xref: /dragonfly/sys/dev/netif/ral/rt2661.c (revision f02303f9)
1 /*
2  * Copyright (c) 2006
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  *
5  * Permission to use, copy, modify, and distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD: src/sys/dev/ral/rt2661.c,v 1.4 2006/03/21 21:15:43 damien Exp $
18  * $DragonFly: src/sys/dev/netif/ral/rt2661.c,v 1.16 2007/04/02 13:46:07 sephe Exp $
19  */
20 
21 /*
22  * Ralink Technology RT2561, RT2561S and RT2661 chipset driver
23  * http://www.ralinktech.com/
24  */
25 
26 #include <sys/param.h>
27 #include <sys/bus.h>
28 #include <sys/endian.h>
29 #include <sys/kernel.h>
30 #include <sys/malloc.h>
31 #include <sys/mbuf.h>
32 #include <sys/module.h>
33 #include <sys/queue.h>
34 #include <sys/rman.h>
35 #include <sys/socket.h>
36 #include <sys/sockio.h>
37 #include <sys/sysctl.h>
38 #include <sys/serialize.h>
39 
40 #include <net/bpf.h>
41 #include <net/if.h>
42 #include <net/if_arp.h>
43 #include <net/ethernet.h>
44 #include <net/if_dl.h>
45 #include <net/if_media.h>
46 #include <net/ifq_var.h>
47 
48 #include <netproto/802_11/ieee80211_var.h>
49 #include <netproto/802_11/ieee80211_radiotap.h>
50 
51 #include <dev/netif/ral/rt2661reg.h>
52 #include <dev/netif/ral/rt2661var.h>
53 #include <dev/netif/ral/rt2661_ucode.h>
54 
55 #ifdef RAL_DEBUG
56 #define DPRINTF(x)	do { if (ral_debug > 0) kprintf x; } while (0)
57 #define DPRINTFN(n, x)	do { if (ral_debug >= (n)) kprintf x; } while (0)
58 int ral_debug = 1;
59 SYSCTL_INT(_debug, OID_AUTO, ral, CTLFLAG_RW, &ral_debug, 0, "ral debug level");
60 #else
61 #define DPRINTF(x)
62 #define DPRINTFN(n, x)
63 #endif
64 
65 MALLOC_DEFINE(M_RT2661, "rt2661_ratectl", "rt2661 rate control data");
66 
67 static void		rt2661_dma_map_addr(void *, bus_dma_segment_t *, int,
68 			    int);
69 static void		rt2661_dma_map_mbuf(void *, bus_dma_segment_t *, int,
70 					    bus_size_t, int);
71 static int		rt2661_alloc_tx_ring(struct rt2661_softc *,
72 			    struct rt2661_tx_ring *, int);
73 static void		rt2661_reset_tx_ring(struct rt2661_softc *,
74 			    struct rt2661_tx_ring *);
75 static void		rt2661_free_tx_ring(struct rt2661_softc *,
76 			    struct rt2661_tx_ring *);
77 static int		rt2661_alloc_rx_ring(struct rt2661_softc *,
78 			    struct rt2661_rx_ring *, int);
79 static void		rt2661_reset_rx_ring(struct rt2661_softc *,
80 			    struct rt2661_rx_ring *);
81 static void		rt2661_free_rx_ring(struct rt2661_softc *,
82 			    struct rt2661_rx_ring *);
83 static int		rt2661_media_change(struct ifnet *);
84 static void		rt2661_next_scan(void *);
85 static int		rt2661_newstate(struct ieee80211com *,
86 			    enum ieee80211_state, int);
87 static uint16_t		rt2661_eeprom_read(struct rt2661_softc *, uint8_t);
88 static void		rt2661_rx_intr(struct rt2661_softc *);
89 static void		rt2661_tx_intr(struct rt2661_softc *);
90 static void		rt2661_tx_dma_intr(struct rt2661_softc *,
91 			    struct rt2661_tx_ring *);
92 static void		rt2661_mcu_beacon_expire(struct rt2661_softc *);
93 static void		rt2661_mcu_wakeup(struct rt2661_softc *);
94 static void		rt2661_mcu_cmd_intr(struct rt2661_softc *);
95 static uint8_t		rt2661_rxrate(struct rt2661_rx_desc *);
96 static uint8_t		rt2661_plcp_signal(int);
97 static void		rt2661_setup_tx_desc(struct rt2661_softc *,
98 			    struct rt2661_tx_desc *, uint32_t, uint16_t, int,
99 			    int, const bus_dma_segment_t *, int, int, int);
100 static struct mbuf *	rt2661_get_rts(struct rt2661_softc *,
101 			    struct ieee80211_frame *, uint16_t);
102 static int		rt2661_tx_data(struct rt2661_softc *, struct mbuf *,
103 			    struct ieee80211_node *, int);
104 static int		rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *,
105 			    struct ieee80211_node *);
106 static void		rt2661_start(struct ifnet *);
107 static void		rt2661_watchdog(struct ifnet *);
108 static int		rt2661_reset(struct ifnet *);
109 static int		rt2661_ioctl(struct ifnet *, u_long, caddr_t,
110 				     struct ucred *);
111 static void		rt2661_bbp_write(struct rt2661_softc *, uint8_t,
112 			    uint8_t);
113 static uint8_t		rt2661_bbp_read(struct rt2661_softc *, uint8_t);
114 static void		rt2661_rf_write(struct rt2661_softc *, uint8_t,
115 			    uint32_t);
116 static int		rt2661_tx_cmd(struct rt2661_softc *, uint8_t,
117 			    uint16_t);
118 static void		rt2661_select_antenna(struct rt2661_softc *);
119 static void		rt2661_enable_mrr(struct rt2661_softc *);
120 static void		rt2661_set_txpreamble(struct rt2661_softc *);
121 static void		rt2661_set_basicrates(struct rt2661_softc *,
122 			    const struct ieee80211_rateset *);
123 static void		rt2661_select_band(struct rt2661_softc *,
124 			    struct ieee80211_channel *);
125 static void		rt2661_set_chan(struct rt2661_softc *,
126 			    struct ieee80211_channel *);
127 static void		rt2661_set_bssid(struct rt2661_softc *,
128 			    const uint8_t *);
129 static void		rt2661_set_macaddr(struct rt2661_softc *,
130 			   const uint8_t *);
131 static void		rt2661_update_promisc(struct rt2661_softc *);
132 static int		rt2661_wme_update(struct ieee80211com *) __unused;
133 static void		rt2661_update_slot(struct ifnet *);
134 static const char	*rt2661_get_rf(int);
135 static void		rt2661_read_eeprom(struct rt2661_softc *);
136 static int		rt2661_bbp_init(struct rt2661_softc *);
137 static void		rt2661_init(void *);
138 static void		rt2661_stop(void *);
139 static void		rt2661_intr(void *);
140 static int		rt2661_load_microcode(struct rt2661_softc *,
141 			    const uint8_t *, int);
142 #ifdef notyet
143 static void		rt2661_rx_tune(struct rt2661_softc *);
144 static void		rt2661_radar_start(struct rt2661_softc *);
145 static int		rt2661_radar_stop(struct rt2661_softc *);
146 #endif
147 static int		rt2661_prepare_beacon(struct rt2661_softc *);
148 static void		rt2661_enable_tsf_sync(struct rt2661_softc *);
149 static int		rt2661_get_rssi(struct rt2661_softc *, uint8_t);
150 static void		rt2661_led_newstate(struct rt2661_softc *,
151 					    enum ieee80211_state);
152 
153 /*
154  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
155  */
156 static const struct ieee80211_rateset rt2661_rateset_11a =
157 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
158 
159 static const struct ieee80211_rateset rt2661_rateset_11b =
160 	{ 4, { 2, 4, 11, 22 } };
161 
162 static const struct ieee80211_rateset rt2661_rateset_11g =
163 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
164 
165 static const struct {
166 	uint32_t	reg;
167 	uint32_t	val;
168 } rt2661_def_mac[] = {
169 	RT2661_DEF_MAC
170 };
171 
172 static const struct {
173 	uint8_t	reg;
174 	uint8_t	val;
175 } rt2661_def_bbp[] = {
176 	RT2661_DEF_BBP
177 };
178 
179 static const struct rfprog {
180 	uint8_t		chan;
181 	uint32_t	r1, r2, r3, r4;
182 }  rt2661_rf5225_1[] = {
183 	RT2661_RF5225_1
184 }, rt2661_rf5225_2[] = {
185 	RT2661_RF5225_2
186 };
187 
188 #define LED_EE2MCU(bit)	{ \
189 	.ee_bit		= RT2661_EE_LED_##bit, \
190 	.mcu_bit	= RT2661_MCU_LED_##bit \
191 }
192 static const struct {
193 	uint16_t	ee_bit;
194 	uint16_t	mcu_bit;
195 } led_ee2mcu[] = {
196 	LED_EE2MCU(RDYG),
197 	LED_EE2MCU(RDYA),
198 	LED_EE2MCU(ACT),
199 	LED_EE2MCU(GPIO0),
200 	LED_EE2MCU(GPIO1),
201 	LED_EE2MCU(GPIO2),
202 	LED_EE2MCU(GPIO3),
203 	LED_EE2MCU(GPIO4)
204 };
205 #undef LED_EE2MCU
206 
207 struct rt2661_dmamap {
208 	bus_dma_segment_t	segs[RT2661_MAX_SCATTER];
209 	int			nseg;
210 };
211 
212 int
213 rt2661_attach(device_t dev, int id)
214 {
215 	struct rt2661_softc *sc = device_get_softc(dev);
216 	struct ieee80211com *ic = &sc->sc_ic;
217 	struct ifnet *ifp = &ic->ic_if;
218 	uint32_t val;
219 	const uint8_t *ucode = NULL;
220 	int error, i, ac, ntries, size = 0;
221 
222 	callout_init(&sc->scan_ch);
223 
224 	sc->sc_irq_rid = 0;
225 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->sc_irq_rid,
226 					    RF_ACTIVE | RF_SHAREABLE);
227 	if (sc->sc_irq == NULL) {
228 		device_printf(dev, "could not allocate interrupt resource\n");
229 		return ENXIO;
230 	}
231 
232 	/* wait for NIC to initialize */
233 	for (ntries = 0; ntries < 1000; ntries++) {
234 		if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0)
235 			break;
236 		DELAY(1000);
237 	}
238 	if (ntries == 1000) {
239 		device_printf(sc->sc_dev,
240 		    "timeout waiting for NIC to initialize\n");
241 		error = EIO;
242 		goto fail;
243 	}
244 
245 	/* retrieve RF rev. no and various other things from EEPROM */
246 	rt2661_read_eeprom(sc);
247 
248 	device_printf(dev, "MAC/BBP RT%X, RF %s\n", val,
249 	    rt2661_get_rf(sc->rf_rev));
250 
251 	/*
252 	 * Load 8051 microcode into NIC.
253 	 */
254 	switch (id) {
255 	case 0x0301:
256 		ucode = rt2561s_ucode;
257 		size = sizeof rt2561s_ucode;
258 		break;
259 	case 0x0302:
260 		ucode = rt2561_ucode;
261 		size = sizeof rt2561_ucode;
262 		break;
263 	case 0x0401:
264 		ucode = rt2661_ucode;
265 		size = sizeof rt2661_ucode;
266 		break;
267 	}
268 
269 	error = rt2661_load_microcode(sc, ucode, size);
270 	if (error != 0) {
271 		device_printf(sc->sc_dev, "could not load 8051 microcode\n");
272 		goto fail;
273 	}
274 
275 	/*
276 	 * Allocate Tx and Rx rings.
277 	 */
278 	for (ac = 0; ac < 4; ac++) {
279 		error = rt2661_alloc_tx_ring(sc, &sc->txq[ac],
280 		    RT2661_TX_RING_COUNT);
281 		if (error != 0) {
282 			device_printf(sc->sc_dev,
283 			    "could not allocate Tx ring %d\n", ac);
284 			goto fail;
285 		}
286 	}
287 
288 	error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT);
289 	if (error != 0) {
290 		device_printf(sc->sc_dev, "could not allocate Mgt ring\n");
291 		goto fail;
292 	}
293 
294 	error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT);
295 	if (error != 0) {
296 		device_printf(sc->sc_dev, "could not allocate Rx ring\n");
297 		goto fail;
298 	}
299 
300 	STAILQ_INIT(&sc->tx_ratectl);
301 
302 	sysctl_ctx_init(&sc->sysctl_ctx);
303 	sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
304 					  SYSCTL_STATIC_CHILDREN(_hw),
305 					  OID_AUTO,
306 					  device_get_nameunit(dev),
307 					  CTLFLAG_RD, 0, "");
308 	if (sc->sysctl_tree == NULL) {
309 		device_printf(dev, "could not add sysctl node\n");
310 		error = ENXIO;
311 		goto fail;
312 	}
313 
314 	ifp->if_softc = sc;
315 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
316 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
317 	ifp->if_init = rt2661_init;
318 	ifp->if_ioctl = rt2661_ioctl;
319 	ifp->if_start = rt2661_start;
320 	ifp->if_watchdog = rt2661_watchdog;
321 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
322 	ifq_set_ready(&ifp->if_snd);
323 
324 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
325 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
326 	ic->ic_state = IEEE80211_S_INIT;
327 	rt2661_led_newstate(sc, IEEE80211_S_INIT);
328 
329 	ic->ic_ratectl.rc_st_ratectl_cap = IEEE80211_RATECTL_CAP_ONOE |
330 					   IEEE80211_RATECTL_CAP_SAMPLE;
331 	ic->ic_ratectl.rc_st_ratectl = IEEE80211_RATECTL_SAMPLE;
332 
333 	/* set device capabilities */
334 	ic->ic_caps =
335 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
336 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
337 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
338 	    IEEE80211_C_TXPMGT |	/* tx power management */
339 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
340 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
341 #ifdef notyet
342 	    IEEE80211_C_WME |		/* 802.11e */
343 #endif
344 	    IEEE80211_C_WEP |		/* WEP */
345 	    IEEE80211_C_WPA;		/* 802.11i */
346 
347 	if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) {
348 		/* set supported .11a rates */
349 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2661_rateset_11a;
350 
351 		/* set supported .11a channels */
352 		for (i = 36; i <= 64; i += 4) {
353 			ic->ic_channels[i].ic_freq =
354 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
355 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
356 		}
357 		for (i = 100; i <= 140; i += 4) {
358 			ic->ic_channels[i].ic_freq =
359 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
360 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
361 		}
362 		for (i = 149; i <= 165; i += 4) {
363 			ic->ic_channels[i].ic_freq =
364 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
365 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
366 		}
367 	}
368 
369 	/* set supported .11b and .11g rates */
370 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2661_rateset_11b;
371 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2661_rateset_11g;
372 
373 	/* set supported .11b and .11g channels (1 through 14) */
374 	for (i = 1; i <= 14; i++) {
375 		ic->ic_channels[i].ic_freq =
376 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
377 		ic->ic_channels[i].ic_flags =
378 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
379 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
380 	}
381 
382 	sc->sc_sifs = IEEE80211_DUR_SIFS;	/* Default SIFS */
383 
384 	ieee80211_ifattach(ic);
385 /*	ic->ic_wme.wme_update = rt2661_wme_update;*/
386 	ic->ic_updateslot = rt2661_update_slot;
387 	ic->ic_reset = rt2661_reset;
388 	/* enable s/w bmiss handling in sta mode */
389 	ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
390 
391 	/* override state transition machine */
392 	sc->sc_newstate = ic->ic_newstate;
393 	ic->ic_newstate = rt2661_newstate;
394 	ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status);
395 
396 	bpfattach_dlt(ifp, DLT_IEEE802_11_RADIO,
397 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
398 
399 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
400 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
401 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT);
402 
403 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
404 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
405 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT);
406 
407 	/*
408 	 * Add a few sysctl knobs.
409 	 */
410 	sc->dwelltime = 200;
411 
412 	SYSCTL_ADD_INT(&sc->sysctl_ctx,
413 	    SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, "dwell",
414 	    CTLFLAG_RW, &sc->dwelltime, 0,
415 	    "channel dwell time (ms) for AP/station scanning");
416 
417 	error = bus_setup_intr(dev, sc->sc_irq, INTR_MPSAFE, rt2661_intr,
418 			       sc, &sc->sc_ih, ifp->if_serializer);
419 	if (error != 0) {
420 		device_printf(dev, "could not set up interrupt\n");
421 		bpfdetach(ifp);
422 		ieee80211_ifdetach(ic);
423 		goto fail;
424 	}
425 
426 	if (bootverbose)
427 		ieee80211_announce(ic);
428 	return 0;
429 fail:
430 	rt2661_detach(sc);
431 	return error;
432 }
433 
434 int
435 rt2661_detach(void *xsc)
436 {
437 	struct rt2661_softc *sc = xsc;
438 	struct ieee80211com *ic = &sc->sc_ic;
439 	struct ifnet *ifp = &ic->ic_if;
440 
441 	if (device_is_attached(sc->sc_dev)) {
442 		lwkt_serialize_enter(ifp->if_serializer);
443 
444 		callout_stop(&sc->scan_ch);
445 		rt2661_stop(sc);
446 		bus_teardown_intr(sc->sc_dev, sc->sc_irq, sc->sc_ih);
447 
448 		lwkt_serialize_exit(ifp->if_serializer);
449 
450 		bpfdetach(ifp);
451 		ieee80211_ifdetach(ic);
452 	}
453 
454 	rt2661_free_tx_ring(sc, &sc->txq[0]);
455 	rt2661_free_tx_ring(sc, &sc->txq[1]);
456 	rt2661_free_tx_ring(sc, &sc->txq[2]);
457 	rt2661_free_tx_ring(sc, &sc->txq[3]);
458 	rt2661_free_tx_ring(sc, &sc->mgtq);
459 	rt2661_free_rx_ring(sc, &sc->rxq);
460 
461 	if (sc->sc_irq != NULL) {
462 		bus_release_resource(sc->sc_dev, SYS_RES_IRQ, sc->sc_irq_rid,
463 				     sc->sc_irq);
464 	}
465 
466 	if (sc->sysctl_tree != NULL)
467 		sysctl_ctx_free(&sc->sysctl_ctx);
468 
469 	return 0;
470 }
471 
472 void
473 rt2661_shutdown(void *xsc)
474 {
475 	struct rt2661_softc *sc = xsc;
476 	struct ifnet *ifp = &sc->sc_ic.ic_if;
477 
478 	lwkt_serialize_enter(ifp->if_serializer);
479 	rt2661_stop(sc);
480 	lwkt_serialize_exit(ifp->if_serializer);
481 }
482 
483 void
484 rt2661_suspend(void *xsc)
485 {
486 	struct rt2661_softc *sc = xsc;
487 	struct ifnet *ifp = &sc->sc_ic.ic_if;
488 
489 	lwkt_serialize_enter(ifp->if_serializer);
490 	rt2661_stop(sc);
491 	lwkt_serialize_exit(ifp->if_serializer);
492 }
493 
494 void
495 rt2661_resume(void *xsc)
496 {
497 	struct rt2661_softc *sc = xsc;
498 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
499 
500 	lwkt_serialize_enter(ifp->if_serializer);
501 	if (ifp->if_flags & IFF_UP) {
502 		ifp->if_init(ifp->if_softc);
503 		if (ifp->if_flags & IFF_RUNNING)
504 			ifp->if_start(ifp);
505 	}
506 	lwkt_serialize_exit(ifp->if_serializer);
507 }
508 
509 static void
510 rt2661_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
511 {
512 	if (error != 0)
513 		return;
514 
515 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
516 
517 	*(bus_addr_t *)arg = segs[0].ds_addr;
518 }
519 
520 static int
521 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring,
522     int count)
523 {
524 	int i, error;
525 
526 	ring->count = count;
527 	ring->queued = 0;
528 	ring->cur = ring->next = 0;
529 
530 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
531 	    BUS_SPACE_MAXADDR, NULL, NULL, count * RT2661_TX_DESC_SIZE, 1,
532 	    count * RT2661_TX_DESC_SIZE, 0, &ring->desc_dmat);
533 	if (error != 0) {
534 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
535 		goto fail;
536 	}
537 
538 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
539 	    BUS_DMA_WAITOK | BUS_DMA_ZERO, &ring->desc_map);
540 	if (error != 0) {
541 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
542 		goto fail;
543 	}
544 
545 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
546 	    count * RT2661_TX_DESC_SIZE, rt2661_dma_map_addr, &ring->physaddr,
547 	    0);
548 	if (error != 0) {
549 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
550 
551 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
552 		ring->desc = NULL;
553 		goto fail;
554 	}
555 
556 	ring->data = kmalloc(count * sizeof (struct rt2661_data), M_DEVBUF,
557 	    M_WAITOK | M_ZERO);
558 
559 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
560 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * RT2661_MAX_SCATTER,
561 	    RT2661_MAX_SCATTER, MCLBYTES, 0, &ring->data_dmat);
562 	if (error != 0) {
563 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
564 		goto fail;
565 	}
566 
567 	for (i = 0; i < count; i++) {
568 		error = bus_dmamap_create(ring->data_dmat, 0,
569 		    &ring->data[i].map);
570 		if (error != 0) {
571 			device_printf(sc->sc_dev, "could not create DMA map\n");
572 			goto fail;
573 		}
574 	}
575 	return 0;
576 
577 fail:	rt2661_free_tx_ring(sc, ring);
578 	return error;
579 }
580 
581 static void
582 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
583 {
584 	struct rt2661_tx_desc *desc;
585 	struct rt2661_data *data;
586 	int i;
587 
588 	for (i = 0; i < ring->count; i++) {
589 		desc = &ring->desc[i];
590 		data = &ring->data[i];
591 
592 		if (data->m != NULL) {
593 			bus_dmamap_sync(ring->data_dmat, data->map,
594 			    BUS_DMASYNC_POSTWRITE);
595 			bus_dmamap_unload(ring->data_dmat, data->map);
596 			m_freem(data->m);
597 			data->m = NULL;
598 		}
599 
600 		desc->flags = 0;
601 	}
602 
603 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
604 
605 	ring->queued = 0;
606 	ring->cur = ring->next = 0;
607 }
608 
609 static void
610 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
611 {
612 	struct rt2661_data *data;
613 	int i;
614 
615 	if (ring->desc != NULL) {
616 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
617 		    BUS_DMASYNC_POSTWRITE);
618 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
619 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
620 		ring->desc = NULL;
621 	}
622 
623 	if (ring->desc_dmat != NULL) {
624 		bus_dma_tag_destroy(ring->desc_dmat);
625 		ring->desc_dmat = NULL;
626 	}
627 
628 	if (ring->data != NULL) {
629 		for (i = 0; i < ring->count; i++) {
630 			data = &ring->data[i];
631 
632 			if (data->m != NULL) {
633 				bus_dmamap_sync(ring->data_dmat, data->map,
634 				    BUS_DMASYNC_POSTWRITE);
635 				bus_dmamap_unload(ring->data_dmat, data->map);
636 				m_freem(data->m);
637 				data->m = NULL;
638 			}
639 
640 			if (data->map != NULL) {
641 				bus_dmamap_destroy(ring->data_dmat, data->map);
642 				data->map = NULL;
643 			}
644 		}
645 
646 		kfree(ring->data, M_DEVBUF);
647 		ring->data = NULL;
648 	}
649 
650 	if (ring->data_dmat != NULL) {
651 		bus_dma_tag_destroy(ring->data_dmat);
652 		ring->data_dmat = NULL;
653 	}
654 }
655 
656 static int
657 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring,
658     int count)
659 {
660 	struct rt2661_rx_desc *desc;
661 	struct rt2661_data *data;
662 	bus_addr_t physaddr;
663 	int i, error;
664 
665 	ring->count = count;
666 	ring->cur = ring->next = 0;
667 
668 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
669 	    BUS_SPACE_MAXADDR, NULL, NULL, count * RT2661_RX_DESC_SIZE, 1,
670 	    count * RT2661_RX_DESC_SIZE, 0, &ring->desc_dmat);
671 	if (error != 0) {
672 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
673 		goto fail;
674 	}
675 
676 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
677 	    BUS_DMA_WAITOK | BUS_DMA_ZERO, &ring->desc_map);
678 	if (error != 0) {
679 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
680 		goto fail;
681 	}
682 
683 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
684 	    count * RT2661_RX_DESC_SIZE, rt2661_dma_map_addr, &ring->physaddr,
685 	    0);
686 	if (error != 0) {
687 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
688 
689 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
690 		ring->desc = NULL;
691 		goto fail;
692 	}
693 
694 	ring->data = kmalloc(count * sizeof (struct rt2661_data), M_DEVBUF,
695 	    M_WAITOK | M_ZERO);
696 
697 	/*
698 	 * Pre-allocate Rx buffers and populate Rx ring.
699 	 */
700 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
701 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0,
702 	    &ring->data_dmat);
703 	if (error != 0) {
704 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
705 		goto fail;
706 	}
707 
708 	for (i = 0; i < count; i++) {
709 		desc = &sc->rxq.desc[i];
710 		data = &sc->rxq.data[i];
711 
712 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
713 		if (error != 0) {
714 			device_printf(sc->sc_dev, "could not create DMA map\n");
715 			goto fail;
716 		}
717 
718 		data->m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
719 		if (data->m == NULL) {
720 			device_printf(sc->sc_dev,
721 			    "could not allocate rx mbuf\n");
722 			error = ENOMEM;
723 			goto fail;
724 		}
725 
726 		error = bus_dmamap_load(ring->data_dmat, data->map,
727 		    mtod(data->m, void *), MCLBYTES, rt2661_dma_map_addr,
728 		    &physaddr, 0);
729 		if (error != 0) {
730 			device_printf(sc->sc_dev,
731 			    "could not load rx buf DMA map");
732 
733 			m_freem(data->m);
734 			data->m = NULL;
735 			goto fail;
736 		}
737 
738 		desc->flags = htole32(RT2661_RX_BUSY);
739 		desc->physaddr = htole32(physaddr);
740 	}
741 
742 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
743 
744 	return 0;
745 
746 fail:	rt2661_free_rx_ring(sc, ring);
747 	return error;
748 }
749 
750 static void
751 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
752 {
753 	int i;
754 
755 	for (i = 0; i < ring->count; i++)
756 		ring->desc[i].flags = htole32(RT2661_RX_BUSY);
757 
758 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
759 
760 	ring->cur = ring->next = 0;
761 }
762 
763 static void
764 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
765 {
766 	struct rt2661_data *data;
767 	int i;
768 
769 	if (ring->desc != NULL) {
770 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
771 		    BUS_DMASYNC_POSTWRITE);
772 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
773 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
774 		ring->desc = NULL;
775 	}
776 
777 	if (ring->desc_dmat != NULL) {
778 		bus_dma_tag_destroy(ring->desc_dmat);
779 		ring->desc_dmat = NULL;
780 	}
781 
782 	if (ring->data != NULL) {
783 		for (i = 0; i < ring->count; i++) {
784 			data = &ring->data[i];
785 
786 			if (data->m != NULL) {
787 				bus_dmamap_sync(ring->data_dmat, data->map,
788 				    BUS_DMASYNC_POSTREAD);
789 				bus_dmamap_unload(ring->data_dmat, data->map);
790 				m_freem(data->m);
791 				data->m = NULL;
792 			}
793 
794 			if (data->map != NULL) {
795 				bus_dmamap_destroy(ring->data_dmat, data->map);
796 				data->map = NULL;
797 			}
798 		}
799 
800 		kfree(ring->data, M_DEVBUF);
801 		ring->data = NULL;
802 	}
803 
804 	if (ring->data_dmat != NULL) {
805 		bus_dma_tag_destroy(ring->data_dmat);
806 		ring->data_dmat = NULL;
807 	}
808 }
809 
810 static int
811 rt2661_media_change(struct ifnet *ifp)
812 {
813 	struct rt2661_softc *sc = ifp->if_softc;
814 	int error;
815 
816 	error = ieee80211_media_change(ifp);
817 	if (error != ENETRESET)
818 		return error;
819 
820 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
821 		rt2661_init(sc);
822 	return 0;
823 }
824 
825 /*
826  * This function is called periodically (every 200ms) during scanning to
827  * switch from one channel to another.
828  */
829 static void
830 rt2661_next_scan(void *arg)
831 {
832 	struct rt2661_softc *sc = arg;
833 	struct ieee80211com *ic = &sc->sc_ic;
834 	struct ifnet *ifp = &ic->ic_if;
835 
836 	lwkt_serialize_enter(ifp->if_serializer);
837 	if (ic->ic_state == IEEE80211_S_SCAN)
838 		ieee80211_next_scan(ic);
839 	lwkt_serialize_exit(ifp->if_serializer);
840 }
841 
842 static int
843 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
844 {
845 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
846 	enum ieee80211_state ostate;
847 	struct ieee80211_node *ni;
848 	uint32_t tmp;
849 	int error = 0;
850 
851 	ostate = ic->ic_state;
852 	callout_stop(&sc->scan_ch);
853 
854 	if (ostate != nstate)
855 		rt2661_led_newstate(sc, nstate);
856 
857 	ieee80211_ratectl_newstate(ic, nstate);
858 
859 	switch (nstate) {
860 	case IEEE80211_S_INIT:
861 		if (ostate == IEEE80211_S_RUN) {
862 			/* abort TSF synchronization */
863 			tmp = RAL_READ(sc, RT2661_TXRX_CSR9);
864 			RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff);
865 		}
866 		break;
867 
868 	case IEEE80211_S_SCAN:
869 		rt2661_set_chan(sc, ic->ic_curchan);
870 		callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000,
871 		    rt2661_next_scan, sc);
872 		break;
873 
874 	case IEEE80211_S_AUTH:
875 	case IEEE80211_S_ASSOC:
876 		rt2661_set_chan(sc, ic->ic_curchan);
877 		break;
878 
879 	case IEEE80211_S_RUN:
880 		rt2661_set_chan(sc, ic->ic_curchan);
881 
882 		ni = ic->ic_bss;
883 
884 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
885 			rt2661_enable_mrr(sc);
886 			rt2661_set_txpreamble(sc);
887 			rt2661_set_basicrates(sc, &ni->ni_rates);
888 			rt2661_set_bssid(sc, ni->ni_bssid);
889 		}
890 
891 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
892 		    ic->ic_opmode == IEEE80211_M_IBSS) {
893 			if ((error = rt2661_prepare_beacon(sc)) != 0)
894 				break;
895 		}
896 
897 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
898 			rt2661_enable_tsf_sync(sc);
899 		break;
900 	}
901 
902 	return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
903 }
904 
905 /*
906  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
907  * 93C66).
908  */
909 static uint16_t
910 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr)
911 {
912 	uint32_t tmp;
913 	uint16_t val;
914 	int n;
915 
916 	/* clock C once before the first command */
917 	RT2661_EEPROM_CTL(sc, 0);
918 
919 	RT2661_EEPROM_CTL(sc, RT2661_S);
920 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
921 	RT2661_EEPROM_CTL(sc, RT2661_S);
922 
923 	/* write start bit (1) */
924 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
925 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
926 
927 	/* write READ opcode (10) */
928 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
929 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
930 	RT2661_EEPROM_CTL(sc, RT2661_S);
931 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
932 
933 	/* write address (A5-A0 or A7-A0) */
934 	n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7;
935 	for (; n >= 0; n--) {
936 		RT2661_EEPROM_CTL(sc, RT2661_S |
937 		    (((addr >> n) & 1) << RT2661_SHIFT_D));
938 		RT2661_EEPROM_CTL(sc, RT2661_S |
939 		    (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C);
940 	}
941 
942 	RT2661_EEPROM_CTL(sc, RT2661_S);
943 
944 	/* read data Q15-Q0 */
945 	val = 0;
946 	for (n = 15; n >= 0; n--) {
947 		RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
948 		tmp = RAL_READ(sc, RT2661_E2PROM_CSR);
949 		val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n;
950 		RT2661_EEPROM_CTL(sc, RT2661_S);
951 	}
952 
953 	RT2661_EEPROM_CTL(sc, 0);
954 
955 	/* clear Chip Select and clock C */
956 	RT2661_EEPROM_CTL(sc, RT2661_S);
957 	RT2661_EEPROM_CTL(sc, 0);
958 	RT2661_EEPROM_CTL(sc, RT2661_C);
959 
960 	return val;
961 }
962 
963 static void
964 rt2661_tx_intr(struct rt2661_softc *sc)
965 {
966 	struct ieee80211com *ic = &sc->sc_ic;
967 	struct ifnet *ifp = ic->ic_ifp;
968 	struct rt2661_tx_ratectl *rctl;
969 	uint32_t val, result;
970 	int retrycnt;
971 
972 	for (;;) {
973 		struct ieee80211_ratectl_res res;
974 
975 		val = RAL_READ(sc, RT2661_STA_CSR4);
976 		if (!(val & RT2661_TX_STAT_VALID))
977 			break;
978 
979 		/* Gather statistics */
980 		result = RT2661_TX_RESULT(val);
981 		if (result == RT2661_TX_SUCCESS)
982 			ifp->if_opackets++;
983 		else
984 			ifp->if_oerrors++;
985 
986 		/* No rate control */
987 		if (RT2661_TX_QID(val) == 0)
988 			continue;
989 
990 		/* retrieve rate control algorithm context */
991 		rctl = STAILQ_FIRST(&sc->tx_ratectl);
992 		if (rctl == NULL) {
993 			/*
994 			 * XXX
995 			 * This really should not happen.  Maybe we should
996 			 * use assertion here?  But why should we rely on
997 			 * hardware to do the correct things?  Even the
998 			 * reference driver (RT61?) provided by Ralink does
999 			 * not provide enough clue that this kind of interrupt
1000 			 * is promised to be generated for each packet.  So
1001 			 * just print a message and keep going ...
1002 			 */
1003 			if_printf(ifp, "WARNING: no rate control information\n");
1004 			continue;
1005 		}
1006 		STAILQ_REMOVE_HEAD(&sc->tx_ratectl, link);
1007 
1008 		retrycnt = 7;
1009 		switch (result) {
1010 		case RT2661_TX_SUCCESS:
1011 			retrycnt = RT2661_TX_RETRYCNT(val);
1012 			DPRINTFN(10, ("data frame sent successfully after "
1013 			    "%d retries\n", retrycnt));
1014 			break;
1015 
1016 		case RT2661_TX_RETRY_FAIL:
1017 			DPRINTFN(9, ("sending data frame failed (too much "
1018 			    "retries)\n"));
1019 			break;
1020 
1021 		default:
1022 			/* other failure */
1023 			device_printf(sc->sc_dev,
1024 			    "sending data frame failed 0x%08x\n", val);
1025 			break;
1026 		}
1027 
1028 		res.rc_res_rateidx = rctl->rateidx;
1029 		res.rc_res_tries = retrycnt + 1;
1030 		ieee80211_ratectl_tx_complete(rctl->ni, rctl->len, &res, 1,
1031 			retrycnt, 0, result != RT2661_TX_SUCCESS);
1032 
1033 		ieee80211_free_node(rctl->ni);
1034 		rctl->ni = NULL;
1035 		kfree(rctl, M_RT2661);
1036 	}
1037 }
1038 
1039 static void
1040 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq)
1041 {
1042 	struct rt2661_tx_desc *desc;
1043 	struct rt2661_data *data;
1044 
1045 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_POSTREAD);
1046 
1047 	for (;;) {
1048 		desc = &txq->desc[txq->next];
1049 		data = &txq->data[txq->next];
1050 
1051 		if ((le32toh(desc->flags) & RT2661_TX_BUSY) ||
1052 		    !(le32toh(desc->flags) & RT2661_TX_VALID))
1053 			break;
1054 
1055 		bus_dmamap_sync(txq->data_dmat, data->map,
1056 		    BUS_DMASYNC_POSTWRITE);
1057 		bus_dmamap_unload(txq->data_dmat, data->map);
1058 		m_freem(data->m);
1059 		data->m = NULL;
1060 
1061 		/* descriptor is no longer valid */
1062 		desc->flags &= ~htole32(RT2661_TX_VALID);
1063 
1064 		DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next));
1065 
1066 		txq->queued--;
1067 		if (++txq->next >= txq->count)	/* faster than % count */
1068 			txq->next = 0;
1069 	}
1070 
1071 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1072 
1073 	if (txq->queued < txq->count) {
1074 		struct ifnet *ifp = &sc->sc_ic.ic_if;
1075 
1076 		sc->sc_tx_timer = 0;
1077 		ifp->if_flags &= ~IFF_OACTIVE;
1078 		rt2661_start(ifp);
1079 	}
1080 }
1081 
1082 static void
1083 rt2661_rx_intr(struct rt2661_softc *sc)
1084 {
1085 	struct ieee80211com *ic = &sc->sc_ic;
1086 	struct ifnet *ifp = ic->ic_ifp;
1087 	struct rt2661_rx_desc *desc;
1088 	struct rt2661_data *data;
1089 	bus_addr_t physaddr;
1090 	struct ieee80211_frame_min *wh;
1091 	struct ieee80211_node *ni;
1092 	struct mbuf *mnew, *m;
1093 	int error;
1094 
1095 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1096 	    BUS_DMASYNC_POSTREAD);
1097 
1098 	for (;;) {
1099 		int rssi;
1100 
1101 		desc = &sc->rxq.desc[sc->rxq.cur];
1102 		data = &sc->rxq.data[sc->rxq.cur];
1103 
1104 		if (le32toh(desc->flags) & RT2661_RX_BUSY)
1105 			break;
1106 
1107 		if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) ||
1108 		    (le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) {
1109 			/*
1110 			 * This should not happen since we did not request
1111 			 * to receive those frames when we filled TXRX_CSR0.
1112 			 */
1113 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1114 			    le32toh(desc->flags)));
1115 			ifp->if_ierrors++;
1116 			goto skip;
1117 		}
1118 
1119 		if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) {
1120 			ifp->if_ierrors++;
1121 			goto skip;
1122 		}
1123 
1124 		/*
1125 		 * Try to allocate a new mbuf for this ring element and load it
1126 		 * before processing the current mbuf. If the ring element
1127 		 * cannot be loaded, drop the received packet and reuse the old
1128 		 * mbuf. In the unlikely case that the old mbuf can't be
1129 		 * reloaded either, explicitly panic.
1130 		 */
1131 		mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1132 		if (mnew == NULL) {
1133 			ifp->if_ierrors++;
1134 			goto skip;
1135 		}
1136 
1137 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1138 		    BUS_DMASYNC_POSTREAD);
1139 		bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1140 
1141 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1142 		    mtod(mnew, void *), MCLBYTES, rt2661_dma_map_addr,
1143 		    &physaddr, 0);
1144 		if (error != 0) {
1145 			m_freem(mnew);
1146 
1147 			/* try to reload the old mbuf */
1148 			error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1149 			    mtod(data->m, void *), MCLBYTES,
1150 			    rt2661_dma_map_addr, &physaddr, 0);
1151 			if (error != 0) {
1152 				/* very unlikely that it will fail... */
1153 				panic("%s: could not load old rx mbuf",
1154 				    device_get_name(sc->sc_dev));
1155 			}
1156 			ifp->if_ierrors++;
1157 			goto skip;
1158 		}
1159 
1160 		/*
1161 	 	 * New mbuf successfully loaded, update Rx ring and continue
1162 		 * processing.
1163 		 */
1164 		m = data->m;
1165 		data->m = mnew;
1166 		desc->physaddr = htole32(physaddr);
1167 
1168 		/* finalize mbuf */
1169 		m->m_pkthdr.rcvif = ifp;
1170 		m->m_pkthdr.len = m->m_len =
1171 		    (le32toh(desc->flags) >> 16) & 0xfff;
1172 
1173 		rssi = rt2661_get_rssi(sc, desc->rssi);
1174 
1175 		wh = mtod(m, struct ieee80211_frame_min *);
1176 		ni = ieee80211_find_rxnode(ic, wh);
1177 
1178 		/* Error happened during RSSI conversion. */
1179 		if (rssi < 0)
1180 			rssi = ni->ni_rssi;
1181 
1182 		if (sc->sc_drvbpf != NULL) {
1183 			struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap;
1184 			uint32_t tsf_lo, tsf_hi;
1185 
1186 			/* get timestamp (low and high 32 bits) */
1187 			tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13);
1188 			tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12);
1189 
1190 			tap->wr_tsf =
1191 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1192 			tap->wr_flags = 0;
1193 			tap->wr_rate = rt2661_rxrate(desc);
1194 			tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1195 			tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1196 			tap->wr_antsignal = rssi;
1197 
1198 			bpf_ptap(sc->sc_drvbpf, m, tap, sc->sc_rxtap_len);
1199 		}
1200 
1201 		/* send the frame to the 802.11 layer */
1202 		ieee80211_input(ic, m, ni, rssi, 0);
1203 
1204 		/* node is no longer needed */
1205 		ieee80211_free_node(ni);
1206 
1207 skip:		desc->flags |= htole32(RT2661_RX_BUSY);
1208 
1209 		DPRINTFN(15, ("rx intr idx=%u\n", sc->rxq.cur));
1210 
1211 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT;
1212 	}
1213 
1214 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1215 	    BUS_DMASYNC_PREWRITE);
1216 }
1217 
1218 /* ARGSUSED */
1219 static void
1220 rt2661_mcu_beacon_expire(struct rt2661_softc *sc)
1221 {
1222 	/* do nothing */
1223 }
1224 
1225 static void
1226 rt2661_mcu_wakeup(struct rt2661_softc *sc)
1227 {
1228 	RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16);
1229 
1230 	RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7);
1231 	RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18);
1232 	RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20);
1233 
1234 	/* send wakeup command to MCU */
1235 	rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0);
1236 }
1237 
1238 static void
1239 rt2661_mcu_cmd_intr(struct rt2661_softc *sc)
1240 {
1241 	RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR);
1242 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
1243 }
1244 
1245 static void
1246 rt2661_intr(void *arg)
1247 {
1248 	struct rt2661_softc *sc = arg;
1249 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1250 	uint32_t r1, r2;
1251 
1252 	/* disable MAC and MCU interrupts */
1253 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
1254 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
1255 
1256 	/* don't re-enable interrupts if we're shutting down */
1257 	if (!(ifp->if_flags & IFF_RUNNING))
1258 		return;
1259 
1260 	r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
1261 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1);
1262 
1263 	r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
1264 	RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2);
1265 
1266 	if (r1 & RT2661_MGT_DONE)
1267 		rt2661_tx_dma_intr(sc, &sc->mgtq);
1268 
1269 	if (r1 & RT2661_RX_DONE)
1270 		rt2661_rx_intr(sc);
1271 
1272 	if (r1 & RT2661_TX0_DMA_DONE)
1273 		rt2661_tx_dma_intr(sc, &sc->txq[0]);
1274 
1275 	if (r1 & RT2661_TX1_DMA_DONE)
1276 		rt2661_tx_dma_intr(sc, &sc->txq[1]);
1277 
1278 	if (r1 & RT2661_TX2_DMA_DONE)
1279 		rt2661_tx_dma_intr(sc, &sc->txq[2]);
1280 
1281 	if (r1 & RT2661_TX3_DMA_DONE)
1282 		rt2661_tx_dma_intr(sc, &sc->txq[3]);
1283 
1284 	if (r1 & RT2661_TX_DONE)
1285 		rt2661_tx_intr(sc);
1286 
1287 	if (r2 & RT2661_MCU_CMD_DONE)
1288 		rt2661_mcu_cmd_intr(sc);
1289 
1290 	if (r2 & RT2661_MCU_BEACON_EXPIRE)
1291 		rt2661_mcu_beacon_expire(sc);
1292 
1293 	if (r2 & RT2661_MCU_WAKEUP)
1294 		rt2661_mcu_wakeup(sc);
1295 
1296 	/* re-enable MAC and MCU interrupts */
1297 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
1298 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
1299 }
1300 
1301 /* quickly determine if a given rate is CCK or OFDM */
1302 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1303 
1304 #define RAL_ACK_SIZE	(sizeof(struct ieee80211_frame_ack) + IEEE80211_FCS_LEN)
1305 #define RAL_CTS_SIZE	(sizeof(struct ieee80211_frame_cts) + IEEE80211_FCS_LEN)
1306 
1307 /*
1308  * This function is only used by the Rx radiotap code. It returns the rate at
1309  * which a given frame was received.
1310  */
1311 static uint8_t
1312 rt2661_rxrate(struct rt2661_rx_desc *desc)
1313 {
1314 	if (le32toh(desc->flags) & RT2661_RX_OFDM) {
1315 		/* reverse function of rt2661_plcp_signal */
1316 		switch (desc->rate & 0xf) {
1317 		case 0xb:	return 12;
1318 		case 0xf:	return 18;
1319 		case 0xa:	return 24;
1320 		case 0xe:	return 36;
1321 		case 0x9:	return 48;
1322 		case 0xd:	return 72;
1323 		case 0x8:	return 96;
1324 		case 0xc:	return 108;
1325 		}
1326 	} else {
1327 		if (desc->rate == 10)
1328 			return 2;
1329 		if (desc->rate == 20)
1330 			return 4;
1331 		if (desc->rate == 55)
1332 			return 11;
1333 		if (desc->rate == 110)
1334 			return 22;
1335 	}
1336 	return 2;	/* should not get there */
1337 }
1338 
1339 static uint8_t
1340 rt2661_plcp_signal(int rate)
1341 {
1342 	switch (rate) {
1343 	/* CCK rates (returned values are device-dependent) */
1344 	case 2:		return 0x0;
1345 	case 4:		return 0x1;
1346 	case 11:	return 0x2;
1347 	case 22:	return 0x3;
1348 
1349 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1350 	case 12:	return 0xb;
1351 	case 18:	return 0xf;
1352 	case 24:	return 0xa;
1353 	case 36:	return 0xe;
1354 	case 48:	return 0x9;
1355 	case 72:	return 0xd;
1356 	case 96:	return 0x8;
1357 	case 108:	return 0xc;
1358 
1359 	/* unsupported rates (should not get there) */
1360 	default:	return 0xff;
1361 	}
1362 }
1363 
1364 static void
1365 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc,
1366     uint32_t flags, uint16_t xflags, int len, int rate,
1367     const bus_dma_segment_t *segs, int nsegs, int ac, int ratectl)
1368 {
1369 	struct ieee80211com *ic = &sc->sc_ic;
1370 	uint16_t plcp_length;
1371 	int i, remainder;
1372 
1373 	desc->flags = htole32(flags);
1374 	desc->flags |= htole32(len << 16);
1375 	desc->flags |= htole32(RT2661_TX_VALID);
1376 
1377 	desc->xflags = htole16(xflags);
1378 	desc->xflags |= htole16(nsegs << 13);
1379 
1380 	desc->wme = htole16(
1381 	    RT2661_QID(ac) |
1382 	    RT2661_AIFSN(2) |
1383 	    RT2661_LOGCWMIN(4) |
1384 	    RT2661_LOGCWMAX(10));
1385 
1386 	/*
1387 	 * Remember whether TX rate control information should be gathered.
1388 	 * This field is driver private data only.  It will be made available
1389 	 * by the NIC in STA_CSR4 on Tx done interrupts.
1390 	 */
1391 	desc->qid = ratectl;
1392 
1393 	/* setup PLCP fields */
1394 	desc->plcp_signal  = rt2661_plcp_signal(rate);
1395 	desc->plcp_service = 4;
1396 
1397 	len += IEEE80211_CRC_LEN;
1398 	if (RAL_RATE_IS_OFDM(rate)) {
1399 		desc->flags |= htole32(RT2661_TX_OFDM);
1400 
1401 		plcp_length = len & 0xfff;
1402 		desc->plcp_length_hi = plcp_length >> 6;
1403 		desc->plcp_length_lo = plcp_length & 0x3f;
1404 	} else {
1405 		plcp_length = (16 * len + rate - 1) / rate;
1406 		if (rate == 22) {
1407 			remainder = (16 * len) % 22;
1408 			if (remainder != 0 && remainder < 7)
1409 				desc->plcp_service |= RT2661_PLCP_LENGEXT;
1410 		}
1411 		desc->plcp_length_hi = plcp_length >> 8;
1412 		desc->plcp_length_lo = plcp_length & 0xff;
1413 
1414 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1415 			desc->plcp_signal |= 0x08;
1416 	}
1417 
1418 	/* RT2x61 supports scatter with up to 5 segments */
1419 	for (i = 0; i < nsegs; i++) {
1420 		desc->addr[i] = htole32(segs[i].ds_addr);
1421 		desc->len [i] = htole16(segs[i].ds_len);
1422 	}
1423 
1424 	desc->flags |= htole32(RT2661_TX_BUSY);
1425 }
1426 
1427 static int
1428 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0,
1429     struct ieee80211_node *ni)
1430 {
1431 	struct ieee80211com *ic = &sc->sc_ic;
1432 	struct rt2661_tx_desc *desc;
1433 	struct rt2661_data *data;
1434 	struct ieee80211_frame *wh;
1435 	struct rt2661_dmamap map;
1436 	uint16_t dur;
1437 	uint32_t flags = 0;	/* XXX HWSEQ */
1438 	int rate, error;
1439 
1440 	desc = &sc->mgtq.desc[sc->mgtq.cur];
1441 	data = &sc->mgtq.data[sc->mgtq.cur];
1442 
1443 	/* send mgt frames at the lowest available rate */
1444 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1445 
1446 	error = bus_dmamap_load_mbuf(sc->mgtq.data_dmat, data->map, m0,
1447 				     rt2661_dma_map_mbuf, &map, 0);
1448 	if (error != 0) {
1449 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1450 		    error);
1451 		ieee80211_free_node(ni);
1452 		m_freem(m0);
1453 		return error;
1454 	}
1455 
1456 	if (sc->sc_drvbpf != NULL) {
1457 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1458 
1459 		tap->wt_flags = 0;
1460 		tap->wt_rate = rate;
1461 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1462 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1463 
1464 		bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len);
1465 	}
1466 
1467 	data->m = m0;
1468 
1469 	wh = mtod(m0, struct ieee80211_frame *);
1470 
1471 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1472 		flags |= RT2661_TX_NEED_ACK;
1473 
1474 		dur = ieee80211_txtime(ni, RAL_ACK_SIZE, rate, ic->ic_flags) +
1475 		      sc->sc_sifs;
1476 		*(uint16_t *)wh->i_dur = htole16(dur);
1477 
1478 		/* tell hardware to add timestamp in probe responses */
1479 		if ((wh->i_fc[0] &
1480 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1481 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1482 			flags |= RT2661_TX_TIMESTAMP;
1483 	}
1484 
1485 	rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */,
1486 	    m0->m_pkthdr.len, rate, map.segs, map.nseg, RT2661_QID_MGT, 0);
1487 
1488 	bus_dmamap_sync(sc->mgtq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1489 	bus_dmamap_sync(sc->mgtq.desc_dmat, sc->mgtq.desc_map,
1490 	    BUS_DMASYNC_PREWRITE);
1491 
1492 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1493 	    m0->m_pkthdr.len, sc->mgtq.cur, rate));
1494 
1495 	/* kick mgt */
1496 	sc->mgtq.queued++;
1497 	sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT;
1498 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT);
1499 
1500 	ieee80211_free_node(ni);
1501 
1502 	return 0;
1503 }
1504 
1505 /*
1506  * Build a RTS control frame.
1507  */
1508 static struct mbuf *
1509 rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh,
1510     uint16_t dur)
1511 {
1512 	struct ieee80211_frame_rts *rts;
1513 	struct mbuf *m;
1514 
1515 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1516 	if (m == NULL) {
1517 		sc->sc_ic.ic_stats.is_tx_nobuf++;
1518 		device_printf(sc->sc_dev, "could not allocate RTS frame\n");
1519 		return NULL;
1520 	}
1521 
1522 	rts = mtod(m, struct ieee80211_frame_rts *);
1523 
1524 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1525 	    IEEE80211_FC0_SUBTYPE_RTS;
1526 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1527 	*(uint16_t *)rts->i_dur = htole16(dur);
1528 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1529 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1530 
1531 	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1532 
1533 	return m;
1534 }
1535 
1536 static int
1537 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0,
1538     struct ieee80211_node *ni, int ac)
1539 {
1540 	struct ieee80211com *ic = &sc->sc_ic;
1541 	struct rt2661_tx_ring *txq = &sc->txq[ac];
1542 	struct rt2661_tx_desc *desc;
1543 	struct rt2661_data *data;
1544 	struct rt2661_tx_ratectl *rctl;
1545 	struct ieee80211_frame *wh;
1546 	struct ieee80211_key *k;
1547 	const struct chanAccParams *cap;
1548 	struct mbuf *mnew;
1549 	struct rt2661_dmamap map;
1550 	uint16_t dur;
1551 	uint32_t flags = 0;
1552 	int error, rate, ackrate, noack = 0, rateidx;
1553 
1554 	wh = mtod(m0, struct ieee80211_frame *);
1555 	if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
1556 		cap = &ic->ic_wme.wme_chanParams;
1557 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1558 	}
1559 
1560 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1561 		k = ieee80211_crypto_encap(ic, ni, m0);
1562 		if (k == NULL) {
1563 			m_freem(m0);
1564 			return ENOBUFS;
1565 		}
1566 
1567 		/* packet header may have moved, reset our local pointer */
1568 		wh = mtod(m0, struct ieee80211_frame *);
1569 	}
1570 
1571 	ieee80211_ratectl_findrate(ni, m0->m_pkthdr.len, &rateidx, 1);
1572 	rate = IEEE80211_RS_RATE(&ni->ni_rates, rateidx);
1573 
1574 	ackrate = ieee80211_ack_rate(ni, rate);
1575 
1576 	/*
1577 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1578 	 * for directed frames only when the length of the MPDU is greater
1579 	 * than the length threshold indicated by [...]" ic_rtsthreshold.
1580 	 */
1581 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1582 	    m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1583 		struct mbuf *m;
1584 		uint16_t dur;
1585 		int rtsrate;
1586 
1587 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1588 
1589 		/* XXX: noack (QoS)? */
1590 		dur = ieee80211_txtime(ni, m0->m_pkthdr.len + IEEE80211_FCS_LEN,
1591 				       rate, ic->ic_flags) +
1592 		      ieee80211_txtime(ni, RAL_CTS_SIZE, rtsrate, ic->ic_flags)+
1593 		      ieee80211_txtime(ni, RAL_ACK_SIZE, ackrate, ic->ic_flags)+
1594 		      3 * sc->sc_sifs;
1595 
1596 		m = rt2661_get_rts(sc, wh, dur);
1597 
1598 		desc = &txq->desc[txq->cur];
1599 		data = &txq->data[txq->cur];
1600 
1601 		error = bus_dmamap_load_mbuf(txq->data_dmat, data->map, m,
1602 					     rt2661_dma_map_mbuf, &map, 0);
1603 		if (error != 0) {
1604 			device_printf(sc->sc_dev,
1605 			    "could not map mbuf (error %d)\n", error);
1606 			m_freem(m);
1607 			m_freem(m0);
1608 			return error;
1609 		}
1610 
1611 		data->m = m;
1612 
1613 		rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK |
1614 				     RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len,
1615 				     rtsrate, map.segs, map.nseg, ac, 0);
1616 
1617 		bus_dmamap_sync(txq->data_dmat, data->map,
1618 		    BUS_DMASYNC_PREWRITE);
1619 
1620 		txq->queued++;
1621 		txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1622 
1623 		/*
1624 		 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1625 		 * asynchronous data frame shall be transmitted after the CTS
1626 		 * frame and a SIFS period.
1627 		 */
1628 		flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS;
1629 	}
1630 
1631 	data = &txq->data[txq->cur];
1632 	desc = &txq->desc[txq->cur];
1633 
1634 	error = bus_dmamap_load_mbuf(txq->data_dmat, data->map, m0,
1635 				     rt2661_dma_map_mbuf, &map, 0);
1636 	if (error != 0 && error != EFBIG) {
1637 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1638 		    error);
1639 		m_freem(m0);
1640 		return error;
1641 	}
1642 	if (error != 0) {
1643 		mnew = m_defrag(m0, MB_DONTWAIT);
1644 		if (mnew == NULL) {
1645 			device_printf(sc->sc_dev,
1646 			    "could not defragment mbuf\n");
1647 			m_freem(m0);
1648 			return ENOBUFS;
1649 		}
1650 		m0 = mnew;
1651 
1652 		error = bus_dmamap_load_mbuf(txq->data_dmat, data->map, m0,
1653 					     rt2661_dma_map_mbuf, &map, 0);
1654 		if (error != 0) {
1655 			device_printf(sc->sc_dev,
1656 			    "could not map mbuf (error %d)\n", error);
1657 			m_freem(m0);
1658 			return error;
1659 		}
1660 
1661 		/* packet header have moved, reset our local pointer */
1662 		wh = mtod(m0, struct ieee80211_frame *);
1663 	}
1664 
1665 	if (sc->sc_drvbpf != NULL) {
1666 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1667 
1668 		tap->wt_flags = 0;
1669 		tap->wt_rate = rate;
1670 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1671 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1672 
1673 		bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len);
1674 	}
1675 
1676 	data->m = m0;
1677 
1678 	rctl = kmalloc(sizeof(*rctl), M_RT2661, M_NOWAIT);
1679 	if (rctl != NULL) {
1680 		rctl->ni = ni;
1681 		rctl->len = m0->m_pkthdr.len;
1682 		rctl->rateidx = rateidx;
1683 		STAILQ_INSERT_TAIL(&sc->tx_ratectl, rctl, link);
1684 	}
1685 
1686 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1687 		flags |= RT2661_TX_NEED_ACK;
1688 
1689 		dur = ieee80211_txtime(ni, RAL_ACK_SIZE, ackrate, ic->ic_flags)+
1690 		      sc->sc_sifs;
1691 		*(uint16_t *)wh->i_dur = htole16(dur);
1692 	}
1693 
1694 	rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate,
1695 			     map.segs, map.nseg, ac, rctl != NULL);
1696 
1697 	bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1698 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1699 
1700 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1701 	    m0->m_pkthdr.len, txq->cur, rate));
1702 
1703 	/* kick Tx */
1704 	txq->queued++;
1705 	txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1706 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1 << ac);
1707 
1708 	if (rctl == NULL)
1709 		ieee80211_free_node(ni);
1710 
1711 	return 0;
1712 }
1713 
1714 static void
1715 rt2661_start(struct ifnet *ifp)
1716 {
1717 	struct rt2661_softc *sc = ifp->if_softc;
1718 	struct ieee80211com *ic = &sc->sc_ic;
1719 	struct mbuf *m0;
1720 	struct ether_header *eh;
1721 	struct ieee80211_node *ni;
1722 	int ac;
1723 
1724 	/* prevent management frames from being sent if we're not ready */
1725 	if (!(ifp->if_flags & IFF_RUNNING))
1726 		return;
1727 
1728 	for (;;) {
1729 		IF_POLL(&ic->ic_mgtq, m0);
1730 		if (m0 != NULL) {
1731 			if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) {
1732 				ifp->if_flags |= IFF_OACTIVE;
1733 				break;
1734 			}
1735 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1736 
1737 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1738 			m0->m_pkthdr.rcvif = NULL;
1739 
1740 			if (ic->ic_rawbpf != NULL)
1741 				bpf_mtap(ic->ic_rawbpf, m0);
1742 
1743 			if (rt2661_tx_mgt(sc, m0, ni) != 0)
1744 				break;
1745 		} else {
1746 			if (ic->ic_state != IEEE80211_S_RUN)
1747 				break;
1748 
1749 			m0 = ifq_dequeue(&ifp->if_snd, NULL);
1750 			if (m0 == NULL)
1751 				break;
1752 
1753 			if (m0->m_len < sizeof (struct ether_header) &&
1754 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1755 				continue;
1756 
1757 			eh = mtod(m0, struct ether_header *);
1758 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1759 			if (ni == NULL) {
1760 				m_freem(m0);
1761 				ifp->if_oerrors++;
1762 				continue;
1763 			}
1764 
1765 			/* classify mbuf so we can find which tx ring to use */
1766 			if (ieee80211_classify(ic, m0, ni) != 0) {
1767 				m_freem(m0);
1768 				ieee80211_free_node(ni);
1769 				ifp->if_oerrors++;
1770 				continue;
1771 			}
1772 
1773 			/* no QoS encapsulation for EAPOL frames */
1774 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1775 			    M_WME_GETAC(m0) : WME_AC_BE;
1776 
1777 			if (sc->txq[ac].queued >= RT2661_TX_RING_COUNT - 1) {
1778 				/* there is no place left in this ring */
1779 				ifp->if_flags |= IFF_OACTIVE;
1780 				m_freem(m0);
1781 				ieee80211_free_node(ni);
1782 				break;
1783 			}
1784 
1785 			BPF_MTAP(ifp, m0);
1786 
1787 			m0 = ieee80211_encap(ic, m0, ni);
1788 			if (m0 == NULL) {
1789 				ieee80211_free_node(ni);
1790 				ifp->if_oerrors++;
1791 				continue;
1792 			}
1793 
1794 			if (ic->ic_rawbpf != NULL)
1795 				bpf_mtap(ic->ic_rawbpf, m0);
1796 
1797 			if (rt2661_tx_data(sc, m0, ni, ac) != 0) {
1798 				ieee80211_free_node(ni);
1799 				ifp->if_oerrors++;
1800 				break;
1801 			}
1802 		}
1803 
1804 		sc->sc_tx_timer = 5;
1805 		ifp->if_timer = 1;
1806 	}
1807 }
1808 
1809 static void
1810 rt2661_watchdog(struct ifnet *ifp)
1811 {
1812 	struct rt2661_softc *sc = ifp->if_softc;
1813 	struct ieee80211com *ic = &sc->sc_ic;
1814 
1815 	ifp->if_timer = 0;
1816 
1817 	if (sc->sc_tx_timer > 0) {
1818 		if (--sc->sc_tx_timer == 0) {
1819 			device_printf(sc->sc_dev, "device timeout\n");
1820 			rt2661_init(sc);
1821 			ifp->if_oerrors++;
1822 			return;
1823 		}
1824 		ifp->if_timer = 1;
1825 	}
1826 
1827 	ieee80211_watchdog(ic);
1828 }
1829 
1830 /*
1831  * This function allows for fast channel switching in monitor mode (used by
1832  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1833  * generate a new beacon frame.
1834  */
1835 static int
1836 rt2661_reset(struct ifnet *ifp)
1837 {
1838 	struct rt2661_softc *sc = ifp->if_softc;
1839 	struct ieee80211com *ic = &sc->sc_ic;
1840 
1841 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
1842 		return ENETRESET;
1843 
1844 	rt2661_set_chan(sc, ic->ic_curchan);
1845 
1846 	return 0;
1847 }
1848 
1849 static int
1850 rt2661_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1851 {
1852 	struct rt2661_softc *sc = ifp->if_softc;
1853 	struct ieee80211com *ic = &sc->sc_ic;
1854 	int error = 0;
1855 
1856 	switch (cmd) {
1857 	case SIOCSIFFLAGS:
1858 		if (ifp->if_flags & IFF_UP) {
1859 			if (ifp->if_flags & IFF_RUNNING)
1860 				rt2661_update_promisc(sc);
1861 			else
1862 				rt2661_init(sc);
1863 		} else {
1864 			if (ifp->if_flags & IFF_RUNNING)
1865 				rt2661_stop(sc);
1866 		}
1867 		break;
1868 
1869 	default:
1870 		error = ieee80211_ioctl(ic, cmd, data, cr);
1871 	}
1872 
1873 	if (error == ENETRESET) {
1874 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1875 		    (IFF_UP | IFF_RUNNING) &&
1876 		    (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1877 			rt2661_init(sc);
1878 		error = 0;
1879 	}
1880 	return error;
1881 }
1882 
1883 static void
1884 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val)
1885 {
1886 	uint32_t tmp;
1887 	int ntries;
1888 
1889 	for (ntries = 0; ntries < 100; ntries++) {
1890 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
1891 			break;
1892 		DELAY(1);
1893 	}
1894 	if (ntries == 100) {
1895 		device_printf(sc->sc_dev, "could not write to BBP\n");
1896 		return;
1897 	}
1898 
1899 	tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val;
1900 	RAL_WRITE(sc, RT2661_PHY_CSR3, tmp);
1901 
1902 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
1903 }
1904 
1905 static uint8_t
1906 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg)
1907 {
1908 	uint32_t val;
1909 	int ntries;
1910 
1911 	for (ntries = 0; ntries < 100; ntries++) {
1912 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
1913 			break;
1914 		DELAY(1);
1915 	}
1916 	if (ntries == 100) {
1917 		device_printf(sc->sc_dev, "could not read from BBP\n");
1918 		return 0;
1919 	}
1920 
1921 	val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8;
1922 	RAL_WRITE(sc, RT2661_PHY_CSR3, val);
1923 
1924 	for (ntries = 0; ntries < 100; ntries++) {
1925 		val = RAL_READ(sc, RT2661_PHY_CSR3);
1926 		if (!(val & RT2661_BBP_BUSY))
1927 			return val & 0xff;
1928 		DELAY(1);
1929 	}
1930 
1931 	device_printf(sc->sc_dev, "could not read from BBP\n");
1932 	return 0;
1933 }
1934 
1935 static void
1936 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val)
1937 {
1938 	uint32_t tmp;
1939 	int ntries;
1940 
1941 	for (ntries = 0; ntries < 100; ntries++) {
1942 		if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY))
1943 			break;
1944 		DELAY(1);
1945 	}
1946 	if (ntries == 100) {
1947 		device_printf(sc->sc_dev, "could not write to RF\n");
1948 		return;
1949 	}
1950 
1951 	tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 |
1952 	    (reg & 3);
1953 	RAL_WRITE(sc, RT2661_PHY_CSR4, tmp);
1954 
1955 	/* remember last written value in sc */
1956 	sc->rf_regs[reg] = val;
1957 
1958 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff));
1959 }
1960 
1961 static int
1962 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg)
1963 {
1964 	if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY)
1965 		return EIO;	/* there is already a command pending */
1966 
1967 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
1968 	    RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg);
1969 
1970 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd);
1971 
1972 	return 0;
1973 }
1974 
1975 static void
1976 rt2661_select_antenna(struct rt2661_softc *sc)
1977 {
1978 	uint8_t bbp4, bbp77;
1979 	uint32_t tmp;
1980 
1981 	bbp4  = rt2661_bbp_read(sc,  4);
1982 	bbp77 = rt2661_bbp_read(sc, 77);
1983 
1984 	/* TBD */
1985 
1986 	/* make sure Rx is disabled before switching antenna */
1987 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
1988 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
1989 
1990 	rt2661_bbp_write(sc,  4, bbp4);
1991 	rt2661_bbp_write(sc, 77, bbp77);
1992 
1993 	/* restore Rx filter */
1994 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
1995 }
1996 
1997 /*
1998  * Enable multi-rate retries for frames sent at OFDM rates.
1999  * In 802.11b/g mode, allow fallback to CCK rates.
2000  */
2001 static void
2002 rt2661_enable_mrr(struct rt2661_softc *sc)
2003 {
2004 	struct ieee80211com *ic = &sc->sc_ic;
2005 	uint32_t tmp;
2006 
2007 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2008 
2009 	tmp &= ~RT2661_MRR_CCK_FALLBACK;
2010 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
2011 		tmp |= RT2661_MRR_CCK_FALLBACK;
2012 	tmp |= RT2661_MRR_ENABLED;
2013 	tmp |= RT2661_SRETRY_LIMIT(7) | RT2661_LRETRY_LIMIT(4);
2014 
2015 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2016 }
2017 
2018 static void
2019 rt2661_set_txpreamble(struct rt2661_softc *sc)
2020 {
2021 	uint32_t tmp;
2022 
2023 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2024 
2025 	tmp &= ~RT2661_SHORT_PREAMBLE;
2026 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
2027 		tmp |= RT2661_SHORT_PREAMBLE;
2028 
2029 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2030 }
2031 
2032 static void
2033 rt2661_set_basicrates(struct rt2661_softc *sc,
2034     const struct ieee80211_rateset *rs)
2035 {
2036 #define RV(r)	((r) & IEEE80211_RATE_VAL)
2037 	uint32_t mask = 0;
2038 	uint8_t rate;
2039 	int i, j;
2040 
2041 	for (i = 0; i < rs->rs_nrates; i++) {
2042 		rate = rs->rs_rates[i];
2043 
2044 		if (!(rate & IEEE80211_RATE_BASIC))
2045 			continue;
2046 
2047 		/*
2048 		 * Find h/w rate index.  We know it exists because the rate
2049 		 * set has already been negotiated.
2050 		 */
2051 		for (j = 0; rt2661_rateset_11g.rs_rates[j] != RV(rate); j++);
2052 
2053 		mask |= 1 << j;
2054 	}
2055 
2056 	RAL_WRITE(sc, RT2661_TXRX_CSR5, mask);
2057 
2058 	DPRINTF(("Setting basic rate mask to 0x%x\n", mask));
2059 #undef RV
2060 }
2061 
2062 /*
2063  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
2064  * driver.
2065  */
2066 static void
2067 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c)
2068 {
2069 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
2070 	uint32_t tmp;
2071 
2072 	/* update all BBP registers that depend on the band */
2073 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
2074 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
2075 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2076 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
2077 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
2078 	}
2079 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2080 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2081 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
2082 	}
2083 
2084 	rt2661_bbp_write(sc,  17, bbp17);
2085 	rt2661_bbp_write(sc,  96, bbp96);
2086 	rt2661_bbp_write(sc, 104, bbp104);
2087 
2088 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2089 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2090 		rt2661_bbp_write(sc, 75, 0x80);
2091 		rt2661_bbp_write(sc, 86, 0x80);
2092 		rt2661_bbp_write(sc, 88, 0x80);
2093 	}
2094 
2095 	rt2661_bbp_write(sc, 35, bbp35);
2096 	rt2661_bbp_write(sc, 97, bbp97);
2097 	rt2661_bbp_write(sc, 98, bbp98);
2098 
2099 	tmp = RAL_READ(sc, RT2661_PHY_CSR0);
2100 	tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ);
2101 	if (IEEE80211_IS_CHAN_2GHZ(c))
2102 		tmp |= RT2661_PA_PE_2GHZ;
2103 	else
2104 		tmp |= RT2661_PA_PE_5GHZ;
2105 	RAL_WRITE(sc, RT2661_PHY_CSR0, tmp);
2106 }
2107 
2108 static void
2109 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c)
2110 {
2111 	struct ieee80211com *ic = &sc->sc_ic;
2112 	const struct rfprog *rfprog;
2113 	uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT;
2114 	int8_t power;
2115 	u_int i, chan;
2116 
2117 	chan = ieee80211_chan2ieee(ic, c);
2118 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2119 		return;
2120 
2121 	/* select the appropriate RF settings based on what EEPROM says */
2122 	rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2;
2123 
2124 	/* find the settings for this channel (we know it exists) */
2125 	for (i = 0; rfprog[i].chan != chan; i++);
2126 
2127 	power = sc->txpow[i];
2128 	if (power < 0) {
2129 		bbp94 += power;
2130 		power = 0;
2131 	} else if (power > 31) {
2132 		bbp94 += power - 31;
2133 		power = 31;
2134 	}
2135 
2136 	/*
2137 	 * If we are switching from the 2GHz band to the 5GHz band or
2138 	 * vice-versa, BBP registers need to be reprogrammed.
2139 	 */
2140 	if (c->ic_flags != sc->sc_curchan->ic_flags) {
2141 		rt2661_select_band(sc, c);
2142 		rt2661_select_antenna(sc);
2143 	}
2144 	sc->sc_curchan = c;
2145 
2146 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2147 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2148 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2149 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2150 
2151 	DELAY(200);
2152 
2153 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2154 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2155 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1);
2156 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2157 
2158 	DELAY(200);
2159 
2160 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2161 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2162 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2163 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2164 
2165 	/* enable smart mode for MIMO-capable RFs */
2166 	bbp3 = rt2661_bbp_read(sc, 3);
2167 
2168 	bbp3 &= ~RT2661_SMART_MODE;
2169 	if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529)
2170 		bbp3 |= RT2661_SMART_MODE;
2171 
2172 	rt2661_bbp_write(sc, 3, bbp3);
2173 
2174 	if (bbp94 != RT2661_BBPR94_DEFAULT)
2175 		rt2661_bbp_write(sc, 94, bbp94);
2176 
2177 	/* 5GHz radio needs a 1ms delay here */
2178 	if (IEEE80211_IS_CHAN_5GHZ(c))
2179 		DELAY(1000);
2180 
2181 	sc->sc_sifs = IEEE80211_IS_CHAN_5GHZ(c) ? IEEE80211_DUR_OFDM_SIFS
2182 						: IEEE80211_DUR_SIFS;
2183 }
2184 
2185 static void
2186 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid)
2187 {
2188 	uint32_t tmp;
2189 
2190 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2191 	RAL_WRITE(sc, RT2661_MAC_CSR4, tmp);
2192 
2193 	tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16;
2194 	RAL_WRITE(sc, RT2661_MAC_CSR5, tmp);
2195 }
2196 
2197 static void
2198 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr)
2199 {
2200 	uint32_t tmp;
2201 
2202 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2203 	RAL_WRITE(sc, RT2661_MAC_CSR2, tmp);
2204 
2205 	tmp = addr[4] | addr[5] << 8;
2206 	RAL_WRITE(sc, RT2661_MAC_CSR3, tmp);
2207 }
2208 
2209 static void
2210 rt2661_update_promisc(struct rt2661_softc *sc)
2211 {
2212 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2213 	uint32_t tmp;
2214 
2215 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2216 
2217 	tmp &= ~RT2661_DROP_NOT_TO_ME;
2218 	if (!(ifp->if_flags & IFF_PROMISC))
2219 		tmp |= RT2661_DROP_NOT_TO_ME;
2220 
2221 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2222 
2223 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2224 	    "entering" : "leaving"));
2225 }
2226 
2227 /*
2228  * Update QoS (802.11e) settings for each h/w Tx ring.
2229  */
2230 static int
2231 rt2661_wme_update(struct ieee80211com *ic)
2232 {
2233 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
2234 	const struct wmeParams *wmep;
2235 
2236 	wmep = ic->ic_wme.wme_chanParams.cap_wmeParams;
2237 
2238 	/* XXX: not sure about shifts. */
2239 	/* XXX: the reference driver plays with AC_VI settings too. */
2240 
2241 	/* update TxOp */
2242 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR0,
2243 	    wmep[WME_AC_BE].wmep_txopLimit << 16 |
2244 	    wmep[WME_AC_BK].wmep_txopLimit);
2245 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR1,
2246 	    wmep[WME_AC_VI].wmep_txopLimit << 16 |
2247 	    wmep[WME_AC_VO].wmep_txopLimit);
2248 
2249 	/* update CWmin */
2250 	RAL_WRITE(sc, RT2661_CWMIN_CSR,
2251 	    wmep[WME_AC_BE].wmep_logcwmin << 12 |
2252 	    wmep[WME_AC_BK].wmep_logcwmin <<  8 |
2253 	    wmep[WME_AC_VI].wmep_logcwmin <<  4 |
2254 	    wmep[WME_AC_VO].wmep_logcwmin);
2255 
2256 	/* update CWmax */
2257 	RAL_WRITE(sc, RT2661_CWMAX_CSR,
2258 	    wmep[WME_AC_BE].wmep_logcwmax << 12 |
2259 	    wmep[WME_AC_BK].wmep_logcwmax <<  8 |
2260 	    wmep[WME_AC_VI].wmep_logcwmax <<  4 |
2261 	    wmep[WME_AC_VO].wmep_logcwmax);
2262 
2263 	/* update Aifsn */
2264 	RAL_WRITE(sc, RT2661_AIFSN_CSR,
2265 	    wmep[WME_AC_BE].wmep_aifsn << 12 |
2266 	    wmep[WME_AC_BK].wmep_aifsn <<  8 |
2267 	    wmep[WME_AC_VI].wmep_aifsn <<  4 |
2268 	    wmep[WME_AC_VO].wmep_aifsn);
2269 
2270 	return 0;
2271 }
2272 
2273 static void
2274 rt2661_update_slot(struct ifnet *ifp)
2275 {
2276 	struct rt2661_softc *sc = ifp->if_softc;
2277 	struct ieee80211com *ic = &sc->sc_ic;
2278 	uint8_t slottime;
2279 	uint32_t tmp;
2280 
2281 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2282 
2283 	tmp = RAL_READ(sc, RT2661_MAC_CSR9);
2284 	tmp = (tmp & ~0xff) | slottime;
2285 	RAL_WRITE(sc, RT2661_MAC_CSR9, tmp);
2286 }
2287 
2288 static const char *
2289 rt2661_get_rf(int rev)
2290 {
2291 	switch (rev) {
2292 	case RT2661_RF_5225:	return "RT5225";
2293 	case RT2661_RF_5325:	return "RT5325 (MIMO XR)";
2294 	case RT2661_RF_2527:	return "RT2527";
2295 	case RT2661_RF_2529:	return "RT2529 (MIMO XR)";
2296 	default:		return "unknown";
2297 	}
2298 }
2299 
2300 static void
2301 rt2661_read_eeprom(struct rt2661_softc *sc)
2302 {
2303 	struct ieee80211com *ic = &sc->sc_ic;
2304 	uint16_t val;
2305 	int i;
2306 
2307 	/* read MAC address */
2308 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01);
2309 	ic->ic_myaddr[0] = val & 0xff;
2310 	ic->ic_myaddr[1] = val >> 8;
2311 
2312 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23);
2313 	ic->ic_myaddr[2] = val & 0xff;
2314 	ic->ic_myaddr[3] = val >> 8;
2315 
2316 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45);
2317 	ic->ic_myaddr[4] = val & 0xff;
2318 	ic->ic_myaddr[5] = val >> 8;
2319 
2320 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA);
2321 	/* XXX: test if different from 0xffff? */
2322 	sc->rf_rev   = (val >> 11) & 0x1f;
2323 	sc->hw_radio = (val >> 10) & 0x1;
2324 	sc->rx_ant   = (val >> 4)  & 0x3;
2325 	sc->tx_ant   = (val >> 2)  & 0x3;
2326 	sc->nb_ant   = val & 0x3;
2327 
2328 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
2329 
2330 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2);
2331 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
2332 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
2333 
2334 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2335 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
2336 
2337 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET);
2338 	if ((val & 0xff) != 0xff)
2339 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
2340 
2341 	/* Only [-10, 10] is valid */
2342 	if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10)
2343 		sc->rssi_2ghz_corr = 0;
2344 
2345 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET);
2346 	if ((val & 0xff) != 0xff)
2347 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
2348 
2349 	/* Only [-10, 10] is valid */
2350 	if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10)
2351 		sc->rssi_5ghz_corr = 0;
2352 
2353 	/* adjust RSSI correction for external low-noise amplifier */
2354 	if (sc->ext_2ghz_lna)
2355 		sc->rssi_2ghz_corr -= 14;
2356 	if (sc->ext_5ghz_lna)
2357 		sc->rssi_5ghz_corr -= 14;
2358 
2359 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2360 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
2361 
2362 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET);
2363 	if ((val >> 8) != 0xff)
2364 		sc->rfprog = (val >> 8) & 0x3;
2365 	if ((val & 0xff) != 0xff)
2366 		sc->rffreq = val & 0xff;
2367 
2368 	DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq));
2369 
2370 	/* read Tx power for all a/b/g channels */
2371 	for (i = 0; i < 19; i++) {
2372 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i);
2373 		sc->txpow[i * 2] = (int8_t)(val >> 8);		/* signed */
2374 		DPRINTF(("Channel=%d Tx power=%d\n",
2375 		    rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2]));
2376 		sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff);	/* signed */
2377 		DPRINTF(("Channel=%d Tx power=%d\n",
2378 		    rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1]));
2379 	}
2380 
2381 	/* read vendor-specific BBP values */
2382 	for (i = 0; i < 16; i++) {
2383 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i);
2384 		if (val == 0 || val == 0xffff)
2385 			continue;	/* skip invalid entries */
2386 		sc->bbp_prom[i].reg = val >> 8;
2387 		sc->bbp_prom[i].val = val & 0xff;
2388 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2389 		    sc->bbp_prom[i].val));
2390 	}
2391 
2392 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_LED_OFFSET);
2393 	DPRINTF(("LED %02x\n", val));
2394 	if (val == 0xffff) {
2395 		sc->mcu_led = RT2661_MCU_LED_DEFAULT;
2396 	} else {
2397 #define N(arr)	(int)(sizeof(arr) / sizeof(arr[0]))
2398 
2399 		for (i = 0; i < N(led_ee2mcu); ++i) {
2400 			if (val & led_ee2mcu[i].ee_bit)
2401 				sc->mcu_led |= led_ee2mcu[i].mcu_bit;
2402 		}
2403 
2404 #undef N
2405 
2406 		sc->mcu_led |= ((val >> RT2661_EE_LED_MODE_SHIFT) &
2407 				RT2661_EE_LED_MODE_MASK);
2408 	}
2409 }
2410 
2411 static int
2412 rt2661_bbp_init(struct rt2661_softc *sc)
2413 {
2414 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2415 	int i, ntries;
2416 	uint8_t val;
2417 
2418 	/* wait for BBP to be ready */
2419 	for (ntries = 0; ntries < 100; ntries++) {
2420 		val = rt2661_bbp_read(sc, 0);
2421 		if (val != 0 && val != 0xff)
2422 			break;
2423 		DELAY(100);
2424 	}
2425 	if (ntries == 100) {
2426 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2427 		return EIO;
2428 	}
2429 
2430 	/* initialize BBP registers to default values */
2431 	for (i = 0; i < N(rt2661_def_bbp); i++) {
2432 		rt2661_bbp_write(sc, rt2661_def_bbp[i].reg,
2433 		    rt2661_def_bbp[i].val);
2434 	}
2435 
2436 	/* write vendor-specific BBP values (from EEPROM) */
2437 	for (i = 0; i < 16; i++) {
2438 		if (sc->bbp_prom[i].reg == 0)
2439 			continue;
2440 		rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2441 	}
2442 
2443 	return 0;
2444 #undef N
2445 }
2446 
2447 static void
2448 rt2661_init(void *priv)
2449 {
2450 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2451 	struct rt2661_softc *sc = priv;
2452 	struct ieee80211com *ic = &sc->sc_ic;
2453 	struct ifnet *ifp = ic->ic_ifp;
2454 	uint32_t tmp, sta[3];
2455 	int i, ntries;
2456 
2457 	rt2661_stop(sc);
2458 
2459 	/* initialize Tx rings */
2460 	RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr);
2461 	RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr);
2462 	RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr);
2463 	RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr);
2464 
2465 	/* initialize Mgt ring */
2466 	RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr);
2467 
2468 	/* initialize Rx ring */
2469 	RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr);
2470 
2471 	/* initialize Tx rings sizes */
2472 	RAL_WRITE(sc, RT2661_TX_RING_CSR0,
2473 	    RT2661_TX_RING_COUNT << 24 |
2474 	    RT2661_TX_RING_COUNT << 16 |
2475 	    RT2661_TX_RING_COUNT <<  8 |
2476 	    RT2661_TX_RING_COUNT);
2477 
2478 	RAL_WRITE(sc, RT2661_TX_RING_CSR1,
2479 	    RT2661_TX_DESC_WSIZE << 16 |
2480 	    RT2661_TX_RING_COUNT <<  8 |	/* XXX: HCCA ring unused */
2481 	    RT2661_MGT_RING_COUNT);
2482 
2483 	/* initialize Rx rings */
2484 	RAL_WRITE(sc, RT2661_RX_RING_CSR,
2485 	    RT2661_RX_DESC_BACK  << 16 |
2486 	    RT2661_RX_DESC_WSIZE <<  8 |
2487 	    RT2661_RX_RING_COUNT);
2488 
2489 	/* XXX: some magic here */
2490 	RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa);
2491 
2492 	/* load base addresses of all 5 Tx rings (4 data + 1 mgt) */
2493 	RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f);
2494 
2495 	/* load base address of Rx ring */
2496 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2);
2497 
2498 	/* initialize MAC registers to default values */
2499 	for (i = 0; i < N(rt2661_def_mac); i++)
2500 		RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val);
2501 
2502 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2503 	rt2661_set_macaddr(sc, ic->ic_myaddr);
2504 
2505 	/* set host ready */
2506 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2507 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2508 
2509 	/* wait for BBP/RF to wakeup */
2510 	for (ntries = 0; ntries < 1000; ntries++) {
2511 		if (RAL_READ(sc, RT2661_MAC_CSR12) & 8)
2512 			break;
2513 		DELAY(1000);
2514 	}
2515 	if (ntries == 1000) {
2516 		kprintf("timeout waiting for BBP/RF to wakeup\n");
2517 		rt2661_stop(sc);
2518 		return;
2519 	}
2520 
2521 	if (rt2661_bbp_init(sc) != 0) {
2522 		rt2661_stop(sc);
2523 		return;
2524 	}
2525 
2526 	/* select default channel */
2527 	sc->sc_curchan = ic->ic_curchan;
2528 	rt2661_select_band(sc, sc->sc_curchan);
2529 	rt2661_select_antenna(sc);
2530 	rt2661_set_chan(sc, sc->sc_curchan);
2531 
2532 	/* update Rx filter */
2533 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff;
2534 
2535 	tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR;
2536 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2537 		tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR |
2538 		       RT2661_DROP_ACKCTS;
2539 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2540 			tmp |= RT2661_DROP_TODS;
2541 		if (!(ifp->if_flags & IFF_PROMISC))
2542 			tmp |= RT2661_DROP_NOT_TO_ME;
2543 	}
2544 
2545 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2546 
2547 	/* clear STA registers */
2548 	RAL_READ_REGION_4(sc, RT2661_STA_CSR0, sta, N(sta));
2549 
2550 	/* initialize ASIC */
2551 	RAL_WRITE(sc, RT2661_MAC_CSR1, 4);
2552 
2553 	/* clear any pending interrupt */
2554 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2555 
2556 	/* enable interrupts */
2557 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
2558 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
2559 
2560 	/* kick Rx */
2561 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1);
2562 
2563 	ifp->if_flags &= ~IFF_OACTIVE;
2564 	ifp->if_flags |= IFF_RUNNING;
2565 
2566 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2567 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2568 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2569 	} else
2570 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2571 #undef N
2572 }
2573 
2574 void
2575 rt2661_stop(void *priv)
2576 {
2577 	struct rt2661_softc *sc = priv;
2578 	struct ieee80211com *ic = &sc->sc_ic;
2579 	struct ifnet *ifp = ic->ic_ifp;
2580 	struct rt2661_tx_ratectl *rctl;
2581 	uint32_t tmp;
2582 
2583 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2584 
2585 	sc->sc_tx_timer = 0;
2586 	ifp->if_timer = 0;
2587 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2588 
2589 	/* abort Tx (for all 5 Tx rings) */
2590 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16);
2591 
2592 	/* disable Rx (value remains after reset!) */
2593 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2594 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2595 
2596 	/* reset ASIC */
2597 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2598 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2599 
2600 	/* disable interrupts */
2601 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffffff);
2602 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
2603 
2604 	/* clear any pending interrupt */
2605 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2606 	RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff);
2607 
2608 	while ((rctl = STAILQ_FIRST(&sc->tx_ratectl)) != NULL) {
2609 		STAILQ_REMOVE_HEAD(&sc->tx_ratectl, link);
2610 		ieee80211_free_node(rctl->ni);
2611 		rctl->ni = NULL;
2612 		kfree(rctl, M_RT2661);
2613 	}
2614 
2615 	/* reset Tx and Rx rings */
2616 	rt2661_reset_tx_ring(sc, &sc->txq[0]);
2617 	rt2661_reset_tx_ring(sc, &sc->txq[1]);
2618 	rt2661_reset_tx_ring(sc, &sc->txq[2]);
2619 	rt2661_reset_tx_ring(sc, &sc->txq[3]);
2620 	rt2661_reset_tx_ring(sc, &sc->mgtq);
2621 	rt2661_reset_rx_ring(sc, &sc->rxq);
2622 }
2623 
2624 static int
2625 rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size)
2626 {
2627 	int ntries;
2628 
2629 	/* reset 8051 */
2630 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2631 
2632 	/* cancel any pending Host to MCU command */
2633 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0);
2634 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
2635 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0);
2636 
2637 	/* write 8051's microcode */
2638 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL);
2639 	RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size);
2640 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2641 
2642 	/* kick 8051's ass */
2643 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0);
2644 
2645 	/* wait for 8051 to initialize */
2646 	for (ntries = 0; ntries < 500; ntries++) {
2647 		if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY)
2648 			break;
2649 		DELAY(100);
2650 	}
2651 	if (ntries == 500) {
2652 		kprintf("timeout waiting for MCU to initialize\n");
2653 		return EIO;
2654 	}
2655 	return 0;
2656 }
2657 
2658 #ifdef notyet
2659 /*
2660  * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and
2661  * false CCA count.  This function is called periodically (every seconds) when
2662  * in the RUN state.  Values taken from the reference driver.
2663  */
2664 static void
2665 rt2661_rx_tune(struct rt2661_softc *sc)
2666 {
2667 	uint8_t bbp17;
2668 	uint16_t cca;
2669 	int lo, hi, dbm;
2670 
2671 	/*
2672 	 * Tuning range depends on operating band and on the presence of an
2673 	 * external low-noise amplifier.
2674 	 */
2675 	lo = 0x20;
2676 	if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan))
2677 		lo += 0x08;
2678 	if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) ||
2679 	    (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna))
2680 		lo += 0x10;
2681 	hi = lo + 0x20;
2682 
2683 	/* retrieve false CCA count since last call (clear on read) */
2684 	cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff;
2685 
2686 	if (dbm >= -35) {
2687 		bbp17 = 0x60;
2688 	} else if (dbm >= -58) {
2689 		bbp17 = hi;
2690 	} else if (dbm >= -66) {
2691 		bbp17 = lo + 0x10;
2692 	} else if (dbm >= -74) {
2693 		bbp17 = lo + 0x08;
2694 	} else {
2695 		/* RSSI < -74dBm, tune using false CCA count */
2696 
2697 		bbp17 = sc->bbp17; /* current value */
2698 
2699 		hi -= 2 * (-74 - dbm);
2700 		if (hi < lo)
2701 			hi = lo;
2702 
2703 		if (bbp17 > hi) {
2704 			bbp17 = hi;
2705 
2706 		} else if (cca > 512) {
2707 			if (++bbp17 > hi)
2708 				bbp17 = hi;
2709 		} else if (cca < 100) {
2710 			if (--bbp17 < lo)
2711 				bbp17 = lo;
2712 		}
2713 	}
2714 
2715 	if (bbp17 != sc->bbp17) {
2716 		rt2661_bbp_write(sc, 17, bbp17);
2717 		sc->bbp17 = bbp17;
2718 	}
2719 }
2720 
2721 /*
2722  * Enter/Leave radar detection mode.
2723  * This is for 802.11h additional regulatory domains.
2724  */
2725 static void
2726 rt2661_radar_start(struct rt2661_softc *sc)
2727 {
2728 	uint32_t tmp;
2729 
2730 	/* disable Rx */
2731 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2732 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2733 
2734 	rt2661_bbp_write(sc, 82, 0x20);
2735 	rt2661_bbp_write(sc, 83, 0x00);
2736 	rt2661_bbp_write(sc, 84, 0x40);
2737 
2738 	/* save current BBP registers values */
2739 	sc->bbp18 = rt2661_bbp_read(sc, 18);
2740 	sc->bbp21 = rt2661_bbp_read(sc, 21);
2741 	sc->bbp22 = rt2661_bbp_read(sc, 22);
2742 	sc->bbp16 = rt2661_bbp_read(sc, 16);
2743 	sc->bbp17 = rt2661_bbp_read(sc, 17);
2744 	sc->bbp64 = rt2661_bbp_read(sc, 64);
2745 
2746 	rt2661_bbp_write(sc, 18, 0xff);
2747 	rt2661_bbp_write(sc, 21, 0x3f);
2748 	rt2661_bbp_write(sc, 22, 0x3f);
2749 	rt2661_bbp_write(sc, 16, 0xbd);
2750 	rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34);
2751 	rt2661_bbp_write(sc, 64, 0x21);
2752 
2753 	/* restore Rx filter */
2754 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2755 }
2756 
2757 static int
2758 rt2661_radar_stop(struct rt2661_softc *sc)
2759 {
2760 	uint8_t bbp66;
2761 
2762 	/* read radar detection result */
2763 	bbp66 = rt2661_bbp_read(sc, 66);
2764 
2765 	/* restore BBP registers values */
2766 	rt2661_bbp_write(sc, 16, sc->bbp16);
2767 	rt2661_bbp_write(sc, 17, sc->bbp17);
2768 	rt2661_bbp_write(sc, 18, sc->bbp18);
2769 	rt2661_bbp_write(sc, 21, sc->bbp21);
2770 	rt2661_bbp_write(sc, 22, sc->bbp22);
2771 	rt2661_bbp_write(sc, 64, sc->bbp64);
2772 
2773 	return bbp66 == 1;
2774 }
2775 #endif
2776 
2777 static int
2778 rt2661_prepare_beacon(struct rt2661_softc *sc)
2779 {
2780 	struct ieee80211com *ic = &sc->sc_ic;
2781 	struct ieee80211_beacon_offsets bo;
2782 	struct rt2661_tx_desc desc;
2783 	struct mbuf *m0;
2784 	int rate;
2785 
2786 	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo);
2787 	if (m0 == NULL) {
2788 		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2789 		return ENOBUFS;
2790 	}
2791 
2792 	/* send beacons at the lowest available rate */
2793 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2;
2794 
2795 	rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ,
2796 	    m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT, 0);
2797 
2798 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2799 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2800 
2801 	/* copy beacon header and payload into NIC memory */
2802 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24,
2803 	    mtod(m0, uint8_t *), m0->m_pkthdr.len);
2804 
2805 	m_freem(m0);
2806 	return 0;
2807 }
2808 
2809 /*
2810  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
2811  * and HostAP operating modes.
2812  */
2813 static void
2814 rt2661_enable_tsf_sync(struct rt2661_softc *sc)
2815 {
2816 	struct ieee80211com *ic = &sc->sc_ic;
2817 	uint32_t tmp;
2818 
2819 	if (ic->ic_opmode != IEEE80211_M_STA) {
2820 		/*
2821 		 * Change default 16ms TBTT adjustment to 8ms.
2822 		 * Must be done before enabling beacon generation.
2823 		 */
2824 		RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8);
2825 	}
2826 
2827 	tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000;
2828 
2829 	/* set beacon interval (in 1/16ms unit) */
2830 	tmp |= ic->ic_bss->ni_intval * 16;
2831 
2832 	tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT;
2833 	if (ic->ic_opmode == IEEE80211_M_STA)
2834 		tmp |= RT2661_TSF_MODE(1);
2835 	else
2836 		tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON;
2837 
2838 	RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp);
2839 }
2840 
2841 /*
2842  * Retrieve the "Received Signal Strength Indicator" from the raw values
2843  * contained in Rx descriptors.  The computation depends on which band the
2844  * frame was received.  Correction values taken from the reference driver.
2845  */
2846 static int
2847 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw)
2848 {
2849 	int lna, agc, rssi;
2850 
2851 	lna = (raw >> 5) & 0x3;
2852 	agc = raw & 0x1f;
2853 
2854 	if (lna == 0) {
2855 		/*
2856 		 * No RSSI mapping
2857 		 *
2858 		 * NB: Since RSSI is relative to noise floor, -1 is
2859 		 *     adequate for caller to know error happened.
2860 		 */
2861 		return -1;
2862 	}
2863 
2864 	rssi = (2 * agc) - RT2661_NOISE_FLOOR;
2865 
2866 	if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
2867 		rssi += sc->rssi_2ghz_corr;
2868 
2869 		if (lna == 1)
2870 			rssi -= 64;
2871 		else if (lna == 2)
2872 			rssi -= 74;
2873 		else if (lna == 3)
2874 			rssi -= 90;
2875 	} else {
2876 		rssi += sc->rssi_5ghz_corr;
2877 
2878 		if (lna == 1)
2879 			rssi -= 64;
2880 		else if (lna == 2)
2881 			rssi -= 86;
2882 		else if (lna == 3)
2883 			rssi -= 100;
2884 	}
2885 	return rssi;
2886 }
2887 
2888 static void
2889 rt2661_dma_map_mbuf(void *arg, bus_dma_segment_t *seg, int nseg,
2890 		    bus_size_t map_size __unused, int error)
2891 {
2892 	struct rt2661_dmamap *map = arg;
2893 
2894 	if (error)
2895 		return;
2896 
2897 	KASSERT(nseg <= RT2661_MAX_SCATTER, ("too many DMA segments"));
2898 
2899 	bcopy(seg, map->segs, nseg * sizeof(bus_dma_segment_t));
2900 	map->nseg = nseg;
2901 }
2902 
2903 static void
2904 rt2661_led_newstate(struct rt2661_softc *sc, enum ieee80211_state nstate)
2905 {
2906 	struct ieee80211com *ic = &sc->sc_ic;
2907 	uint32_t off, on;
2908 	uint32_t mail = sc->mcu_led;
2909 
2910 	if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY) {
2911 		DPRINTF(("%s failed\n", __func__));
2912 		return;
2913 	}
2914 
2915 	switch (nstate) {
2916 	case IEEE80211_S_INIT:
2917 		mail &= ~(RT2661_MCU_LED_LINKA | RT2661_MCU_LED_LINKG |
2918 			  RT2661_MCU_LED_RF);
2919 		break;
2920 	default:
2921 		if (ic->ic_curchan == NULL)
2922 			return;
2923 
2924 		on = RT2661_MCU_LED_LINKG;
2925 		off = RT2661_MCU_LED_LINKA;
2926 		if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) {
2927 			on = RT2661_MCU_LED_LINKA;
2928 			off = RT2661_MCU_LED_LINKG;
2929 		}
2930 
2931 		mail |= RT2661_MCU_LED_RF | on;
2932 		mail &= ~off;
2933 		break;
2934 	}
2935 
2936 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
2937 		  RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | mail);
2938 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | RT2661_MCU_SET_LED);
2939 }
2940