xref: /dragonfly/sys/dev/netif/re/if_re.c (revision 277350a0)
1 /*
2  * Copyright (c) 2004
3  *	Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 1997, 1998-2003
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: src/sys/dev/re/if_re.c,v 1.25 2004/06/09 14:34:01 naddy Exp $
36  */
37 
38 /*
39  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
40  *
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Networking Software Engineer
43  * Wind River Systems
44  */
45 
46 /*
47  * This driver is designed to support RealTek's next generation of
48  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
50  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
51  *
52  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53  * with the older 8139 family, however it also supports a special
54  * C+ mode of operation that provides several new performance enhancing
55  * features. These include:
56  *
57  *	o Descriptor based DMA mechanism. Each descriptor represents
58  *	  a single packet fragment. Data buffers may be aligned on
59  *	  any byte boundary.
60  *
61  *	o 64-bit DMA
62  *
63  *	o TCP/IP checksum offload for both RX and TX
64  *
65  *	o High and normal priority transmit DMA rings
66  *
67  *	o VLAN tag insertion and extraction
68  *
69  *	o TCP large send (segmentation offload)
70  *
71  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72  * programming API is fairly straightforward. The RX filtering, EEPROM
73  * access and PHY access is the same as it is on the older 8139 series
74  * chips.
75  *
76  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77  * same programming API and feature set as the 8139C+ with the following
78  * differences and additions:
79  *
80  *	o 1000Mbps mode
81  *
82  *	o Jumbo frames
83  *
84  * 	o GMII and TBI ports/registers for interfacing with copper
85  *	  or fiber PHYs
86  *
87  *      o RX and TX DMA rings can have up to 1024 descriptors
88  *        (the 8139C+ allows a maximum of 64)
89  *
90  *	o Slight differences in register layout from the 8139C+
91  *
92  * The TX start and timer interrupt registers are at different locations
93  * on the 8169 than they are on the 8139C+. Also, the status word in the
94  * RX descriptor has a slightly different bit layout. The 8169 does not
95  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96  * copper gigE PHY.
97  *
98  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99  * (the 'S' stands for 'single-chip'). These devices have the same
100  * programming API as the older 8169, but also have some vendor-specific
101  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103  *
104  * This driver takes advantage of the RX and TX checksum offload and
105  * VLAN tag insertion/extraction features. It also implements TX
106  * interrupt moderation using the timer interrupt registers, which
107  * significantly reduces TX interrupt load. There is also support
108  * for jumbo frames, however the 8169/8169S/8110S can not transmit
109  * jumbo frames larger than 7440, so the max MTU possible with this
110  * driver is 7422 bytes.
111  */
112 
113 #define _IP_VHL
114 
115 #include "opt_ifpoll.h"
116 
117 #include <sys/param.h>
118 #include <sys/bus.h>
119 #include <sys/endian.h>
120 #include <sys/kernel.h>
121 #include <sys/in_cksum.h>
122 #include <sys/interrupt.h>
123 #include <sys/malloc.h>
124 #include <sys/mbuf.h>
125 #include <sys/rman.h>
126 #include <sys/serialize.h>
127 #include <sys/socket.h>
128 #include <sys/sockio.h>
129 #include <sys/sysctl.h>
130 
131 #include <net/bpf.h>
132 #include <net/ethernet.h>
133 #include <net/if.h>
134 #include <net/ifq_var.h>
135 #include <net/if_arp.h>
136 #include <net/if_dl.h>
137 #include <net/if_media.h>
138 #include <net/if_poll.h>
139 #include <net/if_types.h>
140 #include <net/vlan/if_vlan_var.h>
141 #include <net/vlan/if_vlan_ether.h>
142 
143 #include <netinet/ip.h>
144 
145 #include <dev/netif/mii_layer/mii.h>
146 #include <dev/netif/mii_layer/miivar.h>
147 
148 #include "pcidevs.h"
149 #include <bus/pci/pcireg.h>
150 #include <bus/pci/pcivar.h>
151 
152 /* "device miibus" required.  See GENERIC if you get errors here. */
153 #include "miibus_if.h"
154 
155 #include <dev/netif/re/if_rereg.h>
156 #include <dev/netif/re/if_revar.h>
157 
158 /*
159  * Various supported device vendors/types and their names.
160  */
161 static const struct re_type {
162 	uint16_t	re_vid;
163 	uint16_t	re_did;
164 	const char	*re_name;
165 } re_devs[] = {
166 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE528T,
167 	  "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
168 
169 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8139,
170 	  "RealTek 8139C+ 10/100BaseTX" },
171 
172 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8101E,
173 	  "RealTek 810x PCIe 10/100baseTX" },
174 
175 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8168,
176 	  "RealTek 8111/8168 PCIe Gigabit Ethernet" },
177 
178 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169,
179 	  "RealTek 8110/8169 Gigabit Ethernet" },
180 
181 	{ PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169SC,
182 	  "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
183 
184 	{ PCI_VENDOR_COREGA, PCI_PRODUCT_COREGA_CG_LAPCIGT,
185 	  "Corega CG-LAPCIGT Gigabit Ethernet" },
186 
187 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032,
188 	  "Linksys EG1032 Gigabit Ethernet" },
189 
190 	{ PCI_VENDOR_USR2, PCI_PRODUCT_USR2_997902,
191 	  "US Robotics 997902 Gigabit Ethernet" },
192 
193 	{ PCI_VENDOR_TTTECH, PCI_PRODUCT_TTTECH_MC322,
194 	  "TTTech MC322 Gigabit Ethernet" },
195 
196 	{ 0, 0, NULL }
197 };
198 
199 static const struct re_hwrev re_hwrevs[] = {
200 	{ RE_HWREV_8139CPLUS,	ETHERMTU,
201 	  RE_C_HWCSUM | RE_C_8139CP | RE_C_FASTE },
202 
203 	{ RE_HWREV_8169,	ETHERMTU,
204 	  RE_C_HWCSUM | RE_C_8169 },
205 
206 	{ RE_HWREV_8110S,	RE_MTU_6K,
207 	  RE_C_HWCSUM | RE_C_8169 },
208 
209 	{ RE_HWREV_8169S,	RE_MTU_6K,
210 	  RE_C_HWCSUM | RE_C_8169 },
211 
212 	{ RE_HWREV_8169SB,	RE_MTU_6K,
213 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
214 
215 	{ RE_HWREV_8169SC,	RE_MTU_6K,
216 	  RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
217 
218 	{ RE_HWREV_8168B1,	RE_MTU_6K,
219 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT },
220 
221 	{ RE_HWREV_8168B2,	RE_MTU_6K,
222 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
223 
224 	{ RE_HWREV_8168C,	RE_MTU_6K,
225 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
226 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
227 
228 	{ RE_HWREV_8168CP,	RE_MTU_6K,
229 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
230 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
231 
232 	{ RE_HWREV_8168D,	RE_MTU_9K,
233 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
234 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX | RE_C_PHYPMCH },
235 
236 	{ RE_HWREV_8168DP,	RE_MTU_9K,
237 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
238 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
239 
240 	{ RE_HWREV_8168E,	RE_MTU_9K,
241 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
242 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX | RE_C_PHYPMCH },
243 
244 	{ RE_HWREV_8168F,	RE_MTU_9K,
245 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
246 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
247 
248 	{ RE_HWREV_8111F,	RE_MTU_9K,
249 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
250 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
251 
252 	{ RE_HWREV_8411,	ETHERMTU,
253 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
254 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
255 
256 	{ RE_HWREV_8168G,	ETHERMTU,
257 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
258 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
259 
260 	{ RE_HWREV_8168EP,	ETHERMTU,
261 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
262 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
263 
264 	{ RE_HWREV_8168GU,	ETHERMTU,
265 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
266 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
267 
268 	{ RE_HWREV_8168H,	ETHERMTU,
269 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
270 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
271 
272 	{ RE_HWREV_8411B,	ETHERMTU,
273 	  RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
274 	  RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
275 
276 	{ RE_HWREV_8100E,	ETHERMTU,
277 	  RE_C_HWCSUM | RE_C_FASTE },
278 
279 	{ RE_HWREV_8101E,	ETHERMTU,
280 	  RE_C_HWCSUM | RE_C_FASTE },
281 
282 	{ RE_HWREV_8102E,	ETHERMTU,
283 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
284 	  RE_C_FASTE },
285 
286 	{ RE_HWREV_8102EL,	ETHERMTU,
287 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
288 	  RE_C_FASTE },
289 
290 	{ RE_HWREV_8105E,	ETHERMTU,
291 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT | RE_C_AUTOPAD |
292 	  RE_C_STOP_RXTX | RE_C_FASTE | RE_C_PHYPMCH },
293 
294 	{ RE_HWREV_8401E,	ETHERMTU,
295 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT | RE_C_AUTOPAD |
296 	  RE_C_STOP_RXTX | RE_C_FASTE | RE_C_PHYPMCH },
297 
298 	{ RE_HWREV_8402,	ETHERMTU,
299 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT | RE_C_AUTOPAD |
300 	  RE_C_STOP_RXTX | RE_C_FASTE | RE_C_PHYPMCH },
301 
302 	{ RE_HWREV_8106E,	ETHERMTU,
303 	  RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT | RE_C_AUTOPAD |
304 	  RE_C_STOP_RXTX | RE_C_FASTE | RE_C_PHYPMCH },
305 
306 	{ RE_HWREV_NULL, 0, 0 }
307 };
308 
309 static int	re_probe(device_t);
310 static int	re_attach(device_t);
311 static int	re_detach(device_t);
312 static int	re_suspend(device_t);
313 static int	re_resume(device_t);
314 static void	re_shutdown(device_t);
315 
316 static int	re_allocmem(device_t);
317 static void	re_freemem(device_t);
318 static void	re_freebufmem(struct re_softc *, int, int);
319 static int	re_encap(struct re_softc *, struct mbuf **, int *);
320 static int	re_newbuf_std(struct re_softc *, int, int);
321 static int	re_newbuf_jumbo(struct re_softc *, int, int);
322 static void	re_setup_rxdesc(struct re_softc *, int);
323 static int	re_rx_list_init(struct re_softc *);
324 static int	re_tx_list_init(struct re_softc *);
325 static int	re_rxeof(struct re_softc *);
326 static int	re_txeof(struct re_softc *);
327 static int	re_tx_collect(struct re_softc *);
328 static void	re_intr(void *);
329 static void	re_tick(void *);
330 static void	re_tick_serialized(void *);
331 static void	re_disable_aspm(device_t);
332 
333 static void	re_start(struct ifnet *, struct ifaltq_subque *);
334 static int	re_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
335 static void	re_init(void *);
336 static void	re_stop(struct re_softc *);
337 static void	re_watchdog(struct ifnet *);
338 static int	re_ifmedia_upd(struct ifnet *);
339 static void	re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
340 
341 static void	re_eeprom_putbyte(struct re_softc *, int);
342 static void	re_eeprom_getword(struct re_softc *, int, u_int16_t *);
343 static void	re_read_eeprom(struct re_softc *, caddr_t, int, int);
344 static void	re_get_eewidth(struct re_softc *);
345 
346 static int	re_gmii_readreg(device_t, int, int);
347 static int	re_gmii_writereg(device_t, int, int, int);
348 
349 static int	re_miibus_readreg(device_t, int, int);
350 static int	re_miibus_writereg(device_t, int, int, int);
351 static void	re_miibus_statchg(device_t);
352 
353 static void	re_setmulti(struct re_softc *);
354 static void	re_reset(struct re_softc *, int);
355 static void	re_get_eaddr(struct re_softc *, uint8_t *);
356 
357 static void	re_setup_hw_im(struct re_softc *);
358 static void	re_setup_sim_im(struct re_softc *);
359 static void	re_disable_hw_im(struct re_softc *);
360 static void	re_disable_sim_im(struct re_softc *);
361 static void	re_config_imtype(struct re_softc *, int);
362 static void	re_setup_intr(struct re_softc *, int, int);
363 
364 static int	re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *);
365 static int	re_sysctl_rxtime(SYSCTL_HANDLER_ARGS);
366 static int	re_sysctl_txtime(SYSCTL_HANDLER_ARGS);
367 static int	re_sysctl_simtime(SYSCTL_HANDLER_ARGS);
368 static int	re_sysctl_imtype(SYSCTL_HANDLER_ARGS);
369 
370 static int	re_jpool_alloc(struct re_softc *);
371 static void	re_jpool_free(struct re_softc *);
372 static struct re_jbuf *re_jbuf_alloc(struct re_softc *);
373 static void	re_jbuf_free(void *);
374 static void	re_jbuf_ref(void *);
375 
376 #ifdef RE_DIAG
377 static int	re_diag(struct re_softc *);
378 #endif
379 
380 #ifdef IFPOLL_ENABLE
381 static void	re_npoll(struct ifnet *, struct ifpoll_info *);
382 static void	re_npoll_compat(struct ifnet *, void *, int);
383 #endif
384 
385 static device_method_t re_methods[] = {
386 	/* Device interface */
387 	DEVMETHOD(device_probe,		re_probe),
388 	DEVMETHOD(device_attach,	re_attach),
389 	DEVMETHOD(device_detach,	re_detach),
390 	DEVMETHOD(device_suspend,	re_suspend),
391 	DEVMETHOD(device_resume,	re_resume),
392 	DEVMETHOD(device_shutdown,	re_shutdown),
393 
394 	/* bus interface */
395 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
396 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
397 
398 	/* MII interface */
399 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
400 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
401 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
402 
403 	DEVMETHOD_END
404 };
405 
406 static driver_t re_driver = {
407 	"re",
408 	re_methods,
409 	sizeof(struct re_softc)
410 };
411 
412 static devclass_t re_devclass;
413 
414 DECLARE_DUMMY_MODULE(if_re);
415 MODULE_DEPEND(if_re, miibus, 1, 1, 1);
416 DRIVER_MODULE(if_re, pci, re_driver, re_devclass, NULL, NULL);
417 DRIVER_MODULE(if_re, cardbus, re_driver, re_devclass, NULL, NULL);
418 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, NULL, NULL);
419 
420 static int	re_rx_desc_count = RE_RX_DESC_CNT_DEF;
421 static int	re_tx_desc_count = RE_TX_DESC_CNT_DEF;
422 static int	re_msi_enable = 0;
423 
424 TUNABLE_INT("hw.re.rx_desc_count", &re_rx_desc_count);
425 TUNABLE_INT("hw.re.tx_desc_count", &re_tx_desc_count);
426 TUNABLE_INT("hw.re.msi.enable", &re_msi_enable);
427 
428 #define EE_SET(x)	\
429 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) | (x))
430 
431 #define EE_CLR(x)	\
432 	CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) & ~(x))
433 
434 static __inline void
435 re_free_rxchain(struct re_softc *sc)
436 {
437 	if (sc->re_head != NULL) {
438 		m_freem(sc->re_head);
439 		sc->re_head = sc->re_tail = NULL;
440 	}
441 }
442 
443 /*
444  * Send a read command and address to the EEPROM, check for ACK.
445  */
446 static void
447 re_eeprom_putbyte(struct re_softc *sc, int addr)
448 {
449 	int d, i;
450 
451 	d = addr | (RE_9346_READ << sc->re_eewidth);
452 
453 	/*
454 	 * Feed in each bit and strobe the clock.
455 	 */
456 	for (i = 1 << (sc->re_eewidth + 3); i; i >>= 1) {
457 		if (d & i)
458 			EE_SET(RE_EE_DATAIN);
459 		else
460 			EE_CLR(RE_EE_DATAIN);
461 		DELAY(100);
462 		EE_SET(RE_EE_CLK);
463 		DELAY(150);
464 		EE_CLR(RE_EE_CLK);
465 		DELAY(100);
466 	}
467 }
468 
469 /*
470  * Read a word of data stored in the EEPROM at address 'addr.'
471  */
472 static void
473 re_eeprom_getword(struct re_softc *sc, int addr, uint16_t *dest)
474 {
475 	int i;
476 	uint16_t word = 0;
477 
478 	/*
479 	 * Send address of word we want to read.
480 	 */
481 	re_eeprom_putbyte(sc, addr);
482 
483 	/*
484 	 * Start reading bits from EEPROM.
485 	 */
486 	for (i = 0x8000; i != 0; i >>= 1) {
487 		EE_SET(RE_EE_CLK);
488 		DELAY(100);
489 		if (CSR_READ_1(sc, RE_EECMD) & RE_EE_DATAOUT)
490 			word |= i;
491 		EE_CLR(RE_EE_CLK);
492 		DELAY(100);
493 	}
494 
495 	*dest = word;
496 }
497 
498 /*
499  * Read a sequence of words from the EEPROM.
500  */
501 static void
502 re_read_eeprom(struct re_softc *sc, caddr_t dest, int off, int cnt)
503 {
504 	int i;
505 	uint16_t word = 0, *ptr;
506 
507 	CSR_SETBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
508 	DELAY(100);
509 
510 	for (i = 0; i < cnt; i++) {
511 		CSR_SETBIT_1(sc, RE_EECMD, RE_EE_SEL);
512 		re_eeprom_getword(sc, off + i, &word);
513 		CSR_CLRBIT_1(sc, RE_EECMD, RE_EE_SEL);
514 		ptr = (uint16_t *)(dest + (i * 2));
515 		*ptr = word;
516 	}
517 
518 	CSR_CLRBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
519 }
520 
521 static void
522 re_get_eewidth(struct re_softc *sc)
523 {
524 	uint16_t re_did = 0;
525 
526 	sc->re_eewidth = 6;
527 	re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
528 	if (re_did != 0x8129)
529 		sc->re_eewidth = 8;
530 }
531 
532 static int
533 re_gmii_readreg(device_t dev, int phy, int reg)
534 {
535 	struct re_softc *sc = device_get_softc(dev);
536 	u_int32_t rval;
537 	int i;
538 
539 	if (phy != 1)
540 		return(0);
541 
542 	/* Let the rgephy driver read the GMEDIASTAT register */
543 
544 	if (reg == RE_GMEDIASTAT)
545 		return(CSR_READ_1(sc, RE_GMEDIASTAT));
546 
547 	CSR_WRITE_4(sc, RE_PHYAR, reg << 16);
548 
549 	for (i = 0; i < RE_PHY_TIMEOUT; i++) {
550 		rval = CSR_READ_4(sc, RE_PHYAR);
551 		if (rval & RE_PHYAR_BUSY)
552 			break;
553 		DELAY(25);
554 	}
555 
556 	if (i == RE_PHY_TIMEOUT) {
557 		device_printf(dev, "PHY read failed\n");
558 		return(0);
559 	}
560 
561 	/*
562 	 * Controller requires a 20us delay to process next MDIO request.
563 	 */
564 	DELAY(20);
565 
566 	return(rval & RE_PHYAR_PHYDATA);
567 }
568 
569 static int
570 re_gmii_writereg(device_t dev, int phy, int reg, int data)
571 {
572 	struct re_softc *sc = device_get_softc(dev);
573 	uint32_t rval;
574 	int i;
575 
576 	CSR_WRITE_4(sc, RE_PHYAR,
577 		    (reg << 16) | (data & RE_PHYAR_PHYDATA) | RE_PHYAR_BUSY);
578 
579 	for (i = 0; i < RE_PHY_TIMEOUT; i++) {
580 		rval = CSR_READ_4(sc, RE_PHYAR);
581 		if ((rval & RE_PHYAR_BUSY) == 0)
582 			break;
583 		DELAY(25);
584 	}
585 
586 	if (i == RE_PHY_TIMEOUT) {
587 		device_printf(dev, "PHY write failed\n");
588 		return(0);
589 	}
590 
591 	/*
592 	 * Controller requires a 20us delay to process next MDIO request.
593 	 */
594 	DELAY(20);
595 
596 	return(0);
597 }
598 
599 static int
600 re_miibus_readreg(device_t dev, int phy, int reg)
601 {
602 	struct re_softc	*sc = device_get_softc(dev);
603 	uint16_t rval = 0;
604 	uint16_t re8139_reg = 0;
605 
606 	if (!RE_IS_8139CP(sc)) {
607 		rval = re_gmii_readreg(dev, phy, reg);
608 		return(rval);
609 	}
610 
611 	/* Pretend the internal PHY is only at address 0 */
612 	if (phy)
613 		return(0);
614 
615 	switch(reg) {
616 	case MII_BMCR:
617 		re8139_reg = RE_BMCR;
618 		break;
619 	case MII_BMSR:
620 		re8139_reg = RE_BMSR;
621 		break;
622 	case MII_ANAR:
623 		re8139_reg = RE_ANAR;
624 		break;
625 	case MII_ANER:
626 		re8139_reg = RE_ANER;
627 		break;
628 	case MII_ANLPAR:
629 		re8139_reg = RE_LPAR;
630 		break;
631 	case MII_PHYIDR1:
632 	case MII_PHYIDR2:
633 		return(0);
634 	/*
635 	 * Allow the rlphy driver to read the media status
636 	 * register. If we have a link partner which does not
637 	 * support NWAY, this is the register which will tell
638 	 * us the results of parallel detection.
639 	 */
640 	case RE_MEDIASTAT:
641 		return(CSR_READ_1(sc, RE_MEDIASTAT));
642 	default:
643 		device_printf(dev, "bad phy register\n");
644 		return(0);
645 	}
646 	rval = CSR_READ_2(sc, re8139_reg);
647 	if (re8139_reg == RE_BMCR) {
648 		/* 8139C+ has different bit layout. */
649 		rval &= ~(BMCR_LOOP | BMCR_ISO);
650 	}
651 	return(rval);
652 }
653 
654 static int
655 re_miibus_writereg(device_t dev, int phy, int reg, int data)
656 {
657 	struct re_softc *sc= device_get_softc(dev);
658 	u_int16_t re8139_reg = 0;
659 
660 	if (!RE_IS_8139CP(sc))
661 		return(re_gmii_writereg(dev, phy, reg, data));
662 
663 	/* Pretend the internal PHY is only at address 0 */
664 	if (phy)
665 		return(0);
666 
667 	switch(reg) {
668 	case MII_BMCR:
669 		re8139_reg = RE_BMCR;
670 		/* 8139C+ has different bit layout. */
671 		data &= ~(BMCR_LOOP | BMCR_ISO);
672 		break;
673 	case MII_BMSR:
674 		re8139_reg = RE_BMSR;
675 		break;
676 	case MII_ANAR:
677 		re8139_reg = RE_ANAR;
678 		break;
679 	case MII_ANER:
680 		re8139_reg = RE_ANER;
681 		break;
682 	case MII_ANLPAR:
683 		re8139_reg = RE_LPAR;
684 		break;
685 	case MII_PHYIDR1:
686 	case MII_PHYIDR2:
687 		return(0);
688 	default:
689 		device_printf(dev, "bad phy register\n");
690 		return(0);
691 	}
692 	CSR_WRITE_2(sc, re8139_reg, data);
693 	return(0);
694 }
695 
696 static void
697 re_miibus_statchg(device_t dev)
698 {
699 }
700 
701 /*
702  * Program the 64-bit multicast hash filter.
703  */
704 static void
705 re_setmulti(struct re_softc *sc)
706 {
707 	struct ifnet *ifp = &sc->arpcom.ac_if;
708 	int h = 0;
709 	uint32_t hashes[2] = { 0, 0 };
710 	struct ifmultiaddr *ifma;
711 	uint32_t rxfilt;
712 	int mcnt = 0;
713 
714 	rxfilt = CSR_READ_4(sc, RE_RXCFG);
715 
716 	/* Set the individual bit to receive frames for this host only. */
717 	rxfilt |= RE_RXCFG_RX_INDIV;
718 	/* Set capture broadcast bit to capture broadcast frames. */
719 	rxfilt |= RE_RXCFG_RX_BROAD;
720 
721 	rxfilt &= ~(RE_RXCFG_RX_ALLPHYS | RE_RXCFG_RX_MULTI);
722 	if ((ifp->if_flags & IFF_ALLMULTI) || (ifp->if_flags & IFF_PROMISC)) {
723 		rxfilt |= RE_RXCFG_RX_MULTI;
724 
725 		/* If we want promiscuous mode, set the allframes bit. */
726 		if (ifp->if_flags & IFF_PROMISC)
727 			rxfilt |= RE_RXCFG_RX_ALLPHYS;
728 
729 		CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
730 		CSR_WRITE_4(sc, RE_MAR0, 0xFFFFFFFF);
731 		CSR_WRITE_4(sc, RE_MAR4, 0xFFFFFFFF);
732 		return;
733 	}
734 
735 	/* first, zot all the existing hash bits */
736 	CSR_WRITE_4(sc, RE_MAR0, 0);
737 	CSR_WRITE_4(sc, RE_MAR4, 0);
738 
739 	/* now program new ones */
740 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
741 		if (ifma->ifma_addr->sa_family != AF_LINK)
742 			continue;
743 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
744 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
745 		if (h < 32)
746 			hashes[0] |= (1 << h);
747 		else
748 			hashes[1] |= (1 << (h - 32));
749 		mcnt++;
750 	}
751 
752 	if (mcnt)
753 		rxfilt |= RE_RXCFG_RX_MULTI;
754 	else
755 		rxfilt &= ~RE_RXCFG_RX_MULTI;
756 
757 	CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
758 
759 	/*
760 	 * For some unfathomable reason, RealTek decided to reverse
761 	 * the order of the multicast hash registers in the PCI Express
762 	 * parts. This means we have to write the hash pattern in reverse
763 	 * order for those devices.
764 	 */
765 	if (sc->re_caps & RE_C_PCIE) {
766 		CSR_WRITE_4(sc, RE_MAR0, bswap32(hashes[1]));
767 		CSR_WRITE_4(sc, RE_MAR4, bswap32(hashes[0]));
768 	} else {
769 		CSR_WRITE_4(sc, RE_MAR0, hashes[0]);
770 		CSR_WRITE_4(sc, RE_MAR4, hashes[1]);
771 	}
772 }
773 
774 static void
775 re_reset(struct re_softc *sc, int running)
776 {
777 	int i;
778 
779 	if ((sc->re_caps & RE_C_STOP_RXTX) && running) {
780 		CSR_WRITE_1(sc, RE_COMMAND,
781 			    RE_CMD_STOPREQ | RE_CMD_TX_ENB | RE_CMD_RX_ENB);
782 		DELAY(100);
783 	}
784 
785 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_RESET);
786 
787 	for (i = 0; i < RE_TIMEOUT; i++) {
788 		DELAY(10);
789 		if ((CSR_READ_1(sc, RE_COMMAND) & RE_CMD_RESET) == 0)
790 			break;
791 	}
792 	if (i == RE_TIMEOUT)
793 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
794 }
795 
796 #ifdef RE_DIAG
797 /*
798  * The following routine is designed to test for a defect on some
799  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
800  * lines connected to the bus, however for a 32-bit only card, they
801  * should be pulled high. The result of this defect is that the
802  * NIC will not work right if you plug it into a 64-bit slot: DMA
803  * operations will be done with 64-bit transfers, which will fail
804  * because the 64-bit data lines aren't connected.
805  *
806  * There's no way to work around this (short of talking a soldering
807  * iron to the board), however we can detect it. The method we use
808  * here is to put the NIC into digital loopback mode, set the receiver
809  * to promiscuous mode, and then try to send a frame. We then compare
810  * the frame data we sent to what was received. If the data matches,
811  * then the NIC is working correctly, otherwise we know the user has
812  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
813  * slot. In the latter case, there's no way the NIC can work correctly,
814  * so we print out a message on the console and abort the device attach.
815  */
816 
817 static int
818 re_diag(struct re_softc *sc)
819 {
820 	struct ifnet *ifp = &sc->arpcom.ac_if;
821 	struct mbuf *m0;
822 	struct ether_header *eh;
823 	struct re_desc *cur_rx;
824 	uint16_t status;
825 	int total_len, i, error = 0, phyaddr;
826 	uint8_t dst[ETHER_ADDR_LEN] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
827 	uint8_t src[ETHER_ADDR_LEN] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
828 	char ethstr[2][ETHER_ADDRSTRLEN + 1];
829 
830 	/* Allocate a single mbuf */
831 
832 	MGETHDR(m0, M_NOWAIT, MT_DATA);
833 	if (m0 == NULL)
834 		return(ENOBUFS);
835 
836 	/*
837 	 * Initialize the NIC in test mode. This sets the chip up
838 	 * so that it can send and receive frames, but performs the
839 	 * following special functions:
840 	 * - Puts receiver in promiscuous mode
841 	 * - Enables digital loopback mode
842 	 * - Leaves interrupts turned off
843 	 */
844 
845 	ifp->if_flags |= IFF_PROMISC;
846 	sc->re_flags |= RE_F_TESTMODE;
847 	re_init(sc);
848 	sc->re_flags |= RE_F_LINKED;
849 	if (!RE_IS_8139CP(sc))
850 		phyaddr = 1;
851 	else
852 		phyaddr = 0;
853 
854 	re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_RESET);
855 	for (i = 0; i < RE_TIMEOUT; i++) {
856 		status = re_miibus_readreg(sc->re_dev, phyaddr, MII_BMCR);
857 		if (!(status & BMCR_RESET))
858 			break;
859 	}
860 
861 	re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_LOOP);
862 	CSR_WRITE_2(sc, RE_ISR, RE_INTRS_DIAG);
863 
864 	DELAY(100000);
865 
866 	/* Put some data in the mbuf */
867 
868 	eh = mtod(m0, struct ether_header *);
869 	bcopy (dst, eh->ether_dhost, ETHER_ADDR_LEN);
870 	bcopy (src, eh->ether_shost, ETHER_ADDR_LEN);
871 	eh->ether_type = htons(ETHERTYPE_IP);
872 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
873 
874 	/*
875 	 * Queue the packet, start transmission.
876 	 * Note: ifq_handoff() ultimately calls re_start() for us.
877 	 */
878 
879 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
880 	error = ifq_handoff(ifp, m0, NULL);
881 	if (error) {
882 		m0 = NULL;
883 		goto done;
884 	}
885 	m0 = NULL;
886 
887 	/* Wait for it to propagate through the chip */
888 
889 	DELAY(100000);
890 	for (i = 0; i < RE_TIMEOUT; i++) {
891 		status = CSR_READ_2(sc, RE_ISR);
892 		CSR_WRITE_2(sc, RE_ISR, status);
893 		if ((status & (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK)) ==
894 		    (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK))
895 			break;
896 		DELAY(10);
897 	}
898 
899 	if (i == RE_TIMEOUT) {
900 		if_printf(ifp, "diagnostic failed to receive packet "
901 			  "in loopback mode\n");
902 		error = EIO;
903 		goto done;
904 	}
905 
906 	/*
907 	 * The packet should have been dumped into the first
908 	 * entry in the RX DMA ring. Grab it from there.
909 	 */
910 
911 	bus_dmamap_sync(sc->re_ldata.re_rx_mtag, sc->re_ldata.re_rx_dmamap[0],
912 			BUS_DMASYNC_POSTREAD);
913 	bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
914 			  sc->re_ldata.re_rx_dmamap[0]);
915 
916 	m0 = sc->re_ldata.re_rx_mbuf[0];
917 	sc->re_ldata.re_rx_mbuf[0] = NULL;
918 	eh = mtod(m0, struct ether_header *);
919 
920 	cur_rx = &sc->re_ldata.re_rx_list[0];
921 	total_len = RE_RXBYTES(cur_rx);
922 
923 	if (total_len != ETHER_MIN_LEN) {
924 		if_printf(ifp, "diagnostic failed, received short packet\n");
925 		error = EIO;
926 		goto done;
927 	}
928 
929 	/* Test that the received packet data matches what we sent. */
930 
931 	if (bcmp(eh->ether_dhost, dst, ETHER_ADDR_LEN) ||
932 	    bcmp(eh->ether_shost, &src, ETHER_ADDR_LEN) ||
933 	    be16toh(eh->ether_type) != ETHERTYPE_IP) {
934 		if_printf(ifp, "WARNING, DMA FAILURE!\n");
935 		if_printf(ifp, "expected TX data: %s/%s/0x%x\n",
936 		    kether_ntoa(dst, ethstr[0]), kether_ntoa(src, ethstr[1]), ETHERTYPE_IP);
937 		if_printf(ifp, "received RX data: %s/%s/0x%x\n",
938 		    kether_ntoa(eh->ether_dhost, ethstr[0]),
939 		    kether_ntoa(eh->ether_shost, ethstr[1]),
940 		    ntohs(eh->ether_type));
941 		if_printf(ifp, "You may have a defective 32-bit NIC plugged "
942 		    "into a 64-bit PCI slot.\n");
943 		if_printf(ifp, "Please re-install the NIC in a 32-bit slot "
944 		    "for proper operation.\n");
945 		if_printf(ifp, "Read the re(4) man page for more details.\n");
946 		error = EIO;
947 	}
948 
949 done:
950 	/* Turn interface off, release resources */
951 
952 	sc->re_flags &= ~(RE_F_LINKED | RE_F_TESTMODE);
953 	ifp->if_flags &= ~IFF_PROMISC;
954 	re_stop(sc);
955 	if (m0 != NULL)
956 		m_freem(m0);
957 
958 	return (error);
959 }
960 #endif	/* RE_DIAG */
961 
962 /*
963  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
964  * IDs against our list and return a device name if we find a match.
965  */
966 static int
967 re_probe(device_t dev)
968 {
969 	const struct re_type *t;
970 	const struct re_hwrev *hw_rev;
971 	struct re_softc *sc;
972 	int rid;
973 	uint32_t hwrev, macmode, txcfg;
974 	uint16_t vendor, product;
975 
976 	vendor = pci_get_vendor(dev);
977 	product = pci_get_device(dev);
978 
979 	/*
980 	 * Only attach to rev.3 of the Linksys EG1032 adapter.
981 	 * Rev.2 is supported by sk(4).
982 	 */
983 	if (vendor == PCI_VENDOR_LINKSYS &&
984 	    product == PCI_PRODUCT_LINKSYS_EG1032 &&
985 	    pci_get_subdevice(dev) != PCI_SUBDEVICE_LINKSYS_EG1032_REV3)
986 		return ENXIO;
987 
988 	if (vendor == PCI_VENDOR_REALTEK &&
989 	    product == PCI_PRODUCT_REALTEK_RT8139 &&
990 	    pci_get_revid(dev) != PCI_REVID_REALTEK_RT8139CP) {
991 		/* Poor 8139 */
992 		return ENXIO;
993 	}
994 
995 	for (t = re_devs; t->re_name != NULL; t++) {
996 		if (product == t->re_did && vendor == t->re_vid)
997 			break;
998 	}
999 
1000 	/*
1001 	 * Check if we found a RealTek device.
1002 	 */
1003 	if (t->re_name == NULL)
1004 		return ENXIO;
1005 
1006 	/*
1007 	 * Temporarily map the I/O space so we can read the chip ID register.
1008 	 */
1009 	sc = kmalloc(sizeof(*sc), M_TEMP, M_WAITOK | M_ZERO);
1010 	rid = RE_PCI_LOIO;
1011 	sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1012 					    RF_ACTIVE);
1013 	if (sc->re_res == NULL) {
1014 		device_printf(dev, "couldn't map ports/memory\n");
1015 		kfree(sc, M_TEMP);
1016 		return ENXIO;
1017 	}
1018 
1019 	sc->re_btag = rman_get_bustag(sc->re_res);
1020 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
1021 
1022 	txcfg = CSR_READ_4(sc, RE_TXCFG);
1023 	hwrev = txcfg & RE_TXCFG_HWREV;
1024 	macmode = txcfg & RE_TXCFG_MACMODE;
1025 	bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO, sc->re_res);
1026 	kfree(sc, M_TEMP);
1027 
1028 	/*
1029 	 * and continue matching for the specific chip...
1030 	 */
1031 	for (hw_rev = re_hwrevs; hw_rev->re_hwrev != RE_HWREV_NULL; hw_rev++) {
1032 		if (hw_rev->re_hwrev == hwrev) {
1033 			sc = device_get_softc(dev);
1034 
1035 			sc->re_hwrev = hw_rev->re_hwrev;
1036 			sc->re_caps = hw_rev->re_caps;
1037 			sc->re_maxmtu = hw_rev->re_maxmtu;
1038 
1039 			/*
1040 			 * Apply chip property fixup
1041 			 */
1042 			switch (sc->re_hwrev) {
1043 			case RE_HWREV_8168GU:
1044 				if (vendor == PCI_VENDOR_REALTEK &&
1045 				    product == PCI_PRODUCT_REALTEK_RT8101E) {
1046 					/* 8106EUS */
1047 					sc->re_caps = RE_C_HWCSUM | RE_C_MAC2 |
1048 					    RE_C_PHYPMGT | RE_C_AUTOPAD |
1049 					    RE_C_STOP_RXTX | RE_C_FASTE;
1050 					sc->re_maxmtu = ETHERMTU;
1051 					device_printf(dev, "8106EUS fixup\n");
1052 				} else {
1053 					/* 8168GU */
1054 					goto ee_eaddr1;
1055 				}
1056 				break;
1057 
1058 			case RE_HWREV_8168E:
1059 				if (vendor == PCI_VENDOR_REALTEK &&
1060 				    product == PCI_PRODUCT_REALTEK_RT8101E) {
1061 					/* 8105E */
1062 					sc->re_caps = RE_C_HWCSUM | RE_C_MAC2 |
1063 					    RE_C_PHYPMGT | RE_C_AUTOPAD |
1064 					    RE_C_STOP_RXTX | RE_C_FASTE |
1065 					    RE_C_PHYPMCH;
1066 					sc->re_maxmtu = ETHERMTU;
1067 					device_printf(dev, "8105E fixup\n");
1068 					goto ee_eaddr0;
1069 				}
1070 				/* 8168E */
1071 				break;
1072 
1073 			case RE_HWREV_8101E:
1074 			case RE_HWREV_8102E:
1075 			case RE_HWREV_8102EL:
1076 			case RE_HWREV_8401E:
1077 			case RE_HWREV_8105E:
1078 			case RE_HWREV_8106E:
1079 ee_eaddr0:
1080 				sc->re_caps |= RE_C_EE_EADDR;
1081 				sc->re_ee_eaddr = RE_EE_EADDR0;
1082 				break;
1083 
1084 			case RE_HWREV_8168F:
1085 			case RE_HWREV_8111F:
1086 			case RE_HWREV_8168G:
1087 				if (macmode == 0 ||
1088 				    macmode == 0x100000) {
1089 					sc->re_caps |= RE_C_EE_EADDR;
1090 					sc->re_ee_eaddr = RE_EE_EADDR1;
1091 				}
1092 				break;
1093 
1094 			case RE_HWREV_8411:
1095 			case RE_HWREV_8168EP:
1096 			case RE_HWREV_8168H:
1097 			case RE_HWREV_8411B:
1098 ee_eaddr1:
1099 				sc->re_caps |= RE_C_EE_EADDR;
1100 				sc->re_ee_eaddr = RE_EE_EADDR1;
1101 				break;
1102 			}
1103 			if (pci_is_pcie(dev))
1104 				sc->re_caps |= RE_C_PCIE;
1105 
1106 			device_set_desc(dev, t->re_name);
1107 			return 0;
1108 		}
1109 	}
1110 	device_printf(dev, "unknown hwrev 0x%08x, macmode 0x%08x\n",
1111 	    hwrev, macmode);
1112 
1113 	return ENXIO;
1114 }
1115 
1116 static int
1117 re_allocmem(device_t dev)
1118 {
1119 	struct re_softc *sc = device_get_softc(dev);
1120 	bus_dmamem_t dmem;
1121 	int error, i;
1122 
1123 	/*
1124 	 * Allocate list data
1125 	 */
1126 	sc->re_ldata.re_tx_mbuf =
1127 	kmalloc(sc->re_tx_desc_cnt * sizeof(struct mbuf *),
1128 		M_DEVBUF, M_ZERO | M_WAITOK);
1129 
1130 	sc->re_ldata.re_rx_mbuf =
1131 	kmalloc(sc->re_rx_desc_cnt * sizeof(struct mbuf *),
1132 		M_DEVBUF, M_ZERO | M_WAITOK);
1133 
1134 	sc->re_ldata.re_rx_paddr =
1135 	kmalloc(sc->re_rx_desc_cnt * sizeof(bus_addr_t),
1136 		M_DEVBUF, M_ZERO | M_WAITOK);
1137 
1138 	sc->re_ldata.re_tx_dmamap =
1139 	kmalloc(sc->re_tx_desc_cnt * sizeof(bus_dmamap_t),
1140 		M_DEVBUF, M_ZERO | M_WAITOK);
1141 
1142 	sc->re_ldata.re_rx_dmamap =
1143 	kmalloc(sc->re_rx_desc_cnt * sizeof(bus_dmamap_t),
1144 		M_DEVBUF, M_ZERO | M_WAITOK);
1145 
1146 	/*
1147 	 * Allocate the parent bus DMA tag appropriate for PCI.
1148 	 */
1149 	error = bus_dma_tag_create(NULL,	/* parent */
1150 			1, 0,			/* alignment, boundary */
1151 			BUS_SPACE_MAXADDR,	/* lowaddr */
1152 			BUS_SPACE_MAXADDR,	/* highaddr */
1153 			NULL, NULL,		/* filter, filterarg */
1154 			BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
1155 			0,			/* nsegments */
1156 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1157 			0,			/* flags */
1158 			&sc->re_parent_tag);
1159 	if (error) {
1160 		device_printf(dev, "could not allocate parent dma tag\n");
1161 		return error;
1162 	}
1163 
1164 	/* Allocate TX descriptor list. */
1165 	error = bus_dmamem_coherent(sc->re_parent_tag,
1166 			RE_RING_ALIGN, 0,
1167 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1168 			RE_TX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1169 			&dmem);
1170 	if (error) {
1171 		device_printf(dev, "could not allocate TX ring\n");
1172 		return error;
1173 	}
1174 	sc->re_ldata.re_tx_list_tag = dmem.dmem_tag;
1175 	sc->re_ldata.re_tx_list_map = dmem.dmem_map;
1176 	sc->re_ldata.re_tx_list = dmem.dmem_addr;
1177 	sc->re_ldata.re_tx_list_addr = dmem.dmem_busaddr;
1178 
1179 	/* Allocate RX descriptor list. */
1180 	error = bus_dmamem_coherent(sc->re_parent_tag,
1181 			RE_RING_ALIGN, 0,
1182 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1183 			RE_RX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1184 			&dmem);
1185 	if (error) {
1186 		device_printf(dev, "could not allocate RX ring\n");
1187 		return error;
1188 	}
1189 	sc->re_ldata.re_rx_list_tag = dmem.dmem_tag;
1190 	sc->re_ldata.re_rx_list_map = dmem.dmem_map;
1191 	sc->re_ldata.re_rx_list = dmem.dmem_addr;
1192 	sc->re_ldata.re_rx_list_addr = dmem.dmem_busaddr;
1193 
1194 	/* Allocate maps for TX mbufs. */
1195 	error = bus_dma_tag_create(sc->re_parent_tag,
1196 			1, 0,
1197 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1198 			NULL, NULL,
1199 			RE_FRAMELEN_MAX, RE_MAXSEGS, MCLBYTES,
1200 			BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1201 			&sc->re_ldata.re_tx_mtag);
1202 	if (error) {
1203 		device_printf(dev, "could not allocate TX buf dma tag\n");
1204 		return(error);
1205 	}
1206 
1207 	/* Create DMA maps for TX buffers */
1208 	for (i = 0; i < sc->re_tx_desc_cnt; i++) {
1209 		error = bus_dmamap_create(sc->re_ldata.re_tx_mtag,
1210 				BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1211 				&sc->re_ldata.re_tx_dmamap[i]);
1212 		if (error) {
1213 			device_printf(dev, "can't create DMA map for TX buf\n");
1214 			re_freebufmem(sc, i, 0);
1215 			return(error);
1216 		}
1217 	}
1218 
1219 	/* Allocate maps for RX mbufs. */
1220 	error = bus_dma_tag_create(sc->re_parent_tag,
1221 			RE_RXBUF_ALIGN, 0,
1222 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1223 			NULL, NULL,
1224 			MCLBYTES, 1, MCLBYTES,
1225 			BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ALIGNED,
1226 			&sc->re_ldata.re_rx_mtag);
1227 	if (error) {
1228 		device_printf(dev, "could not allocate RX buf dma tag\n");
1229 		return(error);
1230 	}
1231 
1232 	/* Create spare DMA map for RX */
1233 	error = bus_dmamap_create(sc->re_ldata.re_rx_mtag, BUS_DMA_WAITOK,
1234 			&sc->re_ldata.re_rx_spare);
1235 	if (error) {
1236 		device_printf(dev, "can't create spare DMA map for RX\n");
1237 		bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1238 		sc->re_ldata.re_rx_mtag = NULL;
1239 		return error;
1240 	}
1241 
1242 	/* Create DMA maps for RX buffers */
1243 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1244 		error = bus_dmamap_create(sc->re_ldata.re_rx_mtag,
1245 				BUS_DMA_WAITOK, &sc->re_ldata.re_rx_dmamap[i]);
1246 		if (error) {
1247 			device_printf(dev, "can't create DMA map for RX buf\n");
1248 			re_freebufmem(sc, sc->re_tx_desc_cnt, i);
1249 			return(error);
1250 		}
1251 	}
1252 
1253 	/* Create jumbo buffer pool for RX if required */
1254 	if (sc->re_caps & RE_C_CONTIGRX) {
1255 		error = re_jpool_alloc(sc);
1256 		if (error) {
1257 			re_jpool_free(sc);
1258 			/* Disable jumbo frame support */
1259 			sc->re_maxmtu = ETHERMTU;
1260 		}
1261 	}
1262 	return(0);
1263 }
1264 
1265 static void
1266 re_freebufmem(struct re_softc *sc, int tx_cnt, int rx_cnt)
1267 {
1268 	int i;
1269 
1270 	/* Destroy all the RX and TX buffer maps */
1271 	if (sc->re_ldata.re_tx_mtag) {
1272 		for (i = 0; i < tx_cnt; i++) {
1273 			bus_dmamap_destroy(sc->re_ldata.re_tx_mtag,
1274 					   sc->re_ldata.re_tx_dmamap[i]);
1275 		}
1276 		bus_dma_tag_destroy(sc->re_ldata.re_tx_mtag);
1277 		sc->re_ldata.re_tx_mtag = NULL;
1278 	}
1279 
1280 	if (sc->re_ldata.re_rx_mtag) {
1281 		for (i = 0; i < rx_cnt; i++) {
1282 			bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1283 					   sc->re_ldata.re_rx_dmamap[i]);
1284 		}
1285 		bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1286 				   sc->re_ldata.re_rx_spare);
1287 		bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1288 		sc->re_ldata.re_rx_mtag = NULL;
1289 	}
1290 }
1291 
1292 static void
1293 re_freemem(device_t dev)
1294 {
1295 	struct re_softc *sc = device_get_softc(dev);
1296 
1297 	/* Unload and free the RX DMA ring memory and map */
1298 	if (sc->re_ldata.re_rx_list_tag) {
1299 		bus_dmamap_unload(sc->re_ldata.re_rx_list_tag,
1300 				  sc->re_ldata.re_rx_list_map);
1301 		bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
1302 				sc->re_ldata.re_rx_list,
1303 				sc->re_ldata.re_rx_list_map);
1304 		bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1305 	}
1306 
1307 	/* Unload and free the TX DMA ring memory and map */
1308 	if (sc->re_ldata.re_tx_list_tag) {
1309 		bus_dmamap_unload(sc->re_ldata.re_tx_list_tag,
1310 				  sc->re_ldata.re_tx_list_map);
1311 		bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
1312 				sc->re_ldata.re_tx_list,
1313 				sc->re_ldata.re_tx_list_map);
1314 		bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1315 	}
1316 
1317 	/* Free RX/TX buf DMA stuffs */
1318 	re_freebufmem(sc, sc->re_tx_desc_cnt, sc->re_rx_desc_cnt);
1319 
1320 	/* Unload and free the stats buffer and map */
1321 	if (sc->re_ldata.re_stag) {
1322 		bus_dmamap_unload(sc->re_ldata.re_stag, sc->re_ldata.re_smap);
1323 		bus_dmamem_free(sc->re_ldata.re_stag,
1324 				sc->re_ldata.re_stats,
1325 				sc->re_ldata.re_smap);
1326 		bus_dma_tag_destroy(sc->re_ldata.re_stag);
1327 	}
1328 
1329 	if (sc->re_caps & RE_C_CONTIGRX)
1330 		re_jpool_free(sc);
1331 
1332 	if (sc->re_parent_tag)
1333 		bus_dma_tag_destroy(sc->re_parent_tag);
1334 
1335 	if (sc->re_ldata.re_tx_mbuf != NULL)
1336 		kfree(sc->re_ldata.re_tx_mbuf, M_DEVBUF);
1337 	if (sc->re_ldata.re_rx_mbuf != NULL)
1338 		kfree(sc->re_ldata.re_rx_mbuf, M_DEVBUF);
1339 	if (sc->re_ldata.re_rx_paddr != NULL)
1340 		kfree(sc->re_ldata.re_rx_paddr, M_DEVBUF);
1341 	if (sc->re_ldata.re_tx_dmamap != NULL)
1342 		kfree(sc->re_ldata.re_tx_dmamap, M_DEVBUF);
1343 	if (sc->re_ldata.re_rx_dmamap != NULL)
1344 		kfree(sc->re_ldata.re_rx_dmamap, M_DEVBUF);
1345 }
1346 
1347 /*
1348  * Attach the interface. Allocate softc structures, do ifmedia
1349  * setup and ethernet/BPF attach.
1350  */
1351 static int
1352 re_attach(device_t dev)
1353 {
1354 	struct re_softc	*sc = device_get_softc(dev);
1355 	struct mii_probe_args mii_args;
1356 	struct ifnet *ifp;
1357 	struct sysctl_ctx_list *ctx;
1358 	struct sysctl_oid *tree;
1359 	uint8_t eaddr[ETHER_ADDR_LEN], cfg;
1360 	int error = 0, qlen, msi_enable, cfg5_reg;
1361 	u_int irq_flags;
1362 
1363 	callout_init_mp(&sc->re_timer);
1364 	sc->re_dev = dev;
1365 
1366 	if (RE_IS_8139CP(sc)) {
1367 		sc->re_rx_desc_cnt = RE_RX_DESC_CNT_8139CP;
1368 		sc->re_tx_desc_cnt = RE_TX_DESC_CNT_8139CP;
1369 	} else {
1370 		sc->re_rx_desc_cnt = re_rx_desc_count;
1371 		if (sc->re_rx_desc_cnt > RE_RX_DESC_CNT_MAX)
1372 			sc->re_rx_desc_cnt = RE_RX_DESC_CNT_MAX;
1373 
1374 		sc->re_tx_desc_cnt = re_tx_desc_count;
1375 		if (sc->re_tx_desc_cnt > RE_TX_DESC_CNT_MAX)
1376 			sc->re_tx_desc_cnt = RE_TX_DESC_CNT_MAX;
1377 	}
1378 
1379 	qlen = RE_IFQ_MAXLEN;
1380 	if (sc->re_tx_desc_cnt > qlen)
1381 		qlen = sc->re_tx_desc_cnt;
1382 
1383 	sc->re_rxbuf_size = MCLBYTES;
1384 	sc->re_newbuf = re_newbuf_std;
1385 
1386 	sc->re_tx_time = 5;		/* 125us */
1387 	sc->re_rx_time = 2;		/* 50us */
1388 	if (sc->re_caps & RE_C_PCIE)
1389 		sc->re_sim_time = 75;	/* 75us */
1390 	else
1391 		sc->re_sim_time = 125;	/* 125us */
1392 	if (!RE_IS_8139CP(sc)) {
1393 		/* simulated interrupt moderation */
1394 		sc->re_imtype = RE_IMTYPE_SIM;
1395 	} else {
1396 		sc->re_imtype = RE_IMTYPE_NONE;
1397 	}
1398 	re_config_imtype(sc, sc->re_imtype);
1399 
1400 	ctx = device_get_sysctl_ctx(dev);
1401 	tree = device_get_sysctl_tree(dev);
1402 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1403 		       "rx_desc_count", CTLFLAG_RD, &sc->re_rx_desc_cnt,
1404 		       0, "RX desc count");
1405 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1406 		       "tx_desc_count", CTLFLAG_RD, &sc->re_tx_desc_cnt,
1407 		       0, "TX desc count");
1408 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "sim_time",
1409 			CTLTYPE_INT | CTLFLAG_RW,
1410 			sc, 0, re_sysctl_simtime, "I",
1411 			"Simulated interrupt moderation time (usec).");
1412 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "imtype",
1413 			CTLTYPE_INT | CTLFLAG_RW,
1414 			sc, 0, re_sysctl_imtype, "I",
1415 			"Interrupt moderation type -- "
1416 			"0:disable, 1:simulated, "
1417 			"2:hardware(if supported)");
1418 	if (sc->re_caps & RE_C_HWIM) {
1419 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1420 				OID_AUTO, "hw_rxtime",
1421 				CTLTYPE_INT | CTLFLAG_RW,
1422 				sc, 0, re_sysctl_rxtime, "I",
1423 				"Hardware interrupt moderation time "
1424 				"(unit: 25usec).");
1425 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1426 				OID_AUTO, "hw_txtime",
1427 				CTLTYPE_INT | CTLFLAG_RW,
1428 				sc, 0, re_sysctl_txtime, "I",
1429 				"Hardware interrupt moderation time "
1430 				"(unit: 25usec).");
1431 	}
1432 
1433 #ifndef BURN_BRIDGES
1434 	/*
1435 	 * Handle power management nonsense.
1436 	 */
1437 
1438 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1439 		uint32_t membase, irq;
1440 
1441 		/* Save important PCI config data. */
1442 		membase = pci_read_config(dev, RE_PCI_LOMEM, 4);
1443 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
1444 
1445 		/* Reset the power state. */
1446 		device_printf(dev, "chip is in D%d power mode "
1447 		    "-- setting to D0\n", pci_get_powerstate(dev));
1448 
1449 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1450 
1451 		/* Restore PCI config data. */
1452 		pci_write_config(dev, RE_PCI_LOMEM, membase, 4);
1453 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1454 	}
1455 #endif
1456 	/*
1457 	 * Map control/status registers.
1458 	 */
1459 	pci_enable_busmaster(dev);
1460 
1461 	if (pci_is_pcie(dev)) {
1462 		sc->re_res_rid = PCIR_BAR(2);
1463 		sc->re_res_type = SYS_RES_MEMORY;
1464 	} else {
1465 		sc->re_res_rid = PCIR_BAR(0);
1466 		sc->re_res_type = SYS_RES_IOPORT;
1467 	}
1468 	sc->re_res = bus_alloc_resource_any(dev, sc->re_res_type,
1469 	    &sc->re_res_rid, RF_ACTIVE);
1470 	if (sc->re_res == NULL) {
1471 		device_printf(dev, "couldn't map IO\n");
1472 		error = ENXIO;
1473 		goto fail;
1474 	}
1475 
1476 	sc->re_btag = rman_get_bustag(sc->re_res);
1477 	sc->re_bhandle = rman_get_bushandle(sc->re_res);
1478 
1479 	/*
1480 	 * Allocate interrupt
1481 	 */
1482 	if (pci_is_pcie(dev))
1483 		msi_enable = re_msi_enable;
1484 	else
1485 		msi_enable = 0;
1486 	sc->re_irq_type = pci_alloc_1intr(dev, msi_enable,
1487 	    &sc->re_irq_rid, &irq_flags);
1488 
1489 	sc->re_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->re_irq_rid,
1490 					    irq_flags);
1491 	if (sc->re_irq == NULL) {
1492 		device_printf(dev, "couldn't map interrupt\n");
1493 		error = ENXIO;
1494 		goto fail;
1495 	}
1496 
1497 	/* Disable ASPM */
1498 	re_disable_aspm(dev);
1499 
1500 	/* Reset the adapter. */
1501 	re_reset(sc, 0);
1502 
1503 	if (RE_IS_8139CP(sc)) {
1504 		sc->re_bus_speed = 33; /* XXX */
1505 	} else if (sc->re_caps & RE_C_PCIE) {
1506 		sc->re_bus_speed = 125;
1507 	} else {
1508 		uint8_t cfg2;
1509 
1510 		cfg2 = CSR_READ_1(sc, RE_CFG2);
1511 		switch (cfg2 & RE_CFG2_PCICLK_MASK) {
1512 		case RE_CFG2_PCICLK_33MHZ:
1513 			sc->re_bus_speed = 33;
1514 			break;
1515 		case RE_CFG2_PCICLK_66MHZ:
1516 			sc->re_bus_speed = 66;
1517 			break;
1518 		default:
1519 			device_printf(dev, "unknown bus speed, assume 33MHz\n");
1520 			sc->re_bus_speed = 33;
1521 			break;
1522 		}
1523 		if (cfg2 & RE_CFG2_PCI64)
1524 			sc->re_caps |= RE_C_PCI64;
1525 	}
1526 	device_printf(dev, "Hardware rev. 0x%08x; PCI%s %dMHz\n",
1527 		      sc->re_hwrev,
1528 		      (sc->re_caps & RE_C_PCIE) ?
1529 		      "-E" : ((sc->re_caps & RE_C_PCI64) ? "64" : "32"),
1530 		      sc->re_bus_speed);
1531 
1532 	/*
1533 	 * Enable PME.
1534 	 */
1535 	if (RE_IS_8139CP(sc))
1536 		cfg5_reg = RE_CFG5_8139CP;
1537 	else
1538 		cfg5_reg = RE_CFG5;
1539 	CSR_WRITE_1(sc, RE_EECMD, RE_EE_MODE);
1540 	cfg = CSR_READ_1(sc, RE_CFG1);
1541 	cfg |= RE_CFG1_PME;
1542 	CSR_WRITE_1(sc, RE_CFG1, cfg);
1543 	cfg = CSR_READ_1(sc, cfg5_reg);
1544 	cfg &= RE_CFG5_PME_STS;
1545 	CSR_WRITE_1(sc, cfg5_reg, cfg);
1546 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
1547 
1548 	re_get_eaddr(sc, eaddr);
1549 
1550 	if (!RE_IS_8139CP(sc)) {
1551 		/* Set RX length mask */
1552 		sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
1553 		sc->re_txstart = RE_GTXSTART;
1554 	} else {
1555 		/* Set RX length mask */
1556 		sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
1557 		sc->re_txstart = RE_TXSTART;
1558 	}
1559 
1560 	/* Allocate DMA stuffs */
1561 	error = re_allocmem(dev);
1562 	if (error)
1563 		goto fail;
1564 
1565 	/*
1566 	 * Apply some magic PCI settings from Realtek ...
1567 	 */
1568 	if (RE_IS_8169(sc)) {
1569 		CSR_WRITE_1(sc, 0x82, 1);
1570 		pci_write_config(dev, PCIR_CACHELNSZ, 0x8, 1);
1571 	}
1572 	pci_write_config(dev, PCIR_LATTIMER, 0x40, 1);
1573 
1574 	if (sc->re_caps & RE_C_MAC2) {
1575 		/*
1576 		 * Following part is extracted from Realtek BSD driver v176.
1577 		 * However, this does _not_ make much/any sense:
1578 		 * 8168C's PCI Express device control is located at 0x78,
1579 		 * so the reading from 0x79 (higher part of 0x78) and setting
1580 		 * the 4~6bits intend to enlarge the "max read request size"
1581 		 * (we will do it).  The content of the rest part of this
1582 		 * register is not meaningful to other PCI registers, so
1583 		 * writing the value to 0x54 could be completely wrong.
1584 		 * 0x80 is the lower part of PCI Express device status, non-
1585 		 * reserved bits are RW1C, writing 0 to them will not have
1586 		 * any effect at all.
1587 		 */
1588 #ifdef foo
1589 		uint8_t val;
1590 
1591 		val = pci_read_config(dev, 0x79, 1);
1592 		val = (val & ~0x70) | 0x50;
1593 		pci_write_config(dev, 0x54, val, 1);
1594 		pci_write_config(dev, 0x80, 0, 1);
1595 #endif
1596 	}
1597 
1598 	/*
1599 	 * Apply some PHY fixup from Realtek ...
1600 	 */
1601 	if (sc->re_caps & RE_C_PHYPMCH) {
1602 		CSR_WRITE_1(sc, RE_PMCH, CSR_READ_1(sc, RE_PMCH) | 0x80);
1603 		if (sc->re_hwrev == RE_HWREV_8401E)
1604 			CSR_WRITE_1(sc, 0xD1, CSR_READ_1(sc, 0xD1) & ~0x08);
1605 	}
1606 	if (sc->re_caps & RE_C_PHYPMGT) {
1607 		/* Power up PHY */
1608 		re_miibus_writereg(dev, 1, 0x1f, 0);
1609 		re_miibus_writereg(dev, 1, 0xe, 0);
1610 	}
1611 
1612 	/* Do MII setup */
1613 	mii_probe_args_init(&mii_args, re_ifmedia_upd, re_ifmedia_sts);
1614 	mii_args.mii_probemask = 1 << 0;
1615 	if (!RE_IS_8139CP(sc))
1616 		mii_args.mii_probemask = 1 << 1;
1617 	if (mii_probe(dev, &sc->re_miibus, &mii_args)) {
1618 		device_printf(dev, "MII without any phy!\n");
1619 		error = ENXIO;
1620 		goto fail;
1621 	}
1622 
1623 	ifp = &sc->arpcom.ac_if;
1624 	ifp->if_softc = sc;
1625 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1626 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1627 	ifp->if_ioctl = re_ioctl;
1628 	ifp->if_start = re_start;
1629 #ifdef IFPOLL_ENABLE
1630 	ifp->if_npoll = re_npoll;
1631 #endif
1632 	ifp->if_watchdog = re_watchdog;
1633 	ifp->if_init = re_init;
1634 	if (!RE_IS_8139CP(sc)) /* XXX */
1635 		ifp->if_baudrate = 1000000000;
1636 	else
1637 		ifp->if_baudrate = 100000000;
1638 	ifp->if_nmbclusters = sc->re_rx_desc_cnt;
1639 	ifq_set_maxlen(&ifp->if_snd, qlen);
1640 	ifq_set_ready(&ifp->if_snd);
1641 
1642 	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1643 	if (sc->re_caps & RE_C_HWCSUM)
1644 		ifp->if_capabilities |= IFCAP_HWCSUM;
1645 
1646 	ifp->if_capenable = ifp->if_capabilities;
1647 	if (ifp->if_capabilities & IFCAP_HWCSUM) {
1648 		/*
1649 		 * RTL8168/8111C generates wrong IP checksummed frame if the
1650 		 * packet has IP options so disable TX IP checksum offloading.
1651 		 */
1652 		if (sc->re_hwrev == RE_HWREV_8168CP ||
1653 		    sc->re_hwrev == RE_HWREV_8168C)
1654 			sc->re_hwassist = CSUM_TCP | CSUM_UDP;
1655 		else
1656 			sc->re_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP;
1657 	}
1658 	ifp->if_hwassist = sc->re_hwassist;
1659 
1660 	/*
1661 	 * Call MI attach routine.
1662 	 */
1663 	ether_ifattach(ifp, eaddr, NULL);
1664 
1665 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->re_irq));
1666 
1667 #ifdef IFPOLL_ENABLE
1668 	ifpoll_compat_setup(&sc->re_npoll, ctx, (struct sysctl_oid *)tree,
1669 	    device_get_unit(dev), ifp->if_serializer);
1670 #endif
1671 
1672 #ifdef RE_DIAG
1673 	/*
1674 	 * Perform hardware diagnostic on the original RTL8169.
1675 	 * Some 32-bit cards were incorrectly wired and would
1676 	 * malfunction if plugged into a 64-bit slot.
1677 	 */
1678 	if (sc->re_hwrev == RE_HWREV_8169) {
1679 		lwkt_serialize_enter(ifp->if_serializer);
1680 		error = re_diag(sc);
1681 		lwkt_serialize_exit(ifp->if_serializer);
1682 
1683 		if (error) {
1684 			device_printf(dev, "hardware diagnostic failure\n");
1685 			ether_ifdetach(ifp);
1686 			goto fail;
1687 		}
1688 	}
1689 #endif	/* RE_DIAG */
1690 
1691 	/* Hook interrupt last to avoid having to lock softc */
1692 	error = bus_setup_intr(dev, sc->re_irq, INTR_MPSAFE, re_intr, sc,
1693 			       &sc->re_intrhand, ifp->if_serializer);
1694 
1695 	if (error) {
1696 		device_printf(dev, "couldn't set up irq\n");
1697 		ether_ifdetach(ifp);
1698 		goto fail;
1699 	}
1700 
1701 fail:
1702 	if (error)
1703 		re_detach(dev);
1704 
1705 	return (error);
1706 }
1707 
1708 /*
1709  * Shutdown hardware and free up resources. This can be called any
1710  * time after the mutex has been initialized. It is called in both
1711  * the error case in attach and the normal detach case so it needs
1712  * to be careful about only freeing resources that have actually been
1713  * allocated.
1714  */
1715 static int
1716 re_detach(device_t dev)
1717 {
1718 	struct re_softc *sc = device_get_softc(dev);
1719 	struct ifnet *ifp = &sc->arpcom.ac_if;
1720 
1721 	/* These should only be active if attach succeeded */
1722 	if (device_is_attached(dev)) {
1723 		lwkt_serialize_enter(ifp->if_serializer);
1724 		re_stop(sc);
1725 		bus_teardown_intr(dev, sc->re_irq, sc->re_intrhand);
1726 		lwkt_serialize_exit(ifp->if_serializer);
1727 
1728 		ether_ifdetach(ifp);
1729 	}
1730 	if (sc->re_miibus)
1731 		device_delete_child(dev, sc->re_miibus);
1732 	bus_generic_detach(dev);
1733 
1734 	if (sc->re_irq)
1735 		bus_release_resource(dev, SYS_RES_IRQ, sc->re_irq_rid,
1736 				     sc->re_irq);
1737 
1738 	if (sc->re_irq_type == PCI_INTR_TYPE_MSI)
1739 		pci_release_msi(dev);
1740 
1741 	if (sc->re_res) {
1742 		bus_release_resource(dev, sc->re_res_type, sc->re_res_rid,
1743 		    sc->re_res);
1744 	}
1745 
1746 	/* Free DMA stuffs */
1747 	re_freemem(dev);
1748 
1749 	return(0);
1750 }
1751 
1752 static void
1753 re_setup_rxdesc(struct re_softc *sc, int idx)
1754 {
1755 	bus_addr_t paddr;
1756 	uint32_t cmdstat;
1757 	struct re_desc *d;
1758 
1759 	paddr = sc->re_ldata.re_rx_paddr[idx];
1760 	d = &sc->re_ldata.re_rx_list[idx];
1761 
1762 	d->re_bufaddr_lo = htole32(RE_ADDR_LO(paddr));
1763 	d->re_bufaddr_hi = htole32(RE_ADDR_HI(paddr));
1764 
1765 	cmdstat = sc->re_rxbuf_size | RE_RDESC_CMD_OWN;
1766 	if (idx == (sc->re_rx_desc_cnt - 1))
1767 		cmdstat |= RE_RDESC_CMD_EOR;
1768 	d->re_cmdstat = htole32(cmdstat);
1769 }
1770 
1771 static int
1772 re_newbuf_std(struct re_softc *sc, int idx, int init)
1773 {
1774 	bus_dma_segment_t seg;
1775 	bus_dmamap_t map;
1776 	struct mbuf *m;
1777 	int error, nsegs;
1778 
1779 	m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
1780 	if (m == NULL) {
1781 		error = ENOBUFS;
1782 
1783 		if (init) {
1784 			if_printf(&sc->arpcom.ac_if, "m_getcl failed\n");
1785 			return error;
1786 		} else {
1787 			goto back;
1788 		}
1789 	}
1790 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1791 
1792 	/*
1793 	 * NOTE:
1794 	 * re(4) chips need address of the receive buffer to be 8-byte
1795 	 * aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1796 	 */
1797 
1798 	error = bus_dmamap_load_mbuf_segment(sc->re_ldata.re_rx_mtag,
1799 			sc->re_ldata.re_rx_spare, m,
1800 			&seg, 1, &nsegs, BUS_DMA_NOWAIT);
1801 	if (error) {
1802 		m_freem(m);
1803 		if (init) {
1804 			if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
1805 			return error;
1806 		} else {
1807 			goto back;
1808 		}
1809 	}
1810 
1811 	if (!init) {
1812 		bus_dmamap_sync(sc->re_ldata.re_rx_mtag,
1813 				sc->re_ldata.re_rx_dmamap[idx],
1814 				BUS_DMASYNC_POSTREAD);
1815 		bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
1816 				  sc->re_ldata.re_rx_dmamap[idx]);
1817 	}
1818 	sc->re_ldata.re_rx_mbuf[idx] = m;
1819 	sc->re_ldata.re_rx_paddr[idx] = seg.ds_addr;
1820 
1821 	map = sc->re_ldata.re_rx_dmamap[idx];
1822 	sc->re_ldata.re_rx_dmamap[idx] = sc->re_ldata.re_rx_spare;
1823 	sc->re_ldata.re_rx_spare = map;
1824 back:
1825 	re_setup_rxdesc(sc, idx);
1826 	return error;
1827 }
1828 
1829 static int
1830 re_newbuf_jumbo(struct re_softc *sc, int idx, int init)
1831 {
1832 	struct mbuf *m;
1833 	struct re_jbuf *jbuf;
1834 	int error = 0;
1835 
1836 	MGETHDR(m, init ? M_WAITOK : M_NOWAIT, MT_DATA);
1837 	if (m == NULL) {
1838 		error = ENOBUFS;
1839 		if (init) {
1840 			if_printf(&sc->arpcom.ac_if, "MGETHDR failed\n");
1841 			return error;
1842 		} else {
1843 			goto back;
1844 		}
1845 	}
1846 
1847 	jbuf = re_jbuf_alloc(sc);
1848 	if (jbuf == NULL) {
1849 		m_freem(m);
1850 
1851 		error = ENOBUFS;
1852 		if (init) {
1853 			if_printf(&sc->arpcom.ac_if, "jpool is empty\n");
1854 			return error;
1855 		} else {
1856 			goto back;
1857 		}
1858 	}
1859 
1860 	m->m_ext.ext_arg = jbuf;
1861 	m->m_ext.ext_buf = jbuf->re_buf;
1862 	m->m_ext.ext_free = re_jbuf_free;
1863 	m->m_ext.ext_ref = re_jbuf_ref;
1864 	m->m_ext.ext_size = sc->re_rxbuf_size;
1865 
1866 	m->m_data = m->m_ext.ext_buf;
1867 	m->m_flags |= M_EXT;
1868 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1869 
1870 	/*
1871 	 * NOTE:
1872 	 * Some re(4) chips(e.g. RTL8101E) need address of the receive buffer
1873 	 * to be 8-byte aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1874 	 */
1875 
1876 	sc->re_ldata.re_rx_mbuf[idx] = m;
1877 	sc->re_ldata.re_rx_paddr[idx] = jbuf->re_paddr;
1878 back:
1879 	re_setup_rxdesc(sc, idx);
1880 	return error;
1881 }
1882 
1883 static int
1884 re_tx_list_init(struct re_softc *sc)
1885 {
1886 	bzero(sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
1887 
1888 	sc->re_ldata.re_tx_prodidx = 0;
1889 	sc->re_ldata.re_tx_considx = 0;
1890 	sc->re_ldata.re_tx_free = sc->re_tx_desc_cnt;
1891 
1892 	return(0);
1893 }
1894 
1895 static int
1896 re_rx_list_init(struct re_softc *sc)
1897 {
1898 	int i, error;
1899 
1900 	bzero(sc->re_ldata.re_rx_list, RE_RX_LIST_SZ(sc));
1901 
1902 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1903 		error = sc->re_newbuf(sc, i, 1);
1904 		if (error)
1905 			return(error);
1906 	}
1907 
1908 	sc->re_ldata.re_rx_prodidx = 0;
1909 	sc->re_head = sc->re_tail = NULL;
1910 
1911 	return(0);
1912 }
1913 
1914 #define RE_IP4_PACKET	0x1
1915 #define RE_TCP_PACKET	0x2
1916 #define RE_UDP_PACKET	0x4
1917 
1918 static __inline uint8_t
1919 re_packet_type(struct re_softc *sc, uint32_t rxstat, uint32_t rxctrl)
1920 {
1921 	uint8_t packet_type = 0;
1922 
1923 	if (sc->re_caps & RE_C_MAC2) {
1924 		if (rxctrl & RE_RDESC_CTL_PROTOIP4)
1925 			packet_type |= RE_IP4_PACKET;
1926 	} else {
1927 		if (rxstat & RE_RDESC_STAT_PROTOID)
1928 			packet_type |= RE_IP4_PACKET;
1929 	}
1930 	if (RE_TCPPKT(rxstat))
1931 		packet_type |= RE_TCP_PACKET;
1932 	else if (RE_UDPPKT(rxstat))
1933 		packet_type |= RE_UDP_PACKET;
1934 	return packet_type;
1935 }
1936 
1937 /*
1938  * RX handler for C+ and 8169. For the gigE chips, we support
1939  * the reception of jumbo frames that have been fragmented
1940  * across multiple 2K mbuf cluster buffers.
1941  */
1942 static int
1943 re_rxeof(struct re_softc *sc)
1944 {
1945 	struct ifnet *ifp = &sc->arpcom.ac_if;
1946 	struct mbuf *m;
1947 	struct re_desc 	*cur_rx;
1948 	uint32_t rxstat, rxctrl;
1949 	int i, total_len, rx = 0;
1950 
1951 	for (i = sc->re_ldata.re_rx_prodidx;
1952 	     RE_OWN(&sc->re_ldata.re_rx_list[i]) == 0; RE_RXDESC_INC(sc, i)) {
1953 		cur_rx = &sc->re_ldata.re_rx_list[i];
1954 		m = sc->re_ldata.re_rx_mbuf[i];
1955 		total_len = RE_RXBYTES(cur_rx);
1956 		rxstat = le32toh(cur_rx->re_cmdstat);
1957 		rxctrl = le32toh(cur_rx->re_control);
1958 
1959 		rx = 1;
1960 
1961 #ifdef INVARIANTS
1962 		if (sc->re_flags & RE_F_USE_JPOOL)
1963 			KKASSERT(rxstat & RE_RDESC_STAT_EOF);
1964 #endif
1965 
1966 		if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1967 			if (sc->re_flags & RE_F_DROP_RXFRAG) {
1968 				re_setup_rxdesc(sc, i);
1969 				continue;
1970 			}
1971 
1972 			if (sc->re_newbuf(sc, i, 0)) {
1973 				/* Drop upcoming fragments */
1974 				sc->re_flags |= RE_F_DROP_RXFRAG;
1975 				continue;
1976 			}
1977 
1978 			m->m_len = MCLBYTES;
1979 			if (sc->re_head == NULL) {
1980 				sc->re_head = sc->re_tail = m;
1981 			} else {
1982 				sc->re_tail->m_next = m;
1983 				sc->re_tail = m;
1984 			}
1985 			continue;
1986 		} else if (sc->re_flags & RE_F_DROP_RXFRAG) {
1987 			/*
1988 			 * Last fragment of a multi-fragment packet.
1989 			 *
1990 			 * Since error already happened, this fragment
1991 			 * must be dropped as well as the fragment chain.
1992 			 */
1993 			re_setup_rxdesc(sc, i);
1994 			re_free_rxchain(sc);
1995 			sc->re_flags &= ~RE_F_DROP_RXFRAG;
1996 			continue;
1997 		}
1998 
1999 		/*
2000 		 * NOTE: for the 8139C+, the frame length field
2001 		 * is always 12 bits in size, but for the gigE chips,
2002 		 * it is 13 bits (since the max RX frame length is 16K).
2003 		 * Unfortunately, all 32 bits in the status word
2004 		 * were already used, so to make room for the extra
2005 		 * length bit, RealTek took out the 'frame alignment
2006 		 * error' bit and shifted the other status bits
2007 		 * over one slot. The OWN, EOR, FS and LS bits are
2008 		 * still in the same places. We have already extracted
2009 		 * the frame length and checked the OWN bit, so rather
2010 		 * than using an alternate bit mapping, we shift the
2011 		 * status bits one space to the right so we can evaluate
2012 		 * them using the 8169 status as though it was in the
2013 		 * same format as that of the 8139C+.
2014 		 */
2015 		if (!RE_IS_8139CP(sc))
2016 			rxstat >>= 1;
2017 
2018 		if (rxstat & RE_RDESC_STAT_RXERRSUM) {
2019 			IFNET_STAT_INC(ifp, ierrors, 1);
2020 			/*
2021 			 * If this is part of a multi-fragment packet,
2022 			 * discard all the pieces.
2023 			 */
2024 			re_free_rxchain(sc);
2025 			re_setup_rxdesc(sc, i);
2026 			continue;
2027 		}
2028 
2029 		/*
2030 		 * If allocating a replacement mbuf fails,
2031 		 * reload the current one.
2032 		 */
2033 
2034 		if (sc->re_newbuf(sc, i, 0)) {
2035 			IFNET_STAT_INC(ifp, ierrors, 1);
2036 			continue;
2037 		}
2038 
2039 		if (sc->re_head != NULL) {
2040 			m->m_len = total_len % MCLBYTES;
2041 			/*
2042 			 * Special case: if there's 4 bytes or less
2043 			 * in this buffer, the mbuf can be discarded:
2044 			 * the last 4 bytes is the CRC, which we don't
2045 			 * care about anyway.
2046 			 */
2047 			if (m->m_len <= ETHER_CRC_LEN) {
2048 				sc->re_tail->m_len -=
2049 				    (ETHER_CRC_LEN - m->m_len);
2050 				m_freem(m);
2051 			} else {
2052 				m->m_len -= ETHER_CRC_LEN;
2053 				sc->re_tail->m_next = m;
2054 			}
2055 			m = sc->re_head;
2056 			sc->re_head = sc->re_tail = NULL;
2057 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
2058 		} else {
2059 			m->m_pkthdr.len = m->m_len =
2060 			    (total_len - ETHER_CRC_LEN);
2061 		}
2062 
2063 		IFNET_STAT_INC(ifp, ipackets, 1);
2064 		m->m_pkthdr.rcvif = ifp;
2065 
2066 		/* Do RX checksumming if enabled */
2067 
2068 		if (ifp->if_capenable & IFCAP_RXCSUM) {
2069 			uint8_t packet_type;
2070 
2071 			packet_type = re_packet_type(sc, rxstat, rxctrl);
2072 
2073 			/* Check IP header checksum */
2074 			if (packet_type & RE_IP4_PACKET) {
2075 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2076 				if ((rxstat & RE_RDESC_STAT_IPSUMBAD) == 0)
2077 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2078 			}
2079 
2080 			/* Check TCP/UDP checksum */
2081 			if (((packet_type & RE_TCP_PACKET) &&
2082 			     (rxstat & RE_RDESC_STAT_TCPSUMBAD) == 0) ||
2083 			    ((packet_type & RE_UDP_PACKET) &&
2084 			     (rxstat & RE_RDESC_STAT_UDPSUMBAD) == 0)) {
2085 				m->m_pkthdr.csum_flags |=
2086 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
2087 				    CSUM_FRAG_NOT_CHECKED;
2088 				m->m_pkthdr.csum_data = 0xffff;
2089 			}
2090 		}
2091 
2092 		if (rxctrl & RE_RDESC_CTL_HASTAG) {
2093 			m->m_flags |= M_VLANTAG;
2094 			m->m_pkthdr.ether_vlantag =
2095 				be16toh((rxctrl & RE_RDESC_CTL_TAGDATA));
2096 		}
2097 		ifp->if_input(ifp, m, NULL, -1);
2098 	}
2099 
2100 	sc->re_ldata.re_rx_prodidx = i;
2101 
2102 	return rx;
2103 }
2104 
2105 #undef RE_IP4_PACKET
2106 #undef RE_TCP_PACKET
2107 #undef RE_UDP_PACKET
2108 
2109 static int
2110 re_tx_collect(struct re_softc *sc)
2111 {
2112 	struct ifnet *ifp = &sc->arpcom.ac_if;
2113 	uint32_t txstat;
2114 	int idx, tx = 0;
2115 
2116 	for (idx = sc->re_ldata.re_tx_considx;
2117 	     sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt;
2118 	     RE_TXDESC_INC(sc, idx)) {
2119 		txstat = le32toh(sc->re_ldata.re_tx_list[idx].re_cmdstat);
2120 		if (txstat & RE_TDESC_CMD_OWN)
2121 			break;
2122 
2123 		tx = 1;
2124 
2125 		sc->re_ldata.re_tx_list[idx].re_bufaddr_lo = 0;
2126 
2127 		/*
2128 		 * We only stash mbufs in the last descriptor
2129 		 * in a fragment chain, which also happens to
2130 		 * be the only place where the TX status bits
2131 		 * are valid.
2132 		 */
2133 		if (txstat & RE_TDESC_CMD_EOF) {
2134 			bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2135 			    sc->re_ldata.re_tx_dmamap[idx]);
2136 			m_freem(sc->re_ldata.re_tx_mbuf[idx]);
2137 			sc->re_ldata.re_tx_mbuf[idx] = NULL;
2138 			if (txstat & (RE_TDESC_STAT_EXCESSCOL|
2139 			    RE_TDESC_STAT_COLCNT))
2140 				IFNET_STAT_INC(ifp, collisions, 1);
2141 			if (txstat & RE_TDESC_STAT_TXERRSUM)
2142 				IFNET_STAT_INC(ifp, oerrors, 1);
2143 			else
2144 				IFNET_STAT_INC(ifp, opackets, 1);
2145 		}
2146 		sc->re_ldata.re_tx_free++;
2147 	}
2148 	sc->re_ldata.re_tx_considx = idx;
2149 
2150 	return tx;
2151 }
2152 
2153 static int
2154 re_txeof(struct re_softc *sc)
2155 {
2156 	struct ifnet *ifp = &sc->arpcom.ac_if;
2157 	int tx;
2158 
2159 	tx = re_tx_collect(sc);
2160 
2161 	/* There is enough free TX descs */
2162 	if (sc->re_ldata.re_tx_free > RE_TXDESC_SPARE)
2163 		ifq_clr_oactive(&ifp->if_snd);
2164 
2165 	/*
2166 	 * Some chips will ignore a second TX request issued while an
2167 	 * existing transmission is in progress. If the transmitter goes
2168 	 * idle but there are still packets waiting to be sent, we need
2169 	 * to restart the channel here to flush them out. This only seems
2170 	 * to be required with the PCIe devices.
2171 	 */
2172 	if (sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt)
2173 		CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2174 	else
2175 		ifp->if_timer = 0;
2176 
2177 	return tx;
2178 }
2179 
2180 static void
2181 re_tick(void *xsc)
2182 {
2183 	struct re_softc *sc = xsc;
2184 
2185 	lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
2186 	re_tick_serialized(xsc);
2187 	lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
2188 }
2189 
2190 static void
2191 re_tick_serialized(void *xsc)
2192 {
2193 	struct re_softc *sc = xsc;
2194 	struct ifnet *ifp = &sc->arpcom.ac_if;
2195 	struct mii_data *mii;
2196 
2197 	ASSERT_SERIALIZED(ifp->if_serializer);
2198 
2199 	mii = device_get_softc(sc->re_miibus);
2200 	mii_tick(mii);
2201 	if (sc->re_flags & RE_F_LINKED) {
2202 		if (!(mii->mii_media_status & IFM_ACTIVE))
2203 			sc->re_flags &= ~RE_F_LINKED;
2204 	} else {
2205 		if (mii->mii_media_status & IFM_ACTIVE &&
2206 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2207 			sc->re_flags |= RE_F_LINKED;
2208 			if (!ifq_is_empty(&ifp->if_snd))
2209 				if_devstart(ifp);
2210 		}
2211 	}
2212 
2213 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2214 }
2215 
2216 #ifdef IFPOLL_ENABLE
2217 
2218 static void
2219 re_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
2220 {
2221 	struct re_softc *sc = ifp->if_softc;
2222 
2223 	ASSERT_SERIALIZED(ifp->if_serializer);
2224 
2225 	if (sc->re_npoll.ifpc_stcount-- == 0) {
2226 		uint16_t       status;
2227 
2228 		sc->re_npoll.ifpc_stcount = sc->re_npoll.ifpc_stfrac;
2229 
2230 		status = CSR_READ_2(sc, RE_ISR);
2231 		if (status == 0xffff)
2232 			return;
2233 		if (status)
2234 			CSR_WRITE_2(sc, RE_ISR, status);
2235 
2236 		/*
2237 		 * XXX check behaviour on receiver stalls.
2238 		 */
2239 
2240 		if (status & RE_ISR_SYSTEM_ERR)
2241 			re_init(sc);
2242 	}
2243 
2244 	sc->rxcycles = count;
2245 	re_rxeof(sc);
2246 	re_txeof(sc);
2247 
2248 	if (!ifq_is_empty(&ifp->if_snd))
2249 		if_devstart(ifp);
2250 }
2251 
2252 static void
2253 re_npoll(struct ifnet *ifp, struct ifpoll_info *info)
2254 {
2255 	struct re_softc *sc = ifp->if_softc;
2256 
2257 	ASSERT_SERIALIZED(ifp->if_serializer);
2258 
2259 	if (info != NULL) {
2260 		int cpuid = sc->re_npoll.ifpc_cpuid;
2261 
2262 		info->ifpi_rx[cpuid].poll_func = re_npoll_compat;
2263 		info->ifpi_rx[cpuid].arg = NULL;
2264 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
2265 
2266 		if (ifp->if_flags & IFF_RUNNING)
2267 			re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2268 		ifq_set_cpuid(&ifp->if_snd, cpuid);
2269 	} else {
2270 		if (ifp->if_flags & IFF_RUNNING)
2271 			re_setup_intr(sc, 1, sc->re_imtype);
2272 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->re_irq));
2273 	}
2274 }
2275 #endif /* IFPOLL_ENABLE */
2276 
2277 static void
2278 re_intr(void *arg)
2279 {
2280 	struct re_softc	*sc = arg;
2281 	struct ifnet *ifp = &sc->arpcom.ac_if;
2282 	uint16_t status;
2283 	int rx, tx;
2284 
2285 	ASSERT_SERIALIZED(ifp->if_serializer);
2286 
2287 	if ((sc->re_flags & RE_F_SUSPENDED) ||
2288 	    (ifp->if_flags & IFF_RUNNING) == 0)
2289 		return;
2290 
2291 	rx = tx = 0;
2292 
2293 	status = CSR_READ_2(sc, RE_ISR);
2294 	/* If the card has gone away the read returns 0xffff. */
2295 	if (status == 0xffff)
2296 		goto reload;
2297 	if (status)
2298 		CSR_WRITE_2(sc, RE_ISR, status);
2299 
2300 	if ((status & sc->re_intrs) == 0)
2301 		goto reload;
2302 
2303 	if (status & (sc->re_rx_ack | RE_ISR_RX_ERR))
2304 		rx |= re_rxeof(sc);
2305 
2306 	if (status & (sc->re_tx_ack | RE_ISR_TX_ERR))
2307 		tx |= re_txeof(sc);
2308 
2309 	if (status & RE_ISR_SYSTEM_ERR)
2310 		re_init(sc);
2311 
2312 	if (status & RE_ISR_LINKCHG) {
2313 		callout_stop(&sc->re_timer);
2314 		re_tick_serialized(sc);
2315 	}
2316 
2317 reload:
2318 	if (sc->re_imtype == RE_IMTYPE_SIM) {
2319 		if ((sc->re_flags & RE_F_TIMER_INTR)) {
2320 			if ((tx | rx) == 0) {
2321 				/*
2322 				 * Nothing needs to be processed, fallback
2323 				 * to use TX/RX interrupts.
2324 				 */
2325 				re_setup_intr(sc, 1, RE_IMTYPE_NONE);
2326 
2327 				/*
2328 				 * Recollect, mainly to avoid the possible
2329 				 * race introduced by changing interrupt
2330 				 * masks.
2331 				 */
2332 				re_rxeof(sc);
2333 				tx = re_txeof(sc);
2334 			} else {
2335 				CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
2336 			}
2337 		} else if (tx | rx) {
2338 			/*
2339 			 * Assume that using simulated interrupt moderation
2340 			 * (hardware timer based) could reduce the interript
2341 			 * rate.
2342 			 */
2343 			re_setup_intr(sc, 1, RE_IMTYPE_SIM);
2344 		}
2345 	}
2346 
2347 	if (tx && !ifq_is_empty(&ifp->if_snd))
2348 		if_devstart(ifp);
2349 }
2350 
2351 static int
2352 re_encap(struct re_softc *sc, struct mbuf **m_head, int *idx0)
2353 {
2354 	struct mbuf *m = *m_head;
2355 	bus_dma_segment_t segs[RE_MAXSEGS];
2356 	bus_dmamap_t map;
2357 	int error, maxsegs, idx, i, nsegs;
2358 	struct re_desc *d, *tx_ring;
2359 	uint32_t cmd_csum, ctl_csum, vlantag;
2360 
2361 	KASSERT(sc->re_ldata.re_tx_free > RE_TXDESC_SPARE,
2362 		("not enough free TX desc"));
2363 
2364 	map = sc->re_ldata.re_tx_dmamap[*idx0];
2365 
2366 	/*
2367 	 * Set up checksum offload. Note: checksum offload bits must
2368 	 * appear in all descriptors of a multi-descriptor transmit
2369 	 * attempt. (This is according to testing done with an 8169
2370 	 * chip. I'm not sure if this is a requirement or a bug.)
2371 	 */
2372 	cmd_csum = ctl_csum = 0;
2373 	if (m->m_pkthdr.csum_flags & CSUM_IP) {
2374 		cmd_csum |= RE_TDESC_CMD_IPCSUM;
2375 		ctl_csum |= RE_TDESC_CTL_IPCSUM;
2376 	}
2377 	if (m->m_pkthdr.csum_flags & CSUM_TCP) {
2378 		cmd_csum |= RE_TDESC_CMD_TCPCSUM;
2379 		ctl_csum |= RE_TDESC_CTL_TCPCSUM;
2380 	}
2381 	if (m->m_pkthdr.csum_flags & CSUM_UDP) {
2382 		cmd_csum |= RE_TDESC_CMD_UDPCSUM;
2383 		ctl_csum |= RE_TDESC_CTL_UDPCSUM;
2384 	}
2385 
2386 	/* For MAC2 chips, csum flags are set on re_control */
2387 	if (sc->re_caps & RE_C_MAC2)
2388 		cmd_csum = 0;
2389 	else
2390 		ctl_csum = 0;
2391 
2392 	if ((sc->re_caps & RE_C_AUTOPAD) == 0) {
2393 		/*
2394 		 * With some of the RealTek chips, using the checksum offload
2395 		 * support in conjunction with the autopadding feature results
2396 		 * in the transmission of corrupt frames. For example, if we
2397 		 * need to send a really small IP fragment that's less than 60
2398 		 * bytes in size, and IP header checksumming is enabled, the
2399 		 * resulting ethernet frame that appears on the wire will
2400 		 * have garbled payload. To work around this, if TX checksum
2401 		 * offload is enabled, we always manually pad short frames out
2402 		 * to the minimum ethernet frame size.
2403 		 *
2404 		 * Note: this appears unnecessary for TCP, and doing it for TCP
2405 		 * with PCIe adapters seems to result in bad checksums.
2406 		 */
2407 		if ((m->m_pkthdr.csum_flags &
2408 		     (CSUM_DELAY_IP | CSUM_DELAY_DATA)) &&
2409 		    (m->m_pkthdr.csum_flags & CSUM_TCP) == 0 &&
2410 		    m->m_pkthdr.len < RE_MIN_FRAMELEN) {
2411 			error = m_devpad(m, RE_MIN_FRAMELEN);
2412 			if (error)
2413 				goto back;
2414 		}
2415 	}
2416 
2417 	vlantag = 0;
2418 	if (m->m_flags & M_VLANTAG) {
2419 		vlantag = htobe16(m->m_pkthdr.ether_vlantag) |
2420 			  RE_TDESC_CTL_INSTAG;
2421 	}
2422 
2423 	maxsegs = sc->re_ldata.re_tx_free;
2424 	if (maxsegs > RE_MAXSEGS)
2425 		maxsegs = RE_MAXSEGS;
2426 
2427 	error = bus_dmamap_load_mbuf_defrag(sc->re_ldata.re_tx_mtag, map,
2428 			m_head, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
2429 	if (error)
2430 		goto back;
2431 
2432 	m = *m_head;
2433 	bus_dmamap_sync(sc->re_ldata.re_tx_mtag, map, BUS_DMASYNC_PREWRITE);
2434 
2435 	/*
2436 	 * Map the segment array into descriptors.  We also keep track
2437 	 * of the end of the ring and set the end-of-ring bits as needed,
2438 	 * and we set the ownership bits in all except the very first
2439 	 * descriptor, whose ownership bits will be turned on later.
2440 	 */
2441 	tx_ring = sc->re_ldata.re_tx_list;
2442 	idx = *idx0;
2443 	i = 0;
2444 	for (;;) {
2445 		uint32_t cmdstat;
2446 
2447 		d = &tx_ring[idx];
2448 
2449 		cmdstat = segs[i].ds_len;
2450 		d->re_bufaddr_lo = htole32(RE_ADDR_LO(segs[i].ds_addr));
2451 		d->re_bufaddr_hi = htole32(RE_ADDR_HI(segs[i].ds_addr));
2452 		if (i == 0)
2453 			cmdstat |= RE_TDESC_CMD_SOF;
2454 		else
2455 			cmdstat |= RE_TDESC_CMD_OWN;
2456 		if (idx == (sc->re_tx_desc_cnt - 1))
2457 			cmdstat |= RE_TDESC_CMD_EOR;
2458 		d->re_cmdstat = htole32(cmdstat | cmd_csum);
2459 		d->re_control = htole32(ctl_csum | vlantag);
2460 
2461 		i++;
2462 		if (i == nsegs)
2463 			break;
2464 		RE_TXDESC_INC(sc, idx);
2465 	}
2466 	d->re_cmdstat |= htole32(RE_TDESC_CMD_EOF);
2467 
2468 	/* Transfer ownership of packet to the chip. */
2469 	d->re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2470 	if (*idx0 != idx)
2471 		tx_ring[*idx0].re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2472 
2473 	/*
2474 	 * Insure that the map for this transmission
2475 	 * is placed at the array index of the last descriptor
2476 	 * in this chain.
2477 	 */
2478 	sc->re_ldata.re_tx_dmamap[*idx0] = sc->re_ldata.re_tx_dmamap[idx];
2479 	sc->re_ldata.re_tx_dmamap[idx] = map;
2480 
2481 	sc->re_ldata.re_tx_mbuf[idx] = m;
2482 	sc->re_ldata.re_tx_free -= nsegs;
2483 
2484 	RE_TXDESC_INC(sc, idx);
2485 	*idx0 = idx;
2486 back:
2487 	if (error) {
2488 		m_freem(*m_head);
2489 		*m_head = NULL;
2490 	}
2491 	return error;
2492 }
2493 
2494 /*
2495  * Main transmit routine for C+ and gigE NICs.
2496  */
2497 
2498 static void
2499 re_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
2500 {
2501 	struct re_softc	*sc = ifp->if_softc;
2502 	struct mbuf *m_head;
2503 	int idx, need_trans, oactive, error;
2504 
2505 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
2506 	ASSERT_SERIALIZED(ifp->if_serializer);
2507 
2508 	if ((sc->re_flags & RE_F_LINKED) == 0) {
2509 		ifq_purge(&ifp->if_snd);
2510 		return;
2511 	}
2512 
2513 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
2514 		return;
2515 
2516 	idx = sc->re_ldata.re_tx_prodidx;
2517 
2518 	need_trans = 0;
2519 	oactive = 0;
2520 	while (sc->re_ldata.re_tx_mbuf[idx] == NULL) {
2521 		if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
2522 			if (!oactive) {
2523 				if (re_tx_collect(sc)) {
2524 					oactive = 1;
2525 					continue;
2526 				}
2527 			}
2528 			ifq_set_oactive(&ifp->if_snd);
2529 			break;
2530 		}
2531 
2532 		m_head = ifq_dequeue(&ifp->if_snd);
2533 		if (m_head == NULL)
2534 			break;
2535 
2536 		error = re_encap(sc, &m_head, &idx);
2537 		if (error) {
2538 			/* m_head is freed by re_encap(), if we reach here */
2539 			IFNET_STAT_INC(ifp, oerrors, 1);
2540 
2541 			if (error == EFBIG && !oactive) {
2542 				if (re_tx_collect(sc)) {
2543 					oactive = 1;
2544 					continue;
2545 				}
2546 			}
2547 			ifq_set_oactive(&ifp->if_snd);
2548 			break;
2549 		}
2550 
2551 		oactive = 0;
2552 		need_trans = 1;
2553 
2554 		/*
2555 		 * If there's a BPF listener, bounce a copy of this frame
2556 		 * to him.
2557 		 */
2558 		ETHER_BPF_MTAP(ifp, m_head);
2559 	}
2560 
2561 	/*
2562 	 * If sc->re_ldata.re_tx_mbuf[idx] is not NULL it is possible
2563 	 * for OACTIVE to not be properly set when we also do not
2564 	 * have sufficient free tx descriptors, leaving packet in
2565 	 * ifp->if_snd.  This can cause if_start_dispatch() to loop
2566 	 * infinitely so make sure OACTIVE is set properly.
2567 	 */
2568 	if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
2569 		if (!ifq_is_oactive(&ifp->if_snd)) {
2570 #if 0
2571 			if_printf(ifp, "Debug: OACTIVE was not set when "
2572 			    "re_tx_free was below minimum!\n");
2573 #endif
2574 			ifq_set_oactive(&ifp->if_snd);
2575 		}
2576 	}
2577 	if (!need_trans)
2578 		return;
2579 
2580 	sc->re_ldata.re_tx_prodidx = idx;
2581 
2582 	/*
2583 	 * RealTek put the TX poll request register in a different
2584 	 * location on the 8169 gigE chip. I don't know why.
2585 	 */
2586 	CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2587 
2588 	/*
2589 	 * Set a timeout in case the chip goes out to lunch.
2590 	 */
2591 	ifp->if_timer = 5;
2592 }
2593 
2594 static void
2595 re_init(void *xsc)
2596 {
2597 	struct re_softc *sc = xsc;
2598 	struct ifnet *ifp = &sc->arpcom.ac_if;
2599 	struct mii_data *mii;
2600 	int error, framelen;
2601 
2602 	ASSERT_SERIALIZED(ifp->if_serializer);
2603 
2604 	mii = device_get_softc(sc->re_miibus);
2605 
2606 	/*
2607 	 * Cancel pending I/O and free all RX/TX buffers.
2608 	 */
2609 	re_stop(sc);
2610 
2611 	if (sc->re_caps & RE_C_CONTIGRX) {
2612 		if (ifp->if_mtu > ETHERMTU) {
2613 			KKASSERT(sc->re_ldata.re_jbuf != NULL);
2614 			sc->re_flags |= RE_F_USE_JPOOL;
2615 			sc->re_rxbuf_size = RE_FRAMELEN_MAX;
2616 			sc->re_newbuf = re_newbuf_jumbo;
2617 		} else {
2618 			sc->re_flags &= ~RE_F_USE_JPOOL;
2619 			sc->re_rxbuf_size = MCLBYTES;
2620 			sc->re_newbuf = re_newbuf_std;
2621 		}
2622 	}
2623 
2624 	/*
2625 	 * Adjust max read request size according to MTU; mainly to
2626 	 * improve TX performance for common case (ETHERMTU) on GigE
2627 	 * NICs.  However, this could _not_ be done on 10/100 only
2628 	 * NICs; their DMA engines will malfunction using non-default
2629 	 * max read request size.
2630 	 */
2631 	if ((sc->re_caps & (RE_C_PCIE | RE_C_FASTE)) == RE_C_PCIE) {
2632 		if (ifp->if_mtu > ETHERMTU) {
2633 			/*
2634 			 * 512 seems to be the only value that works
2635 			 * reliably with jumbo frame
2636 			 */
2637 			pcie_set_max_readrq(sc->re_dev,
2638 				PCIEM_DEVCTL_MAX_READRQ_512);
2639 		} else {
2640 			pcie_set_max_readrq(sc->re_dev,
2641 				PCIEM_DEVCTL_MAX_READRQ_4096);
2642 		}
2643 	}
2644 
2645 	/*
2646 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2647 	 * RX checksum offload. We must configure the C+ register
2648 	 * before all others.
2649 	 */
2650 	CSR_WRITE_2(sc, RE_CPLUS_CMD, RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB |
2651 		    RE_CPLUSCMD_PCI_MRW |
2652 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING ?
2653 		     RE_CPLUSCMD_VLANSTRIP : 0) |
2654 		    (ifp->if_capenable & IFCAP_RXCSUM ?
2655 		     RE_CPLUSCMD_RXCSUM_ENB : 0));
2656 
2657 	/*
2658 	 * Init our MAC address.  Even though the chipset
2659 	 * documentation doesn't mention it, we need to enter "Config
2660 	 * register write enable" mode to modify the ID registers.
2661 	 */
2662 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_WRITECFG);
2663 	CSR_WRITE_4(sc, RE_IDR0,
2664 	    htole32(*(uint32_t *)(&sc->arpcom.ac_enaddr[0])));
2665 	CSR_WRITE_2(sc, RE_IDR4,
2666 	    htole16(*(uint16_t *)(&sc->arpcom.ac_enaddr[4])));
2667 	CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
2668 
2669 	/*
2670 	 * For C+ mode, initialize the RX descriptors and mbufs.
2671 	 */
2672 	error = re_rx_list_init(sc);
2673 	if (error) {
2674 		re_stop(sc);
2675 		return;
2676 	}
2677 	error = re_tx_list_init(sc);
2678 	if (error) {
2679 		re_stop(sc);
2680 		return;
2681 	}
2682 
2683 	/*
2684 	 * Load the addresses of the RX and TX lists into the chip.
2685 	 */
2686 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_HI,
2687 	    RE_ADDR_HI(sc->re_ldata.re_rx_list_addr));
2688 	CSR_WRITE_4(sc, RE_RXLIST_ADDR_LO,
2689 	    RE_ADDR_LO(sc->re_ldata.re_rx_list_addr));
2690 
2691 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_HI,
2692 	    RE_ADDR_HI(sc->re_ldata.re_tx_list_addr));
2693 	CSR_WRITE_4(sc, RE_TXLIST_ADDR_LO,
2694 	    RE_ADDR_LO(sc->re_ldata.re_tx_list_addr));
2695 
2696 	/*
2697 	 * Enable transmit and receive.
2698 	 */
2699 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2700 
2701 	/*
2702 	 * Set the initial TX and RX configuration.
2703 	 */
2704 	if (sc->re_flags & RE_F_TESTMODE) {
2705 		if (!RE_IS_8139CP(sc))
2706 			CSR_WRITE_4(sc, RE_TXCFG,
2707 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON);
2708 		else
2709 			CSR_WRITE_4(sc, RE_TXCFG,
2710 				    RE_TXCFG_CONFIG | RE_LOOPTEST_ON_CPLUS);
2711 	} else
2712 		CSR_WRITE_4(sc, RE_TXCFG, RE_TXCFG_CONFIG);
2713 
2714 	framelen = RE_FRAMELEN(ifp->if_mtu);
2715 	if (framelen < MCLBYTES)
2716 		CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(MCLBYTES, 128));
2717 	else
2718 		CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(framelen, 128));
2719 
2720 	CSR_WRITE_4(sc, RE_RXCFG, RE_RXCFG_CONFIG);
2721 
2722 	/*
2723 	 * Program the multicast filter, if necessary.
2724 	 */
2725 	re_setmulti(sc);
2726 
2727 #ifdef IFPOLL_ENABLE
2728 	/*
2729 	 * Disable interrupts if we are polling.
2730 	 */
2731 	if (ifp->if_flags & IFF_NPOLLING)
2732 		re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2733 	else	/* otherwise ... */
2734 #endif /* IFPOLL_ENABLE */
2735 	/*
2736 	 * Enable interrupts.
2737 	 */
2738 	if (sc->re_flags & RE_F_TESTMODE)
2739 		CSR_WRITE_2(sc, RE_IMR, 0);
2740 	else
2741 		re_setup_intr(sc, 1, sc->re_imtype);
2742 	CSR_WRITE_2(sc, RE_ISR, sc->re_intrs);
2743 
2744 	/* Start RX/TX process. */
2745 	CSR_WRITE_4(sc, RE_MISSEDPKT, 0);
2746 
2747 #ifdef notdef
2748 	/* Enable receiver and transmitter. */
2749 	CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2750 #endif
2751 
2752 	/*
2753 	 * For 8169 gigE NICs, set the max allowed RX packet
2754 	 * size so we can receive jumbo frames.
2755 	 */
2756 	if (!RE_IS_8139CP(sc)) {
2757 		if (sc->re_caps & RE_C_CONTIGRX)
2758 			CSR_WRITE_2(sc, RE_MAXRXPKTLEN, sc->re_rxbuf_size);
2759 		else
2760 			CSR_WRITE_2(sc, RE_MAXRXPKTLEN, 16383);
2761 	}
2762 
2763 	if (sc->re_flags & RE_F_TESTMODE)
2764 		return;
2765 
2766 	mii_mediachg(mii);
2767 
2768 	CSR_WRITE_1(sc, RE_CFG1, RE_CFG1_DRVLOAD|RE_CFG1_FULLDUPLEX);
2769 
2770 	ifp->if_flags |= IFF_RUNNING;
2771 	ifq_clr_oactive(&ifp->if_snd);
2772 
2773 	callout_reset(&sc->re_timer, hz, re_tick, sc);
2774 }
2775 
2776 /*
2777  * Set media options.
2778  */
2779 static int
2780 re_ifmedia_upd(struct ifnet *ifp)
2781 {
2782 	struct re_softc *sc = ifp->if_softc;
2783 	struct mii_data *mii;
2784 
2785 	ASSERT_SERIALIZED(ifp->if_serializer);
2786 
2787 	mii = device_get_softc(sc->re_miibus);
2788 	mii_mediachg(mii);
2789 
2790 	return(0);
2791 }
2792 
2793 /*
2794  * Report current media status.
2795  */
2796 static void
2797 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2798 {
2799 	struct re_softc *sc = ifp->if_softc;
2800 	struct mii_data *mii;
2801 
2802 	ASSERT_SERIALIZED(ifp->if_serializer);
2803 
2804 	mii = device_get_softc(sc->re_miibus);
2805 
2806 	mii_pollstat(mii);
2807 	ifmr->ifm_active = mii->mii_media_active;
2808 	ifmr->ifm_status = mii->mii_media_status;
2809 }
2810 
2811 static int
2812 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2813 {
2814 	struct re_softc *sc = ifp->if_softc;
2815 	struct ifreq *ifr = (struct ifreq *) data;
2816 	struct mii_data *mii;
2817 	int error = 0, mask;
2818 
2819 	ASSERT_SERIALIZED(ifp->if_serializer);
2820 
2821 	switch(command) {
2822 	case SIOCSIFMTU:
2823 		if (ifr->ifr_mtu > sc->re_maxmtu) {
2824 			error = EINVAL;
2825 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
2826 			ifp->if_mtu = ifr->ifr_mtu;
2827 			if (ifp->if_flags & IFF_RUNNING)
2828 				ifp->if_init(sc);
2829 		}
2830 		break;
2831 
2832 	case SIOCSIFFLAGS:
2833 		if (ifp->if_flags & IFF_UP) {
2834 			if (ifp->if_flags & IFF_RUNNING) {
2835 				if ((ifp->if_flags ^ sc->re_if_flags) &
2836 				    (IFF_PROMISC | IFF_ALLMULTI))
2837 					re_setmulti(sc);
2838 			} else {
2839 				re_init(sc);
2840 			}
2841 		} else if (ifp->if_flags & IFF_RUNNING) {
2842 			re_stop(sc);
2843 		}
2844 		sc->re_if_flags = ifp->if_flags;
2845 		break;
2846 
2847 	case SIOCADDMULTI:
2848 	case SIOCDELMULTI:
2849 		re_setmulti(sc);
2850 		break;
2851 
2852 	case SIOCGIFMEDIA:
2853 	case SIOCSIFMEDIA:
2854 		mii = device_get_softc(sc->re_miibus);
2855 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2856 		break;
2857 
2858 	case SIOCSIFCAP:
2859 		mask = (ifr->ifr_reqcap ^ ifp->if_capenable) &
2860 		       ifp->if_capabilities;
2861 		ifp->if_capenable ^= mask;
2862 
2863 		if (mask & IFCAP_HWCSUM) {
2864 			if (ifp->if_capenable & IFCAP_TXCSUM)
2865 				ifp->if_hwassist = sc->re_hwassist;
2866 			else
2867 				ifp->if_hwassist = 0;
2868 		}
2869 		if (mask && (ifp->if_flags & IFF_RUNNING))
2870 			re_init(sc);
2871 		break;
2872 
2873 	default:
2874 		error = ether_ioctl(ifp, command, data);
2875 		break;
2876 	}
2877 	return(error);
2878 }
2879 
2880 static void
2881 re_watchdog(struct ifnet *ifp)
2882 {
2883 	struct re_softc *sc = ifp->if_softc;
2884 
2885 	ASSERT_SERIALIZED(ifp->if_serializer);
2886 
2887 	if_printf(ifp, "watchdog timeout\n");
2888 
2889 	IFNET_STAT_INC(ifp, oerrors, 1);
2890 
2891 	re_txeof(sc);
2892 	re_rxeof(sc);
2893 
2894 	re_init(sc);
2895 
2896 	if (!ifq_is_empty(&ifp->if_snd))
2897 		if_devstart(ifp);
2898 }
2899 
2900 /*
2901  * Stop the adapter and free any mbufs allocated to the
2902  * RX and TX lists.
2903  */
2904 static void
2905 re_stop(struct re_softc *sc)
2906 {
2907 	struct ifnet *ifp = &sc->arpcom.ac_if;
2908 	int i;
2909 
2910 	ASSERT_SERIALIZED(ifp->if_serializer);
2911 
2912 	/* Reset the adapter. */
2913 	re_reset(sc, ifp->if_flags & IFF_RUNNING);
2914 
2915 	ifp->if_timer = 0;
2916 	callout_stop(&sc->re_timer);
2917 
2918 	ifp->if_flags &= ~IFF_RUNNING;
2919 	ifq_clr_oactive(&ifp->if_snd);
2920 	sc->re_flags &= ~(RE_F_TIMER_INTR | RE_F_DROP_RXFRAG | RE_F_LINKED);
2921 
2922 	CSR_WRITE_1(sc, RE_COMMAND, 0x00);
2923 	CSR_WRITE_2(sc, RE_IMR, 0x0000);
2924 	CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
2925 
2926 	re_free_rxchain(sc);
2927 
2928 	/* Free the TX list buffers. */
2929 	for (i = 0; i < sc->re_tx_desc_cnt; i++) {
2930 		if (sc->re_ldata.re_tx_mbuf[i] != NULL) {
2931 			bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2932 					  sc->re_ldata.re_tx_dmamap[i]);
2933 			m_freem(sc->re_ldata.re_tx_mbuf[i]);
2934 			sc->re_ldata.re_tx_mbuf[i] = NULL;
2935 		}
2936 	}
2937 
2938 	/* Free the RX list buffers. */
2939 	for (i = 0; i < sc->re_rx_desc_cnt; i++) {
2940 		if (sc->re_ldata.re_rx_mbuf[i] != NULL) {
2941 			if ((sc->re_flags & RE_F_USE_JPOOL) == 0) {
2942 				bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
2943 						  sc->re_ldata.re_rx_dmamap[i]);
2944 			}
2945 			m_freem(sc->re_ldata.re_rx_mbuf[i]);
2946 			sc->re_ldata.re_rx_mbuf[i] = NULL;
2947 		}
2948 	}
2949 }
2950 
2951 /*
2952  * Device suspend routine.  Stop the interface and save some PCI
2953  * settings in case the BIOS doesn't restore them properly on
2954  * resume.
2955  */
2956 static int
2957 re_suspend(device_t dev)
2958 {
2959 #ifndef BURN_BRIDGES
2960 	int i;
2961 #endif
2962 	struct re_softc *sc = device_get_softc(dev);
2963 	struct ifnet *ifp = &sc->arpcom.ac_if;
2964 
2965 	lwkt_serialize_enter(ifp->if_serializer);
2966 
2967 	re_stop(sc);
2968 
2969 #ifndef BURN_BRIDGES
2970 	for (i = 0; i < 5; i++)
2971 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2972 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2973 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2974 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2975 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2976 #endif
2977 
2978 	sc->re_flags |= RE_F_SUSPENDED;
2979 
2980 	lwkt_serialize_exit(ifp->if_serializer);
2981 
2982 	return (0);
2983 }
2984 
2985 /*
2986  * Device resume routine.  Restore some PCI settings in case the BIOS
2987  * doesn't, re-enable busmastering, and restart the interface if
2988  * appropriate.
2989  */
2990 static int
2991 re_resume(device_t dev)
2992 {
2993 	struct re_softc *sc = device_get_softc(dev);
2994 	struct ifnet *ifp = &sc->arpcom.ac_if;
2995 #ifndef BURN_BRIDGES
2996 	int i;
2997 #endif
2998 
2999 	lwkt_serialize_enter(ifp->if_serializer);
3000 
3001 #ifndef BURN_BRIDGES
3002 	/* better way to do this? */
3003 	for (i = 0; i < 5; i++)
3004 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
3005 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3006 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3007 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3008 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3009 
3010 	/* reenable busmastering */
3011 	pci_enable_busmaster(dev);
3012 	pci_enable_io(dev, SYS_RES_IOPORT);
3013 #endif
3014 
3015 	/* reinitialize interface if necessary */
3016 	if (ifp->if_flags & IFF_UP)
3017 		re_init(sc);
3018 
3019 	sc->re_flags &= ~RE_F_SUSPENDED;
3020 
3021 	lwkt_serialize_exit(ifp->if_serializer);
3022 
3023 	return (0);
3024 }
3025 
3026 /*
3027  * Stop all chip I/O so that the kernel's probe routines don't
3028  * get confused by errant DMAs when rebooting.
3029  */
3030 static void
3031 re_shutdown(device_t dev)
3032 {
3033 	struct re_softc *sc = device_get_softc(dev);
3034 	struct ifnet *ifp = &sc->arpcom.ac_if;
3035 
3036 	lwkt_serialize_enter(ifp->if_serializer);
3037 	re_stop(sc);
3038 	lwkt_serialize_exit(ifp->if_serializer);
3039 }
3040 
3041 static int
3042 re_sysctl_rxtime(SYSCTL_HANDLER_ARGS)
3043 {
3044 	struct re_softc *sc = arg1;
3045 
3046 	return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_rx_time);
3047 }
3048 
3049 static int
3050 re_sysctl_txtime(SYSCTL_HANDLER_ARGS)
3051 {
3052 	struct re_softc *sc = arg1;
3053 
3054 	return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_tx_time);
3055 }
3056 
3057 static int
3058 re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *hwtime)
3059 {
3060 	struct re_softc *sc = arg1;
3061 	struct ifnet *ifp = &sc->arpcom.ac_if;
3062 	int error, v;
3063 
3064 	lwkt_serialize_enter(ifp->if_serializer);
3065 
3066 	v = *hwtime;
3067 	error = sysctl_handle_int(oidp, &v, 0, req);
3068 	if (error || req->newptr == NULL)
3069 		goto back;
3070 
3071 	if (v <= 0) {
3072 		error = EINVAL;
3073 		goto back;
3074 	}
3075 
3076 	if (v != *hwtime) {
3077 		*hwtime = v;
3078 
3079 		if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) ==
3080 		    IFF_RUNNING && sc->re_imtype == RE_IMTYPE_HW)
3081 			re_setup_hw_im(sc);
3082 	}
3083 back:
3084 	lwkt_serialize_exit(ifp->if_serializer);
3085 	return error;
3086 }
3087 
3088 static int
3089 re_sysctl_simtime(SYSCTL_HANDLER_ARGS)
3090 {
3091 	struct re_softc *sc = arg1;
3092 	struct ifnet *ifp = &sc->arpcom.ac_if;
3093 	int error, v;
3094 
3095 	lwkt_serialize_enter(ifp->if_serializer);
3096 
3097 	v = sc->re_sim_time;
3098 	error = sysctl_handle_int(oidp, &v, 0, req);
3099 	if (error || req->newptr == NULL)
3100 		goto back;
3101 
3102 	if (v <= 0) {
3103 		error = EINVAL;
3104 		goto back;
3105 	}
3106 
3107 	if (v != sc->re_sim_time) {
3108 		sc->re_sim_time = v;
3109 
3110 		if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) ==
3111 		    IFF_RUNNING && sc->re_imtype == RE_IMTYPE_SIM) {
3112 #ifdef foo
3113 			int reg;
3114 
3115 			/*
3116 			 * Following code causes various strange
3117 			 * performance problems.  Hmm ...
3118 			 */
3119 			CSR_WRITE_2(sc, RE_IMR, 0);
3120 			if (!RE_IS_8139CP(sc))
3121 				reg = RE_TIMERINT_8169;
3122 			else
3123 				reg = RE_TIMERINT;
3124 			CSR_WRITE_4(sc, reg, 0);
3125 			CSR_READ_4(sc, reg); /* flush */
3126 
3127 			CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3128 			re_setup_sim_im(sc);
3129 #else
3130 			re_setup_intr(sc, 0, RE_IMTYPE_NONE);
3131 			DELAY(10);
3132 			re_setup_intr(sc, 1, RE_IMTYPE_SIM);
3133 #endif
3134 		}
3135 	}
3136 back:
3137 	lwkt_serialize_exit(ifp->if_serializer);
3138 	return error;
3139 }
3140 
3141 static int
3142 re_sysctl_imtype(SYSCTL_HANDLER_ARGS)
3143 {
3144 	struct re_softc *sc = arg1;
3145 	struct ifnet *ifp = &sc->arpcom.ac_if;
3146 	int error, v;
3147 
3148 	lwkt_serialize_enter(ifp->if_serializer);
3149 
3150 	v = sc->re_imtype;
3151 	error = sysctl_handle_int(oidp, &v, 0, req);
3152 	if (error || req->newptr == NULL)
3153 		goto back;
3154 
3155 	if (v != RE_IMTYPE_HW && v != RE_IMTYPE_SIM && v != RE_IMTYPE_NONE) {
3156 		error = EINVAL;
3157 		goto back;
3158 	}
3159 	if (v == RE_IMTYPE_HW && (sc->re_caps & RE_C_HWIM) == 0) {
3160 		/* Can't do hardware interrupt moderation */
3161 		error = EOPNOTSUPP;
3162 		goto back;
3163 	}
3164 
3165 	if (v != sc->re_imtype) {
3166 		sc->re_imtype = v;
3167 		if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) ==
3168 		    IFF_RUNNING)
3169 			re_setup_intr(sc, 1, sc->re_imtype);
3170 	}
3171 back:
3172 	lwkt_serialize_exit(ifp->if_serializer);
3173 	return error;
3174 }
3175 
3176 static void
3177 re_setup_hw_im(struct re_softc *sc)
3178 {
3179 	KKASSERT(sc->re_caps & RE_C_HWIM);
3180 
3181 	/*
3182 	 * Interrupt moderation
3183 	 *
3184 	 * 0xABCD
3185 	 * A - unknown (maybe TX related)
3186 	 * B - TX timer (unit: 25us)
3187 	 * C - unknown (maybe RX related)
3188 	 * D - RX timer (unit: 25us)
3189 	 *
3190 	 *
3191 	 * re(4)'s interrupt moderation is actually controlled by
3192 	 * two variables, like most other NICs (bge, bce etc.)
3193 	 * o  timer
3194 	 * o  number of packets [P]
3195 	 *
3196 	 * The logic relationship between these two variables is
3197 	 * similar to other NICs too:
3198 	 * if (timer expire || packets > [P])
3199 	 *     Interrupt is delivered
3200 	 *
3201 	 * Currently we only know how to set 'timer', but not
3202 	 * 'number of packets', which should be ~30, as far as I
3203 	 * tested (sink ~900Kpps, interrupt rate is 30KHz)
3204 	 */
3205 	CSR_WRITE_2(sc, RE_IM,
3206 		    RE_IM_RXTIME(sc->re_rx_time) |
3207 		    RE_IM_TXTIME(sc->re_tx_time) |
3208 		    RE_IM_MAGIC);
3209 }
3210 
3211 static void
3212 re_disable_hw_im(struct re_softc *sc)
3213 {
3214 	if (sc->re_caps & RE_C_HWIM)
3215 		CSR_WRITE_2(sc, RE_IM, 0);
3216 }
3217 
3218 static void
3219 re_setup_sim_im(struct re_softc *sc)
3220 {
3221 	if (!RE_IS_8139CP(sc)) {
3222 		uint32_t ticks;
3223 
3224 		/*
3225 		 * Datasheet says tick decreases at bus speed,
3226 		 * but it seems the clock runs a little bit
3227 		 * faster, so we do some compensation here.
3228 		 */
3229 		ticks = (sc->re_sim_time * sc->re_bus_speed * 8) / 5;
3230 		CSR_WRITE_4(sc, RE_TIMERINT_8169, ticks);
3231 	} else {
3232 		CSR_WRITE_4(sc, RE_TIMERINT, 0x400); /* XXX */
3233 	}
3234 	CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
3235 	sc->re_flags |= RE_F_TIMER_INTR;
3236 }
3237 
3238 static void
3239 re_disable_sim_im(struct re_softc *sc)
3240 {
3241 	if (!RE_IS_8139CP(sc))
3242 		CSR_WRITE_4(sc, RE_TIMERINT_8169, 0);
3243 	else
3244 		CSR_WRITE_4(sc, RE_TIMERINT, 0);
3245 	sc->re_flags &= ~RE_F_TIMER_INTR;
3246 }
3247 
3248 static void
3249 re_config_imtype(struct re_softc *sc, int imtype)
3250 {
3251 	switch (imtype) {
3252 	case RE_IMTYPE_HW:
3253 		KKASSERT(sc->re_caps & RE_C_HWIM);
3254 		/* FALL THROUGH */
3255 	case RE_IMTYPE_NONE:
3256 		sc->re_intrs = RE_INTRS;
3257 		sc->re_rx_ack = RE_ISR_RX_OK | RE_ISR_FIFO_OFLOW |
3258 				RE_ISR_RX_OVERRUN;
3259 		sc->re_tx_ack = RE_ISR_TX_OK;
3260 		break;
3261 
3262 	case RE_IMTYPE_SIM:
3263 		sc->re_intrs = RE_INTRS_TIMER;
3264 		sc->re_rx_ack = RE_ISR_TIMEOUT_EXPIRED;
3265 		sc->re_tx_ack = RE_ISR_TIMEOUT_EXPIRED;
3266 		break;
3267 
3268 	default:
3269 		panic("%s: unknown imtype %d",
3270 		      sc->arpcom.ac_if.if_xname, imtype);
3271 	}
3272 }
3273 
3274 static void
3275 re_setup_intr(struct re_softc *sc, int enable_intrs, int imtype)
3276 {
3277 	re_config_imtype(sc, imtype);
3278 
3279 	if (enable_intrs)
3280 		CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3281 	else
3282 		CSR_WRITE_2(sc, RE_IMR, 0);
3283 
3284 	sc->re_npoll.ifpc_stcount = 0;
3285 
3286 	switch (imtype) {
3287 	case RE_IMTYPE_NONE:
3288 		re_disable_sim_im(sc);
3289 		re_disable_hw_im(sc);
3290 		break;
3291 
3292 	case RE_IMTYPE_HW:
3293 		KKASSERT(sc->re_caps & RE_C_HWIM);
3294 		re_disable_sim_im(sc);
3295 		re_setup_hw_im(sc);
3296 		break;
3297 
3298 	case RE_IMTYPE_SIM:
3299 		re_disable_hw_im(sc);
3300 		re_setup_sim_im(sc);
3301 		break;
3302 
3303 	default:
3304 		panic("%s: unknown imtype %d",
3305 		      sc->arpcom.ac_if.if_xname, imtype);
3306 	}
3307 }
3308 
3309 static void
3310 re_get_eaddr(struct re_softc *sc, uint8_t *eaddr)
3311 {
3312 	int i;
3313 
3314 	if (sc->re_caps & RE_C_EE_EADDR) {
3315 		uint16_t re_did;
3316 
3317 		re_get_eewidth(sc);
3318 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
3319 		if (re_did == 0x8128) {
3320 			uint16_t as[ETHER_ADDR_LEN / 2];
3321 
3322 			/*
3323 			 * Get station address from the EEPROM.
3324 			 */
3325 			re_read_eeprom(sc, (caddr_t)as, sc->re_ee_eaddr, 3);
3326 			for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
3327 				as[i] = le16toh(as[i]);
3328 			bcopy(as, eaddr, ETHER_ADDR_LEN);
3329 			return;
3330 		}
3331 	}
3332 
3333 	/*
3334 	 * Get station address from IDRx.
3335 	 */
3336 	for (i = 0; i < ETHER_ADDR_LEN; ++i)
3337 		eaddr[i] = CSR_READ_1(sc, RE_IDR0 + i);
3338 }
3339 
3340 static int
3341 re_jpool_alloc(struct re_softc *sc)
3342 {
3343 	struct re_list_data *ldata = &sc->re_ldata;
3344 	struct re_jbuf *jbuf;
3345 	bus_addr_t paddr;
3346 	bus_size_t jpool_size;
3347 	bus_dmamem_t dmem;
3348 	caddr_t buf;
3349 	int i, error;
3350 
3351 	lwkt_serialize_init(&ldata->re_jbuf_serializer);
3352 
3353 	ldata->re_jbuf = kmalloc(sizeof(struct re_jbuf) * RE_JBUF_COUNT(sc),
3354 				 M_DEVBUF, M_WAITOK | M_ZERO);
3355 
3356 	jpool_size = RE_JBUF_COUNT(sc) * RE_JBUF_SIZE;
3357 
3358 	error = bus_dmamem_coherent(sc->re_parent_tag,
3359 			RE_RXBUF_ALIGN, 0,
3360 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3361 			jpool_size, BUS_DMA_WAITOK, &dmem);
3362 	if (error) {
3363 		device_printf(sc->re_dev, "could not allocate jumbo memory\n");
3364 		return error;
3365 	}
3366 	ldata->re_jpool_tag = dmem.dmem_tag;
3367 	ldata->re_jpool_map = dmem.dmem_map;
3368 	ldata->re_jpool = dmem.dmem_addr;
3369 	paddr = dmem.dmem_busaddr;
3370 
3371 	/* ..and split it into 9KB chunks */
3372 	SLIST_INIT(&ldata->re_jbuf_free);
3373 
3374 	buf = ldata->re_jpool;
3375 	for (i = 0; i < RE_JBUF_COUNT(sc); i++) {
3376 		jbuf = &ldata->re_jbuf[i];
3377 
3378 		jbuf->re_sc = sc;
3379 		jbuf->re_inuse = 0;
3380 		jbuf->re_slot = i;
3381 		jbuf->re_buf = buf;
3382 		jbuf->re_paddr = paddr;
3383 
3384 		SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3385 
3386 		buf += RE_JBUF_SIZE;
3387 		paddr += RE_JBUF_SIZE;
3388 	}
3389 	return 0;
3390 }
3391 
3392 static void
3393 re_jpool_free(struct re_softc *sc)
3394 {
3395 	struct re_list_data *ldata = &sc->re_ldata;
3396 
3397 	if (ldata->re_jpool_tag != NULL) {
3398 		bus_dmamap_unload(ldata->re_jpool_tag, ldata->re_jpool_map);
3399 		bus_dmamem_free(ldata->re_jpool_tag, ldata->re_jpool,
3400 				ldata->re_jpool_map);
3401 		bus_dma_tag_destroy(ldata->re_jpool_tag);
3402 		ldata->re_jpool_tag = NULL;
3403 	}
3404 
3405 	if (ldata->re_jbuf != NULL) {
3406 		kfree(ldata->re_jbuf, M_DEVBUF);
3407 		ldata->re_jbuf = NULL;
3408 	}
3409 }
3410 
3411 static struct re_jbuf *
3412 re_jbuf_alloc(struct re_softc *sc)
3413 {
3414 	struct re_list_data *ldata = &sc->re_ldata;
3415 	struct re_jbuf *jbuf;
3416 
3417 	lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3418 
3419 	jbuf = SLIST_FIRST(&ldata->re_jbuf_free);
3420 	if (jbuf != NULL) {
3421 		SLIST_REMOVE_HEAD(&ldata->re_jbuf_free, re_link);
3422 		jbuf->re_inuse = 1;
3423 	}
3424 
3425 	lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3426 
3427 	return jbuf;
3428 }
3429 
3430 static void
3431 re_jbuf_free(void *arg)
3432 {
3433 	struct re_jbuf *jbuf = arg;
3434 	struct re_softc *sc = jbuf->re_sc;
3435 	struct re_list_data *ldata = &sc->re_ldata;
3436 
3437 	if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3438 		panic("%s: free wrong jumbo buffer",
3439 		      sc->arpcom.ac_if.if_xname);
3440 	} else if (jbuf->re_inuse == 0) {
3441 		panic("%s: jumbo buffer already freed",
3442 		      sc->arpcom.ac_if.if_xname);
3443 	}
3444 
3445 	lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3446 	atomic_subtract_int(&jbuf->re_inuse, 1);
3447 	if (jbuf->re_inuse == 0)
3448 		SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3449 	lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3450 }
3451 
3452 static void
3453 re_jbuf_ref(void *arg)
3454 {
3455 	struct re_jbuf *jbuf = arg;
3456 	struct re_softc *sc = jbuf->re_sc;
3457 	struct re_list_data *ldata = &sc->re_ldata;
3458 
3459 	if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3460 		panic("%s: ref wrong jumbo buffer",
3461 		      sc->arpcom.ac_if.if_xname);
3462 	} else if (jbuf->re_inuse == 0) {
3463 		panic("%s: jumbo buffer already freed",
3464 		      sc->arpcom.ac_if.if_xname);
3465 	}
3466 	atomic_add_int(&jbuf->re_inuse, 1);
3467 }
3468 
3469 static void
3470 re_disable_aspm(device_t dev)
3471 {
3472 	uint16_t link_cap, link_ctrl;
3473 	uint8_t pcie_ptr, reg;
3474 
3475 	pcie_ptr = pci_get_pciecap_ptr(dev);
3476 	if (pcie_ptr == 0)
3477 		return;
3478 
3479 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
3480 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
3481 		return;
3482 
3483 	if (bootverbose)
3484 		device_printf(dev, "disable ASPM\n");
3485 
3486 	reg = pcie_ptr + PCIER_LINKCTRL;
3487 	link_ctrl = pci_read_config(dev, reg, 2);
3488 	link_ctrl &= ~(PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1);
3489 	pci_write_config(dev, reg, link_ctrl, 2);
3490 }
3491