,
1716 					     rt2661_dma_map_mbuf, &map, 0);
1717 		if (error != 0) {
1718 			device_printf(sc->sc_dev,
1719 			    "could not map mbuf (error %d)\n", error);
1720 			m_freem(m);
1721 			m_freem(m0);
1722 			return error;
1723 		}
1724 
1725 		data->m = m;
1726 
1727 		rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK |
1728 				     RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len,
1729 				     rtsrate, map.segs, map.nseg, ac, 0, NULL, NULL, NULL);
1730 
1731 		bus_dmamap_sync(txq->data_dmat, data->map,
1732 		    BUS_DMASYNC_PREWRITE);
1733 
1734 		txq->queued++;
1735 		txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1736 
1737 		/*
1738 		 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1739 		 * asynchronous data frame shall be transmitted after the CTS
1740 		 * frame and a SIFS period.
1741 		 */
1742 		flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS;
1743 	}
1744 
1745 	data = &txq->data[txq->cur];
1746 	desc = &txq->desc[txq->cur];
1747 
1748 	error = bus_dmamap_load_mbuf(txq->data_dmat, data->map, m0,
1749 				     rt2661_dma_map_mbuf, &map, 0);
1750 	if (error != 0 && error != EFBIG) {
1751 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1752 		    error);
1753 		m_freem(m0);
1754 		return error;
1755 	}
1756 	if (error != 0) {
1757 		mnew = m_defrag(m0, MB_DONTWAIT);
1758 		if (mnew == NULL) {
1759 			device_printf(sc->sc_dev,
1760 			    "could not defragment mbuf\n");
1761 			m_freem(m0);
1762 			return ENOBUFS;
1763 		}
1764 		m0 = mnew;
1765 
1766 		error = bus_dmamap_load_mbuf(txq->data_dmat, data->map, m0,
1767 					     rt2661_dma_map_mbuf, &map, 0);
1768 		if (error != 0) {
1769 			device_printf(sc->sc_dev,
1770 			    "could not map mbuf (error %d)\n", error);
1771 			m_freem(m0);
1772 			return error;
1773 		}
1774 
1775 		/* packet header have moved, reset our local pointer */
1776 		wh = mtod(m0, struct ieee80211_frame *);
1777 	}
1778 
1779 	if (sc->sc_drvbpf != NULL) {
1780 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1781 
1782 		tap->wt_flags = 0;
1783 		tap->wt_rate = rate;
1784 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1785 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1786 
1787 		bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len);
1788 	}
1789 
1790 	data->m = m0;
1791 
1792 	rctl = kmalloc(sizeof(*rctl), M_RT2661, M_NOWAIT);
1793 	if (rctl != NULL) {
1794 		rctl->ni = ni;
1795 		rctl->len = m0->m_pkthdr.len;
1796 		rctl->rateidx = rateidx;
1797 		STAILQ_INSERT_TAIL(&sc->tx_ratectl, rctl, link);
1798 	}
1799 
1800 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1801 		flags |= RT2661_TX_NEED_ACK;
1802 
1803 		dur = ieee80211_txtime(ni, RAL_ACK_SIZE, ackrate, ic->ic_flags)+
1804 		      sc->sc_sifs;
1805 		*(uint16_t *)wh->i_dur = htole16(dur);
1806 	}
1807 
1808 	rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate,
1809 			     map.segs, map.nseg, ac, rctl != NULL, k, wh, ivp);
1810 
1811 	bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1812 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1813 
1814 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1815 	    m0->m_pkthdr.len, txq->cur, rate));
1816 
1817 	/* kick Tx */
1818 	txq->queued++;
1819 	txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1820 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1 << ac);
1821 
1822 	if (rctl == NULL)
1823 		ieee80211_free_node(ni);
1824 
1825 	return 0;
1826 }
1827 
1828 static void
1829 rt2661_start(struct ifnet *ifp)
1830 {
1831 	struct rt2661_softc *sc = ifp->if_softc;
1832 	struct ieee80211com *ic = &sc->sc_ic;
1833 	struct mbuf *m0;
1834 	struct ether_header *eh;
1835 	struct ieee80211_node *ni;
1836 	int ac;
1837 
1838 	/* prevent management frames from being sent if we're not ready */
1839 	if (!(ifp->if_flags & IFF_RUNNING))
1840 		return;
1841 
1842 	for (;;) {
1843 		IF_POLL(&ic->ic_mgtq, m0);
1844 		if (m0 != NULL) {
1845 			if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) {
1846 				ifp->if_flags |= IFF_OACTIVE;
1847 				break;
1848 			}
1849 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1850 
1851 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1852 			m0->m_pkthdr.rcvif = NULL;
1853 
1854 			if (ic->ic_rawbpf != NULL)
1855 				bpf_mtap(ic->ic_rawbpf, m0);
1856 
1857 			if (rt2661_tx_mgt(sc, m0, ni) != 0)
1858 				break;
1859 		} else {
1860 			if (ic->ic_state != IEEE80211_S_RUN)
1861 				break;
1862 
1863 			m0 = ifq_dequeue(&ifp->if_snd, NULL);
1864 			if (m0 == NULL)
1865 				break;
1866 
1867 			if (m0->m_len < sizeof (struct ether_header) &&
1868 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1869 				continue;
1870 
1871 			eh = mtod(m0, struct ether_header *);
1872 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1873 			if (ni == NULL) {
1874 				m_freem(m0);
1875 				ifp->if_oerrors++;
1876 				continue;
1877 			}
1878 
1879 			/* classify mbuf so we can find which tx ring to use */
1880 			if (ieee80211_classify(ic, m0, ni) != 0) {
1881 				m_freem(m0);
1882 				ieee80211_free_node(ni);
1883 				ifp->if_oerrors++;
1884 				continue;
1885 			}
1886 
1887 			/* no QoS encapsulation for EAPOL frames */
1888 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1889 			    M_WME_GETAC(m0) : WME_AC_BE;
1890 
1891 			if (sc->txq[ac].queued >= RT2661_TX_RING_COUNT - 1) {
1892 				/* there is no place left in this ring */
1893 				ifp->if_flags |= IFF_OACTIVE;
1894 				m_freem(m0);
1895 				ieee80211_free_node(ni);
1896 				break;
1897 			}
1898 
1899 			BPF_MTAP(ifp, m0);
1900 
1901 			m0 = ieee80211_encap(ic, m0, ni);
1902 			if (m0 == NULL) {
1903 				ieee80211_free_node(ni);
1904 				ifp->if_oerrors++;
1905 				continue;
1906 			}
1907 
1908 			if (ic->ic_rawbpf != NULL)
1909 				bpf_mtap(ic->ic_rawbpf, m0);
1910 
1911 			if (rt2661_tx_data(sc, m0, ni, ac) != 0) {
1912 				ieee80211_free_node(ni);
1913 				ifp->if_oerrors++;
1914 				break;
1915 			}
1916 		}
1917 
1918 		sc->sc_tx_timer = 5;
1919 		ifp->if_timer = 1;
1920 	}
1921 }
1922 
1923 static void
1924 rt2661_watchdog(struct ifnet *ifp)
1925 {
1926 	struct rt2661_softc *sc = ifp->if_softc;
1927 	struct ieee80211com *ic = &sc->sc_ic;
1928 
1929 	ifp->if_timer = 0;
1930 
1931 	if (sc->sc_tx_timer > 0) {
1932 		if (--sc->sc_tx_timer == 0) {
1933 			device_printf(sc->sc_dev, "device timeout\n");
1934 			rt2661_init(sc);
1935 			ifp->if_oerrors++;
1936 			return;
1937 		}
1938 		ifp->if_timer = 1;
1939 	}
1940 
1941 	ieee80211_watchdog(ic);
1942 }
1943 
1944 /*
1945  * This function allows for fast channel switching in monitor mode (used by
1946  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1947  * generate a new beacon frame.
1948  */
1949 static int
1950 rt2661_reset(struct ifnet *ifp)
1951 {
1952 	struct rt2661_softc *sc = ifp->if_softc;
1953 	struct ieee80211com *ic = &sc->sc_ic;
1954 
1955 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
1956 		return ENETRESET;
1957 
1958 	rt2661_set_chan(sc, ic->ic_curchan);
1959 
1960 	return 0;
1961 }
1962 
1963 static int
1964 rt2661_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1965 {
1966 	struct rt2661_softc *sc = ifp->if_softc;
1967 	struct ieee80211com *ic = &sc->sc_ic;
1968 	int error = 0;
1969 
1970 	switch (cmd) {
1971 	case SIOCSIFFLAGS:
1972 		if (ifp->if_flags & IFF_UP) {
1973 			if (ifp->if_flags & IFF_RUNNING)
1974 				rt2661_update_promisc(sc);
1975 			else
1976 				rt2661_init(sc);
1977 		} else {
1978 			if (ifp->if_flags & IFF_RUNNING)
1979 				rt2661_stop(sc);
1980 		}
1981 		break;
1982 
1983 	default:
1984 		error = ieee80211_ioctl(ic, cmd, data, cr);
1985 	}
1986 
1987 	if (error == ENETRESET) {
1988 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1989 		    (IFF_UP | IFF_RUNNING) &&
1990 		    (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1991 			rt2661_init(sc);
1992 		error = 0;
1993 	}
1994 	return error;
1995 }
1996 
1997 static void
1998 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val)
1999 {
2000 	uint32_t tmp;
2001 	int ntries;
2002 
2003 	for (ntries = 0; ntries < 100; ntries++) {
2004 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2005 			break;
2006 		DELAY(1);
2007 	}
2008 	if (ntries == 100) {
2009 		device_printf(sc->sc_dev, "could not write to BBP\n");
2010 		return;
2011 	}
2012 
2013 	tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val;
2014 	RAL_WRITE(sc, RT2661_PHY_CSR3, tmp);
2015 
2016 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2017 }
2018 
2019 static uint8_t
2020 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg)
2021 {
2022 	uint32_t val;
2023 	int ntries;
2024 
2025 	for (ntries = 0; ntries < 100; ntries++) {
2026 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2027 			break;
2028 		DELAY(1);
2029 	}
2030 	if (ntries == 100) {
2031 		device_printf(sc->sc_dev, "could not read from BBP\n");
2032 		return 0;
2033 	}
2034 
2035 	val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8;
2036 	RAL_WRITE(sc, RT2661_PHY_CSR3, val);
2037 
2038 	for (ntries = 0; ntries < 100; ntries++) {
2039 		val = RAL_READ(sc, RT2661_PHY_CSR3);
2040 		if (!(val & RT2661_BBP_BUSY))
2041 			return val & 0xff;
2042 		DELAY(1);
2043 	}
2044 
2045 	device_printf(sc->sc_dev, "could not read from BBP\n");
2046 	return 0;
2047 }
2048 
2049 static void
2050 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val)
2051 {
2052 	uint32_t tmp;
2053 	int ntries;
2054 
2055 	for (ntries = 0; ntries < 100; ntries++) {
2056 		if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY))
2057 			break;
2058 		DELAY(1);
2059 	}
2060 	if (ntries == 100) {
2061 		device_printf(sc->sc_dev, "could not write to RF\n");
2062 		return;
2063 	}
2064 
2065 	tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 |
2066 	    (reg & 3);
2067 	RAL_WRITE(sc, RT2661_PHY_CSR4, tmp);
2068 
2069 	/* remember last written value in sc */
2070 	sc->rf_regs[reg] = val;
2071 
2072 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff));
2073 }
2074 
2075 static int
2076 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg)
2077 {
2078 	if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY)
2079 		return EIO;	/* there is already a command pending */
2080 
2081 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
2082 	    RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg);
2083 
2084 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd);
2085 
2086 	return 0;
2087 }
2088 
2089 static void
2090 rt2661_select_antenna(struct rt2661_softc *sc)
2091 {
2092 	uint8_t bbp4, bbp77;
2093 	uint32_t tmp;
2094 
2095 	bbp4  = rt2661_bbp_read(sc,  4);
2096 	bbp77 = rt2661_bbp_read(sc, 77);
2097 
2098 	/* TBD */
2099 
2100 	/* make sure Rx is disabled before switching antenna */
2101 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2102 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2103 
2104 	rt2661_bbp_write(sc,  4, bbp4);
2105 	rt2661_bbp_write(sc, 77, bbp77);
2106 
2107 	/* restore Rx filter */
2108 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2109 }
2110 
2111 /*
2112  * Enable multi-rate retries for frames sent at OFDM rates.
2113  * In 802.11b/g mode, allow fallback to CCK rates.
2114  */
2115 static void
2116 rt2661_enable_mrr(struct rt2661_softc *sc)
2117 {
2118 	struct ieee80211com *ic = &sc->sc_ic;
2119 	uint32_t tmp;
2120 
2121 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2122 
2123 	tmp &= ~RT2661_MRR_CCK_FALLBACK;
2124 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
2125 		tmp |= RT2661_MRR_CCK_FALLBACK;
2126 	tmp |= RT2661_MRR_ENABLED;
2127 	tmp |= RT2661_SRETRY_LIMIT(7) | RT2661_LRETRY_LIMIT(4);
2128 
2129 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2130 }
2131 
2132 static void
2133 rt2661_set_txpreamble(struct rt2661_softc *sc)
2134 {
2135 	uint32_t tmp;
2136 
2137 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2138 
2139 	tmp &= ~RT2661_SHORT_PREAMBLE;
2140 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
2141 		tmp |= RT2661_SHORT_PREAMBLE;
2142 
2143 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2144 }
2145 
2146 static void
2147 rt2661_set_ackrates(struct rt2661_softc *sc, const struct ieee80211_rateset *rs)
2148 {
2149 #define RV(r)	((r) & IEEE80211_RATE_VAL)
2150 	struct ieee80211com *ic = &sc->sc_ic;
2151 	uint32_t mask = 0;
2152 	uint8_t rate;
2153 	int i, j;
2154 
2155 	for (i = 0; i < rs->rs_nrates; i++) {
2156 		rate = rs->rs_rates[i];
2157 
2158 		if (!(rate & IEEE80211_RATE_BASIC))
2159 			continue;
2160 
2161 		/*
2162 		 * Find h/w rate index.  We know it exists because the rate
2163 		 * set has already been negotiated.
2164 		 */
2165 		for (j = 0; rt2661_rateset_11g.rs_rates[j] != RV(rate); j++)
2166 			; /* EMPTY */
2167 
2168 		mask |= 1 << j;
2169 	}
2170 
2171 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan) &&
2172 	    ic->ic_curmode != IEEE80211_MODE_11B &&
2173 	    ieee80211_iserp_rateset(ic, rs)) {
2174 		/*
2175 		 * Always set following rates as ACK rates to conform
2176 		 * IEEE Std 802.11g-2003 clause 9.6
2177 		 *
2178 		 * 24Mbits/s	0x100
2179 		 * 12Mbits/s	0x040
2180 		 *  6Mbits/s	0x010
2181 		 */
2182 		mask |= 0x150;
2183 	}
2184 
2185 	RAL_WRITE(sc, RT2661_TXRX_CSR5, mask);
2186 
2187 	DPRINTF(("Setting ack rate mask to 0x%x\n", mask));
2188 #undef RV
2189 }
2190 
2191 /*
2192  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
2193  * driver.
2194  */
2195 static void
2196 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c)
2197 {
2198 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
2199 	uint32_t tmp;
2200 
2201 	/* update all BBP registers that depend on the band */
2202 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
2203 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
2204 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2205 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
2206 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
2207 	}
2208 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2209 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2210 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
2211 	}
2212 
2213 	rt2661_bbp_write(sc,  17, bbp17);
2214 	rt2661_bbp_write(sc,  96, bbp96);
2215 	rt2661_bbp_write(sc, 104, bbp104);
2216 
2217 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2218 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2219 		rt2661_bbp_write(sc, 75, 0x80);
2220 		rt2661_bbp_write(sc, 86, 0x80);
2221 		rt2661_bbp_write(sc, 88, 0x80);
2222 	}
2223 
2224 	rt2661_bbp_write(sc, 35, bbp35);
2225 	rt2661_bbp_write(sc, 97, bbp97);
2226 	rt2661_bbp_write(sc, 98, bbp98);
2227 
2228 	tmp = RAL_READ(sc, RT2661_PHY_CSR0);
2229 	tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ);
2230 	if (IEEE80211_IS_CHAN_2GHZ(c))
2231 		tmp |= RT2661_PA_PE_2GHZ;
2232 	else
2233 		tmp |= RT2661_PA_PE_5GHZ;
2234 	RAL_WRITE(sc, RT2661_PHY_CSR0, tmp);
2235 }
2236 
2237 static void
2238 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c)
2239 {
2240 	struct ieee80211com *ic = &sc->sc_ic;
2241 	const struct rfprog *rfprog;
2242 	uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT;
2243 	int8_t power;
2244 	u_int i, chan;
2245 
2246 	chan = ieee80211_chan2ieee(ic, c);
2247 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2248 		return;
2249 
2250 	/* select the appropriate RF settings based on what EEPROM says */
2251 	rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2;
2252 
2253 	/* find the settings for this channel (we know it exists) */
2254 	for (i = 0; rfprog[i].chan != chan; i++);
2255 
2256 	power = sc->txpow[i];
2257 	if (power < 0) {
2258 		bbp94 += power;
2259 		power = 0;
2260 	} else if (power > 31) {
2261 		bbp94 += power - 31;
2262 		power = 31;
2263 	}
2264 
2265 	/*
2266 	 * If we are switching from the 2GHz band to the 5GHz band or
2267 	 * vice-versa, BBP registers need to be reprogrammed.
2268 	 */
2269 	if (c->ic_flags != sc->sc_curchan->ic_flags) {
2270 		rt2661_select_band(sc, c);
2271 		rt2661_select_antenna(sc);
2272 	}
2273 	sc->sc_curchan = c;
2274 
2275 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2276 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2277 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2278 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2279 
2280 	DELAY(200);
2281 
2282 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2283 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2284 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1);
2285 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2286 
2287 	DELAY(200);
2288 
2289 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2290 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2291 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2292 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2293 
2294 	/* enable smart mode for MIMO-capable RFs */
2295 	bbp3 = rt2661_bbp_read(sc, 3);
2296 
2297 	bbp3 &= ~RT2661_SMART_MODE;
2298 	if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529)
2299 		bbp3 |= RT2661_SMART_MODE;
2300 
2301 	rt2661_bbp_write(sc, 3, bbp3);
2302 
2303 	if (bbp94 != RT2661_BBPR94_DEFAULT)
2304 		rt2661_bbp_write(sc, 94, bbp94);
2305 
2306 	/* 5GHz radio needs a 1ms delay here */
2307 	if (IEEE80211_IS_CHAN_5GHZ(c))
2308 		DELAY(1000);
2309 
2310 	sc->sc_sifs = IEEE80211_IS_CHAN_5GHZ(c) ? IEEE80211_DUR_OFDM_SIFS
2311 						: IEEE80211_DUR_SIFS;
2312 }
2313 
2314 static void
2315 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid)
2316 {
2317 	uint32_t tmp;
2318 
2319 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2320 	RAL_WRITE(sc, RT2661_MAC_CSR4, tmp);
2321 
2322 	tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16;
2323 	RAL_WRITE(sc, RT2661_MAC_CSR5, tmp);
2324 }
2325 
2326 static void
2327 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr)
2328 {
2329 	uint32_t tmp;
2330 
2331 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2332 	RAL_WRITE(sc, RT2661_MAC_CSR2, tmp);
2333 
2334 	tmp = addr[4] | addr[5] << 8;
2335 	RAL_WRITE(sc, RT2661_MAC_CSR3, tmp);
2336 }
2337 
2338 static void
2339 rt2661_update_promisc(struct rt2661_softc *sc)
2340 {
2341 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2342 	uint32_t tmp;
2343 
2344 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2345 
2346 	tmp &= ~RT2661_DROP_NOT_TO_ME;
2347 	if (!(ifp->if_flags & IFF_PROMISC))
2348 		tmp |= RT2661_DROP_NOT_TO_ME;
2349 
2350 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2351 
2352 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2353 	    "entering" : "leaving"));
2354 }
2355 
2356 /*
2357  * Update QoS (802.11e) settings for each h/w Tx ring.
2358  */
2359 static int
2360 rt2661_wme_update(struct ieee80211com *ic)
2361 {
2362 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
2363 	const struct wmeParams *wmep;
2364 
2365 	wmep = ic->ic_wme.wme_chanParams.cap_wmeParams;
2366 
2367 	/* XXX: not sure about shifts. */
2368 	/* XXX: the reference driver plays with AC_VI settings too. */
2369 
2370 	/* update TxOp */
2371 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR0,
2372 	    wmep[WME_AC_BE].wmep_txopLimit << 16 |
2373 	    wmep[WME_AC_BK].wmep_txopLimit);
2374 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR1,
2375 	    wmep[WME_AC_VI].wmep_txopLimit << 16 |
2376 	    wmep[WME_AC_VO].wmep_txopLimit);
2377 
2378 	/* update CWmin */
2379 	RAL_WRITE(sc, RT2661_CWMIN_CSR,
2380 	    wmep[WME_AC_BE].wmep_logcwmin << 12 |
2381 	    wmep[WME_AC_BK].wmep_logcwmin <<  8 |
2382 	    wmep[WME_AC_VI].wmep_logcwmin <<  4 |
2383 	    wmep[WME_AC_VO].wmep_logcwmin);
2384 
2385 	/* update CWmax */
2386 	RAL_WRITE(sc, RT2661_CWMAX_CSR,
2387 	    wmep[WME_AC_BE].wmep_logcwmax << 12 |
2388 	    wmep[WME_AC_BK].wmep_logcwmax <<  8 |
2389 	    wmep[WME_AC_VI].wmep_logcwmax <<  4 |
2390 	    wmep[WME_AC_VO].wmep_logcwmax);
2391 
2392 	/* update Aifsn */
2393 	RAL_WRITE(sc, RT2661_AIFSN_CSR,
2394 	    wmep[WME_AC_BE].wmep_aifsn << 12 |
2395 	    wmep[WME_AC_BK].wmep_aifsn <<  8 |
2396 	    wmep[WME_AC_VI].wmep_aifsn <<  4 |
2397 	    wmep[WME_AC_VO].wmep_aifsn);
2398 
2399 	return 0;
2400 }
2401 
2402 static void
2403 rt2661_update_slot(struct ifnet *ifp)
2404 {
2405 	struct rt2661_softc *sc = ifp->if_softc;
2406 	struct ieee80211com *ic = &sc->sc_ic;
2407 	uint8_t slottime;
2408 	uint32_t tmp;
2409 
2410 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2411 
2412 	tmp = RAL_READ(sc, RT2661_MAC_CSR9);
2413 	tmp = (tmp & ~0xff) | slottime;
2414 	RAL_WRITE(sc, RT2661_MAC_CSR9, tmp);
2415 }
2416 
2417 static const char *
2418 rt2661_get_rf(int rev)
2419 {
2420 	switch (rev) {
2421 	case RT2661_RF_5225:	return "RT5225";
2422 	case RT2661_RF_5325:	return "RT5325 (MIMO XR)";
2423 	case RT2661_RF_2527:	return "RT2527";
2424 	case RT2661_RF_2529:	return "RT2529 (MIMO XR)";
2425 	default:		return "unknown";
2426 	}
2427 }
2428 
2429 static void
2430 rt2661_read_config(struct rt2661_softc *sc)
2431 {
2432 	struct ieee80211com *ic = &sc->sc_ic;
2433 	uint16_t val;
2434 	int i, start_chan;
2435 
2436 	/* read MAC address */
2437 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01);
2438 	ic->ic_myaddr[0] = val & 0xff;
2439 	ic->ic_myaddr[1] = val >> 8;
2440 
2441 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23);
2442 	ic->ic_myaddr[2] = val & 0xff;
2443 	ic->ic_myaddr[3] = val >> 8;
2444 
2445 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45);
2446 	ic->ic_myaddr[4] = val & 0xff;
2447 	ic->ic_myaddr[5] = val >> 8;
2448 
2449 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA);
2450 	/* XXX: test if different from 0xffff? */
2451 	sc->rf_rev   = (val >> 11) & 0x1f;
2452 	sc->hw_radio = (val >> 10) & 0x1;
2453 	sc->rx_ant   = (val >> 4)  & 0x3;
2454 	sc->tx_ant   = (val >> 2)  & 0x3;
2455 	sc->nb_ant   = val & 0x3;
2456 
2457 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
2458 
2459 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2);
2460 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
2461 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
2462 
2463 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2464 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
2465 
2466 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET);
2467 	if ((val & 0xff) != 0xff)
2468 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
2469 
2470 	/* Only [-10, 10] is valid */
2471 	if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10)
2472 		sc->rssi_2ghz_corr = 0;
2473 
2474 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET);
2475 	if ((val & 0xff) != 0xff)
2476 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
2477 
2478 	/* Only [-10, 10] is valid */
2479 	if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10)
2480 		sc->rssi_5ghz_corr = 0;
2481 
2482 	/* adjust RSSI correction for external low-noise amplifier */
2483 	if (sc->ext_2ghz_lna)
2484 		sc->rssi_2ghz_corr -= 14;
2485 	if (sc->ext_5ghz_lna)
2486 		sc->rssi_5ghz_corr -= 14;
2487 
2488 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2489 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
2490 
2491 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET);
2492 	if ((val >> 8) != 0xff)
2493 		sc->rfprog = (val >> 8) & 0x3;
2494 	if ((val & 0xff) != 0xff)
2495 		sc->rffreq = val & 0xff;
2496 
2497 	DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq));
2498 
2499 #define NCHAN_2GHZ	14
2500 #define NCHAN_5GHZ	24
2501 	/*
2502 	 * Read channel TX power
2503 	 */
2504 	start_chan = 0;
2505 	rt2661_read_txpower_config(sc, RT2661_EEPROM_TXPOWER_2GHZ,
2506 				   NCHAN_2GHZ, &start_chan);
2507 	rt2661_read_txpower_config(sc, RT2661_EEPROM_TXPOWER_5GHZ,
2508 				   NCHAN_5GHZ, &start_chan);
2509 #undef NCHAN_2GHZ
2510 #undef NCHAN_5GHZ
2511 
2512 	/* read vendor-specific BBP values */
2513 	for (i = 0; i < 16; i++) {
2514 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i);
2515 		if (val == 0 || val == 0xffff)
2516 			continue;	/* skip invalid entries */
2517 		sc->bbp_prom[i].reg = val >> 8;
2518 		sc->bbp_prom[i].val = val & 0xff;
2519 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2520 		    sc->bbp_prom[i].val));
2521 	}
2522 
2523 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_LED_OFFSET);
2524 	DPRINTF(("LED %02x\n", val));
2525 	if (val == 0xffff) {
2526 		sc->mcu_led = RT2661_MCU_LED_DEFAULT;
2527 	} else {
2528 #define N(arr)	(int)(sizeof(arr) / sizeof(arr[0]))
2529 
2530 		for (i = 0; i < N(led_ee2mcu); ++i) {
2531 			if (val & led_ee2mcu[i].ee_bit)
2532 				sc->mcu_led |= led_ee2mcu[i].mcu_bit;
2533 		}
2534 
2535 #undef N
2536 
2537 		sc->mcu_led |= ((val >> RT2661_EE_LED_MODE_SHIFT) &
2538 				RT2661_EE_LED_MODE_MASK);
2539 	}
2540 }
2541 
2542 static int
2543 rt2661_bbp_init(struct rt2661_softc *sc)
2544 {
2545 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2546 	int i, ntries;
2547 	uint8_t val;
2548 
2549 	/* wait for BBP to be ready */
2550 	for (ntries = 0; ntries < 100; ntries++) {
2551 		val = rt2661_bbp_read(sc, 0);
2552 		if (val != 0 && val != 0xff)
2553 			break;
2554 		DELAY(100);
2555 	}
2556 	if (ntries == 100) {
2557 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2558 		return EIO;
2559 	}
2560 
2561 	/* initialize BBP registers to default values */
2562 	for (i = 0; i < N(rt2661_def_bbp); i++) {
2563 		rt2661_bbp_write(sc, rt2661_def_bbp[i].reg,
2564 		    rt2661_def_bbp[i].val);
2565 	}
2566 
2567 	/* write vendor-specific BBP values (from EEPROM) */
2568 	for (i = 0; i < 16; i++) {
2569 		if (sc->bbp_prom[i].reg == 0)
2570 			continue;
2571 		rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2572 	}
2573 
2574 	return 0;
2575 #undef N
2576 }
2577 
2578 static void
2579 rt2661_init(void *priv)
2580 {
2581 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2582 	struct rt2661_softc *sc = priv;
2583 	struct ieee80211com *ic = &sc->sc_ic;
2584 	struct ifnet *ifp = ic->ic_ifp;
2585 	uint32_t tmp, sta[3];
2586 	int i, ntries;
2587 
2588 	rt2661_stop(sc);
2589 
2590 	/* initialize Tx rings */
2591 	RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr);
2592 	RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr);
2593 	RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr);
2594 	RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr);
2595 
2596 	/* initialize Mgt ring */
2597 	RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr);
2598 
2599 	/* initialize Rx ring */
2600 	RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr);
2601 
2602 	/* initialize Tx rings sizes */
2603 	RAL_WRITE(sc, RT2661_TX_RING_CSR0,
2604 	    RT2661_TX_RING_COUNT << 24 |
2605 	    RT2661_TX_RING_COUNT << 16 |
2606 	    RT2661_TX_RING_COUNT <<  8 |
2607 	    RT2661_TX_RING_COUNT);
2608 
2609 	RAL_WRITE(sc, RT2661_TX_RING_CSR1,
2610 	    RT2661_TX_DESC_WSIZE << 16 |
2611 	    RT2661_TX_RING_COUNT <<  8 |	/* XXX: HCCA ring unused */
2612 	    RT2661_MGT_RING_COUNT);
2613 
2614 	/* initialize Rx rings */
2615 	RAL_WRITE(sc, RT2661_RX_RING_CSR,
2616 	    RT2661_RX_DESC_BACK  << 16 |
2617 	    RT2661_RX_DESC_WSIZE <<  8 |
2618 	    RT2661_RX_RING_COUNT);
2619 
2620 	/* XXX: some magic here */
2621 	RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa);
2622 
2623 	/* load base addresses of all 5 Tx rings (4 data + 1 mgt) */
2624 	RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f);
2625 
2626 	/* load base address of Rx ring */
2627 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2);
2628 
2629 	/* initialize MAC registers to default values */
2630 	for (i = 0; i < N(rt2661_def_mac); i++)
2631 		RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val);
2632 
2633 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2634 	rt2661_set_macaddr(sc, ic->ic_myaddr);
2635 
2636 	/* set host ready */
2637 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2638 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2639 
2640 	/* wait for BBP/RF to wakeup */
2641 	for (ntries = 0; ntries < 1000; ntries++) {
2642 		if (RAL_READ(sc, RT2661_MAC_CSR12) & 8)
2643 			break;
2644 		DELAY(1000);
2645 	}
2646 	if (ntries == 1000) {
2647 		kprintf("timeout waiting for BBP/RF to wakeup\n");
2648 		rt2661_stop(sc);
2649 		return;
2650 	}
2651 
2652 	if (rt2661_bbp_init(sc) != 0) {
2653 		rt2661_stop(sc);
2654 		return;
2655 	}
2656 
2657 	/* select default channel */
2658 	sc->sc_curchan = ic->ic_curchan;
2659 	rt2661_select_band(sc, sc->sc_curchan);
2660 	rt2661_select_antenna(sc);
2661 	rt2661_set_chan(sc, sc->sc_curchan);
2662 
2663 	/* update Rx filter */
2664 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff;
2665 
2666 	tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR;
2667 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2668 		tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR |
2669 		       RT2661_DROP_ACKCTS;
2670 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2671 			tmp |= RT2661_DROP_TODS;
2672 		if (!(ifp->if_flags & IFF_PROMISC))
2673 			tmp |= RT2661_DROP_NOT_TO_ME;
2674 	}
2675 
2676 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2677 
2678 	/* clear STA registers */
2679 	RAL_READ_REGION_4(sc, RT2661_STA_CSR0, sta, N(sta));
2680 
2681 	/* initialize ASIC */
2682 	RAL_WRITE(sc, RT2661_MAC_CSR1, 4);
2683 
2684 	/* clear any pending interrupt */
2685 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2686 
2687 	/* enable interrupts */
2688 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
2689 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
2690 
2691 	/* kick Rx */
2692 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1);
2693 
2694 	ifp->if_flags &= ~IFF_OACTIVE;
2695 	ifp->if_flags |= IFF_RUNNING;
2696 
2697 	for (i = 0; i < IEEE80211_WEP_NKID; ++i) {
2698 		uint8_t mac[IEEE80211_ADDR_LEN];
2699 		const struct ieee80211_key *k = &ic->ic_nw_keys[i];
2700 
2701 		if (k->wk_keyix != IEEE80211_KEYIX_NONE)
2702 			rt2661_key_set(ic, k, mac);
2703 	}
2704 
2705 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2706 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2707 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2708 	} else
2709 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2710 #undef N
2711 }
2712 
2713 void
2714 rt2661_stop(void *priv)
2715 {
2716 	struct rt2661_softc *sc = priv;
2717 	struct ieee80211com *ic = &sc->sc_ic;
2718 	struct ifnet *ifp = ic->ic_ifp;
2719 	struct rt2661_tx_ratectl *rctl;
2720 	uint32_t tmp;
2721 
2722 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2723 
2724 	sc->sc_tx_timer = 0;
2725 	ifp->if_timer = 0;
2726 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2727 
2728 	/* abort Tx (for all 5 Tx rings) */
2729 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16);
2730 
2731 	/* disable Rx (value remains after reset!) */
2732 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2733 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2734 
2735 	/* reset ASIC */
2736 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2737 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2738 
2739 	/* disable interrupts */
2740 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffffff);
2741 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
2742 
2743 	/* clear any pending interrupt */
2744 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2745 	RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff);
2746 
2747 	while ((rctl = STAILQ_FIRST(&sc->tx_ratectl)) != NULL) {
2748 		STAILQ_REMOVE_HEAD(&sc->tx_ratectl, link);
2749 		ieee80211_free_node(rctl->ni);
2750 		rctl->ni = NULL;
2751 		kfree(rctl, M_RT2661);
2752 	}
2753 
2754 	/* reset Tx and Rx rings */
2755 	rt2661_reset_tx_ring(sc, &sc->txq[0]);
2756 	rt2661_reset_tx_ring(sc, &sc->txq[1]);
2757 	rt2661_reset_tx_ring(sc, &sc->txq[2]);
2758 	rt2661_reset_tx_ring(sc, &sc->txq[3]);
2759 	rt2661_reset_tx_ring(sc, &sc->mgtq);
2760 	rt2661_reset_rx_ring(sc, &sc->rxq);
2761 
2762 	/* Clear key map. */
2763 	bzero(sc->sc_keymap, sizeof(sc->sc_keymap));
2764 }
2765 
2766 static int
2767 rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size)
2768 {
2769 	int ntries;
2770 
2771 	/* reset 8051 */
2772 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2773 
2774 	/* cancel any pending Host to MCU command */
2775 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0);
2776 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
2777 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0);
2778 
2779 	/* write 8051's microcode */
2780 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL);
2781 	RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size);
2782 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2783 
2784 	/* kick 8051's ass */
2785 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0);
2786 
2787 	/* wait for 8051 to initialize */
2788 	for (ntries = 0; ntries < 500; ntries++) {
2789 		if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY)
2790 			break;
2791 		DELAY(100);
2792 	}
2793 	if (ntries == 500) {
2794 		kprintf("timeout waiting for MCU to initialize\n");
2795 		return EIO;
2796 	}
2797 	return 0;
2798 }
2799 
2800 #ifdef notyet
2801 /*
2802  * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and
2803  * false CCA count.  This function is called periodically (every seconds) when
2804  * in the RUN state.  Values taken from the reference driver.
2805  */
2806 static void
2807 rt2661_rx_tune(struct rt2661_softc *sc)
2808 {
2809 	uint8_t bbp17;
2810 	uint16_t cca;
2811 	int lo, hi, dbm;
2812 
2813 	/*
2814 	 * Tuning range depends on operating band and on the presence of an
2815 	 * external low-noise amplifier.
2816 	 */
2817 	lo = 0x20;
2818 	if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan))
2819 		lo += 0x08;
2820 	if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) ||
2821 	    (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna))
2822 		lo += 0x10;
2823 	hi = lo + 0x20;
2824 
2825 	/* retrieve false CCA count since last call (clear on read) */
2826 	cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff;
2827 
2828 	if (dbm >= -35) {
2829 		bbp17 = 0x60;
2830 	} else if (dbm >= -58) {
2831 		bbp17 = hi;
2832 	} else if (dbm >= -66) {
2833 		bbp17 = lo + 0x10;
2834 	} else if (dbm >= -74) {
2835 		bbp17 = lo + 0x08;
2836 	} else {
2837 		/* RSSI < -74dBm, tune using false CCA count */
2838 
2839 		bbp17 = sc->bbp17; /* current value */
2840 
2841 		hi -= 2 * (-74 - dbm);
2842 		if (hi < lo)
2843 			hi = lo;
2844 
2845 		if (bbp17 > hi) {
2846 			bbp17 = hi;
2847 
2848 		} else if (cca > 512) {
2849 			if (++bbp17 > hi)
2850 				bbp17 = hi;
2851 		} else if (cca < 100) {
2852 			if (--bbp17 < lo)
2853 				bbp17 = lo;
2854 		}
2855 	}
2856 
2857 	if (bbp17 != sc->bbp17) {
2858 		rt2661_bbp_write(sc, 17, bbp17);
2859 		sc->bbp17 = bbp17;
2860 	}
2861 }
2862 
2863 /*
2864  * Enter/Leave radar detection mode.
2865  * This is for 802.11h additional regulatory domains.
2866  */
2867 static void
2868 rt2661_radar_start(struct rt2661_softc *sc)
2869 {
2870 	uint32_t tmp;
2871 
2872 	/* disable Rx */
2873 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2874 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2875 
2876 	rt2661_bbp_write(sc, 82, 0x20);
2877 	rt2661_bbp_write(sc, 83, 0x00);
2878 	rt2661_bbp_write(sc, 84, 0x40);
2879 
2880 	/* save current BBP registers values */
2881 	sc->bbp18 = rt2661_bbp_read(sc, 18);
2882 	sc->bbp21 = rt2661_bbp_read(sc, 21);
2883 	sc->bbp22 = rt2661_bbp_read(sc, 22);
2884 	sc->bbp16 = rt2661_bbp_read(sc, 16);
2885 	sc->bbp17 = rt2661_bbp_read(sc, 17);
2886 	sc->bbp64 = rt2661_bbp_read(sc, 64);
2887 
2888 	rt2661_bbp_write(sc, 18, 0xff);
2889 	rt2661_bbp_write(sc, 21, 0x3f);
2890 	rt2661_bbp_write(sc, 22, 0x3f);
2891 	rt2661_bbp_write(sc, 16, 0xbd);
2892 	rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34);
2893 	rt2661_bbp_write(sc, 64, 0x21);
2894 
2895 	/* restore Rx filter */
2896 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2897 }
2898 
2899 static int
2900 rt2661_radar_stop(struct rt2661_softc *sc)
2901 {
2902 	uint8_t bbp66;
2903 
2904 	/* read radar detection result */
2905 	bbp66 = rt2661_bbp_read(sc, 66);
2906 
2907 	/* restore BBP registers values */
2908 	rt2661_bbp_write(sc, 16, sc->bbp16);
2909 	rt2661_bbp_write(sc, 17, sc->bbp17);
2910 	rt2661_bbp_write(sc, 18, sc->bbp18);
2911 	rt2661_bbp_write(sc, 21, sc->bbp21);
2912 	rt2661_bbp_write(sc, 22, sc->bbp22);
2913 	rt2661_bbp_write(sc, 64, sc->bbp64);
2914 
2915 	return bbp66 == 1;
2916 }
2917 #endif
2918 
2919 static int
2920 rt2661_prepare_beacon(struct rt2661_softc *sc)
2921 {
2922 	struct ieee80211com *ic = &sc->sc_ic;
2923 	struct ieee80211_beacon_offsets bo;
2924 	struct rt2661_tx_desc desc;
2925 	struct mbuf *m0;
2926 	int rate;
2927 
2928 	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo);
2929 	if (m0 == NULL) {
2930 		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2931 		return ENOBUFS;
2932 	}
2933 
2934 	/* send beacons at the lowest available rate */
2935 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2;
2936 
2937 	rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ,
2938 	    m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT, 0, NULL, NULL, NULL);
2939 
2940 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2941 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2942 
2943 	/* copy beacon header and payload into NIC memory */
2944 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24,
2945 	    mtod(m0, uint8_t *), m0->m_pkthdr.len);
2946 
2947 	m_freem(m0);
2948 	return 0;
2949 }
2950 
2951 /*
2952  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
2953  * and HostAP operating modes.
2954  */
2955 static void
2956 rt2661_enable_tsf_sync(struct rt2661_softc *sc)
2957 {
2958 	struct ieee80211com *ic = &sc->sc_ic;
2959 	uint32_t tmp;
2960 
2961 	if (ic->ic_opmode != IEEE80211_M_STA) {
2962 		/*
2963 		 * Change default 16ms TBTT adjustment to 8ms.
2964 		 * Must be done before enabling beacon generation.
2965 		 */
2966 		RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8);
2967 	}
2968 
2969 	tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000;
2970 
2971 	/* set beacon interval (in 1/16ms unit) */
2972 	tmp |= ic->ic_bss->ni_intval * 16;
2973 
2974 	tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT;
2975 	if (ic->ic_opmode == IEEE80211_M_STA)
2976 		tmp |= RT2661_TSF_MODE(1);
2977 	else
2978 		tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON;
2979 
2980 	RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp);
2981 }
2982 
2983 /*
2984  * Retrieve the "Received Signal Strength Indicator" from the raw values
2985  * contained in Rx descriptors.  The computation depends on which band the
2986  * frame was received.  Correction values taken from the reference driver.
2987  */
2988 static int
2989 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw)
2990 {
2991 	int lna, agc, rssi;
2992 
2993 	lna = (raw >> 5) & 0x3;
2994 	agc = raw & 0x1f;
2995 
2996 	if (lna == 0) {
2997 		/*
2998 		 * No RSSI mapping
2999 		 *
3000 		 * NB: Since RSSI is relative to noise floor, -1 is
3001 		 *     adequate for caller to know error happened.
3002 		 */
3003 		return -1;
3004 	}
3005 
3006 	rssi = (2 * agc) - RT2661_NOISE_FLOOR;
3007 
3008 	if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
3009 		rssi += sc->rssi_2ghz_corr;
3010 
3011 		if (lna == 1)
3012 			rssi -= 64;
3013 		else if (lna == 2)
3014 			rssi -= 74;
3015 		else if (lna == 3)
3016 			rssi -= 90;
3017 	} else {
3018 		rssi += sc->rssi_5ghz_corr;
3019 
3020 		if (lna == 1)
3021 			rssi -= 64;
3022 		else if (lna == 2)
3023 			rssi -= 86;
3024 		else if (lna == 3)
3025 			rssi -= 100;
3026 	}
3027 	return rssi;
3028 }
3029 
3030 static void
3031 rt2661_dma_map_mbuf(void *arg, bus_dma_segment_t *seg, int nseg,
3032 		    bus_size_t map_size __unused, int error)
3033 {
3034 	struct rt2661_dmamap *map = arg;
3035 
3036 	if (error)
3037 		return;
3038 
3039 	KASSERT(nseg <= RT2661_MAX_SCATTER, ("too many DMA segments"));
3040 
3041 	bcopy(seg, map->segs, nseg * sizeof(bus_dma_segment_t));
3042 	map->nseg = nseg;
3043 }
3044 
3045 static void
3046 rt2661_led_newstate(struct rt2661_softc *sc, enum ieee80211_state nstate)
3047 {
3048 	struct ieee80211com *ic = &sc->sc_ic;
3049 	uint32_t off, on;
3050 	uint32_t mail = sc->mcu_led;
3051 
3052 	if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY) {
3053 		DPRINTF(("%s failed\n", __func__));
3054 		return;
3055 	}
3056 
3057 	switch (nstate) {
3058 	case IEEE80211_S_INIT:
3059 		mail &= ~(RT2661_MCU_LED_LINKA | RT2661_MCU_LED_LINKG |
3060 			  RT2661_MCU_LED_RF);
3061 		break;
3062 	default:
3063 		if (ic->ic_curchan == NULL)
3064 			return;
3065 
3066 		on = RT2661_MCU_LED_LINKG;
3067 		off = RT2661_MCU_LED_LINKA;
3068 		if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) {
3069 			on = RT2661_MCU_LED_LINKA;
3070 			off = RT2661_MCU_LED_LINKG;
3071 		}
3072 
3073 		mail |= RT2661_MCU_LED_RF | on;
3074 		mail &= ~off;
3075 		break;
3076 	}
3077 
3078 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
3079 		  RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | mail);
3080 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | RT2661_MCU_SET_LED);
3081 }
3082 
3083 static void
3084 rt2661_read_txpower_config(struct rt2661_softc *sc, uint8_t txpwr_ofs,
3085 			   int nchan, int *start_chan0)
3086 {
3087 	int i, loop_max;
3088 	int start_chan = *start_chan0;
3089 
3090 	KASSERT(nchan % 2 == 0, ("number of channels %d is not even\n", nchan));
3091 	KASSERT(start_chan + nchan <= RT2661_NCHAN_MAX, ("too many channels"));
3092 
3093 	loop_max = nchan / 2;
3094 
3095 	for (i = 0; i < loop_max; i++) {
3096 		int chan_idx, j;
3097 		uint16_t val;
3098 
3099 		val = rt2661_eeprom_read(sc, txpwr_ofs + i);
3100 		chan_idx = i * 2 + start_chan;
3101 
3102 		for (j = 0; j < 2; ++j) {
3103 			int8_t tx_power;	/* signed */
3104 
3105 			tx_power = (int8_t)((val >> (8 * j)) & 0xff);
3106 			if (tx_power > RT2661_TXPOWER_MAX)
3107 				tx_power = RT2661_TXPOWER_DEFAULT;
3108 
3109 			sc->txpow[chan_idx] = tx_power;
3110 			DPRINTF(("Channel=%d Tx power=%d\n",
3111 			    rt2661_rf5225_1[chan_idx].chan, sc->txpow[chan_idx]));
3112 
3113 			++chan_idx;
3114 		}
3115 	}
3116 	*start_chan0 += nchan;
3117 }
3118 
3119 static int
3120 rt2661_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *key,
3121 		 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
3122 {
3123 	struct rt2661_softc *sc = ic->ic_if.if_softc;
3124 
3125 	DPRINTF(("%s: ", __func__));
3126 
3127 	if (key->wk_flags & IEEE80211_KEY_SWCRYPT) {
3128 		DPRINTF(("alloc sw key\n"));
3129 		return sc->sc_key_alloc(ic, key, keyix, rxkeyix);
3130 	}
3131 
3132 	if (key->wk_flags & IEEE80211_KEY_GROUP) {	/* Global key */
3133 		DPRINTF(("alloc group key\n"));
3134 
3135 		KASSERT(key >= &ic->ic_nw_keys[0] &&
3136 			key < &ic->ic_nw_keys[IEEE80211_WEP_NKID],
3137 			("bogus group key\n"));
3138 
3139 		*keyix = *rxkeyix = key - ic->ic_nw_keys;
3140 		return 1;
3141 	} else {					/* Pairwise key */
3142 		int i;
3143 
3144 		DPRINTF(("alloc pairwise key\n"));
3145 
3146 		for (i = IEEE80211_WEP_NKID; i < RT2661_KEY_MAX; ++i) {
3147 			if (!RT2661_KEY_ISSET(sc, i))
3148 				break;
3149 		}
3150 #ifndef MIXED_KEY_TEST
3151 		if (i == RT2661_KEY_MAX)
3152 			return 0;
3153 #else
3154 		if (i != IEEE80211_WEP_NKID)
3155 			return 0;
3156 #endif
3157 
3158 		RT2661_KEY_SET(sc, i);
3159 		*keyix = *rxkeyix = i;
3160 		return 1;
3161 	}
3162 }
3163 
3164 static int
3165 rt2661_key_delete(struct ieee80211com *ic, const struct ieee80211_key *key)
3166 {
3167 	struct rt2661_softc *sc = ic->ic_if.if_softc;
3168 	uint32_t val;
3169 
3170 	DPRINTF(("%s: keyix %d, rxkeyix %d, ", __func__,
3171 		 key->wk_keyix, key->wk_rxkeyix));
3172 
3173 	if (key->wk_flags & IEEE80211_KEY_SWCRYPT) {
3174 		DPRINTF(("delete sw key\n"));
3175 		return sc->sc_key_delete(ic, key);
3176 	}
3177 
3178 	if (key->wk_keyix < IEEE80211_WEP_NKID) {	/* Global key */
3179 		DPRINTF(("delete global key\n"));
3180 		val = RAL_READ(sc, RT2661_SEC_CSR0);
3181 		val &= ~(1 << key->wk_keyix);
3182 		RAL_WRITE(sc, RT2661_SEC_CSR0, val);
3183 	} else {					/* Pairwise key */
3184 		DPRINTF(("delete pairwise key\n"));
3185 
3186 		RT2661_KEY_CLR(sc, key->wk_keyix);
3187 		if (key->wk_keyix < 32) {
3188 			val = RAL_READ(sc, RT2661_SEC_CSR2);
3189 			val &= ~(1 << key->wk_keyix);
3190 			RAL_WRITE(sc, RT2661_SEC_CSR2, val);
3191 		} else {
3192 			val = RAL_READ(sc, RT2661_SEC_CSR3);
3193 			val &= ~(1 << (key->wk_keyix - 32));
3194 			RAL_WRITE(sc, RT2661_SEC_CSR3, val);
3195 		}
3196 	}
3197 	return 1;
3198 }
3199 
3200 static int
3201 rt2661_key_set(struct ieee80211com *ic, const struct ieee80211_key *key,
3202 	       const uint8_t mac[IEEE80211_ADDR_LEN])
3203 {
3204 	struct rt2661_softc *sc = ic->ic_if.if_softc;
3205 	uint32_t addr, val;
3206 
3207 	DPRINTF(("%s: keyix %d, rxkeyix %d, flags 0x%04x, ", __func__,
3208 		 key->wk_keyix, key->wk_rxkeyix, key->wk_flags));
3209 
3210 	if (key->wk_flags & IEEE80211_KEY_SWCRYPT) {
3211 		DPRINTF(("set sw key\n"));
3212 		return sc->sc_key_set(ic, key, mac);
3213 	}
3214 
3215 	if (key->wk_keyix < IEEE80211_WEP_NKID) {	/* Global Key */
3216 		int cipher, keyix_shift;
3217 
3218 		DPRINTF(("set global key\n"));
3219 
3220 		/*
3221 		 * Install key content.
3222 		 */
3223 		addr = RT2661_GLOBAL_KEY_BASE +
3224 		       (key->wk_keyix * sizeof(key->wk_key));
3225 		RAL_WRITE_REGION_1(sc, addr, key->wk_key, sizeof(key->wk_key));
3226 
3227 		/*
3228 		 * Set key cipher.
3229 		 */
3230 		cipher = rt2661_cipher(key);
3231 		keyix_shift = key->wk_keyix * 4;
3232 
3233 		val = RAL_READ(sc, RT2661_SEC_CSR1);
3234 		val &= ~(0xf << keyix_shift);
3235 		val |= cipher << keyix_shift;
3236 		RAL_WRITE(sc, RT2661_SEC_CSR1, val);
3237 
3238 		/*
3239 		 * Enable key slot.
3240 		 */
3241 		val = RAL_READ(sc, RT2661_SEC_CSR0);
3242 		val |= 1 << key->wk_keyix;
3243 		RAL_WRITE(sc, RT2661_SEC_CSR0, val);
3244 	} else {					/* Pairwise key */
3245 		uint8_t mac_cipher[IEEE80211_ADDR_LEN + 1];
3246 
3247 		DPRINTF(("set pairwise key\n"));
3248 
3249 		/*
3250 		 * Install key content.
3251 		 */
3252 		addr = RT2661_PAIRWISE_KEY_BASE +
3253 		       (key->wk_keyix * sizeof(key->wk_key));
3254 		RAL_WRITE_REGION_1(sc, addr, key->wk_key, sizeof(key->wk_key));
3255 
3256 		/*
3257 		 * Set target address and key cipher.
3258 		 */
3259 		memcpy(mac_cipher, mac, IEEE80211_ADDR_LEN);
3260 		mac_cipher[IEEE80211_ADDR_LEN] = rt2661_cipher(key);
3261 
3262 		/* XXX Actually slot size is 1 byte bigger than mac_cipher */
3263 		addr = RT2661_TARGET_ADDR_BASE +
3264 		       (key->wk_keyix * (IEEE80211_ADDR_LEN + 2));
3265 		RAL_WRITE_REGION_1(sc, addr, mac_cipher, sizeof(mac_cipher));
3266 
3267 		/*
3268 		 * Enable key slot.
3269 		 */
3270 		if (key->wk_keyix < 32) {
3271 			val = RAL_READ(sc, RT2661_SEC_CSR2);
3272 			val |= 1 << key->wk_keyix;
3273 			RAL_WRITE(sc, RT2661_SEC_CSR2, val);
3274 		} else {
3275 			val = RAL_READ(sc, RT2661_SEC_CSR3);
3276 			val |= 1 << (key->wk_keyix - 32);
3277 			RAL_WRITE(sc, RT2661_SEC_CSR3, val);
3278 		}
3279 
3280 		/*
3281 		 * Enable pairwise key looking up when RX.
3282 		 */
3283 		RAL_WRITE(sc, RT2661_SEC_CSR4, 1);
3284 	}
3285 	return 1;
3286 }
3287